Science.gov

Sample records for electron density profiles

  1. Electron Density Profiles of the Topside Ionosphere

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinsch, Bodo W.; Bilitza, Dieter; Benson, Robert F.

    2002-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h,F2 to - 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis- status.htm1. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling - 70% of the ionograms. An <> is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.

  2. Electron density profiles from ionograms - Comparisons with rocket profiles.

    NASA Technical Reports Server (NTRS)

    Wright, J. W.; Paul, A. K.

    1973-01-01

    From a series of ten rocket flights at Wallops Island conducted by the University of Illinois, detailed electron density profiles are available in the altitude range 60-120 km. Concurrent ionograms from a nearby conventional ionosonde of good sensitivity and precision, have been reduced to N(h) profiles by the NOAA methods. Special attention is given to the needs for accurate ionosonde calibration, proper ionogram interpretation, and corrections for underlying ionization, 'valley' ionization, and effects of lateral-gradients. Proper corrections in the present cases yield profiles by ionogram inversion which agree to within a few percent in density, and a few hundred meters or less in height, with the rocket results.

  3. Estimation of topside electron density profile using on-orbit measured GPS and electron density data.

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2015-12-01

    The topside ionophere have lacks of information about plasma, but it is important for human beings and scientific applicaiton. We establish an estimation method for electron density profile using Langmuir Probe and GPS data of CHAMP satellite and have comparision the method results with other satellites measurements. In order to develop the model, hydrostatic mapping function, vertical scale height, and vertical TEC(Total Electron Contents) are used for calculations. The electron density and GPS data with hydrostatic mapping function give the vertical TEC and after some algebra using exponential model of density profile give the vertical scale height of ionosphere. The scale height have about 10^2~10^3 km order of magnitude so it can be used exponential model again since the altitude of CHAMP. Therefore, apply the scale height to exponoential model we can get the topside electron density profile. The result of the density profile model can be compared with other satellite data as STSAT-1, ROCSAT, DMSP which is measured the electron density in similar Local Time, Latitude, Longitude but above the CHAMP. This comparison shows the method is accecptable and it can be applied to other reseach for topside ionosphere.

  4. Ionospheric topside models compared with experimental electron density profiles

    NASA Astrophysics Data System (ADS)

    Coisson, P.; Radicella, S. M.

    2003-04-01

    In the last couple of years an increasing number of topside electron density profiles has been made available through the Internet to the scientific community. This kind of data is particularly important for ionospheric modeling purposes, since the experimental information on the electron density above the ionosphere maximum of ionization is very scarce. The present work analyses the behavior of the NeQuick and IRI models, adopted by the ITU-R recommendation P.531-5, with respect to the topside electron density profiles available in the databases of ISIS2, IK19 and Cosmos-1809 satellites. Experimental total electron content (TEC) from the F2 peak up to satellite height and electron densities at fixed heights above that peak have been compared with values computed with the models. A wide range of different conditions (solar activity, local time, geographical and geomagnetic position has been considered). The analysis done allows to point out the behavior of the models and the improvement needed to allow a better reproduction of the experimental results.

  5. Automated Processing of ISIS Topside Ionograms into Electron Density Profiles

    NASA Technical Reports Server (NTRS)

    Reinisch, bodo W.; Huang, Xueqin; Bilitza, Dieter; Hills, H. Kent

    2004-01-01

    Modeling of the topside ionosphere has for the most part relied on just a few years of data from topside sounder satellites. The widely used Bent et al. (1972) model, for example, is based on only 50,000 Alouette 1 profiles. The International Reference Ionosphere (IRI) (Bilitza, 1990, 2001) uses an analytical description of the graphs and tables provided by Bent et al. (1972). The Alouette 1, 2 and ISIS 1, 2 topside sounder satellites of the sixties and seventies were ahead of their times in terms of the sheer volume of data obtained and in terms of the computer and software requirements for data analysis. As a result, only a small percentage of the collected topside ionograms was converted into electron density profiles. Recently, a NASA-funded data restoration project has undertaken and is continuing the process of digitizing the Alouette/ISIS ionograms from the analog 7-track tapes. Our project involves the automated processing of these digital ionograms into electron density profiles. The project accomplished a set of important goals that will have a major impact on understanding and modeling of the topside ionosphere: (1) The TOPside Ionogram Scaling and True height inversion (TOPIST) software was developed for the automated scaling and inversion of topside ionograms. (2) The TOPIST software was applied to the over 300,000 ISIS-2 topside ionograms that had been digitized in the fkamework of a separate AISRP project (PI: R.F. Benson). (3) The new TOPIST-produced database of global electron density profiles for the topside ionosphere were made publicly available through NASA s National Space Science Data Center (NSSDC) ftp archive at . (4) Earlier Alouette 1,2 and ISIS 1, 2 data sets of electron density profiles from manual scaling of selected sets of ionograms were converted fiom a highly-compressed binary format into a user-friendly ASCII format and made publicly available through nssdcftp.gsfc.nasa.gov. The new database for the topside

  6. Measurements of Electron Density Profile and Fluctuations on HSX*

    NASA Astrophysics Data System (ADS)

    Deng, C.; Brower, D. L.; Ding, W. X.; Almagri, A. F.; Anderson, D. T.; Anderson, F. S. B.; Gerhardt, S. P.; Probert, P.; Radder, J.; Talmadge, J. N.

    2001-10-01

    The 288 GHz interferometer system on the quasi-helical stellarator HSX views the plasma cross section along 9 adjacent chords with 1.5 cm spacing. At this frequency refraction is manageable but requires correction when performing inversions. The interferometer has sensitivity n_edl = 8 x 10^11 cm-2 and frequency response up to 1 MHz. Improved time response permits measurement of high-frequency density fluctuations as well as fast changes to the equilibrium profile. First results from HSX with 2nd harmonic ECH at 28 GHz, using a 5 chord version of the interferometer, indicate that the density profile is quite peaked for both quasi-helically symmetric (QHS) plasmas and those where the quasisymmetry is broken (mirror mode) for ne = 1 x 10^12 cm-3. However, for densities ne = 3 x 10^11 cm-3, the profile for the QHS plasma (high stored energy) is narrower when compared to the mirror mode (low stored energy). Density profile variation with plasma configuration and resonant heating location using the 9 channel interferometer will be described. For high density HSX plasmas, ne > 3 x 10^12 cm-3, coherent oscillations are observed in the line-integrated density traces which are out of phase across the magnetic axis. These m=1 oscillations are observed at frequencies of 1-2 kHz and result in a periodic displacement of the density profile. *Supported by USDOE under grant DE-FG03-01ER-54615, Task III and DE-FG02-93ER54222.

  7. Warm O(+) polar wind and the DE-1 polar cap electron density profile

    NASA Technical Reports Server (NTRS)

    Ho, C. W.; Horwitz, J. L.

    1993-01-01

    Theoretical steady state semikinetic polar wind density profiles, based on DE1/RIMS polar wind data (up to 3700 km), were obtained which agree very well with the power law electron density profile measured by the DE1/PWI for high altitudes. The polar wind is found to be O(+) dominated for the full altitude range considered (up to 8 R(E)). Multiple solutions are obtained for various combinations of base altitude ion temperatures and electron temperatures, such that the densities fit the Persoon et al. (1983) profile. For example, good fits to measured density profile are found for low base ion temperatures (5000 K) and high electron temperatures (9000 K), and also for unheated H(+) and O(+)(3000 K) with electron temperatures of 11,000 K. Below 2.8 R(E) the theoretical polar wind density deviates somewhat from the r exp -3.85 power law. It is concluded that this theoretical polar wind density profile, with a sum of base electron and ion temperatures of 14,000 K, yields a close match with the measured DE-1 electron density profile.

  8. Electron density profiles from ionograms - Underlying ionization corrections and their comparison with rocket results

    NASA Technical Reports Server (NTRS)

    Wright, J. W.; Paul, A. K.; Mechtly, E. A.

    1975-01-01

    Electron density profiles from nine daytime rocket flights at Wallops Island, Va., conducted at high and low levels of solar activity are compared with profiles calculated by inversion of ionograms obtained at the same times and location. Sources of error and uncertainty in the ionogram inversion are discussed, as are means for their amelioration. In most cases, agreement between the two kinds of measurement within a few percent in electron density and within a few percent of a scale height can be achieved.

  9. An improved inversion for FORMOSAT-3/COSMIC ionosphere electron density profiles

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Yue, X.; Schreiner, W. S.

    2015-10-01

    An improved method to retrieve electron density profiles from Global Positioning System (GPS) radio occultation (RO) data is presented and applied to Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations. The improved inversion uses a monthly grid of COSMIC F region peak densities (NmF2), which are obtained via the standard Abel inversion, to aid the Abel inversion by providing information on the horizontal gradients in the ionosphere. This lessens the impact of ionospheric gradients on the retrieval of GPS RO electron density profiles, reducing the dominant error source in the standard Abel inversion. Results are presented that demonstrate the NmF2 aided retrieval significantly improves the quality of the COSMIC electron density profiles. Improvements are most notable at E region altitudes, where the improved inversion reduces the artificial plasma cave that is generated by the Abel inversion spherical symmetry assumption at low latitudes during the daytime. Occurrence of unphysical negative electron densities at E region altitudes is also reduced. Furthermore, the NmF2 aided inversion has a positive impact at F region altitudes, where it results in a more distinct equatorial ionization anomaly. COSMIC electron density profiles inverted using our new approach are currently available through the University Corporation for Atmospheric Research COSMIC Data Analysis and Archive Center. Owing to the significant improvement in the results, COSMIC data users are encouraged to use electron density profiles based on the improved inversion rather than those inverted by the standard Abel inversion.

  10. Seasonal and temporal variability of the equatorial ionosphere with radio occultation electron density profiles from CHAMP

    NASA Astrophysics Data System (ADS)

    Cahoy, K.

    2007-12-01

    This work summarizes a portion of the more than two hundred thousand electron density profiles captured by the Challenging Mini-Satellite Payload for Geophysical Research (CHAMP, GFZ) from 2002-2006. The electron density profiles used in this work were processed by the Cosmic Data Analysis and Archival Center (CDAAC, UCAR) and released in July 2007. This recent release includes data not previously distributed by CDAAC, and nearly doubles the number of electron density profiles available through CDAAC. The local time of the electron density profiles varies throughout the solar day due to the geometry of the experiment (one ~400 km altitude near-polar orbiter with a ~90 minute period receives GPS signals until occulted by Earth). For a majority of the profiles, sampling occurs at two local times each day, separated by 12 hours, such that roughly every 120 days, the sampling local time repeats. The progression of local time with day of year for the CHAMP electron density profiles drives the selection of data subsets used in this multi-year study of electron density. The data are divided into local time windows from 06:00-10:00 (four hours before noon) and 22:00-02:00 (four hours near midnight). For the years 2002-2006, this yields twelve 60-day before-noon data subsets, and thirteen 60-day near-midnight data subsets. Each subset consists of roughly two thousand profiles. For each of these 25 data subsets, the electron density profiles are interpolated onto a global map with latitude and longitude, from 150-400 km altitude. The data are summarized both in terms of bulk trends as well as with focus on zonal structure. For example, the seasonal and interannual variability of the zonal mean equatorial electron density are presented, as well as a wave decomposition of the observed equatorial zonal structure at fixed altitudes, such that the possible effects of non-migrating tides on the ionosphere can be considered. The retrieved electron density profiles are sometimes

  11. Recovery of Mars Ionospheric Electron Density Profiles Acquired by the Mariner 9 Radio Occultation Instrument

    NASA Astrophysics Data System (ADS)

    Ferreri, N. R.; Withers, P.; Weiner, S.

    2012-12-01

    The Mariner 9 radio occultation experiment acquired 118 profiles of dayside ionospheric electron density from 1971-2. Relative to the MGS dataset, which contains the only electron density profiles for Mars that are readily available to the public today, the Mariner 9 dataset has some unique characteristics. Profiles extend to 300-400 km, thereby probing the topside ionosphere better than the MGS profiles that typically terminate around 200 km. Profiles were acquired during the waning phase of a tremendous dust storm, when the ionospheric peak was 20-30 km higher than normal. Profiles are distributed globally, whereas MGS profiles are poleward of 60 degrees north latitude, and sample solar zenith angles as low as 47 degrees, whereas MGS was limited to 71 degrees and higher. We have digitized the Mariner 9 electron density profiles from their microfilm archive. Here we report on archiving plans for these profiles. Since there have been many scientific discoveries at Mars since the last studies of these Mariner 9 data, we also present a preliminary report on scientific analysis of these profiles.

  12. Calculating electron momentum densities and Compton profiles using the linear tetrahedron method.

    PubMed

    Ernsting, D; Billington, D; Haynes, T D; Millichamp, T E; Taylor, J W; Duffy, J A; Giblin, S R; Dewhurst, J K; Dugdale, S B

    2014-12-10

    A method for computing electron momentum densities and Compton profiles from ab initio calculations is presented. Reciprocal space is divided into optimally-shaped tetrahedra for interpolation, and the linear tetrahedron method is used to obtain the momentum density and its projections such as Compton profiles. Results are presented and evaluated against experimental data for Be, Cu, Ni, Fe3Pt, and YBa2Cu4O8, demonstrating the accuracy of our method in a wide variety of crystal structures.

  13. A technique for routinely updating the ITU-R database using radio occultation electron density profiles

    NASA Astrophysics Data System (ADS)

    Brunini, Claudio; Azpilicueta, Francisco; Nava, Bruno

    2013-09-01

    Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,, and the height, . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve and values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between and elec/m for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (2 %).

  14. Developing an ANN electron density profile model over Cyprus based on ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Haralambous, H.; Papadopoulos, Harris; Mostafa, Md. Golam

    2015-06-01

    The impact of the upper atmosphere on navigation, communication as well as surveillance systems is defined by the state of the ionosphere and in particular by variations in its electron density profile along the signal propagation path. The requirement for the accurate specification of the electron density profile stems from the fact that the electron density at each altitude determines the refractive index for radiowaves that are refracted by or penetrate the ionosphere and therefore affects significantly navigation and communication signals. Consequently satellite systems that are based on trans-ionospheric propagation may be affected by complex variations in the ionospheric structure in space and time leading to degradation of the availability, accuracy and reliability of their services. Therefore the specification of the electron density profile over a geographical region is very important within the context of operation of such systems. Although regional models have been developed for such a purpose by interpolating data coming from different instruments using various techniques, for a limited geographical scope, the single station model approach is the preferable option as it best encapsulates the behaviour of the ionosphere over the station. This paper presents the development of an Artificial Neural Network (ANN) model for the electron density profile of the ionosphere over Cyprus based on manually scaled ionograms collected at the Nicosia ionosonde station during the period 2009-2013.

  15. The calculation of electron density profiles from topside ionograms: Method and applications

    NASA Technical Reports Server (NTRS)

    Lockwood, G. E. K.

    1972-01-01

    A method for converting topside sounder ionograms into topside electron density profiles is discussed. The lamination method used is modified to take into account the variation of electron density and magnetic field within each lamination. Also included is a change of variable to produce a finite integrand of the integral involved, an iteration scheme that permits convergence on an initially unknown density, a second iteration scheme to overcome the problem of an uncertainty in the electron density at the satellite, and a modification to compensate for the changing satellite altitude over the duration of the sounding. Two applications of the technique are discussed: field-aligned traces for computing field-aligned profiles and computer-aided systems for scaling ionograms.

  16. Fast electron current density profile and diffusion studies during LHCD in PBX-M

    SciTech Connect

    Jones, S.E.; Kesner, J.; Luckhardt, S.; Paoletti, F.; von Goeler, S.; Bernabei, S.; Kaita, R.; Rimini, F.

    1993-08-01

    Successful current profile control experiments using lower hybrid current drive (LCHD) clearly require knowledge of (1) the location of the driven fast electrons and (2) the ability to maintain that location from spreading due to radial diffusion. These issues can be addressed by examining the data from the hard x-ray camera on PBX-M, a unique diagnostic producing two-dimensional, time resolved tangential images of fast electron bremsstrahlung. Using modeling, these line-of-sight images are inverted to extract a radial fast electron current density profile. We note that ``hollow`` profiles have been observed, indicative of off-axis current drive. These profiles can then be used to calculate an upper bound for an effective fast electron diffusion constant: assuming an extremely radially narrow lower hybrid absorption profile and a transport model based on Rax and Moreau, a model fast electron current density profile is calculated and compared to the experimentally derived profile. The model diffusion constant is adjusted until a good match is found. Applied to steady-state quiescent modes on PBX-M, we obtain an upper limit for an effective diffusion constant of about D*=1.1 m{sup 2}/sec.

  17. Interpretation of the shape factor at Ootacamund, India. [ionospheric electron density profile

    NASA Technical Reports Server (NTRS)

    Donnelly, R. F.; Anderson, D. N.; Davies, K.; Rama Rao, P. V. S.

    1978-01-01

    The paper deals with equatorial ATS-6 measurements of the shape factor, F, interpreted in terms of the shape of the electron density profile along the ray path. The observed rapid increase in F at sunrise is attributed to EUV production of ionization in the E and F regions. The evening decrease is seen to result from an upward drift of the F region at sunset and the evening decay of the E and bottomside F regions. The nighttime peak, or plateau, is caused by gradual decrease of the electron density profile.

  18. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  19. Propagation of terahertz waves in an atmospheric pressure microplasma with Epstein electron density profile

    SciTech Connect

    Yuan Chengxun; Zhou Zhongxiang; Zhang, Jingwen W.; Sun Hongguo; Wang He; Du Yanwei; Xiang Xiaoli

    2011-03-15

    Propagation properties of terahertz (THz) waves in a bounded atmospheric-pressure microplasma (AMP) are analyzed in this study. A modified Epstein profile model is used to simulate the electron density distribution caused by the plasma sheaths. By introducing the dielectric constant of a Drude-Lorentz model and using the method of dividing the plasma into a series of subslabs with uniform electron density, the coefficients of power reflection, transmission, and absorption are derived for a bounded microplasma structure. The effects of size of microplasma, electron density profile, and collision frequency on the propagation of THz waves are analyzed numerically. The results indicate that the propagation of THz waves in AMPs depend greatly on the above three parameters. It is demonstrated that the THz wave can play an important role in AMPs diagnostics; meanwhile, the AMP can be used as a novel potential tool to control THz wave propagation.

  20. Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration

    2015-11-01

    A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.

  1. Real time 3-D electron density reconstruction over Europe by using TaD profiler

    NASA Astrophysics Data System (ADS)

    Kutiev, I.; Marinov, P.; Belehaki, A.

    2016-07-01

    The TaD (Topside Sounder Model (TSM)-assisted Digisonde) profiler, developed on the basis of the Topside Sounder Model (TSM), provides vertical electron density profiles (EDP) over Digisondes from the bottomside ionosphere up to Global Navigation Satellite Systems (GNSS) orbit heights. TaD EDP uses the Digisonde bottomside profile and extends it above the F2 layer peak, representing O+ distribution by α-Chapman formula and H+ distribution by a single exponent. Topside scale height HT and transition height hT are taken from TSM, while the plasmasphere scale height Hp is defined as a function of HT. All profile parameters are adjusted to the current conditions comparing the profile integral with the GNSS vertical total electron content (TEC) retrieved from the European Reference Frame (EUREF) maps. To expand to three dimensions (3-D), European maps of foF2 and hmF2 are produced, based on Digisonde data, with spatial resolution 1°×1° in latitude and longitude, and TaD profiles are calculated at each grid node. Electron density (ED) at any point of the 3-D space is obtained by linear interpolation of TaD parameters between neighbor nodes. Samples of two dimensional (2-D) electron density distribution (EDD) at different cross sections of the 3-D space between 200 km and 1150 km over the mapping area are presented, along with distributions of the electron density along various raypaths of GNSS signals. The modeled 3-D EDD is compared with vertical (vTEC) and slant (sTEC) TEC parameters calculated from individual GNSS receivers. The model error (relative deviation of model from the data), based on 6780 data values, is 10% for sTEC and 6% for vTEC.

  2. Mars Global Surveyor Radio Science Electron Density Profiles: Interannual Variability and Implications for the Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.

  3. Electron density profile measurements from hydrogen line intensity ratio method in Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Kim, YooSung; Shi, Yue-Jiang; Yang, Jeong-hun; Kim, SeongCheol; Kim, Young-Gi; Dang, Jeong-Jeung; Yang, Seongmoo; Jo, Jungmin; Oh, Soo-Ghee; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Electron density profiles of versatile experiment spherical torus plasmas are measured by using a hydrogen line intensity ratio method. A fast-frame visible camera with appropriate bandpass filters is used to detect images of Balmer line intensities. The unique optical system makes it possible to take images of Hα and Hβ radiation simultaneously, with only one camera. The frame rate is 1000 fps and the spatial resolution of the system is about 0.5 cm. One-dimensional local emissivity profiles have been obtained from the toroidal line of sight with viewing dumps. An initial result for the electron density profile is presented and is in reasonable agreement with values measured by a triple Langmuir probe.

  4. Electron-density profiles from automatically scaled digital ionograms. the artist's valley solution. Technical report

    SciTech Connect

    Gamache, R.R.; Kersey, W.T.; Reinisch, B.W.

    1985-07-01

    Electron-density true-height profiles are calculated from automatically scaled Digisonde ionograms. The profile algorithm uses the modified polynomial fitting method separately for the E- and the F-region profile calculations. A new approach to considering the transition region between the E and F layers allows to determine the F profile with good accuracy from the ordinary echo trace. The total electron content between the peak of the E layer and the bottom of the F layer is estimated to account for the observed retardation as a function of frequency on the F trace. No effort is made to find the valley shape since this is not possible from the O trace alone. The new algorithm is tested on some model ionograms.

  5. Dynamics of electron injection and acceleration driven by laser wakefield in tailored density profiles

    NASA Astrophysics Data System (ADS)

    Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.

    2016-11-01

    The dynamics of electron acceleration driven by laser wakefield is studied in detail using the particle-in-cell code WARP with the objective to generate high-quality electron bunches with narrow energy spread and small emittance, relevant for the electron injector of a multistage accelerator. Simulation results, using experimentally achievable parameters, show that electron bunches with an energy spread of ˜11 % can be obtained by using an ionization-induced injection mechanism in a mm-scale length plasma. By controlling the focusing of a moderate laser power and tailoring the longitudinal plasma density profile, the electron injection beginning and end positions can be adjusted, while the electron energy can be finely tuned in the last acceleration section.

  6. F region electron density profile inversion from backscatter ionogram based on international reference ionosphere

    NASA Astrophysics Data System (ADS)

    Zhu, Peng; Zhou, Chen; Zhang, Yuannong; Yang, Guobin; Jiang, Chunhua; Sun, Hengqing; Cui, Xiao

    2015-07-01

    Ionospheric backscatter sounding transmits HF (3-30 MHz) radio wave obliquely into ionosphere and receives echoes backscattered from remote ground. Due to the focusing effect, the echoes form leading edge on the swept frequency backscatter ionogram (BSI). This kind of backscatter ionogram contains plentiful ionospheric information, such as electron density, radio wave propagation modes and maximum usage frequency (MUF). By inversion algorithm, the backscatter ionogram can provide two-dimensional electron density profile (EDP) down range. In this paper, we propose an ionospheric F2 region EDP inversion algorithm. By utilizing the F2 bottomside electron density profile represented by the International Reference Ionosphere (IRI) model and ray tracing techniques, this approach inverts the leading edge of the backscatter ionogram to two dimensional F region EDP. Results of validation experiments demonstrate that the inverted ionospheric EDPs show good agreement with the results of vertical ionosonde and provide reliable information of ionosphere. Thus the proposed inversion algorithm provide an effective and accurate method for achieving large scale and remote ionospheric electron density structure.

  7. Preliminary results of technique for electron density profile reconstruction from weakly oblique sounding data

    NASA Astrophysics Data System (ADS)

    Kim, Anton G.; Kotovich, Galina V.

    2008-02-01

    In this work the technique for reconstruction of height profile of electron density N(h) from oblique sounding data was applied to weakly oblique sounding data. During the calculations it was supposed that height-frequency characteristics (HFC), obtained at the short path (the path length is ~126 km), is equal to distance-frequency characteristics (DFC), which can be recalculated into HFC of path mid-point. Recalculating of DFC into HFC was made according to modified Smith method in frames of spherically symmetric ionosphere without consideration of Earth's magnetic field. The profile N(h) was reconstructed from recalculated HFC according to Huang-Reinisch method, which is widely used in world digisonde network. Results of comparison between reconstructed N(h)-profiles with profiles obtained according to observations data of FMCW-ionosonde of ISTP, obtained at weakly oblique sounding path Usolie-Tory, and Digisonde DPS-4 in Irkutsk, near the path mid-point, are presented.

  8. Automatic calculation of electron density profiles from digital ionograms. III. Processing of bottomside ionograms

    SciTech Connect

    Reinisch, B.W.; Huang, X.

    1983-05-01

    It is noted that automatic scaling of bottomside Digisonde ionograms gives the E and F region echo traces with high accuracy. Polarization and incidence angle information in the ionogram makes it possible to extract the vertical ordinary polarization echo trace from quiet as well as disturbed ionograms. The scaling algorithm is tested with Digisonde ionograms from Goose Bay, Labrador, which reveal spread F about 50 percent of the time. In spite of these disturbed conditions, f0F2 is determined within 1/2 MHz for 475 ionograms out of 577 during January 1980. A profile inversion algorithm gives a calculation of the electron density profile from the autoscale h-prime(f) points. Parabolic profile shapes are assumed for the E region and for the valley between the E and the F layer. The F layer is approximated through a single sum of Chebyshev polynomials, and the entire profile is described by means of a set of 16 numerical values.

  9. Estimates of the Electron Density Profile on LTX Using FMCW Reflectometry and mm-Wave Interferometry

    NASA Astrophysics Data System (ADS)

    Peebles, W. A.; Kubota, S.; Nguyen, X. V.; Holoman, T.; Kaita, R.; Kozub, T.; Labrie, D.; Schmitt, J. C.; Majeski, R.

    2014-10-01

    An FMCW (frequency-modulated continuous-wave) reflectometer has been installed on the Lithium Tokamak Experiment (LTX) for electron density profile and fluctuation measurements. This diagnostic consists of two channels using bistatic antennas with a combined frequency coverage of 13.5 -33 GHz, which corresponds to electron density measurements in the range of 0 . 2 - 1 . 3 ×1013 cm-3 (in O-mode). Initial measurements will utilize O-mode polarization, which will require modeling of the plasma edge. Reflections from the center stack (delayometry above the peak cutoff frequency), as well as line density measurements from a 296 GHz interferometer (single-chord, radial midplane), will provide constraints for the profile reconstruction/estimate. Typical chord-averaged line densities on LTX range from 2 -6 ×1012 cm-3, which correspond to peak densities of 0 . 6 - 1 . 8 ×1013 cm-3 assuming a parabolic shape. If available, EFIT/LRDFIT results will provide additional constraints, as well as the possibility of utilizing data from measurements with X-mode or dual-mode (simultaneous O- and X-mode) polarization. Supported by U.S. DoE Grants DE-FG02-99ER54527 and DE-AC02-09CH11466.

  10. Investigation of Electron Density Profile in the ionospheric D and E region by Kagoshima rocket experiment

    NASA Astrophysics Data System (ADS)

    Ashihara, Y.; Ishisaka, K.; Miyake, T.; Okada, T.; Nagano, I.; Abe, T.; Ono, T.

    2007-12-01

    The radio wave propagation characteristic in the lower ionosphere is important because of its effect on commercial radio communication, navigation, and broadcast services. The electron density is of primary interest in this region because the high ion-neutral collision frequencies result in radio wave absorption. In order to investigate the ionization structure in the ionospheric D and E region by using the propagation characteristics of MF-band and LF-band radio waves, S-310-37 and S-520-23 sounding rocket experiments have been carried out at Uchinoura Space Center (USC). S-310-37 sounding rocket was launched at 11:20 LT on January 16, 2007. The apex of rocket trajectory was about 138 km. Then S-520-23 sounding rocket was launched at 19:20 LT on September 2, 2007. The apex was about 279 km. As a common measurement, these sounding rockets measure the fields intensities and the waveform of radio waves from NHK Kumamoto broadcasting station (873kHz, 500kW) and JJY signals from Haganeyama LF radio station (60kHz, 50kW). The approximate electron density profile can be determined from the comparison between these experimental results and propagation characteristics calculated by the full wave method. We will get the most probable electron density profile in the ionosphere. In presentation, we will show the propagation characteristic of LF/MF radio waves measured by two sounding rocket experiments. Then we will discuss the analysis method and the estimated electron density profile in the ionosphere.

  11. A study of the Ionospheric electron density profile with FORMOSAT-3/COSMIC observation data

    NASA Astrophysics Data System (ADS)

    Chou, Min-Yang; Tsai, Ho-Fang; Lin, Chi-Yen; Lee, I.-Te; Lin, Charles; Liu, Jann-Yenq

    2015-04-01

    The GPS Occultation Experiment payload onboard FORMOSAT-3/COSMIC microsatellite constellation is capable of scanning the ionospheric structure by the radio occultation (RO) technique to retrieve precise electron density profiles since 2006. Due to the success of FORMOSAT-3/COSMIC, the follow-on mission, FORMOSAT-7/COSMIC-2, is to launch 12 microsatellites in 2016 and 2018, respectively, with the Global Navigation Satellite Systems (GNSS) RO instrument onboard for tracking GPS, Galileo and/or GLONASS satellite signals and to provide more than 8,000 RO soundings per day globally. An overview of the validation of the FORMOSAT-3/COSMIC ionospheric profiling is given by means of the traditional Abel transform through bending angle and total electron content (TEC), while the ionospheric data assimilation is also applied, based on the Gauss-Markov Kalman filter with the International Reference Ionosphere model (IRI-2007) and global ionosphere map (GIM) as background model, to assimilate TEC observations from FORMOSAT-3/COSMIC. The results shows comparison of electron density profiles from Abel inversion and data assimilation. Furthermore, an observing system simulation experiment is also applied to determine the impact of FORMOSAT-7/COSMIC-2 on ionospheric weather monitoring, which reveals an opportunity on advanced study of small spatial and temporal variations in the ionosphere.

  12. LWS Investigation of Middle-Latitude Topside Ionospheric Vertical Electron-Density Profiles

    NASA Astrophysics Data System (ADS)

    Benson, R. F.; Grebowsky, J. M.; Webb, P. A.

    2005-05-01

    A Living With a Star (LWS) Targeted Research and Technology (TR&T) proposal has been selected to determine the dependence of the mid-latitude topside ionospheric electron-density (Ne) altitude distributions on long-term solar-cycle variations and short-term solar-wind and magnetic disturbances. The main focus is on Ne profiles from the height of the ionospheric Ne maximum to ~3,000 km as deduced from ISIS (International Satellites for Ionospheric Studies) topside-sounder data. These data, obtained over an 18-year time interval, can be used to investigate secular changes in the topside Ne profiles, which reflect altitude changes in plasma temperature and ion composition, over more than a solar cycle. In addition to providing average distributions the data, which extend from the O+ dominated high-altitude F region to the H+ dominated plasmasphere, provide a unique framework for delineating the altitude dependence of mid-latitude ionospheric structures associated with the plasmapause, plasmaspheric tails and Storm Enhanced Densities (SEDs). The approach used is to determine the locations of mid-latitude O+/H+ transition altitudes by fitting the topside Ne profiles with modeled H+ and O+ profiles that have the base electron temperature and temperature gradient at 400 km as variables. The investigation makes use of existing topside Ne profiles obtained from 1960's manual scaling of 35-mm film-format ionograms, available from ftp://nssdcftp.gsfc.nasa.gov/, and profiles deduced from digital topside ionograms available from http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html.

  13. Recovery and validation of Mars ionospheric electron density profiles from Mariner 9

    NASA Astrophysics Data System (ADS)

    Withers, Paul; Weiner, Sarah; Ferreri, Nicholas Roy

    2015-12-01

    Electron density profiles from the ionosphere of Mars that were obtained by the Mariner 9 radio occultation experiment in 1971-1972 have unique scientific value because they extend to higher altitudes than comparable datasets and were acquired during a tremendous dust storm that had substantial and poorly understood effects on the ionosphere. Yet these profiles are not publicly available in an accessible format. Here, we describe the recovery of these profiles, which are made available as part of this article. The validity of the profiles was tested by using them to explore the effects of a dust storm on the topside ionosphere, the morphology of the topside ionosphere, the behavior of the M1 layer, and possible meteoric layers. The dust storm that waned over the course of the primary mission (November-December 1971) had major effects on the ionosphere of Mars. It elevated the M1 and M2 layers of the ionosphere by 20-30 km, but the separation of the two layers stayed fixed throughout the primary mission, which suggests that the neutral atmosphere at these altitudes was not heated during the dust storm. However, the altitude of the 1500 cm -3 density level, a proxy for the top of the ionosphere, decreased steadily by 74±12 km over the course of the primary mission. Mariner 9 observations of the topside ionosphere differ from comparable Mars Express observations. Compared to Mars Express, the Mariner 9 data, which were acquired during a period of relatively high solar wind dynamic pressure, have lower densities at high altitudes. They are also more likely to have a "one scale height" morphology than a "two scale height" morphology. The peak density of the M1 layer depends on solar zenith angle and solar irradiance similarly to previous studies with Mars Global Surveyor observations, which indicates that dust storms do not affect the behavior of the peak density. No clear meteoric layers were identified.

  14. X-ray diagnostic for current density profiling relativistic electron beams in vacuum and gas

    SciTech Connect

    Slaughter, D.; Koppel, L.; Smith, J.

    1986-02-15

    An x-ray imaging technique has been studied for the purpose of observing the current density profile in a high-current relativistic electron beam (50 MeV, 10 kA). Calculations and measurements of energy spectra and intensities are in good agreement. Results indicate sufficient photon yield for pinhole imaging when the beam deposits a small part of its energy in high-Z gas or a thin high-Z foil. Characteristic L and K x-ray emission is not found not be a reliable technique due to strong L and K shell fluorescence in the presence of intense bremsstrahlung radiation. It is also found that at pressures on the order of one atmosphere, the density of energy deposition in a gas cell is too small to generate sufficient photon yield for time-resolved measurements.

  15. Model simulations of ion and electron density profiles in ionospheric E and F regions

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Chu, Y. H.

    2017-02-01

    We develop a time-dependent theoretical numerical model to simulate the density profiles of the ions (i.e., O+(2P), O+(2D), N2+, O+(4S), N+, O2+, and NO+) and free electrons in E and F regions. In this model, the ion photoionization production rates, the photoelectron ionization production effect, and the chemical reactions between the ionized species and the neutral compositions are considered, and the plasma transport processes are not included. The simulation results show that the mean electron density ratios of the model simulations to the AE-C satellite measurements for the Solar Dynamics Observatory-Extreme Ultraviolet Variability Experiment (SDO-EVE), EUV flux model for Aeronomic Calculations, and Hinteregger-Fukui-Gilson solar irradiance models are, respectively, 0.97, 0.79, and 0.71 in a height range 140-400 km and 0.79, 0.75, and 0.64 in a height range 90-150 km. A comparison shows that the electron densities simulated by the model developed in this study are much more consistent with the in situ measurements made by the AE-C satellite than those predicted by the International Reference Ionosphere model and simulated by the Thermosphere Ionosphere Electrodynamics General Circulation Model. The model simulations with SDO-EVE solar irradiance input indicate that the photoelectron impact production process contributes about 20%-30% of the total atomic ion densities throughout the height range 130-400 km around noon. However, the photoelectron production effect on the molecular ion densities is very minor (less than about 7%) above 275 km. Below 250 km, its effect increases with the decrease of height for O2+ and N2+, from about 4% and 10% at 250 km to 13% and 27% at 150 km, respectively.

  16. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    SciTech Connect

    Brookman, M. W. Austin, M. E.; Petty, C. C.

    2015-12-10

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T{sub e} measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D.

  17. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    NASA Astrophysics Data System (ADS)

    Brookman, M. W.; Austin, M. E.; Petty, C. C.

    2015-12-01

    Theoretical work, computation, and results from TCV [J. Decker "Effect of density fluctuations on ECCD in ITER and TCV," EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle "Electron energy transport inferences from modulated electron cyclotron heating in DIII-D," Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the Te measurements from the University of Texas's 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D.

  18. Extracting the density profile of an electronic wave function in a quantum dot

    NASA Astrophysics Data System (ADS)

    Boyd, Erin E.; Westervelt, Robert M.

    2011-11-01

    We use a model of a one-dimensional nanowire quantum dot to demonstrate the feasibility of a scanning probe microscope (SPM) imaging technique that can extract both the energy of an electron state and the amplitude of its wave function using a single instrument. This imaging technique can probe electrons that are buried beneath the surface of a low-dimensional semiconductor structure and provide valuable information for the design of quantum devices. A conducting SPM tip, acting as a movable gate, measures the energy of an electron state using Coulomb blockade spectroscopy. When the tip is close to the nanowire dot, it dents the wave function Ψ(x) of the quantum state, changing the electron's energy by an amount proportional to |Ψ(x)|2. By recording the change in energy as the SPM tip is moved along the length of the dot, the density profile of the electronic wave function can be found along the length of the quantum dot.

  19. High-latitude topside ionospheric vertical electron density profile changes in response to large magnetic storms

    NASA Astrophysics Data System (ADS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-05-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst < -100 nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial and/or temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100 km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  20. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, Stephen W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate that the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower atmosphere. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2-Martian years are investigated near aphelion conditions at high Northern latitudes (64.7-77.6N). A mean ionospheric peak height of 133.5-135 km was obtained for all aphelion profiles near SZA = 78-82; a corresponding mean peak density of 7.3-8.5 x 10(exp 4)/cu cm was also measured, reflecting solar moderate conditions. Strong wave 2-3 oscillations in peak heights were observed as a function of longitude over both Martian seasons. The Mars Thermospheric General Circulation Model (MTGCM) is exercised for Mars aphelion conditions. The measured interannual variations in the mean and longitude structure of the peak heights are small (consistent with MTGCM simulations), signifying the repeatability of the Mars atmosphere during aphelion conditions. A non-migrating (semi-diurnal period, wave#l eastward propagating) tidal mode is likely responsible for the wave#3 longitude features identified. The height of this photochemically driven peak can be observed to provide an ongoing monitor of the changing state of the Mars lower atmosphere. The magnitudes of these same peaks may reflect more than changing solar EUV fluxes when they are located in the vicinity of Mars crustal magnetic field centers.

  1. MGS Radio Science Electron Density Profiles: Interannual Variability and Implications for the Martian Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2004-01-01

    Martian electron density profiles provided by the Mars Global Surveyor (MGS) Radio Science (RS) experiment over the 95-200 km altitude range indicate what the height of the electron peak and the longitudinal structure of the peak height are sensitive indicators of the physical state of the Mars lower and upper atmospheres. The present analysis is carried out on five sets of occultation profiles, all at high solar zenith angles (SZA). Variations spanning 2 Martian years are investigated near aphelion conditions at high northern latitudes (64.7 - 77.6 N) making use of four of these data sets. A mean ionospheric peak height of 133.5 - 135 km is obtained near SZA = 78 - 82 deg.; a corresponding mean peak density of 7.3 - 8.5 x l0(exp 4)/ qu cm is also measured during solar moderate conditions at Mars. Strong wave number 2 - 3 oscillations in peak heights are consistently observed as a function of longitude over the 2 Martian years. These observed ionospheric features are remarkably similar during aphelion conditions 1 Martian year apart. This year-to-year repeatability in the thermosphere-ionosphere structure is consistent with that observed in multiyear aphelion temperature data of the Mars lower atmosphere. Coupled Mars general circulation model (MGCM) and Mars thermospheric general circulation model (MTGCM) codes are run for Mars aphelion conditions, yielding mean and longitude variable ionospheric peak heights that reasonably match RS observations. A tidal decomposition of MTGCM thermospheric densities shows that observed ionospheric wave number 3 features are linked to a non-migrating tidal mode with semidiurnal period (sigma = 2) and zonal wave number 1 (s = -1) characteristics. The height of this photochemically determined ionospheric peak should be monitored regularly.

  2. Experimental confirmation of calculated phases and electron density profile for wet native collagen.

    PubMed Central

    Stinson, R H; Bartlett, M W; Kurg, T; Sweeny, P R; Hendricks, R W

    1979-01-01

    An experimental procedure is developed to phase the reflections obtained in x-ray diffraction investigations of collagen in native wet tendons. Phosphotungstic acid was used for isomorphous addition in phase determination and was located by electron microscopy. Structure factors (with phases) were obtained from the electron microscopy data for the heavy metal. Structure-factor magnitudes for collagen with and without the heavy metal were obtained from the x-ray diffraction data. The first 10 orders were investigated. Standard Argand diagrams provided two solutions for each of these, except the weak sixth order. In each case, one of the two possible solutions agrees well with the phases proposed on theoretical grounds by Hulmes et al. The present results suggest that their other proposed phases are probably correct. An electron density profile along the unit cell of the fibril is presented that shows a distinct step, as expected on the basis of the hole-overlap model. The overlap region is 48% of the length of the unit cell. Images FIGURE 2 PMID:262416

  3. Non-linear effects in a cold electron plasma with non-uniform density profile

    NASA Astrophysics Data System (ADS)

    Gradov, O. M.; Stenflo, L.; Shukla, P. K.

    2008-05-01

    A new step forward on the theory for two-dimensional wave propagation is outlined for a non-uniform plasma with a smooth density profile. A way to excite envelope solitary waves with certain shapes is described. The corresponding wave space structure is calculated, and the restrictions on the wave profile along the direction of wave propagation are noticed.

  4. Reconstruction of the vertical electron density profile based on vertical TEC using the simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Chunhua; Yang, Guobin; Zhu, Peng; Nishioka, Michi; Yokoyama, Tatsuhiro; Zhou, Chen; Song, Huan; Lan, Ting; Zhao, Zhengyu; Zhang, Yuannong

    2016-05-01

    This paper presents a new method to reconstruct the vertical electron density profile based on vertical Total Electron Content (TEC) using the simulated annealing algorithm. The present technique used the Quasi-parabolic segments (QPS) to model the bottomside ionosphere. The initial parameters of the ionosphere model were determined from both International Reference Ionosphere (IRI) (Bilitza et al., 2014) and vertical TEC (vTEC). Then, the simulated annealing algorithm was used to search the best-fit parameters of the ionosphere model by comparing with the GPS-TEC. The performance and robust of this technique were verified by ionosonde data. The critical frequency (foF2) and peak height (hmF2) of the F2 layer obtained from ionograms recorded at different locations and on different days were compared with those calculated by the proposed method. The analysis of results shows that the present method is inspiring for obtaining foF2 from vTEC. However, the accuracy of hmF2 needs to be improved in the future work.

  5. Spatial profiles of interelectrode electron density in direct current superposed dual-frequency capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Ohya, Yoshinobu; Ishikawa, Kenji; Komuro, Tatsuya; Yamaguchi, Tsuyoshi; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2017-04-01

    We present experimentally determined spatial profiles of the interelectrode electron density (n e) in dual-frequency capacitively coupled plasmas in which the negative direct current (dc) bias voltage (V dc) is superposed; in the experiment, 13 MHz (P low) was applied to the lower electrode and 60 MHz (P high) to the upper electrode. The bulk n e increased substantially with increases in the external power, P high, P low, and with increases in V dc. When P low was insufficient, the bulk n e decreased as the V dc bias increased. The bulk n e increased due to its dependence on V dc, especially for |V dc|  >  500 V. This may correspond to the sheath voltages (V s) of the lower electrode. The n e values in front of the upper electrode were coupled with the V dc: the V dc dependence first decreased and then increased. The dc currents (I dc) of the upper electrode were collected when a large P low was applied. The value of I dc at the threshold value of V dc  ≈  V s (e.g.  ‑500 V) increased with an increase in n e. When |V dc| exceeded the threshold, the spatial n e profile and the I dc dependence were changed relative to the electrical characteristics of the dc superposition; this led to a change in the location of the maximum n e, the width of the area of n e depletion in front of the electrodes, and a transition in the electron heating modes.

  6. Ionospheric electron density profiling and modeling of COSMIC follow-on simulations

    NASA Astrophysics Data System (ADS)

    Tsai, L.-C.; Su, S.-Y.; Liu, C. H.; Tulasi Ram, S.

    2016-02-01

    The FormoSat-3/ Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) has been proven a successful mission on profiling ionospheric electron density ( {N_e }) using the radio occultation (RO) technique. A follow-on program (called FS7/COSMIC2) is now in progress. The FS3/COSMIC follow-on mission will have six 24°-inclination and 550-km low Earth orbiting (LEO) satellites and six 72°-inclination and 750-km LEO satellites to receive Tri-G (GPS, GLONASS, and Galileo) satellite signals. FS7/COSMIC2 RO observations were simulated in this study by calculating limb-viewing GNSS-to-LEO TEC values separately through two independent ionospheric models (the TWIM and NeQuick models). We propose a compensatory Abel-inversion scheme to improve vertical N_e profiling and three-dimensional (3D) N_e modeling in this FS7/COSMIC2 simulation study with future real observations. In this FS7/COSMIC2 feasibility study the number of RO observations will increase of around 10 times compared with FS3/COSMIC, and the windowing day number to collect N_e profiles and to derive every half-hour 3D N_e model could be decreased from 30 to 3 days. The results show that the root-mean-square (RMS) foF2 and hmF2 difference improvements are 46 % (32 %) and 21 % (4.6 %), respectively, in relative percentage over the standard Abel inversion at the TWIM-background (NeQuick-background) simulation experiment. The RMS modeling errors are about one order less than those from FS3/COSMIC simulations.

  7. Measurement of a density profile of a hot-electron plasma in RT-1 with three-chord interferometry

    SciTech Connect

    Saitoh, H.; Yano, Y.; Yoshida, Z.; Nishiura, M.; Morikawa, J.; Kawazura, Y.; Nogami, T.; Yamasaki, M.

    2015-02-15

    The electron density profile of a plasma in a magnetospheric dipole field configuration was measured with a multi-chord interferometry including a relativistic correction. In order to improve the accuracy of density reconstruction, a 75 GHz interferometer was installed at a vertical chord of the Ring Trap 1 (RT-1) device in addition to previously installed ones at tangential and another vertical chords. The density profile was calculated by using the data of three-chord interferometry including relativistic effects for a plasma consisting of hot and cold electrons generated by electron cyclotron resonance heating (ECH). The results clearly showed the effects of density peaking and magnetic mirror trapping in a strongly inhomogeneous dipole magnetic field.

  8. Measurement of a density profile of a hot-electron plasma in RT-1 with three-chord interferometry

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yano, Y.; Yoshida, Z.; Nishiura, M.; Morikawa, J.; Kawazura, Y.; Nogami, T.; Yamasaki, M.

    2015-02-01

    The electron density profile of a plasma in a magnetospheric dipole field configuration was measured with a multi-chord interferometry including a relativistic correction. In order to improve the accuracy of density reconstruction, a 75 GHz interferometer was installed at a vertical chord of the Ring Trap 1 (RT-1) device in addition to previously installed ones at tangential and another vertical chords. The density profile was calculated by using the data of three-chord interferometry including relativistic effects for a plasma consisting of hot and cold electrons generated by electron cyclotron resonance heating (ECH). The results clearly showed the effects of density peaking and magnetic mirror trapping in a strongly inhomogeneous dipole magnetic field.

  9. Electron density profile measurements at a self-focusing ion beam with high current density and low energy extracted through concave electrodes

    SciTech Connect

    Fujiwara, Y. Nakamiya, A.; Sakakita, H.; Hirano, Y.; Kiyama, S.; Koguchi, H.

    2014-02-15

    The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10{sup 8} cm{sup −3} at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.

  10. Determination of global plasmaspheric electron density profile by tomographic approach using omega signals and ray tracing

    NASA Astrophysics Data System (ADS)

    Kimura, I.; Kasahara, Y.; Oya, H.

    2001-07-01

    It has been necessary requirements to determine the global electron density distribution in the plasmasphere with time resolutions, of less than a day. We have provided solutions to this requirement using the wave normal directions, delay time of Omega signals and the in situ electron density observed on-board the Japanese satellite Akebono (Sawada et al., Journal of Geophysical Research 98(11) (1993) 267, Kimura et al., Advance Space Research 15(2) (1995) 103, Advance Space Research 18(6) (1996) 279, Journal of Atmospheric and Solar-Terrestrial Physics 59 (1997) 1569). The present paper is intended to review our earlier studies.

  11. Compact and high-particle-flux thermal-lithium-beam probe system for measurement of two-dimensional electron density profile

    SciTech Connect

    Shibata, Y. Manabe, T.; Ohno, N.; Takagi, M.; Kajita, S.; Tsuchiya, H.; Morisaki, T.

    2014-09-15

    A compact and high-particle-flux thermal-lithium-beam source for two-dimensional measurement of electron density profiles has been developed. The thermal-lithium-beam oven is heated by a carbon heater. In this system, the maximum particle flux of the thermal lithium beam was ∼4 × 10{sup 19} m{sup −2} s{sup −1} when the temperature of the thermal-lithium-beam oven was 900 K. The electron density profile was evaluated in the small tokamak device HYBTOK-II. The electron density profile was reconstructed using the thermal-lithium-beam probe data and this profile was consistent with the electron density profile measured with a Langmuir electrostatic probe. We confirm that the developed thermal-lithium-beam probe can be used to measure the two-dimensional electron density profile with high time and spatial resolutions.

  12. Ionospheric specification with analytical profilers: Evidences of non-Chapman electron density distribution in the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Verhulst, T.; Stankov, S. M.

    2015-04-01

    In relation to the development of an operational ionospheric monitoring and imaging system, the most frequently used analytical ionospheric profilers (Chapman, Epstein, Exponential) were investigated in terms of suitability for topside ionosphere modelling. For the purpose, topside sounder measurements onboard Alouette and ISIS satellites have been analysed. We have come to the conclusion that the use of the Chapman profiler should be exercised with precaution as there are evidences that there are conditions when other profilers are better fit for modelling purposes. This is highlighted during ionospheric disturbances (e.g. during geomagnetic storms), when the shape of the topside electron density distribution might be better described by an Epstein profiler rather than a Chapman profiler.

  13. Topside-plasmasphere electron density profiles model by using AIS ionosonde measurements and calibrates GPS TEC data

    NASA Astrophysics Data System (ADS)

    Cesaroni, Claudio; Scotto, Carlo; Ippolito, Alessandro; Ciraolo, Luigi

    2013-04-01

    The Upper Atmosphere Physics group at INGV (Istituto Nazionale di Geofisica e Vulcanologia) developed Autoscala, a computer program for automatic scaling of the critical frequency foF2 and other ionospheric parameters derived from ionograms. Autoscala includes a routine that automatically estimates the electron density profile below F layer peak height hmF2, by adjusting the parameters of a model according to the recorded ionogram [Scotto (2009)]. By integrating this profile we can estimate bottom-side total electron content (bTEC). By means of a calibration technique [Ciraolo et al. (2007)], we are able to obtain calibrated vertical TEC (vTEC) values from GPS measurements over a receiver station. This method permits to estimate biases of the received signal due to transmitter-receiver hardware configuration. These biases must be eliminated from the GPS data in order to calibrate the experimental slant total electron content (sTEC) along the satellite-receiver line-of-sight (LoS). The difference between vTEC and bottom-side TEC (bTEC) permits to evaluate electron content of the topside ionospheric region (tTEC). Starting from tTEC, bottom-side parameters (foF2, hmF2, scale height at hmF2) obtained by ionosonde and O+ - H+ transition level, we can solve a system of equations based on different ionospheric profiler (Chapman, sech-squared and exponential) the solution of which provides ion scale height [Stankov et al. (2003)]. This last factor is sufficient to establish the vertical distribution of electrons in topside and plasmasphere regions. Obtained vertical profiles could be used to develop a new model for real time estimation of TEC and topside electron density distribution. References: Scotto, C. (2009). Electron density profile calculation technique for Autoscala ionogram analysis. Advances in Space Research, 44(6), 756-766. doi:10.1016/j.asr.2009.04.037 Ciraolo, L., et al. "Calibration errors on experimental slant total electron content (TEC) determined with

  14. Correlated magnetic impurities in a superconductor: electron density profiles and robustness of superconductivity.

    PubMed

    Sacramento, P D; Dugaev, V K; Vieira, V R; Araújo, M A N

    2010-01-20

    The insertion of magnetic impurities in a conventional superconductor leads to various effects. In this work we show that the electron density is affected by the spins (considered as classical) both locally and globally. The charge accumulation is solved self-consistently. This affects the transport properties along magnetic domain walls. Also, we show that superconductivity is more robust if the spin locations are not random but correlated.

  15. Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Linghan, Wan; Zhoujun, Yang; Ruobing, Zhou; Xiaoming, Pan; Chi, Zhang; Xianli, Xie; Bowen, Ruan

    2017-02-01

    The Q-band (33-50 GHz) fast sweep frequency modulated continuous wave (FMCW) reflectometry has been recently developed for electron density profile measurement on the Joint TEXT tokamak. It operates in ordinary mode (O-mode) with a 20 μs sweeping period, covering the density range from 1 × 1019 m-3 to 3 × 1019 m-3. On the bench test, a Yttrium Iron Garnet (YIG) filter is used for the dynamic calibration of the voltage controlled oscillator (VCO) to obtain a linear frequency sweep. Besides, the use of a power combiner helps to improve the side-band suppression level of the single side-band modulator (SSBM). The reconstructed density profiles are presented, which demonstrate the capability of the reflectometry.

  16. Density and Temperature Profile Modifications with Electron Cyclotron Power Injection in Quiescent Double Barrier Discharges on DIII-D

    SciTech Connect

    Casper, T A; Burrell, K H; Doyle, E J; Gohil, P; Lasnier, C J; Leonard, A W; Moller, J M; Osborne, T H; Snyder, P B; Thomas, D M; Weiland, J; West, W P

    2005-10-11

    Quiescent double barrier (QDB) conditions often form when an internal transport barrier is created with high-power neutral-beam injection into a quiescent H-mode (QH) plasma. These QH-modes offer an attractive, high-performance operating scenario for burning plasma experiments due to their quasi-stationarity and lack of edge localized modes (ELMs). Our initial experiments and modeling using ECH/ECCD in QDB shots were designed to control the current profile and, indeed, we have observed a strong dependence on the q-profile when EC-power is used inside the core transport barrier region. While strong electron heating is observed with EC power injection, we also observe a drop in the other core parameters; ion temperature and rotation, electron density and impurity concentration. These dynamically changing conditions provide a rapid evolution of T{sub e} T{sub i} profiles accessible with 0.3 < (T{sub e} T{sub i}){sub axis} < 0.8 observed in QDB discharges. We are exploring the correlation and effects of observed density profile changes with respect to these time-dependent variations in the temperature ratio. Thermal and particle diffusivity calculations over this temperature ratio range indicate a consistency between the rise in temperature ratio and an increase in transport corresponding to the observed change in density.

  17. Density and temperature profile modifications with electron cyclotron power injection in quiescent double barrier discharges on DIII-D

    SciTech Connect

    Casper, T. A.; Burrell, K. H.; Doyle, E. J.; Gohil, P.; Lasnier, C. J.; Leonard, A. W.; Moller, J. M.; Osborne, T. H.; Snyder, P. B.; Thomas, D. M.; Weiland, J.; West, W. P.

    2006-05-01

    Quiescent double barrier (QDB) conditions often form when an internal transport barrier is created with high-power neutral-beam injection into a quiescent H-mode (QH) plasma. These QH-modes offer an attractive, high-performance operating scenario for burning plasma experiments because of their quasi-stationarity and lack of edge localized modes. Our initial experiments and modelling using ECH/ECCD in QDB shots were designed to control the current profile and we have observed a strong dependence on the q-profile when EC-power is used inside the core transport barrier region. While strong electron heating is observed with EC power injection, we also observe a drop in the other core parameters, namely ion temperature and rotation, electron density and impurity concentration. At the onset and the termination of the EC pulse, dynamically changing conditions are induced that provide a rapid evolution of Te/Ti profiles accessible with 0.3 < (Te/Ti)axis < 0.8 observed in QDB discharges. We are exploring the correlation and effects of observed density profile changes with respect to these time-dependent variations in the temperature ratio. Increases in the measured ion thermal and particle diffusivities inside the barrier region during an ECH pulse correlate with electron heating and a rise in the core Te/Ti ratio as the ion temperature and density profiles flatten with this change in transport. The change in transport is consistent with a destabilization of ITG turbulence as inferred from the reduction of the stability threshold due to the change in Te/Ti.

  18. Electron-density profiles and plasma-drift measurements with digital ionosondes. Technical report, July 1987-June 1988

    SciTech Connect

    Reinisch, B.W.; Buchau, J.; Gamache, R.R.; Bibl, K.; Sales, G.S.

    1988-09-01

    Knowledge of the three-dimensional electron-density distribution and the plasma drift in the earth's ionosphere is needed for the radio communication engineer and the geophysicist. The combination of global models, e.g. the International Reference Ionosphere (IRI), modern digital ionosondes, and relatively powerful micro-computers provide the capabilities to overcome the limitations that have heretofore prevented real-time ionospheric specification and improved forecasting techniques. The developing network of digital ionosondes provides an improved ionogram data set. The cumbersome evaluation of electron density profiles (EDP), from the ionograms, has been eased with automatic ionogram scaling and related microcomputer-based algorithms for calculating EDPs. The purpose of this report is to summarize the evolving network of digital ionosondes based on the Digisonde 256 technology and to present techniques that have been developed for calculating electron-density profiles and determining the drift velocities. In addition, examples are presented to illustrate related data summaries that can be developed and tailored to the needs of the communication or radar-system manager and to the needs of the geophysicist involved in basic and applied research in solar-terrestrial physics.

  19. Auroral electrodynamics I: 1. preliminary electron density profile and 2. vehicle potential changes during an active beam experiment. Memorandum report

    SciTech Connect

    Walker, D.N.; Holmes, J.C.; Szuszczewicz, E.P.

    1980-05-19

    The report presents preliminary findings obtained by a pulsed plasma probe aboard a payload launched by a Terrier-Malemute sounding rocket from the Poker Flat Research Range. Results are outlined both during passive and active (i.e., an Argon plasma gun) experiments. Modifications to the design of the pulsed probe circuitry which allow tracking of the vehicle potential are described. The vehicle potential deduced from the analog records is plotted during times of interest (gun pulsing periods). An electron density profile with gun pulsing times indicated is also provided.

  20. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR

    SciTech Connect

    Nam, Y. U. Wi, H. M.; Zoletnik, S.; Lampert, M.; Kovácsik, Ákos

    2014-11-15

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

  1. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  2. Spatial profiles of electron and metastable atom densities in positive polarity fast ionization waves sustained in helium

    SciTech Connect

    Weatherford, Brandon R. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Barnat, E. V. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Xiong, Zhongmin E-mail: zax@esi-group.com E-mail: mjkush@umich.edu; Kushner, Mark J. E-mail: zax@esi-group.com E-mail: mjkush@umich.edu

    2014-09-14

    Fast ionization waves (FIWs), often generated with high voltage pulses over nanosecond timescales, are able to produce large volumes of ions and excited states at moderate pressures. The mechanisms of FIW propagation were experimentally and computationally investigated to provide insights into the manner in which these large volumes are excited. The two-dimensional structure of electron and metastable densities produced by short-pulse FIWs sustained in helium were measured using laser-induced fluorescence and laser collision-induced fluorescence diagnostics for times of 100–120 ns after the pulse, as the pressure was varied from 1 to 20 Torr. A trend of center-peaked to volume-filling to wall-peaked electron density profiles was observed as the pressure was increased. Instantaneous FIW velocities, obtained from plasma-induced emission, ranged from 0.1 to 3×10⁹cm s⁻¹, depending on distance from the high voltage electrode and pressure. Predictions from two-dimensional modeling of the propagation of a single FIW correlated well with the experimental trends in electron density profiles and wave velocity. Results from the model show that the maximum ionization rate occurs in the wavefront, and the discharge continues to propagate forward after the removal of high voltage from the powered electrode due to the potential energy stored in the space charge. As the pressure is varied, the radial distribution of the ionization rate is shaped by changes in the electron mean free path, and subsequent localized electric field enhancement at the walls or on the centerline of the discharge.

  3. Global characteristics of the upper transition height derived from the topside Alouette/ISIS topside sounder electron density profiles, the Formosat-3/COSMIC density profiles and the IRI ion composition model

    NASA Astrophysics Data System (ADS)

    Truhlik, Vladimir; Triskova, Ludmila; Benson, Robert; Bilitza, Dieter; Chu, Philip; Richards, Phil G.; Wang, Yongli

    The upper transition height (Ht) (the altitude of the transition from heavy atomic ions to light ions or in the simplest form the transition from O+ to H+) is an important parameter, representing the boundary between the ionosphere and the plasmasphere. Ht is very sensitive to various geophysical parameters, like solar and magnetic activity and strongly depends on latitude and local time. There were numerous studies of this parameter in past decades. In spite of these efforts, no model satisfactorily represents this parameter so far. Moreover, surprising evidence of very low transition heights during the last prolonged solar minimum, of a level never obtained before, have been reported. We investigate the upper transition height on the global scale. We made progress in processing large data sets of Ht deduced from the Alouette/ISIS topside sounder and from the Formosat-3/COSMIC vertical electron-density profiles Ne(h) using the theoretical Global Plasma Ionosphere Density (GPID) model (Webb and Essex, 2004) and a revised non-linear function describing the scale height vs. altitude (Titheridge, 1976) to fit the vertical density profiles to the observed profiles and to determine the upper transition height. Since both methods require the plasma temperatures and their gradients as input, these are calculated using the IRI2012 model. Both methods are verified using a large amount of electron and ion density profiles simulated by the FLIP theoretical model and their accuracy is discussed. We compare the results from Alouette/ISIS and Formosat-3/COSMIC and present a global distribution of the calculated Ht and its dependence on geophysical parameters. Finally we compare it with Ht calculated using the IRI ion composition model. Titheridge, J.E., 1976. Ion Transition Heights from Topside Electron-Density Profiles. Planetary and Space Science 24 (3), 229-245. Webb, P.A., Essex, E.A., 2004. A dynamic global model of the plasmasphere. Journal of Atmospheric and Solar

  4. A Literature Survey on Inverse Scattering for Electron Density Profile Determination. Volume II.

    DTIC Science & Technology

    1981-09-24

    multiple frequency measurements of the absorption of cosmic radio noise. Two methods of profile , determination are used. The first method uses both the...IN THE 6.3 MU WATER-VAPOUR ABSORPTION SAND. AS THE INITIAL DATA THE CALCULATED VALUES OF THE OUTGOING RADIATION ARE USED. SOME EXAMPLES AND ACCURACY...DETERMINATION; ATMOSPHERIC MOISTURE CONTENT; SPECTRAL COMPOSITION DATA: 6.3 MICRON H/SUB 2/0 VAPOUR ABSORPTION BAND Sectfon Clais Codes: A9340 13 Unified Class

  5. Electron density profiles over the Southern Ocean from oblique incidence ionograms

    NASA Astrophysics Data System (ADS)

    Rash, J. P. S.; Gledhill, J. A.

    1984-10-01

    This paper presents a first attempt to use oblique incidence ionograms over the 4500 km path from Sanae, Antarctica, to Grahamstown, South Africa, to deduce information about the ionosphere in the intervening regions. It is shown that existing methods for the reduction of oblique incidence ionograms to N(h) profiles give reasonable results even over the two-hop path involved. By comparison with vertical incidence ionograms made from a research ship below the reflection regions it is shown that the maximum observed frequency is normally limited by conditions at the southernmost reflection point, though this may be modified by ionospheric tilts, sunrise and sunset.

  6. A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    NASA Technical Reports Server (NTRS)

    Wang, Yongli; Benson, Robert F.

    2011-01-01

    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness

  7. Improving the Automatic Inversion of Digital Alouette/ISIS Ionogram Reflection Traces into Topside Electron Density Profiles

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Truhlik, Vladimir; Huang, Xueqin; Wang, Yongli; Bilitza, Dieter

    2012-01-01

    The topside sounders of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. The resulting ionograms were displayed on 35 mm film for analysis by visual inspection. Each of these satellites, launched between 1962 and 1971, produced data for 10 to 20 years. A number of the original telemetry tapes from this large data set have been converted directly into digital records. Software, known as the Topside Ionogram Scalar With True-Height (TOPIST) algorithm, has been produced and used for the automatic inversion of the ionogram reflection traces on more than 100,000 ISIS-2 digital topside ionograms into topside vertical electron density profiles Ne(h). Here we present some topside ionospheric solar cycle variations deduced from the TOPIST database to illustrate the scientific benefit of improving and expanding the topside ionospheric Ne(h) database. The profile improvements will be based on improvements in the TOPIST software motivated by direct comparisons between TOPIST profiles and profiles produced by manual scaling in the early days of the ISIS program. The database expansion will be based on new software designed to overcome limitations in the original digital topside ionogram database caused by difficulties encountered during the analog-to-digital conversion process in the detection of the ionogram frame sync pulse and/or the frequency markers. This improved and expanded TOPIST topside Ne(h) database will greatly enhance investigations into both short- and long-term ionospheric changes, e.g., the observed topside ionospheric responses to magnetic storms, induced by interplanetary magnetic clouds, and solar cycle variations, respectively.

  8. Development of frequency modulated continuous wave reflectometer for electron density profile measurement on the HL-2A tokamak

    SciTech Connect

    Zhong, W. L. Shi, Z. B.; Liu, Z. T.; Chen, W.; Jiang, M.; Li, J.; Cui, Z. Y.; Song, X. M.; Chen, L. Y.; Ding, X. T.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Huang, X. L.; Zou, X. L.

    2014-01-15

    The frequency modulated continuous wave reflectometer was developed for the first time on the HL-2A tokamak. The system utilizes a voltage controlled oscillator and an active multiplier for broadband coverage and detects as heterodyne mode. Three reflectometers have been installed and operated in extraordinary mode polarization on HL-2A to measure density profiles at low field side, covering the Q-band (33–50 GHz), V-band (50–75 GHz), and W-band (75–110 GHz). For density profile reconstruction from the phase shift of the probing wave, a corrected phase unwrapping method is introduced in this article. The effectiveness of the method is demonstrated. The density profile behavior of a fast plasma event is presented and it demonstrates the capability of the reflectometer. These diagnostics will be contributed to the routine density profile measurements and the plasma physics study on HL-2A.

  9. Improving the Automatic Inversion of Digital ISIS-2 Ionogram Reflection Traces into Topside Vertical Electron-Density Profiles

    NASA Technical Reports Server (NTRS)

    Benson, R. F.; Truhlik, V.; Huang, X.; Wang, Y.; Bilitza, D.

    2011-01-01

    The topside-sounders on the four satellites of the International Satellites for Ionospheric Studies (ISIS) program were designed as analog systems. The resulting ionograms were displayed on 35-mm film for analysis by visual inspection. Each of these satellites, launched between 1962 and 1971, produced data for 10 to 20 years. A number of the original telemetry tapes from this large data set have been converted directly into digital records. Software, known as the TOPside Ionogram Scalar with True-height (TOPIST) algorithm has been produced that enables the automatic inversion of ISIS-2 ionogram reflection traces into topside vertical electron-density profiles Ne(h). More than million digital Alouette/ISIS topside ionograms have been produced and over 300,000 are from ISIS 2. Many of these ISIS-2 ionograms correspond to a passive mode of operation for the detection of natural radio emissions and thus do not contain ionospheric reflection traces. TOPIST, however, is not able to produce Ne(h) profiles from all of the ISIS-2 ionograms with reflection traces because some of them did not contain frequency information. This information was missing due to difficulties encountered during the analog-to-digital conversion process in the detection of the ionogram frame-sync pulse and/or the frequency markers. Of the many digital topside ionograms that TOPIST was able to process, over 200 were found where direct comparisons could be made with Ne(h) profiles that were produced by manual scaling in the early days of the ISIS program. While many of these comparisons indicated excellent agreement (<10% average difference over the entire profile) there were also many cases with large differences (more than a factor of two). Here we will report on two approaches to improve the automatic inversion process: (1) improve the quality of the digital ionogram database by remedying the missing frequency-information problem when possible, and (2) using the above-mentioned comparisons as

  10. Visualization of electronic density

    DOE PAGES

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; ...

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  11. Spatial profiles of electron density, electron temperature, average ionic charge, and EUV emission of laser-produced Sn plasmas for EUV lithography

    NASA Astrophysics Data System (ADS)

    Sato, Yuta; Tomita, Kentaro; Tsukiyama, Syoichi; Eguchi, Toshiaki; Uchino, Kiichiro; Kouge, Kouichiro; Tomuro, Hiroaki; Yanagida, Tatsuya; Wada, Yasunori; Kunishima, Masahito; Kodama, Takeshi; Mizoguchi, Hakaru

    2017-03-01

    Spatial profiles of the electron density (n e), electron temperature (T e), and average ionic charge (Z) of laser-produced Sn plasmas for EUV lithography, whose conversion efficiency (CE) is sufficiently high for practical use, were measured using a collective Thomson scattering (TS) technique. For plasma production, Sn droplets of 26 µm diameter were used as a fuel. First, a picosecond-pulsed laser was used to expand a Sn target. Next, a CO2 laser was used to generate plasmas. By changing the injection timing of the picosecond and CO2 lasers, three different types of plasmas were generated. The CEs of the three types of plasmas differed, and ranged from 2.8 to 4.0%. Regarding the different plasma conditions, the spatial profiles of n e, T e, and Z clearly differed. However, under all plasma conditions, intense EUV was only observed at a sufficiently high T e (> 25 eV) and in an adequate n e range [1024–(2 × 1025) m‑3]. These plasma parameters lie in the efficient-EUV light source range, as predicted by simulations.

  12. User's Guide: An Enhanced Modified Faraday Cup for the Profiling of the Power Density Distribution in Electron Beams

    SciTech Connect

    Elmer, J W; Teruya, A T; Palmer, T A

    2002-06-01

    This handbook describes the assembly and operation of an enhanced Modified Faraday Cup (MFC) diagnostic device for measuring the power density distribution of high power electron beams used for welding. The most recent version of this diagnostic device, [1] Version 2.0, contains modifications to the hardware components of previous MFC designs.[2] These modifications allow for more complete capture of the electrons and better electrical grounding, thus improving the quality of the acquired data and enabling a more accurate computed tomographic (CT) reconstruction [3,4] of the power density distribution of the electron beam to be performed. [ 5-9

  13. Initial measurements of plasma current and electron density profiles using a polarimeter/interferometer (POINT) for long pulse operation in EAST (invited).

    PubMed

    Liu, H Q; Qian, J P; Jie, Y X; Ding, W X; Brower, D L; Zou, Z Y; Li, W M; Lian, H; Wang, S X; Yang, Y; Zeng, L; Lan, T; Yao, Y; Hu, L Q; Zhang, X D; Wan, B N

    2016-11-01

    A double-pass, radially viewing, far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for diagnosing the plasma current and electron density profiles in the Experimental Advanced Superconducting Tokamak (EAST). POINT has been operated routinely during the most recent experimental campaign and provides continuous 11 chord line-integrated Faraday effect and density measurement throughout the entire plasma discharge for all heating schemes and all plasma conditions (including ITER relevant scenario development). Reliability of both the polarimetric and interferometric measurements is demonstrated in 25 s plasmas with H-mode and 102 s long-pulse discharges. Current density, safety factor (q), and electron density profiles are reconstructed using equilibrium fitting code (EFIT) with POINT constraints for the plasma core.

  14. Initial measurements of plasma current and electron density profiles using a polarimeter/interferometer (POINT) for long pulse operation in EAST (invited)

    NASA Astrophysics Data System (ADS)

    Liu, H. Q.; Qian, J. P.; Jie, Y. X.; Ding, W. X.; Brower, D. L.; Zou, Z. Y.; Li, W. M.; Lian, H.; Wang, S. X.; Yang, Y.; Zeng, L.; Lan, T.; Yao, Y.; Hu, L. Q.; Zhang, X. D.; Wan, B. N.

    2016-11-01

    A double-pass, radially viewing, far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique has been implemented for diagnosing the plasma current and electron density profiles in the Experimental Advanced Superconducting Tokamak (EAST). POINT has been operated routinely during the most recent experimental campaign and provides continuous 11 chord line-integrated Faraday effect and density measurement throughout the entire plasma discharge for all heating schemes and all plasma conditions (including ITER relevant scenario development). Reliability of both the polarimetric and interferometric measurements is demonstrated in 25 s plasmas with H-mode and 102 s long-pulse discharges. Current density, safety factor (q), and electron density profiles are reconstructed using equilibrium fitting code (EFIT) with POINT constraints for the plasma core.

  15. Pseudopotentials from electron density

    NASA Astrophysics Data System (ADS)

    Nagy, Á.; Andrejkovics, I.

    1996-05-01

    A method is introduced that allows the construction of pseudopotentials in the density-functional theory. This method is based on a procedure worked out by one of the authors [J. Phys. B 26, 43 (1993); Philos. Mag. B 69, 779 (1994)] for determining Kohn-Sham potentials, one-electron orbitals, and energies from the electron density. The Hartree-Fock densities of Bunge, Barrientos, and Bunge [At. Data Nucl. Data Tables 53, 114 (1993)] are used to obtain the Kohn-Sham potentials of the Li, Na, and K atoms, and then Phillips-Kleinman-type [Phys. Rev. 116, 287 (1959); 118, 1153 (1960)] pseudopotentials are calculated. The arbitrariness of the pseudo-orbital is removed by minimization of the kinetic energy.

  16. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz

    2015-04-01

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ2 value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ2 value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.

  17. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    SciTech Connect

    Yusof, Mohd Fahmi Mohd Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz; Bauk, Sabar; Hashim, Rokiah

    2015-04-29

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ{sup 2} value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ{sup 2} value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.

  18. Spatial density profile of electrons near the LaAlO{sub 3}/SrTiO{sub 3} heterointerface revealed by time-resolved photoluminescence spectroscopy

    SciTech Connect

    Yamada, Yasuhiro Kanemitsu, Yoshihiko; Sato, Hiroki K.; Hikita, Yasuyuki; Hwang, Harold Y.

    2014-04-14

    The depth profile of the electron density near the LaAlO{sub 3}/SrTiO{sub 3} heterointerface has been studied by means of time-resolved photoluminescence (PL) spectroscopy. A broad blue PL band is observed at 2.9 eV, originating from the two-carrier radiative recombination of interface-induced electrons and photoexcited holes. The PL lifetime of LaAlO{sub 3}/SrTiO{sub 3} heterointerface is dominated by the three-carrier Auger recombination of electrons and holes and is sensitive to electron density. We tuned the probing depth by changing the excitation photon energy and evaluated the carrier-density profile using the relation between the carrier density and the PL lifetime. Our non-contact probe method based on PL spectroscopy indicates that the carriers are confined within several nanometers in depth near the LaAlO{sub 3}/SrTiO{sub 3} heterostructures.

  19. Estimate of a D region ionospheric electron density profile from MF radio wave observations by the S-310-37 rocket

    NASA Astrophysics Data System (ADS)

    Ashihara, Y.; Ishisaka, K.; Miyake, T.

    2016-01-01

    The S-310-37 rocket, launched at 11:20 (JST) on 16 January 2007, was equipped with a radio receiver to observe the medium-frequency (MF) radio wave propagation characteristics in the ionosphere. The radio receiver measured the intensity and the waveform of the radio wave at 873 kHz from the NHK Kumamoto broadcasting station. The polarized mode waves' intensity characteristics were obtained by analyzing the observed waveform. In this study, the S-310-37 rocket-observed polarized mode waves' propagation characteristics are analyzed in order to estimate the electron density profile in the ionospheric D region. These observations become better measurement approach because the electron density profile in the ionospheric D region is difficult to be observed by other equipment such as a Langmuir probe. A Langmuir probe can measure in the ionospheric D region; however, the absolute values may be off by the influence of wake effects around the sounding rocket. It is demonstrated that the propagation characteristics of the polarized mode waves can be successfully used to derive the electron density profile in the ionospheric D region.

  20. Electron Bernstein wave electron temperature profile diagnostic

    SciTech Connect

    G. Taylor; P. Efthimion; B. Jones; T. Munsat; J. Spaleta; J. Hosea; R. Kaita; R. Majeski; J. Menard

    2000-07-20

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. where the plasma frequency is much greater than the electron cyclotron frequency, as in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition. Electron Bernstein waves (EBWs) are electrostatic waves that can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large perpendicular wavenumber. This paper reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub o} {approximately} 2 kG, {approximately}10{sup 13} cm{sup {minus}3} and T{sub e} {approx} to 10 -- 200 eV. Results are presented for electromagnetic measurements of EBW emission, mode-converted near the plasma edge. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode converted EBW radiation temperature was found to be less than or equal to T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe and a 140 GHz interferometer were employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance, where the mode conversion of the EBWs is expected to occur. Initial results suggest EBW emission and EBW heating are viable concepts for overdense plasmas.

  1. Pulsed HF radiowave absorption measurements at 2.1 MHZ. over Delhi under quiet and solar flare conditions and related electron density height profiles

    NASA Astrophysics Data System (ADS)

    Balachandra Swamy, A. C.

    EXTENDED ABSTRACT Pulsed HF radiowave absorption measurements at 2.1 MHZ. over Delhi under quiet and solar flare conditions and related electron density height profiles A.C.Balachandra swmay & Late C.S.G.K. Setty Absorption of radio waves in the ionosphere is of great practical importance for radio communication and navigation systems. The first attempt to measure the absolute magnitude of the radiowave absorption were made by appletion and Ratcliffe (1930) using the frequency change method for medium frequency waves reflected from the E-region. They concluded from their experiment that the main part of the attenuation occurred below the reflection level and named the absorption region, D-region of the ionosphere. One of the basic properties of the ionosphere is the absorption of high Frequency Radiowaves. HF radiowave absorption results mainly from collisions between electrons (which are set into forced oscillations by the electric field of the wave) and neutral air particles, the RF energy abstracted from the wave being converted into thermal energy. The radiowave absorption in the ionosphere depends on electron density and collision frequency. The most important absorbing regions are the D-region and the lower E-region (50-100 Km.) The regular diurnal variation of the electron density in this height range is caused mainly by the changes in the depth of penetration of solar XUV radiations with solar zenith angle under quiet solar conditions. In 1937 Dellinger J.H.identified fade outs in high frequency radio circuits as due to abnormal ionospheric absorption associated with solar flares. The onset of the fade out was usually rapid and the duration was typically tens of minutes like that of the visible flare, because of the sudden onset, the immediate effects of solar flares are known collectively as sudden Ionospheric Disturbances (STD). The phenomenon discovered by Dellinger is usually called a short Wave Fadeout(SWF). Since the SWF is due to abnormal absorption

  2. New Vary-Chap Profile of the Topside Ionosphere Electron Density Distribution for use with the IRI Model and the GIRO Real-Time Data

    NASA Technical Reports Server (NTRS)

    Nsumei, Patrick; Reinisch, Bodo W.; Huang, Xueqin; Bilitza, Dieter

    2012-01-01

    A new Vary-Chap function is introduced for the empirical modeling of the electron density N(h) profile in the topside ionosphere that uses a shape function S(h) in the generalized Chapman function. The Vary-Chap profile extends the bottomside profile that is specified by the IRI model or measured by the Global Ionospheric Radio Observatory (GIRO) to the altitude of the ISIS-2 satellite. Some 80,000 topside profiles, measured by the topside sounder on the ISIS-2 satellite were analyzed, and the shape function S(h) was calculated for each profile. A parameterized function S*(h), composed of two sub-functions S1(h) and S2(h), is fitted to the measured S(h) profile using three free parameters. At altitudes just above the F2 layer peak height hmF2, the shape function S1 controls S(h), and at greater altitudes S2 controls S(h). The height of the intersection of S1 and S2 is defined as the transition height h(sub T) indicating the transition from an O(+) to an H(+)-dominated profile shape. The observed transition heights range from approx.500 km to 800 km.

  3. Relating high-Latitude Topside Ionospheric Vertical Electron-Density-Profile changes to Solar-Wind Parameters During Large Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Benson, R. F.; Fainberg, J.; Osherovich, V.; Truhlik, V.; Wang, Y.; Bilitza, D.; Lam, H.

    2012-12-01

    Ten large magnetic storms (Dst < -100 nT) where high-latitude topside electron-density profiles Ne(h) could be obtained from Alouette/ISIS topside-sounder data, and where solar-wind data were available, were investigated. The former were obtained from the NASA Space Physics Data Facility (SPDF) and the latter were obtained from the NASA OMNIWeb database. Large Ne(h) changes were observed during the storms in all cases. In some cases large topside Ne(h) gradients were observed between adjacent ionograms (separated by ~ ½ minute) and even within a single ionogram (profiles separated by < 10 s). The changes in the winter profiles have a clear relationship with the solar-wind velocity Vsw in that the topside Ne(h) increases with increasing Vsw during nighttime and decreases with increasing Vsw during daytime.

  4. X-ray scattering study of pike olfactory nerve: intensity of the axonal membrane, solution of the phase problem and electron density profile.

    PubMed

    Luzzati, Vittorio; Vachette, Patrice; Benoit, Evelyne; Charpentier, Gilles

    2004-10-08

    Synchrotron radiation X-ray scattering experiments were performed on unmyelinated pike olfactory nerves. The difference between the meridional and the equatorial traces of the 2-D spectra yielded the 1-D equatorial intensity of the macromolecular components oriented with respect to the nerve: axonal membranes, microtubules and other cytoskeletal filaments. These 1-D spectra display a diffuse band typical of bilayer membranes and, at small s, a few sharper bands reminiscent of microtubules. All the spectra merge at large s. The intensity of the axonal membrane was determined via a noise analysis of the nerve-dependent spectra, involving also the notion that the thickness of the membrane is finite. The shape of the intensity function indicated that the electron density profile is not centrosymmetric. The knowledge of intensity and thickness paved the way to the electron density profile via an ab initio solution of the phase problem. An iterative procedure was adopted: (i) choose the lattice D of a 1-D pseudo crystal, interpolate the intensity at the points sh = h/D, adopt an arbitrary set of initial phases and compute the profile; (ii) determine the phases corresponding to this profile truncated by the thickness D/2; (iii) repeat the operation with the updated phases until a stable result is obtained. This iterative procedure was carried out for different D-values, starting in each case from randomly generated phases: stable results were obtained in less than 10,000 iterations. Most importantly, for D in the vicinity of 200 A, the overwhelming majority of the profiles were congruent with each other. These profiles were strongly asymmetric and otherwise typical of biological membranes.

  5. Measurements of electron density and temperature profiles in plasma produced by Nike KrF laser for laser plasma instability research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Karasik, M.; Chan, L. Y.

    2015-08-01

    A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (˜1 ns FWHM) with the intensity of 1.1 × 1015 W/cm2. The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 1021 cm-3 with the density scale length of 120 μm along the plasma symmetry axis. The resulting ne and Te profiles are verified to be self-consistent with the measured quantities of the refracted probe light.

  6. Estimation of Electron Density profile Using the Propagation Characteristics of Radio Waves by S-520-29 Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Itaya, K.; Ishisaka, K.; Ashihara, Y.; Abe, T.; Kumamoto, A.; Kurihara, J.

    2015-12-01

    S-520-29 sounding rocket experiment was carried out at Uchinoura Space Center (USC) at 19:10 JST on 17 August, 2014. The purpose of this sounding rocket experiments is observation of sporadic E layer that appears in the lower ionosphere at near 100km. Three methods were used in order to observe the sporadic E layer. The first method is an optical method that observe the light of metal ion emitted by the resonance scattering in sporadic E layer using the imager. The second method is observation of characteristic of radio wave propagation that the LF/MF band radio waves transmitted from the ground. The third method is measuring the electron density in the vicinity of sounding rocket using the fast Langmuir probe and the impedance probe. We analyze the propagation characteristics of radio wave in sporadic E layer appeared from the results of the second method observation. This rocket was equipped with LF/MF band radio receiver for observe the LF/MF band radio waves in rocket flight. Antenna of LF/MF band radio receiver is composed of three axis loop antenna. LF/MF band radio receiver receives three radio waves of 873kHz (JOGB), 666kHz (JOBK), 60kHz (JJY) from the ground. 873kHz and 60kHz radio waves are transmitting from north side, and 666kHz radio waves are transmitting from the east side to the trajectory of the rocket. In the sounding rocket experiment, LF/MF band radio receiver was working properly. We have completed the observation of radio wave intensity. We analyze the observation results using a Doppler shift calculations by frequency analysis. Radio waves received by the sounding rocket include the influences of Doppler shift by polarization and the direction of rocket spin and the magnetic field of the Earth. So received radio waves that are separate into characteristics waves using frequency analysis. Then we calculate the Doppler shift from the separated data. As a result, 873kHz, 666kHz radio waves are reflected by the ionosphere. 60kHz wave was able to

  7. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Benson, R. F.; Fainberg, J.; Osherovich, V. A.; Truhlik, V.; Wang, Y.; Arbacher, R. T.

    2011-12-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDAWeb). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  8. Changes in the High-Latitude Topside Ionospheric Vertical Electron-Density Profiles in Response to Solar-Wind Perturbations During Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir; Truhlik, Vladimir; Wang, Yongli; Arbacher, Becca

    2011-01-01

    The latest results from an investigation to establish links between solar-wind and topside-ionospheric parameters will be presented including a case where high-latitude topside electron-density Ne(h) profiles indicated dramatic rapid changes in the scale height during the main phase of a large magnetic storm (Dst < -200 nT). These scale-height changes suggest a large heat input to the topside ionosphere at this time. The topside profiles were derived from ISIS-1 digital ionograms obtained from the NASA Space Physics Data Facility (SPDF) Coordinated Data Analysis Web (CDA Web). Solar-wind data obtained from the NASA OMNIWeb database indicated that the magnetic storm was due to a magnetic cloud. This event is one of several large magnetic storms being investigated during the interval from 1965 to 1984 when both solar-wind and digital topside ionograms, from either Alouette-2, ISIS-1, or ISIS-2, are potentially available.

  9. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    SciTech Connect

    Fuller, J.; Gibson, S. E.

    2009-08-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R{sub sun} and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R{sub sun} than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  10. ?Linear Gas Jet with Tailored Density Profile"

    SciTech Connect

    KRISHNAN, Mahadevan

    2012-12-10

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  11. Variability of the bottomside (B0, B1) profile parameters of ionospheric electron density over the lower mid-latitude Cyprus and comparisons with IRI-2012 model

    NASA Astrophysics Data System (ADS)

    Panda, Sampad Kumar; Haralambous, Haris; Mostafa, Md Golam

    2016-07-01

    The present study investigates the variations of the bottomside ionospheric electron density profile thickness (B0) and shape (B1) parameters, deduced from the manually scaled digisonde (DPS-4D) ionograms at the lower mid-latitude Cyprus (Geographic 35°N, 33°E) covering the period 2009-2014. The monthly median hourly values of these parameters during different seasons and solar activity conditions are compared with the International Reference Ionosphere model (IRI-2012) estimations using three different options namely: Bil-2000, Gul-1987, and ABT-2009. To ensure the quiet time profile, the ionograms of the geomagnetically disturbed periods are discarded from the datasets and the storm model in the IRI is intentionally turned off. The statistical studies reveal considerable discrepancies in the observed B0 parameters from the model simulations, though the divergences are minimal around the daytime and during the summer solstice seasons. Nevertheless, B0 with the Gul-1987 option apparently shows closer daytime value during the low solar active summer, whereas the ABT-2009 option manifested relatively better agreement during the high solar active summer months. The characteristic morning, evening, as well as nighttime departure in the model derived B0 parameters are conspicuous in all the seasons in spite of unnoticed perturbations in the B1, suggesting that further improvement in the existing model database is essential with additional in-situ experimental data across the lower mid-latitude region. The important extracts from this study may support in the international efforts of determining the best set of profile parameters for the climatological representation of the ionospheric electron density variation across the globe.

  12. A Comparison of Electron Density Profiles Derived from the Low Resolution Airglow and Aurora Spectrograph (LORAAS) Ultraviolet Measurements: Resolution of the 911 Å Conundrum

    NASA Astrophysics Data System (ADS)

    Dymond, K.; Budzien, S. A.; Coker, C.; Nicholas, A. C.; Stephan, A. W.; Bishop, R. L.; Christensen, A. B.; Hecht, J. H.; Straus, P. R.

    2010-12-01

    Previous measurements of the 911 Å emission made by sounding rockets, at altitude less than 320 km, indicated that the emission was either very weak or non-existent. Newer measurements made by the Remote Atmospheric and Ionospheric Detection System (RAIDS) currently in operation aboard the International Space Station, at an altitude of 340 km, show the same behavior. Yet, satellite-based measurements made at altitudes above 800 km showed the emission to be present and strong enough to be accurately measured and inverted; those inversions were validated against ionosonde measurements and demonstrated the possibility of using the 911 Å emission for daytime ionospheric sensing. So the conundrum is: why do measurements made at lower altitudes (< 350 km) indicate weak or non-existent emission while satellite measurements at higher altitudes (>800 km) show the presence of the emission at the expected level? We present our measurements of the daytime and nighttime electron density derived by analysis of the O I 1356 and O I 911 Å altitude profiles measured by the Low Resolution Airglow and Aurora Spectrograph (LORAAS) instrument launched aboard the Advanced Research and Global Observation Satellite (ARGOS), which operated between mid-May 1999 and April 2002. We compare the retrieved electron density profiles inferred from the limb intensities of the ultraviolet emissions to peak heights and peak densities measured during ionosonde overflights. We show that the 911 Å emission is strongly affected by the height of the ionosphere and show that this is consistent with absorption of the 911 Å by atomic oxygen. Model results are presented showing that the RAIDS and sounding rocket measurements can be explained by this absorption.

  13. Study of electronic characteristics of heterojunction with intrinsic thin-layer devices and defect density profile of nanocrystalline silicon germanium devices

    NASA Astrophysics Data System (ADS)

    Mulder, Watson

    Heterojunction with Intrinsic Thin-layer (HIT) solar cells are an important photovoltaic technology, recently reaching record power conversion efficiencies. HIT cells hold advantages over the conventional crystalline Si solar cells, such as their fabrication at lower temperatures and their shorter fabrication time. It is important to understand the electronic characteristics and transport properties of HIT cells to continue to improve their efficiencies. The fundamental measurements of a HIT solar cell with an innovative n+/p/p+ structure are presented. We also report on a series of these HIT cells fabricated on wafers with different doping concentrations, observing the relationship between doping concentration and characteristics such as open-circuit voltage and diffusion length. Nanocrystalline Silicon-Germanium (nc-SiGe) is a useful material for photovoltaic devices and photodetectors. The material features good absorption extending to the infrared region even in thin layers. Its bandgap can be adjusted between that of Si (˜1.1 eV) and Ge (˜0.7 eV) by varying the alloy composition ratio during deposition. However, there has been very little previous work to measure and understand the defect density spectrum of nc-SiGe. Defects are responsible for controlling the recombination and thus the performance of solar cell devices. Capacitance-Frequency measurements at various temperatures are used in order to estimate the trap density profile within the bandgap of nc-SiGe.

  14. Density profile of pyrolitic lower mantle

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Hirose, K.; Ohishi, Y.

    2010-12-01

    Density profile of pyrolite at lower mantle high-pressure (P) and -temperature (T) conditions was investigated by using laser-heated diamond-anvil cell up to 117 GPa and 2800 K. The density was determined from chemical composition and unit-cell volume of each constituent mineral (MgSiO3-rich perovskite, ferropericlase and CaSiO3-rich perovskite). The chemical compositions of coexisting phases were analyzed by transmission electron microscope, and their volumes were obtained by in-situ X-ray diffraction measurements. To avoid extensive chemical segregation during laser-heating, sample was coated by gold that worked as a laser absorber (Sinmyo and Hirose 2010 PEPI). Results of chemical analyses show that Mg-Fe (total Fe) partitioning coefficient between MgSiO3-rich perovskite and ferropericlase [K* = (Fe*/Mg)Pv/(Fe*/Mg)Fp] is about 0.6, slightly higher than the value previously reported in the pyrolitic bulk composition (Murakami et al. 2005 GRL). The lower K* value in the previous study may be attributed to the chemical heterogeneity in the sample induced by strong temperature gradient during laser heating. The calculated density profile of pyrolite is indeed in good agreement with the PREM model within experimental errors, in contrast with the mismatch reported by the previous study (Ricolleau et al. 2009 GRL). Our results support the lower mantle has pyrolitic bulk composition, and thus it is not necessary to suppose the chemically stratification in the lower mantle.

  15. Saturn's ionosphere - Inferred electron densities

    NASA Astrophysics Data System (ADS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1984-04-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densities measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings. Previously announced in STAR as N84-17102

  16. Saturn's ionosphere: Inferred electron densities

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1983-01-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densitis measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings.

  17. Polar cap electron densities from DE 1 plasma wave observations

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Gurnett, D. A.; Shawhan, S. D.

    1983-01-01

    Electric-field-spectum measurements from the plasma-wave instrument on the Dynamics Explorer 1 spacecraft are used to study the local electron density at high altitudes in the northern polar-cap region. The electron density is determined from the upper cutoff of whistler-mode radiation at the electron plasma frequency. Median density values over the polar cap at L greater than 10 are found to vary from 35.2 + or - 8.5 cu cm at 2.1 earth radii to 0.99 + or - 0.51 cu cm at 4.66 earth radii. The steady-state radial-outflow model is examined for consistency with the observed density profile. A power-law fit to the radial variation of the electron density yields an exponent of - 3.85 + or - 0.32, which for the radial-outflow model implies a flow velocity increasing nearly linearly with incresing radial distance. Comparison of the observed electron densities with theoretical polar-wind densities yields consistent results up to 2.8 earth radii. A comparison of the observed electron densities with low-altitude density profiles from the Alouette II and ISIS 1 spacecraft illustrates transitions in the slope of the profile at 1.16 earth radii and between 1.55 and 2.0 earth radii. The changes in the density profile suggest that changes occur in the basic radial-transport processes at these altitudes.

  18. Integrated data analysis at TJ-II: The density profile

    SciTech Connect

    Milligen, B. Ph. van; Estrada, T.; Ascasibar, E.; Tafalla, D.; Lopez-Bruna, D.; Fraguas, A. Lopez; Jimenez, J. A.; Garcia-Cortes, I.; Dinklage, A.; Fischer, R.

    2011-07-15

    An integrated data analysis system based on Bayesian inference has been developed for the TJ-II stellarator. It reconstructs the electron density profile at a single time point, using data from interferometry, reflectometry, Thomson scattering, and the Helium beam, while providing a detailed error analysis. In this work, we present a novel analysis of the ambiguity inherent in profile reconstruction from reflectometry and show how the integrated data analysis approach elegantly resolves it. Several examples of the application of the technique are provided, in both low-density discharges with and without electrode biasing, and in high-density discharges with an (L-H) confinement transition.

  19. Nuclear cusps in the HSF electron density

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy; Challacombe, Matt

    1994-07-01

    The Hiller-Sucher-Feinberg (HSF) identity provides an alternative definition for the electron density. The behavior of the HSF electron density in the vicinity of nuclei is analyzed. It is shown that the HSF density possesses nuclear cusps at which its gradient is discontinuous. The discontinuities in the HSF density gradient satisfy a simple equation analogous to Kato's electron-nuclear cusp condition. However, in contrast to Kato's condition, the electron-nuclear cusp condition is satisfied by HSF densities originating from both exact and approximate electronic wavefunctions. Several numerical examples are presented to illustrate this property of the HSF electron density.

  20. Ionospheric E-region electron density and neutral atmosphere variations

    NASA Technical Reports Server (NTRS)

    Stick, T. L.

    1976-01-01

    Electron density deviations from a basic variation with the solar zenith angle were investigated. A model study was conducted in which the effects of changes in neutral and relative densities of atomic and molecular oxygen on calculated electron densities were compared with incoherent scatter measurements in the height range 100-117 km at Arecibo, Puerto Rico. The feasibility of determining tides in the neutral atmosphere from electron density profiles was studied. It was determined that variations in phase between the density and temperature variation and the comparable magnitudes of their components make it appear improbable that the useful information on tidal modes can be obtained in this way.

  1. Measurements of Laser Plasma Instability (LPI) and Electron Density/Temperature Profiles in Plasmas Produced by the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2016-10-01

    We will present results of simultaneous measurements of LPI-driven light scattering and density/temperature profiles in CH plasmas produced by the Nike krypton fluoride laser (λ = 248 nm). The primary diagnostics for the LPI measurement are time-resolved spectrometers with absolute intensity calibration in spectral ranges relevant to the optical detection of stimulated Raman scattering or two plasmon decay. The spectrometers are capable of monitoring signal intensity relative to thermal background radiation from plasma providing a useful way to analyze LPI initiation. For further understanding of LPI processes, the recently implemented grid image refractometer (Nike-GIR)a is used to measure the coronal plasma profiles. In this experiment, Nike-GIR is equipped with a 5th harmonic probe laser (λ = 213 nm) in attempt to probe into a high density region over the previous peak density with λ = 263 nm probe light ( 4 ×1021 cm-3). The LPI behaviors will be discussed with the measured data sets. Work supported by DoE/NNSA.

  2. Momentum-space properties from coordinate-space electron density

    SciTech Connect

    Harbola, Manoj K.; Zope, Rajendra R.; Kshirsagar, Anjali; Pathak, Rajeev K.

    2005-05-22

    Electron density and electron momentum density, while independently tractable experimentally, bear no direct connection without going through the many-electron wave function. However, invoking a variant of the constrained-search formulation of density-functional theory, we develop a general scheme (valid for arbitrary external potentials) yielding decent momentum-space properties, starting exclusively from the coordinate-space electron density. A numerical illustration of the scheme is provided for the closed-shell atomic systems He, Be, and Ne in their ground state and for 1s{sup 1} 2s{sup 1} singlet electronic excited state for helium by calculating the Compton profiles and the expectation values derived from given coordinate-space electron densities.

  3. Electron (charge) density studies of cellulose models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introductory material first describes electron density approaches and demonstrates visualization of electron lone pairs and bonding as concentrations of electron density. Then it focuses on the application of Bader’s Quantum Theory of Atoms-in-Molecules (AIM) to cellulose models. The purpose of the ...

  4. LPWA using supersonic gas jet with tailored density profile

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  5. Predicting temperature and density profiles in tokamaks

    SciTech Connect

    Bateman, G.; Kritz, A.H.; Kinsey, J.E.; Redd, A.J.; Weiland, J.

    1998-05-01

    A fixed combination of theory-based transport models, called the Multi-Mode Model, is used in the BALDUR [C. E. Singer {ital et al.}, Comput. Phys. Commun. {bold 49}, 275 (1988)] transport simulation code to predict the temperature and density profiles in tokamaks. The choice of the Multi-Mode Model has been guided by the philosophy of using the best transport theories available for the various modes of turbulence that dominate in different parts of the plasma. The Multi-Mode model has been found to provide a better match to temperature and density profiles than any of the other theory-based models currently available. A description and partial derivation of the Multi-Mode Model is presented, together with three new examples of simulations of the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire {ital et al.}, Phys. Plasmas {bold 2}, 2176 (1995)]. The first simulation shows the strong effect of recycling on the ion temperature profile in TFTR supershot simulations. The second simulation explores the effect of a plasma current ramp{emdash}where the plasma energy content changes slowly on the energy confinement time scale. The third simulation shows that the Multi-Mode Model reproduces the experimentally measured profiles when tritium is used as the hydrogenic isotope in L-mode (low confinement mode) plasmas. {copyright} {ital 1998 American Institute of Physics.}

  6. Teaching Chemistry with Electron Density Models.

    ERIC Educational Resources Information Center

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-01-01

    Describes a method for teaching electronic structure and its relevance to chemical phenomena that relies on computer-generated three-dimensional models of electron density distributions. Discusses the quantum mechanical background needed and presents ways of using models of electronic ground states to teach electronic structure, bonding concepts,…

  7. Profiling compact toroid plasma density on CTIX with laser deflection

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel Joseph Erwin

    A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.

  8. Stationary density profiles in the Alcator C-mod tokamak

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Ernst, D.; Hughes, J.; Mumgaard, R.; Scott, S.; Shiraiwa, S.; Whyte, D.

    2012-12-01

    In the absence of an internal particle source, plasma turbulence will impose an intrinsic relationship between an inwards pinch and an outwards diffusion resulting in a stationary density profile. The Alcator C-mod tokamak utilizes RF heating and current drive so that fueling only occurs in the vicinity of the separatrix. Discharges that transition from L-mode to I-mode are seen to maintain a self-similar stationary density profile as measured by Thomson scattering. For discharges with negative magnetic shear, an observed rise of the safety factor in the vicinity of the magnetic axis appears to be accompanied by a decrease of electron density, qualitatively consistent with the theoretical expectations.

  9. Electron density measurements for plasma adaptive optics

    NASA Astrophysics Data System (ADS)

    Neiswander, Brian W.

    Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.

  10. Electron density studies of methyl cellobioside

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experimental X-ray diffraction crystallography determines the variations in electron density that result from the periodic array of atoms in a crystal. Normally, the positions and type of atom are determined from the electron density based on an approximation that the atoms are spherical. However, t...

  11. GHGRP Electronics Manufacturing Sector Industrial Profile

    EPA Pesticide Factsheets

    EPA's Greenhouse Gas Reporting Program periodically produces detailed profiles of the various industries that report under the program. The profiles available for download below contain detailed analyses for the Electronics Manufacturing industry.

  12. Analysis of the IMAGE RPI electron density data and CHAMP plasmasphere electron density reconstructions with focus on plasmasphere modelling

    NASA Astrophysics Data System (ADS)

    Gerzen, T.; Feltens, J.; Jakowski, N.; Galkin, I.; Reinisch, B.; Zandbergen, R.

    2016-09-01

    The electron density of the topside ionosphere and the plasmasphere contributes essentially to the overall Total Electron Content (TEC) budget affecting Global Navigation Satellite Systems (GNSS) signals. The plasmasphere can cause half or even more of the GNSS range error budget due to ionospheric propagation errors. This paper presents a comparative study of different plasmasphere and topside ionosphere data aiming at establishing an appropriate database for plasmasphere modelling. We analyze electron density profiles along the geomagnetic field lines derived from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite/Radio Plasma Imager (RPI) records of remote plasma sounding with radio waves. We compare these RPI profiles with 2D reconstructions of the topside ionosphere and plasmasphere electron density derived from GNSS based TEC measurements onboard the Challenging Minisatellite Payload (CHAMP) satellite. Most of the coincidences between IMAGE profiles and CHAMP reconstructions are detected in the region with L-shell between 2 and 5. In general the CHAMP reconstructed electron densities are below the IMAGE profile densities, with median of the CHAMP minus IMAGE residuals around -588 cm-3. Additionally, a comparison is made with electron densities derived from passive radio wave RPI measurements onboard the IMAGE satellite. Over the available 2001-2005 period of IMAGE measurements, the considered combined data from the active and passive RPI operations cover the region within a latitude range of ±60°N, all longitudes, and an L-shell ranging from 1.2 to 15. In the coincidence regions (mainly 2 ⩽ L ⩽ 4), we check the agreement between available active and passive RPI data. The comparison shows that the measurements are well correlated, with a median residual of ∼52 cm-3. The RMS and STD values of the relative residuals are around 22% and 21% respectively. In summary, the results encourage the application of IMAGE RPI data for

  13. Absolute electron density measurements in the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Baker, K. D.; Howlett, L. C.; Rao, N. B.; Ulwick, J. C.; Labelle, J.

    1985-01-01

    Accurate measurement of the electron density profile and its variations is crucial to further progress in understanding the physics of the disturbed equatorial ionosphere. To accomplish this, a plasma frequency probe was included in the payload complement of two rockets flown during the Condor rocket campaign conducted from Peru in March 1983. This paper presents density profiles of the disturbed equatorial ionosphere from a night-time flight in which spread-F conditions were present and from a day-time flight during strong electrojet conditions. Results from both flights are in excellent agreement with simultaneous radar data in that the regions of highly disturbed plasma coincide with the radar signatures. The spread-F rocket penetrated a topside depletion during both the upleg and downleg. The electrojet measurements showed a profile peaking at 1.3 x 10 to the 5th per cu cm at 106 km, with large scale fluctuations having amplitudes of roughly 10 percent seen only in the upward gradient in electron density. This is in agreement with plasma instability theory. It is further shown that simultaneous measurements by fixed-bias Langmuir probes, when normalized at a single point to the altitude profile of electron density, are inadequate to correctly parameterize the observed enhancements and depletions.

  14. Ionospheric density enhancement during relativistic electron precipitation

    NASA Technical Reports Server (NTRS)

    Foster, J. C.; Doupnik, J. R.; Stiles, G. S.

    1980-01-01

    The temporal evolution of the ionospheric density enhancement produced by a widespread relativistic electron precipitation (REP) has been observed with the Chatanika Radar. The REP was associated with a substorm particle energization event, and both the ionospheric absorption and density perturbation exhibited an approximately 90 min periodicity associated with the particles' longitudinal drift. A 80-keV characteristic energy for the precipitating electrons is deduced from ground-based and satellite data. At the maximum of the event, electrons deposited approximately 50 ergs/sq cm per sec in the ionosphere, producing a peak density of 500,000/cu cm at 89 km altitude. At that time the radar observed densities greater than 100,000/cu cm between 70 km and 110 km altitude and riometer absorption at 30 MHz was approximately 12 db.

  15. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  16. Gyrokinetic modelling of stationary electron and impurity profiles in tokamaks

    SciTech Connect

    Skyman, A. Tegnered, D. Nordman, H. Strand, P.

    2014-09-15

    Particle transport due to Ion Temperature Gradient (ITG)/Trapped Electron Mode (TEM) turbulence is investigated using the gyrokinetic code GENE. Both a reduced quasilinear treatment and nonlinear simulations are performed for typical tokamak parameters corresponding to ITG dominated turbulence. The gyrokinetic results are compared and contrasted with results from a computationally efficient fluid model. A selfconsistent treatment is used, where the stationary local profiles are calculated corresponding to zero particle flux simultaneously for electrons and trace impurities. The scaling of the stationary profiles with magnetic shear, safety factor, electron-to-ion temperature ratio, collisionality, toroidal sheared rotation, plasma β, triangularity, and elongation is investigated. In addition, the effect of different main ion mass on the zero flux condition is discussed. The electron density gradient can significantly affect the stationary impurity profile scaling. It is therefore expected that a selfconsistent treatment will yield results more comparable to experimental results for parameter scans where the stationary background density profile is sensitive. This is shown to be the case in scans over magnetic shear, collisionality, elongation, and temperature ratio, for which the simultaneous zero flux electron and impurity profiles are calculated. A slight asymmetry between hydrogen, deuterium, and tritium with respect to profile peaking is obtained, in particular, for scans in collisionality and temperature ratio.

  17. Density profiles of the exclusive queuing process

    NASA Astrophysics Data System (ADS)

    Arita, Chikashi; Schadschneider, Andreas

    2012-12-01

    The exclusive queuing process (EQP) incorporates the exclusion principle into classic queuing models. It is characterized by, in addition to the entrance probability α and exit probability β, a third parameter: the hopping probability p. The EQP can be interpreted as an exclusion process of variable system length. Its phase diagram in the parameter space (α,β) is divided into a convergent phase and a divergent phase by a critical line which consists of a curved part and a straight part. Here we extend previous studies of this phase diagram. We identify subphases in the divergent phase, which can be distinguished by means of the shape of the density profile, and determine the velocity of the system length growth. This is done for EQPs with different update rules (parallel, backward sequential and continuous time). We also investigate the dynamics of the system length and the number of customers on the critical line. They are diffusive or subdiffusive with non-universal exponents that also depend on the update rules.

  18. Determination of the Electron Cyclotron Current Drive Profile

    SciTech Connect

    Luce, T.C.; Petty, C.C.; Schuster, D.I.; Makowski, M.A.

    1999-11-01

    Evaluation of the profile of non-inductive current density driven by absorption of electron cyclotron waves (ECCD) using time evolution of the poloidal flux indicated a broader profile than predicted by theory. To determine the nature of this broadening, a 1-1/2 D transport calculation of current density evolution was used to generate the signals which the DIII-D motional Stark effect (MSE) diagnostic would measure in the event that the current density evolution followed the neoclassical Ohm's law with the theoretical ECCD profile. Comparison with the measured MSE data indicates the experimental data is consistent with the ECCD profile predicted by theory. The simulations yield a lower limit on the magnitude of the ECCD which is at or above the value found in Fokker-Planck calculations of the ECCD including quasilinear and parallel electric field effects.

  19. Electrons In The Low Density Solar Wind

    NASA Technical Reports Server (NTRS)

    Ogilvie, Keith W.; Desch, Michael; Fitzenreiter, Richard; Vondrak, Richard R. (Technical Monitor)

    2000-01-01

    The recent occurrence of an interval (May 9th to May 12th, 1999) of abnormally low density solar wind has drawn attention to such events. The SWE instrument on the Wind spacecraft observed nine similar events between launch (November 1994) and August 1999: one in 1997, three in 1998, and five in January-August 1999. No such events were observed in 1996, the year of solar minimum. This already suggests a strong dependence upon solar activity. In this paper we discuss observations of the electron strahl, a strong anisotropy in the solar wind electrons above 60 eV directed along the magnetic field and observed continuously during the periods of low density in 1998 and 1999. When the solar wind density was less than 2/cc, the angular width of the strahl was below 3.5 degrees and the temperature deduced from the slope of the electron strahl phase density (as a function of energy in the energy range 200 to 800 eV) was 100 to 150 eV, equivalent to a typical coronal electron temperature. Three examples of this phenomenon, observed on Feb. 20- 22, April 26-27 and May 9-12, 1999, are discussed to show their similarity to one another. These electron observations are interpreted to show that the strahl occurs as a result of the conservation of the first adiabatic invariant, combined with the lack of coulomb collisions as suggested by Fairfield and Scudder, 1985.

  20. Electronics. Occupational Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Occupational Competency Analysis Profile (OCAP) contains a competency list verified by expert workers and developed through a modified DACUM (Developing a Curriculum) involving business, industry, labor, and community agency representatives from Ohio. This OCAP identifies the occupational, academic, and employability skills (competencies)…

  1. New Data on the Topside Electron Density Distribution

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinisch, Bodo; Bilitza, Dieter; Benson, Robert F.

    2001-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from hmF2 to approx. 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms and most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350,000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The automatic topside ionogram scaler with true height algorithm TOPIST software developed for this task is successfully scaling approx.70 % of the ionograms. An 'editing process' is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle. The ISIS data restoration efforts are supported through NASA's Applied Systems and Information Research Program.

  2. Two-color terahertz interferometer based on the frequency-splitted orthogonal polarization modes of the water vapor laser and designed for measuring the electron density profile in the L-2M stellarator

    SciTech Connect

    Letunov, A. A.; Logvinenko, V. P.; Zav'yalov, V. V.

    2008-03-15

    An upgraded diagnostics for measuring the electron density profile in the L-2M stellarator is proposed. The existing diagnostics employs an interferometer based on an HCN laser with a mechanical frequency shifter and unmagnetized InSb detectors cooled with liquid helium. It is proposed to replace the HCN laser with a water vapor laser operating simultaneously at two wavelengths (220 and 118 {mu}m). Being equipped with an anisotropic exit mirror, the water vapor laser allows the generation of orthogonally polarized, frequency-splitted modes at each of these wavelengths with a frequency difference of several tens of kilohertzs. Such a scheme makes it possible to get rid of the mechanical frequency shifter. Moreover, simultaneous measurements at two wavelengths allow one to reliably separate the phase increments introduced by the plasma electron component and by variations in the lengths of the interferometer arms. To take full advantage of this scheme, specially developed cryogenic receivers consisting of Ge and InSb photodetectors placed one after another will be used. To increase the response of the system near {lambda} = 220 {mu}m, the InSb detector is placed in a Almost-Equal-To 0.55-T magnetic field.

  3. Density profile control in a large diameter, helicon plasma

    SciTech Connect

    Cluggish, B.P.; Anderegg, F.A.; Freeman, R.L.; Gilleland, J.; Hilsabeck, T.J.; Isler, R.C.; Lee, W.D.; Litvak, A.A.; Miller, R.L.; Ohkawa, T.; Putvinski, S.; Umstadter, K.R.; Winslow, D.L.

    2005-05-15

    Plasmas with peaked radial density profiles have been generated in the world's largest helicon device, with plasma diameters of over 70 cm. The density profiles can be manipulated by controlling the phase of the current in each strap of two multistrap antenna arrays. Phase settings that excite long axial wavelengths create hollow density profiles, whereas settings that excite short axial wavelengths create peaked density profiles. This change in density profile is consistent with the cold-plasma dispersion relation for helicon modes, which predicts a strong increase in the effective skin depth of the rf fields as the wavelength decreases. Scaling of the density with magnetic field, gas pressure, and rf power is also presented.

  4. Communication: Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy

    SciTech Connect

    Feng, Zhenbao; Yang, Bing; Lin, Yangming; Su, Dangsheng

    2015-12-07

    The electron momentum distribution of detonation nanodiamonds (DND) was investigated by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope (TEM), which is known as electron Compton scattering from solid (ECOSS). Compton profile of diamond film obtained by ECOSS was found in good agreement with prior photon experimental measurement and theoretical calculation that for bulk diamond. Compared to the diamond film, the valence Compton profile of DND was found to be narrower, which indicates a more delocalization of the ground-state charge density for the latter. Combining with other TEM characterizations such as high-resolution transmission electron spectroscopy, diffraction, and energy dispersive X-ray spectroscopy measurements, ECOSS was shown to be a great potential technique to study ground-state electronic properties of nanomaterials.

  5. Teaching Chemistry with Electron Density Models

    NASA Astrophysics Data System (ADS)

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-07-01

    Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.

  6. Measurements of electron number density and plasma temperature using LIBS

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-xia; Luo, Wen-feng; He, Jun-fang; Wang, Hong-ying; Yang, Sen-lin; Li, Yuan-yuan

    2016-10-01

    Plasma produced by the radiation of a 1064 nm Nd:YAG laser focused onto a standard aluminum alloy E311 was studied spectroscopically. The electron density was inferred by measuring the Stark broadened line profile of Cu I 324.75 nm at a distance of 1.5 mm from the target surface with the laser irradiance of 3.27 GW/cm2. The electron temperature was determined using the Boltzmann plot method with eight neutral iron lines. At the same time, the validity of the assumption of local thermodynamic equilibrium was discussed in light of the results obtained.

  7. Electron correlation by polarization of interacting densities

    NASA Astrophysics Data System (ADS)

    Whitten, Jerry L.

    2017-02-01

    Coulomb interactions that occur in electronic structure calculations are correlated by allowing basis function components of the interacting densities to polarize dynamically, thereby reducing the magnitude of the interaction. Exchange integrals of molecular orbitals are not correlated. The modified Coulomb interactions are used in single-determinant or configuration interaction calculations. The objective is to account for dynamical correlation effects without explicitly introducing higher spherical harmonic functions into the molecular orbital basis. Molecular orbital densities are decomposed into a distribution of spherical components that conserve the charge and each of the interacting components is considered as a two-electron wavefunction embedded in the system acted on by an average field Hamiltonian plus r12-1. A method of avoiding redundancy is described. Applications to atoms, negative ions, and molecules representing different types of bonding and spin states are discussed.

  8. Transverse profile of the electron beam for the RHIC electron lenses

    NASA Astrophysics Data System (ADS)

    Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; Montag, C.; Pikin, A. I.

    2015-10-01

    The transverse profile of the electron beam plays a very important role in assuring the success of the electron lens beam-beam compensation, as well as its application in space charge compensation. To compensate for the beam-beam effect in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, we recently installed and commissioned two electron lenses. In this paper, we describe, via theory and simulations using the code Parmela, the evolution of the density of the electron beam with space charge within an electron lens from the gun to the main solenoid. Our theoretical analysis shows that the change in the beam transverse density is dominated by the effects of the space charge induced longitudinal velocity reduction, not by those of transverse Coulomb collisions. We detail the transverse profile of RHIC electron-lens beam, measured via the YAG screen and pinhole detector, and also describe its profile that we assessed from the signal of the electron-backscatter detector (eBSD) via scanning the electron beam with respect to the RHIC beam. We verified, in simulations and experiments, that the distribution of the transverse electron beam is Gaussian throughout its propagation in the RHIC electron lens.

  9. Neural network evaluation of reflectometry density profiles for control purposes

    NASA Astrophysics Data System (ADS)

    Santos, J.; Nunes, F.; Manso, M.; Nunes, I.

    1999-01-01

    Broadband reflectometry is a diagnostic that is able to measure the density profile with high spatial and temporal resolutions, therefore it can be used to improve the performance of advanced tokamak operation modes and to supplement or correct the magnetics for plasma position control. To perform these tasks real-time processing is needed. Here we present a method that uses a neural network to make a fast evaluation of radial positions for selected density layers. Typical ASDEX Upgrade density profiles were used to generate the simulated network training and test sets. It is shown that the method has the potential to meet the tight timing requirements of control applications with the required accuracy. The network is also able to provide an accurate estimation of the position of density layers below the first density layer which is probed by an O-mode reflectometer, provided that it is trained with a realistic density profile model.

  10. A novel electron density reconstruction method for asymmetrical toroidal plasmas

    SciTech Connect

    Shi, N.; Ohshima, S.; Minami, T.; Nagasaki, K.; Yamamoto, S.; Mizuuchi, T.; Okada, H.; Kado, S.; Kobayashi, S.; Konoshima, S.; Sano, F.; Tanaka, K.; Ohtani, Y.; Zang, L.; Kenmochi, N.

    2014-05-15

    A novel reconstruction method is developed for acquiring the electron density profile from multi-channel interferometric measurements of strongly asymmetrical toroidal plasmas. It is based on a regularization technique, and a generalized cross-validation function is used to optimize the regularization parameter with the aid of singular value decomposition. The feasibility of method could be testified by simulated measurements based on a magnetic configuration of the flexible helical-axis heliotron device, Heliotron J, which has an asymmetrical poloidal cross section. And the successful reconstruction makes possible to construct a multi-channel Far-infrared laser interferometry on this device. The advantages of this method are demonstrated by comparison with a conventional method. The factors which may affect the accuracy of the results are investigated, and an error analysis is carried out. Based on the obtained results, the proposed method is highly promising for accurately reconstructing the electron density in the asymmetrical toroidal plasma.

  11. Measurement of the lunar neutron density profile

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1975-01-01

    Relatively small discrepancies between Apollo 17 lunar neutron probe experiment (LNPE) data and theoretical calculations by Lingenfelter, Canfield, and Hampel in the effect of Cd absorption on the neutron density, and in the relative Sm-149 to Gd-157 capture rates reported previously, imply that the true lunar Gd-157 capture rate is about one-half of that derived theoretically.

  12. Electronics Technology. Tech Prep Competency Profile.

    ERIC Educational Resources Information Center

    Lakeland Tech Prep Consortium, Kirtland, OH.

    This tech prep competency profile covers the occupation of electronics technician. Section 1 provides the occupation definition. Section 2 lists development committee members. Section 3 provides the leveling codes--abbreviations for grade level, (by the end of grade 12, by the end of associate degree), academic codes (communications, math, or…

  13. Electronic cigarette solutions and resultant aerosol profiles.

    PubMed

    Herrington, Jason S; Myers, Colton

    2015-10-30

    Electronic cigarettes (e-cigarettes) are growing in popularity exponentially. Despite their ever-growing acceptance, their aerosol has not been fully characterized. The current study focused on evaluating e-cigarette solutions and their resultant aerosol for potential differences. A simple sampling device was developed to draw e-cigarette aerosol into a multi-sorbent thermal desorption (TD) tube, which was then thermally extracted and analyzed via a gas chromatography (GC) mass spectrometry (GC-MS) method. This novel application provided detectable levels of over one hundred fifteen volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) from a single 40mL puff. The aerosol profiles from four commercially available e-cigarettes were compared to their respective solution profiles with the same GC-MS method. Solution profiles produced upwards of sixty four unidentified and identified (some only tentatively) constituents and aerosol profiles produced upwards of eighty two compounds. Results demonstrated distinct analyte profiles between liquid and aerosol samples. Most notably, formaldehyde, acetaldehyde, acrolein, and siloxanes were found in the aerosol profiles; however, these compounds were never present in the solutions. These results implicate the aerosolization process in the formation of compounds not found in solutions; have potential implications for human health; and stress the need for an emphasis on electronic cigarette aerosol testing.

  14. Electron densities of three B12 vitamins.

    PubMed

    Mebs, Stefan; Henn, Julian; Dittrich, Birger; Paulmann, Carsten; Luger, Peter

    2009-07-23

    The electron densities of the three natural B(12)-vitamins, two of them being essential cofactors for animal life, were determined in a procedure combining high-order X-ray data collection at low to very low temperatures with high-level density functional calculations. In a series of extensive experimental attempts, a high-order data set of adenosylcobalamin (AdoCbl) could be collected to a resolution of sin theta/lambda = 1.00 A(-1) at 25 K. This modification contains only minor disorder at the solvent bulk. For methylcobalamin (MeCbl), only a severely disordered modification was found (sin theta/lambda = 1.00 A(-1), 100 K, measured with synchrotron radiation). The already published data set of cyanocobalamin (CNCbl) (sin theta/lambda = 1.25 A(-1), 100 K) was reintegrated to guarantee similar treatment of the three compounds and cut to sin theta/lambda = 1.11 A(-1) to obtain a higher degree of completeness and redundancy. On the basis of these accurate experimental geometries of AdoCbl, MeCbl, and CNCbl, state-of-the-art density functional calculations, single-point calculations, and geometry optimizations were performed on model compounds at the BP86/TZVP level of theory to evaluate the electronic differences of the three compounds. AdoCbl and MeCbl are known to undergo different reaction paths in the body. Thus, the focus was directed toward the characterization of the dative Co-C(ax) and Co-N(ax) bonds, which were quantifed by topological parameters, including energy densities; the source function including local source; and the electron localizability indicator (ELI-D), respectively. The source function reveals the existence of delocalized interactions between the corrin macrocycle and the axial ligands. The ELI-D indicates unsaturated Co-C(ax) bonding basins for the two biochemically active cofactors, but not for CNCbl, where a population of 2.2e is found. This may be related to significant pi-backbonding, which is supported by the delocalization index, delta

  15. High Density Mastering Using Electron Beam

    NASA Astrophysics Data System (ADS)

    Kojima, Yoshiaki; Kitahara, Hiroaki; Kasono, Osamu; Katsumura, Masahiro; Wada, Yasumitsu

    1998-04-01

    A mastering system for the next-generation digital versatile disk (DVD) is required to have a higher resolution compared with the conventional mastering systems. We have developed an electron beam mastering machine which features a thermal field emitter and a vacuum sealed air spindle motor. Beam displacement caused by magnetic fluctuation with spindle rotation was about 60 nm(p-p) in both the radial and tangential directions. Considering the servo gain of a read-out system, it has little influence on the read-out signal in terms of tracking errors and jitters. The disk performance was evaluated by recording either the 8/16 modulation signal or a groove on the disk. The electron beam recording showed better jitter values from the disk playback than those from a laser beam recorder. The deviation of track pitch was 44 nm(p-p). We also confirmed the high density recording with a capacity reaching 30 GB.

  16. Single electron densities: a new tool to analyze molecular wavefunctions.

    PubMed

    Lüchow, Arne; Petz, René

    2011-09-01

    A new partitioning scheme for the electron density of a many-electron wavefunction into single electron densities is proposed. These densities are based on the most probable arrangement of the electrons in an atom or molecule. Therefore, they contain information about the electron-electron interaction and, most notably, the Fermi hole due to the antisymmetry of the many-electron wavefunction. The single electron densities overlap and can be combined to electron pair distributions close to the qualitative electron pairs that represent, for instance, the basis of the valence shell electron pair repulsion model. Single electron analyses are presented for the water, ethane, and ethene molecules. The effect of electron correlation on the single electron and pair densities is investigated for the water molecule.

  17. Polar mesosphere summer echoes observed with the EISCAT 933-MHz radar and the CUPRI 46.9-MHz radar, their similarity to 224-MHz radar echoes, and their relation to turbulence and electron density profiles

    NASA Astrophysics Data System (ADS)

    Roettger, J.; Rietveld, M. T.; La Hoz, C.; Hall, T.; Kelley, M. C.

    1990-08-01

    The relation of the coherent echoes from the mesosphere detected by an incoherent scatter UHF radar to the echoes registered simultaneously with a portable radar interferometer is analyzed. It is demonstrated that these 933-MHz echoes are of the same character as the VHF radar polar mesosphere summer echoes. It is also noted that a narrow electron density observed in the incoherent scatter UHF radar data occurs at the comparable altitude as the portable radar interferometer polar mesosphere summer echoes (PMSE). Potential origins of the scattering process of the PMSEs observed in VHF and UHF are discussed, with focus placed on enhanced electron density fluctuations as well as steep electron density gradients in the presence of cluster ions in the cold polar mesosphere.

  18. Electron temperatures and densities in the venus ionosphere: pioneer venus orbiter electron temperature probe results.

    PubMed

    Brace, L H; Theis, R F; Krehbiel, J P; Nagy, A F; Donahue, T M; McElroy, M B; Pedersen, A

    1979-02-23

    Altitude profiles of electron temperature and density in the ionosphere of Venus have been obtained by the Pioneer Venus orbiter electron temperatutre probe. Elevated temperatutres observed at times of low solar wind flux exhibit height profiles that are consistent with a model in which less than 5 percent of the solar wind energy is deposited at the ionopause and is conducted downward through an unmagnetized ionosphere to the region below 200 kilomneters where electron cooling to the neutral atmosphere proceeds rapidly. When solar wind fluxes are higher, the electron temperatures and densities are highly structured and the ionopause moves to lower altitudes. The ionopause height in the late afternoon sector observed thus far varies so widely from day to (day that any height variation with solar zenith angle is not apparent in the observations. In the neighborhood of the ionopause, measuremnents of plasma temperatures and densities and magnetic field strength indicate that an induced magnetic barrier plays an important role in the pressure transfer between the solar wind and the ionosphere. The bow, shock is marked by a distinct increase in electron current collected by the instrument, a featutre that provides a convenient identification of the bow shock location.

  19. Comparison of measured electron density rise and calculated neutral beam particle deposition in the TFTR tokamak

    SciTech Connect

    Park, H.; Budny, R.; McCune, D.; Taylor, G.; Zarnstorff, M.C. . Plasma Physics Lab.); Barnes, C.W. )

    1991-12-01

    The initial rate of rise of the central electron density during {approximately}100 keV deuterium neutral beam injection is found to agree well with calculations of the beam deposition rate. The best agreement is with beam deposition calculations using older tabulations of the atomic cross-sections; the effects of using new tabulations or including multi-step ionization processes appear to approximately cancel. The neutral-beam deposition profile is a strong function of both the magnitude and the shape of the target plasma density. Peaked heating profiles can be achieved at high target densities only from peaked target density profiles. 15 refs., 4 figs.

  20. Stimulated neutrino transformation with sinusoidal density profiles

    DOE PAGES

    Kneller, J. P.; McLaughlin, G. C.; Patton, K. M.

    2013-03-28

    Large amplitude oscillations between the states of a quantum system can be stimulated by sinusoidal external potentials with frequencies that are similar to the energy level splitting of the states or a fraction thereof. Situations where the applied frequency is equal to an integer fraction of the energy level splittings are known as parametric resonances. We investigate this effect for neutrinos both analytically and numerically for the case of arbitrary numbers of neutrino flavors. We look for environments where the effect may be observed and find that supernovae are the one realistic possibility due to the necessity of both largemore » densities and large amplitude fluctuations. In conclusion, the comparison of numerical and analytical results of neutrino propagation through a model supernova reveals that it is possible to predict the locations and strengths of the stimulated transitions that occur.« less

  1. Stimulated neutrino transformation with sinusoidal density profiles

    SciTech Connect

    Kneller, J. P.; McLaughlin, G. C.; Patton, K. M.

    2013-03-28

    Large amplitude oscillations between the states of a quantum system can be stimulated by sinusoidal external potentials with frequencies that are similar to the energy level splitting of the states or a fraction thereof. Situations where the applied frequency is equal to an integer fraction of the energy level splittings are known as parametric resonances. We investigate this effect for neutrinos both analytically and numerically for the case of arbitrary numbers of neutrino flavors. We look for environments where the effect may be observed and find that supernovae are the one realistic possibility due to the necessity of both large densities and large amplitude fluctuations. In conclusion, the comparison of numerical and analytical results of neutrino propagation through a model supernova reveals that it is possible to predict the locations and strengths of the stimulated transitions that occur.

  2. A representative density profile of the North Greenland snowpack

    NASA Astrophysics Data System (ADS)

    Florian Schaller, Christoph; Freitag, Johannes; Kipfstuhl, Sepp; Laepple, Thomas; Steen-Larsen, Hans Christian; Eisen, Olaf

    2016-09-01

    Along a traverse through North Greenland in May 2015 we collected snow cores up to 2 m depth and analyzed their density and water isotopic composition. A new sampling technique and an adapted algorithm for comparing data sets from different sites and aligning stratigraphic features are presented. We find good agreement of the density layering in the snowpack over hundreds of kilometers, which allows the construction of a representative density profile. The results are supported by an empirical statistical density model, which is used to generate sets of random profiles and validate the applied methods. Furthermore we are able to calculate annual accumulation rates, align melt layers and observe isotopic temperatures in the area back to 2010. Distinct relations of δ18O with both accumulation rate and density are deduced. Inter alia the depths of the 2012 melt layers and high-resolution densities are provided for applications in remote sensing.

  3. Transport simulations of a density limit in radiation-dominated tokamak discharges: Profile effects

    SciTech Connect

    Stotler, D.P.

    1988-06-01

    The density limit observed in tokamak experiments is thought to be due to a radiative collapse of the current channel. A transport code coupled with an MHD equilibrium routine is used to determine the detailed, self-consistent evolution of the plasma profiles in tokamak discharges with radiated power close to or equalling the input power. The present work is confined to ohmic discharges in steady state. It is found that the shape of the density profile can have a significant impact on the variation of the maximum electron density with plasma current. Analytic calculations confirm this result. 41 refs., 9 figs.

  4. Temperature, N2, and N density profiles of Triton's atmosphere - Observations and model

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, V. A.; Sandel, B. R.; Herbert, F.; Vervack, R. J., Jr.

    1993-01-01

    Improved analysis of the Voyager Ultraviolet Spectrometer observations of the solar occultation by Triton yields the isothermal temperature and N2 number densities in the altitude range 475-675 km. The signature of atomic nitrogen in the occultation spectra is identified, its density profile is derived, and an experimental value of the escape rate of N atoms is given. The one-dimensional thermal conductivity equation for a spherical atmosphere is solved, taking into account CO heating and cooling and heating by precipitating electrons, solar radiation, and chemical effects. Finally, profiles of number densities of N, H2, and H are calculated.

  5. Bayesian electron density inference from JET lithium beam emission spectra using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y.-C.; Contributors, JET

    2017-03-01

    A Bayesian model to infer edge electron density profiles is developed for the JET lithium beam emission spectroscopy (Li-BES) system, measuring Li I (2p-2s) line radiation using 26 channels with  ∼1 cm spatial resolution and 10∼ 20 ms temporal resolution. The density profile is modelled using a Gaussian process prior, and the uncertainty of the density profile is calculated by a Markov Chain Monte Carlo (MCMC) scheme. From the spectra measured by the transmission grating spectrometer, the Li I line intensities are extracted, and modelled as a function of the plasma density by a multi-state model which describes the relevant processes between neutral lithium beam atoms and plasma particles. The spectral model fully takes into account interference filter and instrument effects, that are separately estimated, again using Gaussian processes. The line intensities are inferred based on a spectral model consistent with the measured spectra within their uncertainties, which includes photon statistics and electronic noise. Our newly developed method to infer JET edge electron density profiles has the following advantages in comparison to the conventional method: (i) providing full posterior distributions of edge density profiles, including their associated uncertainties, (ii) the available radial range for density profiles is increased to the full observation range (∼26 cm), (iii) an assumption of monotonic electron density profile is not necessary, (iv) the absolute calibration factor of the diagnostic system is automatically estimated overcoming the limitation of the conventional technique and allowing us to infer the electron density profiles for all pulses without preprocessing the data or an additional boundary condition, and (v) since the full spectrum is modelled, the procedure of modulating the beam to measure the background signal is only necessary for the case of overlapping of the Li I line with impurity lines.

  6. Testing gravity with halo density profiles observed through gravitational lensing

    SciTech Connect

    Narikawa, Tatsuya; Yamamoto, Kazuhiro E-mail: kazuhiro@hiroshima-u.ac.jp

    2012-05-01

    We present a new test of the modified gravity endowed with the Vainshtein mechanism with the density profile of a galaxy cluster halo observed through gravitational lensing. A scalar degree of freedom in the galileon modified gravity is screened by the Vainshtein mechanism to recover Newtonian gravity in high-density regions, however it might not be completely hidden on the outer side of a cluster of galaxies. Then the modified gravity might yield an observational signature in a surface mass density of a cluster of galaxies measured through gravitational lensing, since the scalar field could contribute to the lensing potential. We investigate how the transition in the Vainshtein mechanism affects the surface mass density observed through gravitational lensing, assuming that the density profile of a cluster of galaxies follows the original Navarro-Frenk-White (NFW) profile, the generalized NFW profile and the Einasto profile. We compare the theoretical predictions with observational results of the surface mass density reported recently by other researchers. We obtain constraints on the amplitude and the typical scale of the transition in the Vainshtein mechanism in a subclass of the generalized galileon model.

  7. Transverse profile imager for ultrabright electron beams

    NASA Astrophysics Data System (ADS)

    Ischebeck, Rasmus; Prat, Eduard; Thominet, Vincent; Ozkan Loch, Cigdem

    2015-08-01

    A transverse profile imager for ultrabright electron beams is presented, which overcomes resolution issues in present designs by observing the Scheimpflug imaging condition as well as the Snell-Descartes law of refraction in the scintillating crystal. Coherent optical transition radiation emitted by highly compressed electron bunches on the surface of the crystal is directed away from the camera, allowing to use the monitor for profile measurements of electron bunches suitable for X-ray free electron lasers. The optical design has been verified by ray tracing simulations, and the angular dependency of the resolution has been verified experimentally. An instrument according to the presented design principles has been used in the SwissFEL Injector Test Facility, and different scintillator materials have been tested. Measurements in conjunction with a transverse deflecting radiofrequency structure and an array of quadrupole magnets demonstrate a normalized slice emittance of 25 nm in the core of a 30 fC electron beam at a pulse length of 10 ps and a particle energy of 230 MeV.

  8. The flat density profiles of massive, and relaxed galaxy clusters

    SciTech Connect

    Popolo, A. Del

    2014-07-01

    The present paper is an extension and continuation of Del Popolo (2012a) which studied the role of baryon physics on clusters of galaxies formation. In the present paper, we studied by means of the SIM introduced in Del Popolo (2009), the total and DM density profiles, and the correlations among different quantities, observed by Newman et al. (2012a,b), in seven massive and relaxed clusters, namely MS2137, A963, A383, A611, A2537, A2667, A2390. As already found in Del Popolo 2012a, the density profiles depend on baryonic fraction, angular momentum, and the angular momentum transferred from baryons to DM through dynamical friction. Similarly to Newman et al. (2012a,b), the total density profile, in the radius range 0.003–0.03r{sub 200}, has a mean total density profile in agreement with dissipationless simulations. The slope of the DM profiles of all clusters is flatter than -1. The slope, α, has a maximum value (including errors) of α = −0.88 in the case of A2390, and minimum value α = −0.14 for A2537. The baryonic component dominates the mass distribution at radii < 5–10 kpc, while the outer distribution is dark matter dominated. We found an anti-correlation among the slope α, the effective radius, R{sub e}, and the BCG mass, and a correlation among the core radius r{sub core}, and R{sub e}. Moreover, the mass in 100 kpc (mainly dark matter) is correlated with the mass inside 5 kpc (mainly baryons). The behavior of the total mass density profile, the DM density profile, and the quoted correlations can be understood in a double phase scenario. In the first dissipative phase the proto-BCG forms, and in the second dissipationless phase, dynamical friction between baryonic clumps (collapsing to the center) and the DM halo flattens the inner slope of the density profile. In simple terms, the large scatter in the inner slope from cluster to cluster, and the anti-correlation among the slope, α and R{sub e} is due to the fact that in order to have a total

  9. Electron profile stiffness and critical gradient studies

    SciTech Connect

    DeBoo, J. C.; Petty, C. C.; Burrell, K. H.; Smith, S. P.; White, A. E.; Doyle, E. J.; Hillesheim, J. C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L.; Holland, C.; McKee, G. R.

    2012-08-15

    Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in {nabla}T{sub e}. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/L{sub C} {approx} 3 m{sup -1} was identified at {rho}=0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -{nabla}T{sub e}, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/L{sub T} above the threshold.

  10. Reaching Higher Densities for Laboratory White Dwarf Photospheres to Measure Spectroscopic Line Profiles

    NASA Astrophysics Data System (ADS)

    Falcon, R. E.; Bailey, J. E.; Gomez, T. A.; Schaeuble, M.; Nagayama, T.; Montgomery, M. H.; Winget, D. E.; Rochau, G. A.

    2017-03-01

    As part of our laboratory investigation of the theoretical line profiles used in white dwarf atmosphere models, we extend the electron-density (ne) range measured by our experiments to higher densities (up to ne ˜80×1016 cm-3). Whereas inferred parameters using the hydrogen-β spectral line agree among different line-shape models for ne≲ 30×1016 cm–3, we now see divergence between models. These are densities beyond the range previously benchmarked in the laboratory, meaning theoretical profiles in this regime have not been fully validated. Experimentally exploring these higher densities enables us to test and constrain different line-profile models, as the differences in their relative H-Balmer line shapes are more pronounced at such conditions. These experiments also aid in our study of occupation probabilities because we can measure these from relative line strengths.

  11. Imaginary time density-density correlations for two-dimensional electron gases at high density

    SciTech Connect

    Motta, M.; Galli, D. E.; Moroni, S.; Vitali, E.

    2015-10-28

    We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis set elements. We show that such methodology, once equipped with suitable numerical stabilization techniques necessary to deal with exponentials, products, and inversions of large matrices, gives access to the calculation of imaginary time correlation functions for medium-sized systems. We discuss the numerical stabilization techniques and the computational complexity of the methodology and we present the limitations related to the size of the systems on a quantitative basis. We perform the inverse Laplace transform of the obtained density-density correlation functions, assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate dynamical properties of medium-sized homogeneous fermion systems.

  12. Universal void density profiles from simulation and SDSS

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.; Diego, J. M.; Iliev, I. T.; Gottlöber, S.; Watson, W. A.; Yepes, G.

    2016-10-01

    We discuss the universality and self-similarity of void density profiles, for voids in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. Voids are identified using a modified version of the ZOBOV watershed transform algorithm, with additional selection cuts. We find that voids in simulation are self-similar, meaning that their average rescaled profile does not depend on the void size, or - within the range of the simulated catalogue - on the redshift. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The profiles of real voids also show a universal behaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.

  13. Amending the uniformity of ion beam current density profile

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Xu, Dequan; Liu, Ying; Xu, Xiangdong; Fu, Shaojun

    2008-03-01

    The uniformity of ion beam current density profile has been amended by changing the flow of the gas and making a new beam channel. The platform scanned in the horizontal orientation in this experiment, so the horizontal ion beam current distribution had hardly any effect on the etching uniformity and amending the ion beam current density profile in the vertical orientation was sufficient for the purpose of plat etching profile. The ratio of the ion source's working gas inputs has some effect for the uniformity and a ratio of 6.50sccm: 8.00sccm: 9.60sccm of the three gas inputs flow1: flow2: flow3 will lead to a more uniform profile. According to the horizontal distribution and the original vertical ion beam current density distribution measured by Faraday Cup, a new beam channel was made. The uniformity of ion beam current density profile is enhanced from +/-4.31%to +/-1.96% in this experiment.

  14. Electron densities and alkali atoms in exoplanet atmospheres

    SciTech Connect

    Lavvas, P.; Koskinen, T.; Yelle, R. V.

    2014-11-20

    We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations, though, result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of clouds, which could potentially explain the observed HD 209458b alkali properties. We find that most of these scenarios cannot explain the observations, with the exception of a heterogeneous source (i.e., clouds or aerosols) under specific conditions, but we also note the discrepancies among the available observations.

  15. Simulating confined particles with a flat density profile

    NASA Astrophysics Data System (ADS)

    Korolkovas, Airidas

    2016-08-01

    Particle simulations confined by sharp walls usually develop an oscillatory density profile. For some applications, most notably soft matter liquids, this behavior is often unrealistic and one expects a monotonic density climb instead. To reconcile simulations with experiments, we propose mirror-and-shift boundary conditions where each interface is mapped to a distant part of itself. The main result is that the particle density increases almost monotonically from zero to bulk, over a short distance of about one particle diameter. The method is applied to simulate a polymer brush in explicit solvent, grafted on a flat silicon substrate. The simulated density profile agrees favorably with neutron reflectometry measurements and self-consistent field theory results.

  16. Peaked density profiles due to neon injection on FTU

    NASA Astrophysics Data System (ADS)

    Mazzotta, C.; Bañón Navarro, A.; Gabellieri, L.; Marinucci, M.; Pucella, G.; Told, D.; Tudisco, O.; Apruzzese, G.; Artaserse, G.; Sozzi, C.; the FTU Team

    2015-07-01

    Neon injection in FTU can cause a spontaneous increase of the line-average density by a factor 2. The recent experiments were devoted to characterize the plasma response to the neon injection at different densities and plasma currents. A qualitative estimate from UV spectroscopy measurements indicates that the density behaviour cannot be attributed simply to the stripped electrons from the puffed impurity, but a modification of particle transport should be invoked in order to explain the spontaneous rise and the higher peaking. JETTO transport and GENE gyrokinetic codes analyses, as well as a calculation of the electron diffusion coefficients D and pinch velocity U, contribute to feature the peaking effect.

  17. Ionospheric electron density inversion for Global Navigation Satellite Systems radio occultation using aided Abel inversions

    NASA Astrophysics Data System (ADS)

    Chou, Min Yang; Lin, Charles C. H.; Tsai, Ho Fang; Lin, Chi Yen

    2017-01-01

    The Abel inversion of ionospheric electron density profiles with the assumption of spherical symmetry applied for radio occultation soundings could introduce a greater systematic error or sometimes artifacts if the occultation rays trespass regions with larger horizontal gradients in electron density. The aided Abel inversions have been proposed by considering the asymmetry ratio derived from ionospheric total electron content (TEC) or peak density (NmF2) of reconstructed observation maps since knowledge of the horizontal asymmetry in ambient ionospheric density could mitigate the inversion error. Here we propose a new aided Abel inversion using three-dimensional time-dependent electron density (Ne) based on the climatological maps constructed from previous observations, as it has an advantage of providing altitudinal information on the horizontal asymmetry. Improvement of proposed Ne-aided Abel inversion and comparisons with electron density profiles inverted from the NmF2- and TEC-aided inversions are studied using observation system simulation experiments. Comparison results show that all three aided Abel inversions improve the ionospheric profiling by mitigating the artificial plasma caves and negative electron density in the daytime E region. The equatorial ionization anomaly crests in the F region become more distinct. The statistical results show that the Ne-aided Abel inversion has less mean and RMS error of error percentage above 250 km altitudes, and the performances for all aided Abel inversions are similar below 250 km altitudes.

  18. MAVEN observations of dayside peak electron densities in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Andersson, Laila; Girazian, Zachary; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.; Eparvier, Frank G.; Jakosky, Bruce M.

    2017-01-01

    The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The Mars Atmosphere and Volatile EvolutioN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis was lowered to 125 km, provided the first opportunity since Viking to sample in situ a complete dayside electron density profile including the main peak. Here we present peak electron density measurements from 37 deep dip orbits and describe conditions at the altitude of the main peak, including the electron temperature and composition of the ionosphere and neutral atmosphere. We find that the dependence of the peak electron density and the altitude of the main peak on solar zenith angle are well described by analytical photochemical theory. Additionally, we find that the electron temperatures at the main peak display a dependence on solar zenith angle that is consistent with the observed variability in the peak electron density. Several peak density measurements were made in regions of large crustal magnetic field, but there is no clear evidence that the crustal magnetic field strength influences the peak electron density, peak altitude, or electron temperature. Finally, we find that the fractional abundance of O2+ and CO2+ at the peak altitude is variable but that the two species together consistently represent 95% of the total ion density.

  19. Calculation of nanodrop profile from fluid density distribution.

    PubMed

    Berim, Gersh O; Ruckenstein, Eli

    2016-05-01

    Two approaches are examined, which can be used to determine the drop profile from the fluid density distributions (FDDs) obtained on the basis of microscopic theories. For simplicity, only two-dimensional (cylindrical, or axisymmetrical) distributions are examined and it is assumed that the fluid is either in contact with a smooth solid or separated from the smooth solid by a lubricating liquid film. The first approach is based on the sharp-kink interface approximation in which the density of the liquid inside and the density of the vapor outside the drop are constant with the exception of the surface layer of the drop where the density is different from the above ones. In this case, the drop profile was calculated by minimizing the total potential energy of the system. The second approach is based on a nonuniform FDD obtained either by the density functional theory or molecular dynamics simulations. To determine the drop profile from such an FDD, which does not contain sharp interfaces, three procedures can be used. In the first two procedures, P1 and P2, the one-dimensional FDDs along straight lines which are parallel to the surface of the solid are extracted from the two-dimensional FDD. Each of those one-dimensional FDDs has a vapor-liquid interface at which the fluid density changes from vapor-like to liquid-like values. Procedure P1 uses the locations of the equimolar dividing surfaces for the one-dimensional FDDs as points of the drop profile. Procedure P2 is based on the assumption that the fluid density is constant on the surface of the drop, that density being selected either arbitrarily or as a fluid density at the location of the equimolar dividing surface for one of the one-dimensional FDDs employed in procedure P1. In the third procedure, P3, which is suggested for the first time in this paper, the one-dimensional FDDs are taken along the straight lines passing through a selected point inside the drop (radial line). Then, the drop profile is

  20. Measurement of the lunar neutron density profile. [Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1974-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g/sq cm depth between the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment using particle tracks produced by the B10(n, alpha)Li7 reaction. Both the absolute magnitude and depth profile of the neutron density are in good agreement with past theoretical calculations. The effect of cadmium absorption on the neutron density and in the relative Sm149 to Gd157 capture rates obtained experimentally implies that the true lunar Gd157 capture rate is about one half of that calculated theoretically.

  1. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Stefanikova, E.; Peterka, M.; Bohm, P.; Bilkova, P.; Aftanas, M.; Sos, M.; Urban, J.; Hron, M.; Panek, R.

    2016-11-01

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  2. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak.

    PubMed

    Stefanikova, E; Peterka, M; Bohm, P; Bilkova, P; Aftanas, M; Sos, M; Urban, J; Hron, M; Panek, R

    2016-11-01

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  3. Long-term observations of D-region electron densities at high and middle northern latitudes

    NASA Astrophysics Data System (ADS)

    Singer, Werner; Keuer, Dieter; Friedrich, Martin; Strelnikova, Irina; Latteck, Ralph

    D-region electron densities are estimated using Doppler radars at frequencies around 3 MHz in Andenes, Norway (69.3°N, 16.0°E) since summer 2003 and in Juliusruh, Germany (54.6°N, 13.4°E) since summer 2006. Both experiments utilize partial reflections of ordinary and extraordinary component waves from scatterers in the altitude range 50-90 km to estimate electron number densities from differential absorption (DAE) and differential phase (DPE) measurements. Height profiles of electron density are obtained between about 55 km and 90 km with sampling times of 2-3 minutes and height resolution of 1.5 km at Andenes and 3 km at Juliusruh. The electron density profiles independently derived from DAE and DPE measurements agree remarkably well. The radar results are compared with co-located simultaneously measured electron densities by rocket-borne radio wave propagation experiments (differential absorption, Faraday rotation, and impedance probe) in Andenes with good agreement between insitu and ground-based measurements. The diurnal and seasonal variability of electron densities as observed at high and mid-latitudes under quiet ionospheric conditions is presented and compared to the corresponding electron density profiles of the International Reference Ionosphere. The response of D-region ionization to regular solar activity variation as well as to solar activity storms and geomagnetic disturbances has been studied at polar latitudes. Characteristic electron density variations are found during downwelling events of nitric oxide due to strong vertical coupling during stratospheric warming events. In addition, we discuss the inter-relation between D-region electron densities from radar observations, riometer absorption, and the empirical model IMAZ at different levels of solar activity and during particle precipitation events.

  4. New signal processing technique for density profile reconstruction using reflectometry

    SciTech Connect

    Clairet, F.; Bottereau, C.; Ricaud, B.; Briolle, F.; Heuraux, S.

    2011-08-15

    Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10{sup 16} m{sup -1}. For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma.

  5. The first in situ electron temperature and density measurements of the Martian nightside ionosphere

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Andersson, L.; Ergun, R. E.; Morooka, M.; Delory, G.; Andrews, D. J.; Lillis, Robert J.; McEnulty, T.; Weber, T. D.; Chamandy, T. M.; Eriksson, A. I.; Mitchell, D. L.; Mazelle, C.; Jakosky, B. M.

    2015-11-01

    The first in situ nightside electron density and temperature profiles at Mars are presented as functions of altitude and local time (LT) from the Langmuir Probe and Waves (LPW) instrument on board the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission spacecraft. LPW is able to measure densities as low as ˜100 cm-3, a factor of up to 10 or greater improvement over previous measurements. Above 200 km, near-vertical density profiles of a few hundred cubic centimeters were observed for almost all nightside LT, with the lowest densities and highest temperatures observed postmidnight. Density peaks of a few thousand cubic centimeters were observed below 200 km at all nightside LT. The lowest temperatures were observed below 180 km and approach the neutral atmospheric temperature. One-dimensional modeling demonstrates that precipitating electrons were able to sustain the observed nightside ionospheric densities below 200 km.

  6. Stationary Density Profiles in Alcator C-mod

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Ernst, D.; Hughes, J. W.; Mumgaard, R.; Shiraiwa, S.; Whyte, D. G.

    2012-10-01

    In the absence of an internal particle source, plasma turbulence will impose an intrinsic relationship between an inwards pinch and an outwards diffusion resulting in a stationary density profile as determined by the turbulent equipartition (TEP) theory. The Alcator C-mod tokamak utilizes RF heating and current drive so that fueling only occurs in the vicinity of the separatrix. Density is determined from Thomson scattering. Discharges that transition from L-mode to I-mode are seen to maintain a stationary profile. For reversed shear discharges maintained by non-inductive current drive (Vloop 0) a drop of density in the vicinity of the axis is consistent with an observed rise in q, although error in the measurement precludes making this observation definitive.

  7. Estimating tropical-forest density profiles from multibaseline interferometric SAR

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert; Chapman, Bruce; dos Santos, Joao Roberto; Dutra, Luciano; Goncalves, Fabio; da Costa Freitas, Corina; Mura, Jose Claudio; de Alencastro Graca, Paulo Mauricio

    2006-01-01

    Vertical profiles of forest density are potentially robust indicators of forest biomass, fire susceptibility and ecosystem function. Tropical forests, which are among the most dense and complicated targets for remote sensing, contain about 45% of the world's biomass. Remote sensing of tropical forest structure is therefore an important component to global biomass and carbon monitoring. This paper shows preliminary results of a multibasline interfereomtric SAR (InSAR) experiment over primary, secondary, and selectively logged forests at La Selva Biological Station in Costa Rica. The profile shown results from inverse Fourier transforming 8 of the 18 baselines acquired. A profile is shown compared to lidar and field measurements. Results are highly preliminary and for qualitative assessment only. Parameter estimation will eventually replace Fourier inversion as the means to producing profiles.

  8. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements

    NASA Astrophysics Data System (ADS)

    Ryu, K.; Lee, E.; Chae, J. S.; Parrot, M.; Pulinets, S.

    2014-10-01

    We report the processes and results of statistical analysis on the ionospheric electron density data measured by the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite over a period of 6 years (2005-2010), in order to investigate the correlation between seismic activity and equatorial plasma density variations. To simplify the analysis, three equatorial regions with frequent earthquakes were selected and then one-dimensional time series analysis between the daily seismic activity indices and the equatorial ionization anomaly (EIA) intensity indices, which represent relative equatorial electron density increase, were performed for each region. The statistically significant values of the lagged cross-correlation function, particularly in the region with minimal effects of longitudinal asymmetry, indicate that some of the very large earthquakes with M > 5.0 in the low-latitude region can accompany observable precursory and concurrent EIA enhancements, even though the seismic activity is not the most significant driver of the equatorial ionospheric evolution. The physical mechanisms of the seismo-ionospheric coupling is consistent with our observation, and the possibility of earthquake prediction using the EIA intensity variation is discussed.

  9. Density profiles of supernova matter and determination of neutrino parameters

    SciTech Connect

    Chiu, S.-H.

    2007-08-15

    The flavor conversion of supernova neutrinos can lead to observable signatures related to the unknown neutrino parameters. As one of the determinants in dictating the efficiency of resonant flavor conversion, the local density profile near the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in a supernova environment is, however, not so well understood. In this analysis, variable power-law functions are adopted to represent the independent local density profiles near the locations of resonance. It is shown that the uncertain matter density profile in a supernova, the possible neutrino mass hierarchies, and the undetermined 1-3 mixing angle would result in six distinct scenarios in terms of the survival probabilities of {nu}{sub e} and {nu}{sub e}. The feasibility of probing the undetermined neutrino mass hierarchy and the 1-3 mixing angle with the supernova neutrinos is then examined using several proposed experimental observables. Given the incomplete knowledge of the supernova matter profile, the analysis is further expanded to incorporate the Earth matter effect. The possible impact due to the choice of models, which differ in the average energy and in the luminosity of neutrinos, is also addressed in the analysis.

  10. Defence electronics industry profile, 1990-1991

    NASA Astrophysics Data System (ADS)

    The defense electronics industry profiled in this review comprises an estimated 150 Canadian companies that develop, manufacture, and repair radio and communications equipment, radars for surveillance and navigation, air traffic control systems, acoustic and infrared sensors, computers for navigation and fire control, signal processors and display units, special-purpose electronic components, and systems engineering and associated software. Canadian defense electronics companies generally serve market niches and end users of their products are limited to the military, government agencies, or commercial airlines. Geographically, the industry is concentrated in Ontario and Quebec, where about 91 percent of the industry's production and employment is found. In 1989, the estimated revenue of the industry was $2.36 billion, and exports totalled an estimated $1.4 billion. Strengths and weaknesses of the industry are discussed in terms of such factors as the relatively small size of Canadian companies, the ability of Canadian firms to access research and development opportunities and export markets in the United States, the dependence on foreign-made components, and international competition.

  11. Probing Electron Dynamics with the Laplacian of the Momentum Density

    SciTech Connect

    Sukumar, N.; MacDougall, Preston J.; Levit, M. Creon

    2012-09-24

    This chapter in the above-titled monograph presents topological analysis of the Laplacian of the electron momentum density in organic molecules. It relates topological features in this distribution to chemical and physical properties, particularly aromaticity and electron transport.

  12. Midplane neutral density profiles in the National Spherical Torus Experiment

    SciTech Connect

    Stotler, D. P.; Scotti, F.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.; Roquemore, A. L.; Ross, P. W.

    2015-08-13

    Atomic and molecular density data in the outer midplane of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] are inferred from tangential camera data via a forward modeling procedure using the DEGAS 2 Monte Carlo neutral transport code. The observed Balmer-β light emission data from 17 shots during the 2010 NSTX campaign display no obvious trends with discharge parameters such as the divertor Balmer-α emission level or edge deuterium ion density. Simulations of 12 time slices in 7 of these discharges produce molecular densities near the vacuum vessel wall of 2–8 × 1017 m–3 and atomic densities ranging from 1 to 7 ×1016 m–3; neither has a clear correlation with other parameters. Validation of the technique, begun in an earlier publication, is continued with an assessment of the sensitivity of the simulated camera image and neutral densities to uncertainties in the data input to the model. The simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral densities at the vessel wall depend most strongly on the spatial distribution of the source; simulations with a localized neutral source yield densities within a factor of two of the baseline, uniform source, case. Furthermore, the uncertainties in the neutral densities associated with other model inputs and assumptions are ≤ 50%.

  13. Midplane neutral density profiles in the National Spherical Torus Experiment

    SciTech Connect

    Stotler, D. P. Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podestà, M.; Roquemore, A. L.; Ross, P. W.; Scotti, F.

    2015-08-15

    Atomic and molecular density data in the outer midplane of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] are inferred from tangential camera data via a forward modeling procedure using the DEGAS 2 Monte Carlo neutral transport code. The observed Balmer-β light emission data from 17 shots during the 2010 NSTX campaign display no obvious trends with discharge parameters such as the divertor Balmer-α emission level or edge deuterium ion density. Simulations of 12 time slices in 7 of these discharges produce molecular densities near the vacuum vessel wall of 2–8 × 10{sup 17 }m{sup −3} and atomic densities ranging from 1 to 7 × 10{sup 16 }m{sup −3}; neither has a clear correlation with other parameters. Validation of the technique, begun in an earlier publication, is continued with an assessment of the sensitivity of the simulated camera image and neutral densities to uncertainties in the data input to the model. The simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral densities at the vessel wall depend most strongly on the spatial distribution of the source; simulations with a localized neutral source yield densities within a factor of two of the baseline, uniform source, case. The uncertainties in the neutral densities associated with other model inputs and assumptions are ≤50%.

  14. Midplane neutral density profiles in the National Spherical Torus Experiment

    DOE PAGES

    Stotler, D. P.; Scotti, F.; Bell, R. E.; ...

    2015-08-13

    Atomic and molecular density data in the outer midplane of NSTX [Ono et al., Nucl. Fusion 40, 557 (2000)] are inferred from tangential camera data via a forward modeling procedure using the DEGAS 2 Monte Carlo neutral transport code. The observed Balmer-β light emission data from 17 shots during the 2010 NSTX campaign display no obvious trends with discharge parameters such as the divertor Balmer-α emission level or edge deuterium ion density. Simulations of 12 time slices in 7 of these discharges produce molecular densities near the vacuum vessel wall of 2–8 × 1017 m–3 and atomic densities ranging frommore » 1 to 7 ×1016 m–3; neither has a clear correlation with other parameters. Validation of the technique, begun in an earlier publication, is continued with an assessment of the sensitivity of the simulated camera image and neutral densities to uncertainties in the data input to the model. The simulated camera image is sensitive to the plasma profiles and virtually nothing else. The neutral densities at the vessel wall depend most strongly on the spatial distribution of the source; simulations with a localized neutral source yield densities within a factor of two of the baseline, uniform source, case. Furthermore, the uncertainties in the neutral densities associated with other model inputs and assumptions are ≤ 50%.« less

  15. Adaptive method for electron bunch profile prediction

    SciTech Connect

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.

  16. Adaptive method for electron bunch profile prediction

    NASA Astrophysics Data System (ADS)

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET.

  17. Temperature, Density, and Heating Profiles of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Plowman, Joseph; Martens, P. C.; Kankelborg, C.; Ritchie, M.; Scott, J.; Sharma, R.

    2013-07-01

    We show detailed results of a combined DEM and density-sensitive line ratio analysis of coronal loops observed simultaneously by EIS and AIA. The temperature and density profiles of the loop are compared to and isolated from those of the surrounding material, and these properties are fit to an analytic strand heating model developed by Martens (2010). This research builds on our previously reported work by analyzing a number of coronal loops (including one observed by the Hi-C rocket), improved background subtraction and loop fitting. These improvements allow us to place significant constraints on the heating distribution of coronal loops.

  18. Electronic and nuclear flux densities in the H2 molecule

    NASA Astrophysics Data System (ADS)

    Hermann, G.; Paulus, B.; Pérez-Torres, J. F.; Pohl, V.

    2014-05-01

    We present a theoretical study of the electronic and nuclear flux densities of a vibrating H2 molecule after an electronic excitation by a short femtosecond laser pulse. The final state, a coherent superposition of the electronic ground state X1Σg+ and the electronic excited state B1Σu+, evolves freely and permits the partition of the electronic flux density into two competing fluxes: the adiabatic and the transition flux density. The nature of the two fluxes allows us to identify two alternating dynamics of the electronic motion, occurring on the attosecond and the femtosecond time scales. In contradistinction to the adiabatic electronic flux density, the transition electronic flux density shows a dependence on the carrier-envelope phase of the laser field, encoding information of the interaction of the electrons with the electric field. Furthermore, the nuclear flux density displays multiple reversals, a quantum effect recently discovered by Manz et al. [J. Manz, J. F. Pérez-Torres, and Y. Yang, Phys. Rev. Lett. 111, 153004 (2013), 10.1103/PhysRevLett.111.153004], calling for investigation of the electronic flux density.

  19. The Dark Matter Density Profile of the Fornax Dwarf

    NASA Astrophysics Data System (ADS)

    Jardel, John R.; Gebhardt, Karl

    2012-02-01

    We construct axisymmetric Schwarzschild models to measure the mass profile of the Local Group dwarf galaxy Fornax. These models require no assumptions to be made about the orbital anisotropy of the stars, as is the case for commonly used Jeans models. We test a variety of parameterizations of dark matter density profiles and find cored models with uniform density ρ c = (1.6 ± 0.1) × 10-2 M ⊙ pc-3 fit significantly better than the cuspy halos predicted by cold dark matter simulations. We also construct models with an intermediate-mass black hole, but are unable to make a detection. We place a 1σ upper limit on the mass of a potential intermediate-mass black hole at M • <= 3.2 × 104 M ⊙.

  20. Current profile reconstruction using electron temperature imaging diagnostics

    SciTech Connect

    Tritz, K.; Stutman, D.; Delgado-Aparicio, L.F.; Finkenthal, M.; Pacella, D.; Kaita, R.; Stratton, B.; Sabbagh, S.

    2004-10-01

    Flux surface shape information can be used to constrain the current profile for reconstruction of the plasma equilibrium. One method of inferring flux surface shape relies on plasma x-ray emission; however, deviations from the flux surfaces due to impurity and density asymmetries complicate the interpretation. Electron isotherm surfaces should correspond well to the plasma flux surfaces, and equilibrium constraint modeling using this isotherm information constrains the current profile. The KFIT code is used to assess the profile uncertainty and to optimize the number, location and SNR required for the Te detectors. As Te imaging detectors we consider tangentially viewing, vertically spaced, linear gas electron multiplier arrays operated in pulse height analysis (PHA) mode and multifoil soft x-ray arrays. Isoflux coordinate sets provided by T{sub e} measurements offer a strong constraint on the equilibrium reconstruction in both a stacked horizontal array configuration and a crossed horizontal and vertical beam system, with q{sub 0} determined to within {+-}4%. The required SNR can be provided with either PHA or multicolor diagnostic techniques, though the multicolor system requires {approx}x4 better statistics for comparable final errors.

  1. Ligand identification using electron-density mapcorrelations

    SciTech Connect

    Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn,Judith D.

    2006-12-01

    A procedure for the identification of ligands bound incrystal structuresof macromolecules is described. Two characteristics ofthe density corresponding to a ligand are used in the identificationprocedure. One is the correlation of the ligand density with each of aset of test ligands after optimization of the fit of that ligand to thedensity. The other is the correlation of a fingerprint of the densitywith the fingerprint of model density for each possible ligand. Thefingerprints consist of an ordered list of correlations of each the testligands with the density. The two characteristics are scored using aZ-score approach in which the correlations are normalized to the mean andstandard deviation of correlations found for a variety of mismatchedligand-density pairs, so that the Z scores are related to the probabilityof observing a particular value of the correlation by chance. Theprocedure was tested with a set of 200 of the most commonly found ligandsin the Protein Data Bank, collectively representing 57 percent of allligands in the Protein Data Bank. Using a combination of these twocharacteristics of ligand density, ranked lists of ligand identificationswere made for representative (F-o-F-c) exp(i phi(c)) difference densityfrom entries in the Protein Data Bank. In 48 percent of the 200 cases,the correct ligand was at the top of the ranked list of ligands. Thisapproach may be useful in identification of unknown ligands in newmacromolecular structures as well as in the identification of whichligands in a mixture have bound to a macromolecule.

  2. Implementation of the new multichannel X-mode edge density profile reflectometer for the ICRF antenna on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Aguiam, D. E.; Silva, A.; Bobkov, V.; Carvalho, P. J.; Carvalho, P. F.; Cavazzana, R.; Conway, G. D.; D'Arcangelo, O.; Fattorini, L.; Faugel, H.; Fernandes, A.; Fünfgelder, H.; Gonçalves, B.; Guimarais, L.; De Masi, G.; Meneses, L.; Noterdaeme, J. M.; Pereira, R. C.; Rocchi, G.; Santos, J. M.; Tuccillo, A. A.; Tudisco, O.

    2016-11-01

    A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 1019 m-3, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling, operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.

  3. Density profile of pyrolite under the lower mantle conditions

    SciTech Connect

    Ricolleau, Angele; Fei, Yingwei; Cottrell, Elizabeth; Watson, Heather; Deng, Liwei; Zhang, Li; Fiquet, Guillaume; Auzende, Anne-Line; Roskosz, Mathieu; Morard, Guillaume; Prakapenka, Vitali

    2009-04-13

    The pyrolite model is one of the possible compositions of the Earth's lower mantle. The lower mantle's composition is generally modelled by comparing seismic observations with mineral physics data of possible lower mantle end-member phases. Here, we report the compression behavior of a natural KLB-1 peridotite (a representative composition of the pyrolite model) in a quasi-hydrostatic environment at simultaneous high pressure (P) and temperature (T), covering the entire range of lower mantle P-T conditions up to 112 GPa. This is the first experimentally determined density profile of pyrolite under the lower mantle conditions. The results allow us to directly compare the measured density of peridotite mantle along the geotherm with the Preliminary Reference Earth Model (PREM) derived from seismic observations, without extrapolation. The comparison shows significant mismatch between the two, which calls for a re-evaluation of the PREM density model or a non-pyrolite lower mantle composition.

  4. Gutzwiller density functional theory for correlated electron systems

    SciTech Connect

    Ho, K. M.; Schmalian, J.; Wang, C. Z.

    2008-02-04

    We develop a density functional theory (DFT) and formalism for correlated electron systems by taking as reference an interacting electron system that has a ground state wave function which exactly obeys the Gutzwiller approximation for all one-particle operators. The solution of the many-electron problem is mapped onto the self-consistent solution of a set of single-particle Schroedinger equations, analogously to standard DFT-local density approximation calculations.

  5. Simultaneous measurement of core electron temperature and density fluctuations during electron cyclotron heating on DIII-D

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Rhodes, T. L.; Carter, T. A.; McKee, G. R.; Shafer, M. W.; Staebler, G. M.; Burrell, K. H.; DeBoo, J. C.; Prater, R.

    2010-02-15

    New measurements show that long-wavelength (k{sub t}hetarho{sub s}<0.5) electron temperature fluctuations can play an important role in determining electron thermal transport in low-confinement mode (L-mode) tokamak plasmas. In neutral beam-heated L-mode tokamak plasmas, electron thermal transport and the amplitude of long-wavelength electron temperature fluctuations both increase in cases where local electron cyclotron heating (ECH) is used to modify the plasma profiles. In contrast, the amplitude of simultaneously measured long-wavelength density fluctuations does not significantly increase. Linear stability analysis indicates that the ratio of the trapped electron mode (TEM) to ion temperature gradient (ITG) mode growth rates increases in the cases with ECH. The increased importance of the TEM drive relative to the ITG mode drive in the cases with ECH may be associated with the increases in electron thermal transport and electron temperature fluctuations.

  6. Electron and ion densities in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Langer, W. D.

    1974-01-01

    A quantitative theory of ionization in diffuse clouds is developed which includes H(+) charge exchange with O. Dissociative charge exchange of He(+) with H2 plays an important role in the densities of H(+) and He(+). The abundance of HD is also discussed.

  7. Comparisons of ionospheric electron density distributions reconstructed by GPS computerized tomography, backscatter ionograms, and vertical ionograms

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua

    2015-12-01

    Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.

  8. Density distribution of high energy electrons in pulsed corona discharge of NO+N2 mixture.

    PubMed

    Wang, Wenchun; Liu, Feng; Zhang, Jialiang; Wang, Younian

    2003-12-01

    Emission spectroscopy of the high-voltage pulsed positive corona discharge in a line-cylinder reactor is used to investigate the high-energy electron density distribution in the discharge gap. The relative overall emission intensity spatial distribution profile of the A2Sigma+ --> X2Pi transition of NO is successfully recorded against a severe electromagnetic pulse interference coming from the corona discharge at one atmosphere. The spectroscopic investigation shows that the high-energy electron density in the discharge has a nonlinearly decline in the radial distribution. When varying the discharge voltage, the absolute emission intensity of NO is different but the radial distribution profile is similar. If an oxygen flow was introduced into the discharge reactor, the emission intensity of NO decreases tremendously and, therefore, the high-energy electron density decreases reasonably.

  9. Measurement of electron density using reactance cutoff probe

    NASA Astrophysics Data System (ADS)

    You, K. H.; You, S. J.; Kim, D. W.; Na, B. K.; Seo, B. H.; Kim, J. H.; Seong, D. J.; Chang, H. Y.

    2016-05-01

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure the electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).

  10. Role of Density Gradient Driven Trapped Electron Modes in the H-Mode Inner Core with Electron Heating

    NASA Astrophysics Data System (ADS)

    Ernst, D.

    2015-11-01

    We present new experiments and nonlinear gyrokinetic simulations showing that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron heating. Thus α-heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking. These DIII-D low torque quiescent H-mode experiments were designed to study DGTEM turbulence. Gyrokinetic simulations using GYRO (and GENE) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra, with and without ECH. Adding 3.4 MW ECH doubles Te /Ti from 0.5 to 1.0, which halves the linear TEM critical density gradient, locally flattening the density profile. Density fluctuations from Doppler backscattering (DBS) intensify near ρ = 0.3 during ECH, displaying a band of coherent fluctuations with adjacent toroidal mode numbers. GYRO closely reproduces the DBS spectrum and its change in shape and intensity with ECH, identifying these as coherent TEMs. Prior to ECH, parallel flow shear lowers the effective nonlinear DGTEM critical density gradient 50%, but is negligible during ECH, when transport displays extreme stiffness in the density gradient. GS2 predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0 >qmin > 1 . A related experiment in the same regime varied the electron temperature gradient in the outer half-radius (ρ ~ 0 . 65) using ECH, revealing spatially coherent 2D mode structures in the Te fluctuations measured by ECE imaging. Fourier analysis with modulated ECH finds a threshold in Te profile stiffness. Supported by the US DOE under DE-FC02-08ER54966 and DE-FC02-04ER54698.

  11. Model Predictive Control with Integral Action for Current Density Profile Tracking in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ilhan, Z. O.; Wehner, W. P.; Schuster, E.; Boyer, M. D.

    2016-10-01

    Active control of the toroidal current density profile may play a critical role in non-inductively sustained long-pulse, high-beta scenarios in a spherical torus (ST) configuration, which is among the missions of the NSTX-U facility. In this work, a previously developed physics-based control-oriented model is embedded in a feedback control scheme based on a model predictive control (MPC) strategy to track a desired current density profile evolution specified indirectly by a desired rotational transform profile. An integrator is embedded into the standard MPC formulation to reject various modeling uncertainties and external disturbances. Neutral beam powers, electron density, and total plasma current are used as actuators. The proposed MPC strategy incorporates various state and actuator constraints directly into the control design process by solving a constrained optimization problem in real-time to determine the optimal actuator requests. The effectiveness of the proposed controller in regulating the current density profile in NSTX-U is demonstrated in closed-loop nonlinear simulations. Supported by the US DOE under DE-AC02-09CH11466.

  12. Element-specific density profiles in interacting biomembrane models

    NASA Astrophysics Data System (ADS)

    Schneck, Emanuel; Rodriguez-Loureiro, Ignacio; Bertinetti, Luca; Marin, Egor; Novikov, Dmitri; Konovalov, Oleg; Gochev, Georgi

    2017-03-01

    Surface interactions involving biomembranes, such as cell–cell interactions or membrane contacts inside cells play important roles in numerous biological processes. Structural insight into the interacting surfaces is a prerequisite to understand the interaction characteristics as well as the underlying physical mechanisms. Here, we work with simplified planar experimental models of membrane surfaces, composed of lipids and lipopolymers. Their interaction is quantified in terms of pressure–distance curves using ellipsometry at controlled dehydrating (interaction) pressures. For selected pressures, their internal structure is investigated by standing-wave x-ray fluorescence (SWXF). This technique yields specific density profiles of the chemical elements P and S belonging to lipid headgroups and polymer chains, as well as counter-ion profiles for charged surfaces.

  13. Steady-state hollow electron temperature profiles in the Rijnhuizen Tokamak Project

    SciTech Connect

    Hogeweij, G.M.; Oomens, A.A.; Barth, C.J.; Beurskens, M.N.; Chu, C.C.; van Gelder, J.F.; Lok, J.; Lopes Cardozo, N.J.; Pijper, F.J.; Polman, R.W.; Rommers, J.H.

    1996-01-01

    In the Rijnhuizen Tokamak Project steady-state hollow electron temperature ({ital T}{sub {ital e}}) profiles have been sustained with strong off-axis electron cyclotron heating, creating a region of reversed magnetic shear. In this region the effective electron thermal diffusivity ({chi}{sub {ital e}}{sup {ital pb}}) is close to neoclassical in high density plasmas. For medium density, {chi}{sub {ital e}}{sup {ital pb}} is lower than neoclassical and may even be negative, indicating that off-diagonal elements in the transport matrix drive an electron heat flux up the {ital T}{sub {ital e}} gradient. {copyright} {ital 1996 The American Physical Society.}

  14. Effects of toroidal rotation on electron heat transport via changes in inertial force and impurity density

    NASA Astrophysics Data System (ADS)

    Narita, E.; Honda, M.; Yoshida, M.; Hayashi, N.; Urano, H.; Ide, S.

    2017-04-01

    Two types of JT-60U discharges are studied with an emphasis on toroidal rotation: in one discharge, which is characterized by the existence of an internal transport barrier (ITB), electron heat transport in the core region is affected by the toroidal rotation direction, while in the other discharge, which is a conventional H-mode plasma without an ITB, the clear correlation between the toroidal rotation direction and electron heat transport is not observed. In both discharges, the impurity density is also found to vary together with the rotation velocity profile. With a flux-tube gyrokinetic code, we have found that the effects of the changes in the rotation velocity profile and the impurity density on electron heat transport are different between these discharges. Including the effects explains the tendency observed in the experiments. First, regarding the rotation velocity profile, which influences heat transport through the inertial force, the dependence of heat transport on the rotation direction changes, according to the gradient of the rotation velocity. Next, an increase in the impurity density stabilizes the ion temperature gradient mode, but can destabilize the trapped electron mode. Therefore, it is found that the difference in the impact of the impurity density on electron heat transport in these discharges can be attributed to the difference in the dominant instability.

  15. Validation of Ionosonde Electron Density Reconstruction Algorithms with IONOLAB-RAY in Central Europe

    NASA Astrophysics Data System (ADS)

    Gok, Gokhan; Mosna, Zbysek; Arikan, Feza; Arikan, Orhan; Erdem, Esra

    2016-07-01

    Ionospheric observation is essentially accomplished by specialized radar systems called ionosondes. The time delay between the transmitted and received signals versus frequency is measured by the ionosondes and the received signals are processed to generate ionogram plots, which show the time delay or reflection height of signals with respect to transmitted frequency. The critical frequencies of ionospheric layers and virtual heights, that provide useful information about ionospheric structurecan be extracted from ionograms . Ionograms also indicate the amount of variability or disturbances in the ionosphere. With special inversion algorithms and tomographical methods, electron density profiles can also be estimated from the ionograms. Although structural pictures of ionosphere in the vertical direction can be observed from ionosonde measurements, some errors may arise due to inaccuracies that arise from signal propagation, modeling, data processing and tomographic reconstruction algorithms. Recently IONOLAB group (www.ionolab.org) developed a new algorithm for effective and accurate extraction of ionospheric parameters and reconstruction of electron density profile from ionograms. The electron density reconstruction algorithm applies advanced optimization techniques to calculate parameters of any existing analytical function which defines electron density with respect to height using ionogram measurement data. The process of reconstructing electron density with respect to height is known as the ionogram scaling or true height analysis. IONOLAB-RAY algorithm is a tool to investigate the propagation path and parameters of HF wave in the ionosphere. The algorithm models the wave propagation using ray representation under geometrical optics approximation. In the algorithm , the structural ionospheric characteristics arerepresented as realistically as possible including anisotropicity, inhomogenity and time dependence in 3-D voxel structure. The algorithm is also used

  16. Squeezed states of electrons and transitions of the density of states

    NASA Technical Reports Server (NTRS)

    Lee, Seung Joo; Um, Chung IN

    1993-01-01

    Electron systems which have low dimensional properties have been constructed by squeezing the motion in zero, one, or two-directions. An isolated quantum dot is modeled by a potential box with delta-profiled, penetrable potential walls embedded in a large outer box with infinitely high potential walls which represent the world function with respect to vacuum. We show the smooth crossover of the density of states from the three-dimensional to the quasi-zero dimensional electron gas.

  17. Picosecond imaging of low-density plasmas by electron deflectometry.

    PubMed

    Centurion, M; Reckenthaeler, P; Krausz, F; Fill, E E

    2009-02-15

    We have imaged optical-field ionized plasmas with electron densities as low as 10(13) cm(-3) on a picosecond timescale using ultrashort electron pulses. Electric fields generated by the separation of charges are imprinted on a 20 keV probe electron pulse and reveal a cloud of electrons expanding away from a positively charged plasma core. Our method allows for a direct measurement of the electron energy required to escape the plasma and the total charge. Simulations reproduce the main features of the experiment and allow determination of the energy of the electrons.

  18. Measurement of electron density and temperature in plasmas

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Rowley, P. D.; Presley, L. L.; Stallcop, J.

    1972-01-01

    Application of two laser wavelengths passing through plasma measures electron density and temperature. Function depends on determining absorption of light at two wavelengths. Nature of reaction is explained and schematic diagram of equipment is included.

  19. Density profile of strongly correlated spherical Yukawa plasmas

    NASA Astrophysics Data System (ADS)

    Bonitz, M.; Henning, C.; Ludwig, P.; Golubnychiy, V.; Baumgartner, H.; Piel, A.; Block, D.

    2006-10-01

    Recently the discovery of 3D-dust crystals [1] excited intensive experimental and theoretical activities [2-4]. Details of the shell structure of these crystals has been very well explained theoretically by a simple model involving an isotropic Yukawa-type pair repulsion and an external harmonic confinement potential [4]. On the other hand, it has remained an open question how the average radial density profile, looks like. We show that screening has a dramatic effect on the density profile, which we derive analytically for the ground state. Interestingly, the result applies not only to a continuous plasma distribution but also to simulation data for the Coulomb crystals exhibiting the above mentioned shell structure. Furthermore, excellent agreement between the continuum model and shell models is found [5]. [1] O. Arp, D. Block, A. Piel, and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005) [3] P. Ludwig, S. Kosse, and M. Bonitz, Phys. Rev. E 71, 046403 (2005) [4] M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006) [5] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E

  20. High Current Density Scandate Cathodes for Future Vacuum Electronics Applications

    DTIC Science & Technology

    2008-05-30

    braze alloy . The structure was fired in a furnace at 16500 C for 15 minutes. The resultant structure was sectioned to determine if the scandium flowed...Density Cathodes for Future Vacuum Electronics Applications FA9550-07-C-0063 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION...Current Density Scandate Cathodes for Future Vacuum Electronics Applications USAF/AFRL Contract Number FA9550-07-C-0063 Final Report Calabazas Creek

  1. New link between conceptual density functional theory and electron delocalization.

    PubMed

    Matito, Eduard; Putz, Mihai V

    2011-11-17

    In this paper we give a new definition of the softness kernel based on the exchange-correlation density. This new kernel is shown to correspond to the change of electron fluctuation upon external perturbation, thus helping to bridge the gap between conceptual density functional theory and some tools describing electron localization in molecules. With the aid of a few computational calculations on diatomics we illustrate the performance of this new computational tool.

  2. Waves in relativistic electron beam in low-density plasma

    NASA Astrophysics Data System (ADS)

    Sheinman, I.; Sheinman (Chernenco, J.

    2016-11-01

    Waves in electron beam in low-density plasma are analyzed. The analysis is based on complete electrodynamics consideration. Dependencies of dispersion laws from system parameters are investigated. It is shown that when relativistic electron beam is passed through low-density plasma surface waves of two types may exist. The first type is a high frequency wave on a boundary between the beam and neutralization area and the second type wave is on the boundary between neutralization area and stationary plasma.

  3. Gene expression profiling in peanut using high density oligonucleotide microarrays

    PubMed Central

    Payton, Paxton; Kottapalli, Kameswara Rao; Rowland, Diane; Faircloth, Wilson; Guo, Baozhu; Burow, Mark; Puppala, Naveen; Gallo, Maria

    2009-01-01

    Background Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. Results We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B), oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes. Conclusion The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues. PMID:19523230

  4. Compton profiles and electronic structure of HgBr(2) and HgI(2).

    PubMed

    Ahmed, G; Dashora, Alpa; Sharma, M; Ahuja, B L

    2010-02-01

    In this paper, we present the first-ever experimental Compton line shapes of HgBr(2) and HgI(2) using (137)Cs Compton spectrometer. To compare our experimental momentum densities, we have computed the Compton profiles using Hartree-Fock and density functional theory within linear combination of atomic orbitals. We have also computed the energy bands and density of states using the linear combination of atomic orbitals and full potential linearized augmented plane wave method. On the basis of equal-valence-electron-density profiles, it is seen that HgI(2) is more covalent than HgBr(2) which is in agreement with the valence charge densities. The experimental isotropic profiles are found to be relatively in better agreement with the Hartree-Fock data. We have also discussed the photoluminescence and detection properties of both the halides.

  5. Electron momentum density, band structure, and structural properties of SrS

    SciTech Connect

    Sharma, G.; Munjal, N.; Vyas, V.; Kumar, R.; Sharma, B. K.; Joshi, K. B.

    2013-10-15

    The electron momentum density, the electronic band structure, and the structural properties of SrS are presented in this paper. The isotropic Compton profile, anisotropies in the directional Compton profiles, the electronic band structure and density of states are calculated using the ab initio periodic linear combination of atomic orbitals method with the CRYSTAL06 code. Structural parameters of SrS-lattice constants and bulk moduli in the B1 and B2 phases-are computed together with the transition pressure. The computed parameters are well in agreement with earlier investigations. To compare the calculated isotropic Compton profile, measurement on polycrystalline SrS is performed using 5Ci-{sup 241}Am Compton spectrometer. Additionally, charge transfer is studied by means of the Compton profiles computed from the ionic model. The nature of bonding in the isovalent SrS and SrO compounds is compared on the basis of equal-valenceelectron-density profiles and the bonding in SrS is found to be more covalent than in SrO.

  6. Diurnal and seasonal Variability of D-Region Electron Densities at 69°N

    NASA Astrophysics Data System (ADS)

    Singer, Werner; Rapp, Markus; Latteck, Ralph; Friedrich, Martin

    Electron densities of the lower ionosphere are estimated with the Saura MF Doppler radar since summer 2004. The radar is located near country-regioncountry-regionAndenes, countryregionNorway (69.3° N, 16.0° E) and operates at 3.17 MHz with a peak power of 116 kW. The narrow beam transmitting/receiving antenna consists of 29 crossed half-wave dipoles arranged as a Mills Cross resulting in a beam width of about 7° . Antenna and transceiver system provide high flexibility in beam forming as well as the capability forming beams with left and right circular polarization at alternate pulses. The experiment utilizes partial reflections of ordinary and extraordinary component waves from scatterers in the altitude range 50-90 km to estimate electron number densities from differential absorption (DAE) and differential phase (DPE) measurements. Height profiles are obtained between about 55 km and 90 km with a time resolution of 9 minutes and a height resolution of 1 km. The electron density profiles independently derived from DAE and DPE measurements are in remarkable good agreement. Electron number densities are given if the results of the DAE and DPE experiments are in agreement within a factor of two. We discuss the diurnal and seasonal variability of electron densities obtained at Andenes and the response of D-region electron densities to solar activity storms and geomagnetic disturbances. The radar results are compared with previous rocket-borne radio wave propagation measurements at Andenes as well as with recent co-located simultaneous insitu observations using radio wave propagation experiments (differential absorption and Faraday rotation) which showed good agreement between the two techniques. In addition, monthly mean electron densities obtained with the MF radar are compared the recent dedicated auroral-zone, empirical model IMAZ.

  7. Density Profile of a Foil Accelerated by Laser Ablation

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.; Hu, S. X.; Goncharov, V. N.; Haberberger, D.

    2016-10-01

    An experiment to measure the density profile of a foil accelerated by laser ablation has been designed and is underway. High-density material is measured with x-ray radiography and low-density plasma is measured using 251-nm interferometry. Two-dimensional hydrodynamic simulation results from the code DRACO will be compared to these data. The accelerated foil is an 80- μm-thick CH target with Ge and Si-doped layers. The incident laser is a 351-nm, 5-ns pulse with a total energy of 6.2 kJ. Si and Ti x rays are used for the radiography measurement. A 1-D image versus time data are recorded with an x-ray streak camera and 2-D image data at specific times are recorded with an x-ray framing camera using point-projection backlighting. Foil acceleration is measured with the 1-D data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. Fast tokamak plasma flux and electron density reconstruction technique

    SciTech Connect

    Chiang, K.L.; Hallock, G.A.; Wootton, A.J.; Wang, L.

    1997-01-01

    Density profiles in TEXT-U are obtained using a vertical viewing far-infrared (FIR) interferometer. To obtain the local (inverted) density, we have developed a simple analytic model of the plasma equilibrium configuration which is faster than EFIT (a flux surface reconstruction program) and can be easily computed between discharges. This analytic solution of the Grad{endash}Shafranov equation is valid as long as the pressure p is a function of poloidal flux {psi}, i.e., p=p({psi}). The procedure incorporates both magnetic and FIR density data to solve the Grad{endash}Shafranov equation, and provides a density profile which is self-consistent with the reconstructed equilibrium flux surfaces. Examples are presented. {copyright} {ital 1997 American Institute of Physics.}

  9. Electron cyclotron emission as a density fluctuation diagnostic

    SciTech Connect

    Lynn, A.G.; Phillips, P.E.; Hubbard, A.

    2004-10-01

    A new technique for measuring density fluctuations using a high-resolution heterodyne electron cyclotron emission (ECE) radiometer has been developed. Although ECE radiometry is typically used for electron temperature measurements, the unique viewing geometry of this system's quasioptical antenna has been found to make the detected emission extremely sensitive to refractive effects under certain conditions. This sensitivity gives the diagnostic the ability to measure very low levels of density fluctuations in the core of Alcator C-Mod tokamak. The refractive effects have been modeled using ray-tracing methods, allowing estimates of the density fluctuation magnitude and spatial localization.

  10. Core Temperature and Density Profiles from Multispectral Imaging of ICF Plasmas

    SciTech Connect

    Koch, J A; Barbee, T W Jr.; Dalhed, S; Haan, S; Izumi, N; Lee, R W; Welser, L; McCrorey, D L; Mancini, R C; Marshall, F; Meyerhoffer, D; Sangster, C; Smalyuk, V; Soures, J; Klein, L

    2003-08-26

    We have developed a multiple monochromatic x-ray imaging diagnostic using an array of pinholes coupled to a multilayer Bragg mirror, and we have used this diagnostic to obtain unique multispectral imaging data of inertial-confinement fusion implosion plasmas. Argon dopants in the fuel allow emission images to be obtained in the Ar He-b and Ly-b spectral regions, and these images provide data on core temperature and density profiles. We have analyzed these data to obtain quasi-three-dimensional maps of electron temperature and scaled electron density within the core for several cases of drive symmetry, and we observed a two-lobed structure evolving for increasingly prolate-asymmetric drive. This structure is invisible in broad-band x-ray images. Future work will concentrate on hydrodynamics simulations for comparison with the data.

  11. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    SciTech Connect

    Ruiz Ruiz, J.; White, A. E.; Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Lee, K. C.; Domier, C. W.; Smith, D. R.; Yuh, H.

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.

  12. Peaked density profile circular limiter H-modes on TFTR

    SciTech Connect

    Bush, C.E. ); Goldston, R.J.; Scott, S.D.; Fredrickson, E.D.; McGuire, K.; Schivell, J.; Taylor, G.; Bell, M.G.; Boivin, R.L.; Bretz, N.; Cavallo, A.; Efthimion, P.C.; Grek, B.; Hawryluk, R.; Hill, K.; Hulse, R.A.; Janos, A.; Johnson, D.W.; Kilpatrick, S.; Manos, D.M.; Mansfield, D.K.; Meade, D.M.; Park, H.; Ramsey, A.T.; Stratton, B.; Synakowski, E.J.; Towner, H.H.; Wieland, R.M.; Zarnstor

    1990-06-01

    Circular limiter H-modes are obtained on TFTR during high power neutral beam heating. The transition is usually from the supershot to the H-mode rather than the usual L- to H- transition, and thus is obtained in a low recycling environment with core fueling mainly from the heating beams. As a result, the density and pressure profiles are highly peaked at the center. Global confinement time, {tau}{sub E}, is enhanced over L-mode scaling by up to {approx} 2.5 times. The onset of ELMs shortly after the H-mode transition appears to limit {tau}{sub E}. Limiter H-modes of up to 1.5 sec duration have been realized. 18 refs., 4 figs.

  13. Control of laser-wakefield acceleration by the plasma-density profile.

    PubMed

    Pukhov, A; Kostyukov, I

    2008-02-01

    We show that both the maximum energy gain and the accelerated beam quality can be efficiently controlled by the plasma-density profile. Choosing a proper density gradient one can uplift the dephasing limitation and keep the phase synchronism between the bunch of relativistic particles and the plasma wave over extended distances. Putting electrons into the n th wake period behind the driving laser pulse, the maximum energy gain is increased by the factor, which is proportional to n, over that in the case of uniform plasma. Layered plasma is suggested to keep the resonant condition for laser-wakefield excitation. The acceleration is limited then by laser depletion rather than by dephasing. Further, we show that the natural energy spread of the particle bunch acquired at the acceleration stage can be effectively removed by a matched deceleration stage, where a larger plasma density is used.

  14. Density-shear instability in electron magneto-hydrodynamics

    SciTech Connect

    Wood, T. S. Hollerbach, R.; Lyutikov, M.

    2014-05-15

    We discuss a novel instability in inertia-less electron magneto-hydrodynamics (EMHD), which arises from a combination of electron velocity shear and electron density gradients. The unstable modes have a lengthscale longer than the transverse density scale, and a growth-rate of the order of the inverse Hall timescale. We suggest that this density-shear instability may be of importance in magnetic reconnection regions on scales smaller than the ion skin depth, and in neutron star crusts. We demonstrate that the so-called Hall drift instability, previously argued to be relevant in neutron star crusts, is a resistive tearing instability rather than an instability of the Hall term itself. We argue that the density-shear instability is of greater significance in neutron stars than the tearing instability, because it generally has a faster growth-rate and is less sensitive to geometry and boundary conditions. We prove that, for uniform electron density, EMHD is “at least as stable” as regular, incompressible MHD, in the sense that any field configuration that is stable in MHD is also stable in EMHD. We present a connection between the density-shear instability in EMHD and the magneto-buoyancy instability in anelastic MHD.

  15. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    SciTech Connect

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-10

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm₋3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.

  16. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-02-10

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm₋3 in amore » low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.« less

  17. Amplification of current density modulation in a FEL with an infinite electron beam

    SciTech Connect

    Wang, G.; Litvinenko, V.N.; Webb, S.D.

    2011-03-28

    We show that the paraxial field equation for a free electron laser (FEL) in an infinitely wide electron beam with {kappa}-2 energy distribution can be reduced to a fourth ordinary differential equation (ODE). Its solution for arbitrary initial phase space density modulation has been derived in the wave-vector domain. For initial current modulation with Gaussian profile, close form solutions are obtained in space-time domain. In developing an analytical model for a FEL-based coherent electron cooling system, an infinite electron beam has been assumed for the modulation and correction processes. While the assumption has its limitation, it allows for an analytical close form solution to be obtained, which is essential for investigating the underlying scaling law, benchmarking the simulation codes and understanding the fundamental physics. 1D theory was previously applied to model a CeC FEL amplifier. However, the theory ignores diffraction effects and does not provide the transverse profile of the amplified electron density modulation. On the other hand, 3D theories developed for a finite electron beam usually have solutions expanded over infinite number of modes determined by the specific transverse boundary conditions. Unless the mode with the largest growth rate substantially dominates other modes, both evaluation and extracting scaling laws can be complicated. Furthermore, it is also preferable to have an analytical FEL model with assumptions consistent with the other two sections of a CeC system. Recently, we developed the FEL theory in an infinitely wide electron beam with {kappa}-1 (Lorentzian) energy distribution. Close form solutions have been obtained for the amplified current modulation initiated by an external electric field with various spatial-profiles. In this work, we extend the theory into {kappa}-2 energy distribution and study the evolution of current density induced by an initial density modulation.

  18. Measuring ionospheric electron density using the plasma frequency probe

    SciTech Connect

    Jensen, M.D.; Baker, K.D. )

    1992-02-01

    During the past decade, the plasma frequency probe (PFP) has evolved into an accurate, proven method of measuring electron density in the ionosphere above about 90 km. The instrument uses an electrically short antenna mounted on a sounding rocket that is immersed in the plasma and notes the frequency where the antenna impedance is large and nonreactive. This frequency is closely related to the plasma frequency, which is a direct function of free electron concentration. The probe uses phase-locked loop technology to follow a changing electron density. Several sections of the plasma frequency probe circuitry are unique, especially the voltage-controlled oscillator that uses both an electronically tuned capacitor and inductor to give the wide tuning range needed for electron density measurements. The results from two recent sounding rocket flights (Thunderstorm II and CRIT II) under vastly different plasma conditions demonstrate the capabilities of the PFP and show the importance of in situ electron density measurements of understanding plasma processes. 9 refs.

  19. Role of ionization and electron drift velocity profile to Rayleigh instability in a Hall thruster plasma

    SciTech Connect

    Singh, Sukhmander; Malik, Hitendra K.

    2012-07-01

    Role of ionization to Rayleigh instability is clarified in a Hall thruster plasma under the variety of profiles of electron drift velocity, namely, step-like profile (SLP) and two different super-Gaussian profiles (SGP1 and SGP2). For this, a relevant Rayleigh equation is derived and solved numerically using fourth-order Runge-Kutta method. Interestingly, an upper cutoff frequency of oscillations {omega}{sub max} is realized for the occurrence of the instability that shows dependence on the ionization rate {alpha}, electron drift velocity u{sub 0}, electron cyclotron frequency {Omega}, azimuthal wave number k{sub y}, plasma density n{sub 0}, density gradient {partial_derivative}n{sub 0}/{partial_derivative}x, ion (electron) thermal speed V{sub thI}(V{sub thE}), and ion (electron) plasma frequency {omega}{sub pi}({omega}{sub pe}). The frequency {omega}{sub max} follows the trend {omega}{sub max} (for SGP2) >{omega}{sub max} (for SLP) >{omega}{sub max} (for SGP1) and shows a similar behaviour with ionization for all types of the velocity profiles. The instability is found to grow faster for the higher {alpha} and the ion temperature but it acquires lower rate under the effect of the higher electron temperature; the perturbed potential also varies in accordance with the growth rate. The electron temperature influences the growth rate and cutoff frequency less significantly in comparison with the ion temperature.

  20. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    SciTech Connect

    Hiratsuka, Junichi Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki; Miyamoto, Kenji

    2016-02-15

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  1. Electron density and parallel electric field distribution of the auroral density cavity

    NASA Astrophysics Data System (ADS)

    Alm, L.; Marklund, G. T.; Karlsson, T.

    2015-11-01

    We present an event study in which Cluster satellites C1 and C3 encounters the flux tube of a stable auroral arc in the premidnight sector. C1 observes the midcavity, while C3 enters the flux tube of the auroral arc at an altitude which is below the acceleration region, before crossing into the top half of the acceleration region. This allows us to study the boundary between the ionosphere and the density cavity, as well as large portion of the upper density cavity. The position of the two satellites, in relation to the acceleration region, is described using a pseudo altitude derived from the distribution of the parallel potential drop above and below the satellites. The electron density exhibits an anticorrelation with the pseudo altitude, indicating that the lowest electron densities are found near the top of the density cavity. Over the entire pseudo altitude range, the electron density distribution is similar to a planar sheath, formed out of a plasma sheet dominated electron distribution, in response to the parallel electric field of the acceleration region. This indicates that the parallel electric fields on the ionosphere-cavity boundary, as well as the midcavity parallel electric fields, are part of one unified structure rather than two discrete entities. The results highlight the strong connection between the auroral density cavity and auroral acceleration as well as the necessity of studying them in a unified fashion.

  2. Measuring the Density of a Molecular Cluster Injector via Visible Emission from an Electron Beam

    SciTech Connect

    Lundberg, D. P.; Kaita, R.; Majeski, R. M.; Stotler, D. P.

    2010-06-28

    A method to measure the density distribution of a dense hydrogen gas jet is pre- sented. A Mach 5.5 nozzle is cooled to 80K to form a flow capable of molecular cluster formation. A 250V, 10mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  3. Electron density in the intermediate heights for low latitude stations: observations and models

    NASA Astrophysics Data System (ADS)

    Mosert, M.; Radicella, S. M.; Adeniyi, J. O.; Ezquer, R. G.; Jadur, C.

    The electron density (NF1) and height (hF1) of the F1 inflection point measured at three low latitude ionosonde stations were compared with the parameters of the N170 point (electron density at 170 km) and with those predicted by the IRI model. The validity of the empirical equation proposed by Radicella and Mosert to predict the height hF1 was checked. Daytime electron density profiles from Ibadan, Ouagadougou and Tucumán covering different seasonal and solar activity conditions were used in the study. The results indicate that the two points are close together most of the time and that the Radicella-Mosert formula descrbies the data better than the current IRI model.

  4. Radial Electron Temperature and Density Measurements Using Thomson Scattering System in GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Yoshikawa, M.; Ohta, K.; Wang, X.; Chikatsu, M.; Kohagura, J.; Shima, Y.; Sakamoto, M.; Imai, T.; Nakashima, Y.; Yasuhara, R.; Yamada, I.; Funaba, H.; Minami, T.

    2015-11-01

    A Thomson scattering (TS) system in GAMMA 10/PDX has been developed for the measurement of radial profiles of electron temperature and density in a single plasma and laser shot. The TS system has a large solid angle optical collection system and high-sensitivity signal detection system. The TS signals are obtained using four-channel high-speed digital oscilloscopes controlled by a Windows PC. We designed the acquisition program for six oscilloscopes to obtain 10-Hz TS signals in a single plasma shot, following which the time-dependent electron temperatures and densities can be determined. Moreover, in order to obtain larger TS signal intensity in the edge region, we added a second collection mirror. The radial electron temperatures and densities at six radial positions in GAMMA 10/PDX were successfully obtained.

  5. Electron temperature and density relationships in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Hammond, C. M.; Phillips, J. L.; Balogh, A.

    1995-01-01

    We examine 10 coronal mass ejections from the in-ecliptic portion of the Ulysses mission. Five of these CMEs are magnetic clouds. In each case we observe an inverse relationship between electron temperature and density. For protons this relationship is less clear. Earlier work has shown a similar inverse relationship for electrons inside magnetic clouds and interpreted it to mean that the polytropic index governing the expansion of electrons is less than unity. This requires electrons to be heated as the CME expands. We offer an alternative view that the inverse relationship between electron temperature and density is caused by more rapid cooling of the denser plasma through collisions. More rapid cooling of denser plasma has been shown for 1 AU measurements in the solar wind. As evidence for this hypothesis we show that the denser plasma inside the CMEs tends to be more isotropic indicating a different history of collisions for the dense plasma. Thus, although the electron temperature inside CMEs consistently shows an inverse correlation with the density, this is not an indication of the polytropic index of the plasma but instead supports the idea of collisional modification of the electrons during their transit from the sun.

  6. Rocket radio measurement of electron density in the nighttime ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, B. E.; Smith, L. G.

    1979-01-01

    One experimental technique based on the Faraday rotation effect of radio waves is presented for measuring electron density in the nighttime ionosphere at midlatitudes. High frequency linearly-polarized radio signals were transmitted to a linearly-polarized receiving system located in a spinning rocket moving through the ionosphere. Faraday rotation was observed in the reference plane of the rocket as a change in frequency of the detected receiver output. The frequency change was measured and the information was used to obtain electron density data. System performance was evaluated and some sources of error were identified. The data obtained was useful in calibrating a Langmuir probe experiment for electron density values of 100/cu cm and greater. Data from two rocket flights are presented to illustrate the experiment.

  7. Comet P/Giacobini-Zinner electron and H2O column densities from ICE and ground-based observations

    NASA Technical Reports Server (NTRS)

    Meyer-Vernet, N.; Strauss, Michael A.; Steinberg, J. L.; Spinrad, Hyron; Mccarthy, Patrick J.

    1986-01-01

    An H2O(+) emission profile extracted from an optical CCD spectrogram obtained during the ICE/Giacobini-Zinner encounter is compared to the electron density profile deduced from in-situ measurements by the ratio experiment aboard ICE. It is concluded that the electrons and the H2O(+) ions are distributed similarly 9600 km tailward from the cometary nucleus; that the ratio of number densities of H2O(+) ions to electrons is 1/4 at this point; and that the width of the plasma sheet is 16,000 km.

  8. High Temporal and Spatial Resolution Electron Density Diagnostic for the Edge Plasma based on Stark Broadening

    NASA Astrophysics Data System (ADS)

    Zafar, Abdullah; Martin, Elijah; Shannon, Steve; Isler, Ralph; Caughman, John

    2016-10-01

    Passive spectroscopic measurements of Stark broadening have been reliably used to determine electron density for decades. However, a low-density limit ( 1014 cm-3) exists due to Doppler and instrument broadening of the spectral line profile. A synthetic electron density diagnostic capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free, spectral line profile of a Balmar series transition by using an active laser based technique. The diagnostic approach outlined here greatly reduces both of these broadening contributions using Doppler-free saturation spectroscopy (DFSS), allowing access to lower density regimes. The measured profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The modeling and experimental results for this active spectroscopic technique are presented for a magnetized (<=5 T), low-density (1011-1013 cm-3) plasma. Details of applying DFSS to the plasma edge are also discussed.

  9. Electron density measurements in the ITER fusion plasma

    NASA Astrophysics Data System (ADS)

    Watts, Christopher; Udintsev, Victor; Andrew, Philip; Vayakis, George; Van Zeeland, Michael; Brower, David; Feder, Russell; Mukhin, Eugene; Tolstyakov, Sergey

    2013-08-01

    The operation of ITER requires high-quality estimates of the plasma electron density over multiple regions in the plasma for plasma evaluation, plasma control and machine protection purposes. Although the density regimes of ITER are not very different from those of existing tokamaks (1018-1021 m-3), the severe conditions of the fusion plasma environment present particular challenges to implementing these density diagnostics. In this paper we present an overview of the array of ITER electron density diagnostics designed to measure over the entire ITER domain: plasma core, pedestal, edge, scrape-off layer and divertor. It will focus on the challenges faced in making these measurements, and the technical solutions of the current designs.

  10. Electroweak charge density distributions with parity-violating electron scattering

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Ren, Zhongzhou; Xu, Chang; Xu, Renli

    2013-11-01

    Parity-violating electron scattering (PVS) is an accurate and model-independent way to investigate the weak-charge density distributions of nuclei. In this paper, we study parity-violating electron scattering with the Helm model where the effects of spin-orbit currents on nuclear weak skins are taken into account. The conditions of two PVS measurements to constrain the surface thickness σW of Helm weak-charge densities are investigated. According to the plane wave Born approximation, Apv is expressed in terms of parameters of the corresponding Helm charge and weak-charge densities. After fitting the results of Apv calculated from the phase-shift analysis method where the Coulomb distortion effects are incorporated, an empirical formula in terms of Helm model parameters for calculating Apv is obtained. If two PVS measurements with different scattering angles are carried out, the modeled weak-charge density distributions with two parameters could be extracted from this empirical formula.

  11. Electron densities and the excitation of CN in molecular clouds

    NASA Technical Reports Server (NTRS)

    Black, John H.; Van Dishoeck, Ewine F.

    1991-01-01

    In molecular clouds of modest density and relatively high fractional ionization, the rotational excitation of CN is controlled by a competition among electron impact, neutral impact and the interaction with the cosmic background radiation. The degree of excitation can be measured through optical absorption lines and millimeter-wave emission lines. The available, accurate data on CN in diffuse and translucent molecular clouds are assembled and used to determine electron densities. The derived values, n(e) = roughly 0.02 - 0.5/cu cm, imply modest neutral densities, which generally agree well with determinations by other techniques. The absorption- and emission-line measurements of CN both exclude densities higher than n(H2) = roughly 10 exp 3.5/cu cm on scales varying from 0.001 to 60 arcsec in these clouds.

  12. Isotope Generated Electron Density in Silicon Carbide Direct Energy Converters

    DTIC Science & Technology

    2006-10-01

    output of a diode into a resistively loaded circuit. This paper describes the use of a nuclear scattering code ( MCNPX ) to calculate the increased...used in the MCNPX calculations . The range constant supplied in section 3.2 (9) must be multiplied by the density of the material used. The density... MCNPX code. Instead, we are only modeling the SiC material and attempting to calculate how many free-electrons are being generated within as a

  13. Simultaneous determination of electron beam profile and material response using self-consistent iterative method

    NASA Astrophysics Data System (ADS)

    Kandel, Yudhishthir; Denbeaux, Gregory

    2016-08-01

    We develop a novel iterative method to accurately measure electron beam shape (current density distribution) and monotonic material response as a function of position. A common method is to scan an electron beam across a knife edge along many angles to give an approximate measure of the beam profile, however such scans are not easy to obtain in all systems. The present work uses only an electron beam and multiple exposed regions of a thin film of photoresist to measure the complete beam profile for any beam shape, where the material response is characterized externally. This simplifies the setup of new experimental tools. We solve for self-consistent photoresist thickness loss response to dose and the electron beam profile simultaneously by optimizing a novel functional iteratively. We also show the successful implementation of the method in a real world data set corrupted by noise and other experimental variabilities.

  14. Effect of q-nonextensive parameter and saturation time on electron density steepening in electron-positron-ion plasmas

    SciTech Connect

    Hashemzadeh, M.

    2015-11-15

    The effect of q-nonextensive parameter and saturation time on the electron density steepening in electron-positron-ion plasmas is studied by particle in cell method. Phase space diagrams show that the size of the holes, and consequently, the number of trapped particles strongly depends on the q-parameter and saturation time. Furthermore, the mechanism of the instability and exchange of energy between electron-positron and electric field is explained by the profiles of the energy density. Moreover, it is found that the q-parameter, saturation time, and electron and positron velocities affect the nonlinear evolution of the electron density which leads to the steepening of its structure. The q-nonextensive parameter or degree of nonextensivity is the relation between temperature gradient and potential energy of the system. Therefore, the deviation of q-parameter from unity indicates the degree of inhomogeneity of temperature or deviation from equilibrium. Finally, using the kinetic theory, a generalized q-dispersion relation is presented for electron-positron-ion plasma systems. It is found that the simulation results in the linear regime are in good agreement with the growth rate results obtained by the kinetic theory.

  15. Effect of q-nonextensive parameter and saturation time on electron density steepening in electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Hashemzadeh, M.

    2015-11-01

    The effect of q-nonextensive parameter and saturation time on the electron density steepening in electron-positron-ion plasmas is studied by particle in cell method. Phase space diagrams show that the size of the holes, and consequently, the number of trapped particles strongly depends on the q-parameter and saturation time. Furthermore, the mechanism of the instability and exchange of energy between electron-positron and electric field is explained by the profiles of the energy density. Moreover, it is found that the q-parameter, saturation time, and electron and positron velocities affect the nonlinear evolution of the electron density which leads to the steepening of its structure. The q-nonextensive parameter or degree of nonextensivity is the relation between temperature gradient and potential energy of the system. Therefore, the deviation of q-parameter from unity indicates the degree of inhomogeneity of temperature or deviation from equilibrium. Finally, using the kinetic theory, a generalized q-dispersion relation is presented for electron-positron-ion plasma systems. It is found that the simulation results in the linear regime are in good agreement with the growth rate results obtained by the kinetic theory.

  16. Mobility of electrons in supercritical krypton: Role of density fluctuations

    SciTech Connect

    Nishikawa, Masaru; Holroyd, Richard A.; Preses, Jack M.

    2007-07-07

    Excess electrons were generated in supercritical krypton by means of pulsed x-ray irradiation, and the electron transport phenomena were studied. Electron signals immediately after a 30 ps pulse showed a distinctive feature characteristic of the presence of the Ramsauer-Townsend minimum in the momentum transfer cross section. The dependence of the drift velocity v{sub D} on field strength was found to be concave upward in the low field region and then to go through a maximum with increasing field strength, which is also typical of the presence of a minimum in the scattering cross section at an intermediate field strength. A minimum in the electron mobility was observed at about one-half the critical density. The acoustical phonon scattering model, which successfully explained the mobility change in this density region in supercritical xenon, was again found to account for the mobility in supercritical krypton.

  17. Statistical quality indicators for electron-density maps

    SciTech Connect

    Tickle, Ian J.

    2012-04-01

    A likelihood-based metric for scoring the local agreement of a structure model with the observed electron density is described. The commonly used validation metrics for the local agreement of a structure model with the observed electron density, namely the real-space R (RSR) and the real-space correlation coefficient (RSCC), are reviewed. It is argued that the primary goal of all validation techniques is to verify the accuracy of the model, since precision is an inherent property of the crystal and the data. It is demonstrated that the principal weakness of both of the above metrics is their inability to distinguish the accuracy of the model from its precision. Furthermore, neither of these metrics in their usual implementation indicate the statistical significance of the result. The statistical properties of electron-density maps are reviewed and an improved alternative likelihood-based metric is suggested. This leads naturally to a χ{sup 2} significance test of the difference density using the real-space difference density Z score (RSZD). This is a metric purely of the local model accuracy, as required for effective model validation and structure optimization by practising crystallographers prior to submission of a structure model to the PDB. A new real-space observed density Z score (RSZO) is also proposed; this is a metric purely of the model precision, as a substitute for other precision metrics such as the B factor.

  18. Dust charging and density conditions deduced from observations of PMWE modulated by artificial electron heating

    NASA Astrophysics Data System (ADS)

    Havnes, O.; La Hoz, C.; Rietveld, M. T.; Kassa, M.; Baroni, G.; Biebricher, A.

    2011-12-01

    We present an analysis of relatively strong Polar Mesospheric Winter Echoes (PMWE) under artificial electron heating that changes the PMWE intensity. A major purpose is to find reliable estimates of the relaxation time of the heater modified PMWE to their undisturbed state during the heater switch-off phase; the implications regarding charge/discharge mechanisms; and to exploit the diagnostic potential of artificial electron heating. The relaxation time is between 60 to 70 s for the regions with strong PMWE layers and substantial electron heating. This short relaxation time, related to the variation of charges on the nanometer dust which most likely is present in PMWE, rules out ion attachment as the mechanism to bring the dust charges to their equilibrium state. Neutral winds, sweeping the heated electrons out of the radar beam, are unlikely to be the cause of the observed relaxation, since this requires winds of around 100 m s-1. The most probable cause is photo detachment by which negatively charged dust can lose excess electrons by photon absorption with energies less than the dust material's work function. By comparing the observed heating with heating model profiles, the electron density at 65 km height must have been of the order of 3 × 109 m-3. This agrees with PMWE occurring mainly during disturbed conditions with high electron densities. Our results also indicate that in the strongest PMWE layers, electron bite-outs exist consistent with the role of charged dust particles in the mechanism of PMWE and implying larger dust densities.

  19. EISCAT (European Incoherent Scatter Radar) Electron Density Studies.

    DTIC Science & Technology

    1987-09-08

    lists the corresponding measurements of electron content made by HILAT and calculated from SPI03 measurements for each of the 7 coincident runs. The...TEC measured by HILAT and TEC calculated from EISCAT measurements, the HILAT values being always larger than those from EISCAT. The measurements...HILAT results could be due to several factors. The EISCAT value was calculated by integrating electron density over the range gates 184 km to 746.5

  20. Electron beam control using shock-induced density downramp injection

    NASA Astrophysics Data System (ADS)

    Swanson, K.; Tsai, H.-E.; Barber, S.; Lehe, R.; Mao, H.-S.; Steinke, S.; van Tilborg, J.; Geddes, C. G. R.; Leemans, W. P.

    2017-03-01

    In these experiments, we improve the quality of electrons injected along a shock-induced density downramp. We demonstrate that beam ellipticity and steering are influenced by the shock front tilt, and we present simple models to explain these effects. By adjusting the shock front angle, we minimize the beam's off-axis steering and ellipticity, producing high-quality electron beams over a tunable energy range.

  1. Empirical models of the electron temperature and density in the nightside venus ionosphere.

    PubMed

    Brace, L H; Theis, R F; Niemann, H B; Mayr, H G; Hoegy, W R; Nagy, A F

    1979-07-06

    Empirical models of the electron temperature and electron density of the late afternoon and nightside Venus ionosphere have been derived from Pioneer Venus measurements acquired between 10 December 1978 and 23 March 1979. The models describe the average ionosphere conditions near 18 degrees N latitude between 150 and 700 kilometers altitude for solar zenith angles of 80 degrees to 180 degrees . The average index of solar flux was 200. A major feature of the density model is the factor of 10 decrease beyond 90 degrees followed by a very gradual decrease between 120 degrees and 180 degrees . The density at 150 degrees is about five times greater than observed by Venera 9 and 10 at solar minimum (solar flux approximately 80), a difference that is probably related to the effects of increased solar activity on the processes that maintain the nightside ionosphere. The nightside electron density profile from the model (above 150 kilometers) can be reproduced theoretically either by transport of 0(+) ions from the dayside or by precipitation of low-energy electrons. The ion transport process would require a horizontal flow velocity of about 300 meters per second, a value that is consistent with other Pioneer Venus observations. Although currently available energetic electron data do not yet permit the role of precipitation to be evaluated quantitatively, this process is clearly involved to some extent in the formation of the nightside ionosphere. Perhaps the most surprising feature of the temperature model is that the electron temperature remains high throughout the nightside ionosphere. These high nocturnal temperatures and the existence of a well-defined nightside ionopause suggest that energetic processes occur across the top of the entire nightside ionosphere, maintaining elevated temperatures. A heat flux of 2 x 10(10) electron volts per square centimeter per second, introduced at the ionopause, is consistent with the average electron temperature profile on the

  2. Two-Dimensional Electron Density Measurement of Positive Streamer Discharge in Atmospheric-Pressure Air

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki

    2016-09-01

    The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.

  3. Modeling Ionosphere Environments: Creating an ISS Electron Density Tool

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Minow, Joseph I.

    2011-01-01

    The International Space Station (ISS) maintains an altitude typically between 300 km and 400 km in low Earth orbit (LEO) which itself is situated in the Earth's ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. It is important to understand what electron density the spacecraft is/will be operating in because the ionized gas along the ISS orbit interacts with the electrical power system resulting in charging of the vehicle. One instrument that is already operational onboard the ISS with a goal of monitoring electron density, electron temperature, and ISS floating potential is the Floating Potential Measurement Unit (FPMU). Although this tool is a valuable addition to the ISS, there are limitations concerning the data collection periods. The FPMU uses the Ku band communication frequency to transmit data from orbit. Use of this band for FPMU data runs is often terminated due to necessary observation of higher priority Extravehicular Activities (EVAs) and other operations on ISS. Thus, large gaps are present in FPMU data. The purpose of this study is to solve the issue of missing environmental data by implementing a secondary electron density data source, derived from the COSMIC satellite constellation, to create a model of ISS orbital environments. Extrapolating data specific to ISS orbital altitudes, we model the ionospheric electron density along the ISS orbit track to supply a set of data when the FPMU is unavailable. This computer model also provides an additional new source of electron density data that is used to confirm FPMU is operating correctly and supplements the original environmental data taken by FPMU.

  4. The Electron Density in Explosive Transition Region Events Observed by IRIS

    NASA Astrophysics Data System (ADS)

    Doschek, G. A.; Warren, H. P.; Young, P. R.

    2016-11-01

    We discuss the intensity ratio of the O iv line at 1401.16 Å to the Si iv line at 1402.77 Å in Interface Region Imaging Spectrograph (IRIS) spectra. This intensity ratio is important if it can be used to measure high electron densities that cannot be measured using line intensity ratios of two different O iv lines from the multiplet within the IRIS wavelength range. Our discussion is in terms of considerably earlier observations made from the Skylab manned space station and other spectrometers on orbiting spacecraft. The earlier data on the O iv and Si iv ratio and other intersystem line ratios not available to IRIS are complementary to IRIS data. In this paper, we adopt a simple interpretation based on electron density. We adopt a set of assumptions and calculate the electron density as a function of velocity in the Si iv line profiles of two explosive events. At zero velocity the densities are about 2-3 × 1011 cm-3, and near 200 km s-1 outflow speed the densities are about 1012 cm-3. The densities increase with outflow speed up to about 150 km s-1 after which they level off. Because of the difference in the temperature of formation of the two lines and other possible effects such as non-ionization equilibrium, these density measurements do not have the precision that would be available if there were some additional lines near the formation temperature of O iv.

  5. Asymptotic expansions of the electron momentum densities of the atoms from hydrogen through lawrencium

    SciTech Connect

    Thakkar, A.J.; Wonfor, A.L.; Pedersen, W.A.

    1987-07-15

    The first three coefficients in each of the small p Maclaurin and large p asymptotic expansions of the spherically averaged electron momentum densities of the ground states of the 103 neutral atoms from hydrogen through lawrencium, 73 atomic cations and 41 atomic anions are calculated from nonrelativistic self-consistent-field wave functions. These coefficients should be useful in the analysis of experimental Compton profiles. An analysis of the periodic behavior of these coefficients is given.

  6. Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team

    2015-01-01

    ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the

  7. Statistical studies of electron density around lunar wake boundary derived from WFC observation onboard KAGUYA

    NASA Astrophysics Data System (ADS)

    Kasahara, Y.; Kanatani, K.; Goto, Y.; Hashimoto, K.; Omura, Y.; Kumamoto, A.; Ono, T.; Nishino, M. N.; Saito, Y.; Tsunakawa, H.

    2011-12-01

    The waveform capture (WFC) [1,2] onboard KAGUYA measured two components of electric wave signals detected by the two orthogonal 30 m tip-to-tip antennas from 100Hz to 1MHz during the mission period of KAGUYA from November, 2007 to June 2009. By taking advantage of a moon orbiter, the WFC was expected to measure plasma waves related to solar wind-moon interaction, mini-magnetospheres caused by magnetic anomaly on the lunar surface, and radio emissions to be observed from the moon. Because the moon is basically non-magnetized, the solar wind particles directly hit the lunar surface and a plasma cavity called the "lunar wake" is created behind the moon. We investigated electron density profile around the terminator of the moon from the local plasma frequency obtained by WFC. Because our measurement is a direct method measuring the local plasma frequency, we expect absolute density can be derived. KAGUYA experienced encounters with the lunar wake every 2 hours at an altitude of ~100km in the nominal mission, we first analyzed electron density statistically when KAGUYA was located in the solar wind comparing with the data from WIND. Using these observation data, we constructed an electron density model around the lunar wake boundary region. We also report several interesting feature in the profile such as asymmetric structure depending on the direction of interplanetary magnetic field (IMF). KAGUYA was descended to the 50 km altitude and was descended again down to 10-30km in lower altitude (perilune). Electron density in the lower altitude region is also studied using the data obtained in the extended mission. We found electron density slightly increases in the lower altitude region. [1] Y. Kasahara et al., Earth, Planets and Space, 60, 341-351, 2008. [2] T. Ono et al., Space Science Review, doi:10.1007/s11214-010-9673-8, 2010.

  8. Measuring Protoplanetary Disk Gas Surface Density Profiles with ALMA

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; McPartland, Conor

    2016-10-01

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams & Best to show that gas surface density profiles can be measured from high fidelity 13CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M gas = 0.048 M ⊙, and accretion disk characteristic size R c = 213 au and gradient γ = 0.39. The same parameters match the C18O 2-1 image and indicate an abundance ratio [12CO]/[C18O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large 13CO 2-1 image library and fit simulated data. For disks with gas masses 3-10 M Jup at 150 pc, ALMA observations with a resolution of 0.″2-0.″3 and integration times of ˜20 minutes allow reliable estimates of R c to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.

  9. Extreme atmospheric electron densities created by extensive air showers

    NASA Astrophysics Data System (ADS)

    Rutjes, Casper; Camporeale, Enrico; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Trinh, Gia

    2016-04-01

    A sufficient density of free electrons and strong electric fields are the basic requirements to start any electrical discharge. In the context of thunderstorm discharges it has become clear that in addition droplets and or ice particles are required to enhance the electric field to values above breakdown. In our recent study [1] we have shown that these three ingredients have to interplay to allow for lightning inception, triggered by an extensive air shower event. The extensive air showers are a very stochastic natural phenomenon, creating highly coherent bursts of extreme electron density in our atmosphere. Predicting these electron density bursts accurately one has to take the uncertainty of the input variables into account. To this end we use uncertainty quantification methods, like in [2], to post-process our detailed Monte Carlo extensive air shower simulations, done with the CORSIKA [3] software package, which provides an efficient and elegant way to determine the distribution of the atmospheric electron density enhancements. We will present the latest results. [1] Dubinova, A., Rutjes, C., Ebert, E., Buitink, S., Scholten, O., and Trinh, G. T. N. "Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers." PRL 115 015002 (2015) [2] G.J.A. Loeven, J.A.S. Witteveen, H. Bijl, Probabilistic collocation: an efficient nonintrusive approach for arbitrarily distributed parametric uncertainties, 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, 2007, AIAA-2007-317 [3] Heck, Dieter, et al. CORSIKA: A Monte Carlo code to simulate extensive air showers. No. FZKA-6019. 1998.

  10. High-β plasma formation and observation of peaked density profile in RT-1

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Yoshida, Z.; Morikawa, J.; Yano, Y.; Mizushima, T.; Ogawa, Y.; Furukawa, M.; Kawai, Y.; Harima, K.; Kawazura, Y.; Kaneko, Y.; Tadachi, K.; Emoto, S.; Kobayashi, M.; Sugiura, T.; Vogel, G.

    2011-06-01

    High-β ECH plasma is generated and stably sustained in a magnetospheric configuration, the Ring Trap 1 (RT-1) device, generated by a levitated dipole field magnet. Geomagnetic-field compensation and optimized operation have realized drastic improvements in plasma properties. The maximum local β value has reached 70% and the pressure profiles have a rather steep gradient near the superconducting magnet. Electrons of the high-β plasma typically consist of 70% hot (~50 keV) and the rest of cold populations. Confinement time of the hot component plasma is 0.5 s with the optimized neutral gas pressure. By removing the coil support structure, the peaked density profile is observed in the strong field region.

  11. A simple frequency sweep linearization method for FM density profile reflectometry

    NASA Astrophysics Data System (ADS)

    Liu, Adi; Hu, Jianqiang; Doyle, Edward; Zhang, Jin; Li, Hong; Zhou, Chu; Zhang, Xiaohui; Wang, Mingyuan; Lan, Tao; Xie, Jinglin; Liu, Wandong; Yu, Changxuan

    2015-11-01

    Frequency modulated, continuous wave (FMCW) reflectometry is widely used to measure the electron density profile on fusion devices. To ensure the output intermediate frequency signal is proportional to the propagation delay time, the frequency sweep should be linearized, especially for reflectometry with sweeping periods of only a few microseconds. We introduce a simple dynamic calibration technique to linearize the frequency sweep based on digital complex demodulation methods, without using a Fourier transform, which would induce a trade-off between frequency and time resolution. The technique is convenient as it can be done in the same conditions as for plasma measurements. The method is in use on the EAST profile reflectometer, and results will be presented. Work was supported by the Natural Science Foundation of China (NSFC) under 11475173, National Magnetic Confinement Fusion Energy Development Program of China under 2013GB106002 and 2014GB109002, and US DOE Grants DE- SC0010424 and DE-SC0010469.

  12. Pseudoconvexity of the atomic electron density: A numerical study

    NASA Astrophysics Data System (ADS)

    Esquivel, Rodolfo O.; Sagar, Robin P.; Smith, Vedene H., Jr.; Chen, Jiqiang; Stott, M. J.

    1993-06-01

    The curvature, ρ''(r), of the atomic electron density ρ(r) is studied using results from a bare-Coulomb-field (BCF) model, Hartree-Fock (HF), and configuration-interaction (CI) calculations. A region of nonconvexity in ρ(r), previously reported by Angulo, Dehesa, and Gálvez [Phys. Rev. A 42, 641 (1990)] for light atoms in a Hartree-Fock framework, is investigated for all atoms up to Z=92 and is found not to be an artifact of the basis set or the HF model. Numerical results for the BCF model show that the total electron density of an arbitrary number of closed shells is convex. However, for the same model with electrons filling orbitals according to Stoner's restriction we find that nonconvexity of the density is a periodic property appearing around closed-shell ground-state hydrogenic configurations. Cusp conditions, reported earlier by Esquivel et al. [Phys. Rev. A 47, 936 (1993)] for the second derivative of the BCF density are verified for model atoms with s and p subshells. Using wave functions of near-HF accuracy we have found a region of nonconvexity in ρ(r) for atoms with Z=3-6, 16-32, and 45-92. Highly correlated densities of CI and Hylleraas-type quality for atoms of Li and Be isoelectronic sequences show that the nonconvex region of ρ(r) is largely unaffected by the inclusion of electron correlation. These results, coupled with those from the BCF model, lead us to suggest that it is the bare Coulomb field of the nucleus that is mainly responsible for the appearance of nonconvex regions in atoms. Furthermore, the degree of nonconvexity is shown to decrease as Z increases along the isoelectronic series. The contributions of different spin densities to the nonconvex electron densities is also studied. Finally, the behavior of the curvature of the electron density far from the nucleus is investigated. The ratio ρ''(r)/ρ(r) is found to approach an asymptotic value from above or below, according to the magnitude of the ionization potential.

  13. Relations among several nuclear and electronic density functional reactivity indexes

    NASA Astrophysics Data System (ADS)

    Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel

    2003-11-01

    An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.

  14. FUSION++: A New Data Assimilative Model for Electron Density Forecasting

    NASA Astrophysics Data System (ADS)

    Bust, G. S.; Comberiate, J.; Paxton, L. J.; Kelly, M.; Datta-Barua, S.

    2014-12-01

    There is a continuing need within the operational space weather community, both civilian and military, for accurate, robust data assimilative specifications and forecasts of the global electron density field, as well as derived RF application product specifications and forecasts obtained from the electron density field. The spatial scales of interest range from a hundred to a few thousand kilometers horizontally (synoptic large scale structuring) and meters to kilometers (small scale structuring that cause scintillations). RF space weather applications affected by electron density variability on these scales include navigation, communication and geo-location of RF frequencies ranging from 100's of Hz to GHz. For many of these applications, the necessary forecast time periods range from nowcasts to 1-3 hours. For more "mission planning" applications, necessary forecast times can range from hours to days. In this paper we present a new ionosphere-thermosphere (IT) specification and forecast model being developed at JHU/APL based upon the well-known data assimilation algorithms Ionospheric Data Assimilation Four Dimensional (IDA4D) and Estimating Model Parameters from Ionospheric Reverse Engineering (EMPIRE). This new forecast model, "Forward Update Simple IONosphere model Plus IDA4D Plus EMPIRE (FUSION++), ingests data from observations related to electron density, winds, electric fields and neutral composition and provides improved specification and forecast of electron density. In addition, the new model provides improved specification of winds, electric fields and composition. We will present a short overview and derivation of the methodology behind FUSION++, some preliminary results using real observational sources, example derived RF application products such as HF bi-static propagation, and initial comparisons with independent data sources for validation.

  15. Sorting carbon nanotubes by electronic structure using density differentiation.

    PubMed

    Arnold, Michael S; Green, Alexander A; Hulvat, James F; Stupp, Samuel I; Hersam, Mark C

    2006-10-01

    The heterogeneity of as-synthesized single-walled carbon nanotubes (SWNTs) precludes their widespread application in electronics, optics and sensing. We report on the sorting of carbon nanotubes by diameter, bandgap and electronic type using structure-discriminating surfactants to engineer subtle differences in their buoyant densities. Using the scalable technique of density-gradient ultracentrifugation, we have isolated narrow distributions of SWNTs in which >97% are within a 0.02-nm-diameter range. Furthermore, using competing mixtures of surfactants, we have produced bulk quantities of SWNTs of predominantly a single electronic type. These materials were used to fabricate thin-film electrical devices of networked SWNTs characterized by either metallic or semiconducting behaviour.

  16. Fast electronic resistance switching involving hidden charge density wave states

    NASA Astrophysics Data System (ADS)

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-05-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T-TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states.

  17. Fast electronic resistance switching involving hidden charge density wave states

    PubMed Central

    Vaskivskyi, I.; Mihailovic, I. A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D.

    2016-01-01

    The functionality of computer memory elements is currently based on multi-stability, driven either by locally manipulating the density of electrons in transistors or by switching magnetic or ferroelectric order. Another possibility is switching between metallic and insulating phases by the motion of ions, but their speed is limited by slow nucleation and inhomogeneous percolative growth. Here we demonstrate fast resistance switching in a charge density wave system caused by pulsed current injection. As a charge pulse travels through the material, it converts a commensurately ordered polaronic Mott insulating state in 1T–TaS2 to a metastable electronic state with textured domain walls, accompanied with a conversion of polarons to band states, and concurrent rapid switching from an insulator to a metal. The large resistance change, high switching speed (30 ps) and ultralow energy per bit opens the way to new concepts in non-volatile memory devices manipulating all-electronic states. PMID:27181483

  18. Measurements of neutral density profiles using a deuterium Balmer-alpha diagnostic in the C-2 FRC plasma

    SciTech Connect

    Gupta, Deepak K.; Deng, B. H.; Knapp, K.; Sun, X.; Thompson, M. C.

    2012-10-15

    In C-2 field-reversed configuration (FRC) device, low neutral density outside the FRC separatrix is required to minimize the charge exchange loss of fast particles. Titanium gettering is used in C-2 to reduce the wall recycling and keep the neutral density low in plasma edge. The measurements of neutral density radial profile are desirable to understand the plasma recycling and the effects of titanium gettering. These measurements are also needed to study the interaction of neutral beams with FRC plasma and confinement of fast ions. Diagnostic based on absolute deuterium Balmer-alpha (D-alpha) radiation measurements is developed and deployed on C-2 device to measure the radial profile of neutral density. Simultaneous measurements of electron density and temperature are done using CO{sub 2} interferometer, Thomson scattering, and triple probes diagnostics along with absolute D-alpha radiation. Abel inversion was performed to get the time dependent radial profile of the local D-alpha emission density. Neutral density profiles are obtained under different machine conditions of titanium deposition.

  19. Multiband reflectometry system for density profile measurement with high temporal resolution on JET tokamaka)

    NASA Astrophysics Data System (ADS)

    Sirinelli, A.; Alper, B.; Bottereau, C.; Clairet, F.; Cupido, L.; Fessey, J.; Hogben, C.; Meneses, L.; Sandford, G.; Walsh, M. J.; JET-EFDA Contributors

    2010-10-01

    A new system has been installed on the JET tokamak consisting of six independent fast-sweeping reflectometers covering four bands between 44 and 150 GHz and using orthogonal polarizations. It has been designed to measure density profiles from the plasma edge to the center, launching microwaves through 40 m of oversized corrugated waveguides. It has routinely produced density profiles with a maximum repetition rate of one profile every 15 μs and up to 100 000 profiles per pulse.

  20. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Researcha)

    NASA Astrophysics Data System (ADS)

    Nam, Y. U.; Chung, J.

    2010-10-01

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  1. Control of the current density profile with lower hybrid current drive on PBX-M

    SciTech Connect

    Bell, R.E.; Bernabei, S.; Chu, T.K.; Gettelfinger, G.; Greenough, N.; Hatcher, R.; Ignat, D.; Jardin, S.; Kaita, R.; Kaye, S.; Kozub, T.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Sauthoff, N.; Sesnic, S.; Sun, Y.; Takahashi, H.; Tighe, W.; Valeo, E.; von Goeler, S.; Blush, L.; Doerner, R.; Schmitz, L.; Tynan, G.; Dunlap, J.; England, A.; Harris, J.; Hirshman, S.; Isler, R.; Lee, D.; Jones, S.; Kesner, J.; Luckhardt, S.; Paoletti, F.; Levinton, F.; Timini, F.

    1993-07-01

    Lower hybrid current drive (LHCD) is being explored as a means to control the current density profile on PBX-M with the goal of raising the central safety factor q(O) to values of 1.5-2 to facilitate access to a full-volume second stable regime. Initial experiments have been conducted with up to 400 kW of 4.6 GHz LH power in circular and indented plasmas with modest parameters. A tangential-viewing two-dimensional hard x-ray imaging diagnostic has been used to observe the bremsstrahlung emission from the suprathermal electrons generated during LHCD. Hollow hard x-ray images have indicated off-axis localization of the driven current. A serious obstacle to the control of the current density profile with LHCD is the concomitant generation of MHD activity, which can seriously degrade the confinement of suprathermal electrons. By combining neutral beam injection with LHCD, an MHD-free condition has been obtained where q(O) is raised above 1.

  2. Electron Density Determination, Bonding and Properties of Tetragonal Ferromagnetic Intermetallics

    SciTech Connect

    Wiezorek, Jorg

    2016-09-01

    The project developed quantitative convergent-beam electron diffraction (QCBED) methods by energy-filtered transmission electron microscopy (EFTEM) and used them in combination with density functional theory (DFT) calculations to study the electron density distribution in metallic and intermetallic phases with different cubic and non-cubic crystal structures that comprise elements with d-electron shells. The experimental methods developed here focus on the bonding charge distribution as one of the quantum mechanical characteristics central for understanding of intrinsic properties and validation of DFT calculations. Multiple structure and temperature factors have been measured simultaneously from nano-scale volumes of high-quality crystal with sufficient accuracy and precision for comparison with electron density distribution calculations by DFT. The often anisotropic temperature factors for the different atoms and atom sites in chemically ordered phases can differ significantly from those known for relevant pure element crystals due to bonding effects. Thus they have been measured from the same crystal volumes from which the structure factors have been determined. The ferromagnetic ordered intermetallic phases FePd and FePt are selected as model systems for 3d-4d and 3d-5d electron interactions, while the intermetallic phases NiAl and TiAl are used to probe 3d-3p electron interactions. Additionally, pure transition metal elements with d-electrons have been studied. FCC metals exhibit well defined delocalized bonding charge in tetrahedral sites, while less directional, more distributed bonding charge attains in BCC metals. Agreement between DFT calculated and QCBED results degrades as d-electron levels fill in the elements, and for intermetallics as d-d interactions become prominent over p-d interactions. Utilizing the LDA+U approach enabled inclusion of onsite Coulomb-repulsion effects in DFT calculations, which can afford improved agreements with QCBED results

  3. Collimated fast electron beam generation in critical density plasma

    SciTech Connect

    Iwawaki, T. Habara, H.; Morita, K.; Tanaka, K. A.; Baton, S.; Fuchs, J.; Chen, S.; Nakatsutsumi, M.; Rousseaux, C.; Filippi, F.; Nazarov, W.

    2014-11-15

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 10{sup 14 }W/cm{sup 2}, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 10{sup 14 }W/cm{sup 2}, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion.

  4. Reconstruction of the Density Profile for the EAST Tokamak Based on Polarimeter/Interferometer and Microwave Reflectometer Systems

    NASA Astrophysics Data System (ADS)

    Zhu, Xiang; Zeng, Long; Liu, Haiqing; Jie, Yinxian; Zhang, Shoubiao; Hu, Jiansheng; Gao, Xiang

    2015-09-01

    A plasma density profile reconstruction procedure based on the Park matrix method has been developed for both circular and elongated plasma configuration on the Experimental Advanced Superconducting Tokamak (EAST). This method incorporates the line integrated electron density measured by the HCN interferometer and polarimeter/interferometer (POINT) system, the equilibrium fit (EFIT) based on magnetic measurements and the edge electron density profile provided by the microwave reflectometer. It is shown that when the magnetic flux surfaces are slightly corrected, the fitting error is less than 5% in comparison with the measurement data. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106003, 2014GB106004 and 2014GB106002) and National Natural Science Foundation of China (Nos. 11475221 and 11105184)

  5. Predictions of electron temperatures in the Mars ionosphere and their effects on electron densities

    NASA Astrophysics Data System (ADS)

    Withers, Paul; Fallows, Kathryn; Matta, Majd

    2014-04-01

    Observations of peak electron densities in the Mars ionosphere are well fit by a simplistic theory that assumes the electron temperature, Te, at the peak remains constant as solar zenith angle, χ, changes. However, Te ought to vary with both altitude and χ. Here we use an existing numerical model of ionospheric energetics, which includes both vertical and diurnal variations in temperatures, to predict that Te at the ionospheric peak is relatively independent of χ. This model accurately predicts the observed dependence of peak electron density on χ, whereas predictions using Viking-based electron temperatures that are held constant with time do not. A simplified analytic model is developed to interpret these results further. It predicts that the difference between electron and neutral temperatures is proportional to the ratio of electron heating rate to electron production rate and proportional to the square root of solar irradiance.

  6. Density and x-ray emission profile relationships in highly ionized high-Z laser-produced plasmas

    SciTech Connect

    Yoshida, Kensuke; Fujioka, Shinsuke Ugomori, Teruyuki; Tanaka, Nozomi; Azechi, Hiroshi; Nishimura, Hiroaki; Higashiguchi, Takeshi Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryoichi; Ejima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Sunahara, Atsushi; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Yanagida, Tatsuya

    2015-03-23

    We present a benchmark measurement of the electron density profile in the region where the electron density is 10{sup 19 }cm{sup –3} and where the bulk of extreme ultraviolet (EUV) emission occurs from isotropically expanding spherical high-Z gadolinium plasmas. It was found that, due to opacity effects, the observed EUV emission is mostly produced from an underdense region. We have analyzed time-resolved emission spectra with the aid of atomic structure calculations and find the multiple ion charge states around 18+ during the laser pulse irradiation.

  7. Nearly degenerate electron distributions and superluminal radiation densities

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2010-02-01

    Polylogarithmic fugacity expansions of the partition function, the caloric and thermal equations of state, and the specific heat of fermionic power-law distributions are derived in the nearly degenerate low-temperature/high-density quantum regime. The spectral functions of an ultra-relativistic electron plasma are obtained by averaging the tachyonic radiation densities of inertial electrons with Fermi power-laws, whose entropy is shown to be extensive and stable. The averaged radiation densities are put to test by performing tachyonic cascade fits to the γ-ray spectrum of the TeV blazar Markarian 421 in a low and high emission state. Estimates of the thermal electron plasma in this active galactic nucleus are extracted from the spectral fits, such as temperature, number count, and internal energy. The tachyonic cascades reproduce the quiescent as well as a burst spectrum of the blazar obtained with imaging atmospheric Cherenkov detectors. Double-logarithmic plots of the differential tachyon flux exhibit intrinsic spectral curvature, caused by the Boltzmann factor of the electron gas.

  8. Statistical quality indicators for electron-density maps.

    PubMed

    Tickle, Ian J

    2012-04-01

    The commonly used validation metrics for the local agreement of a structure model with the observed electron density, namely the real-space R (RSR) and the real-space correlation coefficient (RSCC), are reviewed. It is argued that the primary goal of all validation techniques is to verify the accuracy of the model, since precision is an inherent property of the crystal and the data. It is demonstrated that the principal weakness of both of the above metrics is their inability to distinguish the accuracy of the model from its precision. Furthermore, neither of these metrics in their usual implementation indicate the statistical significance of the result. The statistical properties of electron-density maps are reviewed and an improved alternative likelihood-based metric is suggested. This leads naturally to a χ(2) significance test of the difference density using the real-space difference density Z score (RSZD). This is a metric purely of the local model accuracy, as required for effective model validation and structure optimization by practising crystallographers prior to submission of a structure model to the PDB. A new real-space observed density Z score (RSZO) is also proposed; this is a metric purely of the model precision, as a substitute for other precision metrics such as the B factor.

  9. An electronic pressure profile display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPT) unit which interfaces with a host computer. The host computer collects the pressure data from the DPT unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  10. An Electronic Pressure Profile Display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  11. Local ionospheric electron density reconstruction from simultaneous ground-based GNSS and ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Stankov, S. M.; Warnant, R.; Stegen, K.

    2009-04-01

    The purpose of the LIEDR (Local Ionospheric Electron Density Reconstruction) system is to acquire and process data from simultaneous ground-based GNSS TEC and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution in the local ionosphere. LIEDR is primarily designed to operate in real time for service applications, and, if sufficient data from solar and geomagnetic observations are available, to provide short-term forecast as well. For research applications and further development of the system, a post-processing mode of operation is also envisaged. In essence, the reconstruction procedure consists in the following. The high-precision ionosonde measurements are used for directly obtaining the bottom part of the electron density profile. The ionospheric profiler for the lower side (i.e. below the density peak height, hmF2) is based on the Epstein layer functions using the known values of the critical frequencies, foF2 and foE, and the propagation factor, M3000F2. The corresponding bottom-side part of the total electron content is calculated from this profile and is then subtracted from the GPS TEC value in order to obtain the unknown portion of the TEC in the upper side (i.e. above the hmF2). Ionosonde data, together with the simultaneously-measured TEC and empirically obtained O+/H+ ion transition level values, are all required for the determination of the topside electron density scale height. The topside electron density is considered as a sum of the constituent oxygen and hydrogen ion densities with unknown vertical scale heights. The latter are calculated by solving a system of transcendental equations that arise from the incorporation of a suitable ionospheric profiler (Chapman, Epstein, or Exponential) into formulae describing ionospheric conditions (plasma quasi-neutrality, ion transition level). Once the topside scale heights are determined, the construction of the vertical electron density distribution in the

  12. Radial Density Profile in the SSX Plasma Wind Tunnel using a Double Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Weinhold, D. L.; Flanagan, K.; Gray, T.; Brown, M. R.

    2011-10-01

    We present preliminary results from a moveable double Langmuir probe in the present plasma wind tunnel configuration of SSX. The probe is designed to measure radial profiles of electron density (ne) and electron temperature (Te) across the midplane with a 1 cm resolution. Line-averaged densities from He-Ne interferometry show densities of 1 - 5 ×1015 cm-3 . In addition to mean values, we will also present electrostatic fluctuations and correlations with magnetic field measurements. The double Langmuir probe also measures local Te. Line-averaged measurements from VUV spectroscopy indicate Te ~ 10 eV . The Langmuir probe stalk diameter measures 6 . 5 mm and tip spacing is 1 . 1 mm . The SSX plasma wind tunnel has dimensions L ≅ 1 m and R = 0 . 08 m . Plasma flow speeds are v >= 50 km / s . The cylindrical copper boundary and probe surfaces are baked and cleaned in a He glow discharge to maintain excellent vacuum and surface conditions. Electrostatic measurements during merging will be presented if available. Work supported by US DOE and CMSO.

  13. Adaptive robust control of longitudinal and transverse electron beam profiles

    NASA Astrophysics Data System (ADS)

    Rezaeizadeh, Amin; Schilcher, Thomas; Smith, Roy S.

    2016-05-01

    Feedback control of the longitudinal and transverse electron beam profiles are considered to be critical for beam control in accelerators. In the feedback scheme, the longitudinal or transverse beam profile is measured and compared to a desired profile to give an error estimate. The error is then used to act on the appropriate actuators to correct the profile. The role of the transverse feedback is to steer the beam in a particular trajectory, known as the "orbit." The common approach for orbit correction is based on approximately inverting the response matrix, and in the best case, involves regulating or filtering the singular values. In the current contribution, a more systematic and structured way of handling orbit correction is introduced giving robustness against uncertainties in the response matrix. Moreover, the input bounds are treated to avoid violating the limits of the corrector currents. The concept of the robust orbit correction has been successfully tested at the SwissFEL injector test facility. In the SwissFEL machine, a photo-injector laser system extracts electrons from a cathode and a similar robust control method is developed for the longitudinal feedback control of the current profile of the electron bunch. The method manipulates the angles of the crystals in the laser system to produce a desired charge distribution over the electron bunch length. This approach paves the way towards automation of laser pulse stacking.

  14. Excess electrons in ice: a density functional theory study.

    PubMed

    Bhattacharya, Somesh Kr; Inam, Fakharul; Scandolo, Sandro

    2014-02-21

    We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals.

  15. Comparison of topside electron density measured by Radio Occultation (RO) of FORMOSAT-3/COSMIC satellites and Digisondes on a global scale with IRI

    NASA Astrophysics Data System (ADS)

    Das, Tanmay; Haralambous, Haris

    2016-07-01

    This paper represents a comparison of the topside electron density of the F2-layer measured by FORMOSAT-3/COSMIC satellites in terms of GPS radio occultation technique and digisondes as manually scaled ionograms being provided by DIDBase (Digital Ionogram Database) with IRI. This study encompasses data from more than 40 locations for an extended period from January 2007 to December 2015. It utilises a subset of around 1000 very well matched (in terms of bottomside) FORMOSAT-3/COSMIC - Digisonde electron density profile pairs to compare the corresponding topside electron density profiles with IRI. The selection criteria for the electron density profile pairs, apart from coincidence of COSMIC and Digisonde electron density in the bottomside, is a collocation distance of less than 2.5o in terms of latitude and longtitude and 15 min maximum time difference in measuring NmF2 with the two techniques.

  16. Total electron content and F-region electron density distribution near the magnetic equator in India

    NASA Technical Reports Server (NTRS)

    Rastogi, R. G.; Sethia, G.; Chandra, H.; Deshpande, M. R.; Davies, K.; Murthy, B. S.

    1979-01-01

    Total electron content derived from the group delay measurements of ATS-6 radio beacons received at Ootacamund (India) are compared with the electron-density vs height distributions derived from the ionosonde data of the nearby station Kodaikanal. The daily variation of equivalent vertical total electron content does not show the midday bite out which is so prominently present in the corresponding daily variation of the maximum F-region electron density. The topside electron content continues to increase from sunrise to a maximum value around 1500 LT, while the bottomside electron content reaches a maximum value around 0500 LT. Daily variations of these as well as other parameters, e.g. the vertical slab thickness, the bottomside semi-thickness, the height of the F2 peak have been also studied for a geomagnetically quiet and a disturbed day.

  17. Excitations and benchmark ensemble density functional theory for two electrons

    SciTech Connect

    Pribram-Jones, Aurora; Burke, Kieron; Yang, Zeng-hui; Ullrich, Carsten A.; Trail, John R.; Needs, Richard J.

    2014-05-14

    A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two-electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange, is derived. Exact conditions that are proven include the signs of the correlation energy components and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.

  18. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    SciTech Connect

    Tierno, S. P. Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.

    2016-01-15

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.

  19. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  20. IRI related studies in Argentina: Topside profile and electron content

    NASA Astrophysics Data System (ADS)

    Ezquer, R. G.; Mosert, M.; Radicella, S. M.; Cabrera, M. A.

    This paper reviews and extends studies of the ability of the International Reference Ionosphere (IRI) to make predictions of the topside electron density (N) and the total electron content for low latitude locations. Members of the Argentine scientific community have performed the reported studies. Topside Profile: Measurements of N obtained with the Hinotori and Taiyo satellites were used to check the ability of the IRI to predict monthly average value of N at 600 km of altitude (N 600) in the low latitude region and, also, that corresponding to a particular day and time so-called "instanteneous N value". The comparison showed that the best agreement between IRI derived average N 600 values and measurements was obtained for a station near the magnetic equator and, in general, for the period of minimum ionisation for stations not near the magnetic equator. When ground ionosonde data obtained at Tucumán (26.9° S, 294.6°E; mag. latitude:-15.5) and Huancayo (12.0° S, 284.7° E; mag. latitude:-0.7) were used as input to the model the predicted instantaneous N 600 values were better than those obtained using either the CCIR or URSI options. Additional studies, covering different heights in the F region at low latitudes for low solar activity, showed that the IRI gives better N predictions than those obtained for high solar activity. Electron Content: Measurements of vertical total electron content (VTEC) over Tucumán, Havana (23.1° N, 277.5° E, mag. latitude: 34.2) and Arequipa (16.5° S, 289.0° E; geoma. Lat.:-5.1) obtained from geosynchronous and GPS satellites signals during high solar activity periods, have been used to study the IRI performance as predictor of TEC. Both versions, IRI-90 and IRI-95, overestimate VTEC at the southern crest of the equatorial anomaly for hours around the daily minimum, and underestimate it the rest of the day. This suggests that the main reason for the disagreement is the shape of the N profile assumed by the model. Good

  1. Driving Plasmaspheric Electron Density Simulations During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    De Pascuale, S.; Kletzing, C.; Jordanova, V.; Goldstein, J.; Wygant, J. R.; Thaller, S. A.

    2015-12-01

    We test global convection electric field models driving plasmaspheric electron density simulations (RAM-CPL) during geomagnetic storms with in situ measurements provided by the Van Allen Probes (RBSP). RAM-CPL is the cold plasma component of the ring-current atmosphere interactions suite (RAM-SCB) and describes the evolution of plasma density in the magnetic equatorial plane near Earth. Geomagnetic events observed by the RBSP satellites in different magnetic local time (MLT) sectors enable a comparison of local asymmetries in the input electric field and output densities of these simulations. Using a fluid MHD approach, RAM-CPL reproduces core plasmaspheric densities (L<4) to less than 1 order of magnitude difference. Approximately 80% of plasmapause crossings, defined by a low-density threshold, are reproduced to within a mean radial difference of 0.6 L. RAM-CPL, in conjunction with a best-fit driver, can be used in other studies as an asset to predict density conditions in locations distant from RBSP orbits of interest.

  2. Plasma actuator electron density measurement using microwave perturbation method

    SciTech Connect

    Mirhosseini, Farid; Colpitts, Bruce

    2014-07-21

    A cylindrical dielectric barrier discharge plasma under five different pressures is generated in an evacuated glass tube. This plasma volume is located at the center of a rectangular copper waveguide cavity, where the electric field is maximum for the first mode and the magnetic field is very close to zero. The microwave perturbation method is used to measure electron density and plasma frequency for these five pressures. Simulations by a commercial microwave simulator are comparable to the experimental results.

  3. Surprising resistivity decrease in manganites with constant electronic density

    NASA Astrophysics Data System (ADS)

    Cortés-Gil, R.; Ruiz-González, M. L.; Alonso, J. M.; Martínez, J. L.; Hernando, A.; Vallet-Regí, M.; González-Calbet, J. M.

    2013-12-01

    A decrease of eight orders of magnitude in the resistance of (La0.5Ca0.5)zMnO3 has been detected when the electronic density is kept constant while the calcium content is modified by introducing cationic vacancies. This effect is related to the disappearance of the charge ordering state and the emergence of an antiferromagnetic-ferromagnetic transition. Moreover, high values of the colossal magnetoresistance above room temperature are attained. Dedicated to Professor J M Rojo.

  4. Halogen bonding: a study based on the electronic charge density.

    PubMed

    Amezaga, Nancy J Martinez; Pamies, Silvana C; Peruchena, Nélida M; Sosa, Gladis L

    2010-01-14

    Density functional theory (DFT) and atoms in molecules theory (AIM) were used to study the characteristic of the noncovalent interactions in complexes formed between Lewis bases (NH(3), H(2)O, and H(2)S) and Lewis acids (ClF, BrF, IF, BrCl, ICl, and IBr). In order to compare halogen and hydrogen bonds interactions, this study included hydrogen complexes formed by some Lewis bases and HF, HCl, and HBr Lewis acids. Ab initio, wave functions were generated at B3LYP/6-311++G(d,p) level with optimized structures at the same level. Criteria based on a topological analysis of the electron density were used in order to characterize the nature of halogen interactions in Lewis complexes. The main purpose of the present work is to provide an answer to the following questions: (a) why can electronegative atoms such as halogens act as bridges between two other electronegative atoms? Can a study based on the electron charge density answer this question? Considering this, we had performed a profound study of halogen complexes in the framework of the AIM theory. A good correlation between the density at the intermolecular bond critical point and the energy interaction was found. We had also explored the concentration and depletion of the charge density, displayed by the Laplacian topology, in the interaction zone and in the X-Y halogen donor bond. From the atomic properties, it was generally observed that the two halogen atoms gain electron population in response to its own intrinsic nature. Because of this fact, both atoms are energetically stabilized.

  5. Electron momentum spectroscopy study of amantadine: binding energy spectra and valence orbital electron density distributions

    NASA Astrophysics Data System (ADS)

    Litvinyuk, I. V.; Zheng, Y.; Brion, C. E.

    2000-11-01

    The electron binding energy spectrum and valence orbital electron momentum density distributions of amantadine (1-aminoadamantane), an important anti-viral and anti-Parkinsonian drug, have been measured by electron momentum spectroscopy. Theoretical momentum distributions, calculated at the 6-311++G** and AUG-CC-PVTZ levels within the target Hartree-Fock and also the target Kohn-Sham density functional theory approximations, show good agreement with the experimental results. The results for amantadine are also compared with those for the parent molecule, adamantane, reported earlier (Chem. Phys. 253 (2000) 41). Based on the comparison tentative assignments of the valence region ionization bands of amantadine have been made.

  6. An Overview of Ionospheric Electron Density Variations over Istanbul

    NASA Astrophysics Data System (ADS)

    Kaymaz, Zerefsan; Türk Katircioglu, Filiz; Ceren Moral, Aysegul; Emine Ceren Kalafatoglu Eyiguler, R. A..; Zabotin, Nikolai

    2016-07-01

    This study will present the temporal variations in electron density measured in Istanbul (42, 29) using Dynasonde observations. Dynasonde is a type of ionosonde that can measure the dynamics of the ionosphere. Istanbul Dynasonde was established in October 2012 and collecting data since then. The NeXtYZ software have been used to convert ionospheric signals into ionospheric data. In this study, among 72 outputs of ionospheric parameters, electron density, and critical frequency for F2 layer, and TEC have been studied to reveal the ionospheric variations over Istanbul. Statistics for seasonal, monthly and daily variations were obtained by scanning thorough about two years of ionograms. Four types of temporal variability were determined depending on the season and the time of the day. Gravity waves were detected very clearly in the ionograms at this mid-latitude station. In addition, magnetic substorm signatures on the electron density are clearly noticeable and are seen both positive and negative phases. In this talk we will give an overview of the results based on the first two years of the Dynasonde operation in Istanbul.

  7. Cutoff probe using Fourier analysis for electron density measurement

    SciTech Connect

    Na, Byung-Keun; You, Kwang-Ho; Kim, Dae-Woong; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung

    2012-01-15

    This paper proposes a new method for cutoff probe using a nanosecond impulse generator and an oscilloscope, instead of a network analyzer. The nanosecond impulse generator supplies a radiating signal of broadband frequency spectrum simultaneously without frequency sweeping, while frequency sweeping method is used by a network analyzer in a previous method. The transmission spectrum (S21) was obtained through a Fourier analysis of the transmitted impulse signal detected by the oscilloscope and was used to measure the electron density. The results showed that the transmission frequency spectrum and the electron density obtained with a new method are very close to those obtained with a previous method using a network analyzer. And also, only 15 ns long signal was necessary for spectrum reconstruction. These results were also compared to the Langmuir probe's measurements with satisfactory results. This method is expected to provide not only fast measurement of absolute electron density, but also function in other diagnostic situations where a network analyzer would be used (a hairpin probe and an impedance probe) by replacing the network analyzer with a nanosecond impulse generator and an oscilloscope.

  8. determination of current density distribution in an electron beam

    NASA Astrophysics Data System (ADS)

    Kandel, Yudhishthir Prasad

    Electron beams are useful in many applications because they can be focused down to a spot far exceeding the physical limit of focusing visible light or x-rays. Additionally, electron beams are useful in transferring concentrated amounts of energy to a very small well defined region of a target for a fixed duration. This has led to the development of both scanning electron microscopes (SEMs) and electron beam lithography. The goal of this work was to develop a general method that accurately and easily yields the best estimate of the electron current density distribution of a focused electron beam, known as point spread function (PSF). The method developed is fast, easy to use and accurate. Two specific areas of research have been addressed for PSF determination. The first is concerned with the monotonic response of EUV photoresist as a function of electron beam dose. An external metrology is used for mapping the change in thickness that is smaller than the beam spot size. The method developed in this study simultaneously gives the photo-resist thickness change as a function of electron dose and electron beam PSF. A second thrust of this research has been to develop set of PSF characterization approaches that apply to the SEM. Here a knowledge of the PSF offers many benefits including the ability to monitor and optimize SEM performance such as astigmatism control. Perhaps, even more importantly, a knowledge of the PSF combined with a series of well-defined experimental steps has led to the development of new methods for improving the resolution of SEM images through computational means rather than very costly and complex equipment modification.

  9. Kinetic and electron-electron energies for convex sums of ground state densities with degeneracies and fractional electron number

    SciTech Connect

    Levy, Mel E-mail: mlevy@tulane.edu; Anderson, James S. M.; Zadeh, Farnaz Heidar; Ayers, Paul W. E-mail: mlevy@tulane.edu

    2014-05-14

    Properties of exact density functionals provide useful constraints for the development of new approximate functionals. This paper focuses on convex sums of ground-level densities. It is observed that the electronic kinetic energy of a convex sum of degenerate ground-level densities is equal to the convex sum of the kinetic energies of the individual degenerate densities. (The same type of relationship holds also for the electron-electron repulsion energy.) This extends a known property of the Levy-Valone Ensemble Constrained-Search and the Lieb Legendre-Transform refomulations of the Hohenberg-Kohn functional to the individual components of the functional. Moreover, we observe that the kinetic and electron-repulsion results also apply to densities with fractional electron number (even if there are no degeneracies), and we close with an analogous point-wise property involving the external potential. Examples where different degenerate states have different kinetic energy and electron-nuclear attraction energy are given; consequently, individual components of the ground state electronic energy can change abruptly when the molecular geometry changes. These discontinuities are predicted to be ubiquitous at conical intersections, complicating the development of universally applicable density-functional approximations.

  10. A real-space stochastic density matrix approach for density functional electronic structure.

    PubMed

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  11. Electron intracule densities with correct electron coalescence cusps from Hiller-Sucher-Feinberg-type identities

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy; Stefanov, Boris B.; Tan, Agnes; Umrigar, C. J.

    1995-10-01

    Identities for the electron intracule density I(R) in atoms and molecules are derived within the Hiller-Sucher-Feinberg (HSF) formalism. It is proven that, when applied to arbitrary (exact or approximate) electronic wave functions, these identities produce intracule densities that satisfy a modified condition for the electron coalescence cusp. A corollary of this proof provides a new, simplified derivation of the cusp condition for the exact I(R). An expression for the Hartree-Fock approximation to the HSF electron intracule density that contains only two- and three-electron terms is obtained and its properties are analyzed. A simple scaling of the three-electron contributions in this expression assures integrability of the approximate I(R) and improves its overall accuracy. Numerical tests carried out for the H-, He, Li+, Be2+, Li, and Be systems demonstrate that the application of the scaled HSF-type identity to Hartree-Fock wave functions affords dramatic improvements in the short-range behavior of the electron intracule density.

  12. Electronic density of states in sequence dependent DNA molecules

    NASA Astrophysics Data System (ADS)

    de Oliveira, B. P. W.; Albuquerque, E. L.; Vasconcelos, M. S.

    2006-09-01

    We report in this work a numerical study of the electronic density of states (DOS) in π-stacked arrays of DNA single-strand segments made up from the nucleotides guanine G, adenine A, cytosine C and thymine T, forming a Rudin-Shapiro (RS) as well as a Fibonacci (FB) polyGC quasiperiodic sequences. Both structures are constructed starting from a G nucleotide as seed and following their respective inflation rules. Our theoretical method uses Dyson's equation together with a transfer-matrix treatment, within an electronic tight-binding Hamiltonian model, suitable to describe the DNA segments modelled by the quasiperiodic chains. We compared the DOS spectra found for the quasiperiodic structure to those using a sequence of natural DNA, as part of the human chromosome Ch22, with a remarkable concordance, as far as the RS structure is concerned. The electronic spectrum shows several peaks, corresponding to localized states, as well as a striking self-similar aspect.

  13. Time-resolved electron density and electron temperature measurements in nanosecond pulse discharges in helium

    NASA Astrophysics Data System (ADS)

    Roettgen, A.; Shkurenkov, I.; Simeni Simeni, M.; Petrishchev, V.; Adamovich, I. V.; Lempert, W. R.

    2016-10-01

    Thomson scattering is used to study temporal evolution of electron density and electron temperature in nanosecond pulse discharges in helium sustained in two different configurations, (i) diffuse filament discharge between two spherical electrodes, and (ii) surface discharge over plane quartz surface. In the diffuse filament discharge, the experimental results are compared with the predictions of a 2D plasma fluid model. Electron densities are put on an absolute scale using pure rotational Raman spectra in nitrogen, taken without the plasma, for calibration. In the diffuse filament discharge, electron density and electron temperature increase rapidly after breakdown, peaking at n e  ≈  3.5 · 1015 cm-3 and T e  ≈  4.0 eV. After the primary discharge pulse, both electron density and electron temperature decrease (to n e ~ 1014 cm-3 over ~1 µs and to T e ~ 0.5 eV over ~200 ns), with a brief transient rise produced by the secondary discharge pulse. At the present conditions, the dominant recombination mechanism is dissociative recombination of electrons with molecular ions, \\text{He}2+ . In the afterglow, the electron temperature does not relax to gas temperature, due to superelastic collisions. Electron energy distribution functions (EEDFs) inferred from the Thomson scattering spectra are nearly Maxwellian, which is expected at high ionization fractions, when the shape of EEDF is controlled primarily by electron-electron collisions. The kinetic model predictions agree well with the temporal trends detected in the experiment, although peak electron temperature and electron density are overpredicted. Heavy species temperature predicted during the discharge and the early afterglow remains low and does not exceed T  =  400 K, due to relatively slow quenching of metastable He* atoms in two-body and three-body processes. In the surface discharge, peak electron density and electron temperature are n e  ≈  3 · 1014 cm3 and T e

  14. Electron density power spectrum in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Rickett, B. J.; Spangler, S. R.

    1995-01-01

    Interstellar scintillation (ISS), fluctuations in the amplitude and phase of radio waves caused by scattering in the interstellar medium, is important as a diagnostic of interstellar plasma turbulence. ISS is also of interest because it is noise for other radio astronomical observations. The unifying concern is the power spectrum of the interstellar electron density. Here we use ISS observations through the nearby (less than or approximately =1 kpc) (ISM) to estimate the spectrum. From measurements of angular broadening of pulsars and extragalactic sources, decorrelation bandwidth of pulsars, refractive steering of features in pulsar dynamic spectra, dispersion measured fluctuations of pulsars, and refractive scintillation index measurements, we construct a composite structure function that is approximately power law over 2 x 10(exp 6) m less than scale less than 10(exp 13) m. The data are consistent with the structure function having a logarithmic slope versus baseline less than 2; thus there is a meaningful connection between scales in the radiowave fluctuation field and the scales in the electron density field causing the scattering. The data give an upper limit to the inner scale, l(sub o) less than or approximately 10(exp 8) m and are consistent with much smaller values. We construct a composite electron density spectrum that is approximately power law over at least the approximately = 5 decade wavenumber range 10(exp -13)/m less than wavenumber less than 10(exp -8)/m and that may extend to higher wavenumbers. The average spectral index of electron density over this wavenumber range is approximately = 3.7, very close to the value expected for a Kolmogorov process. The outer scale size, L(sub o), must be greater than or approximately = 10(exp 13) m (determined from dispersion measure fluctuations). When the ISS data are combined with measurements of differential Faraday rotation angle, and gradients in the average electron density, constraints can be put on the

  15. Scientific objectives of the Plazma experiment in the Phobos project and principles underlying the measurement of electron density in the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Breus, T. K.; Krymskii, A. M.; Shtern, D. Ia.; El'Kin, M. L.

    A theoretical evaluation is presented which suggests that vertical profiles of electron density in the Martian ionosphere can be measured effectively via radar sounding from Phobos orbit. It is further suggested that such measurements can be performed with a resolution sufficient to detect a sharp decline of electron density in the ionosphere, corresponding to its upper boundary.

  16. Electron Density Measurements on LTX Using Microwave and Millimeter-Wave Diagnostics

    NASA Astrophysics Data System (ADS)

    Kubota, S.; Nguyen, X. V.; Peebles, W. A.; Boyle, D. P.; Kaita, R.; Kozub, T.; Majeski, R.; Merino, E.; Schmitt, J. C.

    2015-11-01

    The dynamic evolution of the electron density profile is tracked using microwave and millimeter-wave diagnostics on LTX. The 296 GHz (λ =1 mm) interferometer provides a radial line density measurement at the midplane, while an FMCW (frequency-modulated continuous-wave) reflectometer (13.5 -33 GHz, or O-mode 0 . 2 - 1 . 3 ×1013 cm-3) provides density profile measurements for the low-field side. Data taken during FY2015 will be compared with measurements from Thomson scattering and estimates of the plasma position from LRDFIT. Measurements of density fluctuations due to low-frequency (<100 kHz) MHD instabilities will also be shown. Future plans include the installation of a correlation reflectomter (Ka-band, 27-40 GHz) with dual tuneable sources and a frequency bandwidth of up to 5 MHz. This system will utilize the same antennas as the profile reflectometer to provide radial and/or toroidal/poloidal correlations. Further diagnostic details will be presented at the meeting. Supported by U.S. DoE Grants DE-FG02-99ER54527 and DE-AC02-09CH11466.

  17. A global survey of COSMIC ionospheric peak electron density and its height: A comparison with ground-based ionosonde measurements

    NASA Astrophysics Data System (ADS)

    Chu, Yen-Hsyang; Su, Chin-Lung; Ko, Hsiao-Tsung

    2010-08-01

    With a network of ground-based ionosondes distributed around the world, the ionospheric peak electron density and its height measured by FORMOSAT-3/COSMIC satellites in terms of GPS radio occultation technique are extensively examined in this article. It is found that, in spite of the latitude, the mean values of the peak electron density measured by COSMIC satellites are systematically smaller than those observed by ground-based ionosondes. The discrepancy between them is dependent on the latitude, namely, it is small in low and mid-latitudes and large in high-latitude region. Moreover, statistical analysis shows that the slopes of the regression line that is best fitted to the scatter diagram of occultation-retrieved peak electron density (ordinate axis) versus ionosonde-observed peak density (abscissa axis) are universally less than one. This feature is believed to be the result of path average effect of non-uniform distribution of the electron density along the GSP ray during the occultation. A comparison between COSMIC-measured peak height and ionosonde-derived peak height hmF2 indicates that the former is systematically higher than the latter. The difference in the two can be as large as 20% or more in equatorial and low-latitude regions. This result implies that the peak height hmF2 derived from the virtual height through true height analysis based on Titheridge method seems to underestimate the true peak height. The correlation between COSMIC and ionosonde peak electron densities is analyzed and the result reveals that correlation coefficient seems to be dependent on the fluctuation of the occultation-retrieved electron density profile. The correlation will be higher (lower) for the electron density profiles with smaller (larger) fluctuations. This feature suggests that the inhomogeneous distribution of the electron density along the GPS ray path during the occultation plays an important role affecting the correlation between COSMIC and ionosonde

  18. Equation satisfied by the energy-density functional for electron-electron mutual Coulomb repulsion

    SciTech Connect

    Joubert, Daniel P.

    2011-10-15

    It is shown that the electron-electron mutual Coulomb repulsion energy-density functional V{sub ee}{sup {gamma}}[{rho}] satisfies the equationV{sub ee}{sup {gamma}}[{rho}{sub N}{sup 1}]-V{sub ee}{sup {gamma}}[{rho}{sub N-1}{sup {gamma}}]={integral}d{sup 3}r({delta}V{sub ee}{sup {gamma}}[{rho}{sub N}{sup 1}]/{delta}{rho}{sub N}{sup 1}(r))[{rho}{sub N}{sup 1}(r)-{rho}{sub N-1}{sup {gamma}}(r)], where {rho}{sub N}{sup 1}(r) and {rho}{sub N-1}{sup {gamma}}(r) are N-electron and (N-1)-electron densities determined from the same adiabatic scaled external potential of the N-electron system at coupling strength {gamma}.

  19. A temporally and spatially resolved electron density diagnostic method for the edge plasma based on Stark broadening

    NASA Astrophysics Data System (ADS)

    Zafar, A.; Martin, E. H.; Shannon, S. C.; Isler, R. C.; Caughman, J. B. O.

    2016-11-01

    An electron density diagnostic (≥1010 cm-3) capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free spectral line profile of the n = 6-2 hydrogen Balmer series transition. The profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The quasi-static approach used to calculate the Doppler-free spectral line profile is outlined here and the results from the model are presented for H-δ spectra for electron densities of 1010-1013 cm-3. The profile shows complex behavior due to the interaction between the magnetic substates of the atom.

  20. Damping of Electron Density Structures and Implications for Interstellar Scintillation

    NASA Astrophysics Data System (ADS)

    Smith, K. W.; Terry, P. W.

    2011-04-01

    The forms of electron density structures in kinetic Alfvén wave (KAW) turbulence are studied in connection with scintillation. The focus is on small scales L ~ 108-1010 cm where the KAW regime is active in the interstellar medium, principally within turbulent H II regions. Scales at 10 times the ion gyroradius and smaller are inferred to dominate scintillation in the theory of Boldyrev et al. From numerical solutions of a decaying KAW turbulence model, structure morphology reveals two types of localized structures, filaments and sheets, and shows that they arise in different regimes of resistive and diffusive damping. Minimal resistive damping yields localized current filaments that form out of Gaussian-distributed initial conditions. When resistive damping is large relative to diffusive damping, sheet-like structures form. In the filamentary regime, each filament is associated with a non-localized magnetic and density structure, circularly symmetric in cross section. Density and magnetic fields have Gaussian statistics (as inferred from Gaussian-valued kurtosis) while density gradients are strongly non-Gaussian, more so than current. This enhancement of non-Gaussian statistics in a derivative field is expected since gradient operations enhance small-scale fluctuations. The enhancement of density gradient kurtosis over current kurtosis is not obvious, yet it suggests that modest density fluctuations may yield large scintillation events during pulsar signal propagation. In the sheet regime the same statistical observations hold, despite the absence of localized filamentary structures. Probability density functions are constructed from statistical ensembles in both regimes, showing clear formation of long, highly non-Gaussian tails.

  1. Rocket-borne measurements of electron temperature and density with the Electron Retarding Potential Analyzer instrument

    NASA Astrophysics Data System (ADS)

    Cohen, I. J.; Widholm, M.; Lessard, M. R.; Riley, P.; Heavisides, J.; Moen, J. I.; Clausen, L. B. N.; Bekkeng, T. A.

    2016-07-01

    Determining electron temperature in the ionosphere is a fundamentally important measurement for space science. Obtaining measurements of electron temperatures at high altitudes (>700 km) is difficult because of limitations on ground-based radar and classic spacecraft instrumentation. In light of these limitations, the rocket-borne Electron Retarding Potential Analyzer (ERPA) was developed to allow for accurate in situ measurement of ionospheric electron temperature with a simple and low-resource instrument. The compact ERPA, a traditional retarding potential analyzer with multiple baffle collimators, allows for a straightforward calculation of electron temperature. Since its first mission in 2004, it has amassed significant flight heritage and obtained data used in multiple studies investigating a myriad of phenomena related to magnetosphere-ionosphere coupling. In addition to highlighting the scientific contributions of the ERPA instrument, this paper outlines its theory and operation, the methodology used to obtain electron temperature measurements, and a comparative study suggesting that the ERPA can also provide electron density measurements.

  2. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    SciTech Connect

    Bajaj, Sanyam Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  3. Propagation of terahertz electromagnetic waves in a magnetized plasma with inhomogeneous electron density and collision frequency

    NASA Astrophysics Data System (ADS)

    Guo, LinJing; Guo, LiXin; Li, JiangTing

    2017-02-01

    This study theoretically analyzes the propagation properties of terahertz (THz) electromagnetic waves in a magnetized plasma that is inhomogeneous in both collision frequency and electron density. Three parabolic profiles are adopted to describe the inhomogeneity of these two parameters in the plasma slab. Numerical calculation results show that when a magnetic field is applied, an absorption valley appears near the middle of the absorption peak. The characteristics of the absorption spectra are affected by two factors: (1) the parameters in the plasma's first layer, which is the border between the air and the plasma and (2) the gradient of the parameters across the entire plasma. Specifically, a more substantial difference between the inhomogeneous plasma and the uniform plasma corresponds to a greater difference between the two absorption spectra. In addition, electron density, plasma thickness, and collision frequency also play important roles in the propagation.

  4. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    SciTech Connect

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-15

    In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energy distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.

  5. New fast beam profile monitor for electron-positron colliders

    SciTech Connect

    Bogomyagkov, A. V.; Gurko, V. F.; Zhuravlev, A. N.; Zubarev, P. V.; Kiselev, V. A.; Meshkov, O. I.; Muchnoi, N. Yu.; Selivanov, A. N.; Smaluk, V. V.; Khilchenko, A. D.

    2007-04-15

    A new fast beam profile monitor has been developed at the Budker Institute of Nuclear Physics. This monitor is based on the Hamamatsu multianode photomultiplier with 16 anode strips and provides turn-by-turn measurement of the transverse beam profile. The device is equipped with an internal memory, which has enough capacity to store 131 072 samples of the beam profile. The dynamic range of the beam profile monitor allows us to study turn-by-turn beam dynamics within the bunch charge range from 1 pC up to 10 nC. Using this instrument, we have investigated at the VEPP-4M electron-positron collider a number of beam dynamics effects which cannot be observed by other beam diagnostics tools.

  6. FINDMOL: automated identification of macromolecules in electron-density maps.

    PubMed

    McKee, E W; Kanbi, L D; Childs, K L; Grosse-Kunstleve, R W; Adams, P D; Sacchettini, J C; Ioerger, T R

    2005-11-01

    Automating the determination of novel macromolecular structures via X-ray crystallographic methods involves building a model into an electron-density map. Unfortunately, the conventional crystallographic asymmetric unit volumes are usually not well matched to the biological molecular units. In most cases, the facets of the asymmetric unit cut the molecules into a number of disconnected fragments, rendering interpretation by the crystallographer significantly more difficult. The FINDMOL algorithm is designed to quickly parse the arrangement of trace points (pseudo-atoms) derived from a skeletonized electron-density map without requiring higher level prior information such as sequence information or number of molecules in the asymmetric unit. The algorithm was tested with a variety of density-modified maps computed with medium- to low-resolution data. Typically, the resulting volume resembles the biological unit. In the remaining cases the number of disconnected fragments is very small. In all examples, secondary-structural elements such as alpha-helices or beta-sheets are easily identifiable in the defragmented arrangement. FINDMOL can greatly assist a crystallographer during manual model building or in cases where automatic model building can only build partial models owing to limitations of the data such as low resolution and/or poor phases.

  7. Electron density measurements during the NLC-91 campaign

    NASA Technical Reports Server (NTRS)

    Ulwick, J. C.; Kelley, Michael C.; Alcala, C.

    1994-01-01

    A Super Arcas rocket, MISTI B, containing DC and RF probes, was launched as a part of the PMSE (Polar Mesosphere Summer Echoes) Salvo during the NLC-91 (Noctilucent Cloud) campaign to measure electron density irregularities with high spatial resolution. Measurements of large and small scale structures in the electron density were made on rocket ascent and descent at the altitudes of 86.5 and 88.5 +/- 0.5 km corresponding to the two altitudes of strongest backscatter recorded by the nearby CUPRI (Cornell University Portable Radar Interferometer) radar. Power spectra of the fluctuations shows two different structuring and scattering mechanisms exist at altitudes only 1 km apart. Since the rocket apogee was 89 km, the rocket was in the height range 88.5 +/- 0.5 km for 30 seconds giving an unusual measurement of horizontal structure over a distance of 5.5 km. Using the simultaneous DC and RF probe measurements of electron depletions and sharp gradient in the lower layer, the role of aerosols in creating these depletions and gradients is speculated upon.

  8. Deriving large electron temperatures and small electron densities with the Cassini Langmuir probe at Saturn

    NASA Astrophysics Data System (ADS)

    Garnier, Philippe; Wahlund, Jan-Erik; Holmberg, Mika; Lewis, Geraint; Schippers, Patricia; Rochel Grimald, Sandrine; Gurnett, Donald; Coates, Andrew; Dandouras, Iannis; Waite, Hunter

    2014-05-01

    The Langmuir Probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigate the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), and manage to reproduce the observations with a reasonable precision through empirical and theoretical methods. Conversely, the modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). We finally show that a significant influence of the energetic electrons (larger than the contribution of thermal ions) is also expected in various plasma environments of the Solar System, such as at Jupiter (i.e near Ganymede, Europa, Callisto and Io), or even at Earth (in the plasmasheet, the magnetosheath or in plasma cavities). Large electron temperatures and small electron densities could potentially be derived in these environments, which may be of interest for Langmuir Probes in the Earth magnetosphere or onboard the future JUICE mission at Jupiter.

  9. The behavior of electron density and temperature during ionospheric heating near the fifth electron gyrofrequency

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Wu, Jian; Rietveld, M. T.; Haggstrom, I.; Zhao, Haisheng; Xu, Zhengwen

    2017-01-01

    The experimental phenomena involving the changes in electron temperature and electron density as a function of pump frequency during an ionospheric heating campaign at European Incoherent Scatter near Tromsø, Norway, are reported. When the pump frequency is slightly above the fifth electron gyrofrequency, the UHF radar observation shows some apparent enhancements over a wide altitude range in radar echo, ion line, and electron density respectively, which are apparently altitude independent and consistent temporally with the upshifting and spread of plasma line around the reflection altitude. However, they do not, in fact, correspond to true increase in electron density. Based on some existing theories, some discussions are presented to try to explain the above enhancements and the upshifting and spread of plasma line. Even so, the mechanism remains to be determined. In addition, the observation also shows some enhancements in electron temperature as a function of pump frequency around the reflection altitude of the pump, which are dependent on the behavior of dispersion of the upper hybrid wave near the fifth electron gyrofrequency.

  10. Density fitting for three-electron integrals in explicitly correlated electronic structure theory

    SciTech Connect

    Womack, James C.; Manby, Frederick R.

    2014-01-28

    The principal challenge in using explicitly correlated wavefunctions for molecules is the evaluation of nonfactorizable integrals over the coordinates of three or more electrons. Immense progress was made in tackling this problem through the introduction of a single-particle resolution of the identity. Decompositions of sufficient accuracy can be achieved, but only with large auxiliary basis sets. Density fitting is an alternative integral approximation scheme, which has proven to be very reliable for two-electron integrals. Here, we extend density fitting to the treatment of all three-electron integrals that appear at the MP2-F12/3*A level of theory. We demonstrate that the convergence of energies with respect to auxiliary basis size is much more rapid with density fitting than with the traditional resolution-of-the-identity approach.

  11. Improved density profile measurements in the C-2U advanced beam-driven Field-Reversed Configuration (FRC) plasmas

    NASA Astrophysics Data System (ADS)

    Beall, M.; Deng, B. H.; Gota, H.

    2016-11-01

    In the prior C-2 experiment, electron density was measured using a two-color 6-chord CO2/HeNe interferometer. Analysis shows that high-frequency common mode phase noise can be reduced by a factor of 3 by constructing a reference chord. In the system upgrade from C-2 to C-2U a 4-chord far-infrared laser interferometer was developed, which demonstrated superior sensitivity (1 × 1016 m-2 at >1 MHz bandwidth) and solved the under spatial sampling issue of the C-2 interferometer system. Improved density-profile measurement results are presented in this paper, including evidence of fast-ion modified density profile and stabilization of the n = 1 plasma wobble mode.

  12. Improved density profile measurements in the C-2U advanced beam-driven Field-Reversed Configuration (FRC) plasmas.

    PubMed

    Beall, M; Deng, B H; Gota, H

    2016-11-01

    In the prior C-2 experiment, electron density was measured using a two-color 6-chord CO2/HeNe interferometer. Analysis shows that high-frequency common mode phase noise can be reduced by a factor of 3 by constructing a reference chord. In the system upgrade from C-2 to C-2U a 4-chord far-infrared laser interferometer was developed, which demonstrated superior sensitivity (1 × 10(16) m(-2) at >1 MHz bandwidth) and solved the under spatial sampling issue of the C-2 interferometer system. Improved density-profile measurement results are presented in this paper, including evidence of fast-ion modified density profile and stabilization of the n = 1 plasma wobble mode.

  13. Evidence for Gently Sloping Plasma Density Profiles in the Deep Corona: Type III Observations

    NASA Astrophysics Data System (ADS)

    Cairns, I. H.; Lobzin, V.; Robinson, P. A.; Warmuth, A.; Mann, G. J.; Gorgutsa, R.; Fomichev, V.

    2010-12-01

    Type III radio bursts are produced near the local electron plasma frequency fp and near its harmonic 2fp by fast electrons ejected from the solar active regions and moving through the corona and solar wind. These bursts have dynamic spectra with frequency rapidly falling with time, the typical duration of the coronal burst being about 1--3 seconds. In the present paper, 37 well-defined coronal type III radio bursts (25--450 MHz) are analyzed. It is found that the dependence of the central frequency of the emission on time can be fitted to a power-law model, f(t) ∝ (t-t0)-α . The index α varies in the range 0.2 to ∞ , with mean and median values of 1.2 and 0.5, respectively. A surprisingly large fraction of events, 84%, has α ≤1.2. Assuming a constant speed of the electron beam, these results provide strong evidence that in the type III source regions within about 1 solar radius above the photosphere the electron number density scales as n(r) ∝ (r-r0)-β , with minimum, mean, and median β =2α of 0.4, 2.4, and 1.0, respectively. Hence, the typical density profiles are more gently sloping than could be expected from the existing empirical coronal models. In the case of negligible plasma acceleration and conical flow, from conservation of the number of electrons it follows that the electron number density will decrease as r-2 with α =1, like in the solar wind. Several events are found with such a wind-like dependence of burst frequency on time. Smaller power-law indices could result from the effects of non-conical geometry of the plasma flow tubes, deceleration of coronal plasma, and/or the curvature of the magnetic field lines. The effects of curvature of the magnetic field lines are shown to be too weak to explain such low power-law indices. A strong tendency is found for bursts from the same group to have similar power-law indices, thereby favoring the hypothesis that they are usually produced by the same source region.

  14. Real-time electron density measurements from Cotton-Mouton effect in JET machine

    SciTech Connect

    Brombin, M.; Boboc, A.; Zabeo, L.

    2008-10-15

    Real-time density profile measurements are essential for advanced fusion tokamak operation and interferometry is a proven method for this task. Nevertheless, as a consequence of edge localized modes, pellet injections, fast density increases, or disruptions, the interferometer is subject to fringe jumps, which produce loss of the signal preventing reliable use of the measured density in a real-time feedback controller. An alternative method to measure the density is polarimetry based on the Cotton-Mouton effect, which is proportional to the line-integrated electron density. A new analysis approach has been implemented and tested to verify the reliability of the Cotton-Mouton measurements for a wide range of plasma parameters and to compare the density evaluated from polarimetry with that from interferometry. The density measurements based on polarimetry are going to be integrated in the real-time control system of JET since the difference with the interferometry is within one fringe for more than 90% of the cases.

  15. Real-time electron density measurements from Cotton-Mouton effect in JET machine.

    PubMed

    Brombin, M; Boboc, A; Zabeo, L; Murari, A

    2008-10-01

    Real-time density profile measurements are essential for advanced fusion tokamak operation and interferometry is a proven method for this task. Nevertheless, as a consequence of edge localized modes, pellet injections, fast density increases, or disruptions, the interferometer is subject to fringe jumps, which produce loss of the signal preventing reliable use of the measured density in a real-time feedback controller. An alternative method to measure the density is polarimetry based on the Cotton-Mouton effect, which is proportional to the line-integrated electron density. A new analysis approach has been implemented and tested to verify the reliability of the Cotton-Mouton measurements for a wide range of plasma parameters and to compare the density evaluated from polarimetry with that from interferometry. The density measurements based on polarimetry are going to be integrated in the real-time control system of JET since the difference with the interferometry is within one fringe for more than 90% of the cases.

  16. The effective density of randomly moving electrons and related characteristics of materials with degenerate electron gas

    SciTech Connect

    Palenskis, V.

    2014-04-15

    Interpretation of the conductivity of metals, of superconductors in the normal state and of semiconductors with highly degenerate electron gas remains a significant issue if consideration is based on the classical statistics. This study is addressed to the characterization of the effective density of randomly moving electrons and to the evaluation of carrier diffusion coefficient, mobility, and other parameters by generalization of the widely published experimental results. The generalized expressions have been derived for various kinetic parameters attributed to the non-degenerate and degenerate electron gas, by analyzing a random motion of the single type carriers in homogeneous materials. The values of the most important kinetic parameters for different metals are also systematized and discussed. It has been proved that Einstein's relation between the diffusion coefficient and the drift mobility of electrons is held for any level of degeneracy if the effective density of randomly moving carriers is properly taken into account.

  17. Laser-induced plasma electron number density: Stark broadening method versus the Saha-Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Arnab, Sarkar; Manjeet, Singh

    2017-02-01

    We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser energy and the effect of different laser wavelengths were compared. The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadened as well as using the Saha-Boltzmann equation (SBE). Each approach was also carried out by using the Al emission line and Mg emission lines. It was observed that the SBE method generated a little higher electron number density value than the Stark broadening method, but within the experimental uncertainty range. Comparisons of N e determined by the two methods show the presence of a linear relation which is independent of laser energy or laser wavelength. These results show the applicability of the SBE method for N e determination, especially when the system does not have any pure emission lines whose electron impact factor is known. Also use of Mg lines gives superior results than Al lines.

  18. Electron star birth: a continuous phase transition at nonzero density.

    PubMed

    Hartnoll, Sean A; Petrov, Pavel

    2011-03-25

    We show that charged black holes in anti-de Sitter spacetime can undergo a third-order phase transition at a critical temperature in the presence of charged fermions. In the low temperature phase, a fraction of the charge is carried by a fermion fluid located a finite distance from the black hole. In the zero temperature limit, the black hole is no longer present and all charge is sourced by the fermions. The solutions exhibit the low temperature entropy density scaling s~T(2/z) anticipated from the emergent IR criticality of recently discussed electron stars.

  19. Charge density waves in strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Wei; Choe, Jesse; Morosan, E.

    2016-08-01

    Strong electron correlations are at the heart of many physical phenomena of current interest to the condensed matter community. Here we present a survey of the mechanisms underlying such correlations in charge density wave (CDW) systems, including the current theoretical understanding and experimental evidence for CDW transitions. The focus is on emergent phenomena that result as CDWs interact with other charge or spin states, such as magnetism and superconductivity. In addition to reviewing the CDW mechanisms in 1D, 2D, and 3D systems, we pay particular attention to the prevalence of this state in two particular classes of compounds, the high temperature superconductors (cuprates) and the layered transition metal dichalcogenides. The possibilities for quantum criticality resulting from the competition between magnetic fluctuations and electronic instabilities (CDW, unconventional superconductivity) are also discussed.

  20. Electron temperature and density probe for small aeronomy satellites.

    PubMed

    Oyama, K-I; Hsu, Y W; Jiang, G S; Chen, W H; Cheng, C Z; Fang, H K; Liu, W T

    2015-08-01

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T(e) in low frequency mode and N(e) in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f(UHR)). The instrument which is named "TeNeP" can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.

  1. Electron temperature and density probe for small aeronomy satellites

    SciTech Connect

    Oyama, K.-I.; Hsu, Y. W.; Jiang, G. S.; Chen, W. H.; Liu, W. T.; Cheng, C. Z.; Fang, H. K.

    2015-08-15

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T{sub e} in low frequency mode and N{sub e} in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f{sub UHR}). The instrument which is named “TeNeP” can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.

  2. Discriminating the trapped electron modes contribution in density fluctuation spectra

    NASA Astrophysics Data System (ADS)

    Arnichand, H.; Sabot, R.; Hacquin, S.; Krämer-Flecken, A.; Bourdelle, C.; Citrin, J.; Garbet, X.; Giacalone, J. C.; Guirlet, R.; Hillesheim, J. C.; Meneses, L.

    2015-09-01

    Quasi-coherent (QC) modes have been reported for more than 10 years in reflectometry fluctuations spectra in the core region of fusion plasmas. They have characteristics in-between coherent and broadband fluctuations as they oscillate at a marked frequency but have a wide spectrum. This work presents further evidences of the link recently established between QC modes and the trapped electron modes (TEM) instabilities (Arnichand et al 2014 Nucl. Fusion 54 123017). In electron cyclotron resonance heated discharges of Tore Supra, an enhancement of QC modes amplitude is observed in a region where TEM cause impurity transport and turbulence. In JET Ohmic plasmas, QC modes disappear during density ramp-up and current ramp-down. This is reminiscent of Tore Supra and TEXTOR observations during transitions from the linear Ohmic confinement (LOC) to the saturated Ohmic confinement (SOC) regimes. Evidencing TEM activity then becomes experimentally possible via analysis of fluctuation spectra.

  3. Electron temperature and density probe for small aeronomy satellites

    NASA Astrophysics Data System (ADS)

    Oyama, K.-I.; Hsu, Y. W.; Jiang, G. S.; Chen, W. H.; Cheng, C. Z.; Fang, H. K.; Liu, W. T.

    2015-08-01

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both Te in low frequency mode and Ne in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (fUHR). The instrument which is named "TeNeP" can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.

  4. Measurements of the density profile in oxidized graphite by X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Ioka, I.; Yoda, S.

    1988-01-01

    A computed tomography (CT) has been applied to the measurement of the density profile in nuclear-grade isotropic graphite (IG-11) having an oxidation gradient. The density profile of oxidized graphite was estimated from the CT number of oxidized graphite as the basis of the CT number and density of unoxidized graphite. On the other hand, the density profile of oxidized graphite was calculated from the weight loss and volume of the removed layer which were incrementally ground from the exterior surface. The agreement between the estimated and the measured results was good in regard to the density profile of oxidized graphite. Further, some tomograms of nuclear-grade graphites with artificial defects were tested using the X-ray CT scanner. The features of the defects in the graphite were also verified from the tomograms, but the accurate dimension of these defects could not be obtained.

  5. Electron density and electron temperature measurements in nanosecond pulse discharges over liquid water surface

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, M.; Roettgen, A.; Petrishchev, V.; Frederickson, K.; Adamovich, I. V.

    2016-12-01

    Time-resolved electron density, electron temperature, and gas temperature in nanosecond pulse discharges in helium and O2-He mixtures near liquid water surface are measured using Thomson/pure rotational Raman scattering, in two different geometries, (a) ‘diffuse filament’ discharge between a spherical high-voltage electrode and a grounded pin electrode placed in a reservoir filled with distilled water, with the tip exposed, and (b) dielectric barrier discharge between the high-voltage electrode and the liquid water surface. A diffuse plasma filament generated between the electrodes in helium during the primary discharge pulse exhibits noticeable constriction during the secondary discharge pulse several hundred ns later. Adding oxygen to the mixture reduces the plasma filament diameter and enhances constriction during the secondary pulse. In the dielectric barrier discharge, diffuse volumetric plasma occupies nearly the entire space between the high voltage electrode and the liquid surface, and extends radially along the surface. In the filament discharge in helium, adding water to the container results in considerable reduction of plasma lifetime compared to the discharge in dry helium, by about an order of magnitude, indicating rapid electron recombination with water cluster ions. Peak electron density during the pulse is also reduced, by about a factor of two, likely due to dissociative attachment to water vapor during the discharge pulse. These trends become more pronounced as oxygen is added to the mixture, which increases net rate of dissociative attachment. Gas temperature during the primary discharge pulse remains near room temperature, after which it increases up to T ~ 500 K over 5 µs and decays back to near room temperature before the next discharge pulse several tens of ms later. As expected, electron density and electron temperature in diffuse DBD plasmas are considerably lower compared to peak values in the filament discharge. Use of Thomson

  6. Accuracy of cutoff probe for measuring electron density: simulation and experiment

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Woong; You, Shin-Jae; Kim, Si-June; Lee, Jang-Jae; Kim, Jung-Hyung; Oh, Wang-Yuhl

    2016-09-01

    The electron density has been used for characterizing the plasma for basic research as well as industrial application. To measure the exact electron density, various type of microwave probe has been developed and improved. The cutoff probe is a promising technique inferring the electron density from the plasma resonance peak on the transmission spectrum. In this study, we present the accuracy of electron density inferred from cutoff probe. The accuracy was investigated by electromagnetic simulation and experiment. The discrepancy between the electron densities from the cutoff probe and other sophisticated microwave probes were investigated and discussed. We found that the cutoff probe has good accuracy in inferred electron density. corresponding author.

  7. Coronal loop density profile estimated by forward modelling of EUV intensity

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Goddard, C. R.; Anfinogentov, S.; Nakariakov, V. M.

    2017-04-01

    Aims: The transverse density structuring of coronal loops was recently calculated for the first time using the general damping profile for kink oscillations. This seismological method assumes a density profile with a linear transition region. We consider to what extent this density profile accounts for the observed intensity profile of the loop, and how the transverse intensity profile may be used to complement the seismological technique. Methods: We use isothermal and optically transparent approximations for which the intensity of extreme ultraviolet (EUV) emission is proportional to the square of the plasma density integrated along the line of sight. We consider four different models for the transverse density profile; the generalised Epstein profile, the step function, the linear transition region profile, and a Gaussian profile. The effect of the point spread function is included and Bayesian analysis is used for comparison of the models. Results: The two profiles with finite transitions are found to be preferable to the step function profile, which supports the interpretation of kink mode damping as being due to mode coupling. The estimate of the transition layer width using forward modelling is consistent with the seismological estimate. Conclusions: For wide loops, that is those observed with sufficiently high spatial resolution, this method can provide an independent estimate of density profile parameters for comparison with seismological estimates. In the ill-posed case of only one of the Gaussian or exponential damping regimes being observed, it may provide additional information to allow a seismological inversion to be performed. Alternatively, it may be used to obtain structuring information for loops that do not oscillate.

  8. Carrier Density Profiling of Ultra-Shallow Junction Layers Through Corrected C-V Plotting

    SciTech Connect

    Chen, James; Dimitrov, Dimitar; Dimitrova, Tatiana; Timans, Paul; Gelpey, Jeff; McCoy, Steve; Lerch, Wilfried; Paul, Silke; Bolze, Detlef

    2008-11-03

    The aim of this report is to present and justify a new approach for carrier density profiling in ultra-shallow junction (USJ) layer. This new approach is based on a capacitance measurement model, which takes series impedance, shunt resistance and the presence of a boron skin on the USJ layer into account. It allows us to extract the depletion layer capacitances in the USJ layer from C-V plotting more accurately and hence to obtain better carrier density profiles. Based on this new approach the carrier density profiles of different USJ layers with and without halo-style implants are obtained and discussed.

  9. Electron Temperature and Density in Local Helicity Injection and High betat Plasmas

    NASA Astrophysics Data System (ADS)

    Schlossberg, David J.

    Tokamak startup in a spherical torus (ST) and an ST-based fusion nuclear science facility can greatly benefit from using non-inductive methods. The Pegasus Toroidal Experiment has developed a non-inductive startup technique using local helicity injection (LHI). Electron temperature, T e(r), and density, ne( r), profiles during LHI are unknown. These profiles are critical for understanding both the physics of the injection and relaxation mechanisms, as well as for extrapolating this technique to larger devices. A new Thomson scattering system has been designed, installed, and used to characterize Te(r, t) and ne(r, t) during LHI. The diagnostic leverages new technology in image intensified CCD cameras, high-efficiency diffraction gratings, and reliable Nd:YAG lasers. Custom systems for stray light mitigation, fast shuttering, and precision timing have been developed and implemented. The overall system provides a low-maintenance, economic, and effective means to explore novel physics regimes in Pegasus. Electron temperature and density profiles during LHI have been measured for the first time. Results indicate Te(r) peaked in the core of plasmas, and sustained while plasmas are coupled to injection drive. Electron densities also peak near the core of the tokamak, up to local values of n e ˜ 1.5 x 1019 m -3. A comparison of Te( r, t) has been made between discharges with dominant drive voltage from induction versus helicity injection. In both cases Te ( r, t) profiles remain peaked, with values for Te ,max > 150 eV in dominantly helicity-driven plasmas using high-field side LHI. Sustained values of betat ˜ 100% have been demonstrated in a tokamak for the first time. Plasmas are created and driven entirely non-solenoidally, and exhibit MHD stability. Measured temperature and density profiles are used to constrain magnetic equilibrium reconstructions, which calculate 80% < betat < 100% throughout a toroidal field ramp-down. For a continued decrease in the toroidal

  10. Calculation of density profiles in tandem mirrors fueled by pellets

    SciTech Connect

    Campbell, R.B.; Gilmore, J.M.

    1983-12-02

    We have modified the LLNL radial transport code TMT to model reactor regime plasmas, fueled by pellets. The source profiles arising from pellet fueling are obtained from existing pellet ablation models. Because inward radial diffusion due to inverted profiles must compete with trapping of central cell ions in the transition region for tandem mirrors, pellets must penetrate fairly far into the plasma. In fact, based on our radial calculations, a pellet with a velocity of 10 km/sec cannot sustain the central flux tubes; a velocity more like 100 km/sec will be necessary. We also find that the central cell radial diffusion must exceed classical by about a factor of 100.

  11. An Electron-Beam Profile Monitor Using Fresnel Zone Plates

    SciTech Connect

    Nakamura, Norio; Sakai, Hiroshi; Iida, Kensuke; Shinoe, Kenji; Takaki, Hiroyuki; Fujisawa, Masami; Hayano, Hitoshi; Muto, Toshiya; Nomura, Masaharu; Kamiya, Yukihide; Koseki, Tadashi; Amemiya, Yoshiyuki; Aoki, Nobutada; Nakayama, Koichi

    2004-05-12

    We have developed a beam profile monitor using two Fresnel zone plates (FZPs) at the KEK-ATF (Accelerator Test Facility) damping ring to measure small electron-beam sizes for low-emittance synchrotron radiation sources. The monitor has a structure of an X-ray microscope, where two FZPs constitute an X-ray imaging optics. In the monitor system, the synchrotron radiation from the electron beam at the bending magnet is monochromatized to 3.235-keV X-rays by a crystal monochromator and the transverse electron-beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. This monitor has the following advantages: (1) high spatial resolution, (2) non-destructive measurement, (3) real-time monitoring, and (4) direct electron-beam imaging. With the beam profile monitor, we have succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 {mu}m. The measured magnification of the imaging optics was in good agreement with the design value.

  12. Electron response in van der Waals density functionals

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per

    2013-03-01

    There is significant interest in density functional theory (DFT) of dispersive or van der Waals (vdW) interactions and in DFT studies of sparse systems where vdW forces contribute to the cohesion and behavior. The Rutgers-Chalmers van der Waals density functional (vdW-DF) method [PRL 92, 246401 (2004); PRB 76, 125112 (2007)] is a nonempirical approach to calculate vdW bonding and for DFT characterizations of sparse matter. The vdW-DF framework is defined by a single exchange-correlation density functional that rests on a plasmon-type description for both semilocal components and for a parameter-free evaluation of nonlocal correlation. My talk summarizes a set of vdW-DF studies that seeks to map and analyze details in the vdW-DF electron-response nature. The purpose is in part to extract consequences that can facilitate an experiment-theory comparison that goes beyond binding geometries and energies. The aim is also to seek implications that can help develop the vdW-DF framework. I present an analysis of the relative importance of morphology, screening (image-plane formation), and collective effects in the vdW-DF description of molecular systems. In addition, I compare vdW-DF results with Cu(111) experiments that tests the electron-response behavior in terms of adsorption-induced band shifts, the form of the overall light-molecule physisorption potential, and the corrugation in the kinetic-energy repulsion of molecules at surfaces. Overall, the vdW-DF studies suggest the importance of benchmarking vdW methods across different length scales and by exploring the variation that arise when related structures have a different balance between exchange repulsion and vdW attraction.

  13. Production of fine structures in type III solar radio bursts due to turbulent density profiles

    SciTech Connect

    Loi, Shyeh Tjing; Cairns, Iver H.; Li, Bo

    2014-07-20

    Magnetic reconnection events in the corona release energetic electron beams along open field lines, and the beams generate radio emission at multiples of the electron plasma frequency f{sub p} to produce type III solar radio bursts. Type III bursts often exhibit irregularities in the form of flux modulations with frequency and/or local temporal advances and delays, and a type IIIb burst represents the extreme case where a type III burst is fragmented into a chain of narrowband features called striae. Remote and in situ spacecraft measurements have shown that density turbulence is ubiquitous in the corona and solar wind, and often exhibits a Kolmogorov power spectrum. In this work, we numerically investigate the effects of one-dimensional macroscopic density turbulence (along the beam direction) on the behavior of type III bursts, and find that this turbulence produces stria-like fine structures in the dynamic spectra of both f{sub p} and 2 f{sub p} radiation. Spectral and temporal fine structures in the predicted type III emission are produced by variations in the scattering path lengths and group speeds of radio emission, and in the locations and sizes of emitting volumes. Moderate turbulence levels yield flux enhancements with much broader half-power bandwidths in f{sub p} than 2 f{sub p} emission, possibly explaining the often observed type IIIb-III harmonic pairs as being where intensifications in 2 f{sub p} radiation are not resolved observationally. Larger turbulence levels producing trough-peak regions in the plasma density profile may lead to broader, resolvable intensifications in 2 f{sub p} radiation, which may account for the type IIIb-IIIb pairs that are sometimes observed.

  14. Extracting electron transfer coupling elements from constrained density functional theory

    NASA Astrophysics Data System (ADS)

    Wu, Qin; Van Voorhis, Troy

    2006-10-01

    Constrained density functional theory (DFT) is a useful tool for studying electron transfer (ET) reactions. It can straightforwardly construct the charge-localized diabatic states and give a direct measure of the inner-sphere reorganization energy. In this work, a method is presented for calculating the electronic coupling matrix element (Hab) based on constrained DFT. This method completely avoids the use of ground-state DFT energies because they are known to irrationally predict fractional electron transfer in many cases. Instead it makes use of the constrained DFT energies and the Kohn-Sham wave functions for the diabatic states in a careful way. Test calculations on the Zn2+ and the benzene-Cl atom systems show that the new prescription yields reasonable agreement with the standard generalized Mulliken-Hush method. We then proceed to produce the diabatic and adiabatic potential energy curves along the reaction pathway for intervalence ET in the tetrathiafulvalene-diquinone (Q-TTF-Q) anion. While the unconstrained DFT curve has no reaction barrier and gives Hab≈17kcal /mol, which qualitatively disagrees with experimental results, the Hab calculated from constrained DFT is about 3kcal /mol and the generated ground state has a barrier height of 1.70kcal/mol, successfully predicting (Q-TTF-Q)- to be a class II mixed-valence compound.

  15. Dayside electron density structures organised by the Martian crustal magnetic fields

    NASA Astrophysics Data System (ADS)

    Dieval, C.; Wild, J. A.; Morgan, D. D.; Andrews, D. J.; Gurnett, D. A.

    2015-12-01

    The Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard Mars Express is able to detect remotely the Martian topside electron densities down to the main ionospheric peak. In the ionospheric mode it transmits a sequence of pulses in the frequency range 0.1 to 5.5 MHz and measures the delay of reception of the reflected signals returned by the ionospheric plasma layers below the spacecraft. Previous studies using MARSIS have investigated localized electron density structures in the dayside Martian ionosphere, located in areas of typically near-vertical or oblique orientation of the Martian crustal magnetic fields. These crustal fields are remnants of the now extinct global Martian dipole magnetic field, with the strongest fields in the Southern hemisphere reaching up to |B| > 200 nT at altitudes of 400 km. These density structures are often detected as apparent upwellings above the surrounding ideally horizontally stratified ionosphere. Previous studies searched the density structures at a fixed sounding frequency of 1.9 MHz (equivalent to a plasma density of 4.47·104 cm-3), which is a typical frequency at which they are detected. In addition, these studies did not account for the signal dispersion due to the propagation through the ionosphere, which causes larger time delays for receiving the radar echoes, and therefore an underestimation of the altitude of these structures. In the present work we propose to use a statistical dataset of such density structures detected on the dayside of Mars by MARSIS in areas of oblique crustal fields, to determine the interval of densities for which the structures are found to make apparent upwellings. Then we use the corresponding electron density profiles corrected for signal dispersion, to determine the real altitudes of the density structures, their vertical extent and their plasma scale heights compared to the surrounding ionosphere. These new informations give critical hints for uncovering their origins

  16. Evidence of water molecules--a statistical evaluation of water molecules based on electron density.

    PubMed

    Nittinger, Eva; Schneider, Nadine; Lange, Gudrun; Rarey, Matthias

    2015-04-27

    Water molecules play important roles in many biological processes, especially when mediating protein-ligand interactions. Dehydration and the hydrophobic effect are of central importance for estimating binding affinities. Due to the specific geometric characteristics of hydrogen bond functions of water molecules, meaning two acceptor and two donor functions in a tetrahedral arrangement, they have to be modeled accurately. Despite many attempts in the past years, accurate prediction of water molecules-structurally as well as energetically-remains a grand challenge. One reason is certainly the lack of experimental data, since energetic contributions of water molecules can only be measured indirectly. However, on the structural side, the electron density clearly shows the positions of stable water molecules. This information has the potential to improve models on water structure and energy in proteins and protein interfaces. On the basis of a high-resolution subset of the Protein Data Bank, we have conducted an extensive statistical analysis of 2.3 million water molecules, discriminating those water molecules that are well resolved and those without much evidence of electron density. In order to perform this classification, we introduce a new measurement of electron density around an individual atom enabling the automatic quantification of experimental support. On the basis of this measurement, we present an analysis of water molecules with a detailed profile of geometric and structural features. This data, which is freely available, can be applied to not only modeling and validation of new water models in structural biology but also in molecular design.

  17. An adaptive technique for estimating the atmospheric density profile during the AE mission

    NASA Technical Reports Server (NTRS)

    Argentiero, P.

    1973-01-01

    A technique is presented for processing accelerometer data obtained during the AE missions in order to estimate the atmospheric density profile. A minimum variance, adaptive filter is utilized. The trajectory of the probe and probe parameters are in a consider mode where their estimates are unimproved but their associated uncertainties are permitted an impact on filter behavior. Simulations indicate that the technique is effective in estimating a density profile to within a few percentage points.

  18. Cluster density profiles as a test of modified gravity

    NASA Astrophysics Data System (ADS)

    Lombriser, Lucas; Schmidt, Fabian; Baldauf, Tobias; Mandelbaum, Rachel; Seljak, Uroš; Smith, Robert E.

    2012-05-01

    We present a new test of gravitational interactions at the r≃(0.2-20)Mpc scale, around the virial radius of dark matter halos measured through cluster-galaxy lensing of maxBCG clusters from the Sloan Digital Sky Survey (SDSS). We employ predictions from self-consistent simulations of f(R) gravity to find an upper bound on the background field amplitude of |fR0|<3.5×10-3 at the 1D-marginalized 95% confidence level. As a model-independent assessment of the constraining power of cluster profiles measured through weak gravitational lensing, we also constrain the amplitude F0 of a phenomenological modification based on the profile enhancement induced by f(R) gravity when not including effects from the increased cluster abundance in f(R). In both scenarios, dark-matter-only simulations of the concordance model corresponding to |fR0|=0 and F0=0 are consistent with the lensing measurements, i.e., at the 68% and 95% confidence level, respectively.

  19. Monitoring sodium chloride concentrations and density profiles in solar ponds by electrical conductivity and temperature measurement

    SciTech Connect

    Fynn, R.P.; Short, T.H.; Badger, P.C.; Sciarini, M.J.

    1980-01-01

    A simple accurate and semi-automatic system was developed for monitoring sodium chloride concentrations and density profiles in a solar pond. The profile meter, which measures pond solution conductivity and temperature, and the equations which convert this data into salt concentration and/or brine density, are covered in detail so that any potential users may construct their own equipment. The use of the profile meter, its advantages and disadvantages, are discussed. Emphasis is placed on the day-to-day profile monitoring that the conductivity-temperature method enables, and the use of the meter during modification of the pond profiles. A program is also available to calculate the pond profile using a Hewlett-Packard HP-97 programmable calculator.

  20. Self-similarity and universality of void density profiles in simulation and SDSS data

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.; Diego, J. M.; Iliev, I. T.; Gottlöber, S.; Watson, W. A.; Yepes, G.

    2015-06-01

    The stacked density profile of cosmic voids in the galaxy distribution provides an important tool for the use of voids for precision cosmology. We study the density profiles of voids identified using the ZOBOV watershed transform algorithm in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. We compare different methods for reconstructing density profiles scaled by the void radius and show that the most commonly used method based on counts in shells and simple averaging is statistically flawed as it underestimates the density in void interiors. We provide two alternative methods that do not suffer from this effect; one based on Voronoi tessellations is also easily able to account from artefacts due to finite survey boundaries and so is more suitable when comparing simulation data to observation. Using this method, we show that the most robust voids in simulation are exactly self-similar, meaning that their average rescaled profile does not depend on the void size. Within the range of our simulation, we also find no redshift dependence of the mean profile. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The mean profiles of real voids also show a universal behaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.

  1. Electron density and temperature in the solar corona from multifrequency radio imaging

    NASA Astrophysics Data System (ADS)

    Mercier, C.; Chambe, G.

    2015-11-01

    Context. The 2D images obtained through rotational aperture synthesis with the Nançay Radioheliograph are suitable for quantitative exploitation. First results are presented. Aims: We study the variations of the quiet corona in brightness and size during an 8-year period and derive electron density and temperature in the corona. Methods: Images at 6 frequencies between 150 and 450 MHz for 183 quiet days between 2004 and 2011 were used. Measurements of the brightness temperature Tb beyond the limb allowed coronal density models to be derived in both EW and NS radial directions, with a weak dependence on the electron temperature. The total ranges in the heliocentric distance r are 1.15-1.60 R⊙ (EW) and 1.0-1.4 R⊙ (NS). The agreement between results from different frequencies, in the ranges of r where there is overlapping shows the robustness of the method. The electron temperature, in turn, can be derived from the comparison of the observed mean spectra on the disk with those predicted through transfer calculations from the density models derived from limb observations. Results: The widths of the brightness profiles that were averaged yearly have minima at cycle minimum (2008-2009). These minima are more pronounced for EW profiles than for NS ones. The derived yearly-averaged density models along equatorial and polar diameters are consistent with isothermal and hydrostatic models. They are characterized by their density value n0 extrapolated down to the base of the corona and their scale-height temperature TH. Changes in n0 and TH with solar cycle are given for equatorial and polar regions. The kinetic temperature Te of electrons in the corona (~0.62 MK) is found to be significantly less than TH (~1.5 MK). This implies an ion temperature Ti ~ 2.2 MK. Conclusions: The yearly-averaged variations of these models are less than the dispersion between models derived from other techniques, such as white light and EUV observations, partly because these two techniques

  2. Direct and quantitative comparison of pixelated density profiles to high resolution X-ray reflectivity data.

    SciTech Connect

    Fenter, Paul; Lee, S. S.; Skelton, A A; Cummings, Peter T

    2011-01-01

    A method for comparing pixelated density profiles (e.g. obtained from molecular dynamics or other computational techniques) with experimental X-ray reflectivity data both directly and quantitatively is described. The conditions under which such a comparison can be made quantitatively (e.g. with errors <1%) are determined theoretically by comparing calculated structure factors for an intrinsic continuous density profile with those obtained from density profiles that have been binned into regular spatial increments. The accuracy of the X-ray reflectivity calculations for binned density profiles is defined in terms of the inter-relationships between resolution of the X-ray reflectivity data (i.e. its range in momentum transfer), the chosen bin size and the width of the intrinsic density profile. These factors play a similar role in the application of any structure-factor calculations that involve the use of pixelated density profiles, such as those obtained from iterative phasing algorithms for inverting structures from X-ray reflectivity and coherent diffraction imaging data. Finally, it is shown how simulations of a quartz water interface can be embedded into an exact description of the bulk phases (including the substrate crystal and the fluid water, below and above the actual interface) to quantitatively reproduce the experimental reflectivity data of a solid liquid interface.

  3. Evidence for Gently Sloping Plasma Density Profiles in the Deep Corona: Type III Observations

    NASA Astrophysics Data System (ADS)

    Lobzin, V. V.; Cairns, I. H.; Robinson, P. A.; Warmuth, A.; Mann, G.; Gorgutsa, R. V.; Fomichev, V. V.

    2010-12-01

    Type III radio bursts are produced near the local electron plasma frequency fp and near its harmonic 2fp by fast electrons ejected from the solar active regions and moving through the corona and solar wind. The coronal bursts have dynamic spectra with frequency rapidly falling with time, the typical duration being about 1-3 s. In the present paper, 37 well-defined coronal type III radio bursts (25-450 MHz) are analyzed. The results obtained substantiate an earlier statement that the dependence of the central frequency of the emission on time can be fitted to a power-law model, f(t) vprop (t - t 0)-α, where α can be as low as 1. In the case of negligible plasma acceleration and conical flow, it means that the electron number density within about 1 solar radius above the photosphere will decrease as r -2, like in the solar wind. For the data set chosen, the index α varies in the range from 0.2 to 7 or bigger, with mean and median values of 1.2 and 0.5, respectively. A surprisingly large fraction of events, 84%, have α <= 1.2. These results provide strong evidence that in the type III source regions the electron number density scales as n(r) vprop (r - r 0)-β, with minimum, mean, and median β = 2α of 0.4, 2.4, and 1.0, respectively. Hence, the typical density profiles are more gently sloping than those given by existing empirical coronal models. Several events are found with a wind-like dependence of burst frequency on time. Smaller power-law indices could result from the effects of non-conical geometry of the plasma flow tubes, deceleration of coronal plasma, and/or the curvature of the magnetic field lines. The last effect is shown to be too weak to explain such low power-law indices. A strong tendency is found for bursts from the same group to have similar power-law indices, thereby favoring the hypothesis that they are usually produced by the same source region.

  4. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  5. Density gradient free electron collisionally excited X-ray laser

    DOEpatents

    Campbell, Edward M.; Rosen, Mordecai D.

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  6. Neutral Atmosphere Properties Determining D-region Electron Densities

    NASA Technical Reports Server (NTRS)

    Taubenheim, J.

    1984-01-01

    The increasing discoveries of various manifestations of meteorological control of the D region ionization and the growth of techniques for its measurement provide a challenge to meteorologists to test their insight into middle atmosphere processes with the physical interpretation of D layer phenomena. Models for ion production due to photoionization of minor atmospheric nitric oxide by quasi-monochromatic solar Lyman-alpha radiation are presented. A ground based measuring technique using low frequency radio reflection heights is briefly described and an approach to the interpretation of data acquired by this method is discussed. It is shown that D region electron density variations can provide an efficient diagnostic tool for the detection of perturbations of the circulation state of the middle atmosphere.

  7. Use of Topside Sounding With Iri Model To Study The Electron Density In Plasmasphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Beloff, N.; Denisenko, P. F.; Maltseva, O. A.; Gough, M. P.; Klimov, S. I.; Nozdrachev, M. N.; Alleyne, H.; Bates, I.

    One of the major goals of near Earth space studies is a theoretical and experimen- tal investigation of the plasmaspheric and ionospheric responses to variations of solar wind and IMF parameters. The experiments carried out in the scope of INTERBALL project allow one to trace the propagation of the CME up to its effects on Earth's mag- netosphere. When the topside sounding data and the measurements from low-orbit satellites such as MIR station are simultaneously available, it becomes possible to ob- serve the variations of electron density in plasmasphere and ionosphere. In particular, such an observation is found to be useful for the empirical modeling of plasma dis- tribution. The most developed model of the ionosphere is the IRI model. However, the IRI model ensures high accuracy for the lower ionosphere, but yields significantly reduced accuracy for the top part. The largest errors occur near the satellite orbits lo- cated at the base level of the plasmaspheric model. Therefore it is important to use both magnetospheric and ionospheric measurements. Authors recommend that: 1) the IRI model should be corrected using N(h)-profile parameters obtained from topside ionograms. Various schemes were considered: i) use the value of electron plasma frequency near the satellite only; ii) use only some points from N(h)-profile or the full profile; iii) use different coefficients to modify a thickness of lower and top parts of the ionosphere; 2) in addition, one should use MIR station measurements to estimate the correlation of electron density behavior at various heights during the disturbances.

  8. Plasmaspheric Electron Densities and Plasmashere-Ionosphere Coupling Fluxes

    NASA Astrophysics Data System (ADS)

    Lichtenberger, Janos; Cherneva, Nina; Shevtsov, Boris; Sannikov, Dmitry; Ferencz, Csaba; Koronczay, David

    The Automatic Whistler Detector and Analyzer Network (AWDANet) is able to detect and analyze whistlers in quasi-realtime and can provide equatorial electron density data. The plasmaspheric electron densities and ionosphere-plasmasphere coupling fluxes are key parameters for plasmasphere models in Space Weather related investigations, particularly in modeling charged particle accelerations and losses in Radiation Belts. The global AWDANet [1] detects millions of whistlers in a year. The system has been recently completed with automatic analyzer capability in PLASMON (http://plasmon.elte.hu) project. It is based on a recently developed whistler inversion model [2], that opened the way for an automated process of whistler analysis, not only for single whistler events but for complex analysis of multiple-path propagation whistler groups [3]. In this paper we present the results of quasi-real-time runs processing whistlers from quiet and disturb periods from Karymshina station (Kamchatka, Russia). Refilling rates, that are not yet known in details are also presented for the various periods. 1.Lichtenberger, J., C. Ferencz, L. Bodnár, D. Hamar, and P. Steinbach (2008), Automatic whistler detector and analyzer system: Automatic whistler detector, J. Geophys. Res., 113, A12201, doi:10.1029/2008JA013467. 2. Lichtenberger, J. (2009), A new whistler inversion method, J. Geophys. Res., 114, A07222, doi:10.1029/2008JA013799. 3. Lichtenberger, J., C. Ferencz, D. Hamar, P. Steinbach, C. J. Rodger, M. A. Clilverd, and A. B. Collier (2010), Automatic Whistler Detector and Analyzer system: Implementation of the analyzer algorithm, J. Geophys. Res., 115, A12214, doi:10.1029/2010JA015931.

  9. RR Lyrae in XSTPS: The halo density profile in the north galactic cap

    SciTech Connect

    Faccioli, L.; Smith, M. C.; Yuan, H.-B.; Liu, X.-W.; Zhang, H.-H.; Zhao, H.-B.; Yao, J.-S. E-mail: msmith@shao.ac.cn

    2014-06-20

    We present a catalog of RR Lyrae stars (RRLs) observed by the Xuyi Schmidt Telescope Photometric Survey (XSTPS). The area we consider is located in the north Galactic cap, covering ≈376.75 deg{sup 2} at α ≈ 150° and δ ≈ 27° down to a magnitude limit of i ≈ 19. Using the variability information afforded by the multi-epoch nature of our XSTPS data, combined with colors from the Sloan Digital Sky Survey, we are able to identify candidate RRLs. We find 318 candidates, derive distances to them, and estimate the detection efficiency. The majority of our candidates have more than 12 observations, and for these we are able to calculate periods. These also allow us to estimate our contamination level, which we predict is between 30% and 40%. Finally, we use the sample to probe the halo density profile in the 9-49 kpc range and find that it can be well fitted by a double power law. We find good agreement between this model and the models derived for the south Galactic cap using the Watkins et al. and Sesar et al. RRL data sets, after accounting for possible contamination in our data set from Sagittarius stream members. We consider non-spherical double power-law models of the halo density profile and again find agreement with literature data sets, although we have limited power to constrain the flattening due to our small survey area. Much tighter constraints will be placed by current and future wide-area surveys, most notably ESA's astrometric Gaia mission. Our analysis demonstrates that surveys with a limited number of epochs can effectively be mined for RRLs. Our complete sample is provided as accompanying online material; as an example the first few entries of each electronic table are shown in the text.

  10. Electron correlation in solids via density embedding theory

    SciTech Connect

    Bulik, Ireneusz W.; Chen, Weibing; Scuseria, Gustavo E.

    2014-08-07

    Density matrix embedding theory [G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012)] and density embedding theory [I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev. B 89, 035140 (2014)] have recently been introduced for model lattice Hamiltonians and molecular systems. In the present work, the formalism is extended to the ab initio description of infinite systems. An appropriate definition of the impurity Hamiltonian for such systems is presented and demonstrated in cases of 1, 2, and 3 dimensions, using coupled cluster theory as the impurity solver. Additionally, we discuss the challenges related to disentanglement of fragment and bath states. The current approach yields results comparable to coupled cluster calculations of infinite systems even when using a single unit cell as the fragment. The theory is formulated in the basis of Wannier functions but it does not require separate localization of unoccupied bands. The embedding scheme presented here is a promising way of employing highly accurate electronic structure methods for extended systems at a fraction of their original computational cost.

  11. Improved beta (local beta >1) and density in electron cyclotron resonance heating on the RT-1 magnetosphere plasma

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Yoshida, Z.; Saitoh, H.; Yano, Y.; Kawazura, Y.; Nogami, T.; Yamasaki, M.; Mushiake, T.; Kashyap, A.

    2015-05-01

    This study reports the recent progress in improved plasma parameters of the RT-1 device. Increased input power and the optimized polarization of electron cyclotron resonance heating (ECRH) with an 8.2 GHz klystron produce a significant increase in electron beta, which is evaluated by an equilibrium analysis of the Grad-Shafranov equation. The peak value of the local electron beta βe is found to exceed 1. In the high-beta and high-density regime, the density limit is observed for H, D and He plasmas. The line-averaged density is close to the cutoff density for 8.2 GHz ECRH. When the filling gas pressure is increased, the density limit still exists even in the low-beta region. This result indicates that the density limit is caused by the cutoff density rather than the beta limit. From the analysis of interferometer data, we found that inward diffusion causes a peaked density profile beyond the cutoff density.

  12. Design of an X-mode swept frequency modulation reflectometer for the measurement of KSTAR plasma density profiles (invited)

    NASA Astrophysics Data System (ADS)

    Roh, Y.; Domier, C. W.; Luhmann, N. C.

    2004-10-01

    An X-mode swept frequency modulation (FM) reflectometry system has been designed to measure the electron density profiles of the "initial" KSTAR plasma. Fast swept HTO oscillators are employed to avoid density fluctuation effects, and frequency quadruplers are utilized to expand the HTO frequency range of 8-18 GHz to completely cover the X-mode cutoff frequency range of 33-66 GHz. The system can also be utilized to measure the edge profiles of the "Day One" KSTAR plasma by either switching from X- to O-mode reflectometry or by employing higher frequency millimeter-wave components and retaining the X-mode reflectometry configuration. To facilitate engineering design and optimization, a 3D drawing tool is utilized to effectively deal with any technical problems that may happen under actual KSTAR conditions. Details of the KSTAR FM reflectometry system are described together with important design issues.

  13. Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons

    NASA Astrophysics Data System (ADS)

    Ting, A.; Gordon, D.; Helle, M.; Kaganovich, D.; Sprangle, P.; Hafizi, B.

    2010-11-01

    Extended acceleration in a Laser Wakefield Accelerator can be achieved by tailoring the phase velocity of the accelerating plasma wave, either through profiling of the density of the plasma or direct manipulation of the phase velocity. Laser wakefield acceleration has also reached a maturity that proton acceleration by wakefield could be entertained provided we begin with protons that are substantially relativistic, ˜1 GeV. Several plasma density tapering schemes are discussed. The first scheme is called "bucket jumping" where the plasma density is abruptly returned to the original density after a conventional tapering to move the accelerating particles to a neighboring wakefield period (bucket). The second scheme is designed to specifically accelerate low energy protons by generating a nonlinear wakefield in a plasma region with close to critical density. The third scheme creates a periodic variation in the phase velocity by beating two intense laser beams with laser frequency difference equal to the plasma frequency. Discussions and case examples with simulations are presented where substantial acceleration of electrons or protons could be obtained.

  14. Electronic Structure and Effectively Unpaired Electron Density Topology in closo-Boranes: Nonclassical Three-Center Two-Electron Bonding.

    PubMed

    Lobayan, Rosana M; Bochicchio, Roberto C; Torre, Alicia; Lain, Luis

    2011-04-12

    This article provides a detailed study of the structure and bonding in closo-borane cluster compounds X2B3H3 (X = BH(-), P, SiH, CH, N), with particular emphasis on the description of the electron distribution using the topology of the quantum many-body effectively unpaired density. The close relationship observed between the critical points of this quantity and the localization of the electron cloud allows us to characterize the nonclassical bonding patterns of these systems. The obtained results confirm the suitability of the local rule to detect three-center two-electron bonds, which was conjectured in our previous study on boron hydrides.

  15. Plasma Wave and Electron Density Structure Observed in the Cusp with a Dual-Rocket Experiment

    NASA Astrophysics Data System (ADS)

    Colpitts, C. A.; Labelle, J. W.; Kletzing, C.; Bounds, S.; Cairns, I.

    2008-12-01

    The Twin Rockets to Investigate Cusp Electrodynamics (TRICE) were launched on December 10, 2007, from Andoya Research Range in Andenes, Norway, into the active cusp. Both payloads traveled north over Svalbard, with one payload reaching an apogee of ~1100 km, and the other reaching ~600 km. The payloads were separated by 100-400 km during the main portion of the flight. Both payloads included waveform receivers with 5 MHz bandwidth. These recorded several distinct types of auroral waves including whistler mode waves below ~1000 kHz and Langmuir-upper hybrid waves at 300-3000 kHz for several hundred km. Both payloads concurrently encountered a distinct period of Langmuir turbulence. Clearly defined wave cutoffs provide measurements of electron density and reveal significant density structure with density enhancements having amplitudes up to 100 percent and scale sizes from meters to tens of kilometers. Analysis of the inferred density profiles using windowed Fourier Transforms or Lomb-Scargle periodograms generates dynamic spectra of the density, which provide estimates of the spectral composition of the density irregularities for time intervals sufficiently short that the stationarity of the spectra can be investigated. The large-scale structures through which the two payloads propagated were measured by both the EISCAT and SuperDARN radars as well as by all-sky cameras operated at Longyearbyen and Ny-Alesund on Svalbard. Using this data when available, comparison of the density irregularity waveforms and spectra from the two flights is studied in relation to spatial and altitude variations of the turbulence. This examination of wave and density structures and the large scale formations with which they are associated will add to the understanding of the large scale electrodynamics of the cusp region.

  16. Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas

    NASA Astrophysics Data System (ADS)

    Duff, James

    2016-10-01

    Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.

  17. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  18. First test of BNL electron beam ion source with high current density electron beam

    NASA Astrophysics Data System (ADS)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  19. Core electron temperature and density in the innermost Saturn's magnetosphere from HF power spectra analysis on Cassini

    NASA Astrophysics Data System (ADS)

    Schippers, P.; Moncuquet, M.; Meyer-Vernet, N.; Lecacheux, A.

    2013-11-01

    We analyze the large-scale structures of electrons in Saturn's inner magnetosphere equatorial plane, from 2.8 to about 10 Saturnian radii (RS). The electron total density and core temperature are obtained using the quasi-thermal noise spectroscopy method, based on the HF power spectra measurements acquired with the Cassini/Radio and Plasma Wave Science instrument around the local plasma frequency from July 2004 to May 2012. The results reveal the existence of two regions. An inner region around Enceladus orbit (3-5 RS) is characterized by a high variability of the electron density, an increasing core temperature profile (∝ R2.7), and a strong correlation of the density and temperature. An outer region, beyond 5 RS, is characterized by a decrease of the density (∝ R-4.19) and a slight decrease of the core temperature with distance from the planet (∝ R-0.3). The electron temperature profile is consistent with heating by thermalization of the electrons with the ions in the inner region and with thermalization balanced by cooling due to outward radial transport in the outer region. In the outer region, we identify a local time asymmetry of both the density and the temperature: higher core temperatures are observed in the nightside while higher densities are observed in the dayside. We finally estimate the plasma scale height from a few orbits at quasi-constant altitude. We find that it varies as R1.53 inside Dione's orbit and displays a bell-shaped profile between 7 and 9 RS, consistent with the maximum in the corotation lag previously observed.

  20. Fingerprints of the initial conditions on the density profiles of cold and warm dark matter haloes

    NASA Astrophysics Data System (ADS)

    Polisensky, E.; Ricotti, M.

    2015-06-01

    We use N-body simulations of dark matter haloes in cold dark matter (CDM) and a large set of different warm dark matter (WDM) cosmologies to demonstrate that the spherically averaged density profile of dark matter haloes has a shape that depends on the power spectrum of matter perturbations. Density profiles are steeper in WDM but become shallower at r < 0.01Rvir. Virialization isotropizes the velocity dispersion in the inner regions of the halo but does not erase the memory of the initial conditions in phase space. The location of the observed deviations from CDM in the density profile and in phase space can be directly related to the ratio between the halo mass and the filtering mass and are most evident in small mass haloes, even for a 34 keV thermal relic WDM. The rearrangement of mass within the haloes supports analytic models of halo structure that include angular momentum. We also find evidence of a dependence of the slope of the inner density profile in CDM cosmologies on the halo mass with more massive haloes exhibiting steeper profiles, in agreement with the model predictions and with previous simulation results. Our work complements recent studies of microhaloes near the filtering scale in CDM and strongly argue against a universal shape for the density profile.

  1. ICRH antenna coupling physics and optimum plasma edge density profile. Application to ITER

    NASA Astrophysics Data System (ADS)

    Messiaen, A.; Weynants, R.

    2011-08-01

    The performance of an ICRH system depends on the coupling capabilities of the antenna to the inhomogeneous plasma profile in front of it. The aim of this study is to understand the key physics phenomena contributing to the coupling. It is shown that the following plasma density profile characteristics are decisive: (i) distance between the antenna and the wave cutoff density, (ii) position of an optimum density with respect to the cutoff one and (iii) the density gradient leading from this optimum density to the plasma bulk. At each step of the analysis approximate relations are derived and the loading due to the plasma is compared with that of an isotropic dielectric medium in view of the application for modelling or dummy load testing. Examples are taken starting from the case of the projected ITER antenna array with its different phasing cases in front of the plasma edge profile used in the conceptual design phase. It is shown that, for the same antenna-cutoff distance, slight profile modifications can lead to substantial coupling and therefore power capability variations. Stronger profile modifications and some critically shaped resonant edge profiles are also analysed. The usefulness of a dielectric medium to simulate plasma loading is discussed in an appendix.

  2. Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit

    SciTech Connect

    Marshall, William BJ J

    2016-01-01

    A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blade histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.

  3. Density and chain conformation profiles of square-well chains confined in a slit by density-functional theory

    NASA Astrophysics Data System (ADS)

    Ye, Zhencheng; Cai, Jun; Liu, Honglai; Hu, Ying

    2005-11-01

    Density and chain conformation profiles of square-well chains between two parallel walls were studied by using density-functional theory. The free energy of square-well chains is separated into two contributions: the hard-sphere repulsion and the attraction. The Heaviside function is used as the weighting function for both of the two parts. The equation of state of Hu et al. is used to calculate the excess free energy of the repulsive part. The equation of state of statistical associating fluid theory for chain molecules with attractive potentials of variable range [A. Gil-Villegas et al. J. Chem. Phys. 106, 4168 (1997)] is used to calculate the excess free energy of the attractive part. Because the wall is inaccessible to a mass center of a longer chain, there exists a sharp fall in the distribution of end-to-end distance near the wall as the chain length increases. When the average density of the system is not too low, the prediction of this work is in good agreement with computer simulation results for the density profiles and the chain conformation over a wide range of chain length, temperature, and attraction strength of the walls. However, when the average density and the temperature are very low, the prediction deviates to a certain degree from the computer simulation results for molecules with long chain length. A more accurate functional approximation is needed.

  4. The quasirelativistic contact interaction and effective electron and spin densities at the nucleus: A model based on weighting the electron density with the finite Gaussian nucleus model

    NASA Astrophysics Data System (ADS)

    Malček, Michal; Bučinský, Lukáš; Biskupič, Stanislav; Jayatilaka, Dylan

    2013-08-01

    The Infinite Order Two Component quasirelativistic Hartree-Fock contact and effective electron/spin densities of Cu, Ag, Au atoms and the chemical shifts of HgF2, Cu+, Ag+ and Au+ are presented. The effective densities for the Gaussian nucleus model based on the weighted product of electron/spin density with the Gaussian distribution of the nucleus are reported for the first time. The effective (average) electron density obtained via the derivative of the energy of the system with respect to the size of the nucleus is shown for comparison. The finite-field difference method to obtain the derivative of the energy is also considered.

  5. The Influence of Energetic Electrons on the Cassini Langmuir Probe at Saturn : Deriving Large Electron Temperatures and Small Electron Densities

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Wahlund, J.; Holmberg, M.; Lewis, G.; Schippers, P.; Thomsen, M. F.; Rochel Grimald, S.; Gurnett, D. A.; Coates, A. J.; Dandouras, I. S.; Waite, J. H.

    2013-12-01

    The Langmuir probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigated the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), showing that both the DC level and slope of the I-V curve are modified. The influence of energetic electrons may be interpreted in terms of the critical and anticritical temperatures concept that is important for spacecraft charging studies. Estimations of the maximum secondary yield value for the LP surface are obtained without using laboratory measurements. Empirical and theoretical methods were developed to reproduce the influence of the energetic electrons with a reasonable precision. Conversely, this modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). The understanding of this influence may be used for other missions using Langmuir probes, such as the future missions JUICE at Jupiter, BepiColombo at Mercury, or even the probes in the Earth magnetosphere.

  6. Validation of NeQuick TEC data ingestion technique against C/NOFS and EISCAT electron density measurements

    NASA Astrophysics Data System (ADS)

    Nigussie, M.; Radicella, S. M.; Damtie, B.; Yizengaw, E.; Nava, B.; Roininen, L.

    2016-07-01

    This paper investigates a technique to estimate near-real-time electron density structure of the ionosphere. Ground-based GPS receiver total electron content (TEC) at low and high latitudes has been used to assist the NeQuick 2 model. First, we compute model input (effective ionization level) when the modeled slant TEC (sTEC) best fits the measured sTEC by single GPS receiver (reference station). Then we run the model at different locations nearby the reference station and produce the spatial distribution of the density profiles of the ionosphere in the East African region. We investigate the performance of the model, before and after data ingestion in estimating the topside ionosphere density profiles. This is carried out by extracting in situ density from the model at the corresponding location of C/NOFS (Communication/Navigation Outage Forecast System) satellite orbit and comparing the modeled ion density with the in situ ion density observed by Planar Langmuir Probe onboard C/NOFS. It is shown that the performance of the model after data ingestion reproduces the topside ionosphere better up to about 824 km away from the reference station than that before adaptation. Similarly, for high-latitude region, NeQuick 2 adapted to sTEC obtained from high-latitude (Tromsø in Norway) GPS receiver and the model used to reproduce parameters measured by European Incoherent Scatter Scientific Association (EISCAT) VHF radar. It is shown that the model after adaptation shows considerable improvement in estimating EISCAT measurements of electron density profile, F2 peak density, and height.

  7. Transverse profile of the electron beam for the RHIC electron lenses

    SciTech Connect

    Gu, X.; Altinbas, Z.; Costanzo, M.; Fischer, W.; Gassner, D. M.; Hock, J.; Luo, Y.; Miller, T.; Tan, Y.; Thieberger, P.; Montag, C.; Pikin, A. I.

    2015-07-10

    To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for both the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.

  8. Transverse profile of the electron beam for the RHIC electron lenses

    DOE PAGES

    Gu, X.; Altinbas, Z.; Costanzo, M.; ...

    2015-07-10

    To compensate for the beam-beam effects from the proton-proton interactions at the two interaction points IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC), we are constructing two electron lenses (e-lenses) that we plan to install in the interaction region IR10. Before installing them, the electron gun, collector, instrumentation were tested and the electron beam properties were qualified on an electron lens test bench. We will present the test results and discuss our measurement of the electron beam current and of the electron gun perveance. We achieved a maximum current of 1 A with 5 kV energy for bothmore » the pulsed- and the DC-beam (which is a long turn-by-turn pulse beam). We measured beam transverse profiles with an Yttrium Aluminum Garnet (YAG) screen and pinhole detector, and compared those to simulated beam profiles. Measurements of the pulsed electron beam stability were obtained by measuring the modulator voltage.« less

  9. Pauling bond strength, bond length and electron density distribution

    SciTech Connect

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.

    2014-01-18

    A power law regression equation, = 1.46(<ρ(rc)>/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, <ρ(rc)>, between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(ρ(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43(/r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, <ρ(rc)> = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M

  10. A neural network based error correction method for radio occultation electron density retrieval

    NASA Astrophysics Data System (ADS)

    Pham, Viet-Cuong; Juang, Jyh-Ching

    2015-12-01

    Abel inversion techniques have been widely employed to retrieve electron density profiles (EDPs) from radio occultation (RO) measurements, which are available by observing Global Navigation Satellite System (GNSS) satellites from low-earth-orbit (LEO) satellites. It is well known that the ordinary Abel inversion might introduce errors in the retrieval of EDPs when the spherical symmetry assumption is violated. The error, however, is case-dependent; therefore it is desirable to associate an error index or correction coefficient with respect to each retrieved EDP. Several error indices have been proposed but they only deal with electron density at the F2 peak and suffer from some drawbacks. In this paper we propose an artificial neural network (ANN) based error correction method for EDPs obtained by the ordinary Abel inversion. The ANN is first trained to learn the relationship between vertical total electron content (TEC) measurements and retrieval errors at the F2 peak, 220 km and 110 km altitudes; correction coefficients are then estimated to correct the retrieved EDPs at these three altitudes. Experiments using the NeQuick2 model and real FORMOSAT-3/COSMIC RO geometry show that the proposed method outperforms existing ones. Real incoherent scatter radar (ISR) measurements at the Jicamarca Radio Observatory and the global TEC map provided by the International GNSS Service (IGS) are also used to valid the proposed method.

  11. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    SciTech Connect

    Meng, Congsen; Janssen, Maurice H. M.

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  12. The Nature of Dark Matter and the Density Profile and Central Behavior of Relaxed Halos

    NASA Astrophysics Data System (ADS)

    Salvador-Solé, Eduard; Manrique, Alberto; González-Casado, Guillermo; Hansen, Steen H.

    2007-09-01

    We show that the two basic assumptions of the model recently proposed by Manrique and coworkers for the universal density profile of cold dark matter (CDM) halos, namely, that these objects grow inside out during periods of smooth accretion and that their mass profile and its radial derivatives are all continuous functions, are both well understood in terms of the very nature of CDM. Those two assumptions allow one to derive the typical density profile of halos of a given mass from the accretion rate characteristic of the particular cosmology. This profile was shown by Manrique and coworkers to recover the results of numerical simulations. In the present paper, we investigate its behavior beyond the ranges covered by present-day N-body simulations. We find that the central asymptotic logarithmic slope depends crucially on the shape of the power spectrum of density perturbations: it is equal to a constant negative value for power-law spectra and has central cores for the standard CDM power spectrum. The predicted density profile in the CDM case is well fitted by the 3D Sérsic profile over at least 10 decades in halo mass. The values of the Sérsic parameters depend on the mass of the structure considered. A practical procedure is provided that allows one to infer the typical values of the best NFW or Sérsic fitting law parameters for halos of any mass and redshift in any given standard CDM cosmology.

  13. The effect of baryons on the inner density profiles of rich clusters

    NASA Astrophysics Data System (ADS)

    Schaller, Matthieu; Frenk, Carlos S.; Bower, Richard G.; Theuns, Tom; Trayford, James; Crain, Robert A.; Furlong, Michelle; Schaye, Joop; Dalla Vecchia, Claudio; McCarthy, I. G.

    2015-09-01

    We use the `Evolution and assembly of galaxies and their environments' (EAGLE) cosmological simulation to investigate the effect of baryons on the density profiles of rich galaxy clusters. We focus on EAGLE clusters with M200 > 1014 M⊙ of which we have six examples. The central brightest cluster galaxies (BCGs) in the simulation have steep stellar density profiles, ρ*(r) ∝ r-3. Stars dominate the mass density for r < 10 kpc, and, as a result, the total mass density profiles are steeper than the Navarro-Frenk-White (NFW) profile, in remarkable agreement with observations. The dark matter halo itself closely follows the NFW form at all resolved radii (r ≳ 3.0 kpc). The EAGLE BCGs have similar surface brightness and line-of-sight velocity dispersion profiles as the BCGs in the sample of Newman et al., which have the most detailed measurements currently available. After subtracting the contribution of the stars to the central density, Newman et al. infer significantly shallower slopes than the NFW value, in contradiction with the EAGLE results. We discuss possible reasons for this discrepancy, and conclude that an inconsistency between the kinematical model adopted by Newman et al. for their BCGs, which assumes isotropic stellar orbits, and the kinematical structure of the EAGLE BCGs, in which the orbital stellar anisotropy varies with radius and tends to be radially biased, could explain at least part of the discrepancy.

  14. Profiles of electron temperature and Bz along Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Artemyev, A. V.; Petrukovich, A. A.; Nakamura, R.; Zelenyi, L. M.

    2013-06-01

    We study the electron temperature distribution and the structure of the current sheet along the magnetotail using simultaneous observations from THEMIS spacecraft. We perform a statistical study of 40 crossings of the current sheet when the three spacecraft THB, THC, and THD were distributed along the tail in the vicinity of midnight with coordinates XB \\in [-30 RE, -20 RE], XC \\in [-20 RE, -15 RE], and XD ~ -10 RE. We obtain profiles of the average electron temperature \\mlab Te\\mrab and the average magnetic field \\mlab Bz\\mrab along the tail. Electron temperature and \\mlab Bz\\mrab increase towards the Earth with almost the same rates (i.e., ratio \\mlab Te\\mrab/\\mlab Bz\\mrab ≈ 2 keV/7 nT is approximately constant along the tail). We also use statistics of 102 crossings of the current sheet from THB and THC to estimate dependence of Te and Bz distributions on geomagnetic activity. The ratio \\mlab Te \\mrab/\\mlab Bz\\mrab depends on geomagnetic activity only slightly. Additionally we demonstrate that anisotropy of the electron temperature \\mlab T∥/T⊥\\mrab ≈ 1.1 is almost constant along the tail for X \\in [-30 RE, -10 RE].

  15. Temporal and spatial responses of temperature, density and rotation to electron cyclotron heating in JT-60U

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Ide, S.; Takenaga, H.; Honda, M.; Urano, H.; Kobayashi, T.; Nakata, M.; Miyato, N.; Kamada, Y.

    2013-08-01

    The temporal and spatial responses of electron channels (the electron density, ne, and the electron temperature, Te) and ion channels (the ion temperature, Ti, and the toroidal rotation velocity, Vφ) to central electron cyclotron heating (ECH) have been investigated in positive shear H-mode plasmas with a relatively peaked Ti profile and internal transport barrier (ITB) plasmas on JT-60U. Ion temperature decreases with ECH after the increase in the electron temperature in the core region. The time scale of the change in Ti is ≈30-60 ms in H-mode plasmas and almost constant in radius. In ITB plasmas, the time scale is shorter around the ITB foot and becomes longer inside the ITB foot. The experimentally measured causality indicates that the decrease in Ti is consistent with the ion temperature gradient critical gradient reduction. This is also verified through a comparison with linear gyrokinetic stability analyses. The electron heat diffusivity increases with ECH in both H-mode and ITB plasmas, correlating to the increase in the ion heat diffusivity. Electron density with a relatively flat ne profile does not decrease with ECH. On the other hand, the electron density with a peaked ne profile decreases with ECH. The flattening of the ne profile is observed after the increase in the electron temperature in the core region. The time scale of the change in ne is about 200-350 ms. Linear gyrokinetic stability analyses imply that the growth rate of the trapped electron modes, which increase outward particle flux, becomes more pronounced during ECH. The counter intrinsic rotation with ECH is identified on H-mode plasmas with a small torque input (BAL-NBI). The counter intrinsic rotation is generated after the increase in the electron temperature and correlates to the change in the electron temperature with ECH around the EC deposition. The radial region where the counter intrinsic rotation is observed is wider than the radial region where the electron temperature

  16. High quality electron bunch generation using a longitudinal density-tailored plasma-based accelerator in the blowout regime

    NASA Astrophysics Data System (ADS)

    Xu, Xinlu; Li, Fei; An, Weiming; Yu, Peicheng; Lu, Wei; Joshi, Chan; Mori, Warren

    2016-10-01

    The generation of very high quality electron bunches (high brightness and low energy spread) from a plasma-based accelerator in the blowout regime using self-injection in tailored plasma density profiles is analyzed theoretically and with three-dimensional particle-in-cell simulations. The underlying physical mechanism that leads to the generation of high quality electrons is uncovered by tracking the particle trajectories of the electrons as they cross the sheath and are trapped by the wake. Details on how the intensity of the driver and the density scale length controls the ultimate beam quality are described.Three-dimensional particle-in-cell simulations indicate that this concept has the potential to produce beams with 0.5 nC of charge, peak brightnesses of 0.5 ×1020A /m2 /rad2 and with absolute projected energy spreads of < 0.5 MeV using existing lasers or electron beams to drive nonlinear wakefields.

  17. Visualising the electron density structure of blobs and studying its possible effect on neutral turbulence

    NASA Astrophysics Data System (ADS)

    de la Cal, E.; The TJ-II Team

    2016-10-01

    The electron density n e of turbulent coherent structures (blobs) has been measured at the edge plasma of the TJ-II stellarator using the helium line ratio technique. A spectroscopic high-speed camera set-up allowed 2D imaging of n e with spatial resolutions of a few millimetres and exposure times down to 15 µs. The turbulent plasma density structures have been compared with the raw helium emission structures, which in principle should be similar due to the expected relation between both, and although generally positive (negative) emission structures correspond to n e blobs (holes), we see that the shape is different and that in some cases there is even no correspondence at all. A possible explanation could be that the neutral distribution, which relates the intensity emission with the n e, varies on the same spatio-temporal scale as the plasma turbulence. This would be the case if the local n e variations of blobs and holes regulated the neutral density through ionisation, making it also turbulent within our experimental frequency (<100 kHz) and spatial scale (>1 cm). To study this point we simulate the neutrals with a simple transport model to reconstruct the corresponding measured emission profiles using the experimentally obtained n e and T e radial profiles. We do this for two cases: one where the neutral distribution is stationary and another where the atoms respond to the measured n e blob and get locally depleted through ionisation. Comparing the simulated and experimental emission profiles and looking at the characteristic ionisation times we find clear indications that point to the fact that slow thermal neutrals could react to the plasma fluctuations in the 10-100 kHz frequency range, also becoming turbulent.

  18. Control of ion density distribution by magnetic traps for plasma electrons

    SciTech Connect

    Baranov, Oleg; Romanov, Maxim; Fang Jinghua; Cvelbar, Uros; Ostrikov, Kostya

    2012-10-01

    The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasma electrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.

  19. An Electron Beam Profile Instrument Based on FBGs

    PubMed Central

    Sporea, Dan; Stăncălie, Andrei; Becherescu, Nicu; Becker, Martin; Rothhardt, Manfred

    2014-01-01

    Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs) was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application. PMID:25157554

  20. A basis set convergence study of conventional and HSF electron densities in the Li 2 molecule

    NASA Astrophysics Data System (ADS)

    Challacombe, Matt; Cioslowski, Jerzy

    1994-07-01

    Calculations of nonnuclear, Hartree-Fock HSF and CHSF electron densities are reported for the first time. The positions of critical points in the conventional, HSF, and CHSF electron densities of the Li 2 molecule (including the nonnuclear maximum) and corresponding values of the electron density are computed for a sequence of systematically improved basis sets. The basis set convergence of these topological properties, as well as that of the densities at nuclei, are examined. Quantities derived from HSF and CHSF electron densities are found to converge more rapidly than their conventional counterparts.

  1. Exploring the temporally resolved electron density evolution in extreme ultra-violet induced plasmas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Nijdam, S.; Kroesen, G. M. W.

    2014-07-01

    We measured the electron density in an extreme ultra-violet (EUV) induced plasma. This is achieved in a low-pressure argon plasma by using a method called microwave cavity resonance spectroscopy. The measured electron density just after the EUV pulse is 2.6 × 1016 m-3. This is in good agreement with a theoretical prediction from photo-ionization, which yields a density of 4.5 × 1016 m-3. After the EUV pulse the density slightly increases due to electron impact ionization. The plasma (i.e. electron density) decays in tens of microseconds.

  2. Two aspects of thin film analysis: boron profile and scattering length density profile

    NASA Astrophysics Data System (ADS)

    Chen-Mayer, H. H.; Lamaze, G. P.; Coakley, K. J.; Satija, S. K.

    2003-06-01

    Boron/phosphorus-doped silicate glass (BPSG) thin films are widely used in microelectronic circuit devices. We employ two neutron techniques to investigate a 200-nm thick BPSG film: neutron depth profiling (NDP) and neutron reflectometry (NR) to obtain complementary information on the boron containing layer.

  3. D-region electron densities obtained by differential absorption and phase measurements with a 3-MHz-Doppler radar

    NASA Astrophysics Data System (ADS)

    Singer, W.; Latteck, R.; Friedrich, M.; Dalin, P.; Kirkwood, S.; Engler, N.; Holdsworth, D.

    2005-08-01

    A Doppler radar at 3.17 MHz has been installed close to the Andøya Rocket Range as part of the ALOMAR observatory at Andenes, Norway (69.3°N, 16.0°E) in summer 2002 to improve the ground based capabilities for measurements of small scale features and electron number densities in the mesosphere. The main feature of the new radar is the transmitting/receiving antenna which is arranged as a Mills Cross of 29 crossed half-wave dipoles with a minimum beam width of about 7°. The modular transceiver system provides high flexibility in beam forming and pointing as well as in switching of the polarisation between ordinary and extraordinary mode on transmission and reception. Doppler winds and electron number densities can be measured between about 55 km and 90 km with a time resolution of 9 minutes. The electron number density profiles derived with differential absorption (DAE) and differential phase (DPE) measurements are in remarkable good agreement. We discuss the diurnal and seasonal variability of electron densities obtained at Andenes in 2004/2005, the response of D-region electron densities to geomagnetic disturbances and solar proton events. The results are compared with rocket measurements from Andenes and with observations from EISCAT VHF radar at Tromsø.

  4. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, L.E.

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.

  5. Absolute Measurement of Electron Cloud Density in aPositively-Charged Particle Beam

    SciTech Connect

    Kireeff Covo, Michel; Molvik, Arthur W.; Friedman, Alex; Vay,Jean-Luc; Seidl, Peter A.; Logan, Grant; Baca, David; Vujic, Jasmina L.

    2006-04-27

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron cloud density during the beam pulse.

  6. Absolute Measurement of Electron Cloud Density in a Positively-Charged Particle Beam

    SciTech Connect

    Covo, M K; Molvik, A W; Friedman, A; Vay, J; Seidl, P A; Logan, B G; Baca, D; Vujic, J L

    2006-05-18

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron cloud density during the beam pulse.

  7. Absolute measurement of electron-cloud density in a positively charged particle beam.

    PubMed

    Kireeff Covo, Michel; Molvik, Arthur W; Friedman, Alex; Vay, Jean-Luc; Seidl, Peter A; Logan, Grant; Baca, David; Vujic, Jasmina L

    2006-08-04

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron-cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron-cloud density during the beam pulse.

  8. Near-exponential surface densities as hydrostatic, non-equilibrium profiles in galaxy discs

    NASA Astrophysics Data System (ADS)

    Struck, Curtis; Elmegreen, Bruce G.

    2017-01-01

    Apparent exponential surface density profiles are nearly universal in galaxy discs across Hubble types, over a wide mass range, and a diversity of gravitational potential forms. Several processes have been found to produce exponential profiles, including the actions of bars and spirals, and clump scattering, with star scattering a common theme in these. Based on reasonable physical constraints, such as minimal entropy gradients, we propose steady-state distribution functions for disc stars, applicable over a range of gravitational potentials. The resulting surface density profiles are generally a power-law term times a Sérsic-type exponential. Over a modest range of Sérsic index values, these profiles are often indistinguishable from Type I exponentials, except at the innermost radii. However, in certain parameter ranges, these steady states can appear as broken, Type II or III profiles. The corresponding velocity dispersion profiles are low-order power laws. A chemical potential associated with scattering can help understand the effects of long-range scattering. The steady profiles are found to persist through constant velocity expansions or contractions in evolving discs. The proposed distributions and profiles are simple and solve the stellar hydrodynamic equations. They may be especially relevant to thick discs that have settled to a steady form via scattering.

  9. Modifications of plasma density profile and thrust by neutral injection in a helicon plasma thruster

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Takao, Yoshinori; Ando, Akira

    2016-11-01

    Argon propellant is introduced from the upstream and downstream sides of a high power helicon plasma thruster. The plasma density profile and the imparted thrust are measured for various upstream and downstream argon flow rates, where the total gas flow rate of 70 sccm and the resultant vacuum chamber pressure of 0.2 mTorr are maintained. It is observed that the imparted thrust increases with an increase in the downstream gas flow rate; simultaneously an upstream-peaking profile of the plasma density observed for the upstream gas injection becomes uniform for the downstream gas injection. The difference in the thrust between the upstream and downstream gas injections is enhanced by increasing the rf power. The observed density profiles are qualitatively consistent with theoretical predictions taking a neutral depletion effect into account.

  10. Electron density and temperature diagnostics for atmospheric pressure plasmas using continuum radiation

    NASA Astrophysics Data System (ADS)

    Park, Sanghoo; Moon, Se Youn; Choe, Wonho

    2014-10-01

    Information on electrons is particularly valuable because most of the important plasma reactions are governed by electron kinetics. However, diagnostics of electron density (ne) and temperature (Te) of low temperature atmospheric pressure plasmas is still challenging although there are some advanced diagnostics available such as laser Thomson scattering or optical emission spectroscopy combined with complex plasma equilibrium models. In this work, we report a simple spectroscopic diagnostic method with high temporal and spatial resolution based on continuum radiation in the UV and visible range for ne and Te. Together with the basic principle for the diagnostics including electron-atom bremsstrahlung (or neutral bremsstrahlung) and hydrogen radiative dissociation continuum, some experimental results in several argon and helium atmospheric pressure plasmas will be presented. In a typical argon 13.56 MHz parallel plate capacitive discharge, the measured values are Te = 2.5 eV and ne = 0.7--1.1 × 1012 cm-3 at Prf = 110--200 W. Two-dimensional Te profile of an Ar pulsed plasma jet using a DSLR camera and this diagnostics will also be shown.

  11. Inter-relation between D-region electron densities from 3-MHz Doppler radar observations, riometer absorption, and the empirical model IMAZ at 69N

    NASA Astrophysics Data System (ADS)

    Singer, Werner; Gausa, Michael; Latteck, Ralph; Honary, Farideh; Friedrich, Martin

    Electron densities of the lower ionosphere are estimated using the Saura MF Doppler radar data since summer 2003. The radar is located near Andenes, Norway (69.3N, 16.0E) and operates at 3.17 MHz. The experiment utilizes partial reflections of ordinary and extraordinary component waves from scatterers in the altitude range 50-90 km to estimate electron number densities from differential absorption (DAE) and differential phase (DPE) measurements. Height profiles of electron density are obtained between about 55 km and 90 km with a height resolution of 1 km. The diurnal and seasonal variability of electron densities as well as the response of D-region electron densities to solar activity storms, solar proton events, and geomagnetic disturbances have been estimated. The imaging riometer AIRIS near Andenes monitors excessive radio wave absorption due to precipitating energetic particles. The vertical beam of the Saura MF radar coincides with the volume observed with the vertical AIRIS beam. The data from both systems allow the verification of the lower part of the neural network-based ionospheric model for the Auroral zone IMAZ-2. The model provides electron density profiles between 60 and 140 km for a given riometer absorption, time, and ionospheric state. It is based on electron density profiles from EISCAT UHF/VHF radars for altitudes above about 85 km and high-latitude rocket measurements, but the data below 70 km is almost exclusively due to sounding rockets. Comparisons of the IMAZ model with measured electron density profiles are discussed for different levels of solar activity and various particle precipitation events.

  12. THE DENSITY PROFILES OF MASSIVE, RELAXED GALAXY CLUSTERS. I. THE TOTAL DENSITY OVER THREE DECADES IN RADIUS

    SciTech Connect

    Newman, Andrew B.; Ellis, Richard S.; Treu, Tommaso; Sand, David J.; Nipoti, Carlo; Richard, Johan; Jullo, Eric

    2013-03-01

    Clusters of galaxies are excellent locations to probe the distribution of baryons and dark matter (DM) over a wide range of scales. We study a sample of seven massive (M {sub 200} = 0.4-2 Multiplication-Sign 10{sup 15} M {sub Sun }), relaxed galaxy clusters with centrally located brightest cluster galaxies (BCGs) at z = 0.2-0.3. Using the observational tools of strong and weak gravitational lensing, combined with resolved stellar kinematics within the BCG, we measure the total radial density profile, comprising both dark and baryonic matter, over scales of {approx_equal} 3-3000 kpc. We present Keck spectroscopy yielding seven new spectroscopic redshifts of multiply imaged sources and extended stellar velocity dispersion profiles of the BCGs. Lensing-derived mass profiles typically agree with independent X-ray estimates within {approx_equal} 15%, suggesting that departures from hydrostatic equilibrium are small and that the clusters in our sample (except A383) are not strongly elongated or compressed along the line of sight. The inner logarithmic slope {gamma}{sub tot} of the total density profile measured over r/r {sub 200} = 0.003-0.03, where {rho}{sub tot}{proportional_to}r{sup -{gamma}{sub t}{sub o}{sub t}}, is found to be nearly universal, with a mean ({gamma}{sub tot}) = 1.16 {+-} 0.05(random){sup +0.05} {sub -0.07} (systematic) and an intrinsic scatter {sigma}{sub {gamma}} < 0.13 (68% confidence). This is further supported by the very homogeneous shape of the observed velocity dispersion profiles, which are mutually consistent after a simple scaling. Remarkably, this slope agrees closely with high-resolution numerical simulations that contain only DM, despite the significant contribution of stellar mass on the scales we probe. The Navarro-Frenk-White profile characteristic of collisionless cold DM is a better description of the total mass density at radii {approx}> 5-10 kpc than that of DM alone. Hydrodynamical simulations that include baryons, cooling, and

  13. Spectroscopic study of temperature and density spatial profiles and mix in implosion cores

    SciTech Connect

    Welser-Sherrill, L.; Mancini, R. C.; Koch, J. A.; Izumi, N.; Tommasini, R.; Haan, S. W.; Haynes, D. A.; Golovkin, I. E.; MacFarlane, J. J.; Delettrez, J. A.; Marshall, F. J.; Regan, S. P.; Smalyuk, V. A.

    2008-10-22

    New techniques of x-ray spectroscopy have been developed to extract the temperature and density spatial structure of implosion cores. Results from an emissivity analysis, which neglects optical depth effects, compare well with the independent results of an intensity analysis used in the low optical depth limit. The intensity analysis has also been applied in its full form, in which case density spatial profiles demonstrate significant opacity effects. The emissivity and intensity analyses were combined to infer the spatial profile of mixing between shell and fuel material. This experimentally-derived information on mix is compared with predictions from two standard theoretical mix models.

  14. A procedure to analyze nonlinear density waves in Saturn's rings using several occultation profiles

    NASA Astrophysics Data System (ADS)

    Rappaport, Nicole J.; Longaretti, Pierre-Yves; French, Richard G.; Marouf, Essam A.; McGhee, Colleen A.

    2009-01-01

    Cassini radio science experiments have provided multiple occultation optical depth profiles of Saturn's rings that can be used in combination to analyze density waves. This paper establishes an accurate procedure of inversion of the wave profiles to reconstruct the wave kinematic parameters as a function of semi-major axis, in the nonlinear regime. This procedure is established using simulated data in the presence of realistic noise perturbations, to control the reconstruction error. It is then applied to the Mimas 5:3 density wave. There are two important concepts at the basis of this procedure. The first one is that it uses the nonlinear representation of density waves, and the second one is that it relies on a combination of optical depth profiles instead of just one profile. A related method to analyze density waves was devised by Longaretti and Borderies [Longaretti, P.-Y., Borderies, N., 1986. Icarus 67, 211-223] to study the nonlinear density wave associated with the Mimas 5:3 resonance, but the single photopolarimetric profile provided limited constraints. Other studies of density waves analyzing Cassini data [ Colwell, J.E., Esposito, L.W., 2007. Bull. Am. Astron. Soc. 39, 461; Tiscareno, M.S., Burns, J.A., Nicholson, P.D., Hedman, M.M., Porco, C.C., 2007. Icarus 189, 14-34] are based on the linear theory and find inconsistent results from profile to profile. Multiple cuts of the rings are helpful in a fundamental way to ensure the accuracy of the procedure by forcing consistency among the various optical depth profiles. By way of illustration we have applied our procedure to the Mimas 5:3 density wave. We were able to recover precisely the kinematic parameters from the radio experiment occultation data in most of the propagation region; a preliminary analysis of the pressure-corrected dispersion allowed us to determine new but still uncertain values for the opacity ( K≃0.02 cm/g) and velocity dispersion of ( c≃0.6 cm/s) in the wave region. Our

  15. Nonsingular Density Profiles of Dark Matter Halos and Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ming

    2005-08-01

    We use the statistics of strong gravitational lenses to investigate whether mass profiles with a flat density core are supported. The probability for lensing by halos modeled by a nonsingular truncated isothermal sphere (NTIS) with image separations greater than a certain value (ranging from 0" to 10") is calculated. NTIS is an analytical model for the postcollapse equilibrium structure of virialized objects derived by Shapiro, Iliev, & Raga. This profile has a soft core and matches quite well with the mass profiles of dark matter-dominated dwarf galaxies deduced from their observed rotation curves. It also agrees well with the NFW (Navarro-Frenk-White) profile at all radii outside of a few NTIS core radii. Unfortunately, comparing the results with those for singular lensing halos (NFW and SIS + NFW) and strong lensing observations, the probabilities for lensing by NTIS halos are far too low. As this result is valid for any other nonsingular density profile (with a large core radius), we conclude that nonsingular density profiles (with a large core radius) for CDM halos are ruled out by statistics of strong gravitational lenses.

  16. A Numerical Fit of Analytical to Simulated Density Profiles in Dark Matter Haloes

    NASA Astrophysics Data System (ADS)

    Caimmi, R.; Marmo, C.; Valentinuzzi, T.

    2005-06-01

    Analytical and geometrical properties of generalized power-law (GPL) density profiles are investigated in detail. In particular, a one-to-one correspondence is found between mathematical parameters (a scaling radius, r_0, a scaling density, rho_0, and three exponents, alpha, beta, gamma), and geometrical parameters (the coordinates of the intersection of the asymptotes, x_C, y_C, and three vertical intercepts, b, b_beta, b_gamma, related to the curve and the asymptotes, respectively): (r_0,rho_0,alpha,beta,gamma) <--> (x_C,y_C,b,b_beta,b_gamma). Then GPL density profiles are compared with simulated dark haloes (SDH) density profiles, and nonlinear least-absolute values and least-squares fits involving the above mentioned five parameters (RFSM5 method) are prescribed. More specifically, the sum of absolute values or squares of absolute logarithmic residuals, R_i= log rhoSDH(r_i)-log rhoGPL(r_i), is evaluated on 10^5 points making a 5- dimension hypergrid, through a few iterations. The size is progressively reduced around a fiducial minimum, and superpositions on nodes of earlier hypergrids are avoided. An application is made to a sample of 17 SDHs on the scale of cluster of galaxies, within a flat LambdaCDM cosmological model (Rasia et al. 2004). In dealing with the mean SDH density profile, a virial radius, rvir, averaged over the whole sample, is assigned, which allows the calculation of the remaining parameters. Using a RFSM5 method provides a better fit with respect to other methods. The geometrical parameters, averaged over the whole sample of best fitting GPL density profiles, yield (alpha,beta,gamma) approx(0.6,3.1,1.0), to be compared with (alpha,beta,gamma)=(1,3,1), i.e. the NFW density profile (Navarro et al. 1995, 1996, 1997), (alpha,beta,gamma)=(1.5,3,1.5) (Moore et al. 1998, 1999), (alpha,beta,gamma)=(1,2.5,1) (Rasia et al. 2004); and, in addition, gamma approx 1.5 (Hiotelis 2003), deduced from the application of a RFSM5 method, but using a different

  17. Implementing and Improving Automated Electronic Tumor Molecular Profiling

    PubMed Central

    Staggs, David B.; Hackett, Lauren; Haberman, Erich; Tod, Mike; Levy, Mia; Warner, Jeremy

    2016-01-01

    Oncology practice increasingly requires the use of molecular profiling of tumors to inform the use of targeted therapeutics. However, many oncologists use third-party laboratories to perform tumor genomic testing, and these laboratories may not have electronic interfaces with the provider’s electronic medical record (EMR) system. The resultant reporting mechanisms, such as plain-paper faxing, can reduce report fidelity, slow down reporting procedures for a physician’s practice, and make reports less accessible. Vanderbilt University Medical Center and its genomic laboratory testing partner have collaborated to create an automated electronic reporting system that incorporates genetic testing results directly into the clinical EMR. This system was iteratively tested, and causes of failure were discovered and addressed. Most errors were attributable to data entry or typographical errors that made reports unable to be linked to the correct patient in the EMR. By providing direct feedback to providers, we were able to significantly decrease the rate of transmission errors (from 6.29% to 3.84%; P < .001). The results and lessons of 1 year of using the system and transmitting 832 tumor genomic testing reports are reported. PMID:26813927

  18. A phenomenological model of the muon density profile on the ground of very inclined air showers

    NASA Astrophysics Data System (ADS)

    Dembinski, H. P.; Billoir, P.; Deligny, O.; Hebbeker, T.

    2010-09-01

    Ultra-high energy cosmic rays generate extensive air showers in Earth's atmosphere. A standard approach to reconstruct the energy of an ultra-high energy cosmic rays is to sample the lateral profile of the particle density on the ground of the air shower with an array of surface detectors. For cosmic rays with large inclinations, this reconstruction is based on a model of the lateral profile of the muon density observed on the ground, which is fitted to the observed muon densities in individual surface detectors. The best models for this task are derived from detailed Monte-Carlo simulations of the air shower development. We present a phenomenological parametrization scheme which allows to derive a model of the average lateral profile of the muon density directly from a fit to a set of individual Monte-Carlo simulated air showers. The model reproduces the detailed simulations with a high precision. As an example, we generate a muon density model which is valid in the energy range 10 18 eV < E < 10 20 eV and the zenith angle range 60°<θ<90°. We will further demonstrate a way to speed up the simulation of such muon profiles by three orders of magnitude, if only the muons in the shower are of interest.

  19. Study of the beam profile and position instability of a post-accelerated pseudospark-sourced electron beam

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Yin, H.; Zhang, L.; Shu, G.; He, W.; Phelps, A. D. R.; Cross, A. W.; Pang, L.; Zhang, Q.

    2017-03-01

    A pseudospark-sourced electron beam is a promising candidate for driving a THz millimeter wave radiation source. However, the physics governing the electron beam density profile and the beam center deviation from the axis of the structure, which may be caused by the randomness in the pseudospark discharge process, remains still unclear especially for the high energy component of the pseudospark-sourced electron beam, which is usually non-mono-energetic. It is essential to study the electron beam density profile and the beam center position distribution for optimizing the pseudospark discharge configuration. In this paper, images of some single-shot electron beam pulses have been captured using a 50 μm thickness stopping copper foil and a phosphor screen coated with a P47 scintillator to study the electron beam density profile and the beam center position distribution of the high energy component of the electron beam. The experiments have been carried out on two pseudospark discharge configurations with two different size hollow cathode cavities. The influence of the cathode aperture of each configuration has also been studied according to the beam images. Experimental results show that the beam profile of the high energy component has a Lorentzian distribution and is much smaller than the axial aperture size with the beam centers dispersing within a certain range around the axis of the discharge structure. The pseudospark-sourced electron beam with a larger hollow cathode cavity shows a smaller full width at half maximum radius and a more concentrated beam center distribution.

  20. Possible cause of enhancement of electron temperature in high electron density region in the dayside ionosphere

    NASA Astrophysics Data System (ADS)

    Kakinami, Yoshihiro; Watanabe, Shigeto

    2016-07-01

    When neutral atmosphere is ionized by solar EUV, energetic electrons named photoelectrons are emitted. The photoelectrons are primary heat source of electrons in the ionosphere in the daytime. The heating rate of electron by photoelectron is proportion to 0.97 power of electron density (Ne) while the heated electron is cooled through the Column collision with ions, the rate of which rate is square of Ne. Therefore, electron temperature (Te) decreases and approach ion temperature (Ti) with increase of Ne. Ions are also cooled through the collision with neutral spices. Finally, these temperatures (Te, Ti and Tn) show very similar values in high Ne region. However, Te enhancement with increase of Ne is found in the satellite observation at 600 km in the daytime ionosphere [Kakinami et al., 2011]. Similar Ti variation is also found around the magnetic dip equator [Kakinami et al., 2014]. One possible cause of the enhancement of Te is enhacement of Tn with increase Ne because both Ne and Tn increase with increase of solar irradiance flux, F10.7 [Lei et al., 2007]. However, since such the enhancements of Te are seen in any F10.7, it is hard to explain the phenomenon. In this paper, we present correlation between Te (Ti) and Ne obtained by the Incoherent Scatter radar at Jicamarca. The similar correlation, namely positive correlation of Te (Ti) with Ne in high Ne region are found above 300 km. Using the observations and Tn and neutral density calculated with MSIS, the Column collision cooling with ions, and inelastic collision cooling with neutral spices for electron are shown. The heat conduction along the magnetic field line is also estimated by using IRI model. Using these information, we discuss possible cause of the enhancement of Te in the high Ne region. References Kakinami et al. (2011), J. Geophys. Res., doi:10.1029/2011JA016905. Kakinami et al. (2014), J. Geophys. Res., 119, doi:10.1002/2014JA020302. Lei et al.(2007), J. Geophys. Res., doi:10.1029/2006JA012041.

  1. Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation

    NASA Astrophysics Data System (ADS)

    Man-Hong, Zhang

    2016-05-01

    By performing the electronic structure computation of a Si atom, we compare two iteration algorithms of Broyden electron density mixing in the literature. One was proposed by Johnson and implemented in the well-known VASP code. The other was given by Eyert. We solve the Kohn-Sham equation by using a conventional outward/inward integration of the differential equation and then connect two parts of solutions at the classical turning points, which is different from the method of the matrix eigenvalue solution as used in the VASP code. Compared to Johnson’s algorithm, the one proposed by Eyert needs fewer total iteration numbers. Project supported by the National Natural Science Foundation of China (Grant No. 61176080).

  2. Effects of Mean Flow Profiles on Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, Nanda Kishore

    2003-01-01

    The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.

  3. Detection of F-region electron density irregularities using incoherent-scatter radar

    NASA Astrophysics Data System (ADS)

    Gudivada, Krishna Prasad

    Incoherent-scatter radar data from Poker Flat, Alaska has been used to determine size distributions of electron density structures in the evening time sector of the auroral zone. At high latitudes ionospheric plasma typically moves east-west with speeds of several hundred meters per second. Density irregularities that rapidly move through the radar beam are therefore observed as time-varying power fluctuations. The new phased array radar used for this study has been operated with several antenna directions with successive pulses transmitted in each direction. It is therefore possible to observe plasma Doppler velocities in multiple directions and determine the vector direction of the plasma motion. This near-simultaneous observation of the plasma velocity in conjunction with the electron density height profile data enable a new technique to determine the scale sizes of electron density fluctuations that move horizontally through the radar beam. The study focuses on the collision-less F-region ionosphere where the plasma drift is approximately constant with altitude. The experimental technique limits the range of scale sizes that may be studied to relatively large-scale sizes (i.e. greater than few tens of km). Results show that during magnetically disturbed conditions (Kp ≥ 4) when westward plasma velocities are relatively high (500-1000 m/s) the scale sizes of irregularities (often called plasma blobs) are in the range of 100-300 km and predominantly originate from the polar cap and are transported over long distances (˜1000 km) due to the long chemical recombination times (30-90 minutes). Some irregularities are caused by local auroral particle precipitation and have been identified with associated electron temperature enhancements. For cases of low magnetic activity (Kp ≤ 1), when the radar is located in a region of low plasma velocities (100-500 m/s) well south of the auroral oval (essentially a mid-latitude type ionosphere), the density distribution is

  4. Spin-dependent electron momentum density in the Ni2MnSn Heusler alloy

    NASA Astrophysics Data System (ADS)

    Deb, Aniruddha; Hiraoka, N.; Itou, M.; Sakurai, Y.; Onodera, M.; Sakai, N.

    2001-05-01

    The spin-dependent electron momentum distribution in Ni2MnSn Heusler alloy single crystals was studied using 270 keV circularly polarized synchrotron radiation, through magnetic Compton profile measurements, on the high energy inelastic scattering beamline at SPring-8. The experiments were carried out for the three principal crystallographic directions [100], [110], and [111] at 10 K. The results show that the conduction electrons have a negative spin polarization of 0.34μB the 3d spin moment on the nickel site was found to be negligible. A band structure calculation was performed including a hyperfine field study using the full potential linearized augmented plane wave (FLAPW) method, with the generalized gradient approximation (GGA) for the electronic exchange and correlation. The spin moment on the Mn site at 10 K was observed as 4.39μB. The spin-dependent Compton profiles for the [100], [110], and [111] directions reported here show anisotropy in the momentum density, which is in good agreement with the FLAPW-GGA results, based on a ferromagnetic ground state. The hyperfine fields calculated were compared with previously calculated hyperfine field of Cu2MnAl and Co2FeGa Heusler alloys. From the comparison it is seen that the value of Hval (valence contribution to the hyperfine field) is roughly proportional to the spin polarization (ms) of the s electrons at the X (Ni,Cu,Co) and Y (Mn of Ni2MnSn and Cu2MnAl, Fe of Co2FeGa) atom positions.

  5. Talbot-Lau X-ray Deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-04-21

    Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  6. An extension of the VIRA electron temperature and density models to include solar cycle variations

    NASA Astrophysics Data System (ADS)

    Brace, L. H.; Theis, R. F.

    The original VIRA ionosphere model was based primarily on the Pioneer Venus Orbiter (PVO) data obtained at solar maximum (F10.7~200) in 1979 and 1980 when periapsis was being maintained deep in the Venusian ionosphere. In situ measurements provided data on temperature, composition, density, and drift velocity, while the radio occultation method provided height profiles of electron density, N_e. The solar cycle variation was deduced by comparison with the Venera 9 and 10 occultation data from the previous solar minimum. No data were available on the solar cycle variations of other ionospheric parameters, because periapsis had already risen out of the ionosphere by the time solar activity began to decline early in 1983. During the Entry period in the Fall of 1992, however, PVO got a brief glimpse of the nightside ionosphere at lower solar activity (F10.7~120). During the intervening decade important in situ data were obtained on the upper nightside ionosphere that extends far down stream from the planet. This region was found to be highly sensitive to solar wind interactions and solar activity. In this paper, we discuss ways in which the later PVO data can be used to extend the VIRA model to higher altitudes and to include the solar cycle variations. As an example, we present some pre-entry Orbiter Electron Temperature Probe measurements that provide new clues as to the dayside T_e behavior at low solar activity.

  7. An ISEE/Whistler model of equatorial electron density in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Carpenter, D. L.; Anderson, R. R.

    1992-01-01

    Attention is given to an empirical model of equatorial electron density in the magnetosphere covering the L range 2.25-8. Although the model is primarily intended for application to the local time interval 00-15 MLT, a way to extend the model to the 15-24-MLT period is presented. The model describes, in piecewise fashion, the 'saturated' plasmasphere, the region of steep plasmapause gradients, and the plasma trough. Within the plasmasphere the model profile can be expressed as logne - Sigma-xi, where x1 = -0.3145L + 3.9043 is the principal or 'reference' term, and additional terms account for: a solar cycle variation with a peak at solar maximum; an annual variation with a December maximum; and a semiannual variation with equinoctial maxima.

  8. Electron density measurements in a photoinitiated, impulse-enhanced, electrically excited laser gas discharge

    NASA Astrophysics Data System (ADS)

    Seguin, V. A.; Seguin, H. J. J.; Capjack, C. E.; Nikumb, S. K.

    1986-11-01

    Measurements of the electron density within a photo-initiated, impulse-enhanced, electrically excited (PIE) laser gas discharge are presented. Ion current measurements were made using a single Langmuir electrostatic probe positioned within the laser discharge volume. Calculations of the electron density were made utilizing a thick-sheath analysis. The results indicate that the electron density increases by two orders of magnitude as the pulser power level is increased. In addition, the electron density was observed to decrease markedly as the dc discharge current was increased.

  9. Comparison study between coherent echoes at VHF range and electron density estimated by Ionosphere Model for Auroral Zone

    NASA Astrophysics Data System (ADS)

    Nishiyama, Takanori; Nakamura, Takuji; Tsutsumi, Masaki; Tanaka, Yoshi; Nishimura, Koji; Sato, Kaoru; Tomikawa, Yoshihiro; Kohma, Masashi

    2016-07-01

    Polar Mesosphere Winter Echo (PMWE) is known as back scatter echo from 55 to 85 km in the mesosphere, and it has been observed by MST and IS radar in polar region during non-summer period. Since density of free electrons as scatterer is low in the dark mesosphere during winter, it is suggested that PMWE requires strong ionization of neutral atmosphere associated with Energetic Particles Precipitations (EPPs) during Solar Proton Events [Kirkwood et al., 2002] or during geomagnetically disturbed periods [Nishiyama et al., 2015]. However, studies on relationship between occurrence of PMWE and background electron density has been limited yet [Lübken et al., 2006], partly because the PMWE occurrence rate is known to be quite low (2.9%) [Zeller et al., 2006]. The PANSY (Program of the Antarctic Syowa MST/IS) radar, which is the largest MST radar in Antarctica, observed many PMWE events since it has started mesosphere observations in June 2012. We established an application method of the PANSY radar as riometer, which makes it possible to estimate Cosmic Noise Absorptions (CNA) as proxy of relative variations on background electron density. In addition, electron density profiles from 60 to 150 km altitude are calculated by Ionospheric Model for the Auroral Zone (IMAZ) [McKinnell and Friedrich, 2007] and CNA estimated by the PANSY radar. In this presentation, we would like to focus on strong PMWE during two big geomagnetic storm events, St. Patrick's Day and the Summer Solstice 2015 Event, in order to compare observed PMWE characteristics to model background electron density. On March 19 and 22, recovery phase of St. Patrick's Day Storm, sudden PMWE intensification was detected near 60 km by the PANSY radar. At the same time, strong Cosmic Noise Absorptions (CNA) of 0.8 dB and 1.0 dB were measured, respectively. However, calculated electron density profiles did not show high electron density at the altitude where the PMWE intensification were observed. On June 22, the

  10. Simulation of the microtron electron beam profile formation using flattening filters

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Stuchebrov, S. G.; Danilova, I. B.; Naumenko, G. A.

    2016-12-01

    The development of new modern methods of electron beam profile forming becomes an important problem with the expansion of the application spectrum of electrons, both in industry and in medicine. This paper presents the results of a numerical simulation of the electron beam profile formed by flattening filters of different materials (aluminum and ABS-plastic). The model corresponding to the actual beam was developed based on the experimental estimation of shape and profile of the extracted microtron electron beam. Next, the geometry of flattening filters made of aluminum and ABS-plastic was calculated, and the electron beam profile was theoretically analyzed.

  11. Theory for planetary exospheres: II. Radiation pressure effect on exospheric density profiles

    NASA Astrophysics Data System (ADS)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.

    2016-03-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the radiation pressure on planetary exospheres. In a series of papers, we present with an Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain (1989). In this second part of our work, we present here the density profiles of atomic Hydrogen in planetary exospheres subject to the radiation pressure. We first provide the altitude profiles of ballistic particles (the dominant exospheric population in most cases), which exhibit strong asymmetries that explain the known geotail phenomenon at Earth. The radiation pressure strongly enhances the densities compared with the pure gravity case (i.e. the Chamberlain profiles), in particular at noon and midnight. We finally show the existence of an exopause that appears naturally as the external limit for bounded particles, above which all particles are escaping.

  12. Radial Profiles of Plasma Electron Characteristics in a Low-Power Arcjet

    NASA Technical Reports Server (NTRS)

    Codron, Douglas; Nawaz, Anuscheh

    2013-01-01

    Since 1960, the Arc Jet Complex at NASA Ames Research Center has been a source of long-duration, high-enthalpy flow for materials testing with application to the thermal protection of aerospace vehicle components. From their inception the facilities have played an integral role supporting many of NASA's space flight programs and numerous DoD projects. In recent years advancements in computational fluid dynamics (CFO) have made the resultant models a valuable tool for assessing and predicting performance, however, the inherent limitation of models to compensate for a dissociated, transitionally high temperature nonequilibrated flowfield have made further measurements necessary. The use of electrostatic probe diagnostics within similarly harsh plasma environments in previous studies have been met with much success. In this study, the use of a single Langmuir probe was implemented to characterize the plasma parameters of interest as they vary radially within a large volume of the plume. Classical Langmuir probe theory was applied to achieve first order estimates of the heavy particle temperature, the ratio T(sub i)/T(sub e), and the ionization fraction. As expected, both the electron temperature and electron density measurements show a dependence on radial distance from the plume centerline, with electron density profiles showing the largest dependence. This paper aims to validate and strengthen modeling work conducted at the NASA Ames Research Center by measuring the critical plasma parameters (electron temperature, electron density, and plasma potential) within the arc plume of a subscale arc jet. These parameters are intended to give physical insight into the flow characteristics while providing the necessary boundary conditions to validate full scale simulations.

  13. Dark Matter Haloes: an Additional Criterion for the Choice of Fitting Density Profiles

    NASA Astrophysics Data System (ADS)

    Caimmi, R.; Marmo, C.

    2004-12-01

    Simulated dark matter haloes are fitted by self-similar, universal density profiles, where the scaled parameters depend only on a scaled (truncation) radius, Xi=R/r0, which, in turn, is supposed to be independent of the mass and the formation redshift. The further assumption of a lognormal distribution (for a selected mass bin) of the scaled radius, or concentration, in agreement with the data from a large statistical sample of simulated haloes (Bullock et al. 2001), allows (at least to a first approximation) a normal or lognormal distribution for other scaled parameters, via the same procedure which leads to the propagation of the errors. A criterion is proposed for the choice of the best fitting density profile, with regard to a set of high-resolution simulations, where some averaging procedure on scaled density profiles has been performed, in connection with a number of fitting density profiles. To this aim, a minimum value of the ratio, | x\\overline{η}|/ σs,\\overline{η}= |\\overline{η}- η*|/σs,\\overline{η}, is required to yield the best fit, where \\overline{η} is the arithmetic mean over the whole set; η* is its counterpart related to the fitting density profile; σs,\\overline{η} is the standard deviation from the mean; and η is a selected, scaled i.e. dimensionless parameter. The above criterion is applied to a pair of sets each made of a dozen of high-resolution simulations, FM01 (Fukushige and Makino 2001) and KLA01 (Klypin et al. 2001), in connection with two currently used fitting density profiles, NFW (e.g. Navarro et al. 1997) and MOA (e.g. Moore et al. 1999), where the dependence of the scaled radius on the mass and the formation redshift may be neglected to a first extent. With regard to FM01 and KLA01 samples, the best fits turn out to be MOA and NFW, respectively. In addition, the above results also hold in dealing with rms errors derived via the propagation of the errors, with regard to the distributions of scaled parameters. The

  14. Mass, velocity anisotropy, and pseudo phase-space density profiles of Abell 2142

    NASA Astrophysics Data System (ADS)

    Munari, E.; Biviano, A.; Mamon, G. A.

    2014-06-01

    Aims: We aim to compute the mass and velocity anisotropy profiles of Abell 2142 and, from there, the pseudo phase-space density profile Q(r) and the density slope - velocity anisotropy β - γ relation, and then to compare them with theoretical expectations. Methods: The mass profiles were obtained by using three techniques based on member galaxy kinematics, namely the caustic method, the method of dispersion-kurtosis, and MAMPOSSt. Through the inversion of the Jeans equation, it was possible to compute the velocity anisotropy profiles. Results: The mass profiles, as well as the virial values of mass and radius, computed with the different techniques agree with one another and with the estimates coming from X-ray and weak lensing studies. A combined mass profile is obtained by averaging the lensing, X-ray, and kinematics determinations. The cluster mass profile is well fitted by an NFW profile with c = 4.0 ± 0.5. The population of red and blue galaxies appear to have a different velocity anisotropy configuration, since red galaxies are almost isotropic, while blue galaxies are radially anisotropic, with a weak dependence on radius. The Q(r) profile for the red galaxy population agrees with the theoretical results found in cosmological simulations, suggesting that any bias, relative to the dark matter particles, in velocity dispersion of the red component is independent of radius. The β - γ relation for red galaxies matches the theoretical relation only in the inner region. The deviations might be due to the use of galaxies as tracers of the gravitational potential, unlike the non-collisional tracer used in the theoretical relation.

  15. Temporal survey of electron number density and electron temperature in the exhaust of a megawatt MPD-arc thruster.

    NASA Technical Reports Server (NTRS)

    Michels, C. J.; Rose, J. R.; Sigman, D. R.

    1972-01-01

    Temporal and radial profiles are obtained 30 cm downstream from the anode for two peak arc currents (11.2 kA and 20 kA) and for various auxiliary magnetic fields (0, 1.0 T, and 2.0 T) using the Thomson scattering technique. Average density and temperature are relatively constant for over 100 microseconds with significant fluctuations. Radial profiles obtained are relatively flat for 4 cm from the axis. Compared to earlier 20 cm data, the exhaust density has decreased significantly, the average temperature has not changed, and the density ?hole' with an auxiliary magnetic field has enlarged.

  16. Temporal survey of electron number density and electron temperature in the exhaust of a megawatt MPD-Arc thruster

    NASA Technical Reports Server (NTRS)

    Michels, C. J.; Rose, J. R.; Sigman, D. R.

    1971-01-01

    Temporal and radial profiles are obtained 30 cm downstream from the anode for two peak arc currents (11.2 kA and 20 kA) and for various auxiliary magnetic fields (0, 1.0 T, and 2.0T) using the Thomson scattering technique. Average density and temperature are relatively constant for over 100 microseconds with significant fluctuations. Radial profiles obtained are relatively flat for 4 cm from the axis. Compared to earlier 20 cm data, the exhaust density has decreased significantly, the average temperature (4.6 eV) has not changed, and the density hole with an auxiliary magnetic field has enlarged.

  17. Electron density dependence of impedance probe plasma potential measurements

    SciTech Connect

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-15

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φ{sub p}, when the probe radius is much larger than the Debye length, λ{sub D}. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, V{sub b}. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ω{sub pi} ≪ ω ≪ ω{sub pe}, where ω{sub pi} is the ion plasma frequency and ω{sub pe} is the electron plasma frequency. For a given frequency and applied bias, both Re(Z{sub ac}) and Im(Z{sub ac}) are available from Γ. When Re(Z{sub ac}) is plotted versus V{sub b}, a minimum predicted by theory occurs at φ{sub p} [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Z{sub ac}) appears at, or very near, a maximum at φ{sub p}. As n{sub e} decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Z{sub ac}) and their derivatives are useful as accompanying indicators to Re(Z{sub ac}) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Z{sub ac})

  18. Atomic and electronic structure of polar oxide interfaces: Electron microscopy and density functional theory study

    NASA Astrophysics Data System (ADS)

    Lazarov, Vlado

    Polar oxide interfaces are formed when two polar oxide surfaces join. The apparent presence of an electric dipole moment in the repeat unit parallel to the surface/interface closely relate the polar oxide interfaces instability to that of the of polar oxide surfaces. In this thesis, we combined Electron Microscopy and Density Functional Theory to study how the interface polarity affects the atomic and electronic structure of polar oxide interfaces, by using Fe3O4(111)/MgO(111) as a model system. The formation of Fe nanoinclusions found at the interface and within the polar Fe3 O4(111) film is proposed to be new stabilization mechanism for the magnetite film. High-resolution electron microscopy imaging of the interface together with first principle calculations suggest an atomically abrupt substrate-film interface determined with Fe monolayer in octahedral position (FeB). This interface stacking (O/Mg/O/3FeB/O) provides lowest total interface (system) energy and the most effectively screening of the MgO(111) substrate surface polarity. The results of our study suggest that surface polarity could be used as an additional growth parameter in creating novel material structures, such as metals in oxide matrices.

  19. The role of the density profile in the ASDEX-Upgrade pedestal structure

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Potzel, S.; Reimold, F.; Wischmeier, M.; Wolfrum, E.; Frassinetti, L.; Beurskens, M.; Bilkova, P.; Cavedon, M.; Fischer, R.; Kurzan, B.; Laggner, F. M.; McDermott, R. M.; Tardini, G.; Trier, E.; Viezzer, E.; Willensdorfer, M.; The EUROfusion MST1 Team; The ASDEX-Upgrade Team

    2017-01-01

    Experimental evidence for the impact of a region of high density localised in the high-field side scrape-off layer (the HFSHD) on plasma confinement is shown in various dedicated experiments on ASDEX Upgrade (AUG). Increasing main ion fuelling is shown to increase the separatrix density and shift the density profile outwards. Predictive pedestal modelling of this shift indicates a 25% decrease in the attainable pedestal top pressure, which compares well with experimental observations in the gas scan. Since the HFSHD can be mitigated by applying nitrogen seeding, a combined scan in fuelling rate, heating power, and nitrogen seeding is presented. Significant increases in the achievable pedestal top pressure are observed with seeding, in particular at high heating powers, and are correlated with inward shifted density profiles and a reduction of the HFSHD and separatrix density. Interpretive linear stability analysis also confirms the impact of a radially shifted pressure profile on peeling-ballooning stability, with an inward shift allowing access to higher pressure gradients and pedestal widths.

  20. Unfolding ambient electron plasma density from wave spectra induced by electron beam

    NASA Astrophysics Data System (ADS)

    Kiraga, A.; Klos, Z.; Oraevsky, V.; Dokukin, V.; Pulinets, S.

    Numerous rocket and few satellite projects were devoted to study of astrophysical plasma with the aid of active electron beam experiments. The quality and volume of wave data from such experiments did not fulfill original expectat ions due to complexity of involved processes, technical malfunctions and limited diagnostics. Due to fortunate, temporal malfunction of plasma accelerator, there were several cases when pulsed electron beam had been injected from the APEX satellite into otherwise unmodified ionospheric plasma. Instantaneous current intensity didn't exceeded 0.15A and an unstabilized acceleration voltage was of the order of 10keV. Injection pitch angle slowly changed according to moderate three-axis satellite stabilization. Injections took place in the altitude range 400-1100km in the European region and in the north, polar region. A receiver with bandwidth of 15kHz was connected to a cylindrical dipole antenna having half lengths of 7.5m. The receiver operated in survey mode providing one spectrum every 2s or 8s. The single spectrum was measured in 1s with an equally spaced mesh of 200 frequencies starting from 100kHz with a step of 50kHz. Electron beam induced spectra show up large variety of narrow band structures. In many cases, from reproducibility or slow evolution of the spectra, it may be inferred that distinct interactions prevail for some ranges of ambient electron gyro (fc) and plasma (fn) frequencies, injection pitch angles and beam intensity. Interaction plausibility arguments are useful in preliminary assignment of spectral structures. We show that discrete emission can be identified at least on ambient plasma frequency or ambient upper hybrid frequency. One class of arguments supporting such identification is provided by interrelation between spectral signatures of local plasma density in passive mode and beam induced spectra. Another class of arguments is provided by interrelations between spectral structures induced by electron beam

  1. Deuterium density profile determination at JET using a neutron camera and a neutron spectrometer

    SciTech Connect

    Eriksson, J. Castegnetti, G.; Conroy, S.; Ericsson, G.; Hellesen, C.; Giacomelli, L.

    2014-11-15

    In this work we estimate the fuel ion density profile in deuterium plasmas at JET, using the JET neutron camera, the neutron time-of-flight spectrometer TOFOR, and fusion reactivities modeled by the transport code TRANSP. The framework has been tested using synthetic data, which showed that the density profile could be reconstructed with an average accuracy of the order of 10 %. The method has also been applied to neutron measurements from a neutral beam heated JET discharge, which gave n{sub d}/n{sub e} ≈ 0.6 ± 0.3 in the plasma core and n{sub d}/n{sub e} ≈ 0.4 ± 0.3 towards the edge. Correction factors for detector efficiencies, neutron attenuation, and back-scattering are not yet included in the analysis; future work will aim at refining the estimated density.

  2. A statistical study of magnetospheric electron density using the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Sandhu, J. K.; Yeoman, T. K.; Fear, R. C.; Dandouras, I.

    2016-11-01

    Observations from the WHISPER (Waves of High frequency and Sounder for Probing of Electron density by Relaxation) instrument on board Cluster, for the interval spanning 2001-2012, are utilized to determine an empirical model describing the total electron density along closed geomagnetic field lines. The model, representing field lines in the region of 4.5≤L < 9.5, includes dependences on L and magnetic local time. Data verification tests ensured that the WHISPER data set provided unbiased measurements for low-density regions, including comparisons with Plasma Electron and Current Experiment and Electric Field and Waves observations. The model was determined by modeling variations in the electron density along the field lines, which is observed to follow a power law distribution along the geomagnetic field at high latitudes, with power law index values ranging from approximately 0.0 to 1.2. However, a localized peak in electron density close to the magnetic equator is observed, which is described using a Gaussian peak function, with the electron density peak ranging as high as 10 cm-3 above the background power law dependence. The resulting model illustrates some key features of the electron density spatial distribution. The role of the number density distribution, represented by the empirical electron density model, in determining the total plasma mass density is also explored. By combining the empirical electron density model with an empirical average ion mass model, the total plasma mass density distribution is inferred, which includes contributions of both the number density and ion composition of the plasma in the region.

  3. Comparison of the calculated and experimental data of the extracted electron beam profile

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Povolná, A.; Stuchebrov, S. G.; Naumenko, G. A.

    2015-10-01

    The current commercial use of electron accelerators grows in research, industry, medical diagnosis and treatment. Due to this fact, the creation of a model describing the electron beam profile and shape is an actual task. The model of the TPU microtron extracted electron beam created in the program “Computer Laboratory (PCLab)” is described and compared with experimental results in this article. The value of the internal electron beam divergence determination is illustrated. The experimental data of the electron beam profiles at the selected distances from the output window are analysed and compared with the simulation data. The simulation data of the electron beam profiles are shown.

  4. Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ilhan, Zeki Okan

    Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator

  5. Electron density fluctuation measurements using a multichannel microwave interferometer in GAMMA 10

    SciTech Connect

    Yoshikawa, M.; Shima, Y.; Matsumoto, T.; Nakahara, A.; Yanagi, N.; Itakura, A.; Hojo, H.; Kobayashi, T.; Matama, K.; Tatematsu, Y.; Imai, T.; Kohagura, J.; Hirata, M.; Nakashima, Y.; Cho, T.

    2006-10-15

    Measurement of fluctuation in plasma is important for studying the improvement in plasma confinement by the formation of the plasma confinement potential. The density fluctuation is observed by microwaves by methods such as interferometry, reflectometry and Fraunhofer diffraction method. We have constructed a new multichannel microwave interferometer to measure the plasma density and fluctuation radial profiles in a single plasma shot. We successfully measured the time-dependent density and line-integrated density fluctuation radial profiles in a single plasma shot using the multichannel microwave interferometer. Thus, we have developed a useful tool for studying the improvement in plasma confinement by the formation of plasma confinement potential.

  6. Guiding and collimating the fast electrons by using a low-density-core target with buried high density layers

    NASA Astrophysics Data System (ADS)

    Lv, Chong; Wan, Feng; Hou, Ya-Juan; Jia, Mo-Ran; Sang, Hai-Bo; Xie, Bai-Song; Liu, Shi-Bing

    2017-02-01

    A low-density-core target with buried high density layers is proposed to improve the transport of fast electrons and involved problems are investigated by using two-dimensional particle-in-cell simulations. It is demonstrated that this target can collimate the fast electrons efficiently and lead to a better beam quality. The enhancement is attributed to the weakening of the two stream instability and the better collimation by the self-generated multilayer megagauss magnetic field as well as the baroclinic magnetic field. Comparing this to that without buried high density layers, the energy flux of fast electrons is increased by a factor of about 1.8 and has a narrower transverse distribution in space. Besides, the dependence of the efficiency on the target parameters is examined, and the optimal target parameters are also obtained. Such a target can be useful to many applications, such as fast ignition in inertial fusion.

  7. Transport analysis and modelling of the evolution of hollow density profiles plasmas in JET and implication for ITER

    NASA Astrophysics Data System (ADS)

    Baiocchi, B.; Bourdelle, C.; Angioni, C.; Imbeaux, F.; Loarte, A.; Maslov, M.; Contributors, JET

    2015-11-01

    The density evolution during the transient phase just after the L-H transition is investigated using theoretical transport models. Cases characterized by core densities which evolve in longer timescales than the edge densities, leading to hollow density profiles (R/{{L}n}=-R\

  8. Density matrix renormalization group with efficient dynamical electron correlation through range separation

    SciTech Connect

    Hedegård, Erik Donovan Knecht, Stefan; Reiher, Markus; Kielberg, Jesper Skau; Jensen, Hans Jørgen Aagaard

    2015-06-14

    We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.

  9. Materials for high-density electronic packaging and interconnection

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production.

  10. Electronic Structure Methods Based on Density Functional Theory

    DTIC Science & Technology

    2010-01-01

    L. Nordström, L. Tongming, and B. Johansson, “Relativistic Effects on the Thermal Expansion of the Actinide Elements ”, Phys. Rev. B 42, 1990, p 4544...In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) Christopher F. Woodward (AFRL/RXLMD) 5d. PROJECT NUMBER 4347 5e...in valence electrons change the structure of the core electrons. For example in the actinides , where the f-electrons are coupled to the core states

  11. Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators

    SciTech Connect

    Brijesh, P.; Thaury, C.; Phuoc, K. T.; Corde, S.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M.; Kneip, S.

    2012-06-15

    A density perturbation in an underdense plasma was used to improve the quality of electron bunches produced in the laser-plasma wakefield acceleration scheme. Quasi-monoenergetic electrons were generated by controlled injection in the longitudinal density gradients of the density perturbation. By tuning the position of the density perturbation along the laser propagation axis, a fine control of the electron energy from a mean value of 60 MeV to 120 MeV has been demonstrated with a relative energy-spread of 15 {+-} 3.6%, divergence of 4 {+-} 0.8 mrad, and charge of 6 {+-} 1.8 pC.

  12. Multichannel microwave interferometer with an antenna switching system for electron density measurement in a laboratory plasma experiment

    SciTech Connect

    Kawamori, Eiichirou; Lin, Yu-Hsiang; Mase, Atsushi; Nishida, Yasushi; Cheng, C. Z.

    2014-02-15

    This study presents a simple and powerful technique for multichannel measurements of the density profile in laboratory plasmas by microwave interferometry. This technique uses electromechanical microwave switches to temporally switch the connection between multiple receiver antennas and one phase-detection circuit. Using this method, the phase information detected at different positions is rearranged into a time series that can be acquired from a minimum number of data acquisition channels (e.g., two channels in the case of quadrature detection). Our successfully developed multichannel microwave interferometer that uses the antenna switching method was applied to measure the radial electron density profiles in a magnetized plasma experiment. The advantage of the proposed method is its compactness and scalability to multidimensional measurement systems at low cost.

  13. The effect of plasma radius and profile on the development of self-modulation instability of electron bunches

    SciTech Connect

    Fang, Y.; Vieira, J.; Amorim, L. D.; Muggli, P.

    2014-05-15

    Plasmas available for plasma wakefield accelerator experiments may have longitudinal and transverse density profiles that could affect the outcome of an experiment. This paper investigates the effect of plasmas with finite radius and inhomogeneous transverse density profiles on the wakefield excitation and the self-modulation instability (SMI) development in overdense plasmas. We focus here on the case of an electron bunch. Simulation results show that such plasmas generate larger focusing force for the propagating electron beam and therefore higher growth rate for the SMI. Although the initial accelerating field (E{sub z}) amplitude is lower in such plasmas, the increased focusing force can dominate the development trend of the SMI, i.e., larger saturated E{sub z} amplitude can be reached over similar plasma lengths.

  14. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  15. Materials for High-Density Electronic Packaging and Interconnection

    DTIC Science & Technology

    1990-04-10

    34 wire "-based systems. An additional study of optical interconnection is strongly recommended’. The literature on electronic packaging has recently...along with the physical design of the electronic systems, and today’s structures represent engineering optimization of many factors. It is of little...34 options exist, including the use of face-down, " beam -lead" or TAB lead frame arrangements, and also face-up wire - bonded configurations. Following

  16. Ionospheric electron density perturbations during the 7-10 March 2012 geomagnetic storm period

    NASA Astrophysics Data System (ADS)

    Belehaki, Anna; Kutiev, Ivan; Marinov, Pencho; Tsagouri, Ioanna; Koutroumbas, Kostas; Elias, Panagiotis

    2017-02-01

    From 7 to 10 March 2012 a series of magnetospheric disturbances caused perturbations in the ionospheric electron density. Analyzing the interplanetary causes in each phase of this disturbed period, in comparison with the total electron content (TEC) disturbances, we have concluded that the interplanetary solar wind controls largely the ionospheric response. An interplanetary shock detected at 0328UT on 7 March caused the formation of prompt penetrating electric fields in the dayside that transported plasma from the near-equatorial region to higher in attitudes and latitudes forming a giant plasma fountain which is part of the so-called dayside ionospheric super-fountain. The super-fountain produces an increase in TEC which is the dominant effect at middle latitude, masking the effect of the negative storm. Simultaneously, inspecting the TEC maps, we found evidence for a turbulence in TEC propagating southward probably caused by large scale travelling ionospheric disturbances (LSTIDs) linked to auroral electrojet intensification. On 8 March, a magnetospheric sudden impulse at 1130UT accompanied with strong pulsations in all interplanetary magnetic field (IMF) components and with northward Bz component during the growth phase of the storm. These conditions triggered a pronounced directly driven substorm phase during which we observe LSTID. However, the analysis of DMSP satellite observations, provided with strong evidence for Sub-Auroral Polarization Streams (SAPS) formation that erode travelling ionospheric disturbances (TID) signatures. The overall result of these mechanisms can be detected in maps of de-trended TEC, but it is difficult to identify separately each of the sources of the observed perturbations, i.e. auroral electrojet activity and LSTIDs, super-fountain and SAPS. In order to assess the capability of the ionospheric profiler called Topside Sounder Model - assisted Digisonde (TaD model) to detect such perturbations in the electron density, electron

  17. Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona

    NASA Technical Reports Server (NTRS)

    Edenhofer, P.; Lueneburg, E.; Esposito, P. B.; Martin, W. L.; Zygielbaum, A. I.; Hansen, R. T.; Hansen, S. F.

    1978-01-01

    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements.

  18. Absolute measurements of night-time electron density using ISR gyro lines

    NASA Astrophysics Data System (ADS)

    Bhatt, Asti; Kelley, Michael; Nicolls, Michael; Sulzer, Michael

    2012-07-01

    Gyro line in Incoherent Scatter Spectrum is the underused cousin of the more popular Plasma line. This is because it is very weak during the day and stronger during dawn and dusk hours. When the electron density is such that the electron plasma frequency drops below the electron gyro frequency, the gyro line frequency becomes proportional to the electron density. This is during a time when the plasma line is no longer detected, and we have no other means for getting precise measurements for absolute electron density. In this paper, we will present a linear equation for the gyro line frequency and measurements from the Arecibo radar in Puerto Rico, showing comparison with the plasma line data and derived electron density.

  19. Properties of electron density and other one-electron observables derived from generalized Hiller-Sucher-Feinberg identities

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy; Lopez-Boada, Roberto

    1998-07-01

    A generalization of the Hiller-Sucher-Feinberg (HSF) and Rassolov-Chipman identities for the electron density is presented. A companion expression for the electrostatic potential is derived. Properties of the electron density furnished by the generalized HSF identity are discussed. In particular, the behavior in the vicinity of an arbitrary potential singularity and the long-range asymptotics are analyzed in detail. A simple numerical example is provided to illustrate the new theoretical results.

  20. Effective mass in bilayer graphene at low carrier densities: The role of potential disorder and electron-electron interaction

    NASA Astrophysics Data System (ADS)

    Li, J.; Tan, L. Z.; Zou, K.; Stabile, A. A.; Seiwell, D. J.; Watanabe, K.; Taniguchi, T.; Louie, Steven G.; Zhu, J.

    2016-10-01

    In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine experiment and theory to study the effective masses of electrons and holes me* and mh* in bilayer graphene in the low carrier density regime on the order of 1 ×1011c m-2 . Measurements use temperature-dependent low-field Shubnikov-de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find that while me* follows a tight-binding description in the whole density range, mh* starts to drop rapidly below the tight-binding description at a carrier density of n =6 ×1011c m-2 and exhibits a strong suppression of 30% when n reaches 2 ×1011c m-2 . Contributions from the electron-electron interaction alone, evaluated using several different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication reveals an unusual disorder effect unique to two-dimensional semimetallic systems.

  1. Electron density dynamics in the electronic ground state: motion along the Kekulé mode of benzene.

    PubMed

    Schild, Axel; Choudhary, Deepanshu; Sambre, Vaibhav D; Paulus, Beate

    2012-11-26

    If the Born-Oppenheimer approximation is invoked for the description of chemical reactions, the electron density rearranges following the motion of the nuclei. Even though this approach is central to theoretical chemistry, the explicit time dependence of the electron density is rarely studied, especially if the nuclei are treated quantum mechanically. In this article, we model the motion of benzene along the Kekulé vibrational coordinate to simulate the nuclear dynamics and electron density dynamics in the electronic ground state. Details of the change of core, valence, and π electrons are determined and analyzed. We show how the pictures anticipated by drawing Lewis structures of the rearrangement correlate with the time-dependent quantum description of the process.

  2. High density electronic circuit and process for making

    DOEpatents

    Morgan, W.P.

    1999-06-29

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

  3. High density electronic circuit and process for making

    DOEpatents

    Morgan, William P.

    1999-01-01

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing.

  4. TIDAL STIRRING OF DISKY DWARFS WITH SHALLOW DARK MATTER DENSITY PROFILES: ENHANCED TRANSFORMATION INTO DWARF SPHEROIDALS

    SciTech Connect

    Kazantzidis, Stelios; Lokas, Ewa L.; Mayer, Lucio

    2013-02-20

    According to the tidal stirring model, late type, rotationally supported dwarfs resembling present day dwarf irregular (dIrr) galaxies can transform into dwarf spheroidals (dSphs) via interactions with Milky-Way-sized hosts. We perform collisionless N-body simulations to investigate for the first time how tidal stirring depends on the dark matter (DM) density distribution in the central stellar region of the progenitor disky dwarf. Specifically, we explore various asymptotic inner slopes {gamma} of the dwarf DM density profiles ({rho}{proportional_to}r {sup -{gamma}}). For a given orbit inside the primary galaxy, rotationally supported dwarfs embedded in DM halos with core-like distributions ({gamma} = 0.2) and mild density cusps ({gamma} = 0.6) demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs compared to their counterparts with steeper DM density profiles ({gamma} = 1). Such shallow DM distributions are akin to those of observed dIrrs highlighting tidal stirring as a plausible model for the Local Group (LG) morphology-density relation. When {gamma} < 1, a single pericentric passage can induce dSph formation and disky dwarfs on low-eccentricity or large-pericenter orbits are able to transform; these new results allow tidal stirring to explain virtually all known dSphs across a wide range of distances from their hosts. A subset of disky dwarfs initially embedded in DM halos with shallow density profiles are eventually disrupted by the primary; those that survive as dSphs are generally on orbits with lower eccentricities and/or larger pericenters compared to those of typical cold dark matter satellites. The latter could explain the peculiar orbits of several LG dSphs such as Fornax, Leo I, Tucana, and Cetus.

  5. Quantitation of molecular densities by cryo-electron microscopy. Determination of the radial density distribution of tobacco mosaic virus.

    PubMed

    Smith, M F; Langmore, J P

    1992-08-05

    We have determined the absolute mass and radial scattering density distribution of tobacco mosaic virus in the frozen-hydrated state by energy-filtered low-dose bright-field transmission electron microscopy. The absolute magnitude of electron scattering from tobacco mosaic virus in 150 nm of ice was within 3.0% of that predicted, with inelastic scattering accounting for approximately 80% of the scattering contrast. In order to test the accuracy of the radial reconstruction, a computer model of tobacco mosaic virus was built from the atomic co-ordinates assuming uniform solvent density. The validity of the model was confirmed by comparison of X-ray scattering and predictions of the model (R factor = 0.05). First-order corrections for the microscope contrast transfer function were necessary and sufficient for conversion of the cryo-electron microscopy images into accurate representations of the mass density. At 1.9 nm resolution the compensated reconstruction and model had density peaks of similar magnitude at 2.4, 4.2, 6.0 and 7.8 nm radius and a central hole of 2 nm radius. Equatorial Fourier transforms of the corrected electron images were in excellent agreement with predictions of the model (R factor = 0.12). Thus, the uniform solvent approximation was adequate at 1.9 nm resolution to describe quantitatively X-ray scattering in liquid water and electron imaging in vitreous ice. This is the first demonstration that cryo-electron microscopy images can be used to quantitate the absolute mass, mass per unit length and internal density distributions of proteins and nucleic acids.

  6. Propagation of a cloud of hot electrons through a plasma in the presence of Langmuir scattering by ambient density fluctuations

    SciTech Connect

    Foroutan, G. R.; Robinson, P. A.; Sobhanian, S.; Moslehi-Fard, M.; Li, B.; Cairns, I. H.

    2007-01-15

    Gas-dynamic theory is generalized to incorporate the effects of beam-driven Langmuir waves scattering off ambient density fluctuations, and the consequent effects on the propagation of a cloud of hot electrons in an inhomogeneous plasma. Assuming Langmuir scattering as the limit of nonlinear three-wave interactions with fluctuations that are weak, low-frequency, long-wavelength ion-sound waves, the net effect of scattering is equivalent to effective damping of the Langmuir waves. Under the assumption of self-similarity in the evolution of the beam and Langmuir wave distribution functions, gas-dynamic theory shows that the effects of Langmuir scattering on the beam distribution are equivalent to a perturbation in the injection profile of the beam. Analytical expressions are obtained for the height of the plateau of the beam distribution function, wave spectral number density, total wave and particle energy density, and the beam number density. The main results of gas-dynamic theory are then compared with simulation results from numerical solutions of quasilinear equations. The relaxation of the beam in velocity space is retarded in the presence of density fluctuations and the magnitude of the upper velocity boundary is less than that in the absence of fluctuations. There are four different regimes for the height of the plateau, corresponding to different stages of relaxation of the beam in velocity space. Moreover, Langmuir scattering results in transfer of electrons from moderate velocity to low velocity; this effect produces an enhancement in the beam number density at small distances near the injection site and a corresponding decrease at large distances. There are sharp decreases in the profiles of the beam and total wave energy densities, which are related to dissipation of energy at large phase velocities. Due to a slower velocity space diffusion of the beam distribution in the presence of scattering effects, the spatial width of the beam is reduced while its

  7. Density profiles of Ar adsorbed in slits of CO2: Spontaneous symmetry breaking revisited

    NASA Astrophysics Data System (ADS)

    Szybisz, Leszek; Sartarelli, Salvador A.

    2008-03-01

    A recently reported symmetry breaking of density profiles of fluid argon confined by two parallel solid walls of carbon dioxide is studied. The calculations are performed in the framework of a nonlocal density functional theory. It is shown that the existence of such asymmetrical solutions is restricted to a special choice for the adsorption potential, where the attraction of the solid-fluid interaction is reduced by the introduction of a hard-wall repulsion. The behavior as a function of the slit's width is also discussed. All the results are placed in the context of the current knowledge on this matter.

  8. Density profiles of Ar adsorbed in slits of CO2: spontaneous symmetry breaking revisited.

    PubMed

    Szybisz, Leszek; Sartarelli, Salvador A

    2008-03-28

    A recently reported symmetry breaking of density profiles of fluid argon confined by two parallel solid walls of carbon dioxide is studied. The calculations are performed in the framework of a nonlocal density functional theory. It is shown that the existence of such asymmetrical solutions is restricted to a special choice for the adsorption potential, where the attraction of the solid-fluid interaction is reduced by the introduction of a hard-wall repulsion. The behavior as a function of the slit's width is also discussed. All the results are placed in the context of the current knowledge on this matter.

  9. PMSE strength during enhanced D region electron densities: Faraday rotation and absorption effects at VHF frequencies

    NASA Astrophysics Data System (ADS)

    Chau, Jorge L.; Röttger, Jürgen; Rapp, Markus

    2014-10-01

    In this paper we study the effects of absorption and Faraday rotation on measurements of polar mesosphere summer echoes (PMSE). We found that such effects can produce significant reduction of signal-to-noise ratio (SNR) when the D region electron densities (Ne) are enhanced, and VHF radar systems with linearly polarized antennas are used. In particular we study the expected effects during the strong solar proton event (SPE) of July 2000, also known as the Bastille day flare event. During this event, a strong anti-correlation between the PMSE SNR and the D-region Ne was found over three VHF radar sites at high latitudes: Andøya, Kiruna, and Svalbard. This anti-correlation has been explained (a) in terms of transport effects due to strong electric fields associated to the SPE and (b) due to a limited amount of aerosol particles as compared to the amount of D-region electrons. Our calculations using the Ne profiles used by previous researchers explain most, if not all, of the observed SNR reduction in both time (around the SPE peak) and altitude. This systematic effect, particularly the Faraday rotation, should be recognized and tested, and possibly avoided (e.g., using circular polarization), in future observations during the incoming solar maximum period, to contribute to the understanding of PMSE during enhanced D region Ne.

  10. Modulation of solar flare particles and track density profiles in gas-rich meteorite grains

    NASA Technical Reports Server (NTRS)

    Lee, M. A.

    1976-01-01

    A solution is presented to the problem concerning the time-averaged solar flare particle flux as a function of kinetic energy and distance from the sun for a given particle injection spectrum at the sun within the framework of standard diffusion-convection-adiabatic deceleration theory with the diffusion coefficient independent of distance from the sun. Results of the calculations which give best agreement with observations at 1 AU are presented and discussed, with particular reference to their implications for gas-rich meteorites. Normalization at the orbit of earth is achieved via observed track density versus depth profiles in lunar vug crystals. It is shown that if gas-rich meteorite grains were irradiated in the asteroid belt and if source and modulation parameters have changed little since irradiation, the track density should be 'harder' than the lunar vug profile by about 0.2-0.3 in the index. Quantitative estimation of solar flare particle exposure ages is discussed.

  11. Understanding how Supernova Light Curves are Affected by the Density Profiles of Extended Material

    NASA Astrophysics Data System (ADS)

    Mühleisen, Marc; Piro, Anthony

    2017-01-01

    The light curve of a supernova can provide important clues about the structure of the exploding progenitor. When extended material is present, shock cooling of this material can lead to a prominent early peak distinct from the main radioactive nickel peak, as seen in some Type IIb supernovae. We explore whether the density profile of the extended material plays a role in shaping these light curves. We perform a series of numerical supernova simulations with a range of extended mass configurations. We find that steeper density profiles for the extended material shrink the width and decrease the luminosity of the early peak of the light curve. We conclude that light curves with a distinct, early peak do not imply a particular structure, but rather may arise from several distinct mass configurations. This places limits on how much can be inferred about the progenitor's structure from its light curve.

  12. Method of measuring a profile of the density of charged particles in a particle beam

    DOEpatents

    Hyman, L.G.; Jankowski, D.J.

    1975-10-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam.

  13. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    SciTech Connect

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally, we report on the measured performance of this profile monitor.

  14. Laser driven terahertz generation in hot plasma with step density profile

    SciTech Connect

    Kumar, Manoj Jeong, Young Uk; Tripathi, Vipin Kumar

    2015-06-15

    An analytical formalism of terahertz (THz) radiation generation by beating of two lasers in a hot plasma with step density profile is developed. The lasers propagate obliquely to plasma surface normal, and the nonlinearity arises through the ponderomotive force. The THz is emitted in the specular reflection direction, and the yield is enhanced due to coupling with the Langmuir wave when the plasma frequency is close to THz frequency. The power conversion efficiency maximizes at an optimum angle of incidence.

  15. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    SciTech Connect

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-15

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10{sup -4} Pa Xe (3.3x10{sup -6} Torr Xe) to 1.1x10{sup -3} Pa Xe (8.4x10{sup -6} Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures.

  16. High-energy-density electron jet generation from an opening gold cone filled with near-critical-density plasma

    SciTech Connect

    Yu, T. P. Shao, F. Q.; Zou, D. B.; Ge, Z. Y.; Zhang, G. B.; Wang, W. Q.; Li, X. H.; Liu, J. X.; Ouyang, J. M.; Yu, W.; Luan, S. X.; Wang, J. W.; Wong, A. Y.

    2015-01-14

    By using two-dimensional particle-in-cell simulations, we propose a scheme for strong coupling of a petawatt laser with an opening gold cone filled with near-critical-density plasmas. When relevant parameters are properly chosen, most laser energy can be fully deposited inside the cone with only 10% leaving the tip opening. Due to the asymmetric ponderomotive acceleration by the strongly decayed laser pulse, high-energy-density electrons with net laser energy gain are accumulated inside the cone, which then stream out of the tip opening continuously, like a jet. The jet electrons are fully relativistic, with speeds around 0.98−0.998 c and densities at 10{sup 20}/cm{sup 3} level. The jet can keep for a long time over 200 fs, which may have diverse applications in practice.

  17. SOL density profile formation and intermittent ion fluxes to the first wall in JET

    NASA Astrophysics Data System (ADS)

    Walkden, Nicholas; Militello, F.; Matthews, G.; Harrison, J.; Moulton, D.; Wynn, A.; Lipschultz, B.; Guillemaut, C.; JET Team

    2016-10-01

    The ion flux in the scrape-off layer (SOL) of a tokamak is highly non-diffusive due to the radial propagation of intermittent burst events known as filaments. As a result the formation of mean profiles in the SOL and the flux incident on the outer wall are strongly impacted by transient events. This has been investigated over a series of pulses in an Ohmic L-mode horizontal target configuration in JET. Broadening of the SOL density profile is reduced as plasma current is increased or the density is decreased. The mean and variance of the ion flux at the outer wall change concurrently with this broadening. Upon renormalization the PDFs of the ion flux at the outer-wall collapse indicating universality in the dynamics of their constituent fluctuations. This universality is shown to result from a balance between the duration and frequency of burst events which keeps the intermittency parameter constant. These measurements will be compared to synthetically produced measurements created using a stochastic framework based on filamentary dynamics. Through this comparison possible models of filamentary dynamics will be assessed and compared quantitatively to gain an understanding of the processes underlying density profile formation and fluxes to the outer wall of JET. This work has been carried out within the framework of the EURO- fusion Consortium.

  18. Surface Tension Prediction Using Characteristics of the Density Profile Through the Interfacial Region

    NASA Astrophysics Data System (ADS)

    Wemhoff, A. P.; Carey, V. P.

    2006-03-01

    A simple surface tension estimation technique is described that is based solely upon the characteristics of the density profile in the interfacial region and the physical properties of the molecules in the fluid. This method, denoted free energy integration (FEI), links interfacial tension to known interfacial region density profile characteristics obtained via experiment or simulation. The general FEI methodology is provided here, and specific relations are derived for a methodology that incorporates the Redlich-Kwong fluid model. The Redlich-Kwong based FEI method was used to predict interfacial tension using the density profile characteristics of molecular dynamics (MD) simulations of argon using the Lennard-Jones potential, diatomic nitrogen using the two-center Lennard-Jones potential, and water using the extended simple point-charge (SPC/E) model. These results for argon compare favorably to values calculated by the traditional virial approach, known values from the literature using the finite-size scaling technique, and ASHRAE recommended values. In addition, the FEI predictions agree well with ASHRAE values and predictions using the virial method for nitrogen for the simulated range of temperatures in this study, and for water for reduced temperatures above 0.7. In addition, the FEI method results agree well with other established theoretical techniques for predictions of the surface tension of sulfur hexafluoride close to the critical point.

  19. Counterion density profile around a charged disk: From the weak to the strong association regime

    NASA Astrophysics Data System (ADS)

    Mallarino, Juan Pablo; Téllez, Gabriel

    2015-06-01

    We present a comprehensive study of the two-dimensional one-component plasma in the cell model with charged boundaries. Starting from weak couplings through a convenient approximation of the interacting potential we were able to obtain an analytic formulation to the problem deriving the partition function, density profile, contact densities, and integrated profiles that compared well with the numerical data from Monte Carlo simulations. Additionally, we derived the exact solution for the special cases of Ξ =1 ,2 ,3 ,⋯ , finding a correspondence between those from weak couplings and the latter. Furthermore, we investigated the strong-coupling regime taking into consideration the Wigner formulation. Elaborating on this, we obtained the profile to leading order, computed the contact density values as compared to those derived in an earlier work on the contact theorem. We formulated adequately the strong-coupling regime for this system that differed from previous formulations. Ultimately, we calculated the first-order corrections and compared them against numerical results from our simulations with very good agreement; these results compared equally well in the planar limit, whose results are well known.

  20. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.

    PubMed

    Domingo, Luis R

    2016-09-30

    A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  1. Modern Possibilities for Calculating Some Properties of Molecules and Crystals from the Experimental Electron Density

    SciTech Connect

    Stash, A.I.; Tsirelson, V.G.

    2005-03-01

    Methods for calculating some properties of molecules and crystals from the electron density reconstructed from a precise X-ray diffraction experiment using the multipole model are considered. These properties include, on the one hand, the characteristics of the electron density and the inner-crystal electrostatic field and, on the other hand, the local electronic energies (kinetic, potential, total), the exchange energy density, the electron-pair localization function, the localized-orbital locator, the effective crystal potential, and others. It is shown that the integration of these characteristics over pseudoatomic volumes bounded by the surfaces of the zero flux of the electron density gradient makes it possible to characterize directly from an experiment the properties of molecules and crystals in terms of the atomic contributions. The computer program WinXPRO2004, realizing these possibilities, is briefly described.

  2. Influence of the electronic plasma density on the wave particle interaction

    NASA Astrophysics Data System (ADS)

    Sicard-Piet, Angelica; Boscher, Daniel

    2013-04-01

    The wave particle interaction, which is well known to be a major phenomenon in the electron radiation belts dynamics, is based on two main parameters: the characteristics of the wave (type of wave, intensity,…) and the characteristics of the ambient plasma. In this work we studied the second parameter. On one side, the electronic plasma density can be derived from in-situ measurements. On the other side, several empirical models exist: GCPM, IZMIRAN or Carpenter models. Here, we compared electronic plasma densities derived from in-situ measurements each other and with existing models. Then, we investigated on the electronic plasma density distribution to distinguish the inside to the outside plasmasphere. Finally, the effect of the electronic plasma density on the diffusion coefficients due to wave particle interaction has been studied via a numerical code, called WAPI, based on quasi linear theory.

  3. The effects of a multidensity plasma on ultraviolet spectroscopic electron density diagnostics

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.

    1984-01-01

    Spectroscopic electron density diagnostics have been developed for interpretation of UV, EUV, and X-ray emission line spectra of solar and other astrophysical plasmas, and tokamak plasmas. In principle, accurate electron densities can be determined. However, in practice, a number of difficulties arise with respect to the determination of very accurate electron densities in the 1100-3000 A region. The present study has the objective to investigate one of these difficulties, taking into account the effect on line ratios produced by a source composed of several regions of substantially different densities, all at the same temperature. The study is in particular concerned with a source in which small high density knots are embedded in low-density plasma. Attention is given to line ratios involving the O IV multiplet near 1400 A, obtained from the spectrum of a surge observed outside the solar limb.

  4. Nighttime D-region electron density measurements from ELF-VLF tweek radio atmospherics recorded at low latitudes

    NASA Astrophysics Data System (ADS)

    Maurya, A. K.; Veenadhari, B.; Singh, R.; Kumar, S.; Cohen, M.

    2012-12-01

    Dispersive atmospherics (tweeks) observed during 2010 simultaneously at two low latitude stations, Allahabad (geomagnetic lat., 16.79° N) and Nainital (geomagnetic lat. 20.48° N), have been utilized to estimate the nighttime D-region electron density at the ionospheric reflection height under the local nighttime propagation (21:00 - 02:00 LT or 15:30 - 20:30 UT). The analysis of simultaneously recorded tweeks at both the stations on five international quiet days during one month each from summer (June), winter (January) and equinox (March) seasons shows that the D-region electron density varies 21.5-24.5 cm-3 over the ionospheric reflection height of 85-95 km. The average values of Wait lower ionospheric parameters: ionospheric reference height h‧ and sharpness factor β are almost same during winter (86.1-85.9 km, 0.51-0.52 km-1) and equinox (85.6-85.7 km, 0.54 km-1) seasons. The values of h‧ and β during summer season are about 83.5 km and 0.60 km-1 at both stations. Overall, equivalent electron density profile obtained using tweek method shows lower values of electron density by about 5-60% than those obtained using IRI-2007 model and lower/higher by 2-68% than those obtained using rocket technique. The electron density estimated using all three techniques (tweek, IRI 2007, Rocket) is consistent in the altitude range of 82-98 km. The estimated geographic locations of causative lightnings of tweeks were matched with the locations and times of lightnings detected by the World-Wide Lightning Location Network (WWLLN). The WWLLN detected about 27.5% of causative lightnings of tweeks simultaneously observed at both the stations.

  5. Variations in a Universal Density Profile for the Milky Way's Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Jardel, John; Gebhardt, K.

    2014-01-01

    On the largest scales, the Cold Dark Matter (CDM) paradigm for structure formation has enjoyed remarkable success in describing the universe we live in. The current frontier in our knowledge of galaxy formation is at the low-mass level. Here we find disagreement between theory and observations in a number of interesting cases. One such problem that has received considerable attention is the debate over the shape of the dark matter density profiles in the Milky Way's dwarf spheroidal (dSph) galaxies, known as the core/cusp problem. CDM simulations predict every halo should have a cuspy profile with an inner logarithmic slope of -1, but some observers have found that profiles with constant density inner cores are preferred. However, a major weakness of this previous work is that the dynamical models constructed to measure the mass distribution have had to assume a parameterization for the dark matter profile--exactly the thing one wishes to measure. For my thesis I introduced a new modeling technique, based on Schwarzschild's method, that instead calculates the dark matter profile non-parametrically. Applying these models to five of the Milky Way's dSphs I found a variety of profile shapes including cores, cusps, and other completely unexpected shapes. When scaled to a common normalization, however, I found the combined profile appears to follow an approximate power law with slope -1. The results of this averaging suggest that the individual formation histories of each galaxy produce differing dark matter profiles, but with a net result that is similar to CDM predictions. To better understand the role baryons play in this process, I compare my results to recent hydrodynamical simulations of the formation of dwarf galaxies. Together, my results and the simulations suggest a trend of flatter profiles in galaxies where more stars have formed. This implies that star formation and dark matter halos are linked through the effects of supernova-induced outflows which are

  6. The effect of sample matrix on electron density, electron temperature and gas temperature in the argon inductively coupled plasma examined by Thomson and Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Hanselman, D. S.; Sesi, N. N.; Huang, M.; Hieftje, G. M.

    1994-05-01

    Spatially-resolved electron temperature ( Te), electron number density ( ne) and gas-kinetic temperature ( Tg) maps of the inductively coupled plasma (ICP) have been obtained for two central-gas flow rates, four heights above the load coil (ALC) and in the presence and absence of interferants with a wide range of first ionization potentials. The radial profiles demonstrate how the directly measured fundamental parameters neTe and Tg can be significantly enhanced and/or depressed with added interferent, depending upon plasma operating conditions and observation region. In general, the magnitude of ne, and Te change is found to be an inverse function of interferent ionization potential; furthermore, ne enhancements in the central channel might be the result of electron redistribution from high to low electron density regions rather than from ionization of the matrix. The large measured increases in ne cannot be attributed solely to matrix ionization, especially when measurement uncertainties and the probable over-estimation in calculated ne, enhancements are taken into account. Changes in ne and Te have been correlated with axial Ca atom and ion emission profiles. A brief review of the mechanisms most likely involved in interelement matrix interferences is given within the context of the present study. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by a disk for the Macintosh computer with data files stored in ASCII format. The main article discusses the scientific aspects of the subject and gives an interpretation of the results contained in the data files.

  7. Thermodynamics, contact, and density profiles of the repulsive Gaudin-Yang model

    NASA Astrophysics Data System (ADS)

    PâÅ£u, Ovidiu I.; Klümper, Andreas

    2016-03-01

    We address the problem of computing the thermodynamic properties of the repulsive one-dimensional two-component Fermi gas with contact interaction, also known as the Gaudin-Yang model. Using a specific lattice embedding and the quantum transfer matrix we derive an exact system of only two nonlinear integral equations for the thermodynamics of the homogeneous model which is valid for all temperatures and values of the chemical potential, magnetic field, and coupling strength. This system allows for an easy and extremely accurate calculation of thermodynamic properties circumventing the difficulties associated with the truncation of the thermodynamic Bethe ansatz system of equations. We present extensive results for the densities, polarization, magnetic susceptibility, specific heat, interaction energy, Tan contact, and local correlation function of opposite spins. Our results show that at low and intermediate temperatures the experimentally accessible contact is a nonmonotonic function of the coupling strength. As a function of the temperature the contact presents a pronounced local minimum in the Tonks-Girardeau regime which signals an abrupt change of the momentum distribution in a small interval of temperature. The density profiles of the system in the presence of a harmonic trapping potential are computed using the exact solution of the homogeneous model coupled with the local density approximation. We find that at finite temperature the density profile presents a double shell structure (partially polarized center and fully polarized wings) only when the polarization in the center of the trap is above a critical value which is monotonically increasing with temperature.

  8. Stellar density profile and mass of the Milky Way bulge from VVV data

    NASA Astrophysics Data System (ADS)

    Valenti, E.; Zoccali, M.; Gonzalez, O. A.; Minniti, D.; Alonso-García, J.; Marchetti, E.; Hempel, M.; Renzini, A.; Rejkuba, M.

    2016-03-01

    We present the first stellar density profile of the Milky Way bulge that reaches latitude b = 0°. The profile was derived by counting red clump stars within the colour-magnitude diagram that was constructed using the new PSF-fitting photometry from VISTA Variables in the Vía Láctea (VVV) survey data. The new stellar density map covers the area between | l | ≤ 10° and | b | ≤ 4.5° with unprecedented accuracy, allowing the stellar kinematics from the Giraffe Inner Bulge Spectroscopic Survey (GIBS) to be linked to the stellar mass density distribution. In particular, the location of the central velocity-dispersion peak from GIBS matches a high over-density in the VVV star count map. By scaling the total luminosity function (LF) obtained from all VVV fields to the LF from Zoccali et al.(2003), we obtain the first fully empirical estimate of the mass in stars and in remnants of the Galactic bulge. Within (| b | < 9.5°, | l | < 10°), the Milky Way bulge stellar mass is 2.0 ± 0.3 × 1010M⊙. Based on observations taken within the ESO/VISTA Public Survey VVV under the programme ID 179.B-2002 (PI: Minniti).

  9. Theoretical discussion for electron-density distribution in multicusp ion source

    SciTech Connect

    Zhan Hualin; Hu Chundong; Xie Yahong; Wu Bin; Wang Jinfang; Liang Lizheng; Wei Jianglong

    2011-03-21

    By introducing some ideas of magnetohydrodynamics (MHD) and kinetic theories, some useful solutions for electron-density distribution in the radial direction in multicusp ion source are obtained. Therefore, some conclusions are made in this perspective: 1, the electron-density distributions in a specific region in the sheath are the same with or without magnetic field; 2, the influence of magnetic field on the electron density obeys exponential law, which should take into account the collision term as well if the magnetic field is strong; 3, the result derived from the Boltzmann equation is qualitatively consistent with some given experimental results.

  10. Semiclassical treatment of matter-enhanced neutrino oscillations for an arbitrary density profile

    SciTech Connect

    Balantekin, A.B.; Beacom, J.F.

    1996-11-01

    The matter-enhanced oscillations of two neutrino flavors are studied using a uniform semiclassical approximation. Unlike some analytic studies which have focused on certain exactly solvable densities, this method can be used for an arbitrary monotonic density profile. The method is applicable to a wider range of mixing parameters than previous approximate methods for arbitrary densities. The approximation is excellent in the adiabatic regime and up to the extreme nonadiabatic limit. In particular, the range of validity for this approximation extends farther into the nonadiabatic regime than for the linear Landau-Zener result. This method also allows calculation of the source- and detector-dependent terms in the unaveraged survival probability, and analytic results for these terms are given. These interference terms may be important in studying neutrino mixing in the Sun or in supernovas. {copyright} {ital 1996 The American Physical Society.}

  11. Fast Thermal Helium Beam diagnostic for measurements of edge electron profiles and fluctuations

    SciTech Connect

    Agostini, M. Scarin, P.; Cavazzana, R.; Carraro, L.; Grando, L.; Taliercio, C.; Franchin, L.; Tiso, A.

    2015-12-15

    The edge of fusion experiments is a region where strong gradients develop, together with the presence of strong fluctuations due to turbulence. The thermal helium beam diagnostic developed for the RFX-mod experiment allows the measurements with a single diagnostic of both low frequency time evolution of the edge radial profiles of electron density and temperature (tens of hertz), and the high frequency fluctuations (hundreds of kHz). To maximize the collected light, the three HeI lines necessary to be measured for the evaluation of n{sub e} and T{sub e} are separated with a spectrograph, and multianode photomultipliers are used as light detectors. The paper describes the diagnostic setup, with the interface hardware with the machine and the optical layout, and the characterization of its performances.

  12. Special Sensor Ultraviolet Limb Imager: an ionospheric and neutral density profiler for the Defense Meteorological Satellite Program satellites

    NASA Astrophysics Data System (ADS)

    McCoy, Robert P.; Dymond, Kenneth F.; Fritz, Gilbert G.; Thonnard, Stefan E.; Meier, Robert R.; Regeon, Paul A.

    1994-02-01

    The Naval Research Laboratory is developing a series of far- and extreme-ultraviolet spectrographs (800 to 1700 angstroms) to measure altitude profiles of the ionospheric and thermospheric airglow from the U.S. Air Force Defense Meteorological Satellite Program's Block 5D3 satellites. These spectrographs, **** the Special Sensor Ultraviolet Limb Imager (SSULI), use a near-Wadsworth optical configuration with a mechanical grid collimator, concave grating, and linear array detector. To image the limb, SSULI employs a rotating planar SiC mirror that sweeps the field of view perpendicular to the limb of the Earth. In the primary operating mode, the mirror sweeps the instrument field of view through 17 deg to view tangent heights from about 50 to 750 km. The SSULI detectors use microchannel plate intensification and wedge-and-strip decoding anodes to resolve 256 pixels in wavelength dispersion. The detector is windowless and uses an o-ring sealed door to protect the CsI photocathode from exposure prior to insertion in orbit. The measured altitude distributions of the airglow measured by the SSULI sensors will be used to infer the altitude distributions of electrons and neutral species. At night, electron densities will be determined by measurement of ion recombination nightglow. Daytime electron densities will be obtained from measurements of multiple resonant scattering of O+ 834-angstrom radiation produced primarily by photoionization excitation of atomic oxygen. Dayside neutral densities and temperatures will be inferred from the measurement of dayglow emissions from N2 and O produced by photoelectron impact excitation.

  13. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    SciTech Connect

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; van Mourik, Reinier; Leemans, Wim

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  14. Experimental Characterization of the Electron Heat Transport in Low-Density ASDEX Upgrade Plasmas

    SciTech Connect

    Ryter, F.; Imbeaux, F.; Leuterer, F.; Fahrbach, H.-U.; Suttrop, W.; ASDEX Upgrade Team

    2001-06-11

    The electron heat transport is investigated in ASDEX Upgrade conventional L -mode plasmas with pure electron heating provided by electron-cyclotron heating (ECH) at low density. Under these conditions, steady-state and ECH modulation experiments indicate without ambiguity that electron heat transport exhibits a clear threshold in {nabla}T{sub e}/T{sub e} and also suggest that it has a gyro-Bohm character.

  15. Formation of terrestrial planets in disks with different surface density profiles

    NASA Astrophysics Data System (ADS)

    Haghighipour, Nader; Winter, Othon C.

    2016-03-01

    We present the results of an extensive study of the final stage of terrestrial planet formation in disks with different surface density profiles and for different orbital configurations of Jupiter and Saturn. We carried out simulations in the context of the classical model with disk surface densities proportional to {r^{-0.5}}, {r^{-1}} and {r^{-1.5}}, and also using partially depleted, non-uniform disks as in the recent model of Mars formation by Izidoro et al. (Astrophys J 782:31, 2014). The purpose of our study is to determine how the final assembly of planets and their physical properties are affected by the total mass of the disk and its radial profile. Because as a result of the interactions of giant planets with the protoplanetary disk, secular resonances will also play important roles in the orbital assembly and properties of the final terrestrial planets, we will study the effect of these resonances as well. In that respect, we divide this study into two parts. When using a partially depleted disk (Part 1), we are particularly interested in examining the effect of secular resonances on the formation of Mars and orbital stability of terrestrial planets. When using the disk in the classical model (Part 2), our goal is to determine trends that may exist between the disk surface density profile and the final properties of terrestrial planets. In the context of the depleted disk model, results of our study show that in general, the ν _5 resonance does not have a significant effect on the dynamics of planetesimals and planetary embryos, and the final orbits of terrestrial planets. However, ν _6 and ν _{16} resonances play important roles in clearing their affecting areas. While these resonances do not alter the orbits of Mars and other terrestrial planets, they strongly deplete the region of the asteroid belt ensuring that no additional mass will be scattered into the accretion zone of Mars so that it can maintain its mass and orbital stability. In the

  16. Dual-Gate Modulation of Carrier Density and Disorder in an Oxide Two-Dimensional Electron System

    SciTech Connect

    Chen, Zhuoyu; Yuan, Hongtao; Xie, Yanwu; Lu, Di; Inoue, Hisashi; Hikita, Yasuyuki; Bell, Christopher; Hwang, Harold Y.

    2016-09-08

    Carrier density and disorder are two crucial parameters that control the properties of correlated two-dimensional electron systems. Furthermore, in order to disentangle their individual contributions to quantum phenomena, independent tuning of these two parameters is required. By utilizing a hybrid liquid/solid electric dual-gate geometry acting on the conducting LaAlO3/SrTiO3 heterointerface, we obtain an additional degree of freedom to strongly modify the electron confinement profile and thus the strength of interfacial scattering, independent from the carrier density. A dual-gate controlled nonlinear Hall effect is a direct manifestation of this profile, which can be quantitatively understood by a Poisson–Schrödinger sub-band model. In particular, the large nonlinear dielectric response of SrTiO3 enables a very wide range of tunable density and disorder, far beyond that for conventional semiconductors. This study provides a broad framework for understanding various reported phenomena at the LaAlO3/SrTiO3 interface.

  17. Dual-Gate Modulation of Carrier Density and Disorder in an Oxide Two-Dimensional Electron System

    DOE PAGES

    Chen, Zhuoyu; Yuan, Hongtao; Xie, Yanwu; ...

    2016-09-08

    Carrier density and disorder are two crucial parameters that control the properties of correlated two-dimensional electron systems. Furthermore, in order to disentangle their individual contributions to quantum phenomena, independent tuning of these two parameters is required. By utilizing a hybrid liquid/solid electric dual-gate geometry acting on the conducting LaAlO3/SrTiO3 heterointerface, we obtain an additional degree of freedom to strongly modify the electron confinement profile and thus the strength of interfacial scattering, independent from the carrier density. A dual-gate controlled nonlinear Hall effect is a direct manifestation of this profile, which can be quantitatively understood by a Poisson–Schrödinger sub-band model. Inmore » particular, the large nonlinear dielectric response of SrTiO3 enables a very wide range of tunable density and disorder, far beyond that for conventional semiconductors. This study provides a broad framework for understanding various reported phenomena at the LaAlO3/SrTiO3 interface.« less

  18. Radiation-damped profiles of extremely high column density neutral hydrogen: implications of cosmic reionization

    NASA Astrophysics Data System (ADS)

    Bach, Kiehunn

    2017-01-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line of sight mainly affects the far off-centre region of the red damping wing, but the effect is not significant. The shape of the line centre can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half-maximum) as an effective line width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N_{H I}≲ 10^{21} { cm^{-2}}, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7 per cent errors. However, as the local column density reaches N_{H I}˜ 10^{22.3} { cm^{-2}}, this classical approximation yields a relative error of a 10 per cent overestimation in the red wing and a 20 per cent underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  19. Density profiles of CDM microhalos and their implications for annihilation boost factors

    NASA Astrophysics Data System (ADS)

    Anderhalden, Donnino; Diemand, Juerg

    2013-04-01

    In a standard cold dark matter (CDM) cosmology, microhalos at the CDM cutoff scale are the first and smallest objects expected to form in the universe. Here we present results of high resolution simulations of three representative roughly Earth-mass microhalos in order to determine their inner density profile. We find that CDM microhalos in simulations without a cutoff in the power spectrum roughly follow the NFW density profile, just like the much larger CDM halos on galaxy and galaxy cluster scales. But having a cutoff in the initial power spectrum at a typical neutralino free streaming scale of 10-7Msolar makes their inner density profiles considerably steeper, i.e. ρproptor-(1.3-1.4), in good agreement with the results from Ishiyama et al. (2010). An extrapolation of the halo and subhalo mass functions down to the cutoff scale indicates that microhalos are extremely abundant throughout the present day dark matter distribution and might contribute significantly to indirect dark matter detection signals. Assuming a transition from a NFW to a steeper inner profile (ρproptor-1.4) two orders of magnitude above the cutoff scale, the total boost factor for a Milky Way sized dark matter halo increases from about 3.5 to 4. We further find that CDM microhalo concentrations are consistent with the Bullock et al. (2001) model and clearly rule out simplistic power law models for the mass dependence of concentrations and subhalo annihilation, which would erroneously lead to very large boost factors (a few hundred for galaxy halos and over 1000 for clusters).

  20. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  1. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    SciTech Connect

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.

    2016-09-26

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.

  2. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  3. Electron density changes in the nighttime D region due to heating by very-low-frequency transmitters

    NASA Technical Reports Server (NTRS)

    Rodriguez, Juan V.; Inan, Umran S.

    1994-01-01

    Modification of the nighttime D region electron density (N(sub e)) due to heating by very-low-frequency (VLF) transmitters is investigated theoretically using a four-species model of the ion chemistry. The effects of a 100 kW, a 265 kW, and a 1000 kW VLF transmitter are calculated for three ambient N(sub e) profiles. Results indicate that N(sub e) is reduced by up to 26% at approximately 80 km altitude over a 1000 kW transmitter.

  4. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    DOE PAGES

    Adli, E.; Gessner, S. J.; Corde, S.; ...

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally,more » we report on the measured performance of this profile monitor.« less

  5. A simple and straightforward expression for curling probe electron density diagnosis in reactive plasmas

    NASA Astrophysics Data System (ADS)

    Arshadi, Ali; Brinkmann, Ralf Peter; Hotta, Masaya; Nakamura, Keiji

    2017-04-01

    Active plasma resonance spectroscopy (APRS) refers to the family of plasma diagnostic methods which utilize the ability of plasmas to resonate at frequencies close to the plasma frequency. APRS operates by exciting the plasma with a weak RF signal by means of a small electric probe. The response of the plasma is recorded by a network analyzer (NA). A mathematical model is applied to derive characteristics like the electron density and the electron temperature. The curling probe is a promising realization of APRS. The curling probe is well-qualified for the local measurement of the electron density in reactive plasmas. This spiral probe resonates in plasma at a larger density dependent frequency than the plasma frequency. This manuscript represents a simple and straightforward expression relating this resonance frequency to the electron density of the plasma. A good agreement is observed between the proposed expression and the results obtained from previous studies and numerical simulations.

  6. High energy density capacitors for power electronic applications using nano-structure multilayer technology

    SciTech Connect

    Barbee, T.W. Jr.; Johnson, G.W.

    1995-09-01

    Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

  7. Electron density diagnostics in the 10-100 A interval for a solar flare

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Bruner, M. E.; Acton, L. W.; Mason, H. E.

    1986-01-01

    Electron density measurements from spectral-line diagnostics are reported for a solar flare on July 13, 1982, 1627 UT. The spectrogram, covering the 10-95 A interval, contained usable lines of helium-like ions C V, N VI, O VII, and Ne IX which are formed over the temperature interval 0.7-3.5 x 10 to the 6th K. In addition, spectral-line ratios of Si IX, Fe XIV, and Ca XV were compared with new theoretical estimates of their electron density sensitivity to obtain additional electron density diagnostics. An electron density of 3 x 10 to the 10th/cu cm was obtained. The comparison of these results from helium-like and other ions gives confidence in the utility of these tools for solar coronal analysis and will lead to a fuller understanding of the phenomena observed in this flare.

  8. The experimental electron density in polymorphs A and B of the anti-ulcer drug famotidine

    NASA Astrophysics Data System (ADS)

    Overgaard, J.; Hibbs, D. E.

    2004-09-01

    A multipole description of the electron-density distribution in the two polymorphs of famotidine is given. The electrostatic potential shown on the molecular surfaces provides additional information on molecular reactivity.

  9. Seasonal and solar activity variability of D-region electron density at 69°N

    NASA Astrophysics Data System (ADS)

    Singer, Werner; Latteck, Ralph; Friedrich, Martin; Wakabayashi, Makato; Rapp, Markus

    2011-06-01

    A narrow beam Doppler radar operating at 3.17 MHz and installed close to the Andøya Rocket Range in Andenes, Norway, (69.3°N, 16.0°E) has been providing electron densities in the lower ionosphere since summer 2003. The experiment utilizes partial reflection of ordinary and extraordinary component waves from scatterers in the altitude range 50-95 km to estimate electron densities from differential absorption and differential phase measurements. These ground-based observations are in good agreement with concurrent rocket-borne radio wave propagation measurements at Andenes. Results of the diurnal and seasonal variability of electron