Sample records for electron density peak

  1. MAVEN observations of dayside peak electron densities in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Andersson, Laila; Girazian, Zachary; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.; Eparvier, Frank G.; Jakosky, Bruce M.

    2017-01-01

    The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The Mars Atmosphere and Volatile EvolutioN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis was lowered to 125 km, provided the first opportunity since Viking to sample in situ a complete dayside electron density profile including the main peak. Here we present peak electron density measurements from 37 deep dip orbits and describe conditions at the altitude of the main peak, including the electron temperature and composition of the ionosphere and neutral atmosphere. We find that the dependence of the peak electron density and the altitude of the main peak on solar zenith angle are well described by analytical photochemical theory. Additionally, we find that the electron temperatures at the main peak display a dependence on solar zenith angle that is consistent with the observed variability in the peak electron density. Several peak density measurements were made in regions of large crustal magnetic field, but there is no clear evidence that the crustal magnetic field strength influences the peak electron density, peak altitude, or electron temperature. Finally, we find that the fractional abundance of O2+ and CO2+ at the peak altitude is variable but that the two species together consistently represent 95% of the total ion density.

  2. Profiles of Ionospheric Storm-enhanced Density during the 17 March 2015 Great Storm

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.

    2015-12-01

    Ionospheric F2 region peak densities (NmF2) are expected to show a positive phase correlation with total electron content (TEC), and electron density is expected to have an anti-correlation with electron temperature near the ionospheric F2 peak. However, we show that, during the 17 March 2015 great storm, TEC and F2 region electron density peak height (hmF2) over Millstone Hill increased, but the F2 region electron density peak (NmF2) decreased significantly during the storm-enhanced density (SED) phase of the storm compared with the quiet-time ionosphere. This SED occurred where there was a negative ionospheric storm near the F2 peak and below it. The weak ionosphere below the F2 peak resulted in much reduced downward heat conduction for the electrons, trapping the heat in the topside. This, in turn, increased the topside scale height, so that, even though electron densities at the F2 peak were depleted, TEC increased in the SED. The depletion in NmF2 was probably caused by an increase in the density of the molecular neutrals, resulting in enhanced recombination. In addition, the storm-time topside ionospheric electron density profile was much closer to diffusive equilibrium than non-storm time profile because of less daytime plasma flow from the ionosphere to the plasmasphere.

  3. MAVEN Observations of Dayside Peak Electron Densities in the Ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vogt, M. F.; Withers, P.; Andersson, L.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.; Connerney, J. E. P.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.

    2016-12-01

    The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The MAVEN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis is lowered to 120 km, provided our first opportunity since Viking to sample in situ a complete dayside electron density profiles including the main peak, and the first observations with contemporaneous comprehensive measurements of the local plasma and magnetic field properties. We have analyzed the peak electron density measurements from the MAVEN deep dip orbits and will discuss their variability with various ionospheric properties, including the proximity to regions of large crustal magnetic fields, and external drivers. We will also present observations of the electron temperature and atmospheric neutral and ion composition at the altitude of the peak electron density.

  4. Characteristics of ionospheric electron density profiles in the auroral and polar cap regions from long-term incoherent scatter radar observations

    NASA Astrophysics Data System (ADS)

    Jee, G.; Kim, E.; Kwak, Y. S.; Kim, Y.; Kil, H.

    2017-12-01

    We investigate the climatological characteristics of the ionospheric electron density profiles in the auroral and polar cap regions in comparison with the mid-latitude ionosphere using incoherent scatter radars (ISR) observations from Svalbard (78.15N, 16.05E), Tromso (69.59N, 19.23E), and Millstone Hill (42.6N, 288.5E) during a period of 1995 - 2015. Diurnal variations of electron density profiles from 100 to 500 km are compared among the three radar observations during equinox, summer and winter solstice for different solar and geomagnetic activities. Also investigated are the physical characteristics of E-region and F-region peak parameters of electron density profiles in the auroral and polar cap regions, which are significantly different from the mid-latitude ionosphere. In the polar ionosphere, the diurnal variations of density profiles are extremely small in summer hemisphere. Semiannual anomaly hardly appears for all latitudes, but winter anomaly occurs at mid-latitude and auroral ionospheres for high solar activity. Nighttime density becomes larger than daytime density in the winter polar cap ionosphere for high solar activity. The E-region peak is very distinctive in the nighttime auroral region and the peak height is nearly constant at about 110 km for all conditions. Compared with the F-region peak density, the E-region peak density does not change much with solar activity. Furthermore, the E-region peak density can be even larger than F-region density for low solar activity in the auroral region, particularly during disturbed condition.

  5. Measurements of ion stopping around the Bragg peak in high-energy-density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenje, J. A.; Grabowski, P. E.; Li, C. K.

    2015-11-09

    For the first time, quantitative measurements of ion stopping at energies about the Bragg peak (or peak ion stopping, which occurs at an ion velocity comparable to the average thermal electron velocity), and its dependence on electron temperature (T e) and electron number density (n e) in the range of 0.5 – 4.0 keV and 3 × 10 22 – 3 × 10 23 cm -3 have been conducted, respectively. It is experimentally demonstrated that the position and amplitude of the Bragg peak varies strongly with T e with n e. As a result, the importance of including quantum diffractionmore » is also demonstrated in the stopping-power modeling of High-Energy-Density Plasmas.« less

  6. [Study of the effect of heat source separation distance on plasma physical properties in laser-pulsed GMAW hybrid welding based on spectral diagnosis technique].

    PubMed

    Liao, Wei; Hua, Xue-Ming; Zhang, Wang; Li, Fang

    2014-05-01

    In the present paper, the authors calculated the plasma's peak electron temperatures under different heat source separation distance in laser- pulse GMAW hybrid welding based on Boltzmann spectrometry. Plasma's peak electron densities under the corresponding conditions were also calculated by using the Stark width of the plasma spectrum. Combined with high-speed photography, the effect of heat source separation distance on electron temperature and electron density was studied. The results show that with the increase in heat source separation distance, the electron temperatures and electron densities of laser plasma did not changed significantly. However, the electron temperatures of are plasma decreased, and the electron densities of are plasma first increased and then decreased.

  7. Empirical model for the electron density peak height disturbance in response to solar wind conditions

    NASA Astrophysics Data System (ADS)

    Blanch, E.; Altadill, D.

    2009-04-01

    Geomagnetic storms disturb the quiet behaviour of the ionosphere, its electron density and the electron density peak height, hmF2. Many works have been done to predict the variations of the electron density but few efforts have been dedicated to predict the variations the hmF2 under disturbed helio-geomagnetic conditions. We present the results of the analyses of the F2 layer peak height disturbances occurred during intense geomagnetic storms for one solar cycle. The results systematically show a significant peak height increase about 2 hours after the beginning of the main phase of the geomagnetic storm, independently of both the local time position of the station at the onset of the storm and the intensity of the storm. An additional uplift is observed in the post sunset sector. The duration of the uplift and the height increase are dependent of the intensity of the geomagnetic storm, the season and the local time position of the station at the onset of the storm. An empirical model has been developed to predict the electron density peak height disturbances in response to solar wind conditions and local time which can be used for nowcasting and forecasting the hmF2 disturbances for the middle latitude ionosphere. This being an important output for EURIPOS project operational purposes.

  8. Analysis of Total Electron Content and Electron Density Profile during Different Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Chapagain, N. P.; Rana, B.; Adhikari, B.

    2017-12-01

    Total Electron content (TEC) and electron density are the key parameters in the mitigation of ionospheric effects on radio communication system. Detail study of the TEC and electron density variations has been carried out during geomagnetic storms, with longitude and latitude, for four different locations: (13˚N -17˚N, 88˚E -98˚E), (30˚N-50˚N, 120˚W -95˚W), (29˚S-26˚S, 167˚W-163˚W,) and (60˚S-45˚S, 120˚W-105˚W) using the Gravity Recovery and Climate Experiment (GRACE) satellite observations. In order to find the geomagnetic activity, the solar wind parameters such as north-south component of inter planetary magnetic field (Bz), plasma drift velocity (Vsw), flow pressure (nPa), AE, Dst and Kp indices were obtained from Operating Mission as Nodes on the Internet (OMNI) web system. The data for geomagnetic indices have been correlated with the TEC and electron density for four different events of geomagnetic storms on 6 April 2008, 27 March 2008, 4 September 2008, and 11 October 2008. The result illustrates that the observed TEC and electron density profile significantly vary with longitudes and latitudes. This study illustrates that the values of TEC and the vertical electron density profile are influenced by the solar wind parameters associated with solar activities. The peak values of electron density and TEC increase as the geomagnetic storms become stronger. Similarly, the electron density profile varies with altitudes, which peaks around the altitude range of about 250- 350 km, depending on the strength of geomagnetic storms. The results clearly show that the peak electron density shifted to higher altitude (from about 250 km to 350 km) as the geomagnetic disturbances becomes stronger.

  9. Changes in divertor conditions in response to changing core density with RMPs

    DOE PAGES

    Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.; ...

    2017-06-07

    The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less

  10. Changes in divertor conditions in response to changing core density with RMPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briesemeister, Alexis R.; Ahn, Joon -Wook; Canik, John M.

    The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicated non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have components which has at least one but typically many resonances with the rotational transform of the plasma. RMPs are found to alter inter-ELM heat flux to the divertormore » by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that, local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. Furthermore, these trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity, is seen after RMPs are applied.« less

  11. Initial observations of the nightside ionosphere of venus from pioneer venus orbiter radio occultations.

    PubMed

    Kliore, A J; Patel, I R; Nagy, A F; Cravens, T E; Gombosi, T I

    1979-07-06

    Pioneer Venus orbiter dual-frequency radio occultation measurements have produced many electron density profiles of the nightside ionosphere of Venus. Thirty-six of these profiles, measured at solar zenith angles (chi) from 90.60 degrees to 163.5 degrees , are discussed here. In the "deep" nightside ionosphere (chi > 110 degrees ), the structure and magnitude of the ionization peak are highly variable; the mean peak electron density is 16,700 +/- 7,200 (standard deviation) per cubic centimeter. In contrast, the altitude of the peak remains fairly constant with a mean of 142.2 +/- 4.1 kilometers, virtually identical to the altitude of the main peak of the dayside terminator ionosphere. The variations in the peak ionization are not directly related to contemporal variations in the solar wind speed. It is shown that electron density distributions similar to those observed in both magnitude and structure can be produced by the precipitation on the nightside of Venus of electron fluxes of about 108 per square centimeter per second with energies less than 100 electron volts. This mechanism could very likely be responsible for the maintenance of the persistent nightside ionosphere of Venus, although transport processes may also be important.

  12. Increasing positive ion number densities below the peak of ion-electron pair production in Titan's ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigren, E.; Galand, M.; Shebanits, O.

    2014-05-01

    We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anionmore » neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.« less

  13. Effect of normal impurities on anisotropic superconductors with variable density of states

    NASA Astrophysics Data System (ADS)

    Whitmore, M. D.; Carbotte, J. P.

    1982-06-01

    We develop a generalized BCS theory of impure superconductors with an anisotropic electron-electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(ɛ), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T c by both the anisotropy and the peak in N(ɛ) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak.

  14. Role of ion magnetization in formation of radial density profile in magnetically expanding plasma produced by helicon antenna

    NASA Astrophysics Data System (ADS)

    Yadav, Sonu; Ghosh, Soumen; Bose, Sayak; Barada, Kshitish K.; Pal, Rabindranath; Chattopadhyay, Prabal K.

    2018-04-01

    Experimentally, the density profile in the magnetic nozzle of a helicon antenna based plasma device is seen to be modified from being centrally peaked to that of hollow nature as the external magnetic field is increased. It occurs above a characteristic field value when the ions become magnetized in the expansion chamber. The density profile in the source chamber behind the nozzle, however, remains peaked on-axis irrespective of the magnetic field. The electron temperature there is observed to be hollow and this nature is carried to the expansion chamber along the field line. In the electron energy distribution near the off axis peak location, a high energy tail exists. Rotation of these tail electrons in the azimuthal direction due to the gradient-B drift in the expansion chamber leads to an additional off-axis ionization and forms the hollow density profile. It seems that if the ions are not magnetized, then the off-axially produced additional plasma is not confined and the density profile retains the on-axis peak nature. The present experiment successfully demonstrates how the knowledge of the ion magnetization together with tail electrons significantly contributes to the design of an efficient helicon plasma based thruster.

  15. Variations of plasmaspheric field-aligned electron and ion densities (90-4000 km) during quiet to moderately active (Kp < 4) geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Reddy, A.

    2017-12-01

    Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 < Kpmax,24 <4). The measurements were obtained in the L=1.7 to 3.3 range (90- 4000 km, 13 or 15 MLT). Our results show that, under similar geomagnetic activity, at similar L-shells but with different geographic longitudes and MLTs, the O+/H+ transition height varied within ±12% of 1100 km at L 2 and within ±8% of 1350 km at L 3. The electron densities along flux tubes varied within 30% and 20%, respectively, below (including F2 peak) and above HT. With increasing L shell: (a) O+/H+ transition height increased; (b) electron density variations below HT including F2 peak showed no trend; (c) electron density above HT decreased. For flux tubes at similar longitudes, L-shells, and MLT's, relative to quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.

  16. Experimental observation of left polarized wave absorption near electron cyclotron resonance frequency in helicon antenna produced plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.

    2013-01-15

    Asymmetry in density peaks on either side of an m = +1 half helical antenna is observed both in terms of peak position and its magnitude with respect to magnetic field variation in a linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. The plasma is produced by powering the m = +1 half helical antenna with a 2.5 kW, 13.56 MHz radio frequency source. During low magnetic field (B < 100 G) operation, plasma density peaks are observed at critical magnetic fields on either side of the antenna. However, the density peaks occurred at differentmore » critical magnetic fields on both sides of antenna. Depending upon the direction of the magnetic field, in the m = +1 propagation side, the main density peak has been observed around 30 G of magnetic field. On this side, the density peak around 5 G corresponding to electron cyclotron resonance (ECR) is not very pronounced, whereas in the m = -1 propagation side, very pronounced ECR peak has been observed around 5 G. Another prominent density peak around 12 G has also been observed in m = -1 side. However, no peak has been observed around 30 G on this m = -1 side. This asymmetry in the results on both sides is explained on the basis of polarization reversal of left hand polarized waves to right hand polarized waves and vice versa in a bounded plasma system. The density peaking phenomena are likely to be caused by obliquely propagating helicon waves at the resonance cone boundary.« less

  17. Enhanced ionization of the Martian nightside ionosphere during solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Nemec, F.; Morgan, D. D.; Dieval, C.; Gurnett, D. A.; Futaana, Y.

    2013-12-01

    The nightside ionosphere of Mars is highly variable and very irregular, controlled to a great extent by the configuration of the crustal magnetic fields. The ionospheric reflections observed by the MARSIS radar sounder on board the Mars Express spacecraft in this region are typically oblique (reflection by a distant feature), so that they cannot be used to determine the peak altitude precisely. Nevertheless, the peak electron density can be in principle readily determined. However, in more than 90% of measurements the peak electron densities are too low to be detected. We focus on the time intervals of solar energetic particle (SEP) events. One may expect high energy particle precipitation into the nightside ionosphere to increase the electron density there. Thus, comparison of characteristics between SEP/no-SEP time intervals is important to understand the formation mechanism of the nightside ionosphere. The time intervals of SEP events are determined using the increase in the background counts recorded by the ion sensor (IMA) of the ASPERA-3 particle instrument on board Mars Express. Then we use MARSIS measurements to determine how much the nightside ionosphere is enhanced during these time intervals. We show that the peak electron densities during these periods are large enough to be detected in more than 30% of measurements, while the reflections from the ground almost entirely disappear, indicating that the nightside electron densities are tremendously increased as compared to the normal nightside conditions. The influence of various parameters on the formation of the nightside ionosphere is thoroughly discussed.

  18. The Relationship between Ionospheric Slab Thickness and the Peak Density Height, hmF2

    NASA Astrophysics Data System (ADS)

    Meehan, J.; Sojka, J. J.

    2017-12-01

    The electron density profile is one of the most critical elements in the ionospheric modeling-related applications today. Ionosphere parameters, hmF2, the height of the peak density layer, and slab thickness, the ratio of the total electron content, TEC, to the peak density value, NmF2, are generally obtained from any global sounding observation network and are easily incorporated into models, theoretical or empirical, as numerical representations. Slab thickness is a convenient one-parameter summary of the electron density profile and can relate a variety of elements of interest that effect the overall electron profile shape, such as the neutral and ionospheric temperatures and gradients, the ionospheric composition, and dynamics. Using ISR data from the 2002 Millstone Hill ISR data campaign, we found, for the first time, slab thickness to be correlated to hmF2. For this, we introduce a new ionospheric index, k, which ultimately relates electron density parameters and can be a very useful tool for describing the topside ionosphere shape. Our study is an initial one location, one season, 30-day study, and future work is needed to verify the robustness of our claim. Generally, the ionospheric profile shape, requires knowledge of several ionospheric parameters: electron, ion and neutral temperatures, ion composition, electric fields, and neutral winds, and is dependent upon seasons, local time, location, and the level of solar and geomagnetic activity; however, with this new index, only readily-available, ionospheric density information is needed. Such information, as used in this study, is obtained from a bottomside electron density profile provided by an ionosonde, and TEC data provided by a local, collocated GPS receiver.

  19. An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, M.H.G.; Luhmann, J.G.; Kliore, A.J.

    1990-10-01

    An analysis of Mars and Venus nightside electron density profiles obtained with radio occultation methods shows how the nightside ionospheres of both planets vary with solar zenith angle. From previous studies it is known that the dayside peak electron densities at Mars and Venus show a basic similarity in that they both exhibit Chapman layer-like behavior. In contrast, the peak altitudes at mars behave like an ideal Chapman layer on the dayside, whereas the altitude of the peak at Venus is fairly constant up to the terminator. The effect of major dust storms can also be seen in the peakmore » altitudes at Mars. All Venus nightside electron density profiles show a distinct main peak for both solar minimum and maximum, whereas many profiles from the nightside of Mars do not show any peak at all. This suggests that the electron density in the Mars nightside ionosphere is frequently too low to be detected by radio occultation. On the Pioneer Venus orbiter, disappearing ionospheres were observed near solar maximum in the in-situ data when the solar wind dynamic pressure was exceptionally high. This condition occurs because the high solar wind dynamic pressure decreases the altitude of the ionopause near the terminator below {approximately}250 km, thus reducing the normal nightward transport of dayside ionospheric plasma. On the basis of the Venus observations, one might predict that if a positive correlation of nightside peak density with dynamic pressure was found, it could mean that transport from the dayside is the only significant source for the nightside ionosphere of Mars. The lack of a correlation would imply that the precipitation source at Mars is quite variable.« less

  20. Electron densities in the ionosphere of Mars: A comparison of MARSIS and radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Flynn, Casey L.; Andrews, David J.; Duru, Firdevs; Morgan, David D.

    2016-10-01

    Radio occultation electron densities measurements from the Mariner 9 and Viking spacecraft, which orbited Mars in the 1970s, have recently become available in a digital format. These data are highly complementary to the radio occultation electron density profiles from Mars Global Surveyor, which were restricted in solar zenith angle and altitude. We have compiled data from the Mariner 9, Viking, and Mars Global Surveyor radio occultation experiments for comparison to electron density measurements made by Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), the topside radar sounder on Mars Express, and MARSIS-based empirical density models. We find that the electron densities measured by radio occultation are in generally good agreement with the MARSIS data and model, especially near the altitude of the peak electron density but that the MARSIS data and model display a larger plasma scale height than the radio occultation profiles at altitudes between the peak density and 200 km. Consequently, the MARSIS-measured and model electron densities are consistently larger than radio occultation densities at altitudes 200-300 km. Finally, we have analyzed transitions in the topside ionosphere, at the boundary between the photochemically controlled and transport-controlled regions, and identified the average transition altitude, or altitude at which a change in scale height occurs. The average transition altitude is 200 km in the Mariner 9 and Viking radio occultation profiles and in profiles of the median MARSIS radar sounding electron densities.

  1. Measurement and Interpretation of Diffuse Scattering in X-Ray Diffraction for Macromolecular Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins.

  2. Effect of density of states peculiarities on Hund's metal behavior

    NASA Astrophysics Data System (ADS)

    Belozerov, A. S.; Katanin, A. A.; Anisimov, V. I.

    2018-03-01

    We investigate a possibility of Hund's metal behavior in the Hubbard model with asymmetric density of states having peak(s). Specifically, we consider the degenerate two-band model and compare its results to the five-band model with realistic density of states of iron and nickel, showing that the obtained results are more general, provided that the hybridization between states of different symmetry is sufficiently small. We find that quasiparticle damping and the formation of local magnetic moments due to Hund's exchange interaction are enhanced by both the density of states asymmetry, which yields stronger correlated electron or hole excitations, and the larger density of states at the Fermi level, increasing the number of virtual electron-hole excitations. For realistic densities of states, these two factors are often interrelated because the Fermi level is attracted towards peaks of the density of states. We discuss the implication of the obtained results to various substances and compounds, such as transition metals, iron pnictides, and cuprates.

  3. Seasonal variation of meteor decay times observed at King Sejong Station (62.22°S, 58.78°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Han; Kim, Yong Ha; Lee, Chang-Sup; Jee, Geonhwa

    2010-07-01

    We analyzed meteor decay times measured by a VHF radar at King Sejong Station by classifying strong and weak meteors according to their estimated electron line densities. The height profiles of monthly averaged decay times show a peak whose altitude varies with season at altitudes of 80-85 km. The higher peak during summer is consistent with colder temperatures that cause faster chemical reactions of electron removal. By adopting temperature dependent empirical recombination rates from rocket experiments and meteor electron densities of 2×105-2×106 cm-3 in a decay time model, we are able to account for decreasing decay times below the peak for all seasons without invoking meteor electron removal by hypothetical icy particles.

  4. Dynamics of the Trapped Electron Phase Space Density in Relation to the Wave Activity in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Green, J.

    2008-05-01

    The phase space density fe of the radiation belt electron population is reconstructed based on measurements made by POLAR/HIST. The density peaks in invariant space (mu, K, L*) are shown to be responding to changes in the solar wind velocity and density, and the interplanetary magnetic field. We have associated specific types of storms with the appearance of peaks thereby producing a climatology of fe. We will report on comparing the phase space density changes during these storms to the ULF wave power in the inner magnetosphere remote- sensed by the IMAGE magnetometer array and related properties of the wave environment.

  5. A sporadic third layer in the ionosphere of Mars.

    PubMed

    Pätzold, M; Tellmann, S; Häusler, B; Hinson, D; Schaa, R; Tyler, G L

    2005-11-04

    The daytime martian ionosphere has been observed as a two-layer structure with electron densities that peak at altitudes between about 110 and 130 kilometers. The Mars Express Orbiter Radio Science Experiment on the European Mars Express spacecraft observed, in 10 out of 120 electron density profiles, a third ionospheric layer at altitude ranges of 65 to 110 kilometers, where electron densities, on average, peaked at 0.8 x 10(10) per cubic meter. Such a layer has been predicted to be permanent and continuous. Its origin has been attributed to ablation of meteors and charge exchange of magnesium and iron. Our observations imply that this layer is present sporadically and locally.

  6. Comment on "Hydrogen Balmer beta: The separation between line peaks for plasma electron density diagnostics and self-absorption test"

    NASA Astrophysics Data System (ADS)

    Gautam, Ghaneshwar; Surmick, David M.; Parigger, Christian G.

    2015-07-01

    In this letter, we present a brief comment regarding the recently published paper by Ivković et al., J Quant Spectrosc Radiat Transf 2015;154:1-8. Reference is made to previous experimental results to indicate that self absorption must have occurred; however, when carefully considering error propagation, both widths and peak-separation predict electron densities within the error margins. Yet the diagnosis method and the presented details on the use of the hydrogen beta peak separation are viewed as a welcomed contribution in studies of laser-induced plasma.

  7. The concept of quasi-tissue-equivalent nanodosimeter based on the glow peak 5a/5 in LiF:Mg,Ti (TLD-100).

    PubMed

    Oster, L; Horowitz, Y S; Biderman, S; Haddad, J

    2003-12-01

    We demonstrate the viability of the concept of using existing molecular nanostructures in thermoluminescent solid-state materials as solid-state nanodosimeters. The concept is based on mimicking radiobiology (specifically the ionization density dependence of double strand breaks in DNA) by using the similar ionization density dependence of simultaneous electron-hole capture in spatially correlated trapping and luminescent centres pairs in the thermoluminescence of LiF:Mg,Ti. This simultaneous electron-hole capture has been shown to lead to ionization density dependence in the relative intensity of peak 5a to peak 5 similar to the ratio of double-strand breaks to single-strand breaks for low energy He ions.

  8. First principle investigation of electronic structure, chemical bonding and optical properties of tetrabarium gallium trinitride oxide single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com; Azam, Sikander

    The electronic band structure, valence electron charge density and optical susceptibilities of tetrabarium gallium trinitride (TGT) were calculated via first principle study. The electronic band structure calculation describes TGT as semiconductor having direct band gap of 1.38 eV. The valence electronic charge density contour verified the non-polar covalent nature of the bond. The absorption edge and first peak of dielectric tensor components showed electrons transition from N-p state to Ba-d state. The calculated uniaxial anisotropy (0.4842) and birefringence (−0.0061) of present paper is prearranged as follow the spectral components of the dielectric tensor. The first peak in energy loss functionmore » (ELOS) shows the energy loss of fast traveling electrons in the material. The first sharp peak produced in ELOS around 10.5 eV show plasmon loss having plasma frequencies 0.1536, 0.004 and 0.066 of dielectric tensor components. This plasmon loss also cause decrease in reflectivity spectra.« less

  9. Electronic Rearrangement in Molecular Plasmons: An Electron Density and Electrostatic Potential-Based Study.

    PubMed

    Paul, Mishu; Balanarayan, P

    2018-06-05

    Plasmonic modes in single-molecule systems have been previously identified by scaling two-electron interactions in calculating excitation energies. Analysis of transition dipole moments for states of polyacenes based on configuration interaction is another method for characterising molecular plasmons. The principal features in the electronic absorption spectra of polyacenes are a low-intensity, lower-in-energy peak and a high-intensity, higher-in-energy peak. From calculations using time-dependent density functional theory with the B3LYP/cc-pVTZ basis set, both these peaks are found to result from the same set of electronic transitions, that is, HOMO-n to LUMO and HOMO to LUMO+n, where n varies as the number of fused rings increases. In this work, the excited states of polyacenes, naphthalene through pentacene, are analysed using electron densities and molecular electrostatic potential (MESP) topography. Compared to other excited states the bright and dark plasmonic states involve the least electron rearrangement. Quantitatively, the MESP topography indicates that the variance in MESP values and the displacement in MESP minima positions, calculated with respect to the ground state, are lowest for plasmonic states. The excited-state electronic density profiles and electrostatic potential topographies suggest the least electron rearrangement for the plasmonic states. Conversely, high electron rearrangement characterises a single-particle excitation. The molecular plasmon can be called an excited state most similar to the ground state in terms of one-electron properties. This is found to be true for silver (Ag 6 ) and sodium (Na 8 ) linear chains as well. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar data

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    The COSMIC/FORMOSAT-3 is a joint US/Taiwan radio occultation mission consisting of six identical micro-satellites. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric RO measurements. FS3/COSMIC data can make a positive impact on global ionosphere study providing essential information about height electron density distribu-tion. For correct using of the RO electron density profiles for geophysical analysis, modeling and other applications it is necessary to make validation of these data with electron density distributions obtained by another measurement techniques such as proven ground based facili-ties -ionosondes and IS radars. In fact as the ionosondes provide no direct information on the profile above the maximum electron density and the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC RO measurements can make an important contribution to the investigation of the topside part of the ionosphere. IS radars provide information about the whole electron density profile, so we can estimate the agreement of topside parts between two independent measurements. To validate the reliability of COS-MIC data we have used the ionospheric electron density profiles derived from IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6N, 36.3E, geomagnetic coordinates: 45.7N, 117.8E). The Kharkiv radar is a sole incoherent scatter facility on the middle latitudes of Eu-ropean region. The radar operates with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power 2.0 MW. The Kharkiv IS radar is able to determine the heights-temporal distribution of ionosphere parameters in height range of 70-1500 km. At the ionosphere in-vestigation by incoherent scatter method there are directly measured the power spectrum (or autocorrelation function) of scattered signal. With using of rather complex procedure of the received signal processing it is possible to estimate the majority of the ionospheric parameters -density and kinetic temperature of electron and main ions, the plasma drift velocity and others. The comparison of RO reveals that usually COSMIC RO profiles are in a rather good agreement with ISR profiles both in the F2 layer peak electron density (NmF2) and the form of profiles. The coincidence of profiles is better in the cases when projection of the ray path of tangent points is closer to the ISR location. It is necessary to note that retrieved electron density profiles should not be interpreted as actual vertical profiles. The geographical location of the ray path tangent points at the top and at the bottom of a profile may differ by several hundred kilometers. So the spatial smearing of data takes place and RO technique represents an image of vertical and horizontal ionospheric structure. That is why the comparison with ground-based data has rather relative character. We derived quantitative parameters to char-acterize the differences of the compared profiles: the peak height difference, the relative peak density difference. Most of the compared profiles agree within error limits, depending on the accuracy of the occultation-and the radar-derived profiles. In general COSMIC RO profiles are in a good agreement with incoherent radar profiles both in the F2 layer peak electron density (NmF2) and the form of the profiles. The coincidence of COSMIC and incoherent radar pro-files is better in the cases when projection of the ray path tangent points is closer to the radar location. COSMIC measurements can be efficiently used to study the topside part of the iono-spheric electron density. To validate the reliability of the COSMIC ionospheric observations it must be done the big work on the analysis and statistical generalization of the huge data array (today the total number of ionospheric occultation is more than 2.300.000), but this technique is a very promising one to retrieve accurate profiles of the ionospheric electron density with ground-based measurements on a global scale. We acknowledge the Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC Data.

  11. Phenomenological study of the ionisation density-dependence of TLD-100 peak 5a.

    PubMed

    Brandan, Maria-Ester; Angeles, Oscar; Mercado-Uribe, Hilda

    2006-01-01

    Horowitz and collaborators have reported evidence on the structure of TLD-100 peak 5. A satellite peak, called 5a, has been singled out as arising from localised electron-hole recombination in a trap/luminescent centre, its emission mechanism would be geminate recombination and, therefore, its population would depend on incident radiation ionisation density. We report a phenomenological study of peak 4, 5a and 5 strengths for glow curves previously measured at UNAM for gammas, electrons and low-energy ions. The deconvolution procedure has followed strict rules to assure that the glow curve, where the presence of peak 5a is not visually noticeable, is decomposed in a consistent fashion, maintaining fixed widths and relative temperature difference between all the peaks. We find no improvement in the quality of the fit after inclusion of peak 5a. The relative contribution of peak 5a with respect to peak 5 does not seem to correlate with the radiation linear energy transfer.

  12. Mysteries of LiF TLD response following high ionisation density irradiation: nanodosimetry and track structure theory, dose response and glow curve shapes.

    PubMed

    Horowitz, Y; Fuks, E; Datz, H; Oster, L; Livingstone, J; Rosenfeld, A

    2011-06-01

    Three outstanding effects of ionisation density on the thermoluminescence (TL) mechanisms giving rise to the glow peaks of LiF:Mg,Ti (TLD-100) are currently under investigation: (1) the dependence of the heavy charged particle (HCP) relative efficiency with increasing ionisation density and the effectiveness of its modelling by track structure theory (TST), (2) the behaviour of the TL efficiency, f(D), as a function of photon energy and dose. These studies are intended to promote the development of a firm theoretical basis for the evaluation of relative TL efficiencies to assist in their application in mixed radiation fields. And (3) the shape of composite peak 5 in the glow curve for various HCP types and energies and following high-dose electron irradiation, i.e. the ratio of the intensity of peak 5a to peak 5. Peak 5a is a low-temperature satellite of peak 5 arising from electron-hole capture in a spatially correlated trapping centre/luminescent centre (TC/LC) complex that has been suggested to possess a potential as a solid-state nanodosemeter due to the preferential electron/hole population of the TC/LC at high ionisation density. It is concluded that (1) the predictions of TST are very strongly dependent on the choice of photon energy used in the determination of f(D); (2) modified TST employing calculated values of f(D) at 2 keV is in agreement with 5-MeV alpha particle experimental results for composite peak 5 but underestimates the 1.5-MeV proton relative efficiencies. Both the proton and alpha particle relative TL efficiencies of the high-temperature TL (HTTL) peaks 7 and 8 are underestimated by an order of magnitude suggesting that the HTTL efficiencies are affected by other factors in addition to radial electron dose; (3) the dose-response supralinearity of peaks 7 and 8 change rapidly with photon energy: this behaviour is explained in the framework of the unified interaction model as due to a very strong dependence on photon energy of the relative intensity of localised recombination and (4) the increased width and decrease in T(max) of composite peak 5 as a function of ionisation density is due to the greater relative intensity of peak 5a (a low-temperature component of peak 5 arising from two-energy transfer events, which leads to localised recombination).

  13. Mysteries of LiF TLD response following high ionisation density irradiation: nanodosimetry and track structure theory, dose response and glow curve shapes

    PubMed Central

    Horowitz, Y.; Fuks, E.; Datz, H.; Oster, L.; Livingstone, J.; Rosenfeld, A.

    2011-01-01

    Three outstanding effects of ionisation density on the thermoluminescence (TL) mechanisms giving rise to the glow peaks of LiF:Mg,Ti (TLD-100) are currently under investigation: (1) the dependence of the heavy charged particle (HCP) relative efficiency with increasing ionisation density and the effectiveness of its modelling by track structure theory (TST), (2) the behaviour of the TL efficiency, f(D), as a function of photon energy and dose. These studies are intended to promote the development of a firm theoretical basis for the evaluation of relative TL efficiencies to assist in their application in mixed radiation fields. And (3) the shape of composite peak 5 in the glow curve for various HCP types and energies and following high-dose electron irradiation, i.e. the ratio of the intensity of peak 5a to peak 5. Peak 5a is a low-temperature satellite of peak 5 arising from electron-hole capture in a spatially correlated trapping centre/luminescent centre (TC/LC) complex that has been suggested to possess a potential as a solid-state nanodosemeter due to the preferential electron/hole population of the TC/LC at high ionisation density. It is concluded that (1) the predictions of TST are very strongly dependent on the choice of photon energy used in the determination of f(D); (2) modified TST employing calculated values of f(D) at 2 keV is in agreement with 5-MeV alpha particle experimental results for composite peak 5 but underestimates the 1.5-MeV proton relative efficiencies. Both the proton and alpha particle relative TL efficiencies of the high-temperature TL (HTTL) peaks 7 and 8 are underestimated by an order of magnitude suggesting that the HTTL efficiencies are affected by other factors in addition to radial electron dose; (3) the dose–response supralinearity of peaks 7 and 8 change rapidly with photon energy: this behaviour is explained in the framework of the unified interaction model as due to a very strong dependence on photon energy of the relative intensity of localised recombination and (4) the increased width and decrease in Tmax of composite peak 5 as a function of ionisation density is due to the greater relative intensity of peak 5a (a low-temperature component of peak 5 arising from two-energy transfer events, which leads to localised recombination). PMID:21106636

  14. Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime

    NASA Astrophysics Data System (ADS)

    Hsieh, C.-Y.; Lin, M.-W.; Chen, S.-H.

    2018-02-01

    Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800-nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power PL˜2 Pc r of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished.

  15. Unequal density effect on static structure factor of coupled electron layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saini, L. K., E-mail: lks@ashd.svnit.ac.in; Nayak, Mukesh G., E-mail: lks@ashd.svnit.ac.in

    In order to understand the ordered phase, if any, in a real coupled electron layers (CEL), there is a need to take into account the effect of unequal layer density. Such phase is confirmed by a strong peak in a static structure factor. With the aid of quantum/dynamical version of Singwi, Tosi, Land and Sjölander (so-called qSTLS) approximation, we have calculated the intra- and interlayer static structure factors, S{sub ll}(q) and S{sub 12}(q), over a wide range of density parameter r{sub sl} and interlayer spacing d. In our present study, the sharp peak in S{sub 22}(q) has been found atmore » critical density with sufficiently lower interlayer spacing. Further, to find the resultant effect of unequal density on intra- and interlayer static structure factors, we have compared our results with that of the recent CEL system with equal layer density and isolated single electron layer.« less

  16. The dayside ionospheres of Mars and Venus: Comparing a one-dimensional photochemical model with MaRS (Mars Express) and VeRa (Venus Express) observations

    NASA Astrophysics Data System (ADS)

    Peter, Kerstin; Pätzold, Martin; Molina-Cuberos, Gregorio; Witasse, Olivier; González-Galindo, F.; Withers, Paul; Bird, Michael K.; Häusler, Bernd; Hinson, David P.; Tellmann, Silvia; Tyler, G. Leonard

    2014-05-01

    The electron density distributions of the lower ionospheres of Mars and Venus are mainly dependent on the solar X-ray and EUV flux and the solar zenith angle. The influence of an increasing solar flux is clearly seen in the increase of the observed peak electron density and total electron content (TEC) of the main ionospheric layers. The model “Ionization in Atmospheres” (IonA) was developed to compare ionospheric radio sounding observations, which were performed with the radio science experiments MaRS on Mars Express and VeRa on Venus Express, with simulated electron density profiles of the Mars and Venus ionospheres. This was done for actual observation conditions (solar flux, solar zenith angle, planetary coordinates) from the bases of the ionospheres to ∼160 km altitude. IonA uses models of the neutral atmospheres at ionospheric altitudes (Mars Climate Database (MCD) v4.3 for Mars; VenusGRAM/VIRA for Venus) and solar flux information in the 0.5-95 nm wavelength range (X-ray to EUV) from the SOLAR2000 data base. The comparison between the observed electron density profiles and the IonA profiles for Mars, simulated for a selected MCD scenario (background atmosphere), shows that the general behavior of the Mars ionosphere is reproduced by all scenarios. The MCD “low solar flux/clear atmosphere” and “low solar flux/MY24” scenarios agree best (on average) with the MaRS set of observations, although the actual Mars atmosphere seemed to be still slightly colder at ionospheric altitudes. For Venus, the VenusGRAM model, based on VIRA, is too limited to be used for the IonA simulation of electron density profiles. The behavior of the V2 peak electron density and TEC as a function of solar zenith angle are in general reproduced, but the peak densities and the TEC are either over- or underestimated for low or high solar EUV fluxes, respectively. The simulated V2 peak altitudes are systematically underestimated by 5 km on average for solar zenith angles less than 45° and the peak altitudes rise for zenith angles larger than 60°. The latter is the opposite of the observed behavior. The explanation is that VIRA and VenusGRAM are valid only for high solar activity, although there is also very poor agreement with VeRa observations from the recent solar cycle, in which the solar activity increases to high values. The disagreement between the observation and simulation of the Venus electron density profiles proves, that the true encountered Venus atmosphere at ionospheric altitudes was denser but locally cooler than predicted by VIRA.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkin, William M.; Balan, Adrian; Liang, Liangbo

    Here, we report how the presence of electron-beam-induced sulfur vacancies affects first-order Raman modes and correlate the effects with the evolution of the in situ transmission-electron microscopy (TEM) two-terminal conductivity of monolayer MoS 2 under electron irradiation. We observe a redshift in the E Raman peak and a less pronounced blueshift in the A' 1 peak with increasing electron dose. Using energy-dispersive X-ray spectroscopy (EDS), we show that irradiation causes partial removal of sulfur and correlate the dependence of the Raman peak shifts with S vacancy density (a few %), which is confirmed by first-principles density functional theory calculations. Inmore » situ device current measurements show exponential decrease in channel current upon irradiation. Our analysis demonstrates that the observed frequency shifts are intrinsic properties of the defective systems and that Raman spectroscopy can be used as a quantitative diagnostic tool to characterize MoS 2-based transport channels.« less

  18. Role of density gradient driven trapped electron mode turbulence in the H-mode inner core with electron heating

    DOE PAGES

    Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; ...

    2016-05-10

    In a series of DIII-D [J. L. Luxon, Nucl. Fusion 42 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron cyclotron heating (ECH). By adding 3.4 MW ECH doubles T e/T i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This then suggests fusion -heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking and low collisionality, with equal electron andmore » ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186 545 (2003)] (and GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra from Doppler Backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [W. Dorland et al., Phys. Rev. Lett. 85 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q 0 > q min > 1.« less

  19. Chromospheric evaporation flows and density changes deduced from Hinode/EIS during an M1.6 flare

    NASA Astrophysics Data System (ADS)

    Gömöry, P.; Veronig, A. M.; Su, Y.; Temmer, M.; Thalmann, J. K.

    2016-04-01

    Aims: We study the response of the solar atmosphere during a GOES M1.6 flare using spectroscopic and imaging observations. In particular, we examine the evolution of the mass flows and electron density together with the energy input derived from hard X-ray (HXR) in the context of chromospheric evaporation. Methods: We analyzed high-cadence sit-and-stare observations acquired with the Hinode/EIS spectrometer in the Fe xiii 202.044 Å (log T = 6.2) and Fe xvi 262.980 Å (log T = 6.4) spectral lines to derive temporal variations of the line intensity, Doppler shifts, and electron density during the flare. We combined these data with HXR measurements acquired with RHESSI to derive the energy input to the lower atmosphere by flare-accelerated electrons. Results: During the flare impulsive phase, we observe no significant flows in the cooler Fe xiii line but strong upflows, up to 80-150 km s-1, in the hotter Fe xvi line. The largest Doppler shifts observed in the Fe xvi line were co-temporal with the sharp intensity peak. The electron density obtained from a Fe xiii line pair ratio exhibited fast increase (within two minutes) from the pre-flare level of 5.01 × 109 cm-3 to 3.16 × 1010 cm-3 during the flare peak. The nonthermal energy flux density deposited from the coronal acceleration site to the lower atmospheric layers during the flare peak was found to be 1.34 × 1010 erg s-1 cm-2 for a low-energy cut-off that was estimated to be 16 keV. During the decline flare phase, we found a secondary intensity and density peak of lower amplitude that was preceded by upflows of ~15 km s-1 that were detected in both lines. The flare was also accompanied by a filament eruption that was partly captured by the EIS observations. We derived Doppler velocities of 250-300 km s-1 for the upflowing filament material. Conclusions: The spectroscopic results for the flare peak are consistent with the scenario of explosive chromospheric evaporation, although a comparatively low value of the nonthermal energy flux density was determined for this phase of the flare. This outcome is discussed in the context of recent hydrodynamic simulations. It provides observational evidence that the response of the atmospheric plasma strongly depends on the properties of the electron beams responsible for the heating, in particular the steepness of the energy distribution. The secondary peak of line intensity and electron density detected during the decline phase is interpreted as a signature of flare loops being filled by expanding hot material that is due to chromospheric evaporation. A movie is available at http://www.aanda.org

  20. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2004-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.

  1. Properties of micro-arc oxidation coatings on aluminum alloy at different negative peak current densities

    NASA Astrophysics Data System (ADS)

    Gu, Xin; Jiang, Bailing; Li, Hongtao; Liu, Cancan; Shao, Lianlian

    2018-05-01

    Micro-arc oxidation coatings were fabricated on 6061 aluminum alloy using whereby bipolar pulse mode in the case of different negative peak current densities. The phase composition, microstructures and wear properties were studied using x-ray diffraction, scanning electron microscopy and ball-on-disk wear tester, respectively. As results indicate, by virtue of negative peak current density, the oxygen can be expelled by produced hydrogen on anode in the case of negative pulse width and via the opened discharge channel. The results of x-ray diffraction, surface and cross-sectional morphology indicated that the coating was structured compactly taking on less small-diameter micro-pores and defects with negative peak current density of 75 A dm‑2. Additionally, as the results of wear tracks and weight loss bespeak, by virtue of appropriate negative peak current density, coatings resisted the abrasive wear and showed excellent wear resistance.

  2. Experimental observations of nonlinearly enhanced 2omega-UH electromagnetic radiation excited by steady-state colliding electron beams

    NASA Technical Reports Server (NTRS)

    Intrator, T.; Hershkowitz, N.; Chan, C.

    1984-01-01

    Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.

  3. Raman shifts in electron-irradiated monolayer MoS 2

    DOE PAGES

    Parkin, William M.; Balan, Adrian; Liang, Liangbo; ...

    2016-03-21

    Here, we report how the presence of electron-beam-induced sulfur vacancies affects first-order Raman modes and correlate the effects with the evolution of the in situ transmission-electron microscopy (TEM) two-terminal conductivity of monolayer MoS 2 under electron irradiation. We observe a redshift in the E Raman peak and a less pronounced blueshift in the A' 1 peak with increasing electron dose. Using energy-dispersive X-ray spectroscopy (EDS), we show that irradiation causes partial removal of sulfur and correlate the dependence of the Raman peak shifts with S vacancy density (a few %), which is confirmed by first-principles density functional theory calculations. Inmore » situ device current measurements show exponential decrease in channel current upon irradiation. Our analysis demonstrates that the observed frequency shifts are intrinsic properties of the defective systems and that Raman spectroscopy can be used as a quantitative diagnostic tool to characterize MoS 2-based transport channels.« less

  4. High-energy side-peak emission of exciton-polariton condensates in high density regime

    PubMed Central

    Horikiri, Tomoyuki; Yamaguchi, Makoto; Kamide, Kenji; Matsuo, Yasuhiro; Byrnes, Tim; Ishida, Natsuko; Löffler, Andreas; Höfling, Sven; Shikano, Yutaka; Ogawa, Tetsuo; Forchel, Alfred; Yamamoto, Yoshihisa

    2016-01-01

    In a standard semiconductor laser, electrons and holes recombine via stimulated emission to emit coherent light, in a process that is far from thermal equilibrium. Exciton-polariton condensates–sharing the same basic device structure as a semiconductor laser, consisting of quantum wells coupled to a microcavity–have been investigated primarily at densities far below the Mott density for signatures of Bose-Einstein condensation. At high densities approaching the Mott density, exciton-polariton condensates are generally thought to revert to a standard semiconductor laser, with the loss of strong coupling. Here, we report the observation of a photoluminescence sideband at high densities that cannot be accounted for by conventional semiconductor lasing. This also differs from an upper-polariton peak by the observation of the excitation power dependence in the peak-energy separation. Our interpretation as a persistent coherent electron-hole-photon coupling captures several features of this sideband, although a complete understanding of the experimental data is lacking. A full understanding of the observations should lead to a development in non-equilibrium many-body physics. PMID:27193700

  5. TIME-DEPENDENT DENSITY DIAGNOSTICS OF SOLAR FLARE PLASMAS USING SDO/EVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Ryan O.; Kennedy, Michael B.; Mathioudakis, Mihalis

    2012-08-10

    Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 10{sup 4} and 10{sup 7} K, including transitions from highly ionized iron ({approx}>10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 10{sup 11.2}-10{sup 12.1} cm{sup -3} were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to bemore » determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.« less

  6. Effects of inter-tube coupling on the electro-optical properties of silicon carbide nanotube bundles studied by density functional theory

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2015-09-01

    The electronic and optical properties of bundled armchair and zigzag silicon carbide nanotubes (SiCNTs) are investigated by using density functional theory. The effects of inter-tube coupling on the electronic dispersions of SiCNT bundles are demonstrated. It was found that the band structure of (6, 0) SiCNT bundle shows metallic feature. The calculated dielectric functions of the armchair and zigzag bundles are similar to that of the isolated tubes, except for the appearance of broadened peaks, small shifts of peak positions about 0.1 eV and increasing of peak intensities. For (6, 0) SiCNT with smaller radius, by considering interband and interaband transitions, the band structure coupling causes an extra peak at low energies.

  7. Fast Faraday fading of long range satellite signals.

    NASA Technical Reports Server (NTRS)

    Heron, M. L.

    1972-01-01

    20 MHz radio signals have been received during the day from satellite Beacon-B when it was below the optical horizon by using a bank of narrow filters to improve the signal to noise ratio. The Faraday fading rate becomes constant, under these conditions, at a level determined by the plasma frequency just below the F-layer peak. Variations in the Faraday fading rate reveal fluctuations in the electron density near the peak, while the rate of attaining the constant level depends on the shape of the electron density profile.

  8. Occurrence of the dayside three-peak density structure in the F2 and the topside ionosphere

    NASA Astrophysics Data System (ADS)

    Astafyeva, Elvira; Zakharenkova, Irina; Pineau, Yann

    2016-07-01

    In this work, we discuss the occurrence of the dayside three-peak electron density structure in the ionosphere. We first use a set of ground-based and satellite-borne instruments to demonstrate the development of a large-amplitude electron density perturbation at the recovery phase of a moderate storm of 11 October 2008. The perturbation developed in the F2 and low topside ionospheric regions over the American sector; it was concentrated on the north from the equatorial ionization anomaly (EIA) but was clearly separated from it. At the F2 region height, the amplitude of the observed perturbation was comparable or even exceeded that of the EIA. Further analysis of the observational data together with the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics model simulation results showed that a particular local combination of the thermospheric wind surges provided favorable conditions for the generation of the three-peak EIA structure. We further proceed with a statistical study of occurrence of the three-peak density structure in the ionosphere in general. Based on the analysis of 7 years of the in situ data from CHAMP satellite, we found that such three-peak density structure occurs sufficiently often during geomagnetically quiet time. The third ionization peak develops in the afternoon hours in the summer hemisphere at solstice periods. Based on analysis of several quiet time events, we conclude that during geomagnetically quiet time, the prevailing summer-to-winter thermospheric circulation acts in similar manner as the storm-time enhanced thermospheric winds, playing the decisive role in generation of the third ionization peak in the daytime ionosphere.

  9. Maximum current density and beam brightness achievable by laser-driven electron sources

    NASA Astrophysics Data System (ADS)

    Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.

    2014-02-01

    This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.

  10. On the Use of Topside RO-Derived Electron Density for Model Validation

    NASA Astrophysics Data System (ADS)

    Shaikh, M. M.; Nava, B.; Haralambous, H.

    2018-05-01

    In this work, the standard Abel inversion has been exploited as a powerful observation tool, which may be helpful to model the topside of the ionosphere and therefore to validate ionospheric models. A thorough investigation on the behavior of radio occultation (RO)-derived topside electron density (Ne(h))-profiles has therefore been performed with the main purpose to understand whether it is possible to predict the accuracy of a single RO-retrieved topside by comparing the peak density and height of the retrieved profile to the true values. As a first step, a simulation study based on the use of the NeQuick2 model has been performed to show that when the RO-derived electron density peak and height match the true peak values, the full topside Ne(h)-profile may be considered accurate. In order to validate this hypothesis with experimental data, electron density profiles obtained from four different incoherent scatter radars have therefore been considered together with co-located RO-derived Ne(h)-profiles. The evidence presented in this paper show that in all cases examined, if the incoherent scatter radar and the corresponding co-located RO profile have matching peak parameter values, their topsides are in very good agreement. The simulation results presented in this work also highlighted the importance of considering the occultation plane azimuth while inverting RO data to obtain Ne(h)-profile. In particular, they have indicated that there is a preferred range of azimuths of the occultation plane (80°-100°) for which the difference between the "true" and the RO-retrieved Ne(h)-profile in the topside is generally minimal.

  11. Polar Cap Electron Densities from DE-1 Plasma Wave Observations.

    DTIC Science & Technology

    1983-06-11

    of plasma above the F2 peak, predicts an electron density distribution of [ Angerami and Thomas, 1964) .4...Grants NGL- 16-001-002 and NGL-16-001-043 from NASA Headquarters, and by the Office of Naval Research. -p 42 REFERENCES Angerami , J. J., and J. 0. Thomas

  12. A technique for routinely updating the ITU-R database using radio occultation electron density profiles

    NASA Astrophysics Data System (ADS)

    Brunini, Claudio; Azpilicueta, Francisco; Nava, Bruno

    2013-09-01

    Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,, and the height, . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve and values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between and elec/m for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (2 %).

  13. Light impurity transport in JET ILW L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Bonanomi, N.; Mantica, P.; Giroud, C.; Angioni, C.; Manas, P.; Menmuir, S.; Contributors, JET

    2018-03-01

    A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of 3He, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of 3He density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.

  14. MIRI: Comparison of Mars Express MARSIS ionospheric data with a global climate model

    NASA Astrophysics Data System (ADS)

    Gonzalez-Galindo, Francisco; Forget, Francois; Gurnett, Donald; Lopez-Valverde, Miguel; Morgan, David D.; Nemec, Frantisek; Chaufray, Jean-Yves; Diéval, Catherine

    2016-07-01

    Observations and computational models are the two fundamental stones of our current knowledge of the Martian atmosphere, and both are expected to contribute to the MIRI effort. Data-model comparisons are thus necessary to identify possible bias in the models and to complement the information provided by the observations. Here we present the comparison of the ionosphere determined from Mars Express MARSIS AIS observations with that simulated by a ground-to-exosphere Global Climate Model for Mars, the LMD-MGCM. We focus the comparison on the density and altitude of the main ionospheric peak. In general, the observed latitudinal and solar zenith angle variability of these parameters is well reproduced by the model, although the model tends to slightly underestimate both the electron density and altitude of the peak. The model predicts also a latitudinal variability of the peak electron density that is not observed. We will discuss the different factors affecting the predicted ionosphere, and emphasize the importance of a good knowledge of the electronic temperature in producing a correct representation of the ionosphere by the model.

  15. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, Stephen W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate that the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower atmosphere. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2-Martian years are investigated near aphelion conditions at high Northern latitudes (64.7-77.6N). A mean ionospheric peak height of 133.5-135 km was obtained for all aphelion profiles near SZA = 78-82; a corresponding mean peak density of 7.3-8.5 x 10(exp 4)/cu cm was also measured, reflecting solar moderate conditions. Strong wave 2-3 oscillations in peak heights were observed as a function of longitude over both Martian seasons. The Mars Thermospheric General Circulation Model (MTGCM) is exercised for Mars aphelion conditions. The measured interannual variations in the mean and longitude structure of the peak heights are small (consistent with MTGCM simulations), signifying the repeatability of the Mars atmosphere during aphelion conditions. A non-migrating (semi-diurnal period, wave#l eastward propagating) tidal mode is likely responsible for the wave#3 longitude features identified. The height of this photochemically driven peak can be observed to provide an ongoing monitor of the changing state of the Mars lower atmosphere. The magnitudes of these same peaks may reflect more than changing solar EUV fluxes when they are located in the vicinity of Mars crustal magnetic field centers.

  16. Remote sensing of the ionospheric F layer by use of O I 6300-A and O I 1356-A observations

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Reed, E. I.; Meier, R. R.; Opal, C. B.; Hicks, G. T.

    1975-01-01

    The possibility of using airglow techniques for estimating the electron density and height of the F layer is studied on the basis of a simple relationship between the height of the F2 peak and the column emission rates of the O I 6300 A and O I 1356 A lines. The feasibility of this approach is confirmed by a numerical calculation of F2 peak heights and electron densities from simultaneous measurements of O I 6300 A and O I 1356 A obtained with earth-facing photometers carried by the Ogo 4 satellite. Good agreement is established with the F2 peak heights estimates from top-side and bottom-side ionospheric sounding.

  17. Plasma waves associated with the first AMPTE magnetotail barium release

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Anderson, R. R.; Bernhardt, P. A.; Luehr, H.; Haerendel, G.

    1986-01-01

    Plasma waves observed during the March 21, 1985, AMPTE magnetotail barium release are described. Electron plasma oscillations provided local measurements of the plasma density during both the expansion and decay phases. Immediately after the explosion, the electron density reached a peak of about 400,000/cu cm, and then started decreasing approximately as t to the -2.4 as the cloud expanded. About 6 minutes after the explosion, the electron density suddenly began to increase, reached a secondary peak of about 240/cu cm, and then slowly decayed down to the preevent level over a period of about 15 minutes. The density increase is believed to be caused by the collapse of the ion cloud into the diamagnetic cavity created by the initial expansion. The plasma wave intensities observed during the entire event were quite low. In the diamagnetic cavity, electrostatic emissions were observed near the barium ion plasma frequency, and in another band at lower frequencies. A broadband burst of electrostatic noise was also observed at the boundary of the diamagnetic cavity. Except for electron plasma oscillations, no significant wave activity was observed outside of the diamagnetic cavity.

  18. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.

    2013-08-15

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, φ= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ∼0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. Whilemore » their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions emigration to a preferred electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.« less

  19. Post-midnight enhancements in low latitude F layer electron density: observations and simulations

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Le, Huijun; Chen, Yiding; Zhang, Yanyan; Wan, Weixing; Ning, Baiqi

    2014-05-01

    Observations from a Lowell DPS-4D ionosonde operated at Sanya (18.3º N, 109.6º E), a low latitude station in China, have been analysed to study the nighttime behavior of ionospheric F layer. Post-midnight enhancement events are frequently occurred in the year of 2012. Common features in these cases illustrate that, accompanying nighttime rises in peak electron density of F2-layer (NmF2), the height of F2-layer goes downward significantly and the ionogram-derived electron density height profiles become sharpener. Enhancement in electron density develops earlier and reaches peaks earlier at higher altitudes than at lower altitudes. Downward plasma drift detected under such events reveals the essential role of the westward electric field in forming the post-midnight enhancements in electron density of ionospheric F-layer at such low latitudes. The important role of westward electric field in formation of nighttime enhancement is supported by the simulated results from a model. Work has been published in Liu et al., A case study of post-midnight enhancement in F-layer electron density over Sanya of China, J. Geophys. Res. Space Physics, 2013, 118, 4640-4648, DOI:10.1002/jgra.50422. Acknowledgements: Ionosonde data are provided from BNOSE of IGGCAS. This research was supported by the projects of Chinese Academy of Sciences (KZZD-EW-01-3), National Key Basic Research Program of China (2012CB825604), and National Natural Science Foundation of China (41231065).

  20. How Often Do Thermally Excited 630.0 nm Emissions Occur in the Polar Ionosphere?

    NASA Astrophysics Data System (ADS)

    Kwagala, Norah Kaggwa; Oksavik, Kjellmar; Lorentzen, Dag A.; Johnsen, Magnar G.

    2018-01-01

    This paper studies thermally excited emissions in the polar ionosphere derived from European Incoherent Scatter Svalbard radar measurements from the years 2000-2015. The peak occurrence is found around magnetic noon, where the radar observations show cusp-like characteristics. The ionospheric, interplanetary magnetic field and solar wind conditions favor dayside magnetic reconnection as the dominant driving process. The thermal emissions occur 10 times more frequently on the dayside than on the nightside, with an average intensity of 1-5 kR. For typical electron densities in the polar ionosphere (2 × 1011 m-3), we find the peak occurrence rate to occur for extreme electron temperatures (>3000 K), which is consistent with assumptions in literature. However, for extreme electron densities (>5 × 1011 m-3), we can now report on a completely new population of thermal emissions that may occur at much lower electron temperatures (˜2300 K). The empirical atmospheric model (NRLMSISE-00) suggests that the latter population is associated with enhanced neutral atomic oxygen densities.

  1. The polar ionosphere of venus near the terminator from early pioneer venus orbiter radio occultations.

    PubMed

    Kliore, A J; Woo, R; Armstrong, J W; Patel, I R; Croft, T A

    1979-02-23

    Fourteen profiles of electron density in the ionosphere of Venus were obtainecd by the dual-frequency radio occulation method with the Pioneer Venus orbiter between 5 and 30 December 1978. The solar zenith angles for these measurements were between about 85 degrees and 92 degrees , and the latitudes ranged from about 81 degrees to 88 degrees (ecliptic north). In addition to the expected decreasein peak electron density from about 1.5 x 10(3) to 0.5 x 10(3) per cubic centimeter with increasing solar zenith angle, a region of almost constant electron density above about 250 kilometers was observed. The ionopause height varies from about 300 to 700 kilometers and seems to be influenced by diurnal changes in solar wind conditions. The structures of the profiles are consistent with models in which O(2)(+) dominates near the ionization peak and is replaced by O(+) at higher altitudes.

  2. Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, A. E.; Howard, N. T.; Greenwald, M.

    2013-05-15

    Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxesmore » from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.« less

  3. Spin relaxation in n-type GaAs quantum wells from a fully microscopic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; Wu, M. W.; Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2007-01-15

    We perform a full microscopic investigation on the spin relaxation in n-type (001) GaAs quantum wells with an Al{sub 0.4}Ga{sub 0.6}As barrier due to the D'yakonov-Perel' mechanism from nearly 20 K to room temperature by constructing and numerically solving the kinetic spin Bloch equations. We consider all the relevant scattering such as the electron-acoustic-phonon, the electron-longitudinal-optical-phonon, the electron-nonmagnetic-impurity, and the electron-electron Coulomb scattering to the spin relaxation. The spin relaxation times calculated from our theory with a fitting spin splitting parameter are in good agreement with the experimental data by Ohno et al. [Physica E (Amsterdam) 6, 817 (2000)] overmore » the whole temperature regime (from 20 to 300 K). The value of the fitted spin splitting parameter agrees with many experiments and theoretical calculations. We further show the temperature dependence of the spin relaxation time under various conditions such as electron density, impurity density, and well width. We predict a peak solely due to the Coulomb scattering in the spin relaxation time at low temperature (<50 K) in samples with low electron density (e.g., density less than 1x10{sup 11} cm{sup -2}) but high mobility. This peak disappears in samples with high electron density (e.g., 2x10{sup 11} cm{sup -2}) and/or low mobility. The hot-electron spin kinetics at low temperature is also addressed with many features quite different from the high-temperature case predicted.« less

  4. Coulomb Impurity Potential RbCl Quantum Pseudodot Qubit

    NASA Astrophysics Data System (ADS)

    Ma, Xin-Jun; Qi, Bin; Xiao, Jing-Lin

    2015-08-01

    By employing a variational method of Pekar type, we study the eigenenergies and the corresponding eigenfunctions of the ground and the first-excited states of an electron strongly coupled to electron-LO in a RbCl quantum pseudodot (QPD) with a hydrogen-like impurity at the center. This QPD system may be used as a two-level quantum qubit. The expressions of electron's probability density versus time and the coordinates, and the oscillating period versus the Coulombic impurity potential and the polaron radius have been derived. The investigated results indicate ① that the probability density of the electron oscillates in the QPD with a certain oscillating period of , ② that due to the presence of the asymmetrical potential in the z direction of the RbCl QPD, the electron probability density shows double-peak configuration, whereas there is only one peak if the confinement is a two-dimensional symmetric structure in the xy plane of the QPD, ③ that the oscillation period is a decreasing function of the Coulombic impurity potential, whereas it is an increasing one of the polaron radius.

  5. Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization

    NASA Astrophysics Data System (ADS)

    Girazian, Z.; Mahaffy, P.; Lillis, R. J.; Benna, M.; Elrod, M.; Fowler, C. M.; Mitchell, D. L.

    2017-11-01

    We use observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission to show how superthermal electron fluxes and crustal magnetic fields affect ion densities in the nightside ionosphere of Mars. We find that due to electron impact ionization, high electron fluxes significantly increase the CO2+, O+, and O2+ densities below 200 km but only modestly increase the NO+ density. High electron fluxes also produce distinct peaks in the CO2+, O+, and O2+ altitude profiles. We also find that superthermal electron fluxes are smaller near strong crustal magnetic fields. Consequently, nightside ion densities are also smaller near strong crustal fields because they decay without being replenished by electron impact ionization. Furthermore, the NO+/O2+ ratio is enhanced near strong crustal fields because, in the absence of electron impact ionization, O2+ is converted into NO+ and not replenished. Our results show that electron impact ionization is a significant source of CO2+, O+, and O2+ in the nightside ionosphere of Mars.

  6. Shape information from a critical point analysis of calculated electron density maps: application to DNA-drug systems

    NASA Astrophysics Data System (ADS)

    Leherte, L.; Allen, F. H.; Vercauteren, D. P.

    1995-04-01

    A computational method is described for mapping the volume within the DNA double helix accessible to a groove-binding antibiotic, netropsin. Topological critical point analysis is used to locate maxima in electron density maps reconstructed from crystallographically determined atomic coordinates. The peaks obtained in this way are represented as ellipsoids with axes related to local curvature of the electron density function. Combining the ellipsoids produces a single electron density function which can be probed to estimate effective volumes of the interacting species. Close complementarity between host and ligand in this example shows the method to be a good representation of the electron density function at various resolutions; while at the atomic level the ellipsoid method gives results which are in close agreement with those from the conventional, spherical, van der Waals approach.

  7. Shape information from a critical point analysis of calculated electron density maps: Application to DNA-drug systems

    NASA Astrophysics Data System (ADS)

    Leherte, Laurence; Allen, Frank H.

    1994-06-01

    A computational method is described for mapping the volume within the DNA double helix accessible to the groove-binding antibiotic netropsin. Topological critical point analysis is used to locate maxima in electron density maps reconstructed from crystallographically determined atomic coordinates. The peaks obtained in this way are represented as ellipsoids with axes related to local curvature of the electron density function. Combining the ellipsoids produces a single electron density function which can be probed to estimate effective volumes of the interacting species. Close complementarity between host and ligand in this example shows the method to give a good representation of the electron density function at various resolutions. At the atomic level, the ellipsoid method gives results which are in close agreement with those from the conventional spherical van der Waals approach.

  8. Investigation of mid-latitude electron density enhancement using total electron content measurements and FORMOSAT-3/COSMIC electron density profiles

    NASA Astrophysics Data System (ADS)

    Rajesh, P. K.; Nanan, Balan; Liu, Jann-Yenq; Lin, Charles C. H.; Chang, S. Y.; Chen, Chia-Hung

    This study investigates the mid-latitude electron density enhancement (MEDE) using global ionospheric map (GIM) total electron content (TEC) measurements and FORMOSAT-3/COSMIC (F3/C) electron density profiles. Diurnal, seasonal, latitudinal, and solar activity variations in the occurrence and strength of MEDE are examined using global GIM TEC data in the years 2002 and 2009. The results show that MEDE occurrence is pronounced during 2200-0400 LT, the feature also appears during day. The strength of MEDE maximizes around 0400 LT, and is very weak during daytime. The occurrence and strength show significant longitude dependence, and vary with season and solar activity. Concurrent F3/C electron density profiles also reveal enhancement of the peak electron density and total electron content. Further studies are carried out by examining the role of neutral wind in re-organizing the plasma using SAMI2 and HWM93 models. The results indicate that meridional neutral wind could cause the plasma to converge over mid-latitudes, and thus support in maintaining the enhancement.

  9. The structure of high-temperature solar flare plasma in non-thermal flare models

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1985-01-01

    Analytic differential emission measure distributions have been derived for coronal plasma in flare loops heated both by collisions of high-energy suprathermal electrons with background plasma, and by ohmic heating by the beam-normalizing return current. For low densities, reverse current heating predominates, while for higher densities collisional heating predominates. There is thus a minimum peak temperature in an electron-heated loop. In contrast to previous approximate analyses, it is found that a stable reverse current can dominate the heating rate in a flare loop, especially in the low corona. Two 'scaling laws' are found which relate the peak temperature in the loop to the suprathermal electron flux. These laws are testable observationally and constitute a new diagnostic procedure for examining modes of energy transport in flaring loops.

  10. Investigation of traveling ionospheric disturbances

    NASA Technical Reports Server (NTRS)

    Grossi, M.; Estes, R. D.

    1981-01-01

    Maximum entropy power spectra of the ionospheric electron density were constructed to enable PINY to compare them with the power independently obtained by PINY with in situ measurements of ionospheric electron density and neutral species performed with instrumentation carried by the Atmospheric Explorer (AE) satellite. This comparison corroborated evidence on the geophysical reality of the alleged electron density irregularities detected by the ASTP dual frequency Doppler link. Roughly half of the localized wave structures which are confined to dimensions of 1800 km or less (as seen by an orbiting Doppler baseline) were found to be associated with the larger crest of the geomagnetic anomaly in the Southern (winter) Hemisphere in the morning. The observed nighttime structures are also associated with local peaks in the electron density.

  11. Peaks in Phase Space Density: A Survey of the Van Allen Probes Era

    NASA Astrophysics Data System (ADS)

    Boyd, A. J.; Turner, D. L.; Reeves, G. D.; Spence, H. E.

    2017-12-01

    One of the challenges of radiation belt studies is the differentiation between acceleration mechanisms, particularly local acceleration and radial diffusion. This is often done through careful examination of phase space density profiles in terms of adiabatic coordinates. In particular, local acceleration processes produce growing peaks in phase space density. Many previous studies have shown clear observations of these features for individual events. However, it remains unclear how often and where these growing peaks are observed over a long time period. With the availability of several years of high quality observations from multiple spacecraft, we now have an opportunity to quantify phase space density profiles not only for multiple events, but also across a wide range of energies. In this study, we examine phase space density from more than four years of data from the Van Allen Probes and THEMIS to determine the statistical properties of the observed peaks in phase space density. First, we determine how often growing peaks are observed. Second, we examine where the peaks are located in terms of the adiabatic invariants mu, K and L* and how these locations relate to geomagnetic indices, solar wind conditions and the plasmapause location. Third, we explore how these peaks evolve in time. Together, these results will reveal the relative importance of different acceleration processes and how these affect the various electron populations within the radiation belt.

  12. International Reference Ionosphere -2010

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Reinisch, Bodo

    The International Reference Ionosphere 2010 includes several important improvements and ad-ditions. This presentation introduces these changes and discusses their benefits. The electron and ion density profiles for the bottomside ionosphere will be significantly improved by using more ionosonde data as well as photochemical considerations. As an additional lower iono-sphere parameter IRI-2010 will include the transition height from molecular to cluster ions. At the F2 peak Neural Net models for the peak density and the propagation factor M3000F2, which is related to the F2 peak height, are introduced as new options. At high latitudes the model will benefit from the introduction of auroral oval boundaries and their variation with magnetic activity. Regarding the electron temperature, IRI-2010 now models variations with solar activity. The homepage for the IRI project is at http://IRI.gsfc.nasa.gov/.

  13. Dayside ionosphere of Titan: Impact on calculated plasma densities due to variations in the model parameters

    NASA Astrophysics Data System (ADS)

    Mukundan, Vrinda; Bhardwaj, Anil

    2018-01-01

    A one dimensional photochemical model for the dayside ionosphere of Titan has been developed for calculating the density profiles of ions and electrons under steady state photochemical equilibrium condition. We concentrated on the T40 flyby of Cassini orbiter and used the in-situ measurements from instruments onboard Cassini as input to the model. An energy deposition model is employed for calculating the attenuated photon flux and photoelectron flux at different altitudes in Titan's ionosphere. We used the Analytical Yield Spectrum approach for calculating the photoelectron fluxes. Volume production rates of major primary ions, like, N2+, N+ , CH4+, CH3+, etc due to photon and photoelectron impact are calculated and used as input to the model. The modeled profiles are compared with the Cassini Ion Neutral Mass Spectrometer (INMS) and Langmuir Probe (LP) measurements. The calculated electron density is higher than the observation by a factor of 2 to 3 around the peak. We studied the impact of different model parameters, viz. photoelectron flux, ion production rates, electron temperature, dissociative recombination rate coefficients, neutral densities of minor species, and solar flux on the calculated electron density to understand the possible reasons for this discrepancy. Recent studies have shown that there is an overestimation in the modeled photoelectron flux and N2+ ion production rates which may contribute towards this disagreement. But decreasing the photoelectron flux (by a factor of 3) and N2+ ion production rate (by a factor of 2) decreases the electron density only by 10 to 20%. Reduction in the measured electron temperature by a factor of 5 provides a good agreement between the modeled and observed electron density. The change in HCN and NH3 densities affects the calculated densities of the major ions (HCNH+ , C2H5+, and CH5+); however the overall impact on electron density is not appreciable ( < 20%). Even though increasing the dissociative recombination rate coefficients of the ions C2H5+ and CH5+ by a factor of 10 reduces the difference between modeled and observed densities of the major ions, the modeled electron density is still higher than the observation by ∼ 60% at the peak. We suggest that there might be some unidentified chemical reactions that may account for the additional loss of plasma in Titan's ionosphere.

  14. Mapping low-frequency carbon radio recombination lines towards Cassiopeia A at 340, 148, 54, and 43 MHz

    NASA Astrophysics Data System (ADS)

    Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; Wolfire, M. G.; Emig, K. L.; Toribio, M. C.; Röttgering, H. J. A.; Tielens, A. G. G. M.

    2018-04-01

    Quantitative understanding of the interstellar medium requires knowledge of its physical conditions. Low-frequency carbon radio recombination lines (CRRLs) trace cold interstellar gas and can be used to determine its physical conditions (e.g. electron temperature and density). In this work, we present spatially resolved observations of the low-frequency (≤390 MHz) CRRLs centred around C268α, C357α, C494α, and C539α towards Cassiopeia A on scales of ≤1.2 pc. We compare the spatial distribution of CRRLs with other interstellar medium tracers. This comparison reveals a spatial offset between the peak of the CRRLs and other tracers, which is very characteristic for photodissociation regions and that we take as evidence for CRRLs being preferentially detected from the surfaces of molecular clouds. Using the CRRLs, we constrain the gas electron temperature and density. These constraints on the gas conditions suggest variations of less than a factor of 2 in pressure over ˜1 pc scales, and an average hydrogen density of 200-470 cm-3. From the electron temperature and density maps, we also constrain the ionized carbon emission measure, column density, and path length. Based on these, the hydrogen column density is larger than 1022 cm-2, with a peak of ˜4 × 1022 cm-2 towards the south of Cassiopeia A. Towards the southern peak, the line-of-sight length is ˜40 pc over a ˜2 pc wide structure, which implies that the gas is a thin surface layer on a large (molecular) cloud that is only partially intersected by Cassiopeia A. These observations highlight the utility of CRRLs as tracers of low-density extended H I and CO-dark gas halo's around molecular clouds.

  15. North-south components of the annual asymmetry in the ionosphere

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Veselovsky, I. S.

    2014-07-01

    A retrospective study of the asymmetry in the ionosphere during the solstices is made using the different geospace parameters in the North and South magnetic hemispheres. Data of total electron content (TEC) and global electron content (GEC) produced from global ionospheric maps, GIM-TEC for 1999-2013, the ionospheric electron content (IEC) measured by TOPEX-Jason 1 and 2 satellites for 2001-2012, the F2 layer critical frequency and peak height measured on board ISIS 1, ISIS 2, and IK19 satellites during 1969-1982, and the earthquakes M5+ occurrences for 1999-2013 are analyzed. Annual asymmetry is observed with GEC and IEC for the years of observation with asymmetry index, AI, showing January > July excess from 0.02 to 0.25. The coincident pattern of January-to-July asymmetry ratio of TEC and IEC colocated along the magnetic longitude sector of 270° ± 5°E in the Pacific Ocean is obtained varying with local time and magnetic latitude. The sea/land differences in the F2 layer peak electron density, NmF2, and the peak height, hmF2, gathered with topside sounding data exhibit tilted ionosphere along the seashores with denser electron population at greater peak heights over the sea. The topside peak electron density NmF2, TEC, IEC, and the hemisphere part of GEC are dominant in the South hemisphere which resembles the pattern for seismic activity with dominant earthquake occurrence in the South magnetic hemisphere. Though the study is made for the hemispheric and annual asymmetry during solstices in the ionosphere, the conclusions seem valid for other aspects of seismic-ionospheric associations with tectonic plate boundaries representing zones of enhanced risk for space weather.

  16. Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications

    PubMed Central

    Maxa, Jacob; Novikov, Andrej; Nowottnick, Mathias

    2017-01-01

    Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents a concept of a composite coating for electronic components on printed circuit boards or electronic assemblies that is able to buffer a certain amount of thermal energy, dissipated from a device. The idea is to suppress temperature peaks in electronic components during load peaks or electronic shorts, which otherwise could damage or destroy the device, by using a phase change material to buffer the thermal energy. The phase change material coating could be directly applied on the chip package or the PCB using different mechanical retaining jigs.

  17. Evolution of ionosphere-thermosphere (IT) parameters in the cusp region related to ion upflow events

    NASA Astrophysics Data System (ADS)

    Kervalishvili, Guram; Lühr, Hermann

    2017-04-01

    In this study we investigate the relationships of various IT parameters with the intensity of vertical ion flow. Our study area is the ionospheric cusp region in the northern hemisphere. The approach uses superposed epoch analysis (SEA) method, centered alternately on peaks of the three different variables: neutral density enhancement, vertical plasma flow, and electron temperature. Further parameters included are large-scale field-aligned currents (LSFACs) and thermospheric zonal wind velocity profiles over magnetic latitude (MLat), which are centered at the event time and location. The dependence on the interplanetary magnetic field (IMF) By component orientation and the local (Lloyd) season is of particular interest. Our investigations are based on CHAMP and DMSP (F13 and F15) satellite observations and the OMNI online database collected during the years 2002-2007. The three Lloyd seasons of 130 days each are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32 days), and local summer (1 July ± 65 days). A period of 130 days corresponds to the time needed by CHAMP to sample all local times. The SEA MLat profiles with respect to neutral density enhancement and vertical plasma flow peaks show no significant but only slight (decreasing towards local summer) seasonal variations for both IMF By orientations. The latitude profiles of median LSFACs show a clear dependence on the IMF By orientation. As expected, the maximum and minimum values of LSFAC amplitudes are increasing towards local summer for both IMF By signs. With respect to zero epoch latitude, FAC peaks appear equatorward (negative MLat) related to Region 1 (R1) and poleward (positive MLat) to Region 0 (R0) FACs. However, there is an imbalance between the amplitudes of LSFACs, depending on the current latitude. R1 currents are systematically stronger than R0 FACs. A somewhat different distribution of density enhancements and large-scale FACs emerges when the SEA is centered on electron temperature peaks. As expected, the background electron temperature increases towards summer and shows no dependence on the IMF By orientation. In contrast to the previous sorting the mass density enhancement shows a dependence on the IMF By sign and increases towards local summer in case of IMF By<0. As before LSFAC peak values are increasing towards local summer, but there is no clear latitudinal profile of upward and downward FACs. We think that intense precipitation of soft electrons (<100 eV) cause the electron temperature enhancement in the cusp region. But there is no direct dependence on the FAC intensity. But for neutral density enhancement and vertical plasma flow the combination of Joule heating and soft electron precipitation, causing electron temperature and conductivity enhancements, are required.

  18. Some effects of electron channeling on electron energy loss spectroscopy.

    PubMed

    Kirkland, Earl J

    2005-02-01

    As an electron beam (of order 100 keV) travels through a crystalline solid it can be channeled down a zone axis of the crystal to form a channeling peak centered on the atomic columns. The channeling peak can be similar in size to the outer atomic orbitals. Electron energy loss spectroscopy (EELS) measures the losses that the electron experiences as it passes through the solid yielding information about the unoccupied density of states in the solid. The interaction matrix element for this process typically produces dipole selection rules for small angle scattering. In this paper, a theoretical calculation of the EELS cross section in the presence of strong channeling is performed for the silicon L23 edge. The presence of channeling is found to alter both the intensity and selection rules for this EELS signal as a function of depth in the solid. At some depths in the specimen small but significant non-dipole transition components can be produced, which may influence measurements of the density of states in solids.

  19. Numerical modeling of laser-driven ion acceleration from near-critical gas targets

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; Vizman, Daniel; d’Humières, Emmanuel

    2018-06-01

    In the past two decades, laser-accelerated ion sources and their applications have been intensely researched. Recently, it has been shown through experiments that proton beams with characteristics comparable to those obtained with solid targets can be obtained from gaseous targets. By means of particle-in-cell simulations, this paper studies in detail the effects of a near-critical density gradient on ion and electron acceleration after the interaction with ultra high intensity lasers. We can observe that the peak density of the gas jet has a significant influence on the spectrum features. As the gas jet density increases, so does the peak energy of the central quasi-monoenergetic ion bunch due to the increase in laser absorption while at the same time having a broadening effect on the electron angular distribution.

  20. Vertical structure of the near-surface expanding ionosphere of comet 67P probed by Rosetta

    NASA Astrophysics Data System (ADS)

    Heritier, K. L.; Henri, P.; Vallières, X.; Galand, M.; Odelstad, E.; Eriksson, A. I.; Johansson, F. L.; Altwegg, K.; Behar, E.; Beth, A.; Broiles, T. W.; Burch, J. L.; Carr, C. M.; Cupido, E.; Nilsson, H.; Rubin, M.; Vigren, E.

    2017-07-01

    The plasma environment has been measured for the first time near the surface of a comet. This unique data set has been acquired at 67P/Churyumov-Gerasimenko during ESA/Rosetta spacecraft's final descent on 2016 September 30. The heliocentric distance was 3.8 au and the comet was weakly outgassing. Electron density was continuously measured with Rosetta Plasma Consortium (RPC)-Mutual Impedance Probe (MIP) and RPC-LAngmuir Probe (LAP) during the descent from a cometocentric distance of 20 km down to the surface. Data set from both instruments have been cross-calibrated for redundancy and accuracy. To analyse this data set, we have developed a model driven by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis-COmetary Pressure Sensor total neutral density. The two ionization sources considered are solar extreme ultraviolet radiation and energetic electrons. The latter are estimated from the RPC-Ion and Electron Sensor (IES) and corrected for the spacecraft potential probed by RPC-LAP. We have compared the results of the model to the electron densities measured by RPC-MIP and RPC-LAP at the location of the spacecraft. We find good agreement between observed and modelled electron densities. The energetic electrons have access to the surface of the nucleus and contribute as the main ionization source. As predicted, the measurements exhibit a peak in the ionospheric density close to the surface. The location and magnitude of the peak are estimated analytically. The measured ionospheric densities cannot be explained with a constant outflow velocity model. The use of a neutral model with an expanding outflow is critical to explain the plasma observations.

  1. The Pulse Response of Electrets to Energetic Ions

    DTIC Science & Technology

    1988-09-01

    reduction in the low temperature peak for the aged sample. This change is accompanied by a significant increase in the high temperature peak. Ion...density in electron-beam charged FEP does not change under normal conditions while the hole density falls rapidly with aging . Because hole traps are...power, S, and the aver- age energy required to produce a charge carrier pair, W, are constant. By Equation 4-1, the charge, Q, produced by an emission

  2. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    NASA Astrophysics Data System (ADS)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  3. TEC data ingestion into IRI and NeQuick over the antarctic region

    NASA Astrophysics Data System (ADS)

    Nava, Bruno; Pezzopane, Michael; Radicella, Sandro M.; Scotto, Carlo; Pietrella, Marco; Migoya Orue, Yenca; Alazo Cuartas, Katy; Kashcheyev, Anton

    2016-07-01

    In the present work a comparative analysis to evaluate the IRI and NeQuick 2 models capabilities in reproducing the ionospheric behaviour over the Antarctic Region has been performed. A technique to adapt the two models to GNSS-derived vertical Total Electron Content (TEC) has been therefore implemented to retrieve the 3-D ionosphere electron density at specific locations where ionosonde data were available. In particular, the electron density profiles used in this study have been provided in the framework of the AUSPICIO (AUtomatic Scaling of Polar Ionograms and Cooperative Ionospheric Observations) project applying the Adaptive Ionospheric Profiler (AIP) to ionograms recorded at eight selected mid, high-latitude and polar ionosondes. The relevant GNSS-derived vertical TEC values have been obtained from the Global Ionosphere Maps (GIM) produced by the Center for Orbit Determination in Europe (CODE). The effectiveness of the IRI and NeQuick 2 in reconstructing the ionosphere electron density at the given locations and epochs has been primarily assessed in terms of statistical comparison between experimental and model-retrieved peak parameters values (foF2 and hmF2). The analysis results indicate that in general the models are equivalent in their ability to reproduce the critical frequency of the F2 layer and they also tend to overestimate the height of the peak electron density, especially during high solar activity periods. Nevertheless this tendency is more noticeable in NeQuick 2 than in IRI. For completeness, the statistics indicating the models bottomside reconstruction capabilities, computed as height integrated electron density profile mismodeling, will also be discussed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratap, Surender; Sarkar, Niladri, E-mail: niladri@pilani.bits-pilani.ac.in

    Self-Consistent Quantum Method using Schrodinger-Poisson equations have been used for determining the Channel electron density of Nano-Scale MOSFETs for 6nm and 9nm thick channels. The 6nm thick MOSFET show the peak of the electron density at the middle where as the 9nm thick MOSFET shows the accumulation of the electrons at the oxide/semiconductor interface. The electron density in the channel is obtained from the diagonal elements of the density matrix; [ρ]=[1/(1+exp(β(H − μ)))] A Tridiagonal Hamiltonian Matrix [H] is constructed for the oxide/channel/oxide 1D structure for the dual gate MOSFET. This structure is discretized and Finite-Difference method is used formore » constructing the matrix equation. The comparison of these results which are obtained by Quantum methods are done with Semi-Classical methods.« less

  5. On the source location of radiation belt relativistic electrons

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Blake, J. B.

    2000-02-01

    Observations from the High Sensitivity Telescope (HIST) on Polar made around Janurary and May 1998 are used to constrain the source location of outer radiation belt relativistic electrons. Phase space densities calculated as a function of the three adiabatic invariants show positive radial gradients for L<4, suggestive of no source in that region. In particular, the peak intensity near L=3 of a large enhancement beginning on May 4, 1998, appears to have been formed by inward transport over a period of several days. For L>4, peaks in the radial dependence of the phase space density are suggestive of a local electron source that may be nonadiabatic acceleration or pitch angle scattering. However, discrepancies in the results obtained with different magnetic field models and at different local times make this a tentative conclusion.

  6. Theoretical study of the Raman active CDW gap mode in manganites.

    PubMed

    Rout, G C; Panda, Saswati; Behera, S N

    2010-09-22

    We report here the microscopic theory of the Raman spectra of the colossal magnetoresistive (CMR) manganite systems. The system is described by a model Hamiltonian consisting of the double exchange interaction in addition to the charge ordering interaction in the e(g) band and spin-spin interaction among the t(2g) core electrons. Further the phonon coupling to the conduction electron density is incorporated in the model for phonons in the harmonic approximation. The spectral density function for the Raman spectra is calculated from the imaginary part of the phonon Green's function. The calculated spectra display the Raman active bare phonon peak along with the charge ordering peak. The magnetic field and temperature dependence of the charge ordering peak agrees with the 480 cm(-1) JT mode observed in the experiments. The evolution of this mode is investigated in the report.

  7. Observations of neutral circulation at mid-latitudes during the Equinox Transition Study

    NASA Technical Reports Server (NTRS)

    Buonsanto, M. J.; Salah, J. E.; Miller, K. L.; Oliver, W. L.; Burnside, R. G.; Richards, P. G.

    1988-01-01

    Measurements of ion drift velocity made by the Millstone Hill incoherent scatter radar have been used to calculate the meridional neutral wind velocity during the Sept. 17 to 24, 1984 period. Strong daytime southward neutral surges were observed during the magnetically disturbed days of September 19 and 23, in contrast to the small daytime winds obtained as expected during the magnetically quiet days. The surge on September 19 was also seen at Arecibo. In addition, two approaches have been used to calculate the meridional wind component from the radar-derived height of the F-layer electron density peak. Results confirm the wind surge, particularly when the strong electric fields measured during the disturbed days are included in the calculations. The two approaches for the F-layer peak wind calculations are applied to the radar-derived electron density peak height as a function of latitude to study the variation of the southward daytime surges with latitude.

  8. Effect of plasma density around Io on local electron heating in the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Tsuchiya, F.; Yoshioka, K.; Kagitani, M.; Kimura, T.; Murakami, G.; Yamazaki, A.; Misawa, H.; Kasaba, Y.; Yoshikawa, I.; Sakanoi, T.; Koga, R.; Ryo, A.; Suzuki, F.; Hikida, R.

    2017-12-01

    HISAKI observation of Io plasma torus (IPT) with extreme ultraviolet (EUV) wavelength range is a useful probe to access plasma environment in inner magnetosphere of Jupiter. Emissions from sulfur and oxygen ions in EUV range are caused by electron impact excitation and their intensity is well correlated with the abundance of hot electron in IPT. Previous observation showed that the brightness was enhanced downstream of the satellite Io, indicating that efficient electron heating takes place at Io and/or just downstream of Io. Detailed analysis of the emission intensity shows that the brightness depends on the magnetic longitude at Io and primary and secondary peaks appear in the longitude ranges of 100-130 and 250-340 degrees, respectively. The peak position and amplitude are slightly different between dawn and dusk sides. Here, we introduce inhomogeneous IPT density model in order to investigate relation between the emission intensity and local plasma density around Io in detail. An empirical IPT model is used for spatial distribution of ion and electron densities in the meridional plane. To include longitude and local time asymmetry in IPT, we consider (1)dawnward shift of IPT due to global convection electric field, (2) offset of Jupiter's dipole magnetic field, and (3) tilt of IPT with respect to Io's orbital plane. The modeled electron density at the position of Io as a function of magnetic longitude at Io shows similar profile with the ion emission intensity derived from the observation. This result suggests that energy extracted around Io and/or efficiency of electron heating is closely related to the plasma density around Io and longitude and local time dependences is explained by the spatial inhomogeneity of plasma density in IPT. A part of the energy extracted around Io could be transferred to the Jovian ionosphere along the magnetic field line and cause bright aurora spots and strong radio emissions.

  9. Variations in Ionospheric Peak Electron Density During Sudden Stratospheric Warmings in the Arctic Region

    NASA Astrophysics Data System (ADS)

    Yasyukevich, A. S.

    2018-04-01

    The focus of the paper is the ionospheric disturbances during sudden stratospheric warming (SSW) events in the Arctic region. This study examines the ionospheric behavior during 12 SSW events, which occurred in the Northern Hemisphere over 2006-2013, based on vertical sounding data from DPS-4 ionosonde located in Norilsk (88.0°E, 69.2°N). Most of the addressed events show that despite generally quiet geomagnetic conditions, notable changes in the ionospheric behavior are observed during SSWs. During the SSW evolution and peak phases, there is a daytime decrease in NmF2 values at 10-20% relative to background level. After the SSW maxima, in contrast, midday NmF2 surpasses the average monthly values for 10-20 days. These changes in the electron density are observed for both strong and weak stratospheric warmings occurring at midwinter. The revealed SSW effects in the polar ionosphere are assumed to be associated with changes in the thermospheric neutral composition, affecting the F2-layer electron density. Analysis of the Global Ultraviolet Imager data revealed the positive variations in the O/N2 ratio within the thermosphere during SSW peak and recovery periods. Probable mechanisms for SSW impact on the state of the high-latitude neutral thermosphere and ionosphere are discussed.

  10. Electronic structure and optical properties of twisted bilayer graphene calculated via time evolution of states in real space

    NASA Astrophysics Data System (ADS)

    Le, H. Anh; Do, V. Nam

    2018-03-01

    We investigate the electronic and optical properties of twisted bilayer graphene with arbitrary twist angles θ . Our results are based on a method of evolving in time quantum states in lattice space. We propose an efficient scheme of sampling lattice nodes that helps to reduce significantly computational cost, particularly for tiny twist angles. We demonstrate the continuous variation of the density of states and the optical conductivity with respect to the twist angle. It indicates that the commensurability between the two graphene layers does not play an essential role in governing the electronic and optical properties. We point out that, for the twist angles roughly in the range 0 .1∘<θ <3∘ , the density of states in the vicinity of the Fermi energy exhibits the typical W shape with a small peak locating at the Fermi energy. This peak is formed as the merging of two van Hove peaks and reflects the appearance of states strongly localized in the AA-like region of moiré zones. When decreasing the twist angle to zero, the W shape is gradually transformed to the U shape, which is seen as the behavior of the density of states in the limit of θ →0∘ .

  11. Electron acceleration in downward auroral field-aligned currents

    NASA Astrophysics Data System (ADS)

    Cran-McGreehin, Alexandra P.; Wright, Andrew N.

    2005-10-01

    The auroral downward field-aligned current is mainly carried by electrons accelerated up from the ionosphere into the magnetosphere along magnetic field lines. Current densities are typically of the order of a few μ Am-2, and the associated electrons are accelerated to energies of several hundred eV up to a few keV. This downward current has been modeled by Temerin and Carlson (1998) using an electron fluid. This paper extends that model by describing the electron populations via distribution functions and modeling all of the F region. We assume a given ion density profile, and invoke quasi-neutrality to solve for the potential along the field line. Several important locations and quantities emerge from this model: the ionospheric trapping point, below which the ionospheric population is trapped by an ambipolar electric field; the location of maximum E∥, of the order of a few mVm-1, which lies earthward of the B/n peak; the acceleration region, located around the B/n peak, which normally extends between altitudes of 500 and 3000 km; and the total potential increase along the field line, of the order of a few hundred V up to several kV. The B/n peak is found to be the central factor determining the altitude and magnitude of the accelerating potential required. Indeed, the total potential drop is found to depend solely on the equilibrium properties in the immediate vicinity of the B/n peak.

  12. How the laser-induced ionization of transparent solids can be suppressed

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2013-12-01

    A capability to suppress laser-induced ionization of dielectric crystals in controlled and predictable way can potentially result in substantial improvement of laser damage threshold of optical materials. The traditional models that employ the Keldysh formula do not predict any suppression of the ionization because of the oversimplified description of electronic energy bands underlying the Keldysh formula. To fix this gap, we performed numerical simulations of time evolution of conduction-band electron density for a realistic cosine model of electronic bands characteristic of wide-band-gap cubic crystals. The simulations include contributions from the photo-ionization (evaluated by the Keldysh formula and by the formula for the cosine band of volume-centered cubic crystals) and from the avalanche ionization (evaluated by the Drude model). Maximum conduction-band electron density is evaluated from a single rate equation as a function of peak intensity of femtosecond laser pulses for alkali halide crystals. Results obtained for high-intensity femtosecond laser pulses demonstrate that the ionization can be suppressed by proper choice of laser parameters. In case of the Keldysh formula, the peak electron density exhibits saturation followed by gradual increase. For the cosine band, the electron density increases with irradiance within the low-intensity multiphoton regime and switches to decrease with intensity approaching threshold of the strong singularity of the ionization rate characteristic of the cosine band. Those trends are explained with specific modifications of band structure by electric field of laser pulses.

  13. Digital processing with single electrons for arbitrary waveform generation of current

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuma; Nakamura, Shuji; Onomitsu, Koji; Kaneko, Nobu-Hisa

    2018-03-01

    We demonstrate arbitrary waveform generation of current using a GaAs-based single-electron pump. In our experiment, a digital processing algorithm known as delta-sigma modulation is incorporated into single-electron pumping to generate a density-modulated single-electron stream, by which we demonstrate the generation of arbitrary waveforms of current including sinusoidal, square, and triangular waves with a peak-to-peak amplitude of approximately 10 pA and an output bandwidth ranging from dc to close to 1 MHz. The developed current generator can be used as the precise and calculable current reference required for measurements of current noise in low-temperature experiments.

  14. Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Saito, A.; Lin, C. H.; Yamamoto, M.; Suzuki, S.; Seemala, G. K.

    2016-02-01

    In this study, we develop a three-dimensional ionospheric tomography with the ground-based global position system (GPS) total electron content observations. Because of the geometric limitation of GPS observation path, it is difficult to solve the ill-posed inverse problem for the ionospheric electron density. Different from methods given by pervious studies, we consider an algorithm combining the least-square method with a constraint condition, in which the gradient of electron density tends to be smooth in the horizontal direction and steep in the vicinity of the ionospheric F2 peak. This algorithm is designed to be independent of any ionospheric or plasmaspheric electron density models as the initial condition. An observation system simulation experiment method is applied to evaluate the performance of the GPS ionospheric tomography in detecting ionospheric electron density perturbation at the scale size of around 200 km in wavelength, such as the medium-scale traveling ionospheric disturbances.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biewer, Theodore M.; Bigelow, Tim S.; Caneses Marin, Juan F.

    The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ~100 kW, 13.56 MHz RF helicon source, to which ~20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than themore » cut-off density (~0.9 × 1019 m -3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ~5 eV to ~20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (~1 mTorr.).« less

  16. Roles of hot electrons in generating upper-hybrid waves in the earth's radiation belt

    DOE PAGES

    Hwang, J.; Shin, D. K.; Yoon, P. H.; ...

    2017-05-01

    Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth's radiation belt, as revealed through the twin Van Allen Probe spacecrafts. It is customary to use the upper-hybrid emissions for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of hot electrons in generating such fluctuations has not been discussed in detail. The present paper carries out detailed analyses of data from the Waves instrument, which is part of the Electric and Magneticmore » Field Instrument Suite and Integrated Science suite onboard the Van Allen Probes. Combined with the theoretical calculation, it is shown that the peak intensity associated with the upper-hybrid fluctuations might be predominantly determined by tenuous but hot electrons and that denser cold background electrons do not seem to contribute much to the peak intensity. This finding shows that upper-hybrid fluctuations detected during quiet time are not only useful for the determination of the background cold electron density but also contain information on the ambient hot electrons population as well.« less

  17. Roles of hot electrons in generating upper-hybrid waves in the earth's radiation belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, J.; Shin, D. K.; Yoon, P. H.

    Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth's radiation belt, as revealed through the twin Van Allen Probe spacecrafts. It is customary to use the upper-hybrid emissions for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of hot electrons in generating such fluctuations has not been discussed in detail. The present paper carries out detailed analyses of data from the Waves instrument, which is part of the Electric and Magneticmore » Field Instrument Suite and Integrated Science suite onboard the Van Allen Probes. Combined with the theoretical calculation, it is shown that the peak intensity associated with the upper-hybrid fluctuations might be predominantly determined by tenuous but hot electrons and that denser cold background electrons do not seem to contribute much to the peak intensity. This finding shows that upper-hybrid fluctuations detected during quiet time are not only useful for the determination of the background cold electron density but also contain information on the ambient hot electrons population as well.« less

  18. Conceptual DFT analysis of the fragility spectra of atoms along the minimum energy reaction coordinate.

    PubMed

    Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz

    2017-10-07

    Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.

  19. Conceptual DFT analysis of the fragility spectra of atoms along the minimum energy reaction coordinate

    NASA Astrophysics Data System (ADS)

    Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz

    2017-10-01

    Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.

  20. Plasma waves associated with the AMPTE artificial comet

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Anderson, R. R.; Haeusler, B.; Haerendel, G.; Bauer, O. H.

    1985-01-01

    Numerous plasma wave effects were detected by the AMPTE/IRM spacecraft during the artificial comet experiment on December 27, 1984. As the barium ion cloud produced by the explosion expanded over the spacecraft, emissions at the electron plasma frequency and ion plasma frequency provided a determination of the local electron density. The electron density in the diamagnetic cavity produced by the ion cloud reached a peak of more than 5 x 10 to the 5th per cu cm, then decayed smoothly as the cloud expanded, varying approximately as t exp-2. As the cloud began to move due to interactions with the solar wind, a region of compressed plasma was encountered on the upstream side of the diamagnetic cavity. The peak electron density in the compression region was about 1.5 x 10 to the 4th per cu cm. Later, a very intense (140 mVolt/m) broadband burst of electrostatic noise was encountered on the sunward side of the compression region. This noise has characteristics very similar to noise observed in the earth's bow shock, and is believed to be a shocklike interaction produced by an ion beam-plasma instability between the nearly stationary barium ions and the streaming solar wind protons.

  1. Influence of the electron density on the characteristics of terahertz waves generated under laser–cluster interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, A. A., E-mail: frolov@ihed.ras.ru

    2016-12-15

    A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable withmore » the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.« less

  2. Rocket measurements of electron density irregularities during MAC/SINE

    NASA Technical Reports Server (NTRS)

    Ulwick, J. C.

    1989-01-01

    Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.

  3. Automated crystallographic ligand building using the medial axis transform of an electron-density isosurface.

    PubMed

    Aishima, Jun; Russel, Daniel S; Guibas, Leonidas J; Adams, Paul D; Brunger, Axel T

    2005-10-01

    Automatic fitting methods that build molecules into electron-density maps usually fail below 3.5 A resolution. As a first step towards addressing this problem, an algorithm has been developed using an approximation of the medial axis to simplify an electron-density isosurface. This approximation captures the central axis of the isosurface with a graph which is then matched against a graph of the molecular model. One of the first applications of the medial axis to X-ray crystallography is presented here. When applied to ligand fitting, the method performs at least as well as methods based on selecting peaks in electron-density maps. Generalization of the method to recognition of common features across multiple contour levels could lead to powerful automatic fitting methods that perform well even at low resolution.

  4. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  5. ELM suppression in helium plasmas with 3D magnetic fields

    DOE PAGES

    Evans, T. E.; Loarte, A.; Orlov, D. M.; ...

    2017-06-21

    Experiments in DIII-D, using non-axisymmetric magnetic perturbation fields in high-purity low toroidal rotation, 4He plasmas have resulted in Type-I edge localized mode (ELM) suppression and mitigation. Suppression is obtained in plasmas with zero net input torque near the L–H power threshold using either electron cyclotron resonant heating (ECRH) or balanced co- and counter-I p neutral beam injection (NBI) resulting in conditions equivalent to those expected in ITER's non-active operating phase. In low-power ECRH H-modes, periods with uncontrolled density and impurity radiation excursions are prevented by applying n = 3 non-axisymmetric magnetic perturbation fields. ELM suppression results from a reduction andmore » an outward shift of the electron pressure gradient peak compared to that in the high-power ELMing phase. Here, the change in the electron pressure gradient peak is primarily due to a drop in the pedestal temperature rather than the pedestal density.« less

  6. ELM suppression in helium plasmas with 3D magnetic fields

    NASA Astrophysics Data System (ADS)

    Evans, T. E.; Loarte, A.; Orlov, D. M.; Grierson, B. A.; Knölker, M. M.; Lyons, B. C.; Cui, L.; Gohil, P.; Groebner, R. J.; Moyer, R. A.; Nazikian, R.; Osborne, T. H.; Unterberg, E. A.

    2017-08-01

    Experiments in DIII-D, using non-axisymmetric magnetic perturbation fields in high-purity low toroidal rotation, 4He plasmas have resulted in Type-I edge localized mode (ELM) suppression and mitigation. Suppression is obtained in plasmas with zero net input torque near the L-H power threshold using either electron cyclotron resonant heating (ECRH) or balanced co- and counter-I p neutral beam injection (NBI) resulting in conditions equivalent to those expected in ITER’s non-active operating phase. In low-power ECRH H-modes, periods with uncontrolled density and impurity radiation excursions are prevented by applying n  =  3 non-axisymmetric magnetic perturbation fields. ELM suppression results from a reduction and an outward shift of the electron pressure gradient peak compared to that in the high-power ELMing phase. The change in the electron pressure gradient peak is primarily due to a drop in the pedestal temperature rather than the pedestal density.

  7. A model-assisted radio occultation data inversion method based on data ingestion into NeQuick

    NASA Astrophysics Data System (ADS)

    Shaikh, M. M.; Nava, B.; Kashcheyev, A.

    2017-01-01

    Inverse Abel transform is the most common method to invert radio occultation (RO) data in the ionosphere and it is based on the assumption of the spherical symmetry for the electron density distribution in the vicinity of an occultation event. It is understood that this 'spherical symmetry hypothesis' could fail, above all, in the presence of strong horizontal electron density gradients. As a consequence, in some cases wrong electron density profiles could be obtained. In this work, in order to incorporate the knowledge of horizontal gradients, we have suggested an inversion technique based on the adaption of the empirical ionospheric model, NeQuick2, to RO-derived TEC. The method relies on the minimization of a cost function involving experimental and model-derived TEC data to determine NeQuick2 input parameters (effective local ionization parameters) at specific locations and times. These parameters are then used to obtain the electron density profile along the tangent point (TP) positions associated with the relevant RO event using NeQuick2. The main focus of our research has been laid on the mitigation of spherical symmetry effects from RO data inversion without using external data such as data from global ionospheric maps (GIM). By using RO data from Constellation Observing System for Meteorology Ionosphere and Climate (FORMOSAT-3/COSMIC) mission and manually scaled peak density data from a network of ionosondes along Asian and American longitudinal sectors, we have obtained a global improvement of 5% with 7% in Asian longitudinal sector (considering the data used in this work), in the retrieval of peak electron density (NmF2) with model-assisted inversion as compared to the Abel inversion. Mean errors of NmF2 in Asian longitudinal sector are calculated to be much higher compared to American sector.

  8. The impact of spherical symmetry assumption on radio occultation data inversion in the ionosphere: An assessment study

    NASA Astrophysics Data System (ADS)

    Shaikh, M. M.; Notarpietro, R.; Nava, B.

    2014-02-01

    'Onion-peeling' is a very common technique used to invert Radio Occultation (RO) data in the ionosphere. Because of the implicit assumption of spherical symmetry for the electron density (N(e)) distribution in the ionosphere, the standard Onion-peeling algorithm could give erroneous concentration values in the retrieved electron density profile. In particular, this happens when strong horizontal ionospheric electron density gradients are present, like for example in the Equatorial Ionization Anomaly (EIA) region during high solar activity periods. In this work, using simulated RO Total Electron Content (TEC) data computed by means of the NeQuick2 ionospheric electron density model and ideal RO geometries, we tried to formulate and evaluate an asymmetry level index for quasi-horizontal TEC observations. The asymmetry index is based on the electron density variation that a signal may experience along its path (satellite to satellite link) in a RO event and is strictly dependent on the occultation geometry (e.g. azimuth of the occultation plane). A very good correlation has been found between the asymmetry index and errors related to the inversion products, in particular those concerning the peak electron density NmF2 estimate and the Vertical TEC (VTEC) evaluation.

  9. Quantitative XRD analysis of {110} twin density in biotic aragonites.

    PubMed

    Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro

    2012-12-01

    {110} Twin densities in biotic aragonite have been estimated quantitatively from the peak widths of specific reflections in powder X-ray diffraction (XRD) patterns, as well as direct confirmation of the twins using transmission electron microscopy (TEM). Influence of the twin density on the peak widths in the XRD pattern was simulated using DIFFaX program, regarding (110) twin as interstratification of two types of aragonite unit layers with mirrored relationship. The simulation suggested that the twin density can be estimated from the difference of the peak widths between 111 and 021, or between 221 and 211 reflections. Biotic aragonite in the crossed-lamellar microstructure (three species) and nacreous microstructure (four species) of molluscan shells, fish otoliths (two species), and a coral were investigated. The XRD analyses indicated that aragonite crystals in the crossed-lamellar microstructure of the three species contain high density of the twins, which is consistent with the TEM examination. On the other hand, aragonite in the nacre of the four species showed almost no difference of the peak widths between the paired reflections, indicating low twin densities. The results for the fish otoliths were varied between the species. Such variation of the twin density in biotic aragonites may reflect different schemes of crystal growth in biomineralization. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. A dynamic model of the radiation-belt electron phase-space density based on POLAR/HIST measurements

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Green, J. C.

    2007-12-01

    The response of the energetic-electron phase-space density (PSD) in the radiation belts is subject to a delicate combination of acceleration and loss processes which are strongly determined by the magnetospheric configuration and field disturbance level. We quantify the response of the density to stormtime fields as observed by the HIST detector on board POLAR. Several distinct modes are identified, characterized by peak second- and third- adiabatic invariants and peak delay time. The modes represent quasiadiabatic transport due to ring current activity; high L* (~6), day-long acceleration linked to ULF wave-particle interaction; and low-L* (~3), minute- to hour-long acceleration interpreted to be due to transient inductive fields or VLF wave-particle interaction. The net transport due to these responses is not always or everywhere diffusive, therefore we quantify the degree of departure from diffusive transport for specific storm intervals and radial ranges. Taken together the response modes comprise a dynamic, nonlinear model which allows us to better understand the historic variability of the high-energy tail of the electron distribution in the inner magnetosphere.

  11. Low energy electron spectroscopy of C60 in collisions with fast bare ions: Observation of GDPR peak and its angular distribution

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Misra, D.; Chatterjee, S.; Kasthurirangan, S.; Agnihotri, A.; Tribedi, L. C.

    2009-11-01

    We report the first direct measurement of GDPR peak in heavy ion (4 MeV/u F9+) induced secondary electron DDCS (double differential cross section) spectrum of C60 fullerene. A peak corresponding to GDPR is seen at all angles and the angular distribution, showing a dip at 90°, is in contrast with ion-atom collisions, indicating plasmon oscillations along beam direction. A comparison has also been done between C60 and other gaseous targets as well as with state-of-the art theoretical models, based on density functional methods.

  12. High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Kegong; Wu, Yuchi; Zhu, Bin

    The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less

  13. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  14. Observations of electron heating during 28 GHz microwave power application in proto-MPEX

    DOE PAGES

    Biewer, Theodore M.; Bigelow, Tim S.; Caneses Marin, Juan F.; ...

    2018-02-01

    The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ~100 kW, 13.56 MHz RF helicon source, to which ~20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than themore » cut-off density (~0.9 × 1019 m -3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ~5 eV to ~20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (~1 mTorr.).« less

  15. Observations of electron heating during 28 GHz microwave power application in proto-MPEX

    NASA Astrophysics Data System (ADS)

    Biewer, T. M.; Bigelow, T. S.; Caneses, J. F.; Diem, S. J.; Green, D. L.; Kafle, N.; Rapp, J.; Proto-MPEX Team

    2018-02-01

    The Prototype Material Plasma Exposure Experiment at the Oak Ridge National Laboratory utilizes a variety of power systems to generate and deliver a high heat flux plasma onto the surface of material targets. In the experiments described here, a deuterium plasma is produced via a ˜100 kW, 13.56 MHz RF helicon source, to which ˜20 kW of 28 GHz microwave power is applied. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is centrally peaked. In the core of the plasma column, the electron density is higher than the cut-off density (˜0.9 × 1019 m-3) for the launched mixture of X- and O-mode electron cyclotron heating waves to propagate. TS measurements indicate electron temperature increases from ˜5 eV to ˜20 eV during 28 GHz power application when the neutral deuterium pressure is reduced below 0.13 Pa (˜1 mTorr.).

  16. Estimations of Kappa parameter using quasi-thermal noise spectroscopy: Applications on Wind spacecraft

    NASA Astrophysics Data System (ADS)

    Martinović, M.

    2017-12-01

    Quasi-thermal noise (QTN) spectroscopy is an accurate technique for in situ measurements of electron density and temperature in space plasmas. The QTN spectrum has a characteristic noise peak just above the plasma frequency produced by electron quasi-thermal fluctuations, which allows a very accurate measurement of the electron density. The size and shape of the peak are determined by suprathermal electrons. Since this nonthermal electron population is well described by a generalized Lorentzian - Kappa velocity distribution, it is possible to determinate the distribution properties in the solar wind from a measured spectrum. In this work, we discuss some basic properties of the QTN spectrum dependence of the Kappa distribution parameters - total electron density, temperature and the Kappa index, giving an overview on how instrument characteristics and environment conditions affect quality of the measurements. Further on, we aim to apply the method to Wind Thermal Noise Receiver (TNR) measurements. However, the spectra observed by this instrument usually contain contributions from nonthermal phenomena, like ion acoustic waves below, or galactic noise above the plasma frequency. This is why, besides comparison of the theory with observations, work with Wind data requires development of a sophisticated algorithm that distinguish parts of the spectra that are dominated by the QTN, and therefore can be used in our study. Postulates of this algorithm, as well as major results of its implementation, are also presented.

  17. Temporal survey of electron number density and electron temperature in the exhaust of a megawatt MPD-arc thruster.

    NASA Technical Reports Server (NTRS)

    Michels, C. J.; Rose, J. R.; Sigman, D. R.

    1972-01-01

    Temporal and radial profiles are obtained 30 cm downstream from the anode for two peak arc currents (11.2 kA and 20 kA) and for various auxiliary magnetic fields (0, 1.0 T, and 2.0 T) using the Thomson scattering technique. Average density and temperature are relatively constant for over 100 microseconds with significant fluctuations. Radial profiles obtained are relatively flat for 4 cm from the axis. Compared to earlier 20 cm data, the exhaust density has decreased significantly, the average temperature has not changed, and the density ?hole' with an auxiliary magnetic field has enlarged.

  18. Investigating the source of near-relativistic and relativistic electrons in Earth's inner radiation belt

    DOE PAGES

    Turner, Drew Lawson; O'Brien, T. P.; Fennell, J. F.; ...

    2017-01-30

    Using observations from NASA's Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not themore » dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed 3 orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important—and potentially dominant—source of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for ≥100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day time scales, consistent with losses due to interactions with plasmaspheric hiss. Altogether, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an “on/off,” geomagnetic-activity-dependent source from higher radial distances.« less

  19. Investigating the source of near-relativistic and relativistic electrons in Earth's inner radiation belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Drew Lawson; O'Brien, T. P.; Fennell, J. F.

    Using observations from NASA's Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not themore » dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed 3 orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important—and potentially dominant—source of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for ≥100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day time scales, consistent with losses due to interactions with plasmaspheric hiss. Altogether, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an “on/off,” geomagnetic-activity-dependent source from higher radial distances.« less

  20. Fundamental mechanisms of laser damage of dielectric crystals by ultrashort pulse: ionization dynamics for the Keldysh model

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2014-12-01

    Laser-induced ionization is a major process that initiates and drives the initial stages of laser-induced damage (LID) of high-quality transparent solids. The ionization and its contribution to LID are characterized in terms of the time-dependent ionization rate and conduction-band electron density. Considering femtosecond pulses of various durations (from 35 to 706 fs) and variable peak irradiances (from 0.01 to 60 TW/cm2), we use a single-rate equation to simulate time variations of conduction-band electron density and rates of the photoionization and impact ionization. The photoionization rate is evaluated with the Keldysh equation. At low irradiance, the electron density and total ionization rate demonstrate power scaling characteristic of multiphoton ionization. With the increase of irradiance, there is observed a saturation of the photoionization rate due to photoionization suppression by the Keldysh-type singularity during the increase in the number of simultaneously absorbed photons by 1. A striking result is that the saturation is followed by a stepwise transition from the ionization regime which is completely dominated by the photoionization to a regime totally dominated by the impact ionization. The transition results in the increase of the electron density by a few orders of magnitude induced by a variation of peak laser irradiance by about 15% to 20%. The physical effects that are involved are discussed.

  1. The determination of ionospheric electron content and distribution from satellite observations. Part 2. Results of the analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garriott, O K

    1960-04-01

    The results of observations of the radio transmissions from Sputnik III (1958 δ 2) in an 8-month period are presented. The measurements of integrated electron density are made in two ways, described in part 1. The measurements reveal the diurnal variation of the total ionospheric electron content; and the ratio of the total content to the content of the lower ionosphere below the height of maximum density in the F layer is obtained. An estimate of the average electron-density profile above the F-layer peak is made possible by the slow variation in the height of the satellite due to rotationmore » of the perigee position. The gross effects of large magnetic storms on the electron content and distribution are found.« less

  2. Uncovering the nonadiabatic response of geosynchronous electrons to geomagnetic disturbance

    USGS Publications Warehouse

    Gannon, Jennifer; Elkington, Scot R.; Onsager, Terrance G.

    2012-01-01

    We describe an energy spectrum method for scaling electron integral flux, which is measured at a constant energy, to phase space density at a constant value of the first adiabatic invariant which removes much of the variation due to reversible adiabatic effects. Applying this method to nearly a solar cycle (1995 - 2006) of geosynchronous electron integral flux (E>2.0MeV) from the GOES satellites, we see that much of the diurnal variation in electron phase space density at constant energy can be removed by the transformation to phase space density at constant μ (4000 MeV/G). This allows us a clearer picture of underlying non-adiabatic electron population changes due to geomagnetic activity. Using scaled phase space density, we calculate the percentage of geomagnetic storms resulting in an increase, decrease or no change in geosynchronous electrons as 38%, 7%, and 55%, respectively. We also show examples of changes in the electron population that may be different than the unscaled fluxes alone suggest. These examples include sudden electron enhancements during storms which appear during the peak of negative Dst for μ-scaled phase space density, contrary to the slow increase seen during the recovery phase for unscaled phase space density for the same event.

  3. Relations for lipid bilayers. Connection of electron density profiles to other structural quantities.

    PubMed Central

    Nagle, J F; Wiener, M C

    1989-01-01

    Three relations are derived that connect low angle diffraction/scattering results obtained from lipid bilayers to other structural quantities of interest. The first relates the area along the surface of the bilayer, the measured specific volume, and the zeroth order structure factor, F(0). The second relates the size of the trough in the center of the electron density profile, the volume of the terminal methyl groups, and the volume of the methylene groups in the fatty acid chains. The third relates the size of the headgroup electron density peak, the volume of the headgroup, and the volumes of water and hydrocarbon in the headgroup region. These relations, which are easily modified for neutron diffraction, are useful for obtaining structural quantities from electron density profiles obtained by fitting model profiles to measured low angle x-ray intensities. PMID:2713444

  4. December anomaly in ionosphere using FORMOSAT-3/COSMIC electron density profiles

    NASA Astrophysics Data System (ADS)

    Dashnyam, G.; Lin, C. C. H.; Rajesh, P. K.; Lin, J. T.

    2017-12-01

    December anomaly in ionosphere refers to the observation of greater value of global average ionospheric peak electron density (NmF2) in December-January months than in June-July months. So far there has been no satisfactory explanation to account for this difference, which is also known as annual asymmetry, leading to the speculation that forcing from lower atmosphere may be important. In this work, FORMOSAT-3/COSMIC electron density profiles are used to investigate the characteristics of December anomaly at different local times and longitudes in varying levels of solar activity. The observations in the years 2008, 2009 and 2012 are used for the study. The results suggest that the anomaly exists in all the three years, and is pronounced during day. Detailed analysis is carried out using latitude-altitude electron density profiles at selected longitude sectors, revealing that neutral wind may play dominant role. SAMI2 model is used to further examine the role of neutral wind influencing the electron density in different solstices. Tidal decomposition of the wind is carried out to understand the dominant tidal components that give rise to the larger electron density in the December-January months.

  5. Structural phase transition and 5f-electrons localization of PuSe explored by ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui Shouxin, E-mail: shouxincui@yahoo.co; Feng Wenxia; Hu Haiquan

    2010-04-15

    An investigation into the structural phase transformation, electronic and optical properties of PuSe under high pressure was conducted by using the full potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method, in the presence and in the absence of spin-orbit coupling (SOC). Our results demonstrate that there exists a structural phase transition from rocksalt (B 1) structure to CsCl-type (B 2) structure at the transition pressure of 36.3 GPa (without SOC) and 51.3 GPa (with SOC). The electronic density of states (DOS) for PuSe show that the f-electrons of Pu are more localized and concentrated in a narrow peakmore » near the Fermi level, which is consistent with the experimental studies. The band structure shows that B 1-PuSe is metallic. A pseudogap appears around the Fermi level of the total density of states of B 1 phase PuSe, which may contribute to its stability. The calculated reflectivity R(omega) shows agreement with the available experimental results. Furthermore, the absorption spectrum, refractive index, extinction coefficient, energy-loss spectrum and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. - Abstract: Graphical Abstract Legend (TOC Figure): 5f-electrons are more localized by the analysis of the density of states (SOC). The origin spectra peaks was interpreted based on electronic structures.« less

  6. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    NASA Astrophysics Data System (ADS)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  7. Microscopic interpretation of inelastic electron scattering from even Ni isotopes

    NASA Astrophysics Data System (ADS)

    Yokoyama, Atsushi; Ogawa, Kengo

    1990-10-01

    Transition charge densities of inelastic electron scattering for the excitation of 2+ and 4+ states in even-mass Ni isotopes are investigated in terms of the standard shell model of the (p3/2,p1/2,f5/2)n configurations. Effective transition operators pertinent to the model space are derived by considering particle-hole excitations up to 12ħω for C2 and 14ħω for C4 transitions within the framework of a first-order perturbation theory. It is shown that surface-peaked transition charge densities can be obtained for the first excited 2+ and 4+ states, being in agreement with experiment. Particle-hole excitations up to λħω, e.g., λ=2 for C2 transition, are most responsible for that feature. Higher ħω excitations appear relatively significant in the interior region of the nucleus: They enhance the peak around the surface, improving further agreement with experiment, but for C2 transition they tend to generate another peak inside the nucleus and thus seem to deteriorate agreement with experiment. Transition densities for the 0+g.s.-->2+2,3 and 0+g.s.-->4+2 transitions are also discussed.

  8. Measurements of the K -Shell Opacity of a Solid-Density Magnesium Plasma Heated by an X-Ray Free-Electron Laser

    DOE PAGES

    Preston, T. R.; Vinko, S. M.; Ciricosta, O.; ...

    2017-08-25

    We present measurements of the spectrally resolved x rays emitted from solid-density magnesium targets of varying sub-μm thicknesses isochorically heated by an x-ray laser. The data exhibit a largely thickness independent source function, allowing the extraction of a measure of the opacity to K-shell x rays within well-defined regimes of electron density and temperature, extremely close to local thermodynamic equilibrium conditions. The deduced opacities at the peak of the Kα transitions of the ions are consistent with those predicted by detailed atomic-kinetics calculations.

  9. Ponderomotive force on solitary structures created during radiation pressure acceleration of thin foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Vipin K.; Sharma, Anamika

    2013-05-15

    We estimate the ponderomotive force on an expanded inhomogeneous electron density profile, created in the later phase of laser irradiated diamond like ultrathin foil. When ions are uniformly distributed along the plasma slab and electron density obeys the Poisson's equation with space charge potential equal to negative of ponderomotive potential, φ=−φ{sub p}=−(mc{sup 2}/e)(γ−1), where γ=(1+|a|{sup 2}){sup 1/2}, and |a| is the normalized local laser amplitude inside the slab; the net ponderomotive force on the slab per unit area is demonstrated analytically to be equal to radiation pressure force for both overdense and underdense plasmas. In case electron density is takenmore » to be frozen as a Gaussian profile with peak density close to relativistic critical density, the ponderomotive force has non-monotonic spatial variation and sums up on all electrons per unit area to equal radiation pressure force at all laser intensities. The same result is obtained for the case of Gaussian ion density profile and self consistent electron density profile, obeying Poisson's equation with φ=−φ{sub p}.« less

  10. The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): Bottomside Parameterization

    NASA Astrophysics Data System (ADS)

    Themens, D. R.; Jayachandran, P. T.

    2017-12-01

    It is well known that the International Reference Ionosphere (IRI) suffers reduced accuracy in its representation of monthly median ionospheric electron density at high latitudes. These inaccuracies are believed to stem, at least in part, from a historical lack of data from these regions. Now, roughly thirty and forty years after the development of the original URSI and CCIR foF2 maps, respectively, there exists a much larger dataset of high latitude observations of ionospheric electron density. These new measurements come in the form of new ionosonde deployments, such as those of the Canadian High Arctic Ionospheric Network, the CHAMP, GRACE, and COSMIC radio occultation missions, and the construction of the Poker Flat, Resolute, and EISCAT Incoherent Scatter Radar systems. These new datasets afford an opportunity to revise the IRI's representation of the high latitude ionosphere. Using a spherical cap harmonic expansion to represent horizontal and diurnal variability and a Fourier expansion in day of year to represent seasonal variations, we have developed a new model of the bottomside ionosphere's electron density for the high latitude ionosphere, above 50N geomagnetic latitude. For the peak heights of the E and F1 layers (hmE and hmF1, respectively), current standards use a constant value for hmE and either use a single-parameter model for hmF1 (IRI) or scale hmF1 with the F peak (NeQuick). For E-CHAIM, we have diverged from this convention to account for the greater variability seen in these characteristics at high latitudes, opting to use a full spherical harmonic model description for each of these characteristics. For the description of the bottomside vertical electron density profile, we present a single-layer model with altitude-varying scale height. The scale height function is taken as the sum three scale height layer functions anchored to the F2 peak, hmF1, and hmE. This parameterization successfully reproduces the structure of the various bottomside layers while ensuring that the resulting electron density profile is free of strong vertical gradient artifacts and is doubly differentiable.

  11. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by the interaction of the high voltage US solar arrays with the F2-region ionospheric plasma environment. We are working to fully understand the charging behavior of the ISS solar arrays and determine how well future charging behavior can be predicted from in-situ measurements of plasma density and temperature. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that may be encountered at ISS orbital altitudes (approximately 400 km), the latitudes over which they occur, and the time periods for which the disturbances persist. We will present preliminary results from a study of ionospheric disturbances in the "mid-latitude" region defined as the approximately 30 - 60 degree extra-equatorial magnetic latitudes sampled by ISS. The study is focused on geomagnetic storm periods because they are well known drivers for disturbances in the high-latitude and mid-latitude ionospheric plasma. Changes in the F2 peak electron density obtained from ground based ionosonde records are compared to in-situ electron density and temperature measurements from the CHAMP and ISS spacecraft at altitudes near, or above, the F2 peak. Results from a number of geomagnetic storms will be presented and their potential impact on ISS charging will be discussed.

  12. Electron density extrapolation above F2 peak by the linear Vary-Chap model supporting new Global Navigation Satellite Systems-LEO occultation missions

    NASA Astrophysics Data System (ADS)

    Hernández-Pajares, Manuel; Garcia-Fernández, Miquel; Rius, Antonio; Notarpietro, Riccardo; von Engeln, Axel; Olivares-Pulido, Germán.; Aragón-Àngel, Àngela; García-Rigo, Alberto

    2017-08-01

    The new radio-occultation (RO) instrument on board the future EUMETSAT Polar System-Second Generation (EPS-SG) satellites, flying at a height of 820 km, is primarily focusing on neutral atmospheric profiling. It will also provide an opportunity for RO ionospheric sounding, but only below impact heights of 500 km, in order to guarantee a full data gathering of the neutral part. This will leave a gap of 320 km, which impedes the application of the direct inversion techniques to retrieve the electron density profile. To overcome this challenge, we have looked for new ways (accurate and simple) of extrapolating the electron density (also applicable to other low-Earth orbiting, LEO, missions like CHAMP): a new Vary-Chap Extrapolation Technique (VCET). VCET is based on the scale height behavior, linearly dependent on the altitude above hmF2. This allows extrapolating the electron density profile for impact heights above its peak height (this is the case for EPS-SG), up to the satellite orbital height. VCET has been assessed with more than 3700 complete electron density profiles obtained in four representative scenarios of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) in the United States and the Formosa Satellite Mission 3 (FORMOSAT-3) in Taiwan, in solar maximum and minimum conditions, and geomagnetically disturbed conditions, by applying an updated Improved Abel Transform Inversion technique to dual-frequency GPS measurements. It is shown that VCET performs much better than other classical Chapman models, with 60% of occultations showing relative extrapolation errors below 20%, in contrast with conventional Chapman model extrapolation approaches with 10% or less of the profiles with relative error below 20%.

  13. The relationship between the plasmapause and outer belt electrons

    DOE PAGES

    Goldstein, J.; Baker, D. N.; Blake, J. B.; ...

    2016-09-01

    Here, we quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15–20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8–7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm –3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1–2 R E inside the plasmapause. Outer belt 2 is a dynamic zone of <3 MeV electrons within 0.5 R E of the moving plasmapause.more » Electron fluxes earthward of each belt's peak are anticorrelated with cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance on 17 January and suffered only a modest dropout, perhaps owing to shielding by the plasmasphere. Afterward, the partially depleted belt 1 continued to decay at the initial rate. Belt 2 was emptied out by strong disturbance-time losses but restored within 24 h. For global context we use a plasmapause test particle simulation and derive a new plasmaspheric index F p, the fraction of a circular drift orbit inside the plasmapause. We find that the locally measured plasmapause is (for this event) a good proxy for the globally integrated opportunity for losses in cold plasma. Our analysis of the 15–20 January 2013 time interval confirms that high-energy electron storage rings can persist for weeks or even months if prolonged quiet conditions prevail. This case study must be followed up by more general study (not limited to a 5 day period).« less

  14. The relationship between the plasmapause and outer belt electrons

    NASA Astrophysics Data System (ADS)

    Goldstein, J.; Baker, D. N.; Blake, J. B.; De Pascuale, S.; Funsten, H. O.; Jaynes, A. N.; Jahn, J.-M.; Kletzing, C. A.; Kurth, W. S.; Li, W.; Reeves, G. D.; Spence, H. E.

    2016-09-01

    We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15-20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8-7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm-3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1-2 RE inside the plasmapause. Outer belt 2 is a dynamic zone of <3 MeV electrons within 0.5 RE of the moving plasmapause. Electron fluxes earthward of each belt's peak are anticorrelated with cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance on 17 January and suffered only a modest dropout, perhaps owing to shielding by the plasmasphere. Afterward, the partially depleted belt 1 continued to decay at the initial rate. Belt 2 was emptied out by strong disturbance-time losses but restored within 24 h. For global context we use a plasmapause test particle simulation and derive a new plasmaspheric index Fp, the fraction of a circular drift orbit inside the plasmapause. We find that the locally measured plasmapause is (for this event) a good proxy for the globally integrated opportunity for losses in cold plasma. Our analysis of the 15-20 January 2013 time interval confirms that high-energy electron storage rings can persist for weeks or even months if prolonged quiet conditions prevail. This case study must be followed up by more general study (not limited to a 5 day period).

  15. Electronic structure and optical properties of boron nitride nanotube bundles from first principles

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2015-06-01

    The electronic and optical properties of bundled armchair and zigzag boron nitride nanotubes (BNNTs) are investigated by using density functional theory. Owing to the inter-tube coupling, the dispersions along the tube axis and in the plane perpendicular to the tube axis of BNNT bundles are significantly varied, which are characterized by the decrease of band gap, the splitting of the doubly degenerated states, the expansions of valence and conduction bands. The calculated dielectric functions of the armchair and zigzag bundles are similar to that of the isolated tubes, except for the appearance of broadened peaks, small shifts of peak positions about 0.1 eV and increasing of peak intensities.

  16. Finite-T correlations and free exchange-correlation energy of quasi-one-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Garg, Vinayak; Sharma, Akariti; Moudgil, R. K.

    2018-02-01

    We have studied the effect of temperature on static density-density correlations and plasmon excitation spectrum of quasi-one-dimensional electron gas (Q1DEG) using the random phase approximation (RPA). Numerical results for static structure factor, pair-correlation function, static density susceptibility, free exchange-correlation energy and plasmon dispersion are presented over a wide range of temperature and electron density. As an interesting result, we find that the short-range correlations exhibit a non-monotonic dependence on temperature T, initially growing stronger (i.e. the pair-correlation function at small inter-electron spacing assuming relatively smaller values) with increasing T and then weakening above a critical T. The cross-over temperature is found to increase with increasing coupling among electrons. Also, the q = 2kF peak in the static density susceptibility χ(q,ω = 0,T) at T = 0 K smears out with rising T. The free exchange-correlation energy and plasmon dispersion show a significant variation with T, and the trend is qualitatively the same as in higher dimensions.

  17. Simulated East-west differences in F-region peak electron density at Far East mid-latitude region

    NASA Astrophysics Data System (ADS)

    Ren, Zhipeng; Zhao, Biqiang; Wan, Weixing; Liu, Libo

    2017-04-01

    In the present work, using Three-Dimensional Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS), we simulated the east-west differences in Fregion peak electron density (NmF2) at Far East mid-latitude region.We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east-west difference (Rew) features. Rew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 >West NmF2) at evening-night. The magnitude of daytime negative Rew is weak at local winter and strong at local summer, and the daytime Rew show two negative peaks around two equinoxes. With the increasing of solar flux level, the magnitude of Rew mainly become larger, and two daytime negative peaks slight shifts to June Solstice. With the decreasing of geographical latitude, Rew mainly become positive, and two daytime negative peaks slight shifts to June Solstice. Our simulation also suggested that the thermospheric zonal wind combined with the geomagnetic field configuration play a pivotal role in the formation of the ionospheric east-west differences at Far East midlatitude region.

  18. Simulated East-west differences in F-region peak electron density at Far East mid-latitude region

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Wan, W.

    2017-12-01

    In the present work, using Three-Dimensional Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences (TIME3D-IGGCAS), we simulated the east-west differences in Fregion peak electron density (NmF2) at Far East mid-latitude region.We found that, after removing the longitudinal variations of neutral parameters, TIME3D-IGGCAS can better represent the observed relative east-west difference (Rew) features. Rew is mainly negative (West NmF2 > East NmF2) at noon and positive (East NmF2 >West NmF2) at evening-night. The magnitude of daytime negative Rew is weak at local winter and strong at local summer, and the daytime Rew show two negative peaks around two equinoxes. With the increasing of solar flux level, the magnitude of Rew mainly become larger, and two daytime negative peaks slight shifts to June Solstice. With the decreasing of geographical latitude, Rew mainly become positive, and two daytime negative peaks slight shifts to June Solstice. Our simulation also suggested that the thermospheric zonal wind combined with the geomagnetic field configuration play a pivotal role in the formation of the ionospheric east-west differences at Far East midlatitude region.

  19. Real-time reconstruction of topside ionosphere scale height from coordinated GPS-TEC and ionosonde observations

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Poustovalova, Ljubov

    The International Reference Ionosphere model extended to the plasmasphere, IRI-Plas, has been recently updated for assimilation of total electron content, TEC, derived from observations with Global Navigation Satellite System, GNSS. The ionosonde products of the F2 layer peak density (NmF2) and height (hmF2) ensure true electron density maximum at the F2 peak. The daily solar and magnetic indices used by IRI-Plas code are compiled in data files including the 3-hour ap and kp magnetic index from 1958 onward, 12-monthly smoothed sunspot number R12 and Global Electron Content GEC12, daily solar radio flux F10.7 and daily sunspot number Ri. The 3-h ap-index is available in Real Time, RT, mode from GFZ, Potsdam, Germany, daily update of F10.7 is provided by Space Weather Canada service, and daily estimated international sunspot number Ri is provided by Solar Influences Data Analysis Center, SIDC, Belgium. For IRI-Plas-RT operation in regime of the daily update and prediction of the F2 layer peak parameters, the proxy kp and ap forecast for 3 to 24 hours ahead based on data for preceding 12 hours is applied online at http://www.izmiran.ru/services/iweather/. The topside electron density profile of IRI-Plas code is expressed with complementary half-peak density anchor height above hmF2 which corresponds to transition O+/H+ height. The present investigation is focused on reconstruction of topside ionosphere scale height using vertical total electron content (TEC) data derived from the Global Positioning System GPS observations and the ionosonde derived F2 layer peak parameters from 25 observatories ingested into IRI-Plas model. GPS-TEC and ionosonde measurements at solar maximum (September, 2002, and October, 2003) for quiet, positively disturbed, and negatively disturbed days of the month are used to obtain the topside scale height, Htop, representing the range of altitudes from hmF2 to the height where NmF2 decay by e times occurs. Mapping of the F2 layer peak parameters and TEC allows interpolate these parameters at coordinated grid sites from independent GPS receivers and ionosondes data. Exponential scale height Htop exceeds scale height HT of the α-Chapman layer by 3 times - the latter refers to a narrow altitude range from hmF2 to the height of 1.2 times decay of NmF2. While typical quiet daytime value of the topside scale height is around 200 km, it can be enhanced by 2-3 times during the negative phase of the ionospheric storm as it is captured by IRI-Plas-RT model ingesting the F2 peak and TEC data. This study is supported by the joint grant of RFBR 13-02-91370-CT_a and TUBITAK 112E568.

  20. Temporal survey of electron number density and electron temperature in the exhaust of a megawatt MPD-Arc thruster

    NASA Technical Reports Server (NTRS)

    Michels, C. J.; Rose, J. R.; Sigman, D. R.

    1971-01-01

    Temporal and radial profiles are obtained 30 cm downstream from the anode for two peak arc currents (11.2 kA and 20 kA) and for various auxiliary magnetic fields (0, 1.0 T, and 2.0T) using the Thomson scattering technique. Average density and temperature are relatively constant for over 100 microseconds with significant fluctuations. Radial profiles obtained are relatively flat for 4 cm from the axis. Compared to earlier 20 cm data, the exhaust density has decreased significantly, the average temperature (4.6 eV) has not changed, and the density hole with an auxiliary magnetic field has enlarged.

  1. Electron beam emission from a diamond-amplifier cathode.

    PubMed

    Chang, Xiangyun; Wu, Qiong; Ben-Zvi, Ilan; Burrill, Andrew; Kewisch, Jorg; Rao, Triveni; Smedley, John; Wang, Erdong; Muller, Erik M; Busby, Richard; Dimitrov, Dimitre

    2010-10-15

    The diamond amplifier (DA) is a new device for generating high-current, high-brightness electron beams. Our transmission-mode tests show that, with single-crystal, high-purity diamonds, the peak current density is greater than 400  mA/mm², while its average density can be more than 100  mA/mm². The gain of the primary electrons easily exceeds 200, and is independent of their density within the practical range of DA applications. We observed the electron emission. The maximum emission gain measured was 40, and the bunch charge was 50  pC/0.5  mm². There was a 35% probability of the emission of an electron from the hydrogenated surface in our tests. We identified a mechanism of slow charging of the diamond due to thermal ionization of surface states that cancels the applied field within it. We also demonstrated that a hydrogenated diamond is extremely robust.

  2. An Electron Density Model above the Sunspot from a Mapping of NOAA 7260 at 17 GHz

    NASA Astrophysics Data System (ADS)

    Yu, Xing-Feng; Yao, Jin-Xing Yao

    2002-06-01

    The brightness temperature distribution of microwave emission in a solar active region generally shows a ring structure, with a dip at the centre. However, no dip was found in the Nobeyama Radioheliograph left handed circular polarization (LCP) image on 1992 August 18; instead, there was a peak. This is a completely LCP source with zero right-handed circular polarization (RCP). We examine this structure in terms of the joint effect of gyroresonance and bremsstrahlung mechanism with a raised electron density above the central part of the sunspot, and the commonly assumed temperature and vertical dipole magnetic field models. The raised electron density is found to be 1.4 × 1011 cm-3 at the chromosphere base.

  3. Atomic oxygen ions as ionospheric biomarkers on exoplanets

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Withers, Paul; Dalba, Paul A.

    2018-04-01

    The ionized form of atomic oxygen (O+) is the dominant ion species at the altitude of maximum electron density in only one of the many ionospheres in our Solar System — Earth's. This ionospheric composition would not be present if oxygenic photosynthesis was not an ongoing mechanism that continuously impacts the terrestrial atmosphere. We propose that dominance of ionospheric composition by O+ ions at the altitude of maximum electron density can be used to identify a planet in orbit around a solar-type star where global-scale biological activity is present. There is no absolute numerical value required for this suggestion of an atmospheric plasma biomarker — only the dominating presence of O+ ions at the altitude of peak electron density.

  4. Topside ionosphere of Mars: Variability, transient layers, and the role of crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Gopika, P. G.; Venkateswara Rao, N.

    2018-04-01

    The topside ionosphere of Mars is known to show variability and transient topside layers. In this study, we analyzed the electron density profiles measured by the radio occultation technique aboard the Mars Global Surveyor spacecraft to study the topside ionosphere of Mars. The electron density profiles that we used in the present study span between 1998 and 2005. All the measurements are done from the northern high latitudes, except 220 profiles which were measured in the southern hemisphere, where strong crustal magnetic fields are present. We binned the observations into six measurement periods: 1998, 1999-north, 1999-south, 2000-2001, 2002-2003, and 2004-2005. We found that the topside ionosphere in the southern high latitudes is more variable than that from the northern hemisphere. This feature is clearly seen with fluctuations of wavelengths less than 20 km. Some of the electron density profiles show a transient topside layer with a local maximum in electron density between 160 km and 210 km. The topside layer is more prone to occur in the southern hemispheric crustal magnetic field regions than in the other regions. In addition, the peak density of the topside layer is greater in regions of strong crustal magnetic fields than in other regions. The variability of the topside ionosphere and the peak density of the topside layer, however, do not show one-to-one correlation with the strength of the crustal magnetic fields and magnetic field inclination. The results of the present study are discussed in the light of current understanding on the topside ionosphere, transient topside layers, and the role of crustal magnetic fields on plasma motions.

  5. Equilibrium theory of cylindrical discharges with special application to helicons

    NASA Astrophysics Data System (ADS)

    Curreli, Davide; Chen, Francis F.

    2011-11-01

    Radiofrequency discharges used in industry often have centrally peaked plasma density profiles n(r) although ionization is localized at the edge, even in the presence of a dc magnetic field. This can be explained with a simple cylindrical model in one dimension as long as the short-circuit effect at the endplates causes a Maxwellian electron distribution. Surprisingly, a universal profile can be obtained, which is self-similar for all discharges with uniform electron temperature Te and neutral density nn. When all collisions and ionizations are radially accounted for, the ion drift velocity toward the wall reaches the Bohm velocity at a radius which can be identified with the sheath edge, thus obviating a pre-sheath calculation. For non-uniform Te and nn, the profiles change slightly but are always peaked on axis. For helicon discharges, iteration with the HELIC code for antenna-wave coupling yields profiles consistent with both energy deposition and diffusion profiles. Calculated density is in absolute-value agreement with experiment.

  6. The International Reference Ionosphere - Status 2013

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter

    2015-04-01

    This paper describes the latest version of the International Reference Ionosphere (IRI) model. IRI-2012 includes new models for the electron density and ion densities in the region below the F-peak, a storm-time model for the auroral E-region, an improved electron temperature model that includes variations with solar activity, and for the first time a description of auroral boundaries. In addition, the thermosphere model required for baseline neutral densities and temperatures was upgraded from MSIS-86 to the newer NRLMSIS-00 model and Corrected Geomagnetic coordinates (CGM) were included in IRI as an additional coordinate system for a better representation of auroral and polar latitudes. Ongoing IRI activities towards the inclusion of an improved model for the F2 peak height hmF2 are discussed as are efforts to develop a "Real-Time IRI". The paper is based on an IRI status report presented at the 2013 IRI Workshop in Olsztyn, Poland. The IRI homepage is at

  7. Satellite Anomalies: Benefits of a Centralized Anomaly Database and Methods for Securely Sharing Information Among Satellite Operators

    DTIC Science & Technology

    2014-01-01

    unprecedented efficiencies in global busi- ness collaboration through communication, information distribution, and fast electronic monetary transactions...tudes (which peaks in free electron density at 300–400 km but extends to just above 1,000 km). At GEO, surface charging occurs intermit - tently

  8. Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold.

    PubMed

    Solomon, Gemma C; Gagliardi, Alessio; Pecchia, Alessandro; Frauenheim, Thomas; Di Carlo, Aldo; Reimers, Jeffrey R; Hush, Noel S

    2006-03-07

    We present results for a simulated inelastic electron-tunneling spectra (IETS) from calculations using the "gDFTB" code. The geometric and electronic structure is obtained from calculations using a local-basis density-functional scheme, and a nonequilibrium Green's function formalism is employed to deal with the transport aspects of the problem. The calculated spectrum of octanedithiol on gold(111) shows good agreement with experimental results and suggests further details in the assignment of such spectra. We show that some low-energy peaks, unassigned in the experimental spectrum, occur in a region where a number of molecular modes are predicted to be active, suggesting that these modes are the cause of the peaks rather than a matrix signal, as previously postulated. The simulations also reveal the qualitative nature of the processes dominating IETS. It is highly sensitive only to the vibrational motions that occur in the regions of the molecule where there is electron density in the low-voltage conduction channel. This result is illustrated with an examination of the predicted variation of IETS with binding site and alkane chain length.

  9. Ionospheric tomography by gradient-enhanced kriging with STEC measurements and ionosonde characteristics

    NASA Astrophysics Data System (ADS)

    Minkwitz, David; van den Boogaart, Karl Gerald; Gerzen, Tatjana; Hoque, Mainul; Hernández-Pajares, Manuel

    2016-11-01

    The estimation of the ionospheric electron density by kriging is based on the optimization of a parametric measurement covariance model. First, the extension of kriging with slant total electron content (STEC) measurements based on a spatial covariance to kriging with a spatial-temporal covariance model, assimilating STEC data of a sliding window, is presented. Secondly, a novel tomography approach by gradient-enhanced kriging (GEK) is developed. Beyond the ingestion of STEC measurements, GEK assimilates ionosonde characteristics, providing peak electron density measurements as well as gradient information. Both approaches deploy the 3-D electron density model NeQuick as a priori information and estimate the covariance parameter vector within a maximum likelihood estimation for the dedicated tomography time stamp. The methods are validated in the European region for two periods covering quiet and active ionospheric conditions. The kriging with spatial and spatial-temporal covariance model is analysed regarding its capability to reproduce STEC, differential STEC and foF2. Therefore, the estimates are compared to the NeQuick model results, the 2-D TEC maps of the International GNSS Service and the DLR's Ionospheric Monitoring and Prediction Center, and in the case of foF2 to two independent ionosonde stations. Moreover, simulated STEC and ionosonde measurements are used to investigate the electron density profiles estimated by the GEK in comparison to a kriging with STEC only. The results indicate a crucial improvement in the initial guess by the developed methods and point out the potential compensation for a bias in the peak height hmF2 by means of GEK.

  10. Universal time dependence of nighttime F region densities at high latitudes

    NASA Technical Reports Server (NTRS)

    De La Beaujardiere, O.; Wickwar, V. B.; Caudal, G.; Holt, J. M.; Craven, J. D.; Frank, L. A.; Brace, L. H.

    1985-01-01

    Coincident auroral-zone experiments using three incoherent-scatter radars at widely spaced longitudes are reported. The observational results demonstrate that, during the night, the F layer electron density is strongly dependent on the longitude of the observing site. Ionization patches were observed in the nighttime F region from the Chatanika and EISCAT radars, while densities observed from the Millstone radar were substantially smaller. The electron density within these maxima is larger at EISCAT than at Chatanika. When observed in the midnight sector auroral zone, these densities had a peak density at a high altitude of 360-475 km. The density was maximum when EISCAT was in the midnight sector and minimum when Millstone was in the midnight sector. A minimum in insolation in the auroral zone occurs at the UT when Millstone is in the midnight sector.

  11. 431 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes

    NASA Astrophysics Data System (ADS)

    Growden, Tyler A.; Zhang, Weidong; Brown, Elliott R.; Storm, David F.; Hansen, Katurah; Fakhimi, Parastou; Meyer, David J.; Berger, Paul R.

    2018-01-01

    We report on the design and fabrication of high current density GaN/AlN double barrier resonant tunneling diodes grown via plasma assisted molecular-beam epitaxy on bulk GaN substrates. A quantum-transport solver was used to model and optimize designs with high levels of doping and ultra-thin AlN barriers. The devices displayed repeatable room temperature negative differential resistance with peak-to-valley current ratios ranging from 1.20 to 1.60. A maximum peak tunneling current density (Jp) of 431 kA/cm2 was observed. Cross-gap near-UV (370-385 nm) electroluminescence (EL) was observed above +6 V when holes, generated from a polarization induced Zener tunneling effect, recombine with electrons in the emitter region. Analysis of temperature dependent measurements, thermal resistance, and the measured EL spectra revealed the presence of severe self-heating effects.

  12. Structural, optoelectronic, infrared and Raman spectra of orthorhombic SrSnO{sub 3} from DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, E.; Henriques, J.M.; Azevedo, D.L.

    2011-04-15

    Orthorhombic SrSnO{sub 3} was investigated using density functional theory (DFT) considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The electronic band structure, density of states, complex dielectric function, optical absorption, and the infrared and Raman spectra were computed. Calculated lattice parameters are close to the experimental measurements, and an indirect band gap E(S{yields}{Gamma})=1.97eV (2.27 eV) was obtained within the GGA (LDA) level of calculation. Effective masses for holes and electrons were estimated, being very anisotropic in comparison with similar results for orthorhombic CaSnO{sub 3}. The complex dielectric function and the optical absorption of SrSnO{sub 3}more » were shown to be sensitive to the plane of polarization of the incident light. The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum of orthorhombic SrSnO{sub 3} was achieved. -- Graphical abstract: Orthorhombic SrSnO{sub 3}: a view of the unit cell (left) and plots showing the calculated and experimental Raman spectra (right). Display Omitted Research highlights: {yields} We have performed DFT calculations on orthorhombic SrSnO{sub 3} crystals, obtaining their structural, electronical and optical properties. {yields} An indirect band gap was obtained, and anisotropic effective masses were found for both electrons and holes. {yields} The complex dielectric function and the optical absorption of SrSnO{sub 3} were shown to be very sensitive to the plane of polarization of the incident light. {yields} The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum was achieved.« less

  13. Magnetic-flutter-induced pedestal plasma transport

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2013-11-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron transport root. Magnetic-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize peeling-ballooning modes and thereby suppress edge localized modes in low collisionality tokamak H-mode plasmas.

  14. Supporting Structure of the LSD Wave in an Energy Absorption Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukui, Akihiro; Hatai, Keigo; Cho, Shinatora

    In Repetitively Pulsed (RP) Laser Propulsion, laser energy irradiated to a vehicle is converted to blast wave enthalpy during the Laser Supported Detonation (LSD) regime. Based on the measured post-LSD electron number density profiles by two-wavelength Mach Zehnder interferometer in a line-focusing optics, electron temperature and absorption coefficient were estimated assuming Local Thermal Equilibrium. A 10J/pulse CO{sub 2} laser was used. As a result, laser absorption was found completed in the layer between the shock wave and the electron density peak. Although the LSD-termination timing was not clear from the shock-front/ionization-front separation in the shadowgraph images, there observed drastic changesmore » in the absorption layer thickness from 0.2 mm to 0.5 mm and in the peak heating rate from 12-17x10{sup 13} kW/m{sup 3} to 5x10{sup 13} kW/m{sup 3} at the termination.« less

  15. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  16. Thermoluminescence solid-state nanodosimetry—the peak 5A/5 dosemeter

    PubMed Central

    Fuks, E.; Horowitz, Y. S.; Horowitz, A.; Oster, L.; Marino, S.; Rainer, M.; Rosenfeld, A.; Datz, H.

    2011-01-01

    The shape of composite peak 5 in the glow curve of LiF:Mg,Ti (TLD-100) following 90Sr/90Y beta irradiation, previously demonstrated to be dependent on the cooling rate used in the 400°C pre-irradiation anneal, is shown to be dependent on ionisation density in both naturally cooled and slow-cooled samples. Following heavy-charged particle high-ionisation density (HID) irradiation, the temperature of composite peak 5 decreases by ∼5°C and the peak becomes broader. This behaviour is attributed to an increase in the relative intensity of peak 5a (a low-temperature satellite of peak 5). The relative intensity of peak 5a is estimated using a computerised glow curve deconvolution code based on first-order kinetics. The analysis uses kinetic parameters for peaks 4 and 5 determined from ancillary measurements resulting in nearly ‘single-glow peak’ curves for both the peaks. In the slow-cooled samples, owing to the increased relative intensity of peak 5a compared with the naturally cooled samples, the precision of the measurement of the 5a/5 intensity ratio is found to be ∼15 % (1 SD) compared with ∼25 % for the naturally cooled samples. The ratio of peak 5a/5 in the slow-cooled samples is found to increase systematically and gradually through a variety of radiation fields from a minimum value of 0.13±0.02 for 90Sr/90Y low-ionisation density irradiations to a maximum value of ∼0.8 for 20 MeV Cu and I ion HID irradiations. Irradiation by low-energy electrons of energy 0.1–1.5 keV results in values between 1.27 and 0.95, respectively. The increasing values of the ratio of peak 5a/5 with increasing ionisation density demonstrate the viability of the concept of the peak 5a/5 nanodosemeter and its potential in the measurement of average ionisation density in a ‘nanoscopic’ mass containing the trapping centre/luminescent centre spatially correlated molecule giving rise to composite peak 5. PMID:21149323

  17. Overview of the FTU results

    NASA Astrophysics Data System (ADS)

    Pucella, G.; Alessi, E.; Amicucci, L.; Angelini, B.; Apicella, M. L.; Apruzzese, G.; Artaserse, G.; Belli, F.; Bin, W.; Boncagni, L.; Botrugno, A.; Briguglio, S.; Bruschi, A.; Buratti, P.; Calabrò, G.; Cappelli, M.; Cardinali, A.; Castaldo, C.; Causa, F.; Ceccuzzi, S.; Centioli, C.; Cesario, R.; Cianfarani, C.; Claps, G.; Cocilovo, V.; Cordella, F.; Crisanti, F.; D'Arcangelo, O.; De Angeli, M.; Di Troia, C.; Esposito, B.; Farina, D.; Figini, L.; Fogaccia, G.; Frigione, D.; Fusco, V.; Gabellieri, L.; Garavaglia, S.; Giovannozzi, E.; Granucci, G.; Iafrati, M.; Iannone, F.; Lontano, M.; Maddaluno, G.; Magagnino, S.; Marinucci, M.; Marocco, D.; Mazzitelli, G.; Mazzotta, C.; Milovanov, A.; Minelli, D.; Mirizzi, F. C.; Moro, A.; Nowak, S.; Pacella, D.; Panaccione, L.; Panella, M.; Pericoli-Ridolfini, V.; Pizzuto, A.; Podda, S.; Ramogida, G.; Ravera, G.; Ricci, D.; Romano, A.; Sozzi, C.; Tuccillo, A. A.; Tudisco, O.; Viola, B.; Vitale, V.; Vlad, G.; Zerbini, M.; Zonca, F.; Aquilini, M.; Cefali, P.; Di Ferdinando, E.; Di Giovenale, S.; Giacomi, G.; Grosso, A.; Mellera, V.; Mezzacappa, M.; Pensa, A.; Petrolini, P.; Piergotti, V.; Raspante, B.; Rocchi, G.; Sibio, A.; Tilia, B.; Tulli, R.; Vellucci, M.; Zannetti, D.; Bogdanovic-Radovic, I.; Carnevale, D.; Casolari, A.; Ciotti, M.; Conti, C.; Dinca, P. P.; Dolci, V.; Galperti, C.; Gospodarczyk, M.; Grosso, G.; Lubiako, L.; Lungu, M.; Martin-Solis, J. R.; Meineri, C.; Murtas, F.; Nardone, A.; Orsitto, F. P.; Perelli Cippo, E.; Popovic, Z.; Ripamonti, D.; Simonetto, A.; Tartari, U.

    2017-10-01

    Experiments on runaway electrons have been performed for the determination of the critical electric field for runaway generation. A large database of post-disruption runaway beams has been analyzed in order to identify linear dynamical models for new position and current runaway beam controllers, and experiments of electron cyclotron assisted plasma start-up have shown the presence of runaway electrons also below the expected electric field threshold, indicating that the radio-frequency power acts as seeding for fast electrons. A linear micro-stability analysis of neon-doped pulses has been carried out to investigate the mechanisms leading to the observed density peaking. A study of the ion drift effects on the MARFE instability has been performed and the peaking of density profile in the high density regime has been well reproduced using a thermo-diffusive pinch in the particle transport equation. The study of the density limit performed in the past has been extended towards lower values of toroidal magnetic field and plasma current. The analysis of the linear stability of the 2/1 tearing mode observed in high density plasmas has highlighted a destabilization with increasing peaking of the current profile during the density ramp-up, while the final phase of the mode temporal evolution is characterized by limit cycles on the amplitude/frequency plane. A liquid lithium limiter with thermal load capability up to 10 MW m-2 has been tested. The pulse duration has been extended up to 4.5 s and elongated configurations have been obtained for 3.5 s, with the X-point just outside the plasma chamber. A W/Fe sample has been exposed in the scrape-off layer in order to study the sputtering of Fe and the W enrichment of the surface layer. Dusts have been collected and analyzed, showing that the metallic population exhibits a high fraction of magnetic grains. A new diagnostic for in-flight runaway electron studies has allowed the image and the visible/infrared spectrum of the forward and backward synchrotron radiation to be provided simultaneously. A fast infrared camera for thermo-graphic analysis has provided the pattern of the toroidal limiter heating by disruption heat loads, and a triple-GEM detector has been tested for soft x-ray diagnostics. The collective Thomson scattering diagnostic has been upgraded and used for investigations on parametric decay instability excitation by electron cyclotron beams correlated with magnetic islands, and new capabilities of the Cherenkov probe have been explored in the presence of beta-induced Alfvén eigenmodes associated to high amplitude magnetic islands.

  18. Statistical behavior of the longitudinal variations of daytime electron density in the topside ionosphere at middle latitudes

    NASA Astrophysics Data System (ADS)

    Su, Fanfan; Wang, Wenbin; Burns, Alan G.; Yue, Xinan; Zhu, Fuying; Lin, Jian

    2016-11-01

    Electron density in the topside ionosphere has significant variations with latitude, longitude, altitude, local time, season, and solar cycle. This paper focuses on the global and seasonal features of longitudinal structures of daytime topside electron density (Ne) at middle latitudes and their possible causes. We used in situ Ne measured by DEMETER and F2 layer peak height (hmF2) and peak density (NmF2) from COSMIC. The longitudinal variations of the daytime topside Ne show a wave number 2-type structure in the Northern Hemisphere, whereas those in the Southern Hemisphere are dominated by a wave number 1 structure and are much larger than those in the Northern Hemisphere. The patterns around December solstice (DS) in the Northern Hemisphere (winter) are different from other seasons, whereas the patterns in the Southern Hemisphere are similar in each season. Around March equinox (ME), June solstice (JS), and September equinox (SE) in the Northern Hemisphere and around ME, SE, and DS in the Southern Hemisphere, the longitudinal variations of topside Ne have similar patterns to hmF2. Around JS in the Southern Hemisphere (winter), the topside Ne has similar patterns to NmF2 and hmF2 does not change much with longitude. Thus, the topside variations may be explained intuitively in terms of hmF2 and NmF2. This approach works reasonably well in most of the situations except in the northern winter in the topside not too far from the F2 peak. In this sense, understanding variations in hmF2 and NmF2 becomes an important and relevant subject for this topside ionospheric study.

  19. Nonlocal and Nonadiabatic Effects in the Charge-Density Response of Solids: A Time-Dependent Density-Functional Approach

    NASA Astrophysics Data System (ADS)

    Panholzer, Martin; Gatti, Matteo; Reining, Lucia

    2018-04-01

    The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.

  20. Nonlocal and Nonadiabatic Effects in the Charge-Density Response of Solids: A Time-Dependent Density-Functional Approach.

    PubMed

    Panholzer, Martin; Gatti, Matteo; Reining, Lucia

    2018-04-20

    The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 r_{s} or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.

  1. Plasma dynamics near critical density inferred from direct measurements of laser hole boring

    NASA Astrophysics Data System (ADS)

    Gong, Chao; Tochitsky, Sergei Ya.; Fiuza, Frederico; Pigeon, Jeremy J.; Joshi, Chan

    2016-06-01

    We have used multiframe picosecond optical interferometry to make direct measurements of the hole boring velocity, vHB, of the density cavity pushed forward by a train of C O2 laser pulses in a near critical density helium plasma. As the pulse train intensity rises, the increasing radiation pressure of each pulse pushes the density cavity forward and the plasma electrons are strongly heated. After the peak laser intensity, the plasma pressure exerted by the heated electrons strongly impedes the hole boring process and the vHB falls rapidly as the laser pulse intensity falls at the back of the laser pulse train. A heuristic theory is presented that allows the estimation of the plasma electron temperature from the measurements of the hole boring velocity. The measured values of vHB, and the estimated values of the heated electron temperature as a function of laser intensity are in reasonable agreement with those obtained from two-dimensional numerical simulations.

  2. Plasma dynamics near critical density inferred from direct measurements of laser hole boring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Chao; Tochitsky, Sergei Ya.; Fiuza, Frederico

    Here, we use multiframe picosecond optical interferometry to make direct measurements of the hole boring velocity, vHB, of the density cavity pushed forward by a train of CO 2 laser pulses in a near critical density helium plasma. As the pulse train intensity rises, the increasing radiation pressure of each pulse pushes the density cavity forward and the plasma electrons are strongly heated. After the peak laser intensity, the plasma pressure exerted by the heated electrons strongly impedes the hole boring process and the vHB falls rapidly as the laser pulse intensity falls at the back of the laser pulsemore » train. We present a heuristic theory that allows the estimation of the plasma electron temperature from the measurements of the hole boring velocity. Furthermore, the measured values of v HB, and the estimated values of the heated electron temperature as a function of laser intensity are in reasonable agreement with those obtained from two-dimensional numerical simulations.« less

  3. Laser Wakefield Acceleration Experiments Using HERCULES Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, T.; McGuffey, C.; Dollar, F.

    2009-07-25

    Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing laser power and plasma electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 6.1x10{sup 19} W/cm{sup 2} at laser power of 80 TW to be delivered to the gas-jet using F/10 focusing optics. We found that electron beam charge was increased significantly with an increase of laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. We also studied the influence of laser focusing conditions by changingmore » the f-number of the optics to F/15 and found an increase in density threshold for electron production compared to the F/10 configuration. The analysis of different phenomena such as betatron motion of electrons, side scattering of the laser pulse for different focusing conditions, the influence of plasma density down ramp on LWFA are shown.« less

  4. Plasma dynamics near critical density inferred from direct measurements of laser hole boring.

    PubMed

    Gong, Chao; Tochitsky, Sergei Ya; Fiuza, Frederico; Pigeon, Jeremy J; Joshi, Chan

    2016-06-01

    We have used multiframe picosecond optical interferometry to make direct measurements of the hole boring velocity, v_{HB}, of the density cavity pushed forward by a train of CO_{2} laser pulses in a near critical density helium plasma. As the pulse train intensity rises, the increasing radiation pressure of each pulse pushes the density cavity forward and the plasma electrons are strongly heated. After the peak laser intensity, the plasma pressure exerted by the heated electrons strongly impedes the hole boring process and the v_{HB} falls rapidly as the laser pulse intensity falls at the back of the laser pulse train. A heuristic theory is presented that allows the estimation of the plasma electron temperature from the measurements of the hole boring velocity. The measured values of v_{HB}, and the estimated values of the heated electron temperature as a function of laser intensity are in reasonable agreement with those obtained from two-dimensional numerical simulations.

  5. Plasma dynamics near critical density inferred from direct measurements of laser hole boring

    DOE PAGES

    Gong, Chao; Tochitsky, Sergei Ya.; Fiuza, Frederico; ...

    2017-06-24

    Here, we use multiframe picosecond optical interferometry to make direct measurements of the hole boring velocity, vHB, of the density cavity pushed forward by a train of CO 2 laser pulses in a near critical density helium plasma. As the pulse train intensity rises, the increasing radiation pressure of each pulse pushes the density cavity forward and the plasma electrons are strongly heated. After the peak laser intensity, the plasma pressure exerted by the heated electrons strongly impedes the hole boring process and the vHB falls rapidly as the laser pulse intensity falls at the back of the laser pulsemore » train. We present a heuristic theory that allows the estimation of the plasma electron temperature from the measurements of the hole boring velocity. Furthermore, the measured values of v HB, and the estimated values of the heated electron temperature as a function of laser intensity are in reasonable agreement with those obtained from two-dimensional numerical simulations.« less

  6. Dynamics of low- and high-Z metal ions emitted during nanosecond laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Diwakar, Prasoon K.; Polek, Mathew; Hassanein, Ahmed

    2016-11-01

    Dynamics of metal ions during laser-produced plasmas was studied. A 1064 nm, Nd: YAG laser pulse was used to ablate pure Al, Fe, Co, Mo, and Sn samples. Ion flux and velocity were measured using Faraday cup ion collector. Time-of-flight measurements showed decreasing ion flux and ion velocity with increasing atomic weight, and heavy metal ion flux profile exhibited multiple peaks that was not observed in lighter metals. Slow peak was found to follow shifted Maxwell Boltzmann distribution, while the fast peak was found to follow Gaussian distribution. Ion flux angular distribution that was carried out on Mo and Al using fixed laser intensity 2.5 × 1010 W/cm2 revealed that the slow ion flux peaks at small angles, that is, close to normal to the target ˜0° independent of target's atomic weight, and fast ion flux for Mo peaks at large angles ˜40° measured from the target normal, while it completely absents for Al. This difference in spatial and temporal distribution reveals that the emission mechanism of the fast and slow ions is different. From the slow ion flux angular distribution, the measured plume expansion ratio (plume forward peaking) was 1.90 and 2.10 for Al and Mo, respectively. Moreover, the effect of incident laser intensity on the ion flux emission as well as the emitted ion velocity were investigated using laser intensities varying from 2.5 × 1010 W/cm2 to 1.0 × 1011 W/cm2. Linear increase of fast ion flux and velocity, and quadratic increase of slow ion flux and velocity were observed. For further understanding of plume dynamics, laser optical emission spectroscopy was used to characterize Sn plasma by measuring the temporal and spatial evolution of plasma electron density Ne and electron temperature Te. At 3.5 mm away from the target, plasma density showed slow decrease with time, however electron temperature was observed to decrease dramatically. The maximum plasma density and temperature occurred at 0.5 mm away from target and were measured to be 8.0 × 1017 cm-3 and 1.3 eV, respectively.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koryazhkina, M. N., E-mail: mahavenok@mail.ru; Tikhov, S. V.; Gorshkov, O. N.

    It is shown that the formation of Au nanoparticles at the insulator–silicon interface in structures with a high density of surface states results in a shift of the Fermi-level pinning energy at this interface towards the valence-band ceiling in silicon and in increasing the surface-state density at energies close to the Fermi level. In this case, a band with a peak at 0.85 eV arises on the photosensivity curves of the capacitor photovoltage, which is explained by the photoemission of electrons from the formed Au-nanoparticle electron states near the valence-band ceiling in silicon.

  8. Disordered two-dimensional electron systems with chiral symmetry

    NASA Astrophysics Data System (ADS)

    Markoš, P.; Schweitzer, L.

    2012-10-01

    We review the results of our recent numerical investigations on the electronic properties of disordered two dimensional systems with chiral unitary, chiral orthogonal, and chiral symplectic symmetry. Of particular interest is the behavior of the density of states and the logarithmic scaling of the smallest Lyapunov exponents in the vicinity of the chiral quantum critical point in the band center at E=0. The observed peaks or depressions in the density of states, the distribution of the critical conductances, and the possible non-universality of the critical exponents for certain chiral unitary models are discussed.

  9. Crystal growth, electronic structure and optical properties of Sr2Mg(BO3)2

    NASA Astrophysics Data System (ADS)

    Lv, Xianshun; Wei, Lei; Wang, Xuping; Xu, Jianhua; Yu, Huajian; Hu, Yanyan; Zhang, Huadi; Zhang, Cong; Wang, Jiyang; Li, Qinggang

    2018-02-01

    Single crystals of Sr2Mg(BO3)2 (SMBO) were grown by Kyropoulos method. X-ray powder diffraction (XRD) analysis, transmission spectrum, thermal properties, band structure, density of states and charge distribution as well as Raman spectra of SMBO were described. The as-grown SMBO crystals show wide transparency range with UV cut-off below 180 nm. A direct band gap of 4.66 eV was obtained from the calculated electronic structure results. The calculated band structure and density of states results indicated the top valence band is determined by O 2p states whereas the low conduction band mainly consists of Sr 5s states. Twelve Raman peaks were observed in the experimental spectrum, fewer than the number predicted by the site group analysis. Raman peaks of SMBO were assigned combining first-principle calculation and site group analysis results. The strongest peak at 917 cm-1 in the experimental spectrum is assigned to symmetric stretching mode A1‧(ν1) of free BO3 units. SMBO is a potential Raman crystal which can be used in deep UV laser frequency conversion.

  10. Simulation of the energy distribution of relativistic electron precipitation caused by quasi-linear interactions with EMIC waves.

    PubMed

    Li, Zan; Millan, Robyn M; Hudson, Mary K

    2013-12-01

    [1]Previous studies on electromagnetic ion cyclotron (EMIC) waves as a possible cause of relativistic electron precipitation (REP) mainly focus on the time evolution of the trapped electron flux. However, directly measured by balloons and many satellites is the precipitating flux as well as its dependence on both time and energy. Therefore, to better understand whether pitch angle scattering by EMIC waves is an important radiation belt electron loss mechanism and whether quasi-linear theory is a sufficient theoretical treatment, we simulate the quasi-linear wave-particle interactions for a range of parameters and generate energy spectra, laying the foundation for modeling specific events that can be compared with balloon and spacecraft observations. We show that the REP energy spectrum has a peaked structure, with a lower cutoff at the minimum resonant energy. The peak moves with time toward higher energies and the spectrum flattens. The precipitating flux, on the other hand, first rapidly increases and then gradually decreases. We also show that increasing wave frequency can lead to the occurrence of a second peak. In both single- and double-peak cases, increasing wave frequency, cold plasma density or decreasing background magnetic field strength lowers the energies of the peak(s) and causes the precipitation to increase at low energies and decrease at high energies at the start of the precipitation.

  11. Pressure profiles of plasmas confined in the field of a dipole magnet

    NASA Astrophysics Data System (ADS)

    Davis, Matthew Stiles

    Understanding the maintenance and stability of plasma pressure confined by a strong magnetic field is a fundamental challenge in both laboratory and space plasma physics. Using magnetic and X-ray measurements on the Levitated Dipole Experiment (LDX), the equilibrium plasma pressure has been reconstructed, and variations of the plasma pressure for different plasma conditions have been examined. The relationship of these profiles to the magnetohydrodynamic (MHD) stability limit, and to the enhanced stability limit that results from a fraction of energetic trapped electrons, has been analyzed. In each case, the measured pressure profiles and the estimated fractional densities of energetic electrons were qualitatively consistent with expectations of plasma stability. LDX confines high temperature and high pressure plasma in the field of a superconducting dipole magnet. The strong dipole magnet can be either mechanically supported or magnetically levitated. When the dipole was mechanically supported, the plasma density profile was generally uniform while the plasma pressure was highly peaked. The uniform density was attributed to the thermal plasma being rapidly lost along the field to the mechanical supports. In contrast, the strongly peaked plasma pressure resulted from a fraction of energetic, mirror trapped electrons created by microwave heating at the electron cyclotron resonance (ECRH). These hot electrons are known to be gyrokinetically stabilized by the background plasma and can adopt pressure profiles steeper than the MHD limit. X-ray measurements indicated that this hot electron population could be described by an energy distribution in the range 50-100 keV. Combining information from the magnetic reconstruction of the pressure profile, multi-chord interferometer measurements of the electron density profile, and X-ray measurements of the hot electron energy distribution, the fraction of energetic electrons at the pressure peak was estimated to be ˜ 35% of the total electron population. When the dipole was magnetically levitated the plasma density increased substantially because particle losses to the mechanical supports were eliminated so particles could only be lost via slower cross-field transport processes. The pressure profile was observed to be broader during levitated operation than it was during supported operation, and the pressure appeared to be contained in both a thermal population and an energetic electron population. X-ray spectra indicated that the X-rays came from a similar hot electron population during levitated and supported operation; however, the hot electron fraction was an order of magnitude smaller during levitated operation (<3% of the total electron population). Pressure gradients for both supported and levitated plasmas were compared to the MHD limit. Levitated plasmas had pressure profiles that were (i) steeper than, (ii) shallower than, or (iii) near the MHD limit dependent on plasma conditions. However, those profiles that exceeded the MHD limit were observed to have larger fractions of energetic electrons. When the dipole magnet was supported, high pressure plasmas always had profiles that exceeded the MHD interchange stability limit, but the high pressure in these plasmas appeared to arise entirely from a population of energetic trapped electrons.

  12. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  13. Nonlinear model for thermal effects in free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, E., E-mail: peterpeter@uol.com.br; Endler, A., E-mail: aendler@if.ufrgs.br; Rizzato, F. B., E-mail: rizzato@if.ufrgs.br

    2014-11-15

    In the present work, we extend results of a previous paper [Peter et al., Phys. Plasmas 20, 12 3104 (2013)] and develop a semi-analytical model to account for thermal effects on the nonlinear dynamics of the electron beam in free-electron lasers. We relax the condition of a cold electron beam but still use the concept of compressibility, now associated with a warm beam model, to evaluate the time scale for saturation and the peak laser intensity in high-gain regimes. Although vanishing compressibilites and the associated divergent densities are absent in warm models, a series of discontinuities in the electron density precedemore » the saturation process. We show that full wave-particle simulations agree well with the predictions of the model.« less

  14. First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE)

    NASA Astrophysics Data System (ADS)

    Withers, Paul; Felici, M.; Mendillo, M.; Moore, L.; Narvaez, C.; Vogt, M. F.; Jakosky, B. M.

    2018-05-01

    Radio occultation observations of the ionosphere of Mars can span the full vertical extent of the ionosphere, in contrast to in situ measurements that rarely sample the main region of the ionosphere. However, most existing radio occultation electron density profiles from Mars were acquired without clear context for the solar forcing or magnetospheric conditions, which presents challenges for the interpretation of these profiles. Here we present 48 ionospheric electron density profiles acquired by the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) Radio Occultation Science Experiment (ROSE) from 5 July 2016 to 27 June 2017 at solar zenith angles of 54° to 101°. Latitude coverage is excellent, and comprehensive context for the interpretation of these profiles is provided by other MAVEN instruments. The profiles show a 9-km increase in ionospheric peak altitude in January 2017 that is associated with a lower atmospheric dust storm, variations in electron densities in the M1 layer that cannot be explained by variations in the solar soft X-ray flux, and topside electron densities that are larger in strongly magnetized regions than in weakly magnetized regions. MAVEN Radio Occultation Science Experiment electron density profiles are publicly available on the NASA Planetary Data System.

  15. Electron density and gas density measurements in a millimeter-wave discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.

    2016-08-15

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal tomore » the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.« less

  16. Causes of High-temperature Superconductivity in the Hydrogen Sulfide Electron-phonon System

    NASA Astrophysics Data System (ADS)

    Degtyarenko, N. N.; Mazur, E. A.

    The electron and phonon spectra, as well as the density of electron and phonon states of the stable orthorhombic structure of hydrogen sulfide (SH2) at pressures 100-180 GPa have been calculated. It is found that the set of parallel planes of hydrogen atoms is formed at pressure ∼175 GPa as a result of structural changes in the unit cell of the crystal under pressure. There should be complete concentration of hydrogen atoms in these planes. As a result the electron properties of the system acquire a quasi-two-dimensional character. The features of in phase and antiphase oscillations of hydrogen atoms in these planes leading to two narrow high-energy peaks in the phonon density of states are investigated.

  17. Reasons for high-temperature superconductivity in the electron-phonon system of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Degtyarenko, N. N.; Mazur, E. A.

    2015-08-01

    We have calculated the electron and phonon spectra, as well as the densities of the electron and phonon states, of the stable orthorhombic structure of hydrogen sulfide SH2 in the pressure interval 100-180 GPa. It is found that at a pressure of 175 GPa, a set of parallel planes of hydrogen atoms is formed due to a structural modification of the unit cell under pressure with complete accumulation of all hydrogen atoms in these planes. As a result, the electronic properties of the system become quasi-two-dimensional. We have also analyzed the collective synphase and antiphase vibrations of hydrogen atoms in these planes, leading to the occurrence of two high-energy peaks in the phonon density of states.

  18. The Molecular Density of States in Bacterial Nanowires

    PubMed Central

    El-Naggar, Mohamed Y.; Gorby, Yuri A.; Xia, Wei; Nealson, Kenneth H.

    2008-01-01

    The recent discovery of electrically conductive bacterial appendages has significant physiological, ecological, and biotechnological implications, but the mechanism of electron transport in these nanostructures remains unclear. We here report quantitative measurements of transport across bacterial nanowires produced by the dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, whose electron transport system is being investigated for renewable energy recovery in microbial fuel cells and bioremediation of heavy metals and radionuclides. The Shewanella nanowires display a surprising nonlinear electrical transport behavior, where the voltage dependence of the conductance reveals peaks indicating discrete energy levels with higher electronic density of states. Our results indicate that the molecular constituents along the Shewanella nanowires possess an intricate electronic structure that plays a role in mediating transport. PMID:18441026

  19. Final Report: Levitated Dipole Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamicsmore » and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross-field transport. We find levitation causes the central plasma density to increase dramatically and to significantly improve the confinement of thermal plasma [Boxer, Nature-Physics, v8, p. 949, 2010]. Several diagnostic systems have been used to measure plasma fluctuations, and these appear to represent low-frequency convection that may lead to adiabatic heating and strongly peaked pressure profiles. These experiments are remarkable, and the motivate wide-ranging studies of plasma found in space and confined for fusion energy. In the following report, we describe: (i) observations of the centrally-peaked density profile that appears naturally as a consequence of a strong turbulent pinch, (ii) observations of overall density and pressure increases that suggest large improvements to the thermal electron confinement time result occur during levitation, and (iii) the remarkable properties of low-frequency plasma fluctuations that cause magnetized plasma to "self-organize" into well-confined, centrally-peaked profiles that are relative to fusion and to space.« less

  20. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  1. Vertical structure of medium-scale traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ssessanga, Nicholas; Kim, Yong Ha; Kim, Eunsol

    2015-11-01

    We develop an algorithm of computerized ionospheric tomography (CIT) to infer information on the vertical and horizontal structuring of electron density during nighttime medium-scale traveling ionospheric disturbances (MSTIDs). To facilitate digital CIT we have adopted total electron contents (TEC) from a dense Global Positioning System (GPS) receiver network, GEONET, which contains more than 1000 receivers. A multiplicative algebraic reconstruction technique was utilized with a calibrated IRI-2012 model as an initial solution. The reconstructed F2 peak layer varied in altitude with average peak-to-peak amplitude of ~52 km. In addition, the F2 peak layer anticorrelated with TEC variations. This feature supports a theory in which nighttime MSTID is composed of oscillating electric fields due to conductivity variations. Moreover, reconstructed TEC variations over two stations were reasonably close to variations directly derived from the measured TEC data set. Our tomographic analysis may thus help understand three-dimensional structure of MSTIDs in a quantitative way.

  2. Global modeling of the low- and middle-latitude ionospheric D and lower E regions and implications for HF radio wave absorption

    NASA Astrophysics Data System (ADS)

    Siskind, David E.; Zawdie, K. A.; Sassi, F.; Drob, D.; Friedrich, M.

    2017-01-01

    We compare D and lower E region ionospheric model calculations driven by the Whole Atmosphere Community Climate Model (WACCM) with a selection of electron density profiles made by sounding rockets over the past 50 years. The WACCM model, in turn, is nudged by winds and temperatures from the Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA). This nudging has been shown to greatly improve the representation of key neutral constituents, such as nitric oxide (NO), that are used as inputs to the ionospheric model. We show that with this improved representation, we greatly improve the comparison between calculated and observed electron densities relative to older studies. At midlatitudes, for both winter and equinoctal conditions, the model agrees well with the data. At tropical latitudes, our results confirm a previous suggestion that there is a model deficit in the calculated electron density in the lowermost D region. We then apply the calculated electron densities to examine the variation of HF absorption with altitude, latitude, and season and from 2008 to 2009. For low latitudes, our results agree with recent studies showing a primary peak absorption in the lower E region with a secondary peak below 75 km. For midlatitude to high latitude, the absorption contains a significant contribution from the middle D region where ionization of NO drives the ion chemistry. The difference in middle- to high-latitude absorption from 2008 to 2009 is due to changes in the NO abundance near 80 km from changes in the wintertime mesospheric residual circulation.

  3. Temperature and density evolution during decay in a 2.45 GHz hydrogen electron cyclotron resonance plasma: off-resonant and resonant cases.

    PubMed

    Cortázar, O D; Megía-Macías, A; Vizcaíno-de-Julián, A

    2013-09-01

    Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 μs. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.

  4. A theoretical study for electronic and transport properties of covalent functionalized MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Gao, Lijuan; Yang, Zhao-Di; Zhang, Guiling

    2017-06-01

    The geometries, electronic and electron transport properties of a series of functionalized MoS2 monolayers were investigated using density-functional theory (DFT) and the non-equilibrium Green's function (NEGF) methods. n-Propyl, n-trisilicyl, phenyl, p-nitrophenyl and p-methoxyphenyl are chosen as electron-donating groups. The results show covalent functionalization with electron-donating groups could make a transformation from typical semiconducting to metallic properties for appearance of midgap level across the Fermi level (Ef). The calculations of transport properties for two-probe devices indicate that conductivities of functionalized systems are obviously enhanced relative to pristine MoS2 monolayer. Grafted groups contribute to the major transport path and play an important role in enhancing conductivity. The NDR effect is found. The influence of grafted density is also studied. Larger grafted density leads to wider bandwidth of midgap level, larger current response of I-V curves and larger current difference between peak and valley.

  5. Statistical results from 10 years of Cassini Langmuir probe plasma measurements

    NASA Astrophysics Data System (ADS)

    Holmberg, M.; Shebanits, O.; Wahlund, J. E.; Morooka, M.; Andre, N.

    2016-12-01

    We use a new analysis method to obtain 10 years of Cassini RPWS Langmuir probe (LP) measurements to study the structure and dynamics of the inner plasma disk of Saturn. The LP plasma density measurements show good agreement with electron densities derived from the RPWS electric field power spectra and confirms and/or improves a number of previous findings about the structure of the plasma disk. E.g., the Enceladus plume is detected as a localised density maximum at the orbit of Enceladus, but the peak density of the inner plasma disk, excluding Enceladus plume passages, is located closer to 4.7 Rs. No density peaks are recorded at the orbits of the moons Mimas, Tethys, Dione, and Rhea. We confirm the previously detected plasma density dayside/nightside asymmetry, which is likely due to a particle drift in the dusk to dawn direction. Presented is also the LP result on the seasonal dependence of the plasma disk within Enceladus' orbit.

  6. Pellet injection research on the HT-6M and HT-7 tokamaks

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Bao, Yi; Li, Jiangang; Gu, Xuemao; He, Yexi

    1999-11-01

    A multishot in situ pellet injection system has been constructed in the Institute of Plasma Physics. Single- and multi-pellet injection experiments were performed on the HT-6M and superconducting HT-7 tokamaks. The system proved to be convenient and reliable to operate. Pellets were fired into ohmically and LHCD and ICRF heated plasmas. Single pellet injection in ohmic discharge was found to increase the central density of HT-7 by about one half, while two pellet injection increased the central density in a step-like fashion by one half with each shot. Peaking of the electron density profile and a hollow electron temperature profile were obtained.

  7. Ionospheric Peak Electron Density and Performance Evaluation of IRI-CCIR Near Magnetic Equator in Africa During Two Extreme Solar Activities

    NASA Astrophysics Data System (ADS)

    Adebesin, B. O.; Rabiu, A. B.; Obrou, O. K.; Adeniyi, J. O.

    2018-03-01

    The F2 layer peak electron density (NmF2) was investigated over Korhogo (Geomagnetic: 1.26°S, 67.38°E), a station near the magnetic equator in the African sector. Data for 1996 and 2000 were, respectively, categorized into low solar quiet and disturbed and high solar quiet and disturbed. NmF2 prenoon peak was higher than the postnoon peak during high solar activity irrespective of magnetic activity condition, while the postnoon peak was higher for low solar activity. Higher NmF2 peak amplitude characterizes disturbed magnetic activity than quiet magnetic condition for any solar activity. The maximum peaks appeared in equinox. June solstice noontime bite out lagged other seasons by 1-2 h. For any condition of solar and magnetic activities, the daytime NmF2 percentage variability (%VR) measured by the relative standard deviation maximizes/minimizes in June solstice/equinox. Daytime variability increases with increasing magnetic activity. The highest peak in the morning time NmF2 variability occurs in equinox, while the highest evening/nighttime variability appeared in June solstice for all solar/magnetic conditions. The nighttime annual variability amplitude is higher during disturbed than quiet condition regardless of solar activity period. At daytime, variability is similar for all conditions of solar activities. NmF2 at Korhogo is well represented on the International Reference Ionosphere-International Radio Consultative Committee (IRI-CCIR) option. The model/observation relationship performed best between local midnight and postmidnight period (00-08 LT). The noontime trough characteristics is not prominent in the IRI pattern during high solar activity but evident during low solar conditions when compared with Korhogo observations. The Nash-Sutcliffe coefficients revealed better model performance during disturbed activities.

  8. Role of turbulence regime on determining the local density gradient

    DOE PAGES

    Wang, X.; Mordijck, Saskia; Doyle, E. J.; ...

    2017-11-16

    In this study we show that the local density gradient in the plasma core depends on the calculated mode-frequency of the most unstable linear mode and reaches a maximum when this frequency is close to zero. Previous theoretical and experimental work on AUG has shown that the ratio of electron to ion temperature, and as such the frequency of the dominant linear gyrokinetic mode, affects the local density gradient close to ρ = 0.3 [1, 2]. On DIII-D we find that by adding Electron Cyclotron Heating (ECH), we modify the dominant unstable linear gyro kinetic mode from an Ion Temperaturemore » Gradient (ITG) mode to a Trapped Electron Mode (TEM), which means that the frequency of the dominant mode changes sign (from the ion to the electron direction). Local density peaking around mid-radius increases by 50% right around the cross-over between the ITG and TEM regimes. By comparing how the particle flux changes, through the derivative of the electron density, n e, with respect to time, ∂n e/∂t, we find that the particle flux also exhibits the same trend versus mode frequency. As a result, we find that the changes in local particle transport are inversely proportional to the changes in electron density, indicating that the changes are driven by a change in thermo-diffusive pinch.« less

  9. Radio Sounding of the Martian and Venusian Ionospheres

    NASA Astrophysics Data System (ADS)

    Paetzold, M.; Haeusler, B.; Bird, M. K.; Peter, K.; Tellmann, S.; Tyler, G. L.; Withers, P.

    2011-12-01

    The Mars Express Radio Science Experiment MaRS and the radio science experiment Vera on Venus Express sound the ionospheres of Mars and Venus, respectively, at two frequencies in the microwave band and cover altitudes from the base of the ionosphere at 80 km (100 km at Venus) to the ionopause at altitudes between 300 km and 600 km. In general, both ionospheres consists of a lower layer M1 (V1 at Venus) at about 110 km (115 km), and the main layer M2 (V2) at about 135 km (145 km) altitude, both formed mainly by solar radiation at X-ray and EUV, respectively. The specific derivation and interpretation of the vertical electron density profiles at two radio frequencies from radio sounding is demonstrated in detail. Cases of quiet and disturbed ionospheric electron density profiles and cases of potential misinterpretations are presented. The behavior of the peak densities and peak altitudes of both ionospheres as a function of solar zenith angle and phase of the solar cycle as seen with Mars Express and Venus Express will be compared with past observations, models and conclusions.

  10. Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging

    DOE PAGES

    Dyck, Ondrej; Hu, Sheng; Das, Sanjib; ...

    2015-11-24

    Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. Our paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. One complementary spectrum image capturing the carbon and sulfur core loss edges is compared with themore » plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We also show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.« less

  11. Venus: mass, gravity field, atmosphere, and ionosphere as measured by the mariner 10 dual-frequency radio system.

    PubMed

    Howard, H T; Tyler, G L; Fjeldbo, G; Kliore, A J; Levy, G S; Brunn, D L; Dickinson, R; Edelson, R E; Martin, W L; Postal, R B; Seidel, B; Sesplaukis, T T; Shirley, D L; Stelzried, C T; Sweetnam, D N; Zygielbaum, A I; Esposito, P B; Anderson, J D; Shapiro, I I; Reasenberg, R D

    1974-03-29

    Analysis of the Doppler tracking data near encounter yields a value for the ratio of the mass of the sun to that of Venus of 408,523.9 +/- 1.2, which is in good agreement with prior determinations based on data from Mariner 2 and Mariner 5. Preliminary analysis indicates that the magnitudes of the fractional differences in the principal moments of inertia of Venus are no larger than 10(-4), given that the effects of gravity-field harmonics higher than the second are negligible. Additional analysis is needed to determine the influence of the higher order harmonics on this bound. Four distinct temperature inversions exist at altitudes of 56, 58, 61, and 63 kilometers. The X-band signal was much more rapidly attenuated than the S-band signal and disappeared completely at 52-kilometer altitude. The nightside ionosphere consists of two layers having a peak density of 10(4) electrons per cubic centimeter at altitudes of 140 and 120 kilometers. The dayside ionosphere has a peak density of 3 X 10(5) electrons per cubic centimeter at an altitude of 145 kilometers. The electron number density observed at higher altitudes was ten times less than that observed by Mariner 5, and no strong evidence for a well-defined plasmapause was found.

  12. Simplified Numerical Description of SPT Operations

    NASA Technical Reports Server (NTRS)

    Manzella, David H.

    1995-01-01

    A simplified numerical model of the plasma discharge within the SPT-100 stationary plasma thruster was developed to aid in understanding thruster operation. A one dimensional description was used. Non-axial velocities were neglected except for the azimuthal electron velocity. A nominal operating condition of 4.5 mg/s of xenon anode flow was considered with 4.5 Amperes of discharge current, and a peak radial magnetic field strength of 130 Gauss. For these conditions, the calculated results indicated ionization fractions of 0.99 near the thruster exit with a potential drop across the discharge of approximately 250 Volts. Peak calculated electron temperatures were found to be sensitive to the choice of total ionization cross section for ionization of atomic xenon by electron bombardment and ranged from 51 eV to 60 eV. The calculated ionization fraction, potential drop, and electron number density agree favorably with previous experiments. Calculated electron temperatures are higher than previously measured.

  13. SAMI3_ICON: Model of the Ionosphere/Plasmasphere System

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Maute, A.; Crowley, G.

    2017-10-01

    The NRL ionosphere/plasmasphere model SAMI3 has been modified to support the NASA ICON mission. Specifically, SAMI3_ICON has been modified to import the thermospheric composition, temperature, and winds from TIEGCM-ICON and the high-latitude potential from AMIE data. The codes will be run on a daily basis during the ICON mission to provide ionosphere and thermosphere properties to the science community. SAMI3_ICON will provide ionospheric and plasmaspheric parameters such as the electron and ion densities, temperatures, and velocities, as well as the total electron content (TEC), peak ionospheric electron density (NmF2) and height of the F layer at NmF2 (hmF2).

  14. Dependence of electron peak current on hollow cathode dimensions and seed electron energy in a pseudospark discharge

    NASA Astrophysics Data System (ADS)

    Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.

    2008-01-01

    The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC™ PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study.

  15. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tongjun; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn; Xu, Jiancai, E-mail: jcxu@siom.ac.cn

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron–positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 10{sup 21} s{sup −1}, thus allows specific studies of fast kinetics in millimeter-thick materials withmore » a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.« less

  16. An upper limit on Pluto's ionosphere from radio occultation measurements with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Linscott, I. R.; Strobel, D. F.; Tyler, G. L.; Bird, M. K.; Pätzold, M.; Summers, M. E.; Stern, S. A.; Ennico, K.; Gladstone, G. R.; Olkin, C. B.; Weaver, H. A.; Woods, W. W.; Young, L. A.; New Horizons Science Team

    2018-06-01

    On 14 July 2015 New Horizons performed a radio occultation (RO) that sounded Pluto's neutral atmosphere and ionosphere. The solar zenith angle was 90.2° (sunset) at entry and 89.8° (sunrise) at exit. We examined the data for evidence of an ionosphere, using the same method of analysis as in a previous investigation of the neutral atmosphere (Hinson et al., 2017). No ionosphere was detected. The measurements are more accurate at occultation exit, where the 1-sigma sensitivity in integrated electron content (IEC) is 2.3 × 1011 cm-2. The corresponding upper bound on the peak electron density at the terminator is about 1000 cm-3. We constructed a model for the ionosphere and used it to guide the analysis and interpretation of the RO data. Owing to the large abundance of CH4 at ionospheric heights, the dominant ions are molecular and the electron densities are relatively small. The model predicts a peak IEC of 1.8 × 1011 cm-2 for an occultation at the terminator, slightly smaller than the threshold of detection by New Horizons.

  17. The effect of magnetic field on RbCl quantum pseudodot qubit

    NASA Astrophysics Data System (ADS)

    Xiao, Jing-Lin

    2015-07-01

    Under the condition of strong electron-LO-phonon coupling in a RbCl quantum pseudodot (QPD) with an applied magnetic field (MF), the eigenenergies and the eigenfunctions of the ground and the first excited states (GFES) are obtained by using a variational method of the Pekar type (VMPT). A single qubit can be realized in this two-level quantum system. The electron’s probability density oscillates in the RbCl QPD with a certain period of T0 = 7.933 fs when the electron is in the superposition state of the GFES. The results indicate that due to the presence of the asymmetrical structure in the z direction of the RbCl QPD, the electron’s probability density shows double-peak configuration, whereas there is only peak if the confinement is a symmetric structure in the x and y directions of the RbCl QPD. The oscillating period is an increasing function of the cyclotron frequency and the polaron radius, whereas it is a decreasing one of the chemical potential of the two-dimensional electron gas and the zero point of the pseudoharmonic potential (PP).

  18. Laser beat wave excitation of terahertz radiation in a plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Santosh; Parashar, Jetendra, E-mail: j.p.parashar@gmail.com

    2014-10-15

    Terahertz (THz) radiation generation by nonlinear mixing of lasers, obliquely incident on a plasma slab is investigated. Two cases are considered: (i) electron density profile is parabolic but density peak is below the critical density corresponding to the beat frequency, (ii) plasma boundaries are sharp and density is uniform. In both cases, nonlinearity arises through the ponderomotive force that gives rise to electron drift at the beat frequency. In the case of inhomogeneous plasma, non zero curl of the nonlinear current density gives rise to electromagnetic THz generation. In case of uniform plasma, the sharp density variation at the plasmamore » boundaries leads to radiation generation. In a slab width of less than a terahertz wavelength, plasma density one fourth of terahertz critical density, laser intensities ∼10{sup 17 }W/cm{sup 2} at 1 μm, one obtains the THz intensity ∼1 GW/cm{sup 2} at 3 THz radiation frequency.« less

  19. Degradation and annealing effects caused by oxygen in AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Jiang, R.; Shen, X.; Chen, J.; Duan, G. X.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Kaun, S. W.; Kyle, E. C. H.; Speck, J. S.; Pantelides, S. T.

    2016-07-01

    Hot-carrier degradation and room-temperature annealing effects are investigated in unpassivated ammonia-rich AlGaN/GaN high electron mobility transistors. Devices exhibit a fast recovery when annealed after hot carrier stress with all pins grounded. The recovered peak transconductance can exceed the original value, an effect that is not observed in control passivated samples. Density functional theory calculations suggest that dehydrogenation of pre-existing ON-H defects in AlGaN plays a significant role in the observed hot carrier degradation, and the resulting bare ON can naturally account for the "super-recovery" in the peak transconductance.

  20. PAVE PAWS Early Warning Radar Operation Cape Cod Air Force Station, MA. Record of Decision

    DTIC Science & Technology

    2009-06-01

    Electrical and Electronics Engineers (IEEE) C95.1-1999. Accordingly, the highest measurement was obtained directly in front of the feedhorn (i.e...waveform characterization of the Cape Cod AFS Pave PAWS radar. The data acquired during the Phase IV survey indicated that the electric fields produced...level observed among the ambient sites. During this survey, peak/average power density measurements and peak/average electric field measurements

  1. High-performance single nanowire tunnel diodes.

    PubMed

    Wallentin, Jesper; Persson, Johan M; Wagner, Jakob B; Samuelson, Lars; Deppert, Knut; Borgström, Magnus T

    2010-03-10

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27.6 at liquid helium temperature. These sub-100-nm-diameter structures are promising components for solar cells as well as electronic applications.

  2. Structure of the ripple phase in lecithin bilayers.

    PubMed Central

    Sun, W J; Tristram-Nagle, S; Suter, R M; Nagle, J F

    1996-01-01

    The phases of the x-ray form factors are derived for the ripple (Pbeta') thermodynamic phase in the lecithin bilayer system. By combining these phases with experimental intensity data, the electron density map of the ripple phase of dimyristoyl-phosphatidylcholine is constructed. The phases are derived by fitting the intensity data to two-dimensional electron density models, which are created by convolving an asymmetric triangular ripple profile with a transbilayer electron density profile. The robustness of the model method is indicated by the result that many different models of the transbilayer profile yield essentially the same phases, except for the weaker, purely ripple (0,k) peaks. Even with this residual ambiguity, the ripple profile is well determined, resulting in 19 angstroms for the ripple amplitude and 10 degrees and 26 degrees for the slopes of the major and the minor sides, respectively. Estimates for the bilayer head-head spacings show that the major side of the ripple is consistent with gel-like structure, and the minor side appears to be thinner with lower electron density. Images Fig. 1 Fig. 2 PMID:8692934

  3. Possible link of sudden onset and short-time periodic pulsation of polar mesosphere summer echoes to ULF Pc5 geomagnetic pulsations and solar wind dynamic pressure enhancement

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Kirkwood, S.; Kwak, Y. S.

    2016-12-01

    The EISCAT VHF incoherent scatter radar in Tromsö, Norway, makes occasional observations of electron densities and Polar Mesosphere Summer Echoes, in the summer polar D-region ionosphere. In one of those datasets, pulsating polar mesospheric summer echoes (PMSE) are observed, with periodicities in the ultra-low frequency (ULF) Pc5 band (1.6-6.7 mHz), following an abrupt increase of the radar reflectivity when a geomagnetic field excursion is started, in turn linked to dynamic pressure (Pdyn) enhancement in the solar wind. At the excursion of the magnetic field, at auroral altitudes of 90 km and above, electron density is abruptly enhanced, followed by a series of short-lived peaks, superimposed on an enhanced level. The short-lived peaks are likely a signature of transient Pc5 geomagnetic pulsations and associated energetic electron precipitation from pitch-angle scattering into the loss cone in the magnetosphere. At the same time, at altitudes around 80-90 km, a sharp increase of PMSE reflectivity occurs, 100 times greater than the increase of electron density, and is followed by pulsating PMSE reflectivity with periodicities in the Pc5 band, increasing and decreasing in magnitude during the course of the next hour. The increase of the pulsation magnitude may be attributed to an increase of high-energy electron precipitation flux ( >30 keV) penetrating to at least the height of maximum PMSE reflectivity. This study suggests that Pc5 pulsation bursts in both magnetic field and high energy electron precipitation could play a crucial role in producing PMSE fluctuations on minute-to-minute time scales.

  4. Pressure dependence of electron density distribution and d-p-π hybridization in titanate perovskite ferroelectrics

    NASA Astrophysics Data System (ADS)

    Yamanaka, Takamitsu; Nakamoto, Yuki; Ahart, Muhtar; Mao, Ho-kwang

    2018-04-01

    Electron density distributions of PbTi O3 , BaTi O3 , and SrTi O3 were determined by synchrotron x-ray powder diffraction up to 55 GPa at 300 K and ab initio quantum chemical molecular orbital (MO) calculations, together with a combination of maximum entropy method calculations. The intensity profiles of Bragg peaks reveal split atoms in both ferroelectric PbTi O3 and BaTi O3 , reflecting the two possible positions occupied by the Ti atom. The experimentally obtained atomic structure factor was used for the determination of the deformation in electron density and the d-p-π hybridization between dx z (and dy z) of Ti and px (and py) of O in the Ti-O bond. Ab initio MO calculations proved the change of the molecular orbital coupling and of Mulliken charges with a structure transformation. The Mulliken charge of Ti in the Ti O6 octahedron increased in the ionicity with increasing pressure in the cubic phase. The bonding nature is changed with a decrease in the hybridization of the Ti-O bond and the localization of the electron density with increasing pressure. The hybridization decreases with pressure and disappears in the cubic paraelectric phase, which has a much more localized electron density distribution.

  5. Electronic structure calculations of PbS quantum rods and tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimachev, Artem; Dahnovsky, Yuri, E-mail: yurid@uwyo.edu

    2014-01-28

    We study absorption spectra, optical and HOMO-LUMO gaps, and the density of states for PbS quantum rods (QRs) and tubes (QTs). We find some similarities and also differences in QR and QT properties. For both QRs and QTs, the optical and HOMO-LUMO gaps reach the plateaus for small lengths. We find that tubes are as stable as rods. The optical spectra exhibit a peak that can be due to the electron-hole interaction or be a prototype of an S{sub e}–S{sub h} transition in the effective mass approximation. We also calculate the density of states by the density functional theory (DFT)more » and time-dependent density functional theory (TDDFT) methods. The TDDFT density of states function is shifted towards the red side by 0.5 eV indicating the strong e-h interaction.« less

  6. High-latitude electron density observations from the IMAGE radio plasma imager

    NASA Astrophysics Data System (ADS)

    Henize, Vance Karl

    2003-11-01

    Before the IMAGE mission, electron densities in the high latitude, high altitude region of the magnetosphere were measured exclusively by in situ means. The Radio Plasma Imager instrument onboard IMAGE is capable of remotely observing electron densities between 0.01 and 100,000 e-/cm-3 from distances of several Earth radii or more. This allows a global view of the high latitude region that has a far greater accuracy than was previously possible. Soundings of the terrestrial magnetic cusp provide the first remote observations of the dynamics and poleward density profile of this feature continuously over a 60- minute interval. During steady quiet-time solar wind and interplanetary magnetic field conditions, the cusp is shown to be stable in both position and density structure with only slight variations in both. Peak electron densities within the cusp during this time are found to be somewhat higher than predicted. New procedures for deriving electron densities from radio sounding measurements are developed. The addition of curve fitting algorithms significantly increases the amount of useable data. Incorporating forward modeling techniques greatly reduces the computational time over traditional inversion methods. These methods are described in detail. A large number high latitude observations of ducted right-hand extraordinary mode waves made over the course of one year of the IMAGE mission are used to create a three dimensional model of the electron density profile of the terrestrial polar cap region. The dependence of electron density in the polar cap on average geocentric distance (d) is found to vary as d-6.6. This is a significantly steeper gradient than cited in earlier works such as Persoon et al., although the introduction of an asymptotic term provides for basic agreement in the limited region of their joint validity. Latitudinal and longitudinal variations are found to be insignificant. Both the mean profile power law index of the electron density profile and, to a stronger degree, its variance show dependence with the DST index.

  7. Scattering mechanisms in shallow undoped Si/SiGe quantum wells

    DOE PAGES

    Laroche, Dominique; Huang, S. -H.; Nielsen, Erik; ...

    2015-10-07

    We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ~ 100 nm to ~ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, μ ∝ n α, is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by α ~ 2.3. At the highest achievable densities in the quantummore » wells buried at intermediate depth, an exponent α ~ 5 is observed. Lastly, we propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.« less

  8. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovskiy, A. V.; Galkin, A. L.; Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  9. Particle-in-cell simulation of ion energy distributions on an electrode by applying tailored bias waveforms in the afterglow of a pulsed plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diomede, Paola; Economou, Demetre J.; Donnelly, Vincent M.

    2011-04-15

    A Particle-in-Cell simulation with Monte Carlo Collisions (PIC-MCC) was conducted of the application of tailored DC voltage steps on an electrode, during the afterglow of a capacitively-coupled pulsed-plasma argon discharge, to control the energy of ions incident on the counter-electrode. Staircase voltage waveforms with selected amplitudes and durations resulted in ion energy distributions (IED) with distinct narrow peaks, with controlled energies and fraction of ions under each peak. Temporary electron heating at the moment of application of a DC voltage step did not influence the electron density decay in the afterglow. The IED peaks were 'smeared' by collisions, especially atmore » the higher pressures of the range (10-40 mTorr) investigated.« less

  10. Capacitive radio frequency discharges with a single ring-shaped narrow trench of various depths to enhance the plasma density and lateral uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtsu, Y., E-mail: ohtsuy@cc.saga-u.ac.jp; Matsumoto, N.; Schulze, J.

    2016-03-15

    Spatial structures of the electron density and temperature in ring-shaped hollow cathode capacitive rf plasma with a single narrow trench of 2 mm width have been investigated at various trench depths of D = 5, 8, 10, 12, and 15 mm. It is found that the plasma density is increased in the presence of the trench and that the radial profile of the plasma density has a peak around the narrow hollow trench near the cathode. The density becomes uniform further away from the cathode at all trench depths, whereas the electron temperature distribution remains almost uniform. The measured radial profiles of the plasmamore » density are in good agreement with a theoretical diffusion model for all the trench depths, which explains the local density increase by a local enhancement of the electron heating. Under the conditions investigated, the trench of 10 mm depth is found to result in the highest plasma density at various axial and radial positions. The results show that the radial uniformity of the plasma density at various axial positions can be improved by using structured electrodes of distinct depths rather than planar electrodes.« less

  11. Electron Densities Near Io from Galileo Plasma Wave Observations

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Persoon, A. M.; Kurth, W. S.; Roux, A.; Bolton, S. J.

    2001-01-01

    This paper presents an overview of electron densities obtained near Io from the Galileo plasma wave instrument during the first four flybys of Io. These flybys were Io, which was a downstream wake pass that occurred on December 7, 1995; I24, which was an upstream pass that occurred on October 11, 1999; I25, which was a south polar pass that occurred on November 26, 1999; and I27, which was an upstream pass that occurred on February 22, 2000. Two methods were used to measure the electron density. The first was based on the frequency of upper hybrid resonance emissions, and the second was based on the low-frequency cutoff of electromagnetic radiation at the electron plasma frequency. For three of the flybys, Io, I25, and I27, large density enhancements were observed near the closest approach to Io. The peak electron densities ranged from 2.1 to 6.8 x 10(exp 4) per cubic centimeters. These densities are consistent with previous radio occultation measurements of Io's ionosphere. No density enhancement was observed during the I24 flyby, most likely because the spacecraft trajectory passed too far upstream to penetrate Io's ionosphere. During two of the flybys, I25 and I27, abrupt step-like changes were observed at the outer boundaries of the region of enhanced electron density. Comparisons with magnetic field models and energetic particle measurements show that the abrupt density steps occur as the spacecraft penetrated the boundary of the Io flux tube, with the region of high plasma density on the inside of the flux tube. Most likely the enhanced electron density within the Io flux tube is associated with magnetic field lines that are frozen to Io by the high conductivity of Io's atmosphere, thereby enhancing the escape of plasma along the magnetic field lines that pass through Io's ionosphere.

  12. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.

    PubMed

    Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro

    2008-02-01

    Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.

  13. Final Report: Levitated Dipole Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routinemore » investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m -3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.« less

  14. Negative differential resistance in electron tunneling in ultrathin films near the two-dimensional limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batabyal, R.; Abdul Wasey, A. H. M.; Mahato, J. C.

    We report on our observation of negative differential resistance (NDR) in electron tunneling conductance in atomic-scale ultrathin Ag films on Si(111) substrates. NDR was observed by scanning tunneling spectroscopy measurements. The tunneling conductance depends on the electronic local density of states (LDOS) of the sample. We show that the sample bias voltage, at which negative differential resistance and peak negative conductance occur, depends on the film thickness. This can be understood from the variation in the LDOS of the Ag films as a function of film thickness down to the two-dimensional limit of one atomic layer. First principles density functionalmore » theory calculations have been used to explain the results.« less

  15. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less

  16. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    DOE PAGES

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; ...

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less

  17. Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER

    NASA Astrophysics Data System (ADS)

    Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; McKee, G. R.; Holland, C.; Austin, M.; Marinoni, A.; Schmitz, L.; Pinsker, R. I.; DIII-D Team

    2018-02-01

    Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E × B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.

  18. Thermal conductivity of graphene with defects induced by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.

    2016-07-01

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management. Electronic supplementary information (ESI) available: Additional thermal conductivity measurements data. See DOI: 10.1039/c6nr03470e

  19. Electronic structure of stoichiometric and reduced ZnO from periodic relativistic all electron hybrid density functional calculations using numeric atom-centered orbitals.

    PubMed

    Viñes, Francesc; Illas, Francesc

    2017-03-30

    The atomic and electronic structure of stoichiometric and reduced ZnO wurtzite has been studied using a periodic relativistic all electron hybrid density functional (PBE0) approach and numeric atom-centered orbital basis set with quality equivalent to aug-cc-pVDZ. To assess the importance of relativistic effects, calculations were carried out without and with explicit inclusion of relativistic effects through the zero order regular approximation. The calculated band gap is ∼0.2 eV smaller than experiment, close to previous PBE0 results including relativistic calculation through the pseudopotential and ∼0.25 eV smaller than equivalent nonrelativistic all electron PBE0 calculations indicating possible sources of error in nonrelativistic all electron density functional calculations for systems containing elements with relatively high atomic number. The oxygen vacancy formation energy converges rather fast with the supercell size, the predicted value agrees with previously hybrid density functional calculations and analysis of the electronic structure evidences the presence of localized electrons at the vacancy site with a concomitant well localized peak in the density of states ∼0.5 eV above the top of the valence band and a significant relaxation of the Zn atoms near to the oxygen vacancy. Finally, present work shows that accurate results can be obtained in systems involving large supercells containing up to ∼450 atoms using a numeric atomic-centered orbital basis set within a full all electron description including scalar relativistic effects at an affordable cost. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Experimental and numerical investigations of air plasmas induced by multi-MeV pulsed X-ray from low to atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno

    2016-09-01

    This research work is devoted to the experimental and theoretical analysis of air plasmas induced by multi-MeV pulsed X-ray for a large pressure range of humid air background gas varying from 20 mbar to atmospheric pressure. The time evolution of the electron density of the air plasma is determined by electromagnetic wave absorption measurements. The measurements have uncertainties of about ±30%, taking into account the precision of the dose measurement and also the shot to shot fluctuations of the generator. The experimental electron density is obtained by comparing the measurements of the transmitted microwave signals to the calculated ones. The calculations need the knowledge of the time evolution of the electron mean energy, which is determined by a chemical kinetic model based on a reaction scheme involving 39 species interacting following 265 reactions. During the X-ray pulse, a good agreement is obtained between time evolution of the electron density obtained from absorption measurements and calculations based on the kinetic model. The relative deviation on the maximum electron density and the corresponding plasma frequency is always lower than 10%. The maximum electron density varies from 4 × 1011 to 3.5 × 1013 cm-3 between 30 mbar to atmospheric pressure, while the peak of the electron mean energy decreases from 5.64 eV to 4.27 eV in the same pressure range.

  1. Electronic theoretical study of the influences of O adsorption on the electronic structure and optical properties of graphene

    NASA Astrophysics Data System (ADS)

    Shuang, Zhou; Guili, Liu; Dazhi, Fan

    2017-02-01

    The electronic structure and optical properties of adsorbing O atoms on graphene with different O coverage are researched using the density functional theory based upon the first-principle study to obtain further insight into properties of graphene. The adsorption energies, band structures, the density of states, light absorption coefficient and reflectivity of each system are calculated theoretically after optimizing structures of each system with different O coverage. Our calculations show that adsorption of O atoms on graphene increases the bond length of C-C which adjacent to the O atoms. When the O coverage is 9.4%, the adsorption energy (3.91 eV) is the maximum, which only increases about 1.6% higher than that of 3.1% O coverage. We find that adsorbed O atoms on pristine graphene opens up indirect gap of about 0.493-0.952 eV. Adsorbing O atoms make pristine graphene from metal into a semiconductor. When the O coverage is 9.4%, the band gap (0.952 eV) is the maximum. Comparing with pristine graphene, we find the density of states at Fermi level of O atoms adsorbing on graphene with different coverage are significantly increased. We also find that light absorption coefficient and reflectivity peaks are significantly reduced, and the larger the coverage, the smaller the absorption coefficient and reflectivity peaks are. And the blue shift phenomenon appears.

  2. IRI STORM validation over Europe

    NASA Astrophysics Data System (ADS)

    Haralambous, Haris; Vryonides, Photos; Demetrescu, Crişan; Dobrică, Venera; Maris, Georgeta; Ionescu, Diana

    2014-05-01

    The International Reference Ionosphere (IRI) model includes an empirical Storm-Time Ionospheric Correction Model (STORM) extension to account for storm-time changes of the F layer peak electron density (NmF2) during increased geomagnetic activity. This model extension is driven by past history values of the geomagnetic index ap (The magnetic index applied is the integral of ap over the previous 33 hours with a weighting function deduced from physically based modeling) and it adjusts the quiet-time F layer peak electron density (NmF2) to account for storm-time changes in the ionosphere. In this investigation manually scaled hourly values of NmF2 measured during the main and recovery phases of selected storms for the maximum solar activity period of the current solar cycle are compared with the predicted IRI-2012 NmF2 over European ionospheric stations using the STORM model option. Based on the comparison a subsequent performance evaluation of the STORM option during this period is quantified.

  3. Fine Structure of a Laser-Plasma Filament in Air

    NASA Astrophysics Data System (ADS)

    Eisenmann, Shmuel; Pukhov, Anatoly; Zigler, Arie

    2007-04-01

    The ability to select and stabilize a single filament during propagation of an ultrashort high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present detailed measurements of plasma density variations along laser propagation. Over the length of the filament, electron density variations of 3 orders of magnitude are measured. They display evidence of a meter-long postionization range, along which a self-guided structure is observed coupled with a low plasma density, corresponding to ˜3 orders of magnitude decrease from the peak density level.

  4. First-principles study of the Kondo physics of a single Pu impurity in a Th host

    DOE PAGES

    Zhu, Jian -Xin; Albers, R. C.; Haule, K.; ...

    2015-04-23

    Based on its condensed-matter properties, crystal structure, and metallurgy, which includes a phase diagram with six allotropic phases, plutonium is one of the most complicated pure elements in its solid state. Its anomalous properties, which are indicative of a very strongly correlated state, are related to its special position in the periodic table, which is at the boundary between the light actinides that have itinerant 5f electrons and the heavy actinides that have localized 5f electrons. As a foundational study to probe the role of local electronic correlations in Pu, we use the local-density approximation together with a continuous-time quantummore » Monte Carlo simulation to investigate the electronic structure of a single Pu atom that is either substitutionally embedded in the bulk and or adsorbed on the surface of a Th host. This is a simpler case than the solid phases of Pu metal. With the Pu impurity atom we have found a Kondo resonance peak, which is an important signature of electronic correlations, in the local density of states around the Fermi energy. We show that the peak width of this resonance is narrower for Pu atoms at the surface of Th than for those in the bulk due to a weakened Pu - 5f hybridization with the ligands at the surface.« less

  5. On the possible source of the ionization in the nighttime Martian ionosphere. I - Phobos 2 HARP electron spectrometer measurements

    NASA Technical Reports Server (NTRS)

    Verigin, M. I.; Gringauz, K. I.; Shutte, N. M.; Haider, S. A.; Szego, K.; Kiraly, P.; Nagy, A. F.; Gombosi, T. I.

    1991-01-01

    The measurements of electron spectra in the Martian magnetosphere by the HARP instrument on board the Phobos 2 orbiter are presented. The energy of the electrons (a few tens of electron volts) is sufficient for the impact ionization of the planetary neutral gas, and the characteristic flux of electrons (about 10 exp 8/sq cm per sec) could produce the nightside ionospheric layer with a peak density of a few thousands of electrons per cubic centimeter, which corresponds to densities observed earlier during radio occultations of the Mars 4 and 5 and Viking 1 and 2 spacecraft. The possibility of magnetospheric electron precipitation into the nightside atmosphere of Mars is in agreement with the mainly induced nature of the magnetic field in the planetary magnetotail (as at Venus), while the variability of the Martian nightside ionosphere may be explained by the partial screening of the atmosphere by a weak intrinsic magnetic field of the planet.

  6. Degradation and annealing effects caused by oxygen in AlGaN/GaN high electron mobility transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, R., E-mail: rong.jiang@vanderbilt.edu; Chen, J.; Duan, G. X.

    Hot-carrier degradation and room-temperature annealing effects are investigated in unpassivated ammonia-rich AlGaN/GaN high electron mobility transistors. Devices exhibit a fast recovery when annealed after hot carrier stress with all pins grounded. The recovered peak transconductance can exceed the original value, an effect that is not observed in control passivated samples. Density functional theory calculations suggest that dehydrogenation of pre-existing O{sub N}-H defects in AlGaN plays a significant role in the observed hot carrier degradation, and the resulting bare O{sub N} can naturally account for the “super-recovery” in the peak transconductance.

  7. Response of the Martian ionosphere to solar activity including SEPs and ICMEs in a two-week period starting on 25 February 2015

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Halekas, J.; Frahm, R. A.; Lundin, R.; Dejong, W.; Ertl, C.; Venable, A.; Wilkinson, C.; Fraenz, M.; Nemec, F.; Connerney, J. E. P.; Espley, J. R.; Larson, D.; Winningham, J. D.; Plaut, J.; Mahaffy, P. R.

    2017-10-01

    In a two-week period between February and March of 2015, a series of interplanetary coronal mass ejections (ICMEs) and solar energetic particle (SEP) events encountered Mars. The interactions were observed by several spacecraft, including Mars Express (MEX), Mars Atmosphere and Volatile Evolution Mission (MAVEN), and Mars Odyssey (MO). The ICME disturbances were characterized by an increase in ion speed, plasma temperature, magnetic field magnitude, and energetic electron flux. Furthermore, increased solar wind density and speeds, as well as unusually high local electron densities and high flow velocities were detected on the nightside at high altitudes during the March 8 event. These effects are thought to be due to the transport of ionospheric plasma away from Mars. In the deep nightside, the peak ionospheric electron density at the periapsis of MEX shows a substantial increase, reaching number densities about 2.7 × 104 cm-3 during the second ICME in the deep nightside. This corresponds to an increase in the MO High-Energy Neutron Detector flux suggesting an increase in the ionization of the neutral atmosphere due to the high intensity of charged particles. Measurements of the SEP fluxs show a substantial enhancement before the shock of a fourth ICME causing impact ionization and absorption of the surface echo intensity which drops to the noise levels, below 10-15 V2m-2 Hz-1 from values of about 2 × 10-14 V2m-2 Hz-1. Moreover, the peak ionospheric density exhibits a discrete enhancement over a period of about 30 h around the same location, which may be due to impact ionization. Ion escape rates at this time are estimated to be in the order of 1025 to 1026 s-1.

  8. Radiated Power and Impurity Concentrations in the EXTRAP-T2R Reversed-Field Pinch

    NASA Astrophysics Data System (ADS)

    Corre, Y.; Rachlew, E.; Cecconello, M.; Gravestijn, R. M.; Hedqvist, A.; Pégourié, B.; Schunke, B.; Stancalie, V.

    2005-01-01

    A numerical and experimental study of the impurity concentration and radiation in the EXTRAP-T2R device is reported. The experimental setup consists of an 8-chord bolometer system providing the plasma radiated power and a vacuum-ultraviolet spectrometer providing information on the plasma impurity content. The plasma emissivity profile as measured by the bolometric system is peaked in the plasma centre. A one dimensional Onion Skin Collisional-Radiative model (OSCR) has been developed to compute the density and radiation distributions of the main impurities. The observed centrally peaked emissivity profile can be reproduced by OSCR simulations only if finite particle confinement time and charge-exchange processes between plasma impurities and neutral hydrogen are taken into account. The neutral hydrogen density profile is computed with a recycling code. Simulations show that recycling on metal first wall such as in EXTRAP-T2R (stainless steel vacuum vessel and molybdenum limiters) is compatible with a rather high neutral hydrogen density in the plasma centre. Assuming an impurity concentration of 10% for oxygen and 3% for carbon compared with the electron density, the OSCR calculation including lines and continuum emission reproduces about 60% of the total radiated power with a similarly centrally peaked emissivity profile. The centrally peaked emissivity profile is due to low ionisation stages and strongly radiating species in the plasma core, mainly O4+ (Be-like) and C3+ Li-like.

  9. Evidence for four- and three-wave interactions in solar type III radio emissions

    NASA Astrophysics Data System (ADS)

    Thejappa, G.; MacDowall, R. J.; Bergamo, M.

    2013-08-01

    The high time resolution observations obtained by the STEREO/WAVES experiment show that in the source regions of solar type III radio bursts, Langmuir waves often occur as intense localized wave packets with short durations of only few ms. One of these wave packets shows that it is a three-dimensional field structure with WLneTe ~ 10-3, where WL is the peak energy density, and ne and Te are the electron density and temperature, respectively. For this wave packet, the conditions of the oscillating two-stream instability (OTSI) and supersonic collapse are satisfied within the error range of determination of main parameters. The density cavity, observed during this wave packet indicates that its depth, width and temporal coincidence are consistent with those of a caviton, generated by the ponderomotive force of the collapsing wave packet. The spectrum of each of the parallel and perpendicular components of the wave packet contains a primary peak at fpe, two secondary peaks at fpe ± fS and a low-frequency enhancement below fS, which, as indicated by the frequency and wave number resonance conditions, and the fast Fourier transform (FFT)-based tricoherence spectral peak at (fpe, fpe, fpe + fS, fpe - fS), are coupled to each other by the OTSI type of four-wave interaction (fpe is the local electron plasma frequency and fS is the frequency of ion sound waves). In addition to the primary peak at fpe, each of these spectra also contains a peak at 2fpe, which as indicated by the frequency and wave number resonance conditions, and the wavelet-based bicoherence spectral peak at (fpe, fpe), appears to correspond to the second harmonic electromagnetic waves generated as a result of coalescence of oppositely propagating sidebands excited by the OTSI. Thus, these observations for the first time provide combined evidence that (1) the OTSI and related strong turbulence processes play a significant role in the stabilization of the electron beam, (2) the coalescence of the oppositely propagating up- and down-shifted daughter Langmuir waves excited by the OTSI probably is the emission mechanism of the second harmonic radiation, and (3) the Langmuir collapse follows the route of OTSI in some of the type III radio bursts.

  10. DFT investigation on the adsorption behavior of dimethyl and trimethyl amine molecules on borophene nanotube

    NASA Astrophysics Data System (ADS)

    Bhuvaneswari, R.; Chandiramouli, R.

    2018-06-01

    The electronic properties of borophene nanotube (BNT) are witnessed and the adsorption properties of dimethyl amine (DMA) and trimethyl amine (TMA) molecules on borophene nanotube are explored through non-equilibrium Green's function (NEGF) and density functional theory (DFT) method. The device density of states spectrum interprets the change in peak maxima, thus indicating the electron transition between DMA, TMA molecules and BNT base material. I-V characteristics strengthen the adsorption property of DMA and TMA on BNT by pointing out the variation in the current. The present work assures that borophene nanotube (BNT) can be employed as DMA and TMA sensor.

  11. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach

    2017-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.

  12. Observations of electron vortex magnetic holes and related wave-particle interactions in the turbulent magnetosheath

    NASA Astrophysics Data System (ADS)

    Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.

    2017-12-01

    Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron vortex magnetic holes by electron temperature anisotropic instability.

  13. UCLA-LANL Reanalysis Project

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Chen, Y.; Friedel, R.; Kondrashov, D.; Ni, B.; Subbotin, D.; Reeves, G.; Ghil, M.

    2009-04-01

    We present first results of the UCLA-LANL Reanalysis Project. Radiation belt relativistic electron Phase Space Density is obtained using the data assimilative VERB code combined with observations from GEO, CRRES, and Akebono data. Reanalysis of data shows the pronounced peaks in the phase space density and pronounced dropouts of fluxes during the main phase of a storm. The results of the reanalysis are discussed and compared to the simulations with the recently developed VERB 3D code.

  14. Electron Transport Properties of Ge nanowires

    NASA Astrophysics Data System (ADS)

    Hanrath, Tobias; Khondaker, Saiful I.; Yao, Zhen; Korgel, Brian A.

    2003-03-01

    Electron Transport Properties of Ge nanowires Tobias Hanrath*, Saiful I. Khondaker, Zhen Yao, Brian A. Korgel* *Dept. of Chemical Engineering, Dept. of Physics, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology University of Texas at Austin, Austin, Texas 78712-1062 e-mail: korgel@mail.che.utexas.edu Germanium (Ge) nanowires with diameters ranging from 6 to 50 nm and several micrometer in length were grown via a supercritical fluid-liquid-solid synthesis. Parallel electron energy loss spectroscopy (PEELS) was employed to study the band structure and electron density in the Ge nanowires. The observed increase in plasmon peak energy and peak width with decreasing nanowire diameter is attributed to quantum confinement effects. For electrical characterization, Ge nanowires were deposited onto a patterned Si/SiO2 substrate. E-beam lithography was then used to form electrode contacts to individual nanowires. The influence of nanowire diameter, surface chemistry and crystallographic defects on electron transport properties were investigated and the comparison of Ge nanowire conductivity with respect to bulk, intrinsic Ge will be presented.

  15. Observations of temperature rise during electron cyclotron heating application in Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Biewer, T. M.; Bigelow, T.; Caneses, J. F.; Diem, S. J.; Rapp, J.; Reinke, M.; Kafle, N.; Ray, H. B.; Showers, M.

    2017-10-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at ORNL utilizes a variety of power systems to generate and deliver a high heat flux plasma (1 MW/m2 for these discharges) onto the surface of material targets. In the experiments described here, up to 120 kW of 13.56 MHz ``helicon'' waves are combined with 20 kW of 28 GHz microwaves to produce Deuterium plasma discharges. The 28 GHz waves are launched in a region of the device where the magnetic field is axially varying near 0.8 T, resulting in the presence of a 2nd harmonic electron cyclotron heating (ECH) resonance layer that transects the plasma column. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is radially peaked. In the core of the plasma column the electron density is higher than the cut-off density (0.9x1019 m-3) for ECH waves to propagate and O-X-B mode conversion into electron Bernstien waves (EBW) is expected. TS measurements indicate electron temperature increases during 28 GHz wave application, rising (from 5 eV to 20 eV) as the neutral Deuterium pressure is reduced below 1 mTorr. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  16. A Statitstical Study of Energetic Electron Phase Space Density with RBSP and BD-IES Data

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zong, Q.; Zhou, X.; Zou, H.; Wang, Y.

    2017-12-01

    We present a statistical study of energetic electron phase space density (PSD) with combined observations from the Magnetic Electron Ion Spectrometer (MagEIS) instruments onboard the Van Allen Probes and the Image Electron Spectrometer (BD-IES) onboard an inclined geosynchronous orbit satellite. The electron PSD as a function of the adiabatic invariants is derived using one year data (Nov. 2015 to Oct. 2016) of these instruments. The orbits of the satellites cover a wide range of L-shells, allowing for the distribution of electron PSD throughout the radiation belt (L* 1 to 10). A persistent peak of energetic electron ( 30 to 1000 MeV/G) PSD is unambiguously identified at L* 5.5, which may help to understand the role of local acceleration and radial diffusion in the dynamics of energetic electrons. In addition, the electron PSD shows a power-law distribution with the exponent varying from about -2 to -4 depending on L*. The variance of electron PSD during storm and substorm activities indicating by SYMH and AE indices are also discussed.

  17. Particle in cell simulation of peaking switch for breakdown evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.

    2014-07-01

    Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (withoutmore » peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)« less

  18. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Chistyakov, Roman

    2017-02-01

    Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  19. Room temperature microwave oscillations in GaN/AlN resonant tunneling diodes with peak current densities up to 220 kA/cm2

    NASA Astrophysics Data System (ADS)

    Encomendero, Jimy; Yan, Rusen; Verma, Amit; Islam, S. M.; Protasenko, Vladimir; Rouvimov, Sergei; Fay, Patrick; Jena, Debdeep; Xing, Huili Grace

    2018-03-01

    We report the generation of room temperature microwave oscillations from GaN/AlN resonant tunneling diodes, which exhibit record-high peak current densities. The tunneling heterostructure grown by molecular beam epitaxy on freestanding GaN substrates comprises a thin GaN quantum well embedded between two AlN tunneling barriers. The room temperature current-voltage characteristics exhibit a record-high maximum peak current density of ˜220 kA/cm2. When biased within the negative differential conductance region, microwave oscillations are measured with a fundamental frequency of ˜0.94 GHz, generating an output power of ˜3.0 μW. Both the fundamental frequency and the output power of the oscillator are limited by the external biasing circuit. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is predicted to be ˜200 GHz. This work represents a significant step towards microwave power generation enabled by resonant tunneling transport, an ultra-fast process that goes beyond the limitations of current III-Nitride high electron mobility transistors.

  20. Partial detachment of high power discharges in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Kallenbach, A.; Bernert, M.; Beurskens, M.; Casali, L.; Dunne, M.; Eich, T.; Giannone, L.; Herrmann, A.; Maraschek, M.; Potzel, S.; Reimold, F.; Rohde, V.; Schweinzer, J.; Viezzer, E.; Wischmeier, M.; the ASDEX Upgrade Team

    2015-05-01

    Detachment of high power discharges is obtained in ASDEX Upgrade by simultaneous feedback control of core radiation and divertor radiation or thermoelectric currents by the injection of radiating impurities. So far 2/3 of the ITER normalized heat flux Psep/R = 15 MW m-1 has been obtained in ASDEX Upgrade under partially detached conditions with a peak target heat flux well below 10 MW m-2. When the detachment is further pronounced towards lower peak heat flux at the target, substantial changes in edge localized mode (ELM) behaviour, density and radiation distribution occur. The time-averaged peak heat flux at both divertor targets can be reduced below 2 MW m-2, which offers an attractive DEMO divertor scenario with potential for simpler and cheaper technical solutions. Generally, pronounced detachment leads to a pedestal and core density rise by about 20-40%, moderate (<20%) confinement degradation and a reduction of ELM size. For AUG conditions, some operational challenges occur, like the density cut-off limit for X-2 electron cyclotron resonance heating, which is used for central tungsten control.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostapenko, Marina G., E-mail: artifakt@ispms.tsc.ru; Meisner, Ludmila L., E-mail: llm@ispms.tsc.ru; Lotkov, Aleksandr I., E-mail: lotkov@ispms.tsc.ru, E-mail: egu@ispms.tsc.ru

    In the work, we study the mechanisms of structural phase state formation in NiTi surface layers after low-energy pulsed electron beam irradiation depending on the electron beam energy density. It is revealed that after electron beam treatment of the NiTi specimens at energy densities E{sub 1} = 15 J/cm{sup 2}, E{sub 2} = 20 J/cm{sup 2}, and E{sub 3} = 30 J/cm{sup 2}, a series of effects is observed: the absence of the Ti2Ni phase and the presence of new peaks correspond to the B19′ martensite phase with monoclinic structure. Estimation of the relative volume content of the B2 andmore » B19′ phases from the total intensity of their peaks shows that the percentage of the martensite phase increases from ∼5 vol.% in the NiTi specimen irradiated at E{sub 1} = 15 J/cm{sup 2} to ∼80 vol.% in the NiTi specimen irradiated at E{sub 3} = 30 J/cm{sup 2}. It is found that in the NiTi specimens irradiated at E ≤ 20 J/cm{sup 2}, the layer that contains a martensite phase resides not on the surface but at some depth from it.« less

  2. Catastrophic global-avalanche of a hollow pressure filament

    NASA Astrophysics Data System (ADS)

    van Compernolle, B.; Poulos, M. J.; Morales, G. J.

    2017-10-01

    New results are presented of a basic heat transport experiment performed in the Large Plasma Device at UCLA. A ring-shaped electron beam source injects low energy electrons along a strong magnetic field into a preexisting, large and cold plasma. The injected electrons are thermalized by Coulomb collisions within a short distance and provide an off-axis heat source that results in a long, hollow, cylindrical region of elevated plasma pressure. The off-axis source is active for a period long compared to the density decay time, i.e., as time progresses the power per particle increases. Two distinct regimes are observed to take place, an early regime dominated by multiple avalanches, identified as a sudden intermittent rearrangement of the pressure profile that repeats under sustained heating, and a second regime dominated by broadband drift-Alfvén fluctuations. The transition between the two regimes is sudden and global, both radially and axially. The initial regime is characterized by peaked density and temperature profiles, while only the peaked temperature profile survives in the second regime. Recent measurements at multiple axial locations provide new insight into the axial dynamics of the global avalanche. Sponsored by NSF Grant 1619505 and by DOE/NSF at BaPSF.

  3. A global scale picture of ionospheric peak electron density changes during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kumar, Vickal V.; Parkinson, Murray L.

    2017-04-01

    Changes in ionospheric plasma densities can affect society more than ever because of our increasing reliance on communication, surveillance, navigation, and timing technology. Models struggle to predict changes in ionospheric densities at nearly all temporal and spatial scales, especially during geomagnetic storms. Here we combine a 50 year (1965-2015) geomagnetic disturbance storm time (Dst) index with plasma density measurements from a worldwide network of 132 vertical incidence ionosondes to develop a picture of global scale changes in peak plasma density due to geomagnetic storms. Vertical incidence ionosondes provide measurements of the critical frequency of the ionospheric F2 layer (foF2), a direct measure of the peak electron density (NmF2) of the ionosphere. By dissecting the NmF2 perturbations with respect to the local time at storm onset, season, and storm intensity, it is found that (i) the storm-associated depletions (negative storm effects) and enhancements (positive storm effects) are driven by different but related physical mechanisms, and (ii) the depletion mechanism tends to dominate over the enhancement mechanism. The negative storm effects, which are detrimental to HF radio links, are found to start immediately after geomagnetic storm onset in the nightside high-latitude ionosphere. The depletions in the dayside high-latitude ionosphere are delayed by a few hours. The equatorward expansion of negative storm effects is found to be regulated by storm intensity (farthest equatorward and deepest during intense storms), season (largest in summer), and time of day (generally deeper on the nightside). In contrast, positive storm effects typically occur on the dayside midlatitude and low-latitude ionospheric regions when the storms are in the main phase, regardless of the season. Closer to the magnetic equator, moderate density enhancements last up to 40 h during the recovery phase of equinox storms, regardless of the local time. Strikingly, high-latitude plasma densities are moderately enhanced for up to 60 h prior to the actual onset of storms during the equinoxes and summer; a potential precursor of a geomagnetic storm.

  4. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    NASA Astrophysics Data System (ADS)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  5. The height of electron content changes in the ionosphere from ATS 6 beacon data

    NASA Technical Reports Server (NTRS)

    Davies, K.; Heron, M. L.

    1984-01-01

    A technique is described which uses relative changes in Faraday rotation and modulation phase of satellite radio signals to determine the median height of the enhancement (or depletion) in the electron density of the ionosphere. During the post sunrise formation of the F layer the incremental layers have a median height of around 210 km (+ or - 40) and in the afternoon the decremental median is above the peak at 340 km (+ or - 40) on a winter day. A winter nighttime enhancement just after midnight appears as a thick layer extending upwards from the peak, with a median height at about 730 km. The method applies to large scale irregularities but not to small, dense, scintillation-causing irregularities for which Faraday and modulation phases do not represent the total electron content.

  6. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes

    NASA Astrophysics Data System (ADS)

    van Ngoc, Huynh; Kang, Dae Joon

    2016-02-01

    Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices.Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices. Electronic supplementary information (ESI) available: FE-SEM images of ZnO NFs grown on textile and FTO/glass substrates, XRD patterns of synthesized ZnO NFs, nitrogen adsorption isotherms for ZnO NWs and ZnO NFs, effect of different coating layers on ZnO NFNGs, P(VDF-TrFE) coating on ZnO NFs, output open-circuit voltages of a textile electrostatic NG based on P(VDF-TrFE) coated on ZnO NFs and a textile ZnO NFNG without an insulating layer generated by a sonic wave, NG-based triboelectric effects and PDMS-coated ZnO NF-based NGs grown on an ITO/PET substrate. See DOI: 10.1039/c5nr08324a

  7. High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential

    DOE PAGES

    Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; ...

    2016-01-01

    In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned overmore » a wide range, from 4.4 × 10 10 cm –2 to 1.8 × 10 11 cm –2, with a peak mobility of 6.4 × 10 5 cm 2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.« less

  8. Pressure Balance at Mars and Solar Wind Interaction with the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Krymskii, A. M.; Ness, N. F.; Crider, D. H.; Breus, T. K.; Acuna, M. H.; Hinson, D.

    2003-01-01

    The strongest crustal fields are located in certain regions in the Southern hemisphere. In the Northern hemisphere, the crustal fields are rather weak and usually do not prevent direct interaction between the SW and the Martian ionosphere/atmosphere. Exceptions occur in the isolated mini-magnetospheres formed by the crustal anomalies. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A study of 523 electron density profiles obtained at latitudes from +67 deg. to +77 deg. has been conducted. The effective scale-height of the electron density for two altitude ranges, 145-165 km and 165-185 km, and the effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak have been derived for each of the profiles studied. For the regions outside of the potential mini-magnetospheres, the thermal pressure of the ionospheric plasma for the altitude range 145-185 km has been estimated. In the high latitude ionosphere at Mars, the total pressure at altitudes 160 and 180 km has been mapped. The solar wind interaction with the ionosphere of Mars and origin of the sharp drop of the electron density at the altitudes 200-210 km will be discussed.

  9. Ground-based observations of Saturn's auroral ionosphere over three days: Trends in H3+ temperature, density and emission with Saturn local time and planetary period oscillation

    NASA Astrophysics Data System (ADS)

    O'Donoghue, James; Melin, Henrik; Stallard, Tom S.; Provan, G.; Moore, Luke; Badman, Sarah V.; Cowley, Stan W. H.; Baines, Kevin H.; Miller, Steve; Blake, James S. D.

    2016-01-01

    On 19-21 April 2013, the ground-based 10-m W.M. Keck II telescope was used to simultaneously measure H3+ emissions from four regions of Saturn's auroral ionosphere: (1) the northern noon region of the main auroral oval; (2) the northern midnight main oval; (3) the northern polar cap and (4) the southern noon main oval. The H3+ emission from these regions was captured in the form of high resolution spectral images as the planet rotated. The results herein contain twenty-three H3+ temperatures, column densities and total emissions located in the aforementioned regions - ninety-two data points in total, spread over timescales of both hours and days. Thermospheric temperatures in the spring-time northern main oval are found to be cooler than their autumn-time southern counterparts by tens of K, consistent with the hypothesis that the total thermospheric heating rate is inversely proportional to magnetic field strength. The main oval H3+ density and emission is lower at northern midnight than it is at noon, in agreement with a nearby peak in the electron influx in the post-dawn sector and a minimum flux at midnight. Finally, when arranging the northern main oval H3+ parameters as a function of the oscillation period seen in Saturn's magnetic field - the planetary period oscillation (PPO) phase - we see a large peak in H3+ density and emission at ∼115° northern phase, with a full-width at half-maximum (FWHM) of ∼44°. This seems to indicate that the influx of electrons associated with the PPO phase at 90° is responsible at least in part for the behavior of all H3+ parameters. A combination of the H3+ production and loss timescales and the ±10° uncertainty in the location of a given PPO phase are likely, at least in part, to be responsible for the observed peaks in H3+ density and emission occurring at a later time than the peak precipitation expected at 90° PPO phase.

  10. A global picture of ionospheric slab thickness derived from GIM TEC and COSMIC radio occultation observations

    NASA Astrophysics Data System (ADS)

    Huang, He; Liu, Libo; Chen, Yiding; Le, Huijun; Wan, Weixing

    2016-01-01

    The ionospheric equivalent slab thickness (EST), defined as the ratio of total electron content (TEC) to F2 layer peak electron density (NmF2), describes the thickness of the ionospheric profile. In this study, we retrieve EST from TEC data obtained from Global Ionospheric Map (GIM) and NmF2 retrieved from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) ionospheric radio occultation data. The diurnal, seasonal, and solar activity variations of global EST are analyzed as the excellent spatial coverage of GIM and COSMIC data. During solstices, daytime EST in the summer hemisphere is larger than that in the winter hemisphere, except in some high-latitude regions, and the reverse is true for the nighttime EST. The peaks of EST often appear at 0400 local time. The presunrise enhancement in EST appears in all seasons, while the postsunset enhancement in EST is not readily observed in equinox. Both enhancements are attributed to the more remarkable electron density decay of NmF2 compared to that of TEC. The dependence of EST on solar activity is related to the inconsistent solar activity dependences of electron density at different altitudes. Furthermore, it is interesting that EST is enhanced from 0° to 120°E in longitude and 30° to 75°S in latitude during nighttime, just to the east of Weddell Sea Anomaly, during equinox and the Southern Hemisphere summer. This phenomenon is supposed to be related to the effects of geomagnetic declination-related plasma vertical drifts.

  11. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    PubMed

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  12. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less

  13. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry.

    PubMed

    Sundararaman, Ravishankar; Goddard, William A; Arias, Tomas A

    2017-03-21

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  14. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoquan; Yin, Zhixiang; Chen, Minggong; Hong, Lingli; Xia, Guangqing; Hu, Yelin; Huang, Yourui; Liu, Minghai; Kudryavtsev, A. A.

    2014-10-01

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  15. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    DOE PAGES

    Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.

    2017-03-16

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less

  16. Height Dependence of Plasma Properties of a Dark Lane and a Cool Loop in a Solar Limb Active Region Observed by Hinode/EIS

    NASA Astrophysics Data System (ADS)

    Lee, K.; Imada, S.; Moon, Y.; Lee, J.

    2013-12-01

    We investigate spectral properties of a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in coronal spectral lines and rooted on a bright point. We determine their electron densities, Doppler velocities, and non-thermal velocities with height over the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Fe XII and the scale height temperatures of the dark lane from each spectral lines are much lower than their peak formation temperatures. The non-thermal velocity in the cool loop slightly decreases along the loop while that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.

  17. Reasons for high-temperature superconductivity in the electron–phonon system of hydrogen sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degtyarenko, N. N.; Mazur, E. A., E-mail: eugen-masur@mail.ru

    We have calculated the electron and phonon spectra, as well as the densities of the electron and phonon states, of the stable orthorhombic structure of hydrogen sulfide SH{sub 2} in the pressure interval 100–180 GPa. It is found that at a pressure of 175 GPa, a set of parallel planes of hydrogen atoms is formed due to a structural modification of the unit cell under pressure with complete accumulation of all hydrogen atoms in these planes. As a result, the electronic properties of the system become quasi-two-dimensional. We have also analyzed the collective synphase and antiphase vibrations of hydrogen atomsmore » in these planes, leading to the occurrence of two high-energy peaks in the phonon density of states.« less

  18. Effects of geometrical frustration on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice

    NASA Astrophysics Data System (ADS)

    Farkašovský, Pavol

    2018-05-01

    The small-cluster exact-diagonalization calculations and the projector quantum Monte Carlo method are used to examine the competing effects of geometrical frustration and interaction on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice. It is shown that the geometrical frustration stabilizes the ferromagnetic state at high electron concentrations ( n ≳ 7/4), where strong correlations between ferromagnetism and the shape of the noninteracting density of states are observed. In particular, it is found that ferromagnetism is stabilized for these values of frustration parameters, which lead to the single-peaked noninterating density of states at the band edge. Once, two or more peaks appear in the noninteracting density of states at the band edge the ferromagnetic state is suppressed. This opens a new route towards the understanding of ferromagnetism in strongly correlated systems.

  19. B2.5-Eirene modeling of radial transport in the MAGPIE linear plasma device

    NASA Astrophysics Data System (ADS)

    Owen, L. W.; Caneses, J. F.; Canik, J.; Lore, J. D.; Corr, C.; Blackwell, B.; Bonnin, X.; Rapp, J.

    2017-05-01

    Radial transport in helicon heated hydrogen plasmas in the MAGnetized Plasma Interaction Experiment (MAGPIE) is studied with the B2.5-Eirene (SOLPS5.0) code. Radial distributions of plasma density, temperature and ambipolar potential are computed for several magnetic field configurations and compared to double Langmuir probe measurements. Evidence for an unmagnetized ion population is seen in the requirement for a convective pinch term in the continuity equation in order to fit the centrally peaked density profile data. The measured slightly hollow electron temperature profiles are reproduced with combinations of on-axis and edge heating which can be interpreted as helicon and Trivelpiece-Gould wave absorption, respectively. Pressure gradient driven radial charged particle diffusion is chosen to describe the diffusive particle flux since the hollowness of the temperature profiles assists the establishment of on-axis density peaking.

  20. Venus nightside ionosphere - A model with KeV electron impact ionization

    NASA Technical Reports Server (NTRS)

    Kumar, S.

    1982-01-01

    The impact of keV electrons is proposed as the strongest source of ionization in a full-up Venus nightside ionosphere model for the equatorial midnight region. The electron impacts lead to a peak ion density of 100,000/cu cm, which was observed by the PV-OIMS experiment on several occasions. In addition, the observed altitude profiles of CO2(+), O(+), O2(+), H(+), and H2(+) can be reproduced by the model on condition that the available keV electron flux is approximated by a reasonable extrapolation from fluxes observed at lower energies.

  1. Rocket observations of the precipitation of electrons by ground VLF transmitters

    NASA Technical Reports Server (NTRS)

    Arnoldy, Roger L.; Kintner, Paul M.

    1989-01-01

    Recent results obtained with electric and magnetic receivers aboard a NASA sounding rocket launched on July 31, 1987 are presented which relate multiple electron spectral peaks observed in the bounce loss cone fluxes to the resonant interaction of electrons with VLF waves from ground transmitters. The correlation of transmitter signals passing through the ionosphere with the precipitated electrons was investigated. The analysis of these in situ wave and particle data addresses the propagation of waves through the ionosphere, and, through an application of the resonant theory, enables an estimation of the cold plasma density in the interaction region.

  2. Measurements of Plasma Density in a Fast and Compact Plasma Focus Operating at Hundreds of Joules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavez, Cristian; Universidad de Concepcion, Facultad de Ciencias, Departamento de Fisica, Concepcion; Silva, Patricio

    2006-12-04

    It is known that there are plasma parameters that remain relatively constant for plasma focus facilities operating in a wide range of de energy, from 1kJ to 1MJ, such as: electron density, temperature and plasma energy density. Particularly the electron density is of the order of 1025m-3. Recently the experimental studies in plasma focus has been extended to devices operating under 1kJ, in the range of hundreds and tens of joules. In this work an optical refractive system was implemented in order to measure the electron density in a plasma focus devices of hundred of joules, PF-400J (880 nF, 30more » kV, 120 kA, 400 J, 300 ns time to peak current, dI/dt{approx}4x1011 A/s. The plasma discharge was synchronized with a pulsed Nd-YAG laser ({approx}6ns FWHM at 532nm) in order to obtain optical diagnostics as interferometry and Schlieren. An electron density of (0.9{+-}0.25)x1025m-3 was obtained at the axis of the plasma column close to the pinch time. This value is of the same order that the obtained in devices oparating in the energy range of 1kJ to 1MJ.« less

  3. Langmuir Probe Measurements in an Inductively Coupled Ar/CF4 Plasmas

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Meyyappan, M.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    2000-01-01

    Technological advancement in the microelectronics industry requires an understanding of the physical and chemical processes occurring in plasmas of fluorocarbon gases, such as carbon tetrafluoride (CF4) which is commonly used as an etchant, and their mixtures to optimize various operating parameters. In this paper we report data on electron number density (ne), electron temperature'(Te), electron energy distribution function (EEDF), mean electron energy, ion number density (ni), and plasma potential (Vp) measured by using Langmuir probe in an inductively coupled 13.56 MHz radio frequency plasmas generated in 50%Ar:50%CF4 mixture in the GEC cell. The probe data were recorded at various radial positions providing radial profiles of these plasma parameters at 10-50 mTorr pressures and 200 W and 300 W of RF power. Present measurements indicate that the electron and ion number densities increase with increase in pressure and power. Whereas the plasma potential and electron temperature decrease with increase in pressure, and they weakly depend on RF power. The radial profiles exhibit that the electron and ion number densities and the plasma potential peak at the center of the plasma with an exponential fall away from it, while the electron temperature has a minimum at the center and it increases steadily towards the electrode edge. The EEDFs have a characteristic drop near the low energy end at all pressures and pressures and their shapes represent non-Maxwellian plasma and exhibit more like Druyvesteyn energy distribution.v

  4. Variations of E-region total electron content and electron density profiles over high latitudes during winter solstice 2007 using radio occultation measurements

    NASA Astrophysics Data System (ADS)

    Agrawal, Kajli

    The space weather phenomenon involves the Sun, interplanetary space and the Earth. Different space weather conditions have diverse effects on the various layers of the Earth's atmosphere Technological advancements have created a situation in which human civilization is not only dependent on resources from deep inside the Earth, but also on the upper atmosphere and outer space region. Therefore, it is essential to improve the understanding of the impacts of space weather conditions on the ionosphere. This research focuses on the variation of total electron content (TEC) and the electron density within the E-region of the ionosphere, which extends from 80-150 km above the surface of the Earth, using radio occultation measurements obtained by COSMIC satellites and using Ionospheric Data Assimilation Four-Dimensional algorithm (IDA4D) which is used to mitigate the effects of F-region in the E-region estimation (Bust, Garner, & Gaussiran, 2004). E-region TEC and the electron density estimation for geomagnetic latitude range of 45°--80°, geomagnetic longitude range of -180°--180° and 1800--0600 MLT (magnetic local time) are presented for two active and two quiet days during winter solstice 2007. Active and quiet days are identified based on the Kp index values. Some of the important findings are (1) E-region electron peak density is higher during active days than during quiet days, and (2) during both types of days, higher density values were found at the magnetic latitude of >60° early morning MLT. Prominent E-region features (TEC and electron density) were observed during most active days over the magnetic latitude range of 60°-70° at ~02:00 MLT.

  5. Investigation of the Electron Density Variation During the 21 August 2017 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Reinisch, B. W.; Dandenault, P. B.; Galkin, I. A.; Hamel, R.; Richards, P. G.

    2018-02-01

    This paper presents a comparison of modeled and measured electron densities for the 21 August 2017 solar eclipse across the USA. The location of the instrument was (43.81°N, 247.32°E) where the maximum obscuration of 99.6% occurred at 17.53 hr UT on 21 August. The solar apparent time was 9.96 hr, and the duration of the eclipse was 2.7 hr. It was found that if it is assumed that there are no chromosphere emissions at totality, 30% coronal emission remaining at totality gave the best fit to the electron density variation at 150 km. The 30% coronal emission estimate has uncertainties associated with respect to uncertainties in the solar spectrum, the measured electron density, and the amount of chromosphere emissions remaining at totality. The agreement between the modeled and measured electron densities is excellent at 150 km with the assumed 30% coronal emission at totality. At other altitudes, the agreement is very good, but the altitude profile would be improved if the model peak electron density (NmF2) decayed more slowly to better match the data. The minimum NmF2 in the model occurs 10 min after totality when it decreases to 0.55 from its noneclipse value. The minimum of the NmF2 data occurs between 6 and 10 min after totality but is 15% larger. The total electron content decreases to 0.65 of its preeclipse value. These relative changes agree well with those predicted by others prior to the eclipse.

  6. Formation of orbital-selective electron states in LaTiO3/SrTiO3 superlattices

    NASA Astrophysics Data System (ADS)

    Lechermann, Frank; Boehnke, Lewin; Grieger, Daniel

    2013-06-01

    The interface electronic structure of correlated LaTiO3/SrTiO3 superlattices is investigated by means of the charge self-consistent combination of the local density approximation (LDA) to density functional theory with dynamical mean-field theory. Utilizing a pseudopotential technique together with a continuous-time quantum Monte Carlo approach, the resulting complex multiorbital electronic states are addressed in a coherent fashion beyond static mean field. General structural relaxations are taken into account on the LDA level and cooperate with the driving forces from strong electronic correlations. This alliance leads to a Ti(3dxy) dominated low-energy quasiparticle peak and a lower Hubbard band in line with photoemission studies. Furthermore correlation effects close to the band-insulating bulk SrTiO3 limit as well as the Mott-insulating bulk LaTiO3 limit are studied via realistic single-layer embeddings.

  7. DFT calculations of graphene monolayer in presence of Fe dopant and vacancy

    NASA Astrophysics Data System (ADS)

    Ostovari, Fatemeh; Hasanpoori, Marziyeh; Abbasnejad, Mohaddeseh; Salehi, Mohammad Ali

    2018-07-01

    In the present work, the effects of Fe doping and vacancies on the electronic, magnetic and optical properties of graphene are studied by density functional theory based calculations. The conductive behavior is revealed for the various defected graphene by means of electronic density of states. However, defected structures show different magnetic and optical properties compared to those of pure one. The ferromagnetic phase is the most probable phase by substituting Fe atoms and vacancies at AA sublattice of graphene. The optical properties of impure graphene differ from pure graphene under illumination with parallel polarization of electric field, whereas for perpendicular polarization it remains unchanged. In presence of defect and under parallel polarization of light, the static dielectric constant rises strongly and the maximum peak of Im ε(ω) shows red shift relative to pure graphene. Moreover, the maximum absorption peak gets broaden in the visible to infrared region at the same condition and the magnitude and related energy of peaks shift to higher value in the EELS spectra. Furthermore, the results show that the maximum values of refractive index and reflectivity spectra increase rapidly and represent the red and blue shifts; respectively. Generally; substituting the C atom with Fe has more effect on magnetic and optical properties relative to the C vacancies.

  8. h -AlN-Mg(OH)2 van der Waals bilayer heterostructure: Tuning the excitonic characteristics

    NASA Astrophysics Data System (ADS)

    Bacaksiz, C.; Dominguez, A.; Rubio, A.; Senger, R. T.; Sahin, H.

    2017-02-01

    Motivated by recent studies that reported the successful synthesis of monolayer Mg (OH) 2 [Suslu et al., Sci. Rep. 6, 20525 (2016), 10.1038/srep20525] and hexagonal (h -)AlN [Tsipas et al., Appl. Phys. Lett. 103, 251605 (2013), 10.1063/1.4851239], we investigate structural, electronic, and optical properties of vertically stacked h -AlN and Mg (OH) 2 , through ab initio density-functional theory (DFT), many-body quasiparticle calculations within the GW approximation and the Bethe-Salpeter equation (BSE). It is obtained that the bilayer heterostructure prefers the A B' stacking having direct band gap at the Γ with Type-II band alignment in which the valance band maximum and conduction band minimum originate from different layer. Regarding the optical properties, the imaginary part of the dielectric function of the individual layers and heterobilayer are investigated. The heterobilayer possesses excitonic peaks, which appear only after the construction of the heterobilayer. The lowest three exciton peaks are analyzed in detail by means of band decomposed charge density and the oscillator strength. Furthermore, the wave function calculation shows that the first peak of the heterobilayer originates from spatially indirect exciton where the electron and hole localized at h -AlN and Mg (OH) 2 , respectively, which is important for the light harvesting applications.

  9. Twisted bilayer graphene photoluminescence emission peaks at van Hove singularities.

    PubMed

    Alencar, Thonimar V; von Dreifus, Driele; Gabriela Cota Moreira, Maria; Eliel, Gomes S N; Yeh, Chao-Hui; Chiu, Po-Wen; Pimenta, Marcos A; Malard, Leandro M; Maria de Paula, Ana

    2018-05-02

    We report on photoluminescence emission imaging by femtosecond laser excitation on twisted bilayer graphene samples. The emission images are obtained by tuning the excitation laser energies in the near infrared region. We demonstrate an increase of the photoluminescence emission at excitation energies that depends on the bilayer twist angle. The results show a peak for the light emission when the excitation is in resonance with transitions at the van Hove singularities in the electronic density of states. We measured the photoluminescence excitation peak position and width for samples with various twist angles showing resonances in the energy range of 1.2 to 1.7 eV.

  10. Twisted bilayer graphene photoluminescence emission peaks at van Hove singularities

    NASA Astrophysics Data System (ADS)

    Alencar, Thonimar V.; von Dreifus, Driele; Cota Moreira, Maria Gabriela; Eliel, Gomes S. N.; Yeh, Chao-Hui; Chiu, Po-Wen; Pimenta, Marcos A.; Malard, Leandro M.; de Paula, Ana Maria

    2018-05-01

    We report on photoluminescence emission imaging by femtosecond laser excitation on twisted bilayer graphene samples. The emission images are obtained by tuning the excitation laser energies in the near infrared region. We demonstrate an increase of the photoluminescence emission at excitation energies that depends on the bilayer twist angle. The results show a peak for the light emission when the excitation is in resonance with transitions at the van Hove singularities in the electronic density of states. We measured the photoluminescence excitation peak position and width for samples with various twist angles showing resonances in the energy range of 1.2 to 1.7 eV.

  11. Calculation of induced current densities for humans by magnetic fields from electronic article surveillance devices

    NASA Astrophysics Data System (ADS)

    Gandhi, Om P.; Kang, Gang

    2001-11-01

    This paper illustrates the use of the impedance method to calculate the electric fields and current densities induced in millimetre resolution anatomic models of the human body, namely an adult and 10- and 5-year-old children, for exposure to nonuniform magnetic fields typical of two assumed but representative electronic article surveillance (EAS) devices at 1 and 30 kHz, respectively. The devices assumed for the calculations are a solenoid type magnetic deactivator used at store checkouts and a pass-by panel-type EAS system consisting of two overlapping rectangular current-carrying coils used at entry and exit from a store. The impedance method code is modified to obtain induced current densities averaged over a cross section of 1 cm2 perpendicular to the direction of induced currents. This is done to compare the peak current densities with the limits or the basic restrictions given in the ICNIRP safety guidelines. Because of the stronger magnetic fields at lower heights for both the assumed devices, the peak 1 cm2 area-averaged current densities for the CNS tissues such as the brain and the spinal cord are increasingly larger for smaller models and are the highest for the model of the 5-year-old child. For both the EAS devices, the maximum 1 cm2 area-averaged current densities for the brain of the model of the adult are lower than the ICNIRP safety guideline, but may approach or exceed the ICNIRP basic restrictions for models of 10- and 5-year-old children if sufficiently strong magnetic fields are used.

  12. Calculation of induced current densities for humans by magnetic fields from electronic article surveillance devices.

    PubMed

    Gandhi, O P; Kang, G

    2001-11-01

    This paper illustrates the use of the impedance method to calculate the electric fields and current densities induced in millimetre resolution anatomic models of the human body, namely an adult and 10- and 5-year-old children, for exposure to nonuniform magnetic fields typical of two assumed but representative electronic article surveillance (EAS) devices at 1 and 30 kHz, respectively. The devices assumed for the calculations are a solenoid type magnetic deactivator used at store checkouts and a pass-by panel-type EAS system consisting of two overlapping rectangular current-carrying coils used at entry and exit from a store. The impedance method code is modified to obtain induced current densities averaged over a cross section of 1 cm2 perpendicular to the direction of induced currents. This is done to compare the peak current densities with the limits or the basic restrictions given in the ICNIRP safety guidelines. Because of the stronger magnetic fields at lower heights for both the assumed devices, the peak 1 cm2 area-averaged current densities for the CNS tissues such as the brain and the spinal cord are increasingly larger for smaller models and are the highest for the model of the 5-year-old child. For both the EAS devices, the maximum 1 cm2 area-averaged current densities for the brain of the model of the adult are lower than the ICNIRP safety guideline, but may approach or exceed the ICNIRP basic restrictions for models of 10- and 5-year-old children if sufficiently strong magnetic fields are used.

  13. Characteristics of temporal evolution of particle density and electron temperature in helicon discharge

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Cheng, Mousen; Guo, Dawei; Wang, Moge; Li, Xiaokang

    2017-10-01

    On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to study the characteristics of the temporal evolution of particle density and electron temperature. With the assumption of weak ionization, the Maxwell equations coupled with the plasma parameters were directly solved in the whole computational domain. All of the partial differential equations were solved by the finite element solver in COMSOL MultiphysicsTM with a fully coupled method. In this work, the numerical cases were calculated with an Ar working medium and a Shoji-type antenna. The numerical results indicate that there exist two distinct modes of temporal evolution of the electron and ground atom density, which can be explained by the ion pumping effect. The evolution of the electron temperature is controlled by two schemes: electromagnetic wave heating and particle collision cooling. The high RF power results in a high peak electron temperature while the high gas pressure leads to a low steady temperature. In addition, an OES experiment using nine Ar I lines was conducted using a modified CR model to verify the validity of the results by simulation, showing that the trends of temporal evolution of electron density and temperature are well consistent with the numerically simulated ones.

  14. Miniaturized magnet-less RF electron trap. II. Experimental verification

    DOE PAGES

    Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.; ...

    2017-06-15

    Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less

  15. Some strategies for quantitative scanning Auger electron microscopy

    NASA Technical Reports Server (NTRS)

    Browning, R.; Peacock, D. C.; Prutton, M.

    1985-01-01

    The general applicability of power law forms of the background in electron spectra is pointed out and exploited for background removal from under Auger peaks. This form of B(E) is found to be extremely sensitive to instrumental alignment and to fault-free construction - an observation which can be used to set up analyser configurations in an accurate way. Also, differences between N(E) and B(E) can be used to derive a spectrometer transmission function T(E). The questions of information density in an energy-analysing spatially-resolving instrument are addressed after reliable instrumental characterization has been established. Strategies involving ratio histograms, showing the population distribution of the ratio of a pair of Auger peak heights, composition scatter diagrams and windowed imaging are discussed and illustrated.

  16. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-01

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳ 5 ×1019 m-3 ) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z ,t ) and temperature Te(z ,t ) , and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pA r=30 -60 mTorr . We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.

  17. Global Characteristics of the Correlation and Time Lag Between Solar and Ionospheric Parameters in the 27-day Period

    NASA Technical Reports Server (NTRS)

    Lee, Choon-Ki; Han, Shin-Chan; Dieter,Bilitza; Ki-Weon,Seo

    2012-01-01

    The 27-day variations of topside ionosphere are investigated using the in-situ electron density measurements from the CHAMP planar Langmuir probe and GRACE K-band ranging system. As the two satellite systems orbit at the altitudes of approx. 370 km and approx. 480 km, respectively, the satellite data sets are greatly valuable for examining the electron density variations in the vicinity of F2-peak. In a 27-day period, the electron density measurements from the satellites are in good agreements with the solar flux, except during the solar minimum period. The time delays are mostly 1-2 day and represent the hemispherical asymmetry. The globally-estimated spatial patterns of the correlation between solar flux and in-situ satellite measurements show poor correlations in the (magnetic) equatorial region, which are not found from the ground measurements of vertically-integrated electron content. We suggest that the most plausible cause for the poor correlation is the vertical movement of ionization due to atmospheric dynamic processes that is not controlled by the solar extreme ultraviolet radiation.

  18. Two new planar coil designs for a high pressure radio frequency plasma source

    NASA Astrophysics Data System (ADS)

    Munsat, T.; Hooke, W. M.; Bozeman, S. P.; Washburn, S.

    1995-04-01

    Two planar coil designs for a high pressure rf plasma source are investigated using spectroscopic techniques and circuit analysis. In an Ar plasma a truncated version of the commonly used ``spiral'' coil is found to produce improvements in peak electron density of 20% over the full version. A coil with figure-8 geometry is found to move plasma inhomogeneities off of center and produce electron densities comparable to the spiral coils. Both of these characteristics are advantageous in industrial applications. Coil design characteristics for favorable power coupling are also determined, including the necessity of closed hydrodynamic plasma loops and the drawback of closely situated antiparallel coil currents.

  19. Theory of Tunneling Spectroscopy in a Mn12 Single-Electron Transistor by Density-Functional Theory Methods

    NASA Astrophysics Data System (ADS)

    Michalak, Ł.; Canali, C. M.; Pederson, M. R.; Paulsson, M.; Benza, V. G.

    2010-01-01

    We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.

  20. Estimation of the characteristic parameters of the multilayered film model using the patterson differential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astaf'ev, S. B., E-mail: webmaster@ns.crys.ras.ru; Shchedrin, B. M.; Yanusova, L. G.

    The possibility of estimating the layered film structural parameters by constructing the autocorrelation function P{sub F}(z) (referred to as the Patterson differential function) for the derivative d{rho}/dz of electron density along the normal to the sample surface has been considered. An analytical expression P{sub F}(z) is presented for a multilayered film within the box model of the electron density profile. The possibilities of selecting structural information about layered films by analyzing the features of this function are demonstrated by model and real examples, in particular, by applying the method of shifted systems of peaks for the function P{sub F}(z).

  1. Theory of tunneling spectroscopy in a Mn12 single-electron transistor by density-functional theory methods.

    PubMed

    Michalak, Ł; Canali, C M; Pederson, M R; Paulsson, M; Benza, V G

    2010-01-08

    We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.

  2. Phonon-Assisted Resonant Tunneling of Electrons in Graphene-Boron Nitride Transistors.

    PubMed

    Vdovin, E E; Mishchenko, A; Greenaway, M T; Zhu, M J; Ghazaryan, D; Misra, A; Cao, Y; Morozov, S V; Makarovsky, O; Fromhold, T M; Patanè, A; Slotman, G J; Katsnelson, M I; Geim, A K; Novoselov, K S; Eaves, L

    2016-05-06

    We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states.

  3. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Yan, Lixin; Du, Yingchao; Zhou, Zheng; Su, Xiaolu; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Shi, Jiaru; Chen, Huaibi; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang

    2016-05-01

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radio-frequency gun or by tuning the compression of a downstream magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μ J -level energies and tunable central frequency of the spectrum in the range of ˜0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.

  4. Tunable High-Intensity Electron Bunch Train Production Based on Nonlinear Longitudinal Space Charge Oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Yan, Lixin; Du, Yingchao

    2016-05-05

    High-intensity trains of electron bunches with tunable picosecond spacing are produced and measured experimentally with the goal of generating terahertz (THz) radiation. By imposing an initial density modulation on a relativistic electron beam and controlling the charge density over the beam propagation, density spikes of several-hundred-ampere peak current in the temporal profile, which are several times higher than the initial amplitudes, have been observed for the first time. We also demonstrate that the periodic spacing of the bunch train can be varied continuously either by tuning launching phase of a radiofrequency gun or by tuning the compression of a downstreammore » magnetic chicane. Narrow-band coherent THz radiation from the bunch train was also measured with μJ-level energies and tunable central frequency of the spectrum in the range of ~0.5 to 1.6 THz. Our results pave the way towards generating mJ-level narrow-band coherent THz radiation and driving high-gradient wakefield-based acceleration.« less

  5. Density-functional theory simulation of large quantum dots

    NASA Astrophysics Data System (ADS)

    Jiang, Hong; Baranger, Harold U.; Yang, Weitao

    2003-10-01

    Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient method for the simulation of quantum dots using density-function theory is developed; it includes the particle-in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly minimize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional model system and show that numerical studies of large quantum dots with several hundred electrons become computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.

  6. Modeling of the hydrogen maser disk in MWC 349

    NASA Astrophysics Data System (ADS)

    Ponomarev, Victor O.; Smith, Howard A.; Strelnitski, Vladimir S.

    1994-04-01

    Maser amplification in a Keplerian circumstellar disk seen edge on-the idea put forward by Gordon (1992), Martin-Pintado, & Serabyn (1992), and Thum, Martin-Pintado, & Bachiller (1992) to explain the millimeter hydrogen recombination lines in MWC 349-is further justified and developed here. The double-peaked (vs. possible triple-peaked) form of the observed spectra is explained by the reduced emission from the inner portion of the disk, the portion responsible for the central ('zero velocity') component of a triple-peaked spectrum. Radial gradient of electron density and/or free-free absorption within the disk are identified as the probable causes of this central 'hole' in the disk and of its opacity. We calculate a set of synthetic maser spectra radiated by a homogeneous Keplerian ring seen edge-on and compare them to the H30-alpha observations of Thum et al., averaged over about 1000 days. We used a simple graphical procedure to solve an inverse problem and deduced the probable values of some basic disk and maser parameters. We find that the maser is essentially unsaturated, and that the most probable values of electron temperature. Doppler width of the microturbulence, and electron density, all averaged along the amplification path are, correspondingly, Te less than or equal to 11,000 K, Vmicro less than or equal to 14 km/s, ne approx. = (3 +/- 2) x 107/cu cm. The model shows that radiation at every frequency within the spectrum arises in a monochromatic 'hot spot.' The maximum optical depth within the 'hot spot' producing radiation at the spectral peak maximum is taumax approx. = 6 +/- 1; the effective width of the masing ring is approx. = 0.4-0.7 times its outer diameter; the size of the 'hot spot' responsible for the radiation at the spectral peak frequency is approx. = 0.2-0.3 times the distance between the two 'hot spots' corresponding to two peaks. An important derivation of our model is the dynamical mass of the central star, M* approx. = 26 solar masses (D/1.2 kpc), D being the distance to the star. Prospects for improving the model are discussed.

  7. Ultrafast molecular processes mapped by femtosecond x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Elsaesser, Thomas

    2012-02-01

    X-ray diffraction with a femtosecond time resolution allows for mapping photoinduced structural dynamics on the length scale of a chemical bond and in the time domain of atomic and molecular motion. In a pump-probe approach, a femtosecond excitation pulse induces structural changes which are probed by diffracting a femtosecond hard x-ray pulse from the excited sample. The transient angular positions and intensities of diffraction peaks give insight into the momentary atomic or molecular positions and into the distribution of electronic charge density. The simultaneous measurement of changes on different diffraction peaks is essential for determining atom positions and charge density maps with high accuracy. Recent progress in the generation of ultrashort hard x-ray pulses (Cu Kα, wavelength λ=0.154 nm) in laser-driven plasma sources has led to the implementation of the powder diffraction and the rotating crystal method with a time resolution of 100 fs. In this contribution, we report new results from powder diffraction studies of molecular materials. A first series of experiments gives evidence of a so far unknown concerted transfer of electrons and protons in ammonium sulfate [(NH4)2SO4], a centrosymmetric structure. Charge transfer from the sulfate groups results in the sub-100 fs generation of a confined electron channel along the c-axis of the unit cell which is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. A second study addresses atomic rearrangements and charge dislocations in the non-centrosymmetric potassium dihydrogen phosphate [KH2PO4, KDP]. Photoexcitation generates coherent low-frequency motions along the LO and TO phonon coordinates, leaving the average atomic positions unchanged. The time-dependent maps of electron density demonstrate a concomitant oscillatory relocation of electronic charge with a spatial amplitude of the order of a chemical bond length, two orders of magnitude larger than the vibrational amplitudes. The coherent phonon motions drive the charge relocation, similar to a soft mode driven phase transition between the ferro- and paraelectric phase of KDP.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.

    Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less

  9. A view of metals through the terahertz window

    NASA Astrophysics Data System (ADS)

    Dodge, Steve

    2006-05-01

    As electrons move through a metal, interaction with their environment tends to slow them down, causing the Drude peak in the optical conductivity to become narrower. The resulting peak width is typically in the terahertz frequency range that sits between microwaves the far infrared, too fast for conventional electronics and too slow for conventional infrared spectroscopy. With femtosecond laser techniques, however, coherent, broadband terahertz radiation can now be generated and detected with exquisite sensitivity, providing a new window onto electronic interactions in metals. I will discuss the application of this technique to a variety of metallic systems, including elemental lead, the nearly magnetic oxide metal CaRuO3, and CrV alloys that span the quantum phase transition from spin-density wave to paramagnetic metal. M. A. Gilmore, S. Kamal, D. M. Broun, and J. S. Dodge, Appl. Phys. Lett. 88, 141910 (2006).

  10. Relationship between field-aligned currents and inverted-V parallel potential drops observed at midaltitudes

    NASA Astrophysics Data System (ADS)

    Sakanoi, T.; Fukunishi, H.; Mukai, T.

    1995-10-01

    The inverted-V field-aligned acceleration region existing in the altitude range of several thousand kilometers plays an essential role for the magnetosphere-ionosphere coupling system. The adiabatic plasma theory predicts a linear relationship between field-aligned current density (J∥) and parallel potential drop (Φ∥), that is, J∥=KΦ∥, where K is the field-aligned conductance. We examined this relationship using the charged particle and magnetic field data obtained from the Akebono (Exos D) satellite. The potential drop above the satellite was derived from the peak energy of downward electrons, while the potential drop below the satellite was derived from two different methods: the peak energy of upward ions and the energy-dependent widening of electron loss cone. On the other hand, field-aligned current densities in the inverted-V region were estimated from the Akebono magnetometer data. Using these potential drops and field-aligned current densities, we estimated the linear field-aligned conductance KJΦ. Further, we obtained the corrected field-aligned conductance KCJΦ by applying the full Knight's formula to the current-voltage relationship. We also independently estimated the field-aligned conductance KTN from the number density and the thermal temperature of magnetospheric source electrons which were obtained by fitting accelerated Maxwellian functions for precipitating electrons. The results are summarized as follows: (1) The latitudinal dependence of parallel potential drops is characterized by a narrow V-shaped structure with a width of 0.4°-1.0°. (2) Although the inverted-V potential region exactly corresponds to the upward field aligned current region, the latitudinal dependence of upward current intensity is an inverted-U shape rather than an inverted-V shape. Thus it is suggested that the field-aligned conductance KCJΦ changes with a V-shaped latitudinal dependence. In many cases, KCJΦ values at the edge of the inverted-V region are about 5-10 times larger than those at the center. (3) By comparing KCJΦ with KTN, KCJΦ is found to be about 2-20 times larger than KTN. These results suggest that low-energy electrons such as trapped electrons, secondary and back-scattered electrons, and ionospheric electrons significantly contribute to upward field-aligned currents in the inverted-V region. It is therefore inferred that non adiabatic pitch angle scattering processes play an important role in the inverted-V region. .

  11. High Energy electron and proton acceleration by circularly polarized laser pulse from near critical density hydrogen gas target.

    PubMed

    Sharma, Ashutosh

    2018-02-01

    Relativistic electron rings hold the possibility of very high accelerating rates, and hopefully a relatively cheap and compact accelerator/collimator for ultrahigh energy proton source. In this work, we investigate the generation of helical shaped quasi-monoenergetic relativistic electron beam and high-energy proton beam from near critical density plasmas driven by petawatt-circularly polarized-short laser pulses. We numerically observe the efficient proton acceleration from magnetic vortex acceleration mechanism by using the three dimensional particle-in-cell simulations; proton beam with peak energy 350 MeV, charge ~10nC and conversion efficiency more than 6% (which implies 2.4 J proton beam out of the 40 J incident laser energy) is reported. We detailed the microphysics involved in the ion acceleration mechanism, which requires investigating the role of self-generated plasma electric and magnetic fields. The concept of efficient generation of quasi-monoenergetic electron and proton beam from near critical density gas targets may be verified experimentally at advanced high power - high repetition rate laser facilities e.g. ELI-ALPS. Such study should be an important step towards the development of high quality electron and proton beam.

  12. Transient Melting and Recrystallization of Semiconductor Nanocrystals Under Multiple Electron-Hole Pair Excitation.

    PubMed

    Kirschner, Matthew S; Hannah, Daniel C; Diroll, Benjamin T; Zhang, Xiaoyi; Wagner, Michael J; Hayes, Dugan; Chang, Angela Y; Rowland, Clare E; Lethiec, Clotilde M; Schatz, George C; Chen, Lin X; Schaller, Richard D

    2017-09-13

    Ultrafast optical pump, X-ray diffraction probe experiments were performed on CdSe nanocrystal (NC) colloidal dispersions as functions of particle size, polytype, and pump fluence. Bragg peak shifts related to heating and peak amplitude reduction associated with lattice disordering are observed. For smaller NCs, melting initiates upon absorption of as few as ∼15 electron-hole pair excitations per NC on average (0.89 excitations/nm 3 for a 1.5 nm radius) with roughly the same excitation density inducing melting for all examined NCs. Diffraction intensity recovery kinetics, attributable to recrystallization, occur over hundreds of picoseconds with slower recoveries for larger particles. Zincblende and wurtzite NCs revert to initial structures following intense photoexcitation suggesting melting occurs primarily at the surface, as supported by simulations. Electronic structure calculations relate significant band gap narrowing with decreased crystallinity. These findings reflect the need to consider the physical stability of nanomaterials and related electronic impacts in high intensity excitation applications such as lasing and solid-state lighting.

  13. Response of the radiation belt electron flux to the solar wind velocity: Parameterization by radial distance and energy

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.

    2008-11-01

    The solar wind velocity is the primary driver of the electron flux variability in Earth's radiation belts. The response of the logarithmic flux ("log-flux") to this driver has been determined at the geosynchronous orbit and at a fixed energy [Baker, D.N., McPherron, R.L., Cayton, T.E., Klebesadel, R.W., 1990. Linear prediction filter analysis of relativistic electron properties at 6.6 RE. Journal of Geophysical Research 95(A9), 15,133-15,140) and as a function of L shell and fixed energy [Vassiliadis, D., Klimas, A.J., Kanekal, S.G., Baker, D.N., Weigel, R.S., 2002. Long-term average, solar-cycle, and seasonal response of magnetospheric energetic electrons to the solar wind speed. Journal of Geophysical Research 107, doi:10.1029/2001JA000506). In this paper we generalize the response model as a function of particle energy (0.8-6.4 MeV) using POLAR HIST measurements. All three response peaks identified earlier figure prominently in the high-altitude POLAR measurements. The positive response around the geosynchronous orbit is peak P1 ([tau]=2±1 d; L=5.8±0.5; E=0.8-6.4 MeV), associated with high-speed, low-density streams and the ULF wave activity they produce. Deeper in the magnetosphere, the response is dominated by a positive peak P0 (0±1 d; 2.9±0.5RE; 0.8-1.1 MeV), of a shorter duration and producing lower-energy electrons. The P0 response occurs during the passage of geoeffective structures containing high IMF and high-density parts, such as ICMEs and other mass ejecta. Finally, the negative peak V1 (0±0.5 d; 5.7±0.5RE; 0.8-6.4 MeV) is associated with the "Dst effect" or the quasiadiabatic transport produced by ring-current intensifications. As energies increase, the P1 and V1 peaks appear at lower L, while the Dst effect becomes more pronounced in the region L<3. The P0 effectively disappears for E>1.6 MeV because of low statistics, although it is evident in individual events. The continuity of the response across radial and energy scales supports the earlier hypothesis that each of the three modes corresponds to a qualitatively different type of large-scale electron acceleration and transport.

  14. Ultrafast X-Ray Absorption Spectroscopy of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Engelhorn, Kyle Craig

    This dissertation will present a series of new tools, together with new techniques, focused on the understanding of warm and dense matter. We report on the development of a high time resolution and high detection efficiency x-ray camera. The camera is integrated with a short pulse laser and an x-ray beamline at the Advanced Light Source synchrotron. This provides an instrument for single shot, broadband x-ray absorption spectroscopy of warm and dense matter with 2 picosecond time resolution. Warm and dense matter is created by isochorically heating samples of known density with an ultrafast optical laser pulse, and X-ray absorption spectroscopy probes the unoccupied electronic density of states before the onset of hydrodynamic expansion and electron-ion equilibrium is reached. Measured spectra from a variety of materials are compared with first principle molecular dynamics and density functional theory calculations. In heated silicon dioxide spectra, two novel pre-edge features are observed, a peak below the band gap and absorption within the band gap, while a reduction was observed in the features above the edge. From consideration of the calculated spectra, the peak below the gap is attributed to valence electrons that have been promoted to the conduction band, the absorption within the gap is attributed to broken Si-O bonds, and the reduction above the edge is attributed to an elevated ionic temperature. In heated copper spectra, a time-dependent shift and broadening of the absorption edge are observed, consistent with and elevated electron temperature. The temporal evolution of the electronic temperature is accurately determined by fitting the measured spectra with calculated spectra. The electron-ion equilibration is studied with a two-temperature model. In heated nickel spectra, a shift of the absorption edge is observed. This shift is found to be inconsistent with calculated spectra and independent of incident laser fluence. A shift of the chemical potential is applied to the calculated spectra to obtain satisfactory agreement with measured spectra.

  15. Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields.

    PubMed

    Bailly-Grandvaux, M; Santos, J J; Bellei, C; Forestier-Colleoni, P; Fujioka, S; Giuffrida, L; Honrubia, J J; Batani, D; Bouillaud, R; Chevrot, M; Cross, J E; Crowston, R; Dorard, S; Dubois, J-L; Ehret, M; Gregori, G; Hulin, S; Kojima, S; Loyez, E; Marquès, J-R; Morace, A; Nicolaï, Ph; Roth, M; Sakata, S; Schaumann, G; Serres, F; Servel, J; Tikhonchuk, V T; Woolsey, N; Zhang, Z

    2018-01-09

    Intense lasers interacting with dense targets accelerate relativistic electron beams, which transport part of the laser energy into the target depth. However, the overall laser-to-target energy coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser-plasma interaction. Here we demonstrate that an efficient guiding of MeV electrons with about 30 MA current in solid matter is obtained by imposing a laser-driven longitudinal magnetostatic field of 600 T. In the magnetized conditions the transported energy density and the peak background electron temperature at the 60-μm-thick target's rear surface rise by about a factor of five, as unfolded from benchmarked simulations. Such an improvement of energy-density flux through dense matter paves the ground for advances in laser-driven intense sources of energetic particles and radiation, driving matter to extreme temperatures, reaching states relevant for planetary or stellar science as yet inaccessible at the laboratory scale and achieving high-gain laser-driven thermonuclear fusion.

  16. The role of charged particles in the positive corona-generated photon count in a rod to plane air gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, X. M.; Wang, Y. J.; MacAlpine, J. M. K.

    The relationship between the calculated charged-particle densities in positive corona, the rate of streamer production, and the photon count from the corona were investigated and found to be closely related. Both the densities of electrons and positive ions peaked at 11.8 kV, near the corona inception voltage; they then fell rapidly before slowly rising again. This behavior was exactly matched by the measured photon count. The calculation of the charged-particle density in a positive corona was achieved by means of a fluid model.

  17. Electron Temperature and Density in Local Helicity Injection and High betat Plasmas

    NASA Astrophysics Data System (ADS)

    Schlossberg, David J.

    Tokamak startup in a spherical torus (ST) and an ST-based fusion nuclear science facility can greatly benefit from using non-inductive methods. The Pegasus Toroidal Experiment has developed a non-inductive startup technique using local helicity injection (LHI). Electron temperature, T e(r), and density, ne( r), profiles during LHI are unknown. These profiles are critical for understanding both the physics of the injection and relaxation mechanisms, as well as for extrapolating this technique to larger devices. A new Thomson scattering system has been designed, installed, and used to characterize Te(r, t) and ne(r, t) during LHI. The diagnostic leverages new technology in image intensified CCD cameras, high-efficiency diffraction gratings, and reliable Nd:YAG lasers. Custom systems for stray light mitigation, fast shuttering, and precision timing have been developed and implemented. The overall system provides a low-maintenance, economic, and effective means to explore novel physics regimes in Pegasus. Electron temperature and density profiles during LHI have been measured for the first time. Results indicate Te(r) peaked in the core of plasmas, and sustained while plasmas are coupled to injection drive. Electron densities also peak near the core of the tokamak, up to local values of n e ˜ 1.5 x 1019 m -3. A comparison of Te( r, t) has been made between discharges with dominant drive voltage from induction versus helicity injection. In both cases Te ( r, t) profiles remain peaked, with values for Te ,max > 150 eV in dominantly helicity-driven plasmas using high-field side LHI. Sustained values of betat ˜ 100% have been demonstrated in a tokamak for the first time. Plasmas are created and driven entirely non-solenoidally, and exhibit MHD stability. Measured temperature and density profiles are used to constrain magnetic equilibrium reconstructions, which calculate 80% < betat < 100% throughout a toroidal field ramp-down. For a continued decrease in the toroidal field these plasmas disrupt near the ideal MHD no-wall stability limit predicted by the DCON code. Mode analyses of predicted and measured MHD agree, and suggest discharges terminate by an intermediate-m, n=1 external mode. A localized region of minimum |B| has been identified in these discharges, and modeling shows access to it depends on both plasma pressure and magnetic geometry. This magnetic well is shown to persist over several milliseconds, in both constant toroidal field and ramp-down cases.

  18. Ratiometric Fluorescence Azide-Alkyne Cycloaddition for Live Mammalian Cell Imaging.

    PubMed

    Fu, Hongxia; Li, Yanru; Sun, Lingbo; He, Pan; Duan, Xinrui

    2015-11-17

    Click chemistry with metabolic labeling has been widely used for selectively imaging biomacromolecules in cells. The first example of azide-alkyne cycloaddition for ratiometric fluorescent imaging of live cells is reported. The precursor of the azido fluorophore (cresyl violet) has a fluorescence emission peak at 620 nm. The electron-rich nitrogen of the azido group blue-shifts the emission peak to 566 nm. When the click reaction occurs, an emission peak appears at 620 nm due to the lower electronic density of the newly formed triazole ring, which allows us to ratiometrically record fluorescence signals. This emission shift was applied to ratiometric imaging of propargylcholine- and dibenzocyclooctyne-labeled human breast cancer cells MCF-7 under laser confocal microscopy. Two typical triazole compounds were isolated for photophysical parameter measurements. The emission spectra presented a fluorescence emission peak around 620 nm for both click products. The results further confirmed the emission wavelength change was the result of azide-alkyne cycloaddition reaction. Since nearly all biomolecules can be metabolically labeled by reported alkyne-functionalized derivatives of native metabolites, our method can be readily applied to image these biomacromolecules.

  19. On the mid-latitude ionospheric storm association with intense geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Okpala, Kingsley Chukwudi; Ogbonna, Chinasa Edith

    2018-04-01

    The bulk association between ionospheric storms and geomagnetic storms has been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤ 100 nT) that occurred during solar cycles 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storm were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e. Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric conditions at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.

  20. A Study of Ionospheric Storm Association with Intense Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Okpala, K. C.

    2017-12-01

    The bulk association between ionospheric storms and geomagnetic storms have been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤100nT) that occurred during solar cycle 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storms were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric condition at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.

  1. Column-like EED extending from equatorial topside ionosphere toward plasmasphere retrieved from IGS and LEO/GPS observations with 3-D CT inversion

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Ma, S. Y.; Xu, J. S.; Xiong, C.; Luehr, H.; Jakowski, N.

    2010-05-01

    The electron density distributions in the equatorial ionosphere are retrieved from GPS observations of joint ground-based IGS and onboard CHAMP/GRACE satellites during November 2004 super-storm by 3-D tomography technique. For LEO satellite-based GPS receiving, both the occultation TEC data and that along the radio propagation paths above the LEO are used and assimilated into the huge IGS TEC dataset. The electron density images are reconstructed for different sectors of America, Asia and Europe and produced for every hour. The retrieved electron densities are validated by satellite in situ measurements of CHAMP Langmuir probe and GRACE Ka-band SST (low-low satellite-to-satellite tracking) derived electron density averaged between the two satellites, as well as by numerical simulations. It reveals some very interesting storm-time structures of Ne distributions, such as top-hat-like F2-3 double layer and column-like enhanced electron densities (CEED). The CEED are found during the main phase of the storm near the minimum of Dst and in the longitudinal sector centered at 157E. They extend from the topside ionosphere toward to plasmasphere, reaching at least about 2000 km as high. The footprints of the CEED stand on the two peaks of the EIA. The forming mechanism of CEED and its relationship with SED and plasmaspheric plumes are worthy of further study. This work is supported by NSFC (No.40674078).

  2. A new inversion algorithm for HF sky-wave backscatter ionograms

    NASA Astrophysics Data System (ADS)

    Feng, Jing; Ni, Binbin; Lou, Peng; Wei, Na; Yang, Longquan; Liu, Wen; Zhao, Zhengyu; Li, Xue

    2018-05-01

    HF sky-wave backscatter sounding system is capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density. The leading edge (LE) of a backscatter ionogram (BSI) is widely used for ionospheric inversion since it is hardly affected by any factors other than ionospheric electron density. Traditional BSI inversion methods have failed to distinguish LEs associated with different ionospheric layers, and simply utilize the minimum group path of each operating frequency, which generally corresponds to the LE associated with the F2 layer. Consequently, while the inversion results can provide accurate profiles of the F region below the F2 peak, the diagnostics may not be so effective for other ionospheric layers. In order to resolve this issue, we present a new BSI inversion method using LEs associated with different layers, which can further improve the accuracy of electron density distribution, especially the profile of the ionospheric layers below the F2 region. The efficiency of the algorithm is evaluated by computing the mean and the standard deviation of the differences between inverted parameter values and true values obtained from both vertical and oblique incidence sounding. Test results clearly manifest that the method we have developed outputs more accurate electron density profiles due to improvements to acquire the profiles of the layers below the F2 region. Our study can further improve the current BSI inversion methods on the reconstruction of 2-D electron density distribution in a vertical plane aligned with the direction of sounding.

  3. Characterizing water-metal interfaces and machine learning potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Ryczko, Kevin

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  4. Low-Dimensional Materials for Optoelectronic and Bioelectronic Applications

    NASA Astrophysics Data System (ADS)

    Hong, Tu

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  5. Low frequency spectra of type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Weber, R. R.

    1978-01-01

    Flux density spectra have been determined for 91 simple type III solar bursts observed by the Goddard Space Flight Center radio astronomy experiment on the IMP-6 spacecraft during 1971 and 1972. Spectral peaks were found to occur at frequencies ranging from 44 kHz up to 2500 kHz. Half of the bursts peaked between 250 kHz and 900 kHz, corresponding to emission at solar distances of about 0.3 to 0.1 AU. Maximum burst flux density sometimes exceeds 10 to the -14th W/sq m/Hz. The primary factor controlling the spectral peak frequency of these bursts appears to be a variation in intrinsic power radiated by the source as the exciter moves outward from the sun, rather than radio propagation effects between the source and IMP-6. Thus, a burst spectrum strongly reflects the evolution of the properties of the exciting electron beam, and according to current theory, beam deceleration could help account for the observations.

  6. Toward single-chirality carbon nanotube device arrays.

    PubMed

    Vijayaraghavan, Aravind; Hennrich, Frank; Stürzl, Ninette; Engel, Michael; Ganzhorn, Marc; Oron-Carl, Matti; Marquardt, Christoph W; Dehm, Simone; Lebedkin, Sergei; Kappes, Manfred M; Krupke, Ralph

    2010-05-25

    The large-scale integration of devices consisting of individual single-walled carbon nanotubes (SWCNT), all of the same chirality, is a critical step toward their electronic, optoelectronic, and electromechanical application. Here, the authors realize two related goals, the first of which is the fabrication of high-density, single-chirality SWCNT device arrays by dielectrophoretic assembly from monodisperse SWCNT solution obtained by polymer-mediated sorting. Such arrays are ideal for correlating measurements using various techniques across multiple identical devices, which is the second goal. The arrays are characterized by voltage-contrast scanning electron microscopy, electron transport, photoluminescence (PL), and Raman spectroscopy and show identical signatures as expected for single-chirality SWCNTs. In the assembled nanotubes, a large D peak in Raman spectra, a large dark-exciton peak in PL spectra as well as lowered conductance and slow switching in electron transport are all shown to be correlated to each other. By comparison to control samples, we conclude that these are the result of scattering from electronic and not structural defects resulting from the polymer wrapping, similar to what has been predicted for DNA wrapping.

  7. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less

  8. Feasibility of Juno radio occultations of the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Phipps, P. H.; Withers, P.

    2016-12-01

    Jupiter's magnetosphere is driven by internally produced plasma. The innermost Galilean satellite, Io, isthe dominant source of this plasma. Volcanoes on Io's surface create an atmosphere of sulfur and oxygenwhich escapes into Jupiter's magnetosphere and becomes ionized. This ionized material is trapped byJupiter's magnetic field and creates a torus of plasma centered at Io's orbital radius, called the Io plasmatorus. This torus is divided into three regions distinct in both density and composition. Densities in thistorus can be probed by spacecraft via radio occultations. A radio occultation occurs when plasma comesbetween a spacecraft and a receiver during a time when the spacecraft is sending a radio signal. The Junospacecraft, which arrived in orbit around Jupiter in July 2016, is in an orbit which will be ideal forperforming radio occultations of the Io plasma torus. We test the feasibility of using thetelecommunications system on the Juno spacecraft to perform a radio occultation. Io plasma torusdensities derived from Voyager 1 data are used in creating a model torus. Using the Ka and X-band radiofrequencies we derive vertical profiles for the total electron content of the modeled Io plasma torus. AMarkov Chain Monte Carlo fit is performed on the derived profiles to extract, for each of the torusregions, the scale height and peak total electron content. The scale height can be used to derive atemperature for the torus while the peak total electron content can be used to derive the peak electrondensity. We show that Juno radio occultation measurements of the Io plasma torus are feasible andscientifically valuable.

  9. Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors

    NASA Astrophysics Data System (ADS)

    Kim, J.-S.; Tyryshkin, A. M.; Lyon, S. A.

    2017-03-01

    Electron-beam (e-beam) lithography is commonly used in fabricating metal-oxide-silicon (MOS) quantum devices but creates defects at the Si/SiO2 interface. Here, we show that a forming gas anneal is effective at removing shallow defects (≤4 meV below the conduction band edge) created by an e-beam exposure by measuring the density of shallow electron traps in two sets of high-mobility MOS field-effect transistors. One set was irradiated with an electron-beam (10 keV, 40 μC/cm2) and was subsequently annealed in forming gas while the other set remained unexposed. Low temperature (335 mK) transport measurements indicate that the forming gas anneal recovers the e-beam exposed sample's peak mobility (14 000 cm2/Vs) to within a factor of two of the unexposed sample's mobility (23 000 cm2/Vs). Using electron spin resonance (ESR) to measure the density of shallow traps, we find that the two sets of devices are nearly identical, indicating the forming gas anneal is sufficient to anneal out shallow defects generated by the e-beam exposure. Fitting the two sets of devices' transport data to a percolation transition model, we extract a T = 0 percolation threshold density in quantitative agreement with our lowest temperature ESR-measured trap densities.

  10. Negative ion kinetics in RF glow discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottscho, R.A.; Gacbe, C.E.

    1986-04-01

    Using temporally and spatially resolved laser spectroscopy, the authors have determined the identities, approximate concentrations, effects on the local field, and kinetics of formation and loss of negative ions in RF discharges. CI/sup -/ and BCI/sub 3//sup -/ are the dominant negative ions found in low-frequency discharges through CI/sub 2/ and BCI/sub 3/, respectively. The electron affinity for CI is measured to be 3.6118 +- 0.0005 eV. Negative ion kinetics are strongly affected by application of the RF field. Formation of negative ions by attachment of slow electrons in RF discharges is governed by the extent and duration of electronmore » energy relaxation. Similarly, destruction of negative ions by collisional detachment and field extraction is dependent upon ion energy modulation. Thus, at low frequency, the anion density peaks at the beginning of the anodic and cathodic half-cycles after electrons have attached but before detachment and extraction have had time to occur. At higher frequencies, electrons have insufficient time to attach before they are reheated and the instantaneous anion density in the sheath is greatly reduced. When the negative ion density is comparable to the positive ion density, the plasma potential is observed to lie below the anode potential, double layers form between sheath and plasma, and anions and electrons are accelerated by large sheath fields to electrode surfaces.« less

  11. The causes of the hardest electron precipitation events seen with SAMPEX

    NASA Astrophysics Data System (ADS)

    Smith, David M.; Casavant, Eric P.; Comess, Max D.; Liang, Xinqing; Bowers, Gregory S.; Selesnick, Richard S.; Clausen, Lasse B. N.; Millan, Robyn M.; Sample, John G.

    2016-09-01

    We studied the geomagnetic, plasmaspheric, and solar wind context of relativistic electron precipitation (REP) events seen with the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), Proton Electron Telescope (PET) to derive an exponential folding energy E0 for each event. Events with E0< 400 keV peak near midnight, and with increasing E0, the peak magnetic local time (MLT) moves earlier but never peaks as early as the MLT distribution of electromagnetic ion cyclotron (EMIC) waves in the outer belt, and a distinct component near midnight remains. Events with E0>750 keV near dusk (1400 < MLT < 2000) show correlations with solar wind dynamic pressure and proton density, AE index, negative Dst index, and an extended plasmasphere, all supporting an EMIC wave interpretation. Events with 500 keV 500 keV ("hard REP"), we estimate that roughly 45% of the whole population has the distributions of geomagnetic and solar wind parameters associated with EMIC waves, while 55% does not. We hypothesize that the latter events may be caused by current sheet scattering (CSS), which can be mistaken for EMIC wave scattering in that both simultaneously precipitate MeV electrons and keV protons. Since a large number of MeV electrons are lost in the near-midnight hard REP events, and in the large number of E0< 400 keV events that show no dusk-like peak at all, we conclude that CSS should be studied further as a possibly important loss channel for MeV electrons.

  12. Current structure and flow pattern on the electron separatrix in reconnection region

    NASA Astrophysics Data System (ADS)

    Guo, Ruilong; Pu, Zuyin; Wei, Yong

    2017-12-01

    Results from 2.5D Particle-in-cell (PIC) simulations of symmetric reconnection with negligible guide field reveal that the accessible boundary of the electrons accelerated in the magnetic reconnection region is displayed by enhanced electron nongyrotropy downstream from the X-line. The boundary, hereafter termed the electron separatrix, occurs at a few d e (electron inertial length) away from the exhaust side of the magnetic separatrix. On the inflow side of the electron separatrix, the current is mainly carried by parallel accelerated electrons, served as the inflow region patch of the Hall current. The out-of-plane current density enhances at the electron separatrix. The dominating current carriers are the electrons, nongyrotropic distribution functions of which contribute significantly to the perpendicular electron velocity by increasing the electron diamagnetic drift velocity. When crossing the separatrix region where the Hall electric field is enhanced, electron velocity orientation is changed dramatically, which could be a diagnostic indicator to detect the electron separatrix. In the exhaust region, ions are the main carriers for the out-of-plane current, while the parallel current is still mainly carried by electrons. The current density peak in the separatrix region implies that a thin current sheet is formed apart from the neutral line, which can evolve to the bifurcated current sheet.

  13. Kinetic-scale fluctuations resolved with the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission.

    NASA Astrophysics Data System (ADS)

    Gershman, D. J.; Figueroa-Vinas, A.; Dorelli, J.; Goldstein, M. L.; Shuster, J. R.; Avanov, L. A.; Boardsen, S. A.; Stawarz, J. E.; Schwartz, S. J.; Schiff, C.; Lavraud, B.; Saito, Y.; Paterson, W. R.; Giles, B. L.; Pollock, C. J.; Strangeway, R. J.; Russell, C. T.; Torbert, R. B.; Moore, T. E.; Burch, J. L.

    2017-12-01

    Measurements from the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission have enabled unprecedented analyses of kinetic-scale plasma physics. FPI regularly provides estimates of current density and pressure gradients of sufficient accuracy to evaluate the relative contribution of terms in plasma equations of motion. In addition, high-resolution three-dimensional velocity distribution functions of both ions and electrons provide new insights into kinetic-scale processes. As an example, for a monochromatic kinetic Alfven wave (KAW) we find non-zero, but out-of-phase parallel current density and electric field fluctuations, providing direct confirmation of the conservative energy exchange between the wave field and particles. In addition, we use fluctuations in current density and magnetic field to calculate the perpendicular and parallel wavelengths of the KAW. Furthermore, examination of the electron velocity distribution inside the KAW reveals a population of electrons non-linearly trapped in the kinetic-scale magnetic mirror formed between successive wave peaks. These electrons not only contribute to the wave's parallel electric field but also account for over half of the density fluctuations within the wave, supplying an unexpected mechanism for maintaining quasi-neutrality in a KAW. Finally, we demonstrate that the employed wave vector determination technique is also applicable to broadband fluctuations found in Earth's turbulent magnetosheath.

  14. Real-Space Analysis of Scanning Tunneling Microscopy Topography Datasets Using Sparse Modeling Approach

    NASA Astrophysics Data System (ADS)

    Miyama, Masamichi J.; Hukushima, Koji

    2018-04-01

    A sparse modeling approach is proposed for analyzing scanning tunneling microscopy topography data, which contain numerous peaks originating from the electron density of surface atoms and/or impurities. The method, based on the relevance vector machine with L1 regularization and k-means clustering, enables separation of the peaks and peak center positioning with accuracy beyond the resolution of the measurement grid. The validity and efficiency of the proposed method are demonstrated using synthetic data in comparison with the conventional least-squares method. An application of the proposed method to experimental data of a metallic oxide thin-film clearly indicates the existence of defects and corresponding local lattice distortions.

  15. X-ray peak broadening analysis of AA 6061{sub 100-x} - x wt.% Al{sub 2}O{sub 3} nanocomposite prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasankaran, S., E-mail: sivasankarangs1979@gmail.com; Sivaprasad, K., E-mail: ksp@nitt.edu; Narayanasamy, R., E-mail: narayan@nitt.edu

    2011-07-15

    Nanocrystalline AA 6061 alloy reinforced with alumina (0, 4, 8, and 12 wt.%) in amorphized state composite powder was synthesized by mechanical alloying and consolidated by conventional powder metallurgy route. The as-milled and as-sintered (573 K and 673 K) nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The peaks corresponding to fine alumina was not observed by XRD patterns due to amorphization. Using high-resolution transmission electron microscope, it is confirmed that the presence of amorphized alumina observed in Al lattice fringes. The crystallite size, lattice strain, deformation stress, and strain energy density of AA 6061 matrixmore » were determined precisely from the first five most intensive reflection of XRD using simple Williamson-Hall models; uniform deformation model, uniform stress deformation model, and uniform energy density deformation model. Among the developed models, uniform energy density deformation model was observed to be the best fit and realistic model for mechanically alloyed powders. This model evidenced the more anisotropic nature of the ball milled powders. The XRD peaks of as-milled powder samples demonstrated a considerable broadening with percentage of reinforcement due to grain refinement and lattice distortions during same milling time (40 h). The as-sintered (673 K) unreinforced AA 6061 matrix crystallite size from well fitted uniform energy density deformation model was 98 nm. The as-milled and as-sintered (673 K) nanocrystallite matrix sizes for 12 wt.% Al{sub 2}O{sub 3} well fitted by uniform energy density deformation model were 38 nm and 77 nm respectively, which indicate that the fine Al{sub 2}O{sub 3} pinned the matrix grain boundary and prevented the grain growth during sintering. Finally, the lattice parameter of Al matrix in as-milled and as-sintered conditions was also investigated in this paper. Research highlights: {yields} Integral breadth methods using various Williamson-Hall models were investigated for line profile analysis. {yields} Uniform energy density deformation model is observed to the best realistic model. {yields} The present analysis is used for understanding the stress and the strain present in the nanocomposites.« less

  16. Positron Annihilation Induced Auger Electron Spectroscopic Studies Of Reconstructed Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Fazleev, N. G.; Reed, J. A.; Starnes, S. G.; Weiss, A. H.

    2011-06-01

    The positron annihilation induced Auger spectrum from GaAs(100) displays six As and three Ga Auger peaks below 110 eV corresponding to M4,5VV, M2M4V, M2,3M4,5M4,5 Auger transitions for As and M2,3M4,5M4,5 Auger transitions for Ga. The integrated Auger peak intensities have been used to obtain experimental annihilation probabilities of surface trapped positrons with As 3p and 3d and Ga 3p core level electrons. PAES data is analyzed by performing calculations of positron surface and bulk states and annihilation characteristics of surface trapped positrons with relevant Ga and As core level electrons for both Ga- and As-rich (100) surfaces of GaAs, ideally terminated, non-reconstructed and with (2×8), (2×4), and (4×4) reconstructions. The orientation-dependent variations of the atomic and electron densities associated with reconstructions are found to affect localization of the positron wave function at the surface. Computed positron binding energy, work function, and annihilation characteristics demonstrate their sensitivity both to chemical composition and atomic structure of the topmost layers of the surface. Theoretical annihilation probabilities of surface trapped positrons with As 3d, 3p, and Ga 3p core level electrons are compared with the ones estimated from the measured Auger peak intensities.

  17. Magnetic Fluctuations in Pair-Density-Wave Superconductors

    NASA Astrophysics Data System (ADS)

    Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.

    2016-04-01

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

  18. Acceleration and Pickup Ring of Energetic Electrons Observed in Relativistic Magnetic Reconnection Simulations

    NASA Astrophysics Data System (ADS)

    Ping, Y. L.; Zhong, J. Y.; Wang, X. G.; Sheng, Z. M.; Zhao, G.

    2017-11-01

    Pickup ring of energetic electrons found in relativistic magnetic reconnection (MR) driven by two relativistic intense femtosecond laser pulses is investigated by particle simulation in 3D geometry. Magnetic reconnection processes and configurations are characterized by plasma current density distributions at different axial positions. Two helical structures associated with the circular polarization of laser pulses break down in the reconnection processes to form a current sheet between them, where energetic electrons are found to pile up and the outflow relativistic electron jets are observed. In the field line diffusion region, electrons are accelerated to multi-MeV with a flatter power-law spectrum due to MR. The development of the pickup ring of energetic electrons is strongly dependent upon laser peak intensities.

  19. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    PubMed

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100  μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5  μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.

  20. Modelling relativistic effects in momentum-resolved electron energy loss spectroscopy of graphene

    NASA Astrophysics Data System (ADS)

    Lyon, K.; Mowbray, D. J.; Miskovic, Z. L.

    2018-02-01

    We present an analytical model for the electron energy loss through a two-dimensional (2D) layer of graphene, fully taking into account relativistic effects. Using two different models for graphene's 2D conductivity, one a two-fluid hydrodynamic model with an added correction to account for the inter-band electron transitions near the Dirac point in undoped graphene, the other derived from ab initio plane-wave time-dependent density functional theory in the frequency domain (PW-TDDFT-ω) calculations applied on a graphene superlattice, we derive various different expressions for the probability density of energy and momentum transfer from the incident electron to graphene. To further compare with electron energy loss spectroscopy (EELS) experiments that use setups like scanning Transmission Electron Microscopy, we integrated our energy loss functions over a range of wavenumbers, and compared how the choice of range directly affects the shape, position, and relative heights of graphene's π → π* and σ → σ* transition peaks. Comparisons were made with experimental EELS data under different model inputs, revealing again the strong effect that the choice of wavenumber range has on the energy loss.

  1. Exciton Absorption in Semiconductor Quantum Wells Driven by a Strong Intersubband Pump Field

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Optical interband excitonic absorption of semiconductor quantum wells (QW's) driven by a coherent pump field is investigated based on semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW's. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron-hole pairs in the QW structure is low, the pump field induces an Autler-Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron-hole pairs is increased, the split contrast (the ratio between the maximum and minimum values) is decreased because the exciton effect is suppressed at higher densities due to the many-body screening.

  2. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  3. Cholesterol oxidase: ultrahigh-resolution crystal structure and multipolar atom model-based analysis.

    PubMed

    Zarychta, Bartosz; Lyubimov, Artem; Ahmed, Maqsood; Munshi, Parthapratim; Guillot, Benoît; Vrielink, Alice; Jelsch, Christian

    2015-04-01

    Examination of protein structure at the subatomic level is required to improve the understanding of enzymatic function. For this purpose, X-ray diffraction data have been collected at 100 K from cholesterol oxidase crystals using synchrotron radiation to an optical resolution of 0.94 Å. After refinement using the spherical atom model, nonmodelled bonding peaks were detected in the Fourier residual electron density on some of the individual bonds. Well defined bond density was observed in the peptide plane after averaging maps on the residues with the lowest thermal motion. The multipolar electron density of the protein-cofactor complex was modelled by transfer of the ELMAM2 charge-density database, and the topology of the intermolecular interactions between the protein and the flavin adenine dinucleotide (FAD) cofactor was subsequently investigated. Taking advantage of the high resolution of the structure, the stereochemistry of main-chain bond lengths and of C=O···H-N hydrogen bonds was analyzed with respect to the different secondary-structure elements.

  4. The most intense current sheets in the high-speed solar wind near 1 AU

    NASA Astrophysics Data System (ADS)

    Podesta, John J.

    2017-03-01

    Electric currents in the solar wind plasma are investigated using 92 ms fluxgate magnetometer data acquired in a high-speed stream near 1 AU. The minimum resolvable scale is roughly 0.18 s in the spacecraft frame or, using Taylor's "frozen turbulence" approximation, one proton inertial length di in the plasma frame. A new way of identifying current sheets is developed that utilizes a proxy for the current density J obtained from the derivatives of the three orthogonal components of the observed magnetic field B. The most intense currents are identified as 5σ events, where σ is the standard deviation of the current density. The observed 5σ events are characterized by an average scale size of approximately 3di along the flow direction of the solar wind, a median separation of around 50di or 100di along the flow direction of the solar wind, and a peak current density on the order of 0.5 pA/cm2. The associated current-carrying structures are consistent with current sheets; however, the planar geometry of these structures cannot be confirmed using single-point, single-spacecraft measurements. If Taylor's hypothesis continues to hold for the energetically dominant fluctuations at kinetic scales 1

  5. Spontaneous emission from radiative chiral nematic liquid crystals at the photonic band-gap edge: an investigation into the role of the density of photon states near resonance.

    PubMed

    Mavrogordatos, Th K; Morris, S M; Wood, S M; Coles, H J; Wilkinson, T D

    2013-06-01

    In this article, we investigate the spontaneous emission properties of radiating molecules embedded in a chiral nematic liquid crystal, under the assumption that the electronic transition frequency is close to the photonic edge mode of the structure, i.e., at resonance. We take into account the transition broadening and the decay of electromagnetic field modes supported by the so-called "mirrorless"cavity. We employ the Jaynes-Cummings Hamiltonian to describe the electron interaction with the electromagnetic field, focusing on the mode with the diffracting polarization in the chiral nematic layer. As known in these structures, the density of photon states, calculated via the Wigner method, has distinct peaks on either side of the photonic band gap, which manifests itself as a considerable modification of the emission spectrum. We demonstrate that, near resonance, there are notable differences between the behavior of the density of states and the spontaneous emission profile of these structures. In addition, we examine in some detail the case of the logarithmic peak exhibited in the density of states in two-dimensional photonic structures and obtain analytic relations for the Lamb shift and the broadening of the atomic transition in the emission spectrum. The dynamical behavior of the atom-field system is described by a system of two first-order differential equations, solved using the Green's-function method and the Fourier transform. The emission spectra are then calculated and compared with experimental data.

  6. Propagation distance-resolved characteristics of filament-induced copper plasma

    DOE PAGES

    Ghebregziabher, Isaac; Hartig, Kyle C.; Jovanovic, Igor

    2016-03-02

    Copper plasma generated at different filament-copper interaction points was characterized by spectroscopic, acoustic, and imaging measurements. The longitudinal variation of the filament intensity was qualitatively determined by acoustic measurements in air. The maximum plasma temperature was measured at the location of peak filament intensity, corresponding to the maximum mean electron energy during plasma formation. The highest copper plasma density was measured past the location of the maximum electron density in the filament, where spectral broadening of the filament leads to enhanced ionization. Acoustic measurements in air and on solid target were correlated to reconstructed plasma properties. Lastly, optimal line emissionmore » is measured near the geometric focus of the lens used to produce the filament.« less

  7. Rare earth chalcogenide Ce3Te4 as high efficiency high temperature thermoelectric material

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Yang, Ronggui; Zhang, Yong; Zhang, Peihong; Xue, Yu

    2011-05-01

    The electronic band structures of Ce3Te4 have been studied using the first-principles density-functional theory calculations. It is found that the density of states of Ce3Te4 has a very high delta-shaped peak appearing 0.21 eV above the Fermi level, which mainly comes from the f orbital electrons of the rare-earth element Ce. Using the simple theory proposed by Mahan and Sofo, [Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)], we obtain an ideal value of zT=13.5 for Ce3Te4 at T=1200 K, suggesting that the rare-earth chalcogenide Ce3Te4 could be a promising high efficiency high temperature thermoelectric material.

  8. Thermal conductivity of graphene with defects induced by electron beam irradiation.

    PubMed

    Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L; Mulchandani, Ashok; Lake, Roger K; Balandin, Alexander A

    2016-08-14

    We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ∼7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 10(10) cm(-2) to 1.8 × 10(11) cm(-2) the thermal conductivity decreases from ∼(1.8 ± 0.2) × 10(3) W mK(-1) to ∼(4.0 ± 0.2) × 10(2) W mK(-1) near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ∼400 W mK(-1). The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.

  9. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    DOE PAGES

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-28

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak n e~ > 5x10 19 m –3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D, with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density n e(z,t) and temperature T e(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excitedmore » state manifolds are calculated in order to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at p Ar = 30-60 mTorr. Lastly, we present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency (RF) antenna.« less

  10. Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study.

    PubMed

    Li, Yuanzheng; Li, Xinshu; Yu, Tong; Yang, Guochun; Chen, Heyu; Zhang, Cen; Feng, Qiushi; Ma, Jiangang; Liu, Weizhen; Xu, Haiyang; Liu, Yichun; Liu, Xinfeng

    2018-03-23

    Transition metal dichalcogenides (TMDs) with a typical layered structure are highly sensitive to their layer number in optical and electronic properties. Seeking a simple and effective method for layer number identification is very important to low-dimensional TMD samples. Herein, a rapid and accurate layer number identification of few-layer WS 2 and WSe 2 is proposed via locking their photoluminescence (PL) peak-positions. As the layer number of WS 2 /WSe 2 increases, it is found that indirect transition emission is more thickness-sensitive than direct transition emission, and the PL peak-position differences between the indirect and direct transitions can be regarded as fingerprints to identify their layer number. Theoretical calculation confirms that the notable thickness-sensitivity of indirect transition derives from the variations of electron density of states of W atom d-orbitals and chalcogen atom p-orbitals. Besides, the PL peak-position differences between the indirect and direct transitions are almost independent of different insulating substrates. This work not only proposes a new method for layer number identification via PL studies, but also provides a valuable insight into the thickness-dependent optical and electronic properties of W-based TMDs.

  11. Synthesis and characterization of metal-dielectric composites with copper nanoparticles embedded in a glass matrix: A multitechnique approach

    NASA Astrophysics Data System (ADS)

    Lipinska-Kalita, Kristina E.; Krol, Denise M.; Hemley, Russell J.; Mariotto, Gino; Kalita, Patricia E.; Ohki, Yoshimichi

    2005-09-01

    The precipitation and growth of copper nanoparticles in an optically transparent aluminosilicate glass matrix was investigated. The size of particles in this heterophase glass-based composite was modified in a controlled manner by isothermal heat treatments. A multitechnique approach, consisting of Raman scattering spectroscopy, high-resolution transmission electron microscopy, x-ray diffraction technique, and optical absorption spectroscopy, has been used to study the nucleation and crystallization processes. Optical absorption spectroscopy revealed the presence of intense absorption bands attributed to oscillations of free electrons, known as the surface-plasmon resonance band of copper particles, and confirmed a gradual increase of the particles' mean size and density with annealing time. The Raman scattering on acoustical phonons from Cu quantum dots in the glass matrix measured for off-resonance conditions demonstrated the presence of intense, inhomogeneously broadened peaks that have been assigned to the confined acoustic eigenmodes of copper nanoparticles. The particle-size dependence of the acoustic peak energies and the relation between the size distribution and bandwidths of these peaks were derived. High-resolution transmission electron microscopy was used to monitor the nucleation of the nanoparticles and to estimate their mean size.

  12. Diffraction efficiency of plasmonic gratings fabricated by electron beam lithography using a silver halide film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer,, E-mail: sudheer@rrcat.gov.in, E-mail: sudheer.rrcat@gmail.com; Tiwari, P.; Srivastava, Himanshu

    2016-07-28

    The silver nanoparticle surface relief gratings of ∼10 μm period are fabricated using electron beam lithography on the silver halide film substrate. Morphological characterization of the gratings shows that the period, the shape, and the relief depth in the gratings are mainly dependent on the number of lines per frame, the spot size, and the accelerating voltage of electron beam raster in the SEM. Optical absorption of the silver nanoparticle gratings provides a broad localized surface plasmon resonance peak in the visible region, whereas the intensity of the peaks depends on the number density of silver nanoparticles in the gratings. Themore » maximum efficiency of ∼7.2% for first order diffraction is observed for the grating fabricated at 15 keV. The efficiency is peaking at 560 nm with ∼380 nm bandwidth. The measured profiles of the diffraction efficiency for the gratings are found in close agreement with the Raman-Nath diffraction theory. This technique provides a simple and efficient method for the fabrication of plasmonic nanoparticle grating structures with high diffraction efficiency having broad wavelength tuning.« less

  13. Estimation of the Total Electron Content of the Martian Ionosphere using Radar Sounder Surface Echoes

    NASA Technical Reports Server (NTRS)

    Safaeinili, Ali; Kofman, Wlodek; Mouginot, Jeremie; Gim, Yonggyu; Herique, Alain; Ivanov, Anton B.; Plaut, Jeffrey J.; Picardi, Giovanni

    2007-01-01

    The Martian ionosphere's local total electron content (TEC) and the neutral atmosphere scale height can be derived from radar echoes reflected from the surface of the planet. We report the global distribution of the TEC by analyzing more than 750,000 echoes of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). This is the first direct measurement of the TEC of the Martian ionosphere. The technique used in this paper is a novel 'transmission-mode' sounding of the ionosphere of Mars in contrast to the Active Ionospheric Sounding experiment (AIS) on MARSIS, which generally operates in the reflection mode. This technique yields a global map of the TEC for the Martian ionosphere. The radar transmits a wideband chirp signal that travels through the ionosphere before and after being reflected from the surface. The received waves are attenuated, delayed and dispersed, depending on the electron density in the column directly below the spacecraft. In the process of correcting the radar signal, we are able to estimate the TEC and its global distribution with an unprecedented resolution of about 0.1 deg in latitude (5 km footprint). The mapping of the relative geographical variations in the estimated nightside TEC data reveals an intricate web of high electron density regions that correspond to regions where crustal magnetic field lines are connected to the solar wind. Our data demonstrates that these regions are generally but not exclusively associated with areas that have magnetic field lines perpendicular to the surface of Mars. As a result, the global TEC map provides a high-resolution view of where the Martian crustal magnetic field is connected to the solar wind. We also provide an estimate of the neutral atmospheric scale height near the ionospheric peak and observe temporal fluctuations in peak electron density related to solar activity.

  14. Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene.

    PubMed

    Ren, Jun; Meng, Sheng; Wang, Yi-Lin; Ma, Xu-Cun; Xue, Qi-Kun; Kaxiras, Efthimios

    2011-05-21

    We investigate the atomic structure and electronic properties of monolayers of copper phthalocyanines (CuPc) deposited on epitaxial graphene substrate. We focus in particular on hexadecafluorophthalocyanine (F(16)CuPc), using both theoretical and experimental (scanning tunneling microscopy - STM) studies. For the individual CuPc and F(16)CuPc molecules, we calculated the electronic and optical properties using density functional theory (DFT) and time-dependent DFT and found a red-shift in the absorption peaks of F(16)CuPc relative to those of CuPc. In F(16)CuPc, the electronic wavefunctions are more polarized toward the electronegative fluorine atoms and away from the Cu atom at the center of the molecule. When adsorbed on graphene, the molecules lie flat and form closely packed patterns: F(16)CuPc forms a hexagonal pattern with two well-ordered alternating α and β stripes while CuPc arranges into a square lattice. The competition between molecule-substrate and intermolecular van der Waals interactions plays a crucial role in establishing the molecular patterns leading to tunable electron transfer from graphene to the molecules. This transfer is controlled by the layer thickness of, or the applied voltage on, epitaxial graphene resulting in selective F(16)CuPc adsorption, as observed in STM experiments. In addition, phthalocyanine adsorption modifies the electronic structure of the underlying graphene substrate introducing intensity smoothing in the range of 2-3 eV below the Dirac point (E(D)) and a small peak in the density of states at ∼0.4 eV above E(D). © 2011 American Institute of Physics.

  15. Effect of frequency on the uniformity of symmetrical RF CCP discharges

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Booth, Jean-Paul; Chabert, Pascal

    2018-05-01

    A 2D Cartesian electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) model presented previously (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) is used to investigate the effect of the driving frequency (over the range of 15–45 MHz) on the plasma uniformity in radio frequency (RF) capacitively coupled plasma (CCP) discharges in a geometrically symmetric reactor with a dielectric side wall in argon gas. The reactor size (12 cm electrode length, 2.5 cm gap) and driving frequency are sufficiently small that electromagnetic effects can be ignored. Previously, we showed (Liu et al 2018 Plasma Sources Sci. Technol. 27 025006) that for 15 MHz excitation, Ohmic heating of electrons by the electric field perpendicular to the electrodes is enhanced in a region in front of the dielectric side wall, leading to a maximum in electron density there. In this work we show that increasing the excitation frequency (at constant applied voltage amplitude) not only increases the overall electron heating and density but also causes a stronger, narrower peak in electron heating closer to the dielectric wall, improving the plasma uniformity along the electrodes. This heating peak comes both from enhanced perpendicular electron heating and from the appearance at high frequency of significant parallel heating. The latter is caused by the presence of a significant parallel-direction RF oscillating electric field in the corners. Whereas at the reactor center the sheaths oscillate perpendicularly to the electrodes, near the dielectric edge they move in and out of the corners and must be treated in two dimensions.

  16. Development of double-pulse lasers ablation system and electron paramagnetic resonance spectroscopy for direct spectral analysis of manganese doped PVA polymer

    NASA Astrophysics Data System (ADS)

    Khalil, A. A. I.; Morsy, M. A.; El-Deen, H. Z.

    2017-11-01

    Series of manganese-co-precipitated poly (vinyl alcohol) (PVA) polymer were quantitatively and qualitatively analyzed using laser ablation system (LAS) based on double-pulse laser induced breakdown spectroscopy (DP-LIBS) and electron paramagnetic resonance (EPR) spectroscopy. The collinear nanosecond laser beams of 266 and 1064 nm were optimized to focus on the surface of the PVA polymer target. Both laser beams were employed to estimate the natural properties of the excited Mn-PVA plasma, such as electron number density (Ne), electron temperature (Te), and Mn concentration. Individual transition lines of manganese (Mn), carbon (C), lithium (Li), hydrogen (H) and oxygen (O) atoms are identified based on the NIST spectral database. The results show better responses with DP-LIBS than the single-pulse laser induced breakdown spectroscopy (SP-LIBS). On the other hand, the EPR investigation shows characteristic broad peak of Mn-nano-particles (Mn-NPs) in the range of quantum dots of superparamagnetic materials. The line width (peak-to-peak, ΔHpp) and g-value of the observed Mn-EPR peak are ∼20 mT and 2.0046, respectively. The intensities of Mn-emission line at a wavelength 403.07 nm and the Mn-EPR absorption peak were used to accurate quantify the Mn-content in the polymer matrix. The results produce linear trends within the studied concentration range with regression coefficient (R2) value of ∼0.99, and limit of detection (LOD) of 0.026 mol.% and 0.016 mol.%, respectively. The LOD values are at a fold change of about -0.2 of the studied lowest mol.%. The proposed protocols of trace element detection are of significant advantage and can be applied to the other metal analysis.

  17. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space.

    PubMed

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-12-15

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.

  18. Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.

    2018-02-01

    The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.

  19. Optical properties of body-centered tetragonal C4: Insights from many-body perturbation and time-dependent density functional theories

    NASA Astrophysics Data System (ADS)

    Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali; Hashemifar, S. Javad

    2018-04-01

    We study the electronic structure and optical properties of a body-centered tetragonal phase of carbon (bct-C4) within the framework of time-dependent density functional theory and Bethe-Salpeter equation. The results indicate that the optical properties of bct-C4 are strongly affected by the electron-hole interaction. It is demonstrated that the long-range corrected exchange-correlation kernels could fairly reproduce the Bethe-Salpeter equation results. The effective carrier number reveals that at energies above 30 eV, the excitonic effects are not dominant any more and that the optical transitions originate mainly from electronic excitations. The emerged peaks in the calculated electron energy loss spectra are discussed in terms of plasmon excitations and interband transitions. The results of the research indicate that bct-C4 is an indirect wide-band-gap semiconductor, which is transparent in the visible region and opaque in the ultraviolet spectral range.

  20. Analytical modeling of electron energy loss spectroscopy of graphene: Ab initio study versus extended hydrodynamic model.

    PubMed

    Djordjević, Tijana; Radović, Ivan; Despoja, Vito; Lyon, Keenan; Borka, Duško; Mišković, Zoran L

    2018-01-01

    We present an analytical modeling of the electron energy loss (EEL) spectroscopy data for free-standing graphene obtained by scanning transmission electron microscope. The probability density for energy loss of fast electrons traversing graphene under normal incidence is evaluated using an optical approximation based on the conductivity of graphene given in the local, i.e., frequency-dependent form derived by both a two-dimensional, two-fluid extended hydrodynamic (eHD) model and an ab initio method. We compare the results for the real and imaginary parts of the optical conductivity in graphene obtained by these two methods. The calculated probability density is directly compared with the EEL spectra from three independent experiments and we find very good agreement, especially in the case of the eHD model. Furthermore, we point out that the subtraction of the zero-loss peak from the experimental EEL spectra has a strong influence on the analytical model for the EEL spectroscopy data. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Abnormal distribution of low-latitude ionospheric electron density during November 2004 superstorm as reconstructed by 3-D CT technique from IGS and LEO/GPS observations

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Ma, S.; Xu, J.; Xiong, C.; Yan, W.; Luhr, H.; Jakowski, N.

    2010-12-01

    Using time-dependent 3-D tomography method, the electron density distributions in the mid- and low-latitude ionosphere are reconstructed from GPS observations of joint ground-based IGS network and onboard CHAMP/GRACE satellites during November 2004 super-storm. For LEO satellite-based GPS receiving, both the occultation TEC data and that along the radio propagation paths above the LEO are used. The electron density images versus latitude/altitude/longitude are reconstructed for different sectors of America/Asia/Europe and produced every hour. The reconstructed electron densities are validated by satellite in situ measurements of CHAMP Langmuir probe and GRACE Ka-band SST (low-low satellite-to-satellite tracking) derived electron density averaged between the two satellites, as well as by CIT simulations. It reveals some very interesting storm-time structures of Ne distributions, such as top-hat-like F2-3 double layer and column-like enhanced electron densities (CEED). The double layer structure appeared over a large latitude range from about -30 degree to 20 degree along East-Asian/Australia longitudes before local noon, looking like one additional smaller EIA structure standing above the usual one of EIA. It is consistent with the F-3 layer observed by ionosonde at an Australian low-latitude station. The CEED are found just 1-2 hours before the minimum of Dst and in the longitudinal sector about 157 E. They extend from the topside ionosphere toward plasmasphere, reaching at least about 2000 km as high. Their footprints stand on the two peaks of the EIA. This CEED is also seen in the image of 30.4 nm He ++ radiation by IMAGE, showing a narrow channel of enhanced density extending from afternoon ionosphere to plasmsphere westward. The forming mechanism of CEED and its relationship with SED and plasmaspheric plumes are worthy of further study. Acknowledgement: This work is supported by NSFC (No.40674078).

  2. Electron Density Profiles of the Topside Ionosphere

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinsch, Bodo W.; Bilitza, Dieter; Benson, Robert F.

    2002-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h,F2 to - 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis- status.htm1. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling - 70% of the ionograms. An <> is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.

  3. Laser-induced oxidation of cholesterol observed during MALDI-TOF mass spectrometry.

    PubMed

    McAvey, Kevin M; Guan, Bing; Fortier, Chanel A; Tarr, Matthew A; Cole, Richard B

    2011-04-01

    Conditions for the detection of three odd-electron cholesterol oxidation peaks were determined and these peaks were shown to be artifacts of the matrix-assisted laser desorption time of flight (MALDI-TOF) process. Matrix choice, solvent, laser intensity and cholesterol concentration were systematically varied to characterize the conditions leading to the highest signals of the radical cation peaks, and it was found that initial cholesterol solution concentration and resultant density of solid cholesterol on the MALDI target were important parameters in determining signal intensities. It is proposed that hydroxyl radicals, generated as a result of laser irradiation of the employed 2,5-dihydroxybenzoic acid (DHB) matrix, initiate cholesterol oxidation on the MALDI target. An attempt to induce the odd-electron oxidation peaks by means of adding an oxidizing agent succeeded using an acetonitrile solution of DHB, cholesterol, and cumene hydroperoxide. Moreover, addition of free radical scavengers reduced the abundances of some oxidation products under certain conditions. These results are consistent with the mechanism of oxidation proposed herein involving laser-induced hydroxyl radical production followed by attack on neutral cholesterol. Hydroxyl radical production upon irradiation of dithranol matrix may also be responsible for generation of the same radical peaks observed from cholesterol in dithranol by an analogous mechanism. © American Society for Mass Spectrometry, 2011

  4. Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength

    NASA Astrophysics Data System (ADS)

    Horikoshi, S.; Matsumoto, N.; Omata, Y.; Kato, T.

    2014-05-01

    Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.

  5. Self-absorption characteristics of measured laser-induced plasma line shapes

    NASA Astrophysics Data System (ADS)

    Parigger, C. G.; Surmick, D. M.; Gautam, G.

    2017-02-01

    The determination of electron density and temperature is reported from line-of-sight measurements of laser-induced plasma. Experiments are conducted in standard ambient temperature and pressure air and in a cell containing ultra-high-pure hydrogen slightly above atmospheric pressure. Spectra of the hydrogen Balmer series lines can be measured in laboratory air due to residual moisture following optical breakdown generated with 13 to 14 nanosecond, pulsed Nd:YAG laser radiation. Comparisons with spectra obtained in hydrogen gas yields Abel-inverted line shape appearances that indicate occurrence of self-absorption. The electron density and temperature distributions along the line of sight show near-spherical rings, expanding at or near the speed of sound in the hydrogen gas experiments. The temperatures in the hydrogen studies are obtained using Balmer series alpha, beta, gamma profiles. Over and above the application of empirical formulae to derive the electron density from hydrogen alpha width and shift, and from hydrogen beta width and peak-separation, so-called escape factors and the use of a doubling mirror are discussed.

  6. Brickworx builds recurrent RNA and DNA structural motifs into medium- and low-resolution electron-density maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chojnowski, Grzegorz, E-mail: gchojnowski@genesilico.pl; Waleń, Tomasz; University of Warsaw, Banacha 2, 02-097 Warsaw

    2015-03-01

    A computer program that builds crystal structure models of nucleic acid molecules is presented. Brickworx is a computer program that builds crystal structure models of nucleic acid molecules using recurrent motifs including double-stranded helices. In a first step, the program searches for electron-density peaks that may correspond to phosphate groups; it may also take into account phosphate-group positions provided by the user. Subsequently, comparing the three-dimensional patterns of the P atoms with a database of nucleic acid fragments, it finds the matching positions of the double-stranded helical motifs (A-RNA or B-DNA) in the unit cell. If the target structure ismore » RNA, the helical fragments are further extended with recurrent RNA motifs from a fragment library that contains single-stranded segments. Finally, the matched motifs are merged and refined in real space to find the most likely conformations, including a fit of the sequence to the electron-density map. The Brickworx program is available for download and as a web server at http://iimcb.genesilico.pl/brickworx.« less

  7. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: On the possibility of pumping Xe2* lasers and VUV lamps in the afterglow of a background-electron multiplication wave

    NASA Astrophysics Data System (ADS)

    Boichenko, Aleksandr M.; Yakovlenko, Sergei I.

    2006-12-01

    It was shown earlier that the ionisation propagation in a gas at about the atmospheric pressure may proceed due to the multiplication of the existing electrons with a low background density rather than the transfer of electrons or photons. We consider the feasibility of using the plasma produced in the afterglow of this background-electron multiplication wave for pumping plasma lasers (in particular, Xe2* xenon excimer lasers) as well as excilamps. Simulations show that it is possible to achieve the laser effect at λapprox172 nm as well as to substantially improve the peak specific power of the spontaneous radiation of xenon lamps.

  8. Upper D region chemical kinetic modeling of LORE relaxation times

    NASA Astrophysics Data System (ADS)

    Gordillo-Vázquez, F. J.; Luque, A.; Haldoupis, C.

    2016-04-01

    The recovery times of upper D region electron density elevations, caused by lightning-induced electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere; they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground) lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are considered first for a weak enhancement in electron density and then for a much stronger one caused by an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above 79 km attachment is balanced totally by associative electron detachment so that electron loss at these higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition, a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied, which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical early VLF events, which are known to be associated with sprites.

  9. Temperature peaking at beginning of breakdown in 2.45 GHz pulsed off-resonance electron cyclotron resonance ion source hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.

    2012-10-01

    An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 μs are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.

  10. Remote sensing of electron density and ion composition using nonducted whistler observations on OGO 1 and Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Butler, J.; Reddy, A.

    2017-12-01

    We present a new method to remotely measure magnetospheric electron density and ion composition using lightning generated nonducted whistlers observed on a satellite. Electron and ion densities play important roles in magnetospheric processes such as wave-particle interactions in the equatorial region and ion-neutral dynamics in the ionosphere, and are important for calculating space weather effects such as particle precipitation, GPS scintillations, and satellite drag. The nonducted whistler resulting from a single lightning appears on a spectrogram as a series of magnetospherically reflected traces with characteristic dispersion (time delay versus frequency) and upper and lower cut off frequencies. Ray tracing simulations show that these observed characteristics depend on the magnetospheric electron density and ion composition. The cut off frequencies depend on both electron density and ion composition. The dispersion depends strongly on electron density, but weakly on ion composition. Using an iterative process to fit the measured dispersion and cutoff frequencies to those obtained from ray tracing simulations, it is possible to construct the electron and ion density profiles of the magnetosphere. We demonstrate our method by applying it to nonducted whistlers observed on OGO 1 and Van Allen probe satellites. In one instance (08 Nov 1965), whistler traces observed on OGO 1 (L = 2.4, λm = -6°) displayed a few seconds of dispersion and cutoff frequencies in the 1-10 kHz range. Ray tracing analysis showed that a diffusive equilibrium density model with the following parameters can reproduce the observed characteristics of the whistler traces: 1900 el/cc at L=2.4 and the equator, 358,000 el/cc at F2 peak (hmF2 = 220 km), the relative ion concentrations αH+ = 0.2, αHe+ = 0.2, and αO+ = 0.6 at 1000 km, and temperature 1600 K. The method developed here can be applied to whistlers observed on the past, current, and future magnetospheric satellite missions carrying wave instrument (e.g. OGO, ISEE 1, DE 1, POLAR, CLUSTER, Van Allen Probes). The method can be easily extended to make tomographic measurements of magnetospheric electron and ion density by analyzing a series of whistlers observed along the satellite orbit.

  11. Development of high damage threshold multilayer thin film beam combiner for laser application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nand, Mangla, E-mail: mnand@rrcat.gov.in; Babita,; Jena, S.

    2016-05-23

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm{sup 2} at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  12. Development of high damage threshold multilayer thin film beam combiner for laser application

    NASA Astrophysics Data System (ADS)

    Nand, Mangla; Babita, Jena, S.; Tokas, R. B.; Rajput, P.; Mukharjee, C.; Thakur, S.; Jha, S. N.; Sahoo, N. K.

    2016-05-01

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm2 at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  13. Thermodynamic and electron paramagnetic resonance characterization of flavin in succinate dehydrogenase.

    PubMed

    Ohnishi, T; King, T E; Salerno, J C; Blum, H; Bowyer, J R; Maida, T

    1981-06-10

    Thermodynamic parameters of succinate dehydrogenase flavin were determined potentiometrically from the analysis of free radical signal levels as a function of the oxidation-reduction potential. Midpoint redox potentials of consecutive 1-electron transfer steps are -127 and -31 mV at pH 7.0. This corresponds to a stability constant of intermediate stability, 2.5 x 10(-2), which suggests flavin itself may be a converter from n = 2 to n = 1 electron transfer steps. The pK values of the free radical (FlH . in equilibrium Fl . -) and the fully reduced form (FlH2 in equilibrium FlH-) were estimated as 8.0 +/- 0.2 and 7.7 +/- 0.2, respectively. Succinate dehydrogenase flavosemiquinone elicits an EPR spectrum at g = 2.00 with a peak to peak width of 1.2 mT even in the protonated form, suggesting the delocalization in the unpaired electron density. A close proximity of succinate dehydrogenase flavin and iron-sulfur cluster S-1 was demonstrated based on the enhancement of flavin spin relaxation by Center S-1.

  14. Ionospheric Measurements Using Environmental Sampling Techniques

    NASA Technical Reports Server (NTRS)

    Bourdeau, R. E.; Jackson, J. E.; Kane, J. A.; Serbu, G. P.

    1960-01-01

    Two rockets were flown to peak altitudes of 220 km in September 1959 to test various methods planned for future measurements of ionization parameters in the ionosphere, exosphere, and interplanetary plasma. The experiments used techniques which sample the ambient environment in the immediate vicinity of the research vehicle. Direct methods were chosen since indirect propagation techniques do not provide the temperatures of charged particles, are insensitive to ion densities, and cannot measure local electron densities under all conditions. Very encouraging results have been obtained from a preliminary analysis of data provided by one of the two flights. A new rf probe technique was successfully used to determine the electron density profile. This was indicated by its agreement with the results of a companion cw propagation experiment, particularly when the probe data were corrected for the effects of the ion sheath which surrounds the vehicle. The characteristics of this sheath were determined directly in flight by an electric field meter which provided the sheath field, and by a Langmuir probe which measured the total potential across the sheath. The electron temperatures deduced from the Langmuir probe data are greater than the neutral gas temperatures previously measured for the same location and season, but these measurements possibly were taken under different atmospheric conditions. Ion densities were calculated from the ion trap data for several altitudes ranging from 130 to 210 km and were found to be within 20 percent of the measured electron densities.

  15. First observations of the midlatitude evening anomaly using Super Dual Auroral Radar Network (SuperDARN) radars

    NASA Astrophysics Data System (ADS)

    de Larquier, S.; Ruohoniemi, J. M.; Baker, J. B. H.; Ravindran Varrier, N.; Lester, M.

    2011-10-01

    Under geomagnetically quiet conditions, the daytime midlatitude ionosphere is mainly influenced by solar radiation: typically, electron densities in the ionosphere peak around solar noon. Previous observations from the Millstone Hill incoherent scatter radar (ISR) have evidenced the presence of evening electron densities higher than daytime densities during the summer. The recent development of midlatitude Super Dual Auroral Radar Network (SuperDARN) radars over North America and Japan has revealed an evening enhancement in ground backscatter during the summer. SuperDARN observations are compared to data from the Millstone Hill ISR, confirming a direct relation between the observed evening enhancements in electron densities and ground backscatter. Statistics over a year of data from the Blackstone radar show that the enhancement occurs during sunset for a few hours from April to September. The evening enhancement observed by both SuperDARN and the Millstone Hill ISR is shown to be related to recent satellite observations reporting an enhancement in electron densities over a wide range of longitudes in the Northern Hemisphere midlatitude sector during summer time. Finally, global results from the International Reference Ionosphere (IRI) and the horizontal wind model (HWM07) are presented in relation with previously published experimental results and proposed mechanisms of the evening enhancement, namely, thermospheric horizontal winds and geomagnetic field configuration. It is shown that the IRI captures the features of the evening enhancement as observed by SuperDARN radars and satellites.

  16. Equatorial heating and hemispheric decoupling effects on inner magnetospheric core plasma evolution

    NASA Technical Reports Server (NTRS)

    Lin, J.; Horwitz, J. L.; Wilson, G. R.; Brown, D. G.

    1994-01-01

    We have extended our previous semikinetic study of early stage plasmasphere refilling with perpendicular ion heating by removing the restriction that the northern and southern boundaries are identical and incorporating a generalized transport description for the electrons. This allows investigation of the effects of electron heating and a more realistic calculation of electric fields produced by ion and electron temperature anisotropies. The combination of perpendicular ion heating and parallel electron heating leads to an equatorial electrostatic potential peak, which tends to shield and decouple ion flows in the northern and southern hemispheres. Unequal ionospheric upflows in the northern and southern hemispheres lead to the development of distinctly asymmetric densities and other bulk parameters. At t = 5 hour after the initiation of refiling with different source densities (N(sub north) = 100 cu/cm, N(sub south) = 50 cu/cm), the maximum potential drops of the northern and southern hemispheres are 0.6 and 1.3 V, respectively. At this time the minimum ion densities are 11 and 7 cu/cm for the northern and southern hemispheres. DE 1 observations of asymmetric density profiles by Olsen may be consistent with these predictions. Termination of particle heating causes the reduction of equatorial potential and allows interhemispheric coupling. When the inflows from the ionospheres are reduced (as may occur after sunset), decreases in plasma density near the ionospheric regions are observed while the heated trapped ion population at the equator persists.

  17. A model for chorus associated electrostatic bursts

    NASA Technical Reports Server (NTRS)

    Grabbe, C. L.

    1984-01-01

    The linear theory of the generation of electrostatic bursts of noise by electrons trapped in chorus wave packets is developed for a finite temperature electron beam and a Maxwellian elecron and ion background. The growth rates determined qualitatively in good agreement with those obtained by previous authors from a more idealized model. Two connected instability mechanisms seem to be occurring: a beam plasma (electron-ion two-stream) instability commonly associated with intensification of the chorus power levels, and a transitional or borderline resistive medium instability commonly associated with chorus hooks. The physical reasons for the two mechanisms is discussed. In the second case electron beams are difficult to identify in the particle data. An expression is obtained for the maximum growth rate in terms of the ratios of the beam and electron thermal velocities to the beam velocity, and of the beam density to plasma density. It is anticipated that this may allow the observed peak in the electrostatic noise spectrum to be used as a diagnostic for the beam characteristics. Previously announced in STAR as N84-12832

  18. Electronic, thermodynamics and mechanical properties of LaB6 from first-principles

    NASA Astrophysics Data System (ADS)

    Ivashchenko, V. I.; Turchi, P. E. A.; Shevchenko, V. I.; Medukh, N. R.; Leszczynski, Jerzy; Gorb, Leonid

    2018-02-01

    Up to date, the electronic structure properties of amorphous lanthanum hexaboride, a-LaB6, were not yet investigated, and the thermodynamic and mechanical properties of crystalline lanthanum hexaboride (c-LaB6) were studied incompletely. The goal of this work was to fill these gaps in the study of lanthanum hexaborides. The electronic and phonon structures, thermodynamic and mechanical properties of both crystalline and amorphous lanthanum hexaborides (c-LaB6, a-LaB6, respectively) were investigated within the density functional theory. An amorphyzation of c-LaB6 gives rise to the metal - semiconductor transition. The thermal conductivity decreases on going from c-LaB6 to a-LaB6. The elastic moduli, hardness, ideal tensile and shear strengths of a-LaB6 are significantly lower compared to those of the crystalline counterpart, despite the formation of the icosahedron-like boron network in the amorphous phase. For c-LaB6, the stable boron octahedrons are preserved after the failure under tensile and shear strains. The peculiarity in the temperature dependence of heat capacity, Cp(T), at 50 K is explained by the availability of a sharp peak at 100 cm-1 in the phonon density of states of c-LaB6. An analysis of the Fermi surface indicates that this peak is not related to the shape of the Fermi surface, and is caused by the vibration of lanthanum atoms. In the phonon spectrum of a-LaB6, the peak at 100 cm-1 is significantly broader than in the spectrum of c-LaB6, for which reason the anomaly in the Cp(T) dependence of a-LaB6 does not appear. The calculated characteristics are in good agreement with the available experimental data.

  19. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; McCarthy, P. J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.; the ASDEX Upgrade Team

    2012-12-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications.

  20. First-principles investigation on Rydberg and resonance excitations: A case study of the firefly luciferin anion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguchi, Yoshifumi, E-mail: y.noguchi@issp.u-tokyo.ac.jp; Hiyama, Miyabi; Akiyama, Hidefumi

    2014-07-28

    The optical properties of an isolated firefly luciferin anion are investigated by using first-principles calculations, employing the many-body perturbation theory to take into account the excitonic effect. The calculated photoabsorption spectra are compared with the results obtained using the time-dependent density functional theory (TDDFT) employing the localized atomic orbital (AO) basis sets and a recent experiment in vacuum. The present method well reproduces the line shape at the photon energy corresponding to the Rydberg and resonance excitations but overestimates the peak positions by about 0.5 eV. However, the TDDFT-calculated positions of some peaks are closer to those of the experiment.more » We also investigate the basis set dependency in describing the free electron states above vacuum level and the excitons involving the transitions to the free electron states and conclude that AO-only basis sets are inaccurate for free electron states and the use of a plane wave basis set is required.« less

  1. Transient Melting and Recrystallization of Semiconductor Nanocrystals Under Multiple Electron–Hole Pair Excitation

    DOE PAGES

    Kirschner, Matthew S.; Hannah, Daniel C.; Diroll, Benjamin T.; ...

    2017-07-28

    Ultrafast optical pump, X-ray diffraction probe experiments were performed on CdSe nanocrystal (NC) colloidal dispersions as functions of particle size, polytype, and pump fluence. Bragg peak shifts relate heating and peak amplitude reduction confers lattice disordering. For smaller NCs, melting initiates upon absorption of as few as ~15 electron-hole pair excitations per NC on average (0.89 excitations/nm 3 for a 1.5-nm radius) with roughly the same excitation density inducing melting for all examined NCs. Diffraction intensity recovery kinetics, attributable to recrystallization, occur over hundreds of picoseconds with slower recoveries for larger particles. Zincblende and wurtzite NCs revert to initial structuresmore » following intense photoexcitation suggesting melting occurs primarily at the surface, as supported by simulations. Electronic structure calculations relate significant band gap narrowing with decreased crystallinity. Here, these findings reflect the need to consider the physical stability of nanomaterials and related electronic impacts in high intensity excitation applications such as lasing and solid-state lighting.« less

  2. Transient Melting and Recrystallization of Semiconductor Nanocrystals Under Multiple Electron–Hole Pair Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirschner, Matthew S.; Hannah, Daniel C.; Diroll, Benjamin T.

    Ultrafast optical pump, X-ray diffraction probe experiments were performed on CdSe nanocrystal (NC) colloidal dispersions as functions of particle size, polytype, and pump fluence. Bragg peak shifts relate heating and peak amplitude reduction confers lattice disordering. For smaller NCs, melting initiates upon absorption of as few as ~15 electron-hole pair excitations per NC on average (0.89 excitations/nm 3 for a 1.5-nm radius) with roughly the same excitation density inducing melting for all examined NCs. Diffraction intensity recovery kinetics, attributable to recrystallization, occur over hundreds of picoseconds with slower recoveries for larger particles. Zincblende and wurtzite NCs revert to initial structuresmore » following intense photoexcitation suggesting melting occurs primarily at the surface, as supported by simulations. Electronic structure calculations relate significant band gap narrowing with decreased crystallinity. Here, these findings reflect the need to consider the physical stability of nanomaterials and related electronic impacts in high intensity excitation applications such as lasing and solid-state lighting.« less

  3. Precipitating auroral electrons and lower thermospheric nitric oxide densities: SNOE, POLAR, SAMPEX, and NOAA/POES Comparisons for Geomagnetic Storms in 1998-2001

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Fisher, T. A.; Barth, C. A.; Mankoff, K. D.; Kanekal, S. G.; Bailey, S. M.; Petrinec, S. M.; Luhmann, J. G.; Mason, G. M.; Mazur, J. E.; Evans, D. S.

    2002-05-01

    Nitric oxide (NO) densities measured at altitudes between 97 and 150 km have been acquired using the UVS sensor onboard the Student Nitric Oxide Explorer (SNOE) spacecraft during the years 1998-2001. These data are compared with energetic electron fluxes (E>25 keV) measured concurrently using a sensitive sensor system (LICA) onboard the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) spacecraft. Geomagnetic storm intervals are examined to determine altitude and latitude variations of NO density as it compares to energetic electron precipitation. A broader statistical analysis is then carried out using daily averages of peak NO densities (at 106 km altitudes) and electron intensities measured by SAMPEX/LICA and by the TED sensor system onboard the NOAA/Polar Orbiting Environmental Satellite (POES) spacecraft. We also use the PIXIE instrument onboard POLAR to obtain global views of 2-12 keV x-rays emanating from the upper atmosphere. This gives a broad synoptic measure of relatively low-energy electron precipitation into the atmosphere. Latitude versus time displays of the UVS, PIXIE, LICA and TED data show excellent temporal and spatial correlations of the data sets. More detailed comparisons help us to assess spectral and local time relationships between auroral particle inputs and lower thermospheric chemical responses. These results are potentially quite important since past modeling has shown that particle inputs are significant for changing the chemistry and subsequent dynamics of the atmosphere.

  4. Intra- and inter-atomic optical transitions of Fe, Co, and Ni ferrocyanides studied using first-principles many-electron calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Shinta, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp; Sawada, Yuki; Nakaya, Masato

    We have investigated the electronic structures and optical properties of Fe, Co, and Ni ferrocyanide nanoparticles using first-principles relativistic many-electron calculations. The overall features of the theoretical absorption spectra for Fe, Ni, and Co ferrocyanides calculated using a first-principles many-electron method well reproduced the experimental one. The origins of the experimental absorption spectra were clarified by performing a configuration analysis based on the many-electron wave functions. For Fe ferrocyanide, the experimental absorption peaks originated from not only the charge-transfer transitions from Fe{sup 2+} to Fe{sup 3+} but also the 3d-3d intra-transitions of Fe{sup 3+} ions. In addition, the spin crossovermore » transition of Fe{sup 3+} predicted by the many-electron calculations was about 0.24 eV. For Co ferrocyanide, the experimental absorption peaks were mainly attributed to the 3d-3d intra-transitions of Fe{sup 2+} ions. In contrast to the Fe and Co ferrocyanides, Ni ferrocyanide showed that the absorption peaks originated from the 3d-3d intra-transitions of Ni{sup 3+} ions in a low-energy region, while from both the 3d-3d intra-transitions of Fe{sup 2+} ions and the charge-transfer transitions from Fe{sup 2+} to Ni{sup 3+} in a high-energy region. These results were quite different from those of density-functional theory (DFT) calculations. The discrepancy between the results of DFT calculations and those of many-electron calculations suggested that the intra- and inter-atomic transitions of transition metal ions are significantly affected by the many-body effects of strongly correlated 3d electrons.« less

  5. Simulation of the Plasma Density Evolution during Electron Cyclotron Resonance Heating at the T-10 Tokamak

    NASA Astrophysics Data System (ADS)

    Dnestrovskij, Yu. N.; Vershkov, V. A.; Danilov, A. V.; Dnestrovskij, A. Yu.; Zenin, V. N.; Lysenko, S. E.; Melnikov, A. V.; Shelukhin, D. A.; Subbotin, G. F.; Cherkasov, S. V.

    2018-01-01

    In ohmically heated (OH) plasma with low recycling, an improved particle confinement (IPC) mode is established during gas puffing. However, after gas puffing is switched off, this mode is retained only for about 100 ms, after which an abrupt phase transition into the low particle confinement (LPC) mode occurs in the entire plasma cross section. During such a transition, energy transport due to heat conduction does not change. The phase transition in OH plasma is similar to the effect of density pump-out from the plasma core, which occurs after electron cyclotron heating (ECH) is switched on. Analysis of the measured plasma pressure profiles in the T-10 tokamak shows that, after gas puffing in the OH mode is switched off, the plasma pressure profile in the IPC stage becomes more peaked and, after the peakedness exceeds a certain critical value, the IPC-LPC transition occurs. Similar processes are also observed during ECH. If the pressure profile is insufficiently peaked during ECH, then the density pump-out effect comes into play only after the critical peakedness of the pressure profile is reached. In the plasma core, the density and pressure profiles are close to the corresponding canonical profiles. This allows one to derive an expression for the particle flux within the canonical profile model and formulate a criterion for the IPC-LPC transition. The time evolution of the plasma density profile during phase transitions was simulated for a number of T-10 shots with ECH and high recycling. The particle transport coefficients in the IPC and LPC phases, as well as the dependences of these coefficients on the ECH power, are determined.

  6. Statistical analysis of the electrocatalytic activity of Pt nanoparticles supported on novel functionalized reduced graphene oxide-chitosan for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ekrami-Kakhki, Mehri-Saddat; Abbasi, Sedigheh; Farzaneh, Nahid

    2018-01-01

    The purpose of this study is to statistically analyze the anodic current density and peak potential of methanol oxidation at Pt nanoparticles supported on functionalized reduced graphene oxide (RGO), using design of experiments methodology. RGO is functionalized with methyl viologen (MV) and chitosan (CH). The novel Pt/MV-RGO-CH catalyst is successfully prepared and characterized with transmission electron microscopy (TEM) image. The electrocatalytic activity of Pt/MV-RGOCH catalyst is experimentally evaluated for methanol oxidation. The effects of methanol concentration and scan rate factors are also investigated experimentally and statistically. The effects of these two main factors and their interactions are investigated, using analysis of variance test, Duncan's multiple range test and response surface method. The results of the analysis of variance show that all the main factors and their interactions have a significant effect on anodic current density and peak potential of methanol oxidation at α = 0.05. The suggested models which encompass significant factors can predict the variation of the anodic current density and peak potential of methanol oxidation. The results of Duncan's multiple range test confirmed that there is a significant difference between the studied levels of the main factors. [Figure not available: see fulltext.

  7. Exact Time-Dependent Exchange-Correlation Potential in Electron Scattering Processes

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumitsu; Lacombe, Lionel; Watanabe, Kazuyuki; Maitra, Neepa T.

    2017-12-01

    We identify peak and valley structures in the exact exchange-correlation potential of time-dependent density functional theory that are crucial for time-resolved electron scattering in a model one-dimensional system. These structures are completely missed by adiabatic approximations that, consequently, significantly underestimate the scattering probability. A recently proposed nonadiabatic approximation is shown to correctly capture the approach of the electron to the target when the initial Kohn-Sham state is chosen judiciously, and it is more accurate than standard adiabatic functionals but ultimately fails to accurately capture reflection. These results may explain the underestimation of scattering probabilities in some recent studies on molecules and surfaces.

  8. Bulk and surface electronic structures of MgO

    NASA Astrophysics Data System (ADS)

    Schönberger, U.; Aryasetiawan, F.

    1995-09-01

    The bulk electronic structure of MgO is calculated from first principles including correlation effects within the GW approximation. The band gap, the position of the 2s O band, and the valence band width are in good agreement with experiment. From the quasiparticle band structure, optical transitions corresponding to the main optical absorption peaks are identified. The energy-loss spectrum is also calculated and compared with experiment. The surface electronic structure of MgO(100) is calculated self-consistently within the local-density approximation. It is found that states observed in a recent photoemission experiment outside the bulk allowed states are close to surface states.

  9. Spatial and temporal dynamics of a pulsed spark microplasma used for aerosol analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Lina; Kulkarni, Pramod; Diwakar, Prasoon

    2018-06-01

    The spatial and temporal dynamics of a pulsed, electrical spark microplasma used for spectrochemical analysis of aerosols was investigated. The spark discharge was generated by applying a high voltage pulse between a coaxial anode and cathode. Aerosol particles of black carbon were collected on the cathode for 2 min, following which the pulsed microplasma was introduced, leading to ablation and atomization of the collected particles. The space- and time-resolved emission spectra showed that the atomic emission signal from the carbon species originated from the region close to the cathode surface during the early evolution of the microplasma. The C I and C II atomic emission reached peak intensities at 11 and 6 μs delay time, respectively. Peak emission intensities occurred between 0.5-1.3 mm above the cathode surface. The average excitation temperature and the electron number density of the spark microplasma were estimated to be 23,000 K, and 1.6 × 1017 cm-3, respectively. The effects of pulse energy on the excitation temperature and electron density were also investigated. The results provide insights into the dynamics of the pulsed spark microplasma and are helpful in optimizing elemental analysis of aerosols using this technique.

  10. Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugosson, H.W.; Eriksson, O.; Nordstroem, L.

    1999-10-01

    First principles, total energy methods have been applied to predict the relative stabilities of the four experimentally verified MoC phases: the cubic {delta}(NaCl) phase and the three hexagonal {gamma}(WC), {eta} and {gamma}{sup {prime}}(TiAs) phases. The effect of vacancies on the relative stability of these four phases was investigated using a model structure with ordered vacancies within the carbon sublattice. For stoichiometric MoC, the {gamma} phase was found to be the most stable followed by {gamma}{sup {prime}}, {delta}, and {eta}, but for substoichiometric MoC{sub 0.75}, the order of relative stability was changed and the substoichiometric {delta} phase was found to havemore » the lowest energy followed by {gamma}{sup {prime}} and {gamma}. A study of the electronic structure revealed vacancy induced peaks in the density of state and the electron density attached to these peaks was analyzed and found to emanate from unscreened Mo{endash}Mo bonds through the carbon vacancy site. Finally, the oxygen stabilization of the {gamma}{sup {prime}} MoC phase was studied. {copyright} {ital 1999 American Institute of Physics.}« less

  11. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. Laser beam-plasma plume interaction during laser welding

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  13. Simulation study on the spatial and temporal characteristics of focused microwave beam discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2018-01-01

    This paper reports a simulation study on a focused microwave (frequency 9.4 GHz, pulse width 2.5 μs, and peak electric field 1.2 kV/cm) discharge in 200 Pa nitrogen. A one-dimensional (1D) fluid model is based on the wave equation for the microwave field propagating through the gas breakdown plasma, the continuity equations for electron, ion and neutral particle densities, and the energy balance equations for mean electron temperature, and nitrogen vibrational and translational temperatures. These equations are numerically solved in a self-consistent manner with a simplified plasma chemistry set, in which the reaction rates involving electrons are calculated from the electron energy distribution function (EEDF) using a two-term expansion method. The spatial and temporal characteristics of the focused microwave breakdown in nitrogen are demonstrated, which include the amplitude of the microwave electric field, and the densities and temperatures of the plasma components. The temporal evolution of the plasma electron density agrees reasonably well with that measured with a microwave interferometer. The spatial-temporal distributions of metastable states are discussed on the plasma chemistry and the character of mean electron temperature. The spatially integrated N2(C3) density shows similar trends with the measured temporal intensity of optical emission spectroscopy, except for a time delay of 100-300 ns. The quantitative discrepancies are explained in light of limitations of the 1D model with a two-term expansion of EEDF. The theoretical model is found to describe the gas breakdown plasma generated by focused microwave beams at least qualitatively.

  14. Electronic and optical properties of GaN under pressure: DFT calculations

    NASA Astrophysics Data System (ADS)

    Javaheri, Sahar; Boochani, Arash; Babaeipour, Manuchehr; Naderi, Sirvan

    2017-12-01

    Optical and electronic properties of ZB, RS and WZ structures of gallium nitride (GaN) are studied in equilibrium and under pressure using the first-principles calculation in the density functional theory (DFT) framework to obtain quantities like dielectric function, loss function, reflectance and absorption spectra, refractive index and their relation parameters. The electronic properties are studied using EV-GGA and GGA approximations and the results calculated by EV-GGA approximation were found to be much closer to the experimental results. The interband electron transitions are studied using the band structure and electron transition peaks in the imaginary part of the dielectric function; these transitions occur in three structures from N-2p orbital to Ga-4s and Ga-4p orbitals in the conduction band. Different optical properties of WZ structure were calculated in two polarization directions of (100) and (001) and the results were close to each other. Plasmon energy corresponding to the main peak of the energy-loss function in RS with the value of 26 eV was the highest one, which increased under pressure. In general, RS shows more different properties than WZ and ZB.

  15. An ISEE/Whistler model of equatorial electron density in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Carpenter, D. L.; Anderson, R. R.

    1992-01-01

    Attention is given to an empirical model of equatorial electron density in the magnetosphere covering the L range 2.25-8. Although the model is primarily intended for application to the local time interval 00-15 MLT, a way to extend the model to the 15-24-MLT period is presented. The model describes, in piecewise fashion, the 'saturated' plasmasphere, the region of steep plasmapause gradients, and the plasma trough. Within the plasmasphere the model profile can be expressed as logne - Sigma-xi, where x1 = -0.3145L + 3.9043 is the principal or 'reference' term, and additional terms account for: a solar cycle variation with a peak at solar maximum; an annual variation with a December maximum; and a semiannual variation with equinoctial maxima.

  16. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marquès, J. L.; Schein, J.

    2014-11-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties.

  17. Strides made in understanding space weather at Earth

    NASA Astrophysics Data System (ADS)

    Buonsanto, M. J.; Fuller-Rowell, T. J.

    Disturbances on the Sun can produce dramatic effects in the space environment surrounding the Earth. Energetic particle effects become more intense and pose a hazard to astronauts and damage spacecraft electronics; satellite lifetimes are shortened by increased atmospheric drag, and communications and navigation are disrupted by the changing plasma environment.“Space weather” has become the modern idiom for these effects, and periods of high activity are called geomagnetic storms. During a storm the ionosphere can be severely altered. A typical episode may reveal either a large decrease (negative phase) or increase (positive phase) in the normal daily peak ion density (NmF2) or total electron content (TEC). These changes in ion density are sometimes called ionospheric storms, and often persist for more than a day after a period of high geomagnetic activity.

  18. Origin of Superconductivity and Latent Charge Density Wave in NbS2

    NASA Astrophysics Data System (ADS)

    Heil, Christoph; Poncé, Samuel; Lambert, Henry; Schlipf, Martin; Margine, Elena R.; Giustino, Feliciano

    2017-08-01

    We elucidate the origin of the phonon-mediated superconductivity in 2 H -NbS2 using the ab initio anisotropic Migdal-Eliashberg theory including Coulomb interactions. We demonstrate that superconductivity is associated with Fermi surface hot spots exhibiting an unusually strong electron-phonon interaction. The electron-lattice coupling is dominated by low-energy anharmonic phonons, which place the system on the verge of a charge density wave instability. We also provide definitive evidence for two-gap superconductivity in 2 H -NbS2 , and show that the low- and high-energy peaks observed in tunneling spectra correspond to the Γ - and K -centered Fermi surface pockets, respectively. The present findings call for further efforts to determine whether our proposed mechanism underpins superconductivity in the whole family of metallic transition metal dichalcogenides.

  19. Propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Rowland, H. L.

    1993-01-01

    The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.

  20. RFEA measurements of high-energy electrons in a helicon plasma device with expanding magnetic field

    NASA Astrophysics Data System (ADS)

    Gulbrandsen, Njål; Fredriksen, Åshild

    2017-01-01

    In the inductively coupled plasma of the Njord helicon device we have, for the same parameters as for which an ion beam exists, measured a downstream population of high-energy electrons emerging from the source. Separated measurements of energetic tail electrons was carried out by Retarding Field Energy Analyzer (RFEA) with a grounded entrance grid, operated in an electron collection mode. In a radial scan with the RFEA pointed toward the source, we found a significant population of high-energy electrons just inside the magnetic field line mapping to the edge of the source. A second peak in high-energy electrons density was observed in a radial position corresponding to the radius of the source. Also, throughout the main column a small contribution of high-energy electrons was observed. In a radial scan with a RFEA biased to collect ions a localized increase in the plasma ion density near the magnetic field line emerging from the plasma near the wall of the source was observed. This is interpreted as a signature of high-energy electrons ionizing the neutral gas. Also, a dip in the floating potential of a Langmuir probe is evident in this region where high-energy electrons is observed.

  1. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    NASA Astrophysics Data System (ADS)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-01

    As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.

  2. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    NASA Astrophysics Data System (ADS)

    Sydorenko, Dmytro

    2015-11-01

    Electrons emitted by electrodes surrounding or immersed in the plasma are accelerated by the sheath electric field and become electron beams penetrating the plasma. In plasma applications where controlling the electron velocity distribution function (EVDF) is crucial, these beams are an important factor capable of modifying the EVDF and affecting the discharge properties. Recently, it was reported that an EVDF measured in a dc-rf discharge with 800 V dc voltage has not only a peak of 800 eV electrons emitted from the dc-biased electrode, but also a peak of suprathermal electrons with energy up to several hundred eV. Initial explanation of the suprathermal peak suggested that the fast long plasma waves excited by the beam decay parametrically into ion acoustic waves and short plasma waves with much lower phase velocity which accelerate bulk electrons to suprathermal energies. Particle-in-cell simulation of a dc beam-plasma system, however, reveals that the short waves appear not due to the parametric instability, but due to the plasma nonuniformity. Moreover, the acceleration may occur in two stages. Plasma waves excited by the beam in the middle of the system propagate towards the anode and enter the density gradient area where their wavelength and phase speed rapidly decrease. Acceleration of thermal electrons by these waves is the first stage. Some of the accelerated electrons reflect from the anode sheath, travel through the plasma, reflect near the cathode, and enter the accelerating area again but with the energy higher than before. The acceleration that occurs now is the second stage. The energy of a particle after the second acceleration exceeds the initial thermal energy by an order of magnitude. This two-stage mechanism plays a role in explaining previous observations of energetic suprathermal electrons in similar discharges. The study is performed in collaboration with I. D. Kaganovich (PPPL), P. L. G. Ventzek and L. Chen (Tokyo Electron America).

  3. Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source

    NASA Astrophysics Data System (ADS)

    Jin, Yizhou; Yang, Juan; Tang, Mingjie; Luo, Litao; Feng, Bingbing

    2016-07-01

    The ion source of the electron cyclotron resonance ion thruster (ECRIT) extracts ions from its ECR plasma to generate thrust, and has the property of low gas consumption (2 sccm, standard-state cubic centimeter per minute) and high durability. Due to the indispensable effects of the primary electron in gas discharge, it is important to experimentally clarify the electron energy structure within the ion source of the ECRIT through analyzing the electron energy distribution function (EEDF) of the plasma inside the thruster. In this article the Langmuir probe diagnosing method was used to diagnose the EEDF, from which the effective electron temperature, plasma density and the electron energy probability function (EEPF) were deduced. The experimental results show that the magnetic field influences the curves of EEDF and EEPF and make the effective plasma parameter nonuniform. The diagnosed electron temperature and density from sample points increased from 4 eV/2×1016 m-3 to 10 eV/4×1016 m-3 with increasing distances from both the axis and the screen grid of the ion source. Electron temperature and density peaking near the wall coincided with the discharge process. However, a double Maxwellian electron distribution was unexpectedly observed at the position near the axis of the ion source and about 30 mm from the screen grid. Besides, the double Maxwellian electron distribution was more likely to emerge at high power and a low gas flow rate. These phenomena were believed to relate to the arrangements of the gas inlets and the magnetic field where the double Maxwellian electron distribution exits. The results of this research may enhance the understanding of the plasma generation process in the ion source of this type and help to improve its performance. supported by National Natural Science Foundation of China (No. 11475137)

  4. Magnetospheric Multiscale Observations of Electron Vortex Magnetic Hole in the Turbulent Magnetosheath Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, S. Y.; Yuan, Z. G.; Wang, D. D.

    We report on the observations of an electron vortex magnetic hole corresponding to a new type of coherent structure in the turbulent magnetosheath plasma using the Magnetospheric Multiscale mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 ρ {sub i} (∼30 ρ {submore » e}) in the quasi-circular cross-section perpendicular to its axis, where ρ {sub i} and ρ {sub e} are respectively the proton and electron gyroradius. There are no clear enhancements seen in high-energy electron fluxes. However, there is an enhancement in the perpendicular electron fluxes at 90° pitch angle inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components V {sub em} and V {sub en} suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the cross-section in the M – N plane. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.« less

  5. Nonequilibrium theory of tunneling into a localized state in a superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Ivar; Mozyrsky, Dmitry

    2014-09-01

    A single static magnetic impurity in a fully gapped superconductor leads to the formation of an intragap quasiparticle bound state. At temperatures much below the superconducting transition, the energy relaxation and spin dephasing of the state are expected to be exponentially suppressed. The presence of such a state can be detected in electron tunneling experiments as a pair of conductance peaks at positive and negative biases. Here we show that, for an arbitrarily weak tunneling strength, the peaks have to be symmetric with respect to the applied bias. This is in contrast to the standard result in which the tunnelingmore » conductance is proportional to the local (in general, particle-hole asymmetric) density of states. The asymmetry can be recovered if one allows for either a finite density of impurity states, or if impurities are coupled to another, nonsuperconducting, equilibrium bath.« less

  6. First results from the Thomson scattering diagnostic on proto-MPEX.

    PubMed

    Biewer, T M; Meitner, S; Rapp, J; Ray, H; Shaw, G

    2016-11-01

    A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T e ) and electron density (n e ) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T e ∼ 2 eV and n e ∼ 1 × 10 19 m -3 . The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.

  7. First results from the Thomson scattering diagnostic on Proto-MPEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biewer, Theodore M; Meitner, Steven J; Rapp, Juergen

    2016-01-01

    A Thomson scattering diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. Thomson scattering is a technique used on many devices to measure the electron temperature (Te) and electron density (ne) of the plasma. A challenging aspect of the technique is to discriminate themore » small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from Argon plasmas in Proto-MPEX, indicating Te ~ 2 eV and ne ~ 1x1019 m-3. The configuration of the Proto-MPEX Thomson scattering diagnostic will be described and plans for improvement will be given.« less

  8. A Si IV/O IV Electron Density Diagnostic for the Analysis of IRIS Solar Spectra

    NASA Astrophysics Data System (ADS)

    Young, P. R.; Keenan, F. P.; Milligan, R. O.; Peter, H.

    2018-04-01

    Solar spectra of ultraviolet bursts and flare ribbons from the Interface Region Imaging Spectrograph (IRIS) have suggested high electron densities of > {10}12 cm‑3 at transition region temperatures of 0.1 MK, based on large intensity ratios of Si IV λ1402.77 to O IV λ1401.16. In this work, a rare observation of the weak O IV λ1343.51 line is reported from an X-class flare that peaked at 21:41 UT on 2014 October 24. This line is used to develop a theoretical prediction of the Si IV λ1402.77 to O IV λ1401.16 ratio as a function of density that is recommended to be used in the high-density regime. The method makes use of new pressure-dependent ionization fractions that take account of the suppression of dielectronic recombination at high densities. It is applied to two sequences of flare kernel observations from the October 24 flare. The first shows densities that vary between 3× {10}12 and 3× {10}13 cm‑3 over a seven-minute period, while the second location shows stable density values of around 2× {10}12 cm‑3 over a three-minute period.

  9. Design of butterfly type organic dye sensitizers with double electron donors: The first principle study

    NASA Astrophysics Data System (ADS)

    Yang, Zhenqing; Shao, Di; Li, Juan; Tang, Lian; Shao, Changjin

    2018-05-01

    In this work, we designed a series of butterfly type organic dyes, named ME07-ME13 by introducing such as triphenylamine, phenothiazine, coumarin groups etc. as electron donors and further investigated their absorption spectra using density functional theory (DFT) and time-dependent DFT (TDDFT). All designed dyes cover the entire visible absorption spectrum from 300 to 800 nm. It's fascinating that ME13 molecule has two absorption peak and the molar coefficient of two absorption peaks are above 4.645 × 104 M-1·cm-1. The light absorption area of ME13 exhibits an increment of 16.5-19.1% compared to ME07-ME12. Furthermore, we performed a detailed analysis on their geometrical and electronic properties, including molecular structures, energy levels, light harvesting efficiency (LHE), driving force (ΔGinject), regeneration (ΔGregen),electron dipole moments (μnormal), intermolecular electron transfer and dye/(TiO2)38 system electron transitions. The results of calculation reveal that double coumarin donors in ME13 are promising functional groups for butterfly type organic dye sensitizers. It is expected that the design of double donors can provide a new strategy and guidance for the investigation in high efficiency dye-sensitized devices.

  10. The solar flare extreme ultraviolet to hard X-ray ratio

    NASA Technical Reports Server (NTRS)

    Mcclymont, A. N.; Canfield, R. C.

    1986-01-01

    Simultaneous measurements of the peak 10-1030 A extreme ultraviolet (EUV) flux enhancement and more than 10 keV hard X-ray (HXR) peak flux of many solar flare bursts, ranging over about four orders of magnitude in HXR intensity, are studied. A real departure from linearity is found in the relationship between the peak EUV and HXR fluxes in impulsive flare bursts. This relationship is well described by a given power law. Comparison of the predictions of the impulsive nonthermal thick-target electron beam model with observations shows that the model satisfactorily predicts the observed time differences between the HXR and EUV peaks and explains the data very well under given specific assumptions. It is concluded that the high-energy fluxes implied by the invariant area thick-target model cannot be completely ruled out, while the invariant area model with smaller low cutoff requires impossibly large beam densities. A later alternative thick-target model is suggested.

  11. Ionospheric scale height from the refraction of satellite signals.

    NASA Technical Reports Server (NTRS)

    Heron, M. L.; Titheridge, J. E.

    1972-01-01

    Accurate observations of the elevation angle of arrival of 20 MHz signals from the polar orbiting satellite Beacon-B for a 20 month period have provided transmission ionograms which may be reduced to give Hp the scale height at the peak of the ionosphere. Noon seasonal averages of Hp are 1.35 (in winter) to 1.55 (in summer) times greater than the scale height obtained from bottom-side ionograms. A comparison of scale height at the peak with routine measurements of total content and peak electron density indicates that the O+/H+ transition level is above 1000 km during the day but comes down to about 630 km on winter nights. A predawn peak in the overall scale height is caused by a lowering of the layer to a region of increased recombination and is magnified in winter by low O+/H+ transition levels.

  12. New Data on the Topside Electron Density Distribution

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinisch, Bodo; Bilitza, Dieter; Benson, Robert F.

    2001-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from hmF2 to approx. 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms and most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350,000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The automatic topside ionogram scaler with true height algorithm TOPIST software developed for this task is successfully scaling approx.70 % of the ionograms. An 'editing process' is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle. The ISIS data restoration efforts are supported through NASA's Applied Systems and Information Research Program.

  13. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited).

    PubMed

    Follett, R K; Delettrez, J A; Edgell, D H; Henchen, R J; Katz, J; Myatt, J F; Froula, D H

    2016-11-01

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10 21 cm -3 , which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  14. Role of Excited Nitrogen In The Ionosphere

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.; Cartwright, D. C.; Bolorizadeh, M. A.

    2006-12-01

    Sunlight photoionises atoms and molecules in the Earth's upper atmosphere, producing ions and photoelectrons. The photoelectrons then produce further ionisation by electron impact. These processes produce the ionosphere, which contains various positive ions, such as NO+, N+, and O+, and an equal density of free electrons. O+(4S) ions are long-lived and so the electron density is determined mainly by the density of O+(4S). This density is dependent on ambipolar diffusion and on loss processes, which are principally reactions with O2 and N2. The reaction with N2 is known to be strongly dependent on the vibrational state of N2 but the rate constants are not well determined for the ionosphere. Vibrational excitation of N2 is produced by direct excitation by thermal electrons and photoelectrons and by cascade from the excited states of N2 that are produced by photoelectron impact. It can also be produced by a chemical reaction and by vibrational-translational transitions. The vibrational excitation is lost by deexcitation by electron impact, by step-wise quenching in collisions with O atoms, and in the reaction with O+(4S). The distribution of vibrational levels is rearranged by vibrational-vibrational transitions, and by molecular diffusion vertically in the atmosphere. A computational model that includes these processes and predicts the electron density as a function of height in the ionosphere is described. This model is a combination of a "statistical equilibrium" calculation, which is used to predict the populations of the excited states of N2, and a time-step calculation of the atmospheric reactions and processes. The latter includes a calculation of photoionisation down through the atmosphere as a function of time of day and solar activity, and calculations at 0.1 s intervals of the changing densities of positive ions, electrons and N2 in the different vibrational levels. The validity of the model is tested by comparison of the predicted electron densities with the International Reference Ionosphere (IRI) of electron density measurements. The contribution of various input parameters can be investigated by their effect on the accuracy of the calculated electron densities. Here the effects of two different sets of rate constants for the reaction of vibrationally excited N2 with O+(4S) are investigated. For reference, predictions using the different sets are compared with laboratory measurements. Then the effect of using the different sets in the computational model of the ionosphere is investigated. It is shown that one set gives predictions of electron densities that are in reasonable agreement with the IRI, while the other set does not. Both sets result in underestimation of the electron density at the height of the peak electron density in the atmosphere, suggesting that either the amount of vibrational excitation or the rate constants may be overestimated. Our comparison is made for two cases with different conditions, to give an indication of the limitations of the atmospheric modeling and also insight into ways in which the sets of rate constants may be deficient.

  15. The electronic and optical properties of amorphous silica with hydrogen defects by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ren, Dahua; Xiang, Baoyan; Hu, Cheng; Qian, Kai; Cheng, Xinlu

    2018-04-01

    Hydrogen can be trapped in the bulk materials in four forms: interstitial molecular H2, interstitial atom H, O‑H+(2Si=O–H)+, Si‑H‑( {{4O}}\\bar \\equiv {{Si&x2212H}})‑ to affect the electronic and optical properties of amorphous silica. Therefore, the electronic and optical properties of defect-free and hydrogen defects in amorphous silica were performed within the scheme of density functional theory. Initially, the negative charged states hydrogen defects introduced new defect level between the valence band top and conduction band bottom. However, the neutral and positive charged state hydrogen defects made both the valence band and conduction band transfer to the lower energy. Subsequently, the optical properties such as absorption spectra, conductivity and loss functions were analyzed. It is indicated that the negative hydrogen defects caused the absorption peak ranging from 0 to 2.0 eV while the positive states produced absorption peaks at lower energy and two strong absorption peaks arose at 6.9 and 9.0 eV. However, the neutral hydrogen defects just improved the intensity of absorption spectrum. This may give insights into understanding the mechanism of laser-induced damage for optical materials. Project supported by the Science and Technology of Hubei Provincial Department of Education (No. B2017098).

  16. First measurements of the temporal evolution of the plasma density in HiPIMS discharges using THz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Meier, Steffen M.; Hecimovic, Ante; Tsankov, Tsanko V.; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2018-03-01

    In this paper, the novel technique of THz time domain spectroscopy has been applied to obtain time-resolved measurements of the plasma density in the active zone of a HiPIMS discharge with a titanium target. The obtained peak values are in the range of 1012-1013 cm-3 for discharge current densities of 1-4 A cm-2 at 0.5 and 2 Pa argon pressure. The measured densities show good correlation with the discharge current and voltage and the intensity of various atomic and ionic lines. The well known phases of the discharge have been identified and related to the variation of the electron density. The measurement results show that the plasma density remains nearly constant during the runaway/self-sputtering phase. Based on that, it is conjectured that singly charged titanium ions are the dominant ion species during this phase.

  17. Ionospheric Profiling Through Nonlinear Dielectric Response to Electron Density*

    NASA Astrophysics Data System (ADS)

    Moses, R. W.; Jacobson, A. R.

    2002-12-01

    It is well known that the total electron content (TEC) along a line of sight in the ionosphere can be extracted from the frequency-dependent time lag measured in transionospheric RF signals [1]. For five years the FORTE satellite has been used to develop a substantial data base of transionospheric signals originating in both lightning and man-made sources. Here, we use signals generated by the Los Alamos Portable Pulser (LAPP) [2] and recorded by FORTE as input to a multi-layer computer model of RF wave propagation in the ionosphere, including Faraday rotation in the Earth's magnetic field. Nonlinearities in both the frequency dependence of the group velocity and the optical pathlength are modeled and matched to FORTE data to infer details of the vertical profile of electron density. Using the International Reference Ionosphere [3] as a profile model, we show how the vertical TEC, peak electron density, and ionospheric thickness can be extracted even at large transmitter-to-satellite separations. [1] Roussel-Dupre, R. A., A. R. Jacobson, and L. A. Triplett, Radio Sci., 36, 1615 (2001). [2] Massey, R.S., S.O. Knox, R.C. Franz, D.N. Holden, and C.T. Rhodes, Radio Sci., 33, 1739 (1998). [3] Bilitza, D., "International Reference Ionosphere 1990," NSSDC/WDC-A-R&S 90-92. *Work supported by USDOE

  18. Analysis of FORTE data to extract ionospheric parameters

    NASA Astrophysics Data System (ADS)

    Roussel-Dupré, Robert A.; Jacobson, Abram R.; Triplett, Laurie A.

    2001-01-01

    The ionospheric transfer function is derived for a spherically symmetric ionosphere with an arbitrary radial electron density profile in the limit where the radio frequencies of interest ω are much larger than the plasma frequency ωpe. An expansion of the transfer function to second order in the parameter X (= ω2pe/ω2) is carried out. In this limit the dispersive properties of the ionosphere are manifested as a frequency-dependent time of arrival that includes quadratic, cubic, and quartic terms in 1/ω. The coefficients of these terms are related to the total electron content (TEC) along the slant path from transmitter to receiver, the product of TEC and the longitudinal magnetic field strength along the slant path, and refractive bending and higher-order electron density profile effects, respectively. By fitting the time of arrival versus frequency of a transionospheric signal to a polynomial in 1/ω it is possible to extract the TEC, the longitudinal magnetic field strength, the peak electron density, and an effective thickness for the ionosphere. This exercise was carried out for a number of transionospheric pulses measured in the VHF by the FORTE satellite receiver and generated by the Los Alamos Portable Pulser. The results are compared with predictions derived from the International Reference Ionosphere and the United States Geological Survey geomagnetic field model.

  19. Very low frequency waves stimulated by an electron accelerator in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Holtet, J. A.; Pran, B. K.; Egeland, A.; Grandal, B.; Jacobsen, T. A.; Maehlum, B. N.; Troim, J.

    1981-01-01

    The sounding rocket, Polar 5, carrying a 10 keV electron accelerator in a mother-daughter configuration and other diagnostic instruments, was launched into a slightly disturbed ionosphere with weak auroral activity on February 1, 1976 from Northern Norway to study VLF wave phenomena. The rocket trajectory crossed two auroral regions: one, between 86 and 111 s flight time, and a secondary region between 230 and 330 s. The daughter, carrying the accelerator, was separated axially from the mother in a forward direction at an altitude of 90 km. The VLF experiment, carried by the mother payload, recorded both electromagnetic and electrostatic waves. The receiving antenna was an electric dipole, 0.3 m tip-to-tip, oriented 90 degrees to the rocket spin axis. The onboard particle detector recorded increased electron fluxes in the two auroral regions. A double peaked structure was observed in the fluxes of 4-5 and 12-27 keV electrons within the northern auroral form. The number density of thermal plasma varied during the flight, with maximum density within the main auroral region. To the north of this aurora a slow, steady decrease in the density was observed, with no enhancement in the region of the second aurora.

  20. Nanoclusters as a new family of high temperature superconductors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Kresin, Vitaly V.

    2017-03-01

    Electrons in metal clusters organize into quantum shells, akin to atomic shells in the periodic table. Such nanoparticles are referred to as "superatoms". The electronic shell levels are highly degenerate giving rise to sharp peaks in the density of states, which can enable exceptionally strong electron pairing in certain clusters containing tens to hundreds of atoms. A spectroscopic investigation of size - resolved aluminum nanoclusters has revealed a sharp rise in the density of states near the Fermi level as the temperature decreases towards 100 K. The effect is especially prominent in the closed-shell "magic" cluster Al66 [1, 2]. The characteristics of this behavior are fully consistent with a pairing transition, implying a high temperature superconducting state with Tc < 100K. This value exceeds that of bulk aluminum by two orders of magnitude. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks. ---------- 1. Halder, A., Liang, A., Kresin, V. V. A novel feature in aluminum cluster photoionization spectra and possibility of electron pairing at T 100K. Nano Lett 15, 1410 - 1413 (2015) 2. Halder, A., Kresin, V. V. A transition in the density of states of metal "superatom" nanoclusters and evidence for superconducting pairing at T 100K. Phys. Rev. B 92, 214506 (2015).

  1. Density Structures, Dynamics, and Seasonal and Solar Cycle Modulations of Saturn's Inner Plasma Disk

    NASA Astrophysics Data System (ADS)

    Holmberg, M. K. G.; Shebanits, O.; Wahlund, J.-E.; Morooka, M. W.; Vigren, E.; André, N.; Garnier, P.; Persoon, A. M.; Génot, V.; Gilbert, L. K.

    2017-12-01

    We present statistical results from the Cassini Radio and Plasma Wave Science (RPWS) Langmuir probe measurements recorded during the time interval from orbit 3 (1 February 2005) to 237 (29 June 2016). A new and improved data analysis method to obtain ion density from the Cassini LP measurements is used to study the asymmetries and modulations found in the inner plasma disk of Saturn, between 2.5 and 12 Saturn radii (1 RS=60,268 km). The structure of Saturn's plasma disk is mapped, and the plasma density peak, nmax, is shown to be located at ˜4.6 RS and not at the main neutral source region at 3.95 RS. The shift in the location of nmax is due to that the hot electron impact ionization rate peaks at ˜4.6 RS. Cassini RPWS plasma disk measurements show a solar cycle modulation. However, estimates of the change in ion density due to varying EUV flux is not large enough to describe the detected dependency, which implies that an additional mechanism, still unknown, is also affecting the plasma density in the studied region. We also present a dayside/nightside ion density asymmetry, with nightside densities up to a factor of 2 larger than on the dayside. The largest density difference is found in the radial region 4 to 5 RS. The dynamic variation in ion density increases toward Saturn, indicating an internal origin of the large density variability in the plasma disk rather than being caused by an external source origin in the outer magnetosphere.

  2. Transverse Space-Charge Field-Induced Plasma Dynamics for Ultraintense Electron-Beam Characterization

    NASA Astrophysics Data System (ADS)

    Tarkeshian, R.; Vay, J. L.; Lehe, R.; Schroeder, C. B.; Esarey, E. H.; Feurer, T.; Leemans, W. P.

    2018-04-01

    Similarly to laser or x-ray beams, the interaction of sufficiently intense particle beams with neutral gases will result in the creation of plasma. In contrast to photon-based ionization, the strong unipolar field of a particle beam can generate a plasma where the electron population receives a large initial momentum kick and escapes, leaving behind unshielded ions. Measuring the properties of the ensuing Coulomb exploding ions—such as their kinetic energy distribution, yield, and spatial distribution—can provide information about the peak electric fields that are achieved in the electron beams. Particle-in-cell simulations and analytical models are presented for high-brightness electron beams of a few femtoseconds or even hundreds of attoseconds, and transverse beam sizes on the micron scale, as generated by today's free electron lasers. Different density regimes for the utilization as a potential diagnostics are explored, and the fundamental differences in plasma dynamical behavior for e-beam or photon-based ionization are highlighted. By measuring the dynamics of field-induced ions for different gas and beam densities, a lower bound on the beam charge density can be obtained in a single shot and in a noninvasive way. The exponential dependency of the ionization yield on the beam properties can provide unprecedented spatial and temporal resolution, at the submicrometer and subfemtosecond scales, respectively, offering a practical and powerful approach to characterizing beams from accelerators at the frontiers of performance.

  3. Intervalley double resonance processes in MoS2

    NASA Astrophysics Data System (ADS)

    Wang, Yuanxi; Carvalho, Bruno; Malard, Leandro; Fantini, Cristiano; Crespi, Vincent; Pimenta, Marcos

    Intervalley scattering plays a significant role in electronic energy dissipation in semiconductors. We investigate the intervalley scattering of monolayer and few-layer MoS2, by combining density functional theory calculations and resonant Raman spectroscopy probed by up to 20 laser excitation energies. We observe that two Raman peaks within 420-460 cm-1 are dispersive over a small range of laser energy, a clear signature of second-order processes involving intervalley scattering. Both modes involve LA and TA phonons at or near the K point. A third Raman peak at 466 cm-1 shows a strong intensity dependence on the layer number and is assigned 2LA(M). Our results invalidate previous Raman peak assignment proposals and open up a better understanding of double resonance processes in transition metal dichalcogenides.

  4. Comparison of COSMIC RO Data with European Digisondes and GPS TEC measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, Irina; Krypiak-Gregorczyk, Anna; Shagimuratov, Irk; Krankowski, Andrzej; Lagovsky, Anatoly

    FormoSat-3/COSMIC now provides unprecedented global coverage of GPS occultations mea-surements, each of which yields the ionosphere electron density information with high vertical resolution. However systematic validation work is still needed before using the powerful RO technique for sounding the ionosphere on a routine basis. In the given study electron density profiles retrieved from the Formosat-3/COSMIC RO measurements were compared with differ-ent kinds of ground-based observations. We used the ionospheric data recorded by European digisondes of DIAS network (Rome, Ebro, Arenosillo, Athens, Chilton, Pruhonice and Julius-ruh) for temporal interval of 2007-2009 and compare these ground measured data with the GPS COSMIC RO ionospheric profiles. It was revealed that in general the form of COSMIC profile in the bottom side is in a good agreement with ionosonde profiles, the heights of the peak density value are also good comparable. Special attention was focused to the question of the topside part of electron density profile. Practically for all analyzed cases there are observed the understated values of electron density in the topside part of the ionosonde profiles in compare with RO profiles. As the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC radio occultation measurements can make an important contribution to the investigation of the topside part of the ionosphere. In order to assess the ac-curacy of the COSMIC ionospheric electron density retrievals, coincidences of ionosonde data with COSMIC NmF2 values have been examined. NmF2 was calculated from the observed critical plasma frequency foF2 of the F2 layer. Values of foF2 have been scaled manually from ionograms for all considered time-location cases to avoid the evident risks related with using of the autoscaled data. The created scatter plots show a high degree of correlation between two independent estimates of NmF2. Also it was analyzed the variation of NmF2 for the considered seasons depending on day-time and night-time conditions. Also it was analyzed the total elec-tron content values calculated for the nearest ground-based GPS stations located in European region. To compare GPS TEC with RO and ionosondes' data these profiles were integrated. In general bottom parts of COSMIC and ionosondes' data are in a rather good agreement while the topside can be varied greatly that is the evidence of difference in the topside parts of these profiles. GPS TEC values are greater than COSMIC and ionosondes' data as TEC contains IEC and PEC. This procedure can be useful to estimate the impact of PEC into TEC. Results of the given comparisons can be important to validate the reliability of the COSMIC iono-spheric observations using the RO technique. We acknowledge the Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC Data. We are grateful to European Digital Upper Atmosphere Server (DIAS) for providing the ionosondes' products and to International GNSS Service (IGS) for GPS Data.

  5. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Han-Chie; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw; Wu, Albert T.

    2016-03-21

    This study presented the disruption of the Sn and Ag{sub 3}Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10{sup 3} A/cm{sup 2} with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag{sub 3}Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density ofmore » up to 10{sup 17}/m{sup 2}. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.« less

  6. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  7. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  8. Boron doped simulated graphene field effect transistor model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Preetika, E-mail: preetikamadhav@yahoo.co.in; Gupta, Shuchi, E-mail: sgupta@pu.ac.in; Kaur, Inderpreet, E-mail: inderpreety@yahoo.co.in

    2016-05-06

    Graphene based electronic devices due to its unique properties has transformed electronics. A Graphene Field Effect Transistor (GNRFET) model is simulated in Virtual Nano Lab (VNL) and the calculations are based on density functional theory (DFT). Simulations were performed on this pristine GNRFET model and the transmission spectrum was observed. The graph obtained showed a uniform energy gap of +1 to −1eV and the highest transmission peak at −1.75 eV. To this pristine model of GNRFET, doping was introduced and its effect was seen on the Fermi level obtained in the transmission spectrum. Boron as a dopant was used whichmore » showed variations in both the transmission peaks and the energy gap. In this model, first the single boron was substituted in place of carbon and Fermi level showed an energy gap of 1.5 to −0.5eV with the highest transmission peak at −1.3 eV. In another variation in the model, two carbon atoms were replaced by two boron atoms and Fermi level shifted from 2 to 0.25eV. In this observation, the highest transmission peak was observed at −1(approx.). The use of nanoelectronic devices have opened many areas of applications as GFET is an excellent building block for electronic circuits, and is being used in applications such as high-performance frequency doublers and mixers, digital modulators, phase detectors, optoelectronics and spintronics.« less

  9. Experimental study of a free turbulent shear flow at Mach 19 with electron-beam and conventional probes. [flow measurement

    NASA Technical Reports Server (NTRS)

    Harvey, W. P.; Hunter, W. D., Jr.

    1975-01-01

    An experimental study of the initial development region of a hypersonic turbulent free mixing layer was made. Data were obtained at three stations downstream of a M = 19 nozzle over a Reynolds range of 1.3 million to 3.3 million per meter and at a total temperature of about 1670 K. In general, good agreement was obtained between electron-beam and conventional probe measurements of local mean flow parameters. Measurements of fluctuating density indicated that peak root-mean-square (rms) levels are higher in the turbulent free mixing layer than in boundary layers for Mach numbers less than 9. The intensity of rms density fluctuations in the free stream is similar in magnitude to pressure fluctuations in high Mach number flows. Spectrum analyses of the measured fluctuating density through the shear layer indicate significant fluctuation energy at the lower frequencies (0.2 to 5 kHZ) which correspond to large-scale disturbances in the high-velocity region of the shear layer.

  10. Thermal instability in the inner coma of a comet

    NASA Technical Reports Server (NTRS)

    Milikh, G. M.; Sharma, A. S.

    1995-01-01

    The spacecraft and ground based observations of comet Halley inner coma showed a localized ion density depletion region whose origin is not well understood. Although it has been linked to a thermal instability associated with negative ions, the photodetachment lifetime of negative ions (approximately 1 sec) is too short compared to the electron attachment time scale (approximately 100 sec) for this process to have a significant effect. A mechanism for the ion density depletion based on the thermal instability of the cometary plasma due to the excitation of rotational and vibrational levels of water molecules is proposed. The electron energy losses due to these processes peak near 4000 K (0.36 eV) and at temperatures higher than this value a localized cooling leads to further cooling (thermal instability) due to the increased radiation loss. The resulting increase in recombination leads to an ion density depletion and the estimates for this depletion at comet Halley agree with the observations.

  11. Study on transport properties of silicene monolayer under external field using NEGF method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syaputra, Marhamni, E-mail: marhamni@students.itb.ac.id; Wella, Sasfan Arman; Wungu, Triati Dewi Kencana

    2015-09-30

    We investigate the current-voltage (I-V) characteristics of a pristine monolayer silicene using non-equilibrium Green function (NEGF) method combining with density functional theory (DFT). This method succeeded in showing the relationship of I and V on silicene corresponding to the electronic characteristics such as density of states. The external field perpendicular to the silicene monolayer affects in increasing of the current. Under 0.2 eV external field, the current reaches the maximum peak at Vb = 0.3 eV with the increase is about 60% from what it is in zero external field.

  12. Solar cycle variation of the electron density in the topside ionosphere at local nighttime observed by DEMETER during 2006-2008

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemin; Qian, Jiadong; Shen, Xuhui

    2014-05-01

    The solar cycle variations of electron density (Ne) in the topside ionosphere are presented by observations around local time 22:30 from Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite during 2006-2008 in the low solar activity, in which the revisited orbits are selected to construct Ne time sequences at different points. The results show that electron density (Ne) reduced 50-100% since 2006 to 2008 at equatorial area and middle latitudes, with much bigger maximal Ne in 2006 but even no yearly peak in 2007 and 2008 around 30° latitude. The seasonal asymmetry is revealed by the yearly maxima of Ne in December over Southern Hemisphere always being larger than those in June over Northern Hemisphere. Furthermore, the equinoctial asymmetry is found around the magnetic equator and high northern latitudes under the low solar activity, and the latter one has not been revealed in other research. Ne from IRI2012 is close to the actual observation by DEMETER in 2008, even better than those in 2006 and 2007, indicating the great improvement of this empirical ionospheric model in this extremely low solar minimum. After comparison with the fitted results by indices of F10.7 and EUV combined with the first five periods in Ne, EUV is a little better to describe the variations in Ne during this solar minimum. By discussing the relationship among nighttime Ne and molecules in upper atmosphere, the [O/N2] density ratio is the key factor at high latitude, while [O] density plays a certain role to electron density around the equator.

  13. Lithography-Free Fabrication of Core-Shell GaAs Nanowire Tunnel Diodes.

    PubMed

    Darbandi, A; Kavanagh, K L; Watkins, S P

    2015-08-12

    GaAs core-shell p-n junction tunnel diodes were demonstrated by combining vapor-liquid-solid growth with gallium oxide deposition by atomic layer deposition for electrical isolation. The characterization of an ensemble of core-shell structures was enabled by the use of a tungsten probe in a scanning electron microscope without the need for lithographic processing. Radial tunneling transport was observed, exhibiting negative differential resistance behavior with peak-to-valley current ratios of up to 3.1. Peak current densities of up to 2.1 kA/cm(2) point the way to applications in core-shell photovoltaics and tunnel field effect transistors.

  14. Unusual Carrier Thermalization in a Dilute GaAs1-xNx Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, P. H.; Xu, Z. Y.; Luo, X. D.

    2007-01-01

    Photoluminescence (PL) properties of the E{sub 0}, E{sub 0} + {Delta}{sub 0}, and E{sub +} bands in an x=0.62% GaAs{sub 1-x}N{sub x} alloy were investigated in detail, including their peak position, linewidth, and line shape dependences on the excitation energy, excitation power, and temperature, using micro-PL. The hot electrons within the E{sub +} band are found to exhibit highly unusual thermalization, which results in a large blueshift in its PL peak energy by >2k{sub B}T, suggesting peculiar density of states and carrier dynamics of the E{sub +} band.

  15. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as compared to models that do not include electron-impact ionisation. We estimate infrared emissions from H3+, and while, in an H/H2/He atmosphere, these are larger from planets orbiting close to more active stars, they still appear too low to be detected with current observatories.

  16. All-electron density functional calculation on insulin with quasi-canonical localized orbitals.

    PubMed

    Inaba, Toru; Tahara, Saisei; Nisikawa, Nobutaka; Kashiwagi, Hiroshi; Sato, Fumitoshi

    2005-07-30

    An all-electron density functional (DF) calculation on insulin was performed by the Gaussian-based DF program, ProteinDF. Quasi-canonical localized orbitals (QCLOs) were used to improve the initial guess for the self-consistent field (SCF) calculation. All calculations were carried out by parallel computing on eight processors of an Itanium2 cluster (SGI Altix3700) with a theoretical peak performance of 41.6 GFlops. It took 35 h for the whole calculation. Insulin is a protein hormone consisting of two peptide chains linked by three disulfide bonds. The numbers of residues, atoms, electrons, orbitals, and auxiliary functions are 51, 790, 3078, 4439, and 8060, respectively. An all-electron DF calculation on insulin was successfully carried out, starting from connected QCLOs. Regardless of a large molecule with complicated topology, the differences in the total energy and the Mulliken atomic charge between initial and converged wavefunctions were very small. The calculation proceeded smoothly without any trial and error, suggesting that this is a promising method to obtain SCF convergence on large molecules such as proteins.

  17. Electronic structure and optical properties of CsI, CsI(Ag), and CsI(Tl)

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Zhao, Qiang; Li, Yang; Ouyang, Xiao-Ping

    2016-05-01

    The band structure, electronic density of states and optical properties of CsI and of CsI doped with silver or thallium are studied by using a first-principles calculation based on density functional theory (DFT). The exchange and the correlation potentials among the electrons are described by using the generalized gradient approximation (GGA). The results of our study show that the electronic structure changes somewhat when CsI is doped with silver or thallium. The band gaps of CsI(Ag) and CsI(Tl) are smaller than that of CsI, and the width of the conduction band of CsI is increased when CsI is doped with thallium or silver. Two peaks located in the conduction band of CsI(Ag) and CsI(Tl) are observed from their electronic densities of states. The absorption coefficients of CsI, CsI(Ag), and CsI(Tl) are zero when their photon energies are below 3.5 eV, 1.5 eV, and 3.1 eV, respectively. The results show that doping can improve the detection performance of CsI scintillators. Our study can explain why doping can improve the detection performance from a theoretical point of view. The results of our research provide both theoretical support for the luminescent mechanisms at play in scintillator materials when they are exposed to radiation and a reference for CsI doping from the point of view of the electronic structure.

  18. Electron Scattering by Plasmaspheric Hiss in a Nightside Plume

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxun; Fu, Song; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Summers, Danny; Zou, Zhengyang; Cao, Xing; Lou, Yuequn; Hua, Man

    2018-05-01

    Plasmaspheric hiss is known to play an important role in radiation belt electron dynamics in high plasma density regions. We present observations of two crossings of a plasmaspheric plume by the Van Allen Probes on 26 December 2012, which occurred unusually at the post-midnight-to-dawn sector between L 4-6 during a geomagnetically quiet period. This plume exhibited pronounced electron densities higher than those of the average plume level. Moderate hiss emissions accompanied the two plume crossings with the peak power at about 100 Hz. Quantification of quasi-linear bounce-averaged electron scattering rates by hiss in the plume demonstrates that the waves are efficient to pitch angle scatter 10-100 keV electrons at rates up to 10-4 s-1 near the loss cone but become gradually insignificant to scatter the higher energy electron population. The resultant timescales of electron loss due to hiss in the nightside plume vary largely with electron kinetic energy over 3 orders of magnitude, that is, from several hours for tens of keV electrons to a few days for hundreds of keV electrons to well above 100 days for >1 MeV electrons. Changing slightly with L-shell and the multiquartile profile of hiss spectral intensity, these electron loss timescales suggest that hiss emissions in the nightside plume act as a viable candidate for the fast loss of the ≲100 keV electrons and the slow decay of higher energy electrons.

  19. Relativistic Electron Acceleration with Ultrashort Mid-IR Laser Pulses

    NASA Astrophysics Data System (ADS)

    Feder, Linus; Woodbury, Daniel; Shumakova, Valentina; Gollner, Claudia; Miao, Bo; Schwartz, Robert; Pugžlys, Audrius; Baltuška, Andrius; Milchberg, Howard

    2017-10-01

    We report the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared laser pulses (λ = 3.9 μm , pulsewidth 100 fs, energy <20 mJ, peak power <1 TW), which enables near- and above-critical density interactions with moderate-density gas jets. We present thresholds for electron acceleration based on critical parameters for relativistic self-focusing and target width, as well as trends in the accelerated beam profiles, charge and energy spectra which are supported by 3D particle-in-cell simulations. These results extend earlier work with sub-TW self-modulated laser wakefield acceleration using near IR drivers to the Mid-IR, and enable us to capture time-resolved images of relativistic self-focusing of the laser pulse. This work supported by DOE (DESC0010706TDD, DESC0015516); AFOSR(FA95501310044, FA95501610121); NSF(PHY1535519); DHS.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X. G.; Ning, C. G.; Zhang, S. F.

    The measurements of electron density distributions and binding-energy spectrum of the complete valence shell of cyclopentene (C{sub 5}H{sub 8}) using a binary (e,2e) electron momentum spectrometer are reported. The experimental momentum profiles of the valence orbitals are compared with the theoretical distributions calculated using Hartree-Fock and density-functional-theory (DFT) methods with various basis sets. The agreement between theory and experiment for the shape and intensity of the orbital electron momentum distributions is generally good. The DFT calculations employing B3LYP hybrid functional with a saturated and diffuse AUG-CC-PVTZ basis set provide the better descriptions of the experimental data. Some ''turn up'' effectsmore » in the low momentum region of the measured (e,2e) cross section compared with the calculations of 3a{sup ''}, 2a{sup ''}, and 3a{sup '} orbitals could be mainly attributed to distorted-wave effects. The pole strengths of the main ionization peaks from the orbitals in the inner valence are estimated.« less

  1. Assessment of Ionospheric Anomaly Prior to the Large Earthquake: 2D and 3D Analysis in Space and Time for the 2011 Tohoku Earthquake (Mw9.0)

    NASA Astrophysics Data System (ADS)

    Hattori, Katsumi; Hirooka, Shinji; Han, Peng

    2016-04-01

    The ionospheric anomalies possibly associated with large earthquakes have been reported by many researchers. In this paper, Total Electron Content (TEC) and tomography analyses have been applied to investigate the spatial and temporal distributions of ionospheric electron density prior to the 2011 Off the Pacific Coast of Tohoku earthquake (Mw9.0). Results show significant TEC enhancements and an interesting three dimensional structure prior to the main shock. As for temporal TEC changes, the TEC value increases 3-4 days before the earthquake remarkably, when the geomagnetic condition was relatively quiet. In addition, the abnormal TEC enhancement area in space was stalled above Japan during the period. Tomographic results show that three dimensional distribution of electron density decreases around 250 km altitude above the epicenter (peak is located just the east-region of the epicenter) and increases the mostly entire region between 300 and 400 km.

  2. Profile Control by Biased Electrodes in Large Diameter RF Produced Pl asma

    NASA Astrophysics Data System (ADS)

    Shinohara, Shunjiro; Matsuoka, Norikazu; Yoshinaka, Toshiro

    1998-10-01

    Control of the plasma profile has been carried out, using the voltage biasing method in the large diameter (45 cm) RF (radio frequency) produced plasma in the presence of the uniform magnetic field (less than 1200 G). Under the low filling pressure condition of 0.16 mTorr, changing the biasing voltages to the three individual end plates with concentric circular ring shapes, the radial electron density (about 10^10 cm-3) profile could be changed from the hollow to the peaked one. On the contrary, the nearly flat electron temperature (several eV) profile did not change appreciably. The azimuthal rotation velocity measured by the Mach probe, i.e. directional probe, showed the different radial profiles (but nearly uniform along the axis) depending on the biasing voltage. This velocity became slower with the low magnetic field (less than 200 G) or in the higher pressure regime up to 20 mTorr with the higher electron density. The experimental results by other biasing methods will also be presented.

  3. High Mobility SiGe/Si Transistor Structures on Sapphire Substrates Using Ion Implantation

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Mueller, C. H.; Croke, E. T.

    2003-01-01

    High mobility n-type SiGe/Si transistor structures have been fabricated on sapphire substrates by ion implanting phosphorus ions into strained 100 Angstrom thick silicon channels for the first time. The strained Si channels were sandwiched between Si(sub 0.7)Ge(sub 0.3) layers, which, in turn, were deposited on Si(sub 0.7)Ge(sub 0.3) virtual substrates and graded SiGe buffer layers. After the molecular beam epitaxy (MBE) film growth process was completed, ion thick silicon channels implantation and post-annealing were used to introduce donors. The phosphorous ions were preferentially located in the Si channel at a peak concentration of approximately 1x10(exp 18)/cu cm. Room temperature electron mobilities exceeding 750 sq cm/V-sec at carrier densities of 1x10(exp 12)/sq cm were measured. Electron concentration appears to be the key factor that determines mobility, with the highest mobility observed for electron densities in the 1 - 2x10(exp 12)/sq cm range.

  4. A tapered multi-gap multi-aperture pseudospark-sourced electron gun based X-band slow wave oscillator

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Lamba, R. P.; Hossain, A. M.; Pal, U. N.; Phelps, A. D. R.; Prakash, R.

    2017-11-01

    The experimental study of a tapered, multi-gap, multi-aperture pseudospark-sourced electron gun based X-band plasma assisted slow wave oscillator is presented. The designed electron gun is based on the pseudospark discharge concept and has been used to generate a high current density and high energy electron beam simultaneously. The distribution of apertures has been arranged such that the field penetration potency inside the backspace of the hollow-cathode is different while passing through the tapered gap region. This leads to non-concurrent ignition of the discharge through all the channels which is, in general, quite challenging in the case of multi-aperture plasma cathode electron gun geometries. Multiple and successive hollow cathode phases are reported from this electron gun geometry, which have been confirmed using simulations. This geometry also has led to the achievement of ˜71% fill factor inside the slow wave oscillator for an electron beam of energy of 20 keV and a beam current density in the range of 115-190 A/cm2 at a working argon gas pressure of 18 Pa. The oscillator has generated broadband microwave output in the frequency range of 10-11.7 GHz with a peak power of ˜10 kW for ˜50 ns.

  5. Rapid Loss of Radiation Belt Relativistic Electrons by EMIC Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan

    How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth's outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the electromagnetic ion cyclotron (EMIC) wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the predictionmore » of radial loss theory. The local loss at low L shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region were able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.« less

  6. Rapid Loss of Radiation Belt Relativistic Electrons by EMIC Waves

    DOE PAGES

    Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; ...

    2017-08-31

    How relativistic electrons are lost is an important question surrounding the complex dynamics of the Earth's outer radiation belt. Radial loss to the magnetopause and local loss to the atmosphere are two main competing paradigms. Here on the basis of the analysis of a radiation belt storm event on 27 February 2014, we present new evidence for the electromagnetic ion cyclotron (EMIC) wave-driven local precipitation loss of relativistic electrons in the heart of the outer radiation belt. During the main phase of this storm, the radial profile of relativistic electron phase space density was quasi-monotonic, qualitatively inconsistent with the predictionmore » of radial loss theory. The local loss at low L shells was required to prevent the development of phase space density peak resulting from the radial loss process at high L shells. The rapid loss of relativistic electrons in the heart of outer radiation belt was observed as a dip structure of the electron flux temporal profile closely related to intense EMIC waves. Our simulations further confirm that the observed EMIC waves within a quite limited longitudinal region were able to reduce the off-equatorially mirroring relativistic electron fluxes by up to 2 orders of magnitude within about 1.5 h.« less

  7. Enhanced thermoelectric power and electronic correlations in RuSe₂

    DOE PAGES

    Wang, Kefeng; Wang, Aifeng; Tomic, A.; ...

    2015-03-03

    We report the electronic structure, electric and thermal transport properties of Ru 1-xIr xSe₂ (x ≤ 0.2). RuSe₂ is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe₂ exceeds -200 μV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru 0.8Ir 0.2Se₂ shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb₂.

  8. Electron-beam-charged dielectrics: Internal charge distribution

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Pine, V. W.

    1981-01-01

    Theoretical calculations of an electron transport model of the charging of dielectrics due to electron bombardment are compared to measurements of internal charge distributions. The emphasis is on the distribution of Teflon. The position of the charge centroid as a function of time is not monotonic. It first moves deeper into the material and then moves back near to the surface. In most time regimes of interest, the charge distribution is not unimodal, but instead has two peaks. The location of the centroid near saturation is a function of the incident current density. While the qualitative comparison of theory and experiment are reasonable, quantitative comparison shows discrepancies of as much as a factor of two.

  9. New results on thermalization of electrons in GaAs

    NASA Astrophysics Data System (ADS)

    Hannak, Reinhard M.; Ruehle, Wolfgang W.

    1994-05-01

    The transition from a nonthermal into a thermal distribution of electrons at low densities (< 1014 cm-3) is traced on a picosecond time-scale by the time evolution of a band-to-acceptor transition in GaAs:Be. Two narrow, nonthermal electron distributions are detected during the first picoseconds originating from the heavy- and light-hole valence band, respectively. Measurements with circular polarization of excitation and luminescence confirm this assignment. The variation of their energetic peak-positions with excitation energy allows the experimental determination of the valence band dispersions for very small wave vectors near k equals 0, where only parabolic energy terms contribute to the dispersions. The results are consistent with the commonly used effective hole masses.

  10. The statistics of peaks of Gaussian random fields. [cosmological density fluctuations

    NASA Technical Reports Server (NTRS)

    Bardeen, J. M.; Bond, J. R.; Kaiser, N.; Szalay, A. S.

    1986-01-01

    A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of 'upcrossing' points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima.

  11. Static, dynamic and electronic properties of expanded fluid mercury in the metal-nonmetal transition range. An ab initio study.

    PubMed

    Calderín, L; González, L E; González, D J

    2011-09-21

    Fluid Hg undergoes a metal-nonmetal (M-NM) transition when expanded toward a density of around 9 g cm(-3). We have performed ab initio molecular dynamics simulations for several thermodynamic states around the M-NM transition range and the associated static, dynamic and electronic properties have been analyzed. The calculated static structure shows a good agreement with the available experimental data. It is found that the volume expansion decreases the number of nearest neighbors from 10 (near the triple point) to around 8 at the M-NM transition region. Moreover, these neighbors are arranged into two subshells and the decrease in the number of neighbors occurs in the inner subshell. The calculated dynamic structure factors agree fairly well with their experimental counterparts obtained by inelastic x-ray scattering experiments, which display inelastic side peaks. The derived dispersion relation exhibits some positive dispersion for all the states, although its value around the M-NM transition region is not as marked as suggested by the experiment. We have also calculated the electronic density of states, which shows the appearance of a gap at a density of around 8.3 g cm(-3).

  12. Quantitative Study of Interface/Interphase in Epoxy/Graphene-Based Nanocomposites by Combining STEM and EELS.

    PubMed

    Liu, Yu; Hamon, Ann-Lenaig; Haghi-Ashtiani, Paul; Reiss, Thomas; Fan, Benhui; He, Delong; Bai, Jinbo

    2016-12-14

    A quantitative study of the interphase and interface of graphene nanoplatelets (GNPs)/epoxy and graphene oxide (GO)/epoxy was carried out by combining scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). The interphase regions between GNPs and epoxy matrix were clearly identified by the discrepancy of the plasmon peak positions in the low energy-loss spectra due to different valence electron densities. The spectrum acquisitions were carried out along lines across the interface. An interphase thickness of 13 and 12.5 nm was measured for GNPs/epoxy and GO/epoxy, respectively. The density of the GNPs/epoxy interphase was 2.89% higher than that of the epoxy matrix. However, the density of the GO/epoxy interphase was 1.37% lower than that of the epoxy matrix. The interphase layer thickness measured in this work is in good agreement with the transition layer theory, which proposed an area with modulus linearly varying across a finite width. The results provide an insight into the interphase for carbon-based polymer composites that can help to design the functionalization of nanofillers to improve the composite properties.

  13. The domination of Saturn's low-latitude ionosphere by ring 'rain'.

    PubMed

    O'Donoghue, J; Stallard, T S; Melin, H; Jones, G H; Cowley, S W H; Miller, S; Baines, K H; Blake, J S D

    2013-04-11

    Saturn's ionosphere is produced when the otherwise neutral atmosphere is exposed to a flow of energetic charged particles or solar radiation. At low latitudes the solar radiation should result in a weak planet-wide glow in the infrared, corresponding to the planet's uniform illumination by the Sun. The observed electron density of the low-latitude ionosphere, however, is lower and its temperature higher than predicted by models. A planet-to-ring magnetic connection has been previously suggested, in which an influx of water from the rings could explain the lower-than-expected electron densities in Saturn's atmosphere. Here we report the detection of a pattern of features, extending across a broad latitude band from 25 to 60 degrees, that is superposed on the lower-latitude background glow, with peaks in emission that map along the planet's magnetic field lines to gaps in Saturn's rings. This pattern implies the transfer of charged species derived from water from the ring-plane to the ionosphere, an influx on a global scale, flooding between 30 to 43 per cent of the surface of Saturn's upper atmosphere. This ring 'rain' is important in modulating ionospheric emissions and suppressing electron densities.

  14. Spectroscopy of metal "superatom" nanoclusters and high-Tc superconducting pairing

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Kresin, Vitaly V.

    2015-12-01

    A unique property of metal nanoclusters is the "superatom" shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally strong electron pairing in certain clusters composed of tens to hundreds of atoms. In a finite system, such as a free nanocluster or a nucleus, pairing is observed most clearly via its effect on the energy spectrum of the constituent fermions. Accordingly, we performed a photoionization spectroscopy study of size-resolved aluminum nanoclusters and observed a rapid rise in the near-threshold density of states of several clusters (A l37 ,44 ,66 ,68 ) with decreasing temperature. The characteristics of this behavior are consistent with compression of the density of states by a pairing transition into a high-temperature superconducting state with Tc≳100 K. This value exceeds that of bulk aluminum by two orders of magnitude. These results highlight the potential of novel pairing effects in size-quantized systems and the possibility to attain even higher critical temperatures by optimizing the particles' size and composition. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks.

  15. Quasiparticles and phonon satellites in spectral functions of semiconductors and insulators: Cumulants applied to the full first-principles theory and the Fröhlich polaron

    NASA Astrophysics Data System (ADS)

    Nery, Jean Paul; Allen, Philip B.; Antonius, Gabriel; Reining, Lucia; Miglio, Anna; Gonze, Xavier

    2018-03-01

    The electron-phonon interaction causes thermal and zero-point motion shifts of electron quasiparticle (QP) energies ɛk(T ) . Other consequences of interactions, visible in angle-resolved photoemission spectroscopy (ARPES) experiments, are broadening of QP peaks and appearance of sidebands, contained in the electron spectral function A (k ,ω ) =-ℑ m GR(k ,ω ) /π , where GR is the retarded Green's function. Electronic structure codes (e.g., using density-functional theory) are now available that compute the shifts and start to address broadening and sidebands. Here we consider MgO and LiF, and determine their nonadiabatic Migdal self-energy. The spectral function obtained from the Dyson equation makes errors in the weight and energy of the QP peak and the position and weight of the phonon-induced sidebands. Only one phonon satellite appears, with an unphysically large energy difference (larger than the highest phonon energy) with respect to the QP peak. By contrast, the spectral function from a cumulant treatment of the same self-energy is physically better, giving a quite accurate QP energy and several satellites approximately spaced by the LO phonon energy. In particular, the positions of the QP peak and first satellite agree closely with those found for the Fröhlich Hamiltonian by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000), 10.1103/PhysRevB.62.6317] using diagrammatic Monte Carlo. We provide a detailed comparison between the first-principles MgO and LiF results and those of the Fröhlich Hamiltonian. Such an analysis applies widely to materials with infrared(IR)-active phonons.

  16. Exchange and correlation effects on plasmon dispersions and Coulomb drag in low-density electron bilayers

    NASA Astrophysics Data System (ADS)

    Badalyan, S. M.; Kim, C. S.; Vignale, G.; Senatore, G.

    2007-03-01

    We investigate the effect of exchange and correlation (XC) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a different approach, which employs dynamic XC kernels in the calculation of the bilayer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. The spectrum of bilayer plasmons and the drag resistivity are calculated in a broad range of temperatures taking into account both intra- and interlayer correlation effects. We observe that both plasmon modes are strongly affected by XC corrections. After the inclusion of the complex dynamic XC kernels, a decrease of the electron density induces shifts of the plasmon branches in opposite directions. This is in stark contrast with the tendency observed within random phase approximation that both optical and acoustical plasmons move away from the boundary of the particle-hole continuum with a decrease in the electron density. We find that the introduction of XC corrections results in a significant enhancement of the transresistivity and qualitative changes in its temperature dependence. In particular, the large high-temperature plasmon peak that is present in the random phase approximation is found to disappear when the XC corrections are included. Our numerical results at low temperatures are in good agreement with the results of recent experiments by Kellogg [Solid State Commun. 123, 515 (2002)].

  17. Multispacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Lijen; Bessho, Naoki; Bhattacharjee, Amitava

    Open questions concerning structures and dynamics of diffusion regions and electron acceleration in collisionless magnetic reconnection are addressed based on data from the four-spacecraft mission Cluster and particle-in-cell simulations. Using time series of electron distribution functions measured by the four spacecraft, distinct electron regions around a reconnection layer are mapped out to set the framework for studying diffusion regions. A spatially extended electron current sheet (ecs), a series of magnetic islands, and bursts of energetic electrons within islands are identified during magnetotail reconnection with no appreciable guide field. The ecs is collocated with a layer of electron-scale electric fields normalmore » to the ecs and pointing toward the ecs center plane. Both the observed electron and ion densities vary by more than a factor of 2 within one ion skin depth north and south of the ecs, and from the ecs into magnetic islands. Within each of the identified islands, there is a burst of suprathermal electrons whose fluxes peak at density compression sites [L.-J. Chen et al., Nat. Phys. 4, 19 (2008)] and whose energy spectra exhibit power laws with indices ranging from 6 to 7.3. These results indicate that the in-plane electric field normal to the ecs can be of the electron scale at certain phases of reconnection, electrons and ions are highly compressible within the ion diffusion region, and for reconnection involving magnetic islands, primary electron acceleration occurs within the islands.« less

  18. Diffusive vs. impulsive energetic electron transport during radiation belt storms

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Koepke, M.; Tornquist, M.

    2008-12-01

    Earth's electron radiation belts are continually replenished by inward particle transport (as well as other, local acceleration processes) taking place during radiation belt storms. For some storms the radial transport is primarily diffusive while for others it is impulsive, or characterized by injections. To distinguish between these types of inward transport, we first use a dynamic model of the phase-space density as measured by POLAR/HIST and expressed in terms of adiabatic invariants [Green and Kivelson, 2004]. In a review of storms from 1997 to 2004 the coefficients of the model are peaked at characteristic temporal and phase- space (mu, k, L*) scales during specific storms. The transport is quantified in terms of those invariants which are violated and identified with peaks of the electron distribution in invariant space. Second, we run guiding- center simulations in wave fields fitted to in situ measurements complemented at low and high L by ground ULF pulsations. The modes of response identified in earlier studies from SAMPEX and POLAR electron flux measurements are now associated with primarily diffusive transport in the central range of the outer belt, L=4-8, and primarily impulsive transport near the plasmapause boundary, L=3-4.

  19. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.

    PubMed

    Hobbs, Richard G; Yang, Yujia; Fallahi, Arya; Keathley, Philip D; De Leo, Eva; Kärtner, Franz X; Graves, William S; Berggren, Karl K

    2014-11-25

    Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods. We have also studied the effects of surface plasmon damping induced by metallic interface layers at the substrate/nanorod interface on near-field enhancement and electron emission. We have identified the peak optical field at which the electron emission mechanism transitions from a 3-photon absorption mechanism to strong-field tunneling emission. Moreover, we have investigated the effects of nanorod array density on nanorod charge yield, including measurement of space-charge effects. The Au nanorod photocathodes presented in this work display 100-1000 times higher conversion efficiency relative to previously reported UV triggered emission from planar Au photocathodes. Consequently, the Au nanorod arrays triggered by ultrafast pulses of 800 nm light in this work may outperform equivalent UV-triggered Au photocathodes, while also offering nanostructuring of the electron pulse produced from such a cathode, which is of interest for X-ray free-electron laser (XFEL) development where nanostructured electron pulses may facilitate more efficient and brighter XFEL radiation.

  20. Electronic theoretical study on the influence of torsional deformation on the electronic structure and optical properties of BN-doped graphene

    NASA Astrophysics Data System (ADS)

    Fan, Dazhi; Liu, Guili; Wei, Lin

    2018-06-01

    Based on the density functional theory, the effect of torsional deformation on the electronic structure and optical properties of boron nitride (BN)-doped graphene is studied by using the first-principles calculations. The band structure calculations show that the intrinsic graphene is a semi-metallic material with zero band gap and the torsional deformation has a large effect on its band gap, opening its band gap and turning it from the semi-metal to the medium band gap semiconductor. The doping of BN in graphene makes its band gap open and becomes a medium band gap semiconductor. When it is subjected to a torsional effect, it is found to have a weak influence on its band gap. In other words, the doping of BN makes the changes of the band gap of graphene no longer sensitive to torsional deformation. Optical properties show that the doping of BN leads to a significant decrease in the light absorption coefficient and reflectivity of the graphene at the characteristic peak and that of BN-doped graphene system is also weakened by torsional deformation at the characteristic peak. In the absorption spectrum, the absorption peaks of the doping system of the torsion angle of 2-20∘ are redshifted compared with that of the BN-doped system (the torsion angle is 0∘). In the reflection spectrum, the two reflection peaks are all redshifted relative to that of the BN-doped system (the torsion angle is 0∘) and when the torsion angle exceeds 12∘, the size relationship between the two peaks is interchanged. The results of this paper are of guiding significance for the study of graphene-based nanotube devices in terms of deformation.

  1. Optical investigation of BaFe2(As0.77P0.23)2 : Spin-fluctuation-mediated superconductivity under pressure

    NASA Astrophysics Data System (ADS)

    Uykur, E.; Kobayashi, T.; Hirata, W.; Miyasaka, S.; Tajima, S.; Kuntscher, C. A.

    2017-06-01

    Temperature-dependent reflectivity measurements in the frequency range 75-8000 cm-1 were performed on BaFe2(As0.77P0.23)2 single crystals under pressure up to ˜5 GPa . The obtained optical conductivity spectra have been analyzed to extract the electron-boson spectral density α2F (Ω ) . A sharp resonance peak was observed in α2F (Ω ) upon the superconducting transition, persisting throughout the applied pressure range. The energy and temperature dependences of this peak are consistent with the superconducting gap opening. Furthermore, several similarities with other experimental probes such as inelastic neutron scattering (INS) [D. S. Inosov et al., Nat. Lett. 6, 178 (2010), 10.1038/nphys1483] give evidence for the coupling to a bosonic mode, possibly due to spin fluctuations. Moreover, electronic correlations have been calculated via spectral weight analysis, which revealed that the system stays in the strongly correlated regime throughout the applied pressure range. However, a comparison to the parent compound showed that the electronic correlations are slightly decreased with P doping. The investigation of the phase diagram obtained by our optical study under pressure also revealed the coexistence of the spin-density wave and the superconducting regions, where the coexistence region shifts to the lower pressure range with increasing P content. Moreover, the optimum pressure range, where the highest superconducting transition temperature has been obtained, shows a nonlinear decrease with increasing P content.

  2. A numerical analysis of plasma non-uniformity in the parallel plate VHF-CCP and the comparison among various model

    NASA Astrophysics Data System (ADS)

    Sawada, Ikuo

    2012-10-01

    We measured the radial distribution of electron density in a 200 mm parallel plate CCP and compared it with results from numerical simulations. The experiments were conducted with pure Ar gas with pressures ranging from 15 to 100 mTorr and 60 MHz applied at the top electrode with powers from 500 to 2000W. The measured electron profile is peaked in the center, and the relative non-uniformity is higher at 100 mTorr than at 15 mTorr. We compare the experimental results with simulations with both HPEM and Monte-Carlo/PIC codes. In HPEM simulations, we used either fluid or electron Monte-Carlo module, and the Poisson or the Electromagnetic solver. None of the models were able to duplicate the experimental results quantitatively. However, HPEM with the electron Monte-Carlo module and PIC qualitatively matched the experimental results. We will discuss the results from these models and how they illuminate the mechanism of enhanced electron central peak.[4pt] [1] T. Oshita, M. Matsukuma, S.Y. Kang, I. Sawada: The effect of non-uniform RF voltage in a CCP discharge, The 57^th JSAP Spring Meeting 2010[4pt] [2] I. Sawada, K. Matsuzaki, S.Y. Kang, T. Ohshita, M. Kawakami, S. Segawa: 1-st IC-PLANTS, 2008

  3. Re-examination of the metallic ion layers of comet Siding Spring origin measured by IUVS/MAVEN and MARSIS/MEX

    NASA Astrophysics Data System (ADS)

    Narukull, V. R.; Schneider, N. M.; Yaswanth, C.; MohanaManasa, P.; Crismani, M. M. J.; Deighan, J.; Jain, S.

    2017-12-01

    The close encounter of comet Siding Spring (C/2013 A1, CSS) with Mars on 19 October 2014 had several aftermath effects on the Martian upper atmosphere. Instruments on several spacecraft, such as the IUVS and NGIMS on MAVEN, MARSIS on MEX, and the SHARAD on MRO reported the atmospheric effects of the CSS event. In this study, we re-examined the IUVS and MARSIS observations to get further insight into the CSS effects on the Martian upper atmosphere. The IUVS repeated its observations over the same location with an interval of 22.5 hours. By using these repeated observations, we computed the rate of vertical transport of metallic ions at a given location. This analysis is repeated over several locations. We found that the lifetime of the metallic ion layer increases with increase in altitude and the high-density layers decay faster than the low-density ones, in agreement with model simulations. These vertical transport rates are then used to examine time of the peak in metallic ion layer measured by NGIMS at 185 km. Previous studies have shown that there is an ambiguity in the altitude of the peak of metallic ion layer and that of the electron density layer due to CSS with the former being 60 km higher than the later. By re-analyzing the observations of IUVS and MARSIS, we addressed the ambiguity in altitude. The ambiguity in the altitude is mainly because of the differences in the orbital passes of the two spacecraft, the global inhomogeneity of the initial dust deposition, and the dispersion effects of the electron density profiles in the MARSIS observations.

  4. Effective D-A-D type chromophore of fumaronitrile-core and terminal alkylated bithiophene for solution-processed small molecule organic solar cells.

    PubMed

    Nazim, M; Ameen, Sadia; Seo, Hyung-Kee; Shin, Hyung Shik

    2015-06-12

    A new and novel organic π-conjugated chromophore (named as RCNR) based on fumaronitrile-core acceptor and terminal alkylated bithiophene was designed, synthesized and utilized as an electron-donor material for the solution-processed fabrication of bulk-heterojunction (BHJ) small molecule organic solar cells (SMOSCs). The synthesized organic chromophore exhibited a broad absorption peak near green region and strong emission peak due to the presence of strong electron-withdrawing nature of two nitrile (-CN) groups of fumaronitrile acceptor. The highest occupied molecular orbital (HOMO) energy level of -5.82 eV and the lowest unoccupied molecular orbital (LUMO) energy level of -3.54 eV were estimated for RCNR due to the strong electron-accepting tendency of -CN groups. The fabricated SMOSC devices with RCNR:PC60BM (1:3, w/w) active layer exhibited the reasonable power conversion efficiency (PCE) of ~2.69% with high short-circuit current density (JSC) of ~9.68 mA/cm(2) and open circuit voltage (VOC) of ~0.79 V.

  5. Effective D-A-D type chromophore of fumaronitrile-core and terminal alkylated bithiophene for solution-processed small molecule organic solar cells

    PubMed Central

    Nazim, M.; Ameen, Sadia; Seo, Hyung-Kee; Shin, Hyung Shik

    2015-01-01

    A new and novel organic π-conjugated chromophore (named as RCNR) based on fumaronitrile-core acceptor and terminal alkylated bithiophene was designed, synthesized and utilized as an electron-donor material for the solution-processed fabrication of bulk-heterojunction (BHJ) small molecule organic solar cells (SMOSCs). The synthesized organic chromophore exhibited a broad absorption peak near green region and strong emission peak due to the presence of strong electron-withdrawing nature of two nitrile (–CN) groups of fumaronitrile acceptor. The highest occupied molecular orbital (HOMO) energy level of –5.82 eV and the lowest unoccupied molecular orbital (LUMO) energy level of –3.54 eV were estimated for RCNR due to the strong electron-accepting tendency of –CN groups. The fabricated SMOSC devices with RCNR:PC60BM (1:3, w/w) active layer exhibited the reasonable power conversion efficiency (PCE) of ~2.69% with high short-circuit current density (JSC) of ~9.68 mA/cm2 and open circuit voltage (VOC) of ~0.79 V. PMID:26066557

  6. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  7. Integration of high capacity materials into interdigitated mesostructured electrodes for high energy and high power density primary microbatteries

    NASA Astrophysics Data System (ADS)

    Pikul, James H.; Liu, Jinyun; Braun, Paul V.; King, William P.

    2016-05-01

    Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 μWh cm-2 μm-1 and peak power 5300 μW cm-2 μm-1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry into porous micro-architectures. The interdigitated battery electrodes consist of a lithium metal anode and a mesoporous manganese oxide cathode. The key enabler of the high energy and power density is the integration of the high capacity manganese oxide conversion chemistry into a mesostructured high power interdigitated bicontinuous cathode architecture and an electrodeposited dense lithium metal anode. The resultant energy density is greater than previously reported three-dimensional microbatteries and is comparable to commercial conventional format lithium-based batteries.

  8. High-Current-Density Thermionic Cathodes and the Generation of High-Voltage Electron Beams

    DTIC Science & Technology

    1989-04-30

    Cathode Temperature =1700 OC Figure 37: Peak gun voltage = 90 kV -57- 60- 0 EGUN 327 ~40 0S 20’ Vacuum 5 .2 x 10 Tor 0 o 0 15202 30 Time (jis...by modeling the filament as a thin disk. The shape of the H - V -, 2 actual filament is sketched in Fig. 2. The EGUN code 1 131 is used to calculate

  9. Faraday rotation measurements at Ootacamund

    NASA Technical Reports Server (NTRS)

    Sethia, G.; Chandra, H.; Deshpande, M. R.; Rastogi, R. G.

    1978-01-01

    The results of Faraday rotation measurements made at Ootacamund during ATS-6 phase II are presented. For summer and equinoctial months, even though no clear noon bite-out is observed in the variation of Faraday a decrease is observed in the rate of increase of rotation around 0900-1000 hours LT. This is attributed to the 'fountain effect' which is responsible for the noontime bite-out in F2-region peak electron density.

  10. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering.

    PubMed

    Wall, Michael E; Van Benschoten, Andrew H; Sauter, Nicholas K; Adams, Paul D; Fraser, James S; Terwilliger, Thomas C

    2014-12-16

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein-solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.

  11. Ion heating and characteristics of ST plasma used by double-pulsing CHI on HIST

    NASA Astrophysics Data System (ADS)

    Hanao, Takafumi; Hirono, Hidetoshi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki; Nagata, Masayoshi

    2013-10-01

    Multi-pulsing Coaxial Helicity Injection (M-CHI) is an efficient current drive and sustainment method used in spheromak and spherical torus (ST). We have observed plasma current/flux amplification by double pulsing CHI. Poloidal ion temperature measured by Ion Doppler Spectrometer (IDS) has a peak at plasma core region. In this region, radial electric field has a negative peak. At more inboard side that is called separatrix between closed flux region and inner open flux region, poloidal flow has a large shear and radial electric field changes the polarity. After the second CHI pulse, we observed sharp and rapid ion heating at plasma core region and separatrix. In this region, the poloidal ion temperature is selective heating because electron temperature is almost uniform. At this time, flow shear become larger and radial electric field is amplified at separatorix. These effects produce direct heating of ion through the viscous flow damping. Furthermore, we observed decrease of electron density at separatrix. Decreased density makes Hall dynamo electric field as two-fluid effect. When the ion temperature is increasing, dynamo electric field is observed at separatrix. It may have influence with the ion heating. We will discuss characteristic of double pulsing CHI driven ST plasmas and correlation of direct heating of ion with dynamo electric field and any other parameters.

  12. The electron content of the southern mid-latitude ionosphere, 1965-1971.

    NASA Technical Reports Server (NTRS)

    Titheridge, J. E.

    1973-01-01

    Continuous accurate records of the electron content of the ionosphere are obtained at Auckland (ionosphere point at 34 deg S geographic, 38 deg geomagnetic) and at Invercargill (42 deg S geographic, 47 deg geomagnetic). Mean hourly values scaled from these records are used to show the average diurnal, seasonal and solar cycle changes in the ionosphere from June 1965 to August 1971. The mean daytime electron content shows no seasonal anomaly at any stage of the solar cycle, at 34 deg S. There is some anomaly at 42 deg S, particularly near solar maximum. The anomaly becomes quite marked in terms of peak density because of a contraction of the ionosphere in winter. The mean amplitude of the day-to-day fluctuations in electron content shows no appreciable solar cycle change.

  13. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra tomore » show the improvements in plasma characterization.« less

  14. Anomalous Electron Spectrum and Its Relation to Peak Structure of Electron Scattering Rate in Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Gao, Deheng; Mou, Yingping; Feng, Shiping

    2018-02-01

    The recent discovery of a direct link between the sharp peak in the electron quasiparticle scattering rate of cuprate superconductors and the well-known peak-dip-hump structure in the electron quasiparticle excitation spectrum is calling for an explanation. Within the framework of the kinetic-energy-driven superconducting mechanism, the complicated line-shape in the electron quasiparticle excitation spectrum of cuprate superconductors is investigated. It is shown that the interaction between electrons by the exchange of spin excitations generates a notable peak structure in the electron quasiparticle scattering rate around the antinodal and nodal regions. However, this peak structure disappears at the hot spots, which leads to that the striking peak-dip-hump structure is developed around the antinodal and nodal regions, and vanishes at the hot spots. The theory also confirms that the sharp peak observed in the electron quasiparticle scattering rate is directly responsible for the remarkable peak-dip-hump structure in the electron quasiparticle excitation spectrum of cuprate superconductors.

  15. Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS

    NASA Astrophysics Data System (ADS)

    Lee, K.; Imada, S.; Moon, Y.; Lee, J.

    2012-12-01

    We investigate a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer (EIS). The cool loop is clearly seen in the EIS spectral lines formed at the transition region temperature (log T = 5.8). The dark lane is characterized by an elongated faint structure in coronal spectral lines (log T = 5.8 - 6.1) and rooted on a bright point. We examine their electron densities, Doppler velocities, and non-thermal velocities as a function of distance from the limb using the spectral lines formed at different temperatures (log T = 5.4 - 6.4). The electron densities of the cool loop and the dark lane are derived from the density sensitive line pairs of Mg VII, Fe XII, and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Mg VII (log T = 5.8) and the scale height temperature of the dark lane is close to a peak formation temperature of the Fe XII and Fe XIII (log T = 6.1 - 6.2). It is interesting to note that the structures of the cool loop and the dark lane are most visible in these temperature lines. While the non-thermal velocity in the cool loop slightly decreases (less than 7 km {s-1}) along the loop, that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the fast solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.

  16. Annular wave packets at Dirac points in graphene and their probability-density oscillation.

    PubMed

    Luo, Ji; Valencia, Daniel; Lu, Junqiang

    2011-12-14

    Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that, respectively, belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly from the magnetic length, expanding and shrinking ripple-rings form and disappear alternatively in a limited spread, and the wave packet resumes the Gaussian form frequently. The probability thus oscillates persistently between the central peak and the ripple-rings. If the initial Gaussian width is close to the magnetic length, the wave packet retains the Gaussian form and its height and width oscillate with a period determined by the first Landau energy. The wave-packet evolution is determined jointly by the initial state and the magnetic field, through the electronic structure of graphene in a magnetic field. © 2011 American Institute of Physics

  17. Anomalous Ionospheric signatures observed at low-mid latitude Indian station Delhi prior to earthquake events during the year 2015 to early 2016.

    NASA Astrophysics Data System (ADS)

    Upadhayaya, A. K.; Gupta, S.; Kotnala, R. K.

    2017-12-01

    Five major earthquake events measuring greater than six on Richter scale (M>6) that occurred during the year 2015 to early 2016, affecting Indian region ionosphere, are analyzed using F2 layer critical parameters (foF2, hmF2) obtained using Digisonde from a low-mid latitude Indian station, Delhi (28.6°N, 77.2°E, 19.2°N Geomagnetic latitude, 42.4°N Dip). Normal day-to-day variability occurring in ionosphere is segregated by calculating F2 layer critical frequency and peak height variations (ΔfoF2, ΔhmF2) from the normal quiet time behavior. We find that the ionospheric F2 region across Delhi by and large shows some significant perturbations 3-4 days prior to these earthquake events, resulting in a large peak electron density variation of 200%. These observed perturbations indicate towards a possibility of seismo-ionospheric coupling as the solar and geomagnetic indices were normally quiet and stable during the period of these events. It was also observed that the precursory effect of earthquake was predominantly seen even outside the earthquake preparation zone, as given by Dobrovolsky et al. [1979]. The thermosphere neutral composition (O/N2) as observed by GUVI [Christensen et al., 2003], across Delhi, during these earthquake events does not show any marked variation. Further, the effect of earthquake events on ionospheric peak electron density is compared to the lower atmosphere meteorological phenomenon of 2015 Sudden Stratospheric Warming event and are found to be comparable.

  18. Onset temperature for Si nanostructure growth on Si substrate during high vacuum electron beam annealing.

    PubMed

    Fang, F; Markwitz, A

    2009-05-01

    Silicon nanostructures, called Si nanowhiskers, are successfully synthesized on Si(100) substrate by high vacuum electron beam annealing. The onset temperature and duration needed for the Si nanowhiskers to grow was investigated. It was found that the onset and growth morphology of Si nanowhiskers strongly depend on the annealing temperature and duration applied in the annealing cycle. The onset temperature for nanowhisker growth was determined as 680 degrees C using an annealing duration of 90 min and temperature ramps of +5 degrees C s(-1) for heating and -100 degrees C s(-1) for cooling. Decreasing the annealing time at peak temperature to 5 min required an increase in peak temperature to 800 degrees C to initiate the nanowhisker growth. At 900 degrees C the duration for annealing at peak temperature can be set to 0 s to grow silicon nanowhiskers. A correlation was found between the variation in annealing temperature and duration and the nanowhisker height and density. Annealing at 900 degrees C for 0 s, only 2-3 nanowhiskers (average height 2.4 nm) grow on a surface area of 5 x 5 microm, whereas more than 500 nanowhiskers with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 degrees C for 0 s. Selected results are presented showing the possibility of controlling the density and height of Si nanowhisker growth for field emission applications by applying different annealing temperature and duration.

  19. Gamma ray-induced small plaque mutants of western equine encephalitis virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simizu, B.; Yamazaki, S.; Suzuki, K.

    1973-12-01

    Small plaque mutants of Western equine encephalitis virus were obtained from the surviving fractions of wild-type virus which was irradiated with gamma rays. The frequency with which small plaque mutants appeared in the surviving fraction increased with the radiation dose. These mutants were not more resistant to radiation than wild-type virus. The growth rate of a mutant, S127, was lower than that of wild-type. Clonally purified mutant virions presented two peaks in a velocity sedimentation profile; peak 1 corresponded to the peak of wild type and peak 2 moved faster than peak 1. Virions of both peaks were infectious andmore » consistently formed small plaques in chicken embryo cells. Virions reisolated from either peak and grown in chicken embryo cells also revealed two peaks in sedimentation analysis. In the electron microscope examination peak 2 proved to consist of giant form particles, each of which contained more than one nucleoid surrounded with a common envelope. Despite this remarkable morphological difference, densities of the wild-type and S127 mutant virions were similar in cesium chloride gradients. The RNAs and proteins of mutant virions could not be distinguished from those of wild types on the basis of size or change. (auth)« less

  20. First results from the Thomson scattering diagnostic on proto-MPEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biewer, T. M., E-mail: biewertm@ornl.gov; Meitner, S.; Rapp, J.

    2016-11-15

    A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma. A challenging aspect of the technique is tomore » discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T{sub e} ∼ 2 eV and n{sub e} ∼ 1 × 10{sup 19} m{sup −3}. The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.« less

  1. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  2. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.; Moody, J. D.; Turnbull, D.; Ralph, J.; Michel, P. A.; Hohenberger, M.; Moore, A. S.; Landen, O. L.; Divol, L.; Bradley, D. K.; Hinkel, D. E.; Mackinnon, A. J.; Town, R. P. J.; Meezan, N. B.; Berzak Hopkins, L.; Izumi, N.

    2017-05-01

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Measurements characterized the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρgf between 0.03 mg/cc ("near vacuum") and 1.6 mg/cc. For hohlraums with ρgf up to 0.85 mg/cc, very little stimulated Raman backscatter (SRS) was observed. For higher ρgf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρgf ≥ 0.6 mg/cc once the laser reached peak power. However, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ˜10% higher than the gas filled hohlraums throughout the main pulse.

  3. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less

  4. The relationship between gas fill density and hohlraum drive performance at the National Ignition Facility

    DOE PAGES

    Hall, G. N.; Jones, O. S.; Strozzi, D. J.; ...

    2017-05-11

    Indirect drive inertial confinement fusion experiments were conducted at the National Ignition Facility to investigate the performance of the hohlraum drive as a function of hohlraum gas fill density by imploding high-density-carbon capsules using a 2-shock laser pulse. Our ,easurements characterize the backscatter behavior, the production of hot electrons, the motion and brightness of the laser spots on the hohlraum wall, and the efficiency of the hohlraum x-ray drive as a function of gas fill density ρ gf between 0.03 mg/cc (“near vacuum”) and 1.6 mg/cc. For hohlraums with ρ gf up to 0.85 mg/cc, very little stimulated Raman backscattermore » (SRS) was observed. Furthermore, for higher ρ gf, significant SRS was produced and was observed to occur during the rise to peak laser power and throughout the main pulse. The efficiency with which laser energy absorbed by the hohlraum is converted into drive energy was measured to be the same for ρ gf ≥ 0.6 mg/cc once the laser reached peak power. But, for the near vacuum case, the absorbed energy was converted to drive energy more efficiently throughout the pulse and maintained an efficiency ~10% higher than the gas filled hohlraums throughout the main pulse.« less

  5. Particle energy distributions and metastable atoms in transient low pressure interpulse microwave plasma

    NASA Astrophysics Data System (ADS)

    Pandey, Shail; Nath Patel, Dudh; Ram Baitha, Anuj; Bhattacharjee, Sudeep

    2015-12-01

    The electron energies and its distribution function are measured in non-equilibrium transient pulsed microwave plasmas in the interpulse regime using a retarding field electron energy analyzer. The plasmas are driven to different initial conditions by varying the electromagnetic (EM) wave pulse duration, peak power, or the wave frequency. Two cases of wave excitation are investigated: (i) short-pulse (pulse duration, t w ~ 1 μs), high-power (~60 kW) waves of 9.45 GHz and (ii) medium-pulse (t w ~ 20 μs), and moderate power waves of ~3 kW at 2.45 GHz. It is found that high-power, short-duration pulses lead to a significantly different electron energy probability function (EEPF) in the interpulse phase—a Maxwellian with a bump on the tail, although the average energy per pulse (~60 mJ) is maintained the same in the two modes of wave excitation. Electrons with energies  >250 eV are found to exist in the discharge in the both cases. Another subset of experiments is performed to delineate the effect of the wave frequency and the peak power on EEPF. A traveling wave tube (TWT) amplifier based microwave source for generating pulsed plasma (t w  =  230 μs) in a wide frequency range (6-18 GHz) is employed for this purpose. Further experiments on measurements of metastable density using optical emission spectroscopy and ion energy analyzer have been carried out. By tailoring the EEPF of the transient plasma and metastable densities, new applications in plasma processing, chemistry and biology can be realized in the interpulse phase of the discharge.

  6. Scaled Experiment to Investigate Auroral Kilometric Radiation Mechanisms in the Presence of Background Electrons

    NASA Astrophysics Data System (ADS)

    McConville, S. L.; Ronald, K.; Speirs, D. C.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Bingham, R.; Robertson, C. W.; Whyte, C. G.; He, W.; King, M.; Bryson, R.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.

    2014-05-01

    Auroral Kilometric Radiation (AKR) emissions occur at frequencies ~300kHz polarised in the X-mode with efficiencies ~1-2% [1,2] in the auroral density cavity in the polar regions of the Earth's magnetosphere, a region of low density plasma ~3200km above the Earth's surface, where electrons are accelerated down towards the Earth whilst undergoing magnetic compression. As a result of this magnetic compression the electrons acquire a horseshoe distribution function in velocity space. Previous theoretical studies have predicted that this distribution is capable of driving the cyclotron maser instability. To test this theory a scaled laboratory experiment was constructed to replicate this phenomenon in a controlled environment, [3-5] whilst 2D and 3D simulations are also being conducted to predict the experimental radiation power and mode, [6-9]. The experiment operates in the microwave frequency regime and incorporates a region of increasing magnetic field as found at the Earth's pole using magnet solenoids to encase the cylindrical interaction waveguide through which an initially rectilinear electron beam (12A) was accelerated by a 75keV pulse. Experimental results showed evidence of the formation of the horseshoe distribution function. The radiation was produced in the near cut-off TE01 mode, comparable with X-mode characteristics, at 4.42GHz. Peak microwave output power was measured ~35kW and peak efficiency of emission ~2%, [3]. A Penning trap was constructed and inserted into the interaction waveguide to enable generation of a background plasma which would lead to closer comparisons with the magnetospheric conditions. Initial design and measurements are presented showing the principle features of the new geometry.

  7. Opposite Latitudinal Dependence of the Premidnight and Postmidnight Oscillations in the Electron Density of Midlatitude F Layer

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wang, Jin; Zhang, Shaodong; Deng, Zhongxin; Zhong, Dingkun; Wu, Chen; Jin, Han; Li, Yaxian

    2018-01-01

    The dense observation points of the oblique-incidence ionosonde network in North China make it possible to discover the ionospheric regional variations with relatively high spatial resolution. The ionosonde network and the Beijing digisonde are used to investigate the ionospheric nighttime oscillations in January and February 2011. The electron density enhancements occurring before and after midnight present the obvious opposite latitudinal dependence in the time-latitude maps, which are composed by the differential critical frequency of F2 layer. The premidnight enhancements (PRMEs) appeared earlier in the north and then moved to south. The postmidnight enhancements (POMEs) did the opposite. The data analysis shows that the PRME was a part of the large-scale traveling ionospheric disturbance (LSTID), which may be produced by gravity waves. The southward propagation of the LSTIDs is considered to form the positive latitudinal dependence of the wave peaks and troughs. The postmidnight F layer oscillation was composed by a single enhancement and a single decline following it. The westward electric field-induced E × B drift, which pushed the F layer to lower altitudes with higher recombination loss, was most likely to compress the plasma and produce the POMEs. Along with the continuously dropping of the layer, the recombination loss exceeded the density increase due to the compression effect and then the electron density decline appeared.

  8. TH-CD-201-06: Experimental Characterization of Acoustic Signals Generated in Water Following Clinical Photon and Electron Beam Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickling, S; El Naqa, I

    Purpose: Previous work has demonstrated the detectability of acoustic waves induced following the irradiation of high density metals with radiotherapy linac photon beams. This work demonstrates the ability to experimentally detect such acoustic signals following both photon and electron irradiation in a more radiotherapy relevant material. The relationship between induced acoustic signal properties in water and the deposited dose distribution is explored, and the feasibility of exploiting such signals for radiotherapy dosimetry is demonstrated. Methods: Acoustic waves were experimentally induced in a water tank via the thermoacoustic effect following a single pulse of photon or electron irradiation produced by amore » clinical linac. An immersion ultrasound transducer was used to detect these acoustic waves in water and signals were read out on an oscilloscope. Results: Peaks and troughs in the detected acoustic signals were found to correspond to the location of gradients in the deposited dose distribution following both photon and electron irradiation. Signal amplitude was linearly related to the dose per pulse deposited by photon or electron beams at the depth of detection. Flattening filter free beams induced large acoustic signals, and signal amplitude decreased with depth after the depth of maximum dose. Varying the field size resulted in a temporal shift of the acoustic signal peaks and a change in the detected signal frequency. Conclusion: Acoustic waves can be detected in a water tank following irradiation by linac photon and electron beams with basic electronics, and have characteristics related to the deposited dose distribution. The physical location of dose gradients and the amount of dose deposited can be inferred from the location and magnitude of acoustic signal peaks. Thus, the detection of induced acoustic waves could be applied to photon and electron water tank and in vivo dosimetry. This work was supported in part by CIHR grants MOP-114910 and MOP-136774. S.H. acknowledges support by the NSERC CREATE Medical Physics Research Training Network grant 432290.« less

  9. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly,more » however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.« less

  10. Very large scale wavefunction orthogonalization in Density Functional Theory electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Bekas, C.; Curioni, A.

    2010-06-01

    Enforcing the orthogonality of approximate wavefunctions becomes one of the dominant computational kernels in planewave based Density Functional Theory electronic structure calculations that involve thousands of atoms. In this context, algorithms that enjoy both excellent scalability and single processor performance properties are much needed. In this paper we present block versions of the Gram-Schmidt method and we show that they are excellent candidates for our purposes. We compare the new approach with the state of the art practice in planewave based calculations and find that it has much to offer, especially when applied on massively parallel supercomputers such as the IBM Blue Gene/P Supercomputer. The new method achieves excellent sustained performance that surpasses 73 TFLOPS (67% of peak) on 8 Blue Gene/P racks (32 768 compute cores), while it enables more than a two fold decrease in run time when compared with the best competing methodology.

  11. A comparison of non-local electron transport models for laser-plasmas relevant to inertial confinement fusion

    DOE PAGES

    Sherlock, M.; Brodrick, J. P.; Ridgers, C. P.

    2017-08-08

    Here, we compare the reduced non-local electron transport model developed to Vlasov-Fokker-Planck simulations. Two new test cases are considered: the propagation of a heat wave through a high density region into a lower density gas, and a one-dimensional hohlraum ablation problem. We find that the reduced model reproduces the peak heat flux well in the ablation region but significantly over-predicts the coronal preheat. The suitability of the reduced model for computing non-local transport effects other than thermal conductivity is considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribution function. It is shown that even when the reduced modelmore » reproduces the correct heat flux, the distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple modifications are considered which improve agreement between models in the coronal region.« less

  12. Electronic modulation of infrared radiation in graphene plasmonic resonators.

    PubMed

    Brar, Victor W; Sherrott, Michelle C; Jang, Min Seok; Kim, Seyoon; Kim, Laura; Choi, Mansoo; Sweatlock, Luke A; Atwater, Harry A

    2015-05-07

    All matter at finite temperatures emits electromagnetic radiation due to the thermally induced motion of particles and quasiparticles. Dynamic control of this radiation could enable the design of novel infrared sources; however, the spectral characteristics of the radiated power are dictated by the electromagnetic energy density and emissivity, which are ordinarily fixed properties of the material and temperature. Here we experimentally demonstrate tunable electronic control of blackbody emission from graphene plasmonic resonators on a silicon nitride substrate. It is shown that the graphene resonators produce antenna-coupled blackbody radiation, which manifests as narrow spectral emission peaks in the mid-infrared. By continuously varying the nanoresonator carrier density, the frequency and intensity of these spectral features can be modulated via an electrostatic gate. This work opens the door for future devices that may control blackbody radiation at timescales beyond the limits of conventional thermo-optic modulation.

  13. Diagnosing laser-preheated magnetized plasmas relevant to magnetized liner inertial fusion

    DOE PAGES

    Harvey-Thompson, Adam James; Sefkow, Adam B.; Nagayama, Taisuke N.; ...

    2015-12-22

    In this paper, we present a platform on the OMEGA EP Laser Facility that creates and diagnoses the conditions present during the preheat stage of the MAGnetized Liner Inertial Fusion (MagLIF) concept. Experiments were conducted using 9 kJ of 3ω (355 nm) light to heat an underdense deuterium gas (electron density: 2.5 × 10 20 cm -3 = 0.025 of critical density) magnetized with a 10 T axial field. Results show that the deuterium plasma reached a peak electron temperature of 670 ± 140 eV, diagnosed using streaked spectroscopy of an argon dopant. The results demonstrate that plasmas relevant tomore » the preheat stage of MagLIF can be produced at multiple laser facilities, thereby enabling more rapid progress in understanding magnetized preheat. Results are compared with magneto-radiation-hydrodynamics simulations, and plans for future experiments are described.« less

  14. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Sussman, J. L.; Suddath, F. L.; Quigley, G. J.; Mcpherson, A.; Wang, A. H. J.; Seeman, N. C.; Rich, A.

    1974-01-01

    Results of an analysis and interpretation of a 3-A electron density map of yeast phenylalanine transfer RNA. Some earlier detailed assignments of nucleotide residues to electron density peaks are found to be in error, even though the overall tracing of the backbone conformation of yeast phenylalanine transfer RNA was generally correct. A new, more comprehensive interpretation is made which makes it possible to define the tertiary interactions in the molecule. The new interpretation makes it possible to visualize a number of tertiary interactions which not only explain the structural role of most of the bases which are constant in transfer RNAs, but also makes it possible to understand in a direct and simple fashion the chemical modification data on transfer RNA. In addition, this pattern of tertiary interactions provides a basis for understanding the general three-dimensional folding of all transfer RNA molecules.

  15. Some methods to regulate low-bias negative differential resistance in σ barrier separating nanoscale molecular transport systems

    NASA Astrophysics Data System (ADS)

    Shen, Ji-Mei; Liu, Jing; Min, Yi; Zhou, Li-Ping

    2016-12-01

    Using the first-principles method which combines the nonequilibrium Green’s function (NEGF) with density functional theory (DFT), the role of defect, dopant, barrier length and geometric deformation for low-bias negative differential resistance (NDR) in two capped armchair carbon nanotubes (CNTs) sandwiching σ barrier are systematically analyzed. We found that this method can regulate the negative differential resistance (NDR) effects such as current peak and peak position. The adjusting mechanism may originate from orbital interaction and orbital reconstruction. Our calculations try to manipulate the transport characteristics in energy space by simply manipulating the structure in real space, which may promise the potential applications in nanomolecular-electronics in the future.

  16. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James

    2016-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.

  17. Influence of driving frequency on discharge modes in a dielectric-barrier discharge with multiple current pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weiman; Tang, Jie; Wang, Yishan

    2013-07-15

    A one-dimensional self-consistent fluid model was employed to investigate the effect of the driving frequency on the discharge modes in atmospheric-pressure argon discharge with multiple current pulses. The discharge mode was discussed in detail not only at current peaks but also between two adjacent peaks. The simulation results show that different transitions between the Townsend and glow modes during the discharge take place with the driving frequency increased. A complicated transition from the Townsend mode, through glow, Townsend, and glow, and finally back to the Townsend one is found in the discharge with the driving frequency of 8 kHz. Theremore » is a tendency of transition from the Townsend to glow mode for the discharge both at the current peaks and troughs with the increasing frequency. The discharge in the half period can all along operate in the glow mode with the driving frequency high enough. This is resulted from the preservation of more electrons in the gas gap and acquisition of more electron energy from the swiftly varying electric field with the increase in driving frequency. Comparison of the spatial and temporal evolutions of the electron density at different driving frequencies indicates that the increment of the driving frequency allows the plasma chemistry to be enhanced. This electrical characteristic is important for the applications, such as surface treatment and biomedical sterilization.« less

  18. Low defect densities in molecular beam epitaxial GaAs achieved by isoelectronic In doping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, P. K.; Dhar, S.; Berger, P.; Juang, F.-Y.

    1986-01-01

    A study has been made of the effects of adding small amounts of In (0.2-1.2 pct) to GaAs grown by molecular beam epitaxy. The density of four electron traps decreases in concentration by an order of magnitude, and the peak intensities of prominent emissions in the excitonic spectra are reduced with increase in In content. Based on the higher surface migration rate of In, compared to Ga, at the growth temperatures it is apparent that the traps and the excitonic transitions are related to point defects. This agrees with earlier observations by Briones and Collins (1982) and Skromme et al. (1985).

  19. Inherently-Forced Tensile Strain in Nanodiamond-Derived Onion-like Carbon: Consequences in Defect-Induced Electrochemical Activation

    PubMed Central

    Ko, Young-Jin; Cho, Jung-Min; Kim, Inho; Jeong, Doo Seok; Lee, Kyeong-Seok; Park, Jong-Keuk; Baik, Young-Joon; Choi, Heon-Jin; Lee, Seung-Cheol; Lee, Wook-Seong

    2016-01-01

    We analyzed the nanodiamond-derived onion-like carbon (OLC) as function of synthesis temperature (1000~1400 °C), by high-resolution electron microscopy, electron energy loss spectroscopy, visible-Raman spectroscopy, ultraviolet photoemission spectroscopy, impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The temperature dependences of the obtained properties (averaged particle size, tensile strain, defect density, density of states, electron transfer kinetics, and electrochemical oxidation current) unanimously coincided: they initially increased and saturated at 1200 °C. It was attributed to the inherent tensile strains arising from (1) the volume expansion associated with the layer-wise diamond-to-graphite transformation of the core, which caused forced dilation of the outer shells during their thermal synthesis; (2) the extreme curvature of the shells. The former origin was dominant over the latter at the outermost shell, of which the relevant evolution in defect density, DOS and electron transfer kinetics determined the electrochemical performances. In detection of dopamine (DA), uric acid (UA) and ascorbic acid (AA) using the OLC as electrode, their oxidation peak currents were enhanced by factors of 15~60 with annealing temperature. Their limit of detection and the linear range of detection, in the post-treatment-free condition, were as excellent as those of the nano-carbon electrodes post-treated by Pt-decoration, N-doping, plasma, or polymer. PMID:27032957

  20. Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F. J.; Cummer, Steven A.

    2018-01-01

    We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 103.

  1. Strong Ionospheric Electron Heating Associated With Pulsating Auroras - A Swarm Survey

    NASA Astrophysics Data System (ADS)

    Liang, J.; Yang, B.; Burchill, J. K.; Donovan, E.; Knudsen, D. J.

    2016-12-01

    A pulsating aurora is a repetitive modulation of auroral luminosity with periods typically of the order of 1-30 sec. It is often observed in the equatorward portion of the auroral oval. While it is generally recognized that the ultimate source of the pulsating auroral precipitation comes from energetic electrons of magnetospheric origin, investigating the ionospheric signature of the pulsating aurora may offer clues to the magnetosphere-ionosphere coupling aspect of the pulsating aurora and, under certain circumstance, to the generation mechanism of the pulsating aurora. In this study, we perform an extensive survey on the ionospheric signatures (electron temperature, plasma density and field-aligned current etc.) of pulsating auroras using Swarm satellite data. Via the survey we repeatedly identify a strong electron temperature enhancement associated with the pulsating aurora. On average, the electron temperature at Swarm satellite altitude ( 500 km) increases from 2100 K at subauroral altitudes to a peak of 2900 K upon entering the pulsating aurora patch. This indicates that the pulsating auroras may act as an important heating source of the nightside ionosphere/thermosphere. On the other hand, no well-defined trend of plasma density variation associated with pulsating auroras is identified in the survey. There often exist moderate upward field-aligned currents (up to a few mA/m2) within the pulsating auroral patch when the patch is "on" during the traversal of satellites [Gillies et al., 2015], and the electron temperature enhancement is found to be positively correlated with the magnitude of the field-aligned current. In a few events with high-resolution Swarm electric field instrument (EFI) data, we find that the on-time pulsating auroral patch is associated with structured electric field disturbances with peaks exceeding 10 mV/m. Based upon observations and ionospheric models, we consider and evaluate several possible mechanisms that may account for the strong electron heating associated with the pulsating aurora, including the Joule heating related to the field-aligned current and to the structured electric field, the backscattered secondary electrons led by the impact of pulsating auroral precipitation, and the vertical conductive heat transport.

  2. Modeling of O+ ions in the plasmasphere

    NASA Astrophysics Data System (ADS)

    Guiter, S. M.; Moore, T. E.; Khazanov, G. V.

    1995-11-01

    Heavy ion (O+, O++, and N+) density enhancements in the outer plasmasphere have been observed using the retarding ion mass spectrometer instrument on the DE 1 satellite. These are seen at L shells from 2 to 5, with most occurrences in the L=3 to 4 region; the maximum L shell at which these enhancements occur varies inversely with Dst. It is also known that enhancements of O+ and O++ overlie ionospheric electron temperature peaks. It is thought that these enhancements are related to heating of plasmaspheric particles through interactions with ring current ions. This was investigated using a time-dependent one-stream hydrodynamic model for plasmaspheric flows, in which the model flux tube is connected to the ionosphere. The model simultaneously solves the coupled continuity, momentum, and energy equations of a two-ion (H+ and O+) quasi-neutral, currentless plasma. This model is fully interhemispheric and diffusive equilibrium is not assumed; it includes a corotating tilted dipole magnetic field and neutral winds. First, diurnally reproducible results were found assuming only photoelectron heating of thermal electrons. For this case the modeled equatorial O+ density was below 1 cm-3 throughout the day. The O+ results also show significant diurnal variability, with standing shocks developing when production stops and O+ flows downward under the influence of gravity. Numerical tests were done with different levels of electron heating in the plasmasphere; these show that the equatorial O+ density is highly dependent on the assumed electron heating rates. Over the range of integrated plasmaspheric electron heating (along the flux tube) from 8.7 to 280×109 eV/s, the equatorial O+ density goes like the heating raised to the power 2.3.

  3. The occurrence and wave properties of EMIC waves observed by the Magnetospheric Multiscale (MMS) mission

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Huang, S. Y.; Allen, R. C.; Fu, H. S.; Deng, X. H.; Zhou, M.; Burch, J. L.; Torbert, R. B.

    2017-08-01

    Electromagnetic ion cyclotron (EMIC) waves can precipitate the ring current ions and relativistic electrons and heat the cold electrons in the magnetosphere. This requires comprehensive knowledge of the occurrence and wave properties of EMIC waves. In the present study, we used the data from one new mission, the Magnetospheric Multiscale (MMS) mission launched in March 2015, to investigate the occurrence and wave properties of H+-band and He+-band EMIC waves in the magnetosphere. Our statistical results show the following: (1) H+-band EMIC waves mostly occur in the higher L-shells (L > 5) while He+-band EMIC waves are mostly observed in the lower L-shells (L < 6). (2) The occurrence rate of H+-band EMIC waves in the dayside is higher than that in the nightside. The highest peak of occurrence rate of H+-band EMIC waves is in the postnoon sector (5-8 L-shells), and the secondary peak lies in the small area of the dawn sector. (3) The wave power spectral density peaks in the postnoon and predusk sectors, while the wave normal angles are largest in the dawn sector. (4) Linear and right-hand polarized H+-band EMIC waves are mainly in the regions of peak occurrence, while linear polarized waves are seen to also dominate outside of the regions of peak occurrence. The highest occurrence rate of linear polarized He+-band EMIC waves is observed in the dawn sector. We discussed the results and compared with previous findings.

  4. Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis

    NASA Astrophysics Data System (ADS)

    Solanki, Rekha Garg; Rajaram, Poolla; Bajpai, P. K.

    2018-05-01

    This work is based on the growth, characterization and estimation of lattice strain and crystallite size in CdS nanoparticles by X-ray peak profile analysis. The CdS nanoparticles were synthesized by a non-aqueous solvothermal method and were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV-visible spectroscopy. XRD confirms that the CdS nanoparticles have the hexagonal structure. The Williamson-Hall (W-H) method was used to study the X-ray peak profile analysis. The strain-size plot (SSP) was used to study the individual contributions of crystallite size and lattice strain from the X-rays peaks. The physical parameters such as strain, stress and energy density values were calculated using various models namely, isotropic strain model, anisotropic strain model and uniform deformation energy density model. The particle size was estimated from the TEM images to be in the range of 20-40 nm. The Raman spectrum shows the characteristic optical 1LO and 2LO vibrational modes of CdS. UV-visible absorption studies show that the band gap of the CdS nanoparticles is 2.48 eV. The results show that the crystallite size estimated from Scherrer's formula, W-H plots, SSP and the particle size calculated by TEM images are approximately similar.

  5. Nonlinear structures and anomalous transport in partially magnetized E×B plasmas

    DOE PAGES

    Janhunen, Salomon; Smolyakov, Andrei; Chapurin, Oleksandr; ...

    2017-12-29

    Nonlinear dynamics of the electron-cyclotron instability driven by the electron E x B current in a crossed electric and magnetic field is studied. In the nonlinear regime, the instability proceeds by developing a large amplitude coherent wave driven by the energy input from the fundamental cyclotron resonance. Further evolution shows the formation of the long wavelength envelope akin to the modulational instability. Simultaneously, the ion density shows the development of a high-k content responsible for wave focusing and sharp peaks on the periodic cnoidal wave structure. Here, it is shown that the anomalous electron transport (along the direction of themore » applied electric field) is dominated by the long wavelength part of the turbulent spectrum.« less

  6. Aligning Solution-Derived Carbon Nanotube Film with Full Surface Coverage for High-Performance Electronics Applications.

    PubMed

    Zhu, Ma-Guang; Si, Jia; Zhang, Zhiyong; Peng, Lian-Mao

    2018-06-01

    The main challenge for application of solution-derived carbon nanotubes (CNTs) in high performance field-effect transistor (FET) is how to align CNTs into an array with high density and full surface coverage. A directional shrinking transfer method is developed to realize high density aligned array based on randomly orientated CNT network film. Through transferring a solution-derived CNT network film onto a stretched retractable film followed by a shrinking process, alignment degree and density of CNT film increase with the shrinking multiple. The quadruply shrunk CNT films present well alignment, which is identified by the polarized Raman spectroscopy and electrical transport measurements. Based on the high quality and high density aligned CNT array, the fabricated FETs with channel length of 300 nm present ultrahigh performance including on-state current I on of 290 µA µm -1 (V ds = -1.5 V and V gs = -2 V) and peak transconductance g m of 150 µS µm -1 , which are, respectively, among the highest corresponding values in the reported CNT array FETs. High quality and high semiconducting purity CNT arrays with high density and full coverage obtained through this method promote the development of high performance CNT-based electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Plasma non-uniformity in a symmetric radiofrequency capacitively-coupled reactor with dielectric side-wall: a two dimensional particle-in-cell/Monte Carlo collision simulation

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Booth, Jean-Paul; Chabert, Pascal

    2018-02-01

    A Cartesian-coordinate two-dimensional electrostatic particle-in-cell/Monte Carlo collision (PIC/MCC) plasma simulation code is presented, including a new treatment of charge balance at dielectric boundaries. It is used to simulate an Ar plasma in a symmetric radiofrequency capacitively-coupled parallel-plate reactor with a thick (3.5 cm) dielectric side-wall. The reactor size (12 cm electrode width, 2.5 cm electrode spacing) and frequency (15 MHz) are such that electromagnetic effects can be ignored. The dielectric side-wall effectively shields the plasma from the enhanced electric field at the powered-grounded electrode junction, which has previously been shown to produce locally enhanced plasma density (Dalvie et al 1993 Appl. Phys. Lett. 62 3207-9 Overzet and Hopkins 1993 Appl. Phys. Lett. 63 2484-6 Boeuf and Pitchford 1995 Phys. Rev. E 51 1376-90). Nevertheless, enhanced electron heating is observed in a region adjacent to the dielectric boundary, leading to maxima in ionization rate, plasma density and ion flux to the electrodes in this region, and not at the reactor centre as would otherwise be expected. The axially-integrated electron power deposition peaks closer to the dielectric edge than the electron density. The electron heating components are derived from the PIC/MCC simulations and show that this enhanced electron heating results from increased Ohmic heating in the axial direction as the electron density decreases towards the side-wall. We investigated the validity of different analytical formulas to estimate the Ohmic heating by comparing them to the PIC results. The widespread assumption that a time-averaged momentum transfer frequency, v m , can be used to estimate the momentum change can cause large errors, since it neglects both phase and amplitude information. Furthermore, the classical relationship between the total electron current and the electric field must be used with caution, particularly close to the dielectric edge where the (neglected) pressure gradient term becomes significant.

  8. Secondary Electron Emission Spectroscopy of Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.; Asnin, Vladimir M.; Petukhov, Andre G.

    1999-01-01

    This report presents the results of the secondary electron emission spectroscopy study of hydrogenated diamond surfaces for single crystals and chemical vapor-deposited polycrystalline films. One-electron calculations of Auger spectra of diamond surfaces having various hydrogen coverages are presented, the major features of the experimental spectra are explained, and a theoretical model for Auger spectra of hydrogenated diamond surfaces is proposed. An energy shift and a change in the line shape of the carbon core-valence-valence (KVV) Auger spectra were observed for diamond surfaces after exposure to an electron beam or by annealing at temperatures higher than 950 C. This change is related to the redistribution of the valence-band local density of states caused by hydrogen desorption from the surface. A strong negative electron affinity (NEA) effect, which appeared as a large, narrow peak in the low-energy portion of the spectrum of the secondary electron energy distribution, was also observed on the diamond surfaces. A fine structure in this peak, which was found for the first time, reflected the energy structure of the bottom of the conduction band. Further, the breakup of the bulk excitons at the surface during secondary electron emission was attributed to one of the features of this structure. The study demonstrated that the NEA type depends on the extent of hydrogen coverage of the diamond surface, changing from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surface.

  9. VLF Wave Local Acceleration & ULF Wave Radial Diffusion: The Importance of K-Dependent PSD Analysis for Diagnosing the cause of Radiation Belt Acceleration.

    NASA Astrophysics Data System (ADS)

    Ozeke, L.; Mann, I. R.; Claudepierre, S. G.; Morley, S.; Henderson, M. G.; Baker, D. N.; Kletzing, C.; Spence, H. E.

    2017-12-01

    We present results showing the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the most intense geomagnetic storm of the last decade which occurred on March 17th 2015. Based on observations of growing local PSD peaks at fixed first and second adiabatic invariants of M=1000 MeV/G and K=0.18 G1/2Re respectively, previous studies argued that the outer radiation belt flux enhancement that occurred during this storm resulted from local acceleration driven by VLF waves. Here we show that the vast majority of the outer radiation belt consisted of electrons with much lower K-values than 0.18 G1/2Re, and that at these lower K-values there is no clear evidence of growing local PSD peaks consistent with that expected from local acceleration. Contrary to prior studies we show that the outer radiation belt flux enhancement is consistent with inward radial diffusion driven by ULF waves and present evidence that the growing local PSD peaks at K=0.18 G1/2Re and M=1000 MeV/G result from pitch-angle scattering of lower-K electrons to K=0.18 G1/2Re. In addition, we also show that the observed outer radiation belt flux enhancement during this geomagnetic storm can be reproduced using a radial diffusion model driven by measured ULF waves without including any local acceleration. These results highlight the importance of careful analysis of the electron PSD profiles as a function of L* over a range of fixed first, M and second K, adiabatic invariants to correctly determine the mechanism responsible for the electron flux enhancements observed in the outer radiation belt.

  10. TaiWan Ionospheric Model (TWIM) prediction based on time series autoregressive analysis

    NASA Astrophysics Data System (ADS)

    Tsai, L. C.; Macalalad, Ernest P.; Liu, C. H.

    2014-10-01

    As described in a previous paper, a three-dimensional ionospheric electron density (Ne) model has been constructed from vertical Ne profiles retrieved from the FormoSat3/Constellation Observing System for Meteorology, Ionosphere, and Climate GPS radio occultation measurements and worldwide ionosonde foF2 and foE data and named the TaiWan Ionospheric Model (TWIM). The TWIM exhibits vertically fitted α-Chapman-type layers with distinct F2, F1, E, and D layers, and surface spherical harmonic approaches for the fitted layer parameters including peak density, peak density height, and scale height. To improve the TWIM into a real-time model, we have developed a time series autoregressive model to forecast short-term TWIM coefficients. The time series of TWIM coefficients are considered as realizations of stationary stochastic processes within a processing window of 30 days. These autocorrelation coefficients are used to derive the autoregressive parameters and then forecast the TWIM coefficients, based on the least squares method and Lagrange multiplier technique. The forecast root-mean-square relative TWIM coefficient errors are generally <30% for 1 day predictions. The forecast TWIM values of foE and foF2 values are also compared and evaluated using worldwide ionosonde data.

  11. The effects of magnetospheric processes on relativistic electron dynamics in the Earth's outer radiation belt

    DOE PAGES

    Tang, C. L.; Wang, Y. X.; Ni, B.; ...

    2017-08-11

    Using the electron phase space density (PSD) data measured by Van Allen Probe A from January 2013 to April 2015, we investigate the effects of magnetospheric processes on relativistic electron dynamics in the Earth's outer radiation belt during 50 geomagnetic storms. A statistical study shows that the maximum electron PSDs for various μ (μ = 630, 1096, 2290, and 3311 MeV/G) at L*~4.0 after the storm peak have good correlations with storm intensity (cc~0.70). This suggests that the occurrence and magnitude of geomagnetic storms are necessary for relativistic electron enhancements at the inner edge of the outer radiation belt (L*more » = 4.0). For moderate or weak storm events (SYM–H min > ~–100 nT) with weak substorm activity (AE max < 800 nT) and strong storm events (SYM–H min ≤ ~–100 nT) with intense substorms (AE max ≥ 800 nT) during the recovery phase, the maximum electron PSDs for various μ at different L* values (L* = 4.0, 4.5, and 5.0) are well correlated with storm intensity (cc > 0.77). For storm events with intense substorms after the storm peak, relativistic electron enhancements at L* = 4.5 and 5.0 are observed. This shows that intense substorms during the storm recovery phase are crucial to relativistic electron enhancements in the heart of the outer radiation belt. In conclusion, our statistics study suggests that magnetospheric processes during geomagnetic storms have a significant effect on relativistic electron dynamics.« less

  12. The effects of magnetospheric processes on relativistic electron dynamics in the Earth's outer radiation belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, C. L.; Wang, Y. X.; Ni, B.

    Using the electron phase space density (PSD) data measured by Van Allen Probe A from January 2013 to April 2015, we investigate the effects of magnetospheric processes on relativistic electron dynamics in the Earth's outer radiation belt during 50 geomagnetic storms. A statistical study shows that the maximum electron PSDs for various μ (μ = 630, 1096, 2290, and 3311 MeV/G) at L*~4.0 after the storm peak have good correlations with storm intensity (cc~0.70). This suggests that the occurrence and magnitude of geomagnetic storms are necessary for relativistic electron enhancements at the inner edge of the outer radiation belt (L*more » = 4.0). For moderate or weak storm events (SYM–H min > ~–100 nT) with weak substorm activity (AE max < 800 nT) and strong storm events (SYM–H min ≤ ~–100 nT) with intense substorms (AE max ≥ 800 nT) during the recovery phase, the maximum electron PSDs for various μ at different L* values (L* = 4.0, 4.5, and 5.0) are well correlated with storm intensity (cc > 0.77). For storm events with intense substorms after the storm peak, relativistic electron enhancements at L* = 4.5 and 5.0 are observed. This shows that intense substorms during the storm recovery phase are crucial to relativistic electron enhancements in the heart of the outer radiation belt. In conclusion, our statistics study suggests that magnetospheric processes during geomagnetic storms have a significant effect on relativistic electron dynamics.« less

  13. Collisionality dependence and ion species effects on heat transport in He and H plasma, and the role of ion scale turbulence in LHD

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Nagaoka, K.; Murakami, S.; Takahashi, H.; Osakabe, M.; Yokoyama, M.; Seki, R.; Michael, C. A.; Yamaguchi, H.; Suzuki, C.; Shimizu, A.; Tokuzawa, T.; Yoshinuma, M.; Akiyama, T.; Ida, K.; Yamada, I.; Yasuhara, R.; Funaba, H.; Kobayashi, T.; Yamada, H.; Du, X. D.; Vyacheslavov, L. N.; Mikkelsen, D. R.; Yun, G. S.; the LHD Experimental Group

    2017-11-01

    Surveys of the ion and electron heat transports of neutral beam (NB) heating plasma were carried out by power balance analysis in He and H rich plasma at LHD. Collisionality was scanned by changing density and heating power. The characteristics of the transport vary depending on collisionality. In low collisionality, with low density and high heating power, an ion internal transport barrier (ITB) was formed. The ion heat conductivity (χ i) is lower than electron heat conductivity (χ e) in the core region at ρ  <  0.7. On the other hand, in high collisionality, with high density and low heating power, χ i is higher than χ e across the entire range of plasma. These different confinement regimes are associated with different fluctuation characteristics. In ion ITB, fluctuation has a peak at ρ  =  0.7, and in normal confinement, fluctuation has a peak at ρ  =  1.0. The two confinement modes change gradually depending on the collisionality. Scans of concentration ratio between He and H were also performed. The ion confinement improvements were investigated using gyro-Bohm normalization, taking account of the effective mass and charge. The concentration ratio affected the normalized χ i only in the edge region (ρ ~ 1.0). This indicates ion species effects vary depending on collisionality. Turbulence was modulated by the fast ion loss instability. The modulation of turbulence is higher in H rich than in He rich plasma.

  14. Topside Electron Density Representations for Middle and High Latitudes: A Topside Parameterization for E-CHAIM Based On the NeQuick

    NASA Astrophysics Data System (ADS)

    Themens, David R.; Jayachandran, P. T.; Bilitza, Dieter; Erickson, Philip J.; Häggström, Ingemar; Lyashenko, Mykhaylo V.; Reid, Benjamin; Varney, Roger H.; Pustovalova, Ljubov

    2018-02-01

    In this study, we present a topside model representation to be used by the Empirical Canadian High Arctic Ionospheric Model (E-CHAIM). In the process of this, we also present a comprehensive evaluation of the NeQuick's, and by extension the International Reference Ionosphere's, topside electron density model for middle and high latitudes in the Northern Hemisphere. Using data gathered from all available incoherent scatter radars, topside sounders, and Global Navigation Satellite System Radio Occultation satellites, we show that the current NeQuick parameterization suboptimally represents the shape of the topside electron density profile at these latitudes and performs poorly in the representation of seasonal and solar cycle variations of the topside scale thickness. Despite this, the simple, one variable, NeQuick model is a powerful tool for modeling the topside ionosphere. By refitting the parameters that define the maximum topside scale thickness and the rate of increase of the scale height within the NeQuick topside model function, r and g, respectively, and refitting the model's parameterization of the scale height at the F region peak, H0, we find considerable improvement in the NeQuick's ability to represent the topside shape and behavior. Building on these results, we present a new topside model extension of the E-CHAIM based on the revised NeQuick function. Overall, root-mean-square errors in topside electron density are improved over the traditional International Reference Ionosphere/NeQuick topside by 31% for a new NeQuick parameterization and by 36% for a newly proposed topside for E-CHAIM.

  15. The International Reference Ionosphere Today and in the Future

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; McKinnell, Lee-Ane; Reinisch, Bodo; Fuller-Rowell,Tim

    2010-01-01

    The international reference ionosphere (IRI) is the internationally recognized and recommended standard for the specification of plasma parameters in Earth's ionosphere. It describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 to 1,500 km. A joint working group of the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) is in charge of developing and improving the IRI model. As requested by COSPAR and URSI, IRI is an empirical model being based on most of the available and reliable data sources for the ionospheric plasma. The paper describes the latest version of the model and reviews efforts towards future improvements, including the development of new global models for the F2 peak density and height, and a new approach to describe the electron density in the topside and plasmasphere. Our emphasis will be on the electron density because it is the IRI parameter most relevant to geodetic techniques and studies. Annual IRI meetings are the main venue for the discussion of IRI activities, future improvements, and additions to the model. A new special IRI task force activity is focusing on the development of a real-time IRI (RT-IRI) by combining data assimilation techniques with the IRI model. A first RT-IRI task force meeting was held in 2009 in Colorado Springs. We will review the outcome of this meeting and the plans for the future. The IRI homepage is at http://www.IRI.gsfc.nasa.gov

  16. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient.

    PubMed

    Sahai, Aakash A; Tsung, Frank S; Tableman, Adam R; Mori, Warren B; Katsouleas, Thomas C

    2013-10-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. Fluids 13, 472 (1970); Max and Perkins, Phys. Rev. Lett. 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. Fluids 14, 371 (1971); Silva et al., Phys. Rev. E 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca et al., Lect. Note Comput. Sci. 2331, 342 (2002)] simulations. We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few petawatts. The scaling of proton energy with laser power compares favorably to other mechanisms for ultrashort pulses [Schreiber et al., Phys. Rev. Lett. 97, 045005 (2006); Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004); Silva et al., Phys. Rev. Lett. 92, 015002 (2004); Fiuza et al., Phys. Rev. Lett. 109, 215001 (2012)].

  17. Electronic transport properties in [n]cycloparaphenylenes molecular devices

    NASA Astrophysics Data System (ADS)

    Hu, Lizhi; Guo, Yandong; Yan, Xiaohong; Zeng, Hongli; Zhou, Jie

    2017-07-01

    The electronic transport of [n]cycloparaphenylenes ([n]CPPs) is investigated based on nonequilibrium Green's function formalism in combination with the density-functional theory. Negative differential resistance (NDR) phenomenon is observed. Further analysis shows that the reduction of the transmission peak induced by the bias changing near Fermi energy results in the NDR effect. Replacing the electrode (from carbon chain to Au electrode), doping with N atom and changing the size of the nanohoop (n = 5, 6, 8, 10) have also been studied and the NDR still exists, suggesting the NDR behavior is the intrinsic feature of such [n]CPPs systems, which would be quite useful in future nanoelectronic devices.

  18. Plasmon dispersion and Coulomb drag in low-density electron bi-layers

    NASA Astrophysics Data System (ADS)

    Badalyan, S. M.; Kim, C. S.; Vignale, G.; Senatore, G.

    2007-03-01

    We investigate the effect of exchange and correlation (xc) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a new approach, which employs dynamic xc kernels in the calculation of the bi-layer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. We observe that both optical and acoustical plasmon modes are strongly affected by xc corrections and shift in opposite directions with decreasing density. This is in stark contrast with the tendency observed within the random phase approximation (RPA). We find that the introduction of xc corrections results in a significant enhancement of the transresistivity and qualitative changes in its temperature dependence. In particular, the large high-temperature plasmon peak that is present in the RPA is found to disappear when the xc corrections are included. Our numerical results are in good agreement with the results of recent experiments by M. Kellogg et al., Solid State Commun. 123, 515 (2002).

  19. Evidence for day-to-night ion transport at low solar activity in the Venus pre-dawn ionosphere

    NASA Technical Reports Server (NTRS)

    Brannon, J. F.; Fox, J. L.; Porter, H. S.

    1993-01-01

    Periapsis of the Pioneer Venus (PV) spacecraft dropped below 180 km on August 28, 1992 near midnight, and 42 orbits of low altitude data at moderately low solar activity in the pre-dawn sector were obtained before contact was lost to the spacecraft in October, 1992. Through a combination of analysis of data from the PV orbiter ion mass spectrometer (OIMS) and modeling, we consider here what can be learned about the relative importance of plasma transport from the dayside and electron precipitation in maintaining the nightside ionosphere during the re-entry period. In particular, we examine here the atomic ion density profiles. We compute the average peak density of O(+) as a function of solar zenith angle and determine what fluxes of atomic ions or precipitating electrons would be necessary to produce those values. We then compare model calculations of the ion densities to those observed during the re-entry period. We find that the low solar activity nightside ionosphere shows evidence of significant day-to-night plasma transport.

  20. Evidence for Day-to-Night Ion Transport at Low Solar Activity in the Venus Pre-Dawn Ionosphere

    NASA Technical Reports Server (NTRS)

    Brannon, J. F.; Fox, J. L.; Porter, H. S.

    1993-01-01

    Periapsis of the Pioneer Venus spacecraft dropped below 180 km on August 28, 1992 near midnight, and 42 orbits of low altitude data at moderately low solar activity in the pre-dawn sector were obtained before contact was lost to the spacecraft in October, 1992. Through a combination of analysis of data from the PV orbiter ion mass spectrometer (OIMS) and modeling, we consider here what can be learned about the relative importance of plasma transport from the dayside and electron precipitation in maintaining the nightside ionosphere during the re-entry period. In particular, we examine here the atomic ion density profiles. We compute the average peak density of O(+) as a function of solar zenith angle and determine what fluxes of atomic ions or precipitating electrons would be necessary to produce those values. We then compare model calculations of the ion densities to those observed during the re-entry period. We find that the low solar activity nightside ionosphere shows evidence of significant day-to-night plasma transport.

Top