Correlation between Na/K ratio and electron densities in blood samples of breast cancer patients.
Topdağı, Ömer; Toker, Ozan; Bakırdere, Sezgin; Bursalıoğlu, Ertuğrul Osman; Öz, Ersoy; Eyecioğlu, Önder; Demir, Mustafa; İçelli, Orhan
2018-05-31
The main purpose of this study was to investigate the relationship between the electron densities and Na/K ratio which has important role in breast cancer disease. Determinations of sodium and potassium concentrations in blood samples performed with inductive coupled plasma-atomic emission spectrometry. Electron density values of blood samples were determined via ZXCOM. Statistical analyses were performed for electron densities and Na/K ratio including Kolmogorov-Smirnov normality tests, Spearman's rank correlation test and Mann-Whitney U test. It was found that the electron densities significantly differ between control and breast cancer groups. In addition, statistically significant positive correlation was found between the electron density and Na/K ratios in breast cancer group.
Electron-density-sensitive Line Ratios of Fe XIII– XVI from Laboratory Sources Compared to CHIANTI
NASA Astrophysics Data System (ADS)
Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; Scotti, F.; LeBlanc, B. P.
2018-02-01
We present electron-density-sensitive line ratios for Fe XIII– XVI measured in the spectral wavelength range of 200–440 Å and an electron density range of (1–4) × 1013 cm‑3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrument was relatively calibrated using spectroscopic techniques in order to improve accuracy. The line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.
Electron-density-sensitive Line Ratios of Fe xiii– xvi from Laboratory Sources Compared to CHIANTI
Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; ...
2018-02-15
We present electron-density-sensitive line ratios for Fe xiii– xvi measured in the spectral wavelength range of 200–440 Å and an electron density range of (1-4) × 10 13 cm -3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrumentmore » was relatively calibrated using spectroscopic techniques in order to improve accuracy. Lastly, the line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.« less
Electron-density-sensitive Line Ratios of Fe xiii– xvi from Laboratory Sources Compared to CHIANTI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.
We present electron-density-sensitive line ratios for Fe xiii– xvi measured in the spectral wavelength range of 200–440 Å and an electron density range of (1-4) × 10 13 cm -3. The results provide a test at the high-density limit of density-sensitive line ratios useful for astrophysical studies. The measurements were performed on the National Spherical Torus Experiment-Upgrade, where electron densities were measured independently by the laser Thomson scattering diagnostic. Spectra were collected with a flat-field grazing-incidence spectrometer, which provided a spectral resolution of up to 0.3 Å, i.e., high resolution across the broad wavelength range. The response of the instrumentmore » was relatively calibrated using spectroscopic techniques in order to improve accuracy. Lastly, the line ratios are compared to other laboratory sources and the latest version of CHIANTI (8.0.2), and an agreement within 30% is found.« less
NASA Technical Reports Server (NTRS)
Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.
1976-01-01
Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.
NASA Technical Reports Server (NTRS)
Berman, A. L.
1977-01-01
Observations of Viking differenced S-band/X-band (S-X) range are shown to correlate strongly with Viking Doppler noise. A ratio of proportionality between downlink S-band plasma-induced range error and two-way Doppler noise is calculated. A new parameter (similar to the parameter epsilon which defines the ratio of local electron density fluctuations to mean electron density) is defined as a function of observed data sample interval (Tau) where the time-scale of the observations is 15 Tau. This parameter is interpreted to yield the ratio of net observed phase (or electron density) fluctuations to integrated electron density (in RMS meters/meter). Using this parameter and the thin phase-changing screen approximation, a value for the scale size L is calculated. To be consistent with Doppler noise observations, it is seen necessary for L to be proportional to closest approach distance a, and a strong function of the observed data sample interval, and hence the time-scale of the observations.
NASA Astrophysics Data System (ADS)
Espinho, S.; Hofmann, S.; Palomares, J. M.; Nijdam, S.
2017-10-01
The aim of this work is to study the properties of Ar-O2 microwave driven surfatron plasmas as a function of the Ar/O2 ratio in the gas mixture. The key parameters are the plasma electron density and electron temperature, which are estimated with Thomson scattering (TS) for O2 contents up to 50% of the total gas flow. A sharp drop in the electron density from {10}20 {{{m}}}-3 to approximately {10}18 {{{m}}}-3 is estimated as the O2 content in the gas mixture is increased up to 15%. For percentages of O2 lower than 10%, the electron temperature is estimated to be about 2-3 times higher than in the case of a pure argon discharge in the same conditions ({T}{{e}}≈ 1 eV) and gradually decreases as the O2 percentage is raised to 50%. However, for O2 percentages above 30%, the scattering spectra become Raman dominated, resulting in large uncertainties in the estimated electron densities and temperatures. The influence of photo-detached electrons from negative ions caused by the typical TS laser fluences is also likely to contribute to the uncertainty in the measured electron densities for high O2 percentages. Moreover, the detection limit of the system is reached for percentages of O2 higher than 25%. Additionally, both the electron density and temperature of microwave discharges with large Ar/O2 ratios are more sensitive to gas pressure variations.
Electron density diagnositc line ratios from the n = 3 lines of O v
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widing, K.G.; Doyle, J.G.; Dufton, P.L.
New atomic physic calculations are presented for electron excitation rates for transitions between the n = 2 and n = 3 levels of O v. These are used to calculate theoretical line intensity ratios for the 192 A, 215 A, 220 A and 248 A lines of O v. These line intensity ratios are electron density sensitive and provide valuable diagnostics at T/sub e/approx.2 x 10/sup 5/ K for samll impulsive flare events in which the transition zone ions are enhanced relative to the coronal ions. Two flares observed by NRL spectroheliograph on Skylab, on 1973 December 22 and 1974more » January 21, are studied, with electron densities of approximately 3 x 10/sup 11/ cm/sup -3/ being deduced.« less
Martin, Joannie; Beauparlant, Martin; Sauvé, Sébastien; L'Espérance, Gilles
2016-12-01
Asbestos amosite fibers were investigated to evaluate the damage caused by a transmission electron microscope (TEM) electron beam. Since elemental x-ray intensity ratios obtained by energy dispersive x-ray spectroscopy (EDS) are commonly used for asbestos identification, the impact of beam damage on these ratios was evaluated. It was determined that the magnesium/silicon ratio best represented the damage caused to the fiber. Various tests showed that most fibers have a current density threshold above which the chemical composition of the fiber is modified. The value of this threshold current density varied depending on the fiber, regardless of fiber diameter, and in some cases could not be determined. The existence of a threshold electron dose was also demonstrated. This value was dependent on the current density used and can be increased by providing a recovery period between exposures to the electron beam. This study also established that the electron beam current is directly related to the damage rate above a current density of 165 A/cm 2 . The large number of different results obtained suggest, that in order to ensure that the amosite fibers are not damaged, analysis should be conducted below a current density of 100 A/cm 2 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
St Lishev, Stiliyan; Shivarova, Antonia P.
The study combines experiments on probe diagnostics with laser-photodetachment-technique and Faraday-cup measurements directed towards determination of the position of the extraction device and its influence on the discharge structure. The measurements have been carried out in the second chamber of an inductively-driven tandem plasma source performed as small scale arrangements, with a magnetic filter located just after the transition between the two chambers of the source. Results for the axial profiles of the plasma parameters display the correlation of the ratio n lowbar /n{sub e} of the densities of the negative hydrogen ions and of the electrons and of themore » concentration of the negative ions with the electron density and temperature: The maxima of the (n lowbar /n{sub e})-ratio and of the density of the negative ions obtained are located at the position of maximum of the electron density behind the filter, in the region of the low electron temperature. Results from probe diagnostics and laser photodetachment measurements at a given axial position for different positions of the Faraday cup show the changes in the spatial distribution of the electron density and temperature and the reduction of the (n lowbar /n{sub e})-ratio and of the density of the negative ions caused by the extraction device.« less
Lee, Jisu; Jung, Moon Youn; Park, Hyung Ju
2017-04-01
We reported that quantitative detection of prostatic-specific antigen (PSA), which is the biomarker of prostate cancer, could be carried out by calculating the number density and the area ratio of gold nanoparticle probes on the surface of silicon oxide chips. When chips selectively activated with PSA were immersed in the gold nanoparticles conjugated with prostatic specific antigens-poly clonal antibodies (PSA-pAb), it was possible to observe changes in the number density and the area ratio of gold nanoparticles on the surface of the chips according to the concentration of PSA with scanning electron microscopy (SEM) images. As PSA concentration increased, the number density and the area ratio of gold nanoparticle probes on the surfaces of the chips increased accordingly. Conversely, with lower concentration, the number density and the area ratio of gold nanoparticle probes on the surfaces decreased at a certain ratio. We observed the correlations between PSA concentration and number density, area ratio of gold nanoparticle probes through the analysis of SEM images. In addition, it was confirmed that the sizes of the gold nanoparticles affected the detection limit of the number density and the area ratio of gold nanoparticle probes on the surface.
NASA Astrophysics Data System (ADS)
Danehkar, A.
2018-06-01
Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.
NASA Astrophysics Data System (ADS)
Griener, M.; Muñoz Burgos, J. M.; Cavedon, M.; Birkenmeier, G.; Dux, R.; Kurzan, B.; Schmitz, O.; Sieglin, B.; Stroth, U.; Viezzer, E.; Wolfrum, E.; the ASDEX Upgrade Team
2018-02-01
A new thermal helium beam diagnostic has been implemented as plasma edge diagnostic at the ASDEX Upgrade (AUG) tokamak. The helium beam is built to measure the electron density n e and temperature T e simultaneously with high spatial and temporal resolution in order to investigate steady-state as well as fast transport processes in the plasma edge region. For the thermal helium beam emission line ratio spectroscopy, neutral helium is locally injected into the plasma by a piezo valve. This enabled the measurement of the line resolved emission intensities of seven He I lines for different plasma scenarios in AUG. The different line ratios can be used together with a collisional-radiative model (CRM) to reconstruct the underlying electron temperature and density. Ratios from the same spin species are used for the electron density reconstruction, whereas spin mixed ratios are sensitive to electron temperature changes. The different line ratios as well as different CRMs are tested for their suitability for diagnostic applications. Furthermore their consistency in calculating identical parameters is validated and the resulting profiles are compared to other available diagnostics at AUG.
THE ELECTRON DENSITY IN EXPLOSIVE TRANSITION REGION EVENTS OBSERVED BY IRIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doschek, G. A.; Warren, H. P.; Young, P. R.
We discuss the intensity ratio of the O iv line at 1401.16 Å to the Si iv line at 1402.77 Å in Interface Region Imaging Spectrograph ( IRIS ) spectra. This intensity ratio is important if it can be used to measure high electron densities that cannot be measured using line intensity ratios of two different O iv lines from the multiplet within the IRIS wavelength range. Our discussion is in terms of considerably earlier observations made from the Skylab manned space station and other spectrometers on orbiting spacecraft. The earlier data on the O iv and Si iv ratiomore » and other intersystem line ratios not available to IRIS are complementary to IRIS data. In this paper, we adopt a simple interpretation based on electron density. We adopt a set of assumptions and calculate the electron density as a function of velocity in the Si iv line profiles of two explosive events. At zero velocity the densities are about 2–3 × 10{sup 11} cm{sup -3}, and near 200 km s{sup -1} outflow speed the densities are about 10{sup 12} cm{sup -3}. The densities increase with outflow speed up to about 150 km s{sup -1} after which they level off. Because of the difference in the temperature of formation of the two lines and other possible effects such as non-ionization equilibrium, these density measurements do not have the precision that would be available if there were some additional lines near the formation temperature of O iv.« less
Emission measures derived from far ultraviolet spectra of T Tauri stars
NASA Astrophysics Data System (ADS)
Cram, L. E.; Giampapa, M. S.; Imhoff, C. L.
1980-06-01
Spectroscopic diagnostics based on UV emission line observations have been developed to study the solar chromosphere, transition region, and corona. The atmospheric properties that can be inferred from observations of total line intensities include the temperature, by identifying the ionic species present; the temperature distribution of the emission measure, from the absolute intensities; and the electron density of the source, from line intensity ratios sensitive to the electron density. In the present paper, the temperature distribution of the emission measure is estimated from observations of far UV emission line fluxes of the T Tauri stars, RW Aurigae and RU Lupi, made on the IUE. A crude estimate of the electron density of one star is obtained, using density-sensitive line ratios.
NASA Astrophysics Data System (ADS)
Benhayoune, H.; Charlier, D.; Jallot, E.; Laquerriere, P.; Balossier, G.; Bonhomme, P.
2001-01-01
Biomaterials used in dental and orthopaedic surgery to fill bony loss and to coat prostheses are either of natural or synthetic origin. Amongst these biomaterials, hydroxyapatites (HA) offer good properties of biocompatibility and bioactivity when they interact with bone. This interaction depends mainly on the physico-chemical properties of HA particles. In this work, using a scanning transmission electronic microscope equipped with an Si(Li) detector for x-ray analysis, we analysed three kinds of hydroxyapatite: non-sintered particles, 600 °C sintered particles and 1180 °C sintered particles. Then, we determined the Ca/P concentration ratio in order to observe the influence of the temperature processing on this ratio. Concurrently, we carried out measurements on the HA powders by varying the electron irradiation dose either with the current density or with irradiation time. When the electron irradiation dose varied with the current density (at constant and short irradiation time), the Ca/P concentration ratio did not vary. But, at fixed current density and increasing irradiation time, the calcium and phosphorus intensities decreased, leading to an increase of the Ca/P concentration ratio at high electron irradiation dose. This phenomenon represents a mass loss of the specimen during electronic bombardment. We propose an experimental procedure to avoid all these problems.
NASA Astrophysics Data System (ADS)
Kyser, David F.; Eib, Nicholas K.; Ritchie, Nicholas W. M.
2016-07-01
The absorbed energy density (eV/cm3) deposited by extreme ultraviolet (EUV) photons and electron beam (EB) high-keV electrons is proposed as a metric for characterizing the sensitivity of EUV resist films. Simulations of energy deposition are used to calculate the energy density as a function of the incident aerial flux (EUV: mJ/cm2, EB: μC/cm2). Monte Carlo calculations for electron exposure are utilized, and a Lambert-Beer model for EUV absorption. The ratio of electron flux to photon flux which results in equivalent energy density is calculated for a typical organic chemically amplified resist film and a typical inorganic metal-oxide film. This ratio can be used to screen EUV resist materials with EB measurements and accelerate advances in EUV resist systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigren, E.; Eriksson, A. I.; Edberg, N. J. T.
2015-10-10
We compute partial photoionization frequencies of H{sub 2}O, CO{sub 2}, and CO, the major molecules in the coma of comet 67P/Churyumov–Gerasimenko, the target comet of the ongoing ESA Rosetta mission. Values are computed from Thermosphere Ionosphere Mesosphere Energy and Dynamics/Solar EUV Experiment solar EUV spectra for 2014 August 1, 2015 March 1, and for perihelion (2015 August, as based on prediction). From the varying total photoionization frequency of H{sub 2}O, as computed from 2014 August 1 to 2015 May 20, we derive a simple analytical expression for the electron-to-neutral number density ratio as a function of cometocentric and heliocentric distance. Themore » underlying model assumes radial movement of the coma constituents and does not account for chemical loss or the presence of electric fields. We discuss various effects/processes that can cause deviations between values from the analytical expression and actual electron-to-neutral number density ratios. The analytical expression is thus not strictly meant as predicting the actual electron-to-neutral number density ratio, but is useful in comparisons with observations as an indicator of processes at play in the cometary coma.« less
Long-term stability of the Io high-temperature plasma torus
NASA Technical Reports Server (NTRS)
Moos, H. W.; Skinner, T. E.; Durrance, S. T.; Feldman, P. D.; Festou, M. C.
1985-01-01
The short wavelength camera of the International Ultraviolet Explorer satellite was used to measure S II 1256, S III 1199, semiforbidden S III 1729, and semiforbidden S IV 1406 emission from the high-temperature region of the Io plasma torus. Observations over a period of five years (1979-1984) indicate that the Io plasma parameters have relatively small variations, particularly in the case of the mixing ratio for the dominant constituent S(++), and electron temperature. A simple three-dimensional model of the plasma torus was used to obtain the ion mixing ratios and the plasma density for each observation. The results are compared with Voyager 1 data for mixing ratio (ion density divided by electron density); ionization balance; and plasma density. The results of the comparison are discussed in detail.
NASA Technical Reports Server (NTRS)
Keenan, F. P.; Conlon, E. S.; Bowden, D. A.; Feibelman, W. A.; Pradhan, Anil K.
1992-01-01
Theoretical O IV electron density sensitive emission line ratios, determined using electron impact excitation rates calculated with the R-matrix code, are presented for R(sub 1) = I(1407.4 A)/I(1401.2 A), R(sub 2) = I(1404.8 A)/I(1401.2A), R(sub 3) = I(1399.8 A)/(1401.2 A), and R(sub 4) = I(1397.2 A)/I(1401.2 A). The observed values of R(sub 1)-R(sub 4), measured from high resolution spectra obtained with the International Ultraviolet Explorer (IUE) satellite, lead to electron densities that are compatible, and which are also in good agreement with those deduced from line ratios in other species. This provides observational support for the accuracy of the atomic data adopted in the present calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz Burgos, J. M.; Barbui, T.; Schmitz, O.
Helium line-ratios for electron temperature (T e) and density (n e) plasma diagnostic in the Scrape-Off-Layer (SOL) and Edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet 667.8 and 728.1 nm, and triplet 706.5 nm visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of thismore » powerful diagnostic to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium, and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. Ultimately, the analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer, or by other conflicting lines from different ions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz Burgos, J. M., E-mail: jmunozbu@pppl.gov; Stutman, D.; Tritz, K.
Helium line-ratios for electron temperature (T{sub e}) and density (n{sub e}) plasma diagnostic in the Scrape-Off-Layer (SOL) and edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet, 667.8 and 728.1 nm, and triplet, 706.5 nm, visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of thismore » powerful diagnostic to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. The analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer or by other conflicting lines from different ions.« less
Muñoz Burgos, J. M.; Barbui, T.; Schmitz, O.; ...
2016-07-11
Helium line-ratios for electron temperature (T e) and density (n e) plasma diagnostic in the Scrape-Off-Layer (SOL) and Edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet 667.8 and 728.1 nm, and triplet 706.5 nm visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of thismore » powerful diagnostic to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium, and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. Ultimately, the analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer, or by other conflicting lines from different ions.« less
Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonwook, E-mail: wwlee@kaeri.re.kr; Kwon, Duck-Hee; Park, Kyungdeuk
2016-06-15
Low density (n{sub e} < 10{sup 11 }cm{sup −3}) and low temperature (T{sub e} < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded.more » The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.« less
[Study on the distribution of plasma parameters in electrodeless lamp using emission spectrometry].
Wang, Chang-Quan; Zhang, Gui-Xin; Wang, Xin-Xin; Shao, Ming-Song; Dong, Jin-Yang; Wang, Zan-Ji
2011-09-01
Electrodeless lamp in pear shape was ignited using inductively coupled discharge setup and Ar-Hg mixtures as working gas. The changes in electronic temperature and density with axial and radial positions at 5 s of igniting were studied by means of emission spectrometry. The changes in electronic temperature were obtained according to the Ar line intensity ratio of 425.9 nm/ 750.4 nm. And the variations in electronic density were analyzed using 750.4 nm line intensity. It was found that plasma electronic temperature and density is various at different axial or radial positions. The electronic temperatures first increase, then decrease, and then increase quickly, and finally decline. While the electronic density firstly increase quickly, the decrease, and then rise slowly and finally decline again with axial distance increasing. With radial distance increasing, electronic temperature increases to a stable area, then continues to rise, while electronic density decreases.
Maximum current density and beam brightness achievable by laser-driven electron sources
NASA Astrophysics Data System (ADS)
Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.
2014-02-01
This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.
The preplasma effect on the properties of the shock wave driven by a fast electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llor Aisa, E.; Ribeyre, X.; Tikhonchuk, V. T.
2016-08-15
Strong shock wave generation by a mono-energetic fast electron beam in a plasma with an increasing density profile is studied theoretically. The proposed analytical model describes the shock wave characteristics for a homogeneous plasma preceded by a low density precursor. The shock pressure and the time of shock formation depend on the ratio of the electron stopping length to the preplasma areal density and on the initial energy of injected electrons. The conclusions of theoretical model are confirmed in numerical simulations.
NASA Astrophysics Data System (ADS)
Shimizu, Erina; Ali, Safdar; Tsuda, Takashi; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Hara, Hirohisa; Watanabe, Tetsuya; Nakamura, Nobuyuki
2017-05-01
We report high-resolution density dependent intensity ratio measurements for middle charge states of iron in the extreme ultraviolet (EUV) spectral wavelength range of 160-200 Å. The measurements were performed at the Tokyo EBIT laboratory by employing a flat-field grazing incidence spectrometer installed on a low energy compact electron beam ion trap. The intensity ratios for several line pairs stemming from Fe X, Fe XI and Fe XII were extracted from spectra collected at the electron beam energies of 340 and 400 eV by varying the beam current between 7.5 and 12 mA at each energy. In addition, the effective electron densities were obtained experimentally by imaging the electron beam profile and ion cloud size with a pinhole camera and visible spectrometer, respectively. In this paper, the experimental results are compared with previous data from the literature and with the present calculations performed using a collisional-radiative model. Our experimental results show a rather good agreement with the calculations and previous reported results.
TIME-DEPENDENT DENSITY DIAGNOSTICS OF SOLAR FLARE PLASMAS USING SDO/EVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, Ryan O.; Kennedy, Michael B.; Mathioudakis, Mihalis
2012-08-10
Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 10{sup 4} and 10{sup 7} K, including transitions from highly ionized iron ({approx}>10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 10{sup 11.2}-10{sup 12.1} cm{sup -3} were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to bemore » determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.« less
Observations of solar wind ion charge exchange in the comet Halley coma
NASA Technical Reports Server (NTRS)
Fuselier, S. A.; Shelley, E. G.; Goldstein, B. E.; Goldstein, R.; Neugebauer, M.; Ip, W.-H.; Balsiger, H.; Reme, H.
1991-01-01
Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) observations of solar wind ions show charge exchange effects and solar wind compositional changes in the coma of comet Halley. As the comet was approached, the He(++) to proton density ratio increased until about 1 hour before closest approach after which time it decreased. Abrupt increases in this ratio were also observed in the beginning and near the end of the so-called Mystery Region (8.6 - 5.5(10)(exp 5) km from the comet along the spacecraft trajectory). These abrupt increases in the density ratio were well correlated with enhanced fluxes of keV electrons as measured by the Giotto plasma electron spectrometer. The general increase and then decrease of the He(++) to proton density ratio is quantitatively consistent with a combination of the addition of protons of cometary origin to the plasma and loss of plasma through charge exchange of protons and He(++). In general agreement with the solar wind proton and He(++) observations, solar wind oxygen and carbon ions were observed to charge exchange from higher to lower charge states with decreasing distance to the comet. The more abrupt increases in the He(++) to proton and the He(++) to O(6+) density ratios in the mystery region require a change in the solar wind ion composition in this region while the correlation with energetic electrons indicates processes associated with the comet.
NASA Technical Reports Server (NTRS)
Aston, G.; Wilbur, P. J.
1981-01-01
The physical processes governing ion extraction from a plasma have been examined experimentally. The screen hole plasma sheath (the transition region wherein significant ion acceleration and complete electron retardation occurs) has been defined by equipotential plots for a variety of ion accelerator system geometries and operating conditions. It was found that the screen hole plasma sheath extends over a large distance, and influences ion and electron trajectories at least 15 Debye lengths within the discharge chamber. The electron density variation within the screen hole plasma sheath satisfied a Maxwell-Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary-to-Maxwellian electron density ratio. Plasma ion flow up to and through the sheath was predominantly one-dimensional, and the ions entered the sheath region with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio were found to give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.
NASA Technical Reports Server (NTRS)
Kastner, S. O.; Bhatia, A. K.
1980-01-01
A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284-500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t(ij), related to 'taboo' probabilities of Markov chain theory. The t(ij) are here evaluated for a real atomic system, being therefore of potential interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.
NASA Astrophysics Data System (ADS)
Kastner, S. O.; Bhatia, A. K.
1980-08-01
A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284-500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t(ij), related to 'taboo' probabilities of Markov chain theory. The t(ij) are here evaluated for a real atomic system, being therefore of potential interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.
NASA Technical Reports Server (NTRS)
Lippmann, S.; Finkenthal, M.; Huang, L. K.; Moos, H. W.; Stratton, B. C.; Yu, T. L.; Bhatia, A. K.
1987-01-01
Calcium was introduced into the TEXT tokamak, and its spectral emission was recorded in the 50-360 A range by an absolutely calibrated grazing incidence spectrometer. These observations of highly ionized species of calcium at known conditions of plasma electron temperature and density allow testing of line brightness ratio predictions based on theoretical values of temperature-dependent electron excitation rates. The confirmation of the expected ratios in Be I-like to O I-like calcium allows more confident use of these ratios as a density diagnostic of remote astrophysical sources such as solar flares.
A spectroscopic study using line ratios of lithiumlike ions in a laser-produced plasma
NASA Astrophysics Data System (ADS)
Moreno, J. C.; Goldsmith, S.; Griem, H. R.
1989-02-01
Spectra of highly ionized titanium and calcium in the extreme ultraviolet region were observed in laser-produced plasmas using the OMEGA 24 beam (351 nm) laser system at the University of Rochester. The plasmas were produced using glass microballoon targets coated with a layer of a medium Z element and a layer of parylene (CH). Time-integrated electron temperatures and densities were obtained by comparing measured line intensity ratios of lithiumlike charge states of Ti and Ca to numerical calculations from a collisional-radiative model. The variation of line intensity ratios with electron density and temperature using the collisional-radiative model is discussed.
High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals
NASA Astrophysics Data System (ADS)
Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak
2018-02-01
Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.
Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization
NASA Astrophysics Data System (ADS)
Girazian, Z.; Mahaffy, P.; Lillis, R. J.; Benna, M.; Elrod, M.; Fowler, C. M.; Mitchell, D. L.
2017-11-01
We use observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission to show how superthermal electron fluxes and crustal magnetic fields affect ion densities in the nightside ionosphere of Mars. We find that due to electron impact ionization, high electron fluxes significantly increase the CO2+, O+, and O2+ densities below 200 km but only modestly increase the NO+ density. High electron fluxes also produce distinct peaks in the CO2+, O+, and O2+ altitude profiles. We also find that superthermal electron fluxes are smaller near strong crustal magnetic fields. Consequently, nightside ion densities are also smaller near strong crustal fields because they decay without being replenished by electron impact ionization. Furthermore, the NO+/O2+ ratio is enhanced near strong crustal fields because, in the absence of electron impact ionization, O2+ is converted into NO+ and not replenished. Our results show that electron impact ionization is a significant source of CO2+, O+, and O2+ in the nightside ionosphere of Mars.
Electron temperatures within magnetic clouds between 2 and 4 AU: Voyager 2 observations
NASA Astrophysics Data System (ADS)
Sittler, E. C.; Burlaga, L. F.
1998-08-01
We have performed an analysis of Voyager 2 plasma electron observations within magnetic clouds between 2 and 4 AU identified by Burlaga and Behannon [1982]. The analysis has been confined to three of the magnetic clouds identified by Burlaga and Behannon that had high-quality data. The general properties of the plasma electrons within a magnetic cloud are that (1) the moment electron temperature anticorrelates with the electron density within the cloud, (2) the ratio Te/Tp tends to be >1, and (3) on average, Te/Tp~7.0. All three results are consistent with previous electron observations within magnetic clouds. Detailed analyses of the core and halo populations within the magnetic clouds show no evidence of either an anticorrelation between the core temperature TC and the electron density Ne or an anticorrelation between the halo temperature TH and the electron density. Within the magnetic clouds the halo component can contribute more than 50% of the electron pressure. The anticorrelation of Te relative to Ne can be traced to the density of the halo component relative to the density of the core component. The core electrons dominate the electron density. When the density goes up, the halo electrons contribute less to the electron pressure, so we get a lower Te. When the electron density goes down, the halo electrons contribute more to the electron pressure, and Te goes up. We find a relation between the electron pressure and density of the form Pe=αNeγ with γ~0.5.
Ionization and current growth in N/sub 2/ at very high electric field to gas density ratios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gylys, V.T.; Jelenkovic, B.M.; Phelps, A.V.
1989-05-01
Measurements and analyses have been made of electron impact ionization and of current growth in pulsed, low-current, prebreakdown discharges in parallel-plane geometry in N/sub 2/ at very high electric field to gas density ratios E/n and low products of the gas density n and electrode separation d. The E/n range and nd ranges were 1
The energy balance and pressure in the solar transition zone for network and active region features
NASA Technical Reports Server (NTRS)
Nicolas, K. R.; Bartoe, J.-D. F.; Brueckner, G. E.; Vanhoosier, M. E.
1979-01-01
The electron pressure and energy balance in the solar transition zone are determined for about 125 network and active region features on the basis of high spectral and spatial resolution extreme ultraviolet spectra. Si III line intensity ratios obtained from the Naval Research Laboratory high-resolution telescope and spectrograph during a rocket flight are used as diagnostics of electron density and pressure for solar features near 3.5 x 10 to the 4th K. Observed ratios are compared with the calculated dependence of the 1301 A/1312 A and 1301 A/1296 A line intensity ratios on electron density, temperature and pressure. Electron densities ranging from 2 x 10 to the 10th/cu cm to 10 to the 12th/cu cm and active region pressures from 3 x 10 to the 15th to 10 to the 16th/cu cm K are obtained. Energy balance calculations reveal the balance of the divergence of the conductive flux and turbulent energy dissipation by radiative energy losses in a plane-parallel homogeneous transition zone (fill factor of 1), and an energy source requirement for a cylindrical zone geometry (fill factor less than 0.04).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigren, E.; Galand, M.; Shebanits, O.
2014-05-01
We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anionmore » neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.« less
Control of plasma properties in a short direct-current glow discharge with active boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, S. F.; Demidov, V. I., E-mail: vladimir.demidov@mail.wvu.edu; West Virginia University, Morgantown, West Virginia 26506
2016-02-15
To demonstrate controlling electron/metastable density ratio and electron temperature by applying negative voltages to the active (conducting) discharge wall in a low-pressure plasma with nonlocal electron energy distribution function, modeling has been performed in a short (lacking the positive-column region) direct-current glow discharge with a cold cathode. The applied negative voltage can modify the trapping of the low-energy part of the energetic electrons that are emitted from the cathode sheath and that arise from the atomic and molecular processes in the plasma within the device volume. These electrons are responsible for heating the slow, thermal electrons, while production of slowmore » electrons (ions) and metastable atoms is mostly due to the energetic electrons with higher energies. Increasing electron temperature results in increasing decay rate of slow, thermal electrons (ions), while decay rate of metastable atoms and production rates of slow electrons (ions) and metastable atoms practically are unchanged. The result is in the variation of electron/metastable density ratio and electron temperature with the variation of the wall negative voltage.« less
NASA Astrophysics Data System (ADS)
Sun, Jianwei; Perdew, John P.; Yang, Zenghui; Peng, Haowei
2016-05-01
The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.
NASA Astrophysics Data System (ADS)
Ali, Gul-e.; Ahmad, Ali; Masood, W.; Mirza, Arshad M.
2017-12-01
Linear and nonlinear coupling of drift and ion acoustic waves are studied in a nonuniform magnetized plasma comprising of Oxygen and Hydrogen ions with nonthermal distribution of electrons. It has been observed that different ratios of ion number densities and kappa and Cairns distributed electrons significantly modify the linear dispersion characteristics of coupled drift-ion acoustic waves. In the nonlinear regime, KdV (for pure drift waves) and KP (for coupled drift-ion acoustic waves) like equations have been derived to study the nonlinear evolution of drift solitary waves in one and two dimensions. The dependence of drift solitary structures on different ratios of ion number densities and nonthermal distribution of electrons has also been explored in detail. It has been found that the ratio of the diamagnetic drift velocity to the velocity of the nonlinear structure determines the existence regimes for the drift solitary waves. The present investigation may be beneficial to understand the formation of solitons in the ionospheric F-region.
Ion extraction from a plasma. Ph.D. Thesis. Progress Report, 1 Dec. 1979 - 1 Dec. 1980
NASA Technical Reports Server (NTRS)
Aston, G.
1980-01-01
An experimental investigation of the physical processes governing ion extraction from a plasma is presented. The screen hole plasma sheath of a multiaperture ion accelerator system is defined by equipotential plots for a variety of accelerator system geometries and operating conditions. A sheath thickness of at least fifteen Debye lengths is shown to be typical. The electron density variation within the sheath satisfies a Maxwell Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary to Maxwellian electron density ratio. Plasma ion flow up to and through the sheath is predominately one dimensional and the ions enter the sheath with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.
Determining energy balance in the flaring chromosphere from oxygen V line ratios
NASA Astrophysics Data System (ADS)
Graham, D. R.; Fletcher, L.; Labrosse, N.
2015-12-01
Context. The impulsive phase of solar flares is a time of rapid energy deposition and heating in the lower solar atmosphere, leading to changes in the temperature and density structure of the region. Aims: We use an O v density diagnostic formed from the λ192 /λ248 line ratio, provided by the Hinode/EIS instrument, to determine the density of flare footpoint plasma at O v formation temperatures of ~2.5 × 105 K, giving a constraint on the properties of the heated transition region. Methods: Hinode/EIS rasters from 2 small flare events in December 2007 were used. Raster images were co-aligned to identify and establish the footpoint pixels, multiple-component Gaussian line fitting of the spectra was carried out to isolate the density diagnostic pair, and the density was calculated for several footpoint areas. The assumptions of equilibrium ionisation and optically-thin radiation for the O v lines used were assessed and found to be acceptable. For one of the events, properties of the electron distribution were deduced from earlier RHESSI hard X-ray observations. These were used to calculate the plasma heating rate delivered by an electron beam for 2 semi-empirical atmospheres under collisional thick-target assumptions. The radiative loss rate for this plasma was also calculated for comparison with possible energy input mechanisms. Results: Electron number densities of up to 1011.9 cm-3 were measured during the flare impulsive phase using the O v λ192 /λ248 diagnostic ratio. The heating rate delivered by an electron beam was found to exceed the radiative losses at this density, corresponding to a height of 450 km, and when assuming a completely ionised target atmosphere far exceed the losses but at a height of 1450-1600 km. A chromospheric thickness of 70-700 km was found to be required to balance a conductive input to the O v-emitting region with radiative losses. Conclusions: Electron densities have been observed in footpoint sources at transition region temperatures, comparable to previous results but with improved spatial information. The observed densities can be explained by heating of the chromosphere by collisional electrons, with O v formed at heights of 450-1600 km above the photosphere, depending on the atmospheric ionisation fraction.
Laser induced photo-detachment of O2 in DC discharge
NASA Astrophysics Data System (ADS)
J, R. LEGORRETA; J, L. PATIÑO; F, B. YOUSIF
2018-07-01
Determination of the negative ion number density of {{{O}}}{{2}}- and {{{O}}}- in a DC discharge of oxygen plasma was made employing Langmuir probe in conjunction with eclipse laser photo-detachment technique. The temporal evolution of the extra electrons resulting from the photo-detachment of {{{O}}}{{2}}- and {{{O}}}- were used to evaluate the negative ion number density. The ratio of {{{O}}}{{2}}- number density to {{{O}}}- varied from 0.03 to 0.22. Number density of both {{{O}}}{{2}}- and {{{O}}}- increased with increasing power and decreased as the pressure was increased. Electron number density was evaluated from the electron energy distribution function (EEDF) using the I–V recorded characteristic curves. Electron temperature between 2 and 2.7 eV were obtained. Influence of the {{{O}}}{{2}}({a}{{1}}{{{Δ }}}{{g}}) metastable state is discussed.
Cylindrical ion-acoustic solitary waves in electronegative plasmas with superthermal electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslami, Parvin; Mottaghizadeh, Marzieh
2012-06-15
By using the standard reductive perturbation technique, a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE), which governs the dynamics of ion acoustic solitary waves (IASWs), is derived for small but finite amplitude ion-acoustic waves in cylindrical geometry in a collisionless unmagnetized plasma with kappa distributed electrons, thermal positrons, and cold ions. The generalized expansion method is used to solve analytically the CKPE. The existence regions of localized pulses are investigated. It is found that the solution of the CKPE supports only compressive solitary waves. Furthermore, the effects of superthermal electrons, the ratio of the electron temperature to positron temperature, the ratio ofmore » the positron density to electron density and direction cosine of the wave propagation on the profiles of the amplitudes, and widths of the solitary structures are examined numerically. It is shown these parameters play a vital role in the formation of ion acoustic solitary waves.« less
Determination of electron temperature in a penning discharge by the helium line ratio method
NASA Technical Reports Server (NTRS)
Richardson, R. W.
1975-01-01
The helium line ratio technique was used to determine electron temperatures in a toroidal steady-state Penning discharge operating in helium. Due to the low background pressure, less than .0001 torr, and the low electron density, the corona model is expected to provide a good description of the excitation processes in this discharge. In addition, by varying the Penning discharge anode voltage and background pressure, it is possible to vary the electron temperature as measured by the line ratio technique over a wide range (10 to 100+ eV). These discharge characteristics allow a detailed comparison of electron temperatures measured from different possible line ratios over a wide range of temperatures and under reproducible steady-state conditions. Good agreement is found between temperatures determined from different neutral line ratios, but use of the helium ion line results in a temperature systematically 10 eV high compared to that from the neutral lines.
Electron heating at interplanetary shocks
NASA Technical Reports Server (NTRS)
Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Zwickl, R. D.
1982-01-01
Data for 41 forward interplanetary shocks show that the ratio of downstream to upstream electron temperatures, T/sub e/(d/u) is variable in the range between 1.0 (isothermal) and 3.0. On average, (T/sub e/(d/u) = 1.5 with a standard deviation, sigma e = 0.5. This ratio is less than the average ratio of proton temperatures across the same shocks, (T/sub p/(d/u)) = 3.3 with sigma p = 2.5 as well as the average ratio of electron temperatures across the Earth's bow shock. Individual samples of T/sub e/(d/u) and T/sub p/(d/u) appear to be weakly correlated with the number density ratio. However the amounts of electron and proton heating are well correlated with each other as well as with the bulk velocity difference across each shock. The stronger shocks appear to heat the protons relatively more efficiently than they heat the electrons.
Modeling of reduced effective secondary electron emission yield from a velvet surface
Swanson, Charles; Kaganovich, Igor D.
2016-12-05
Complex structures on a material surface can significantly reduce total secondary electron emission from that surface. A velvet is a surface that consists of an array of vertically standing whiskers. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at the bottom of the structure and on the sides of the velvet whiskers. We performed numerical simulations and developed an approximate analytical model that calculates the net secondary electron emission yield from a velvet surface as a function of the velvet whisker length and packing density, and the angle of incidence of primary electrons. We foundmore » that to suppress secondary electrons, the following condition on dimensionless parameters must be met: (π/2) DΑ tan θ >> 1, where theta is the angle of incidence of the primary electron from the normal, D is the fraction of surface area taken up by the velvet whisker bases, and A is the aspect ratio, A = h/r, the ratio of height to radius of the velvet whiskers. We find that velvets available today can reduce the secondary electron yield by 90% from the value of a flat surface. As a result, the values of optimal velvet whisker packing density that maximally suppresses the secondary electron emission yield are determined as a function of velvet aspect ratio and the electron angle of incidence.« less
The collisional drift mode in a partially ionized plasma. [in the F region
NASA Technical Reports Server (NTRS)
Hudson, M. K.; Kennel, C. F.
1974-01-01
The structure of the drift instability was examined in several density regimes. Let sub e be the total electron mean free path, k sub z the wave-vector component along the magnetic field, and the ratio of perpendicular ion diffusion to parallel electron streaming rates. At low densities (k sub z lambda 1) the drift mode is isothermal and should be treated kineticly. In the finite heat conduction regime square root of m/M k sub z Lambda sub 1) the drift instability threshold is reduced at low densities and increased at high densities as compared to the isothermal threshold. Finally, in the energy transfer limit (k sub z kambda sub e square root of m/M) the drift instability behaves adiabatically in a fully ionized plasma and isothermally in a partially ionized plasma for an ion-neutral to Coulomb collision frequency ratio.
NASA Technical Reports Server (NTRS)
Gardner, L. D.; Kohl, J. L.
2006-01-01
The analysis of absolute spectral line intensities and intensity ratios with spectroscopic diagnostic techniques provides empirical determinations of chemical abundances, electron densities and temperatures in astrophysical objects. Since spectral line intensities and their ratios are controlled by the excitation rate coefficients for the electron temperature of the observed astrophysical structure, it is imperative that one have accurate values for the relevant rate coefficients. Here at the Harvard-Smithsonian Center for Astrophysics, we have been carrying out measurements of electron impact excitation (EIE) for more than 25 years.
NASA Astrophysics Data System (ADS)
Bourourou, Y.; Amari, S.; Yahiaoui, I. E.; Bouhafs, B.
2018-01-01
A first-principles approach is used to predicts the electronic and elastic properties of BaPb2As2 superconductor compound, using full-potential linearized augmented plane wave plus local orbitals (FP-L/APW+lo) scheme within the local density approximation LDA. The calculated equilibrium structural parameter a agree well with the experiment while the c/a ratio is far away from the experimental result. The band structure, density of states, together with the charge density and chemical bonding are discussed. The calculated elastic constants for our compound indicate that it is mechanically stable at ambient pressure. Polycrystalline elastic moduli (Young's, Bulk, shear Modulus and the Poisson's ratio) were calculated according to the Voigte-Reusse-Hill (VRH) average.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigren, E.; Galand, M., E-mail: e.vigren@imperial.ac.uk
2013-07-20
We present a one-dimensional ion chemistry model of the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko, the target comet for the ESA Rosetta mission. We solve the continuity equations for ionospheric species and predict number densities of electrons and selected ions considering only gas-phase reactions. We apply the model to the subsolar direction and consider conditions expected to be encountered by Rosetta at perihelion (1.29 AU) in 2015 August. Our default simulation predicts a maximum electron number density of {approx}8 Multiplication-Sign 10{sup 4} cm{sup -3} near the surface of the comet, while the electron number densities for cometocentric distances r > 10more » km are approximately proportional to 1/r {sup 1.23} assuming that the electron temperature is equal to the neutral temperature. We show that even a small mixing ratio ({approx}0.3%-1%) of molecules having higher proton affinity than water is sufficient for the proton transfer from H{sub 3}O{sup +} to occur so readily that other ions than H{sub 3}O{sup +}, such as NH{sub 4} {sup +} or CH{sub 3}OH{sub 2} {sup +}, become dominant in terms of volume mixing ratio in part of, if not throughout, the diamagnetic cavity. Finally, we test how the predicted electron and ion densities are influenced by changes of model input parameters, including the neutral background, the impinging EUV solar spectrum, the solar zenith angle, the cross sections for photo- and electron-impact processes, the electron temperature profile, and the temperature dependence of ion-neutral reactions.« less
Gas-Grain Models for Interstellar Anion Chemistry
NASA Technical Reports Server (NTRS)
Cordiner, M. A.; Charnely, S. B.
2012-01-01
Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jianwei; Yang, Zenghui; Peng, Haowei
The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin densitymore » approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthaka Silva, G.W., E-mail: chinthaka.silva@gmail.com; Kercher, Andrew A., E-mail: rokparent@comcast.net; Hunn, John D., E-mail: hunnjd@ornl.gov
2012-10-15
Samples with five different zirconium carbide compositions (C/Zr molar ratio=0.84, 0.89, 0.95, 1.05, and 1.17) have been fabricated and studied using a variety of experimental techniques. Each sample was zone refined to ensure that the end product was polycrystalline with a grain size of 10-100 {mu}m. It was found that the lattice parameter was largest for the x=0.89 composition and smallest for the x=1.17 total C/Zr composition, but was not linear; this nonlinearity is possibly explained using electron densities calculated using charge flipping technique. Among the five samples, the unit cell of the ZrC{sub 0.89} sample showed the highest electronmore » density, corresponding to the highest carbon incorporation and the largest lattice parameter. The ZrC{sub 0.84} sample showed the lowest carbon incorporation, resulting in a larger number of carbon vacancies and resultant strain. Samples with larger carbon ratios (x=0.95, 1.05, and 1.17) showed a slight decrease in lattice parameter, due to a decrease in electron density. Optical anisotropy measurements suggest that these three samples contained significant amounts of a graphitic carbon phase, not bonded to the Zr atoms. - Graphical abstract: Characterization of zirconium carbides using electron microscopy, optical anisotropy, Auger depth profiles, X-ray diffraction, and electron density calculated by the charge flipping method. Highlights: Black-Right-Pointing-Pointer The lattice parameter variation: ZrC{sub 0.89}>ZrC{sub 0.84}>ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}. Black-Right-Pointing-Pointer Surface oxygen with no correlation to the lattice parameter variation. Black-Right-Pointing-Pointer ZrC{sub 0.89} had highest electron densities correspond to highest carbon incorporation. Black-Right-Pointing-Pointer Second highest lattice parameter in ZrC{sub 0.84} due to strain. Black-Right-Pointing-Pointer Unit cell electron density order: ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}.« less
Large effective mass and interaction-enhanced Zeeman splitting of K -valley electrons in MoSe2
NASA Astrophysics Data System (ADS)
Larentis, Stefano; Movva, Hema C. P.; Fallahazad, Babak; Kim, Kyounghwan; Behroozi, Armand; Taniguchi, Takashi; Watanabe, Kenji; Banerjee, Sanjay K.; Tutuc, Emanuel
2018-05-01
We study the magnetotransport of high-mobility electrons in monolayer and bilayer MoSe2, which show Shubnikov-de Haas (SdH) oscillations and quantum Hall states in high magnetic fields. An electron effective mass of 0.8 me is extracted from the SdH oscillations' temperature dependence; me is the bare electron mass. At a fixed electron density the longitudinal resistance shows minima at filling factors (FFs) that are either predominantly odd, or predominantly even, with a parity that changes as the density is tuned. The SdH oscillations are insensitive to an in-plane magnetic field, consistent with an out-of-plane spin orientation of electrons at the K point. We attribute the FF parity transitions to an interaction enhancement of the Zeeman energy as the density is reduced, resulting in an increased Zeeman-to-cyclotron energy ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garriott, O K
1960-04-01
The results of observations of the radio transmissions from Sputnik III (1958 δ 2) in an 8-month period are presented. The measurements of integrated electron density are made in two ways, described in part 1. The measurements reveal the diurnal variation of the total ionospheric electron content; and the ratio of the total content to the content of the lower ionosphere below the height of maximum density in the F layer is obtained. An estimate of the average electron-density profile above the F-layer peak is made possible by the slow variation in the height of the satellite due to rotationmore » of the perigee position. The gross effects of large magnetic storms on the electron content and distribution are found.« less
The dependence of graphene Raman D-band on carrier density.
Liu, Junku; Li, Qunqing; Zou, Yuan; Qian, Qingkai; Jin, Yuanhao; Li, Guanhong; Jiang, Kaili; Fan, Shoushan
2013-01-01
Raman spectroscopy has been an integral part of graphene research and can provide information about graphene structure, electronic characteristics, and electron-phonon interactions. In this study, the characteristics of the graphene Raman D-band, which vary with carrier density, are studied in detail, including the frequency, full width half-maximum, and intensity. We find the Raman D-band frequency increases for hole doping and decreases for electron doping. The Raman D-band intensity increases when the Fermi level approaches half of the excitation energy and is higher in the case of electron doping than that of hole doping. These variations can be explained by electron-phonon interaction theory and quantum interference between different Raman pathways in graphene. The intensity ratio of Raman D- and G-band, which is important for defects characterization in graphene, shows a strong dependence on carrier density.
NASA Technical Reports Server (NTRS)
Mertens, C. J.; Xu, X.; Fernandez, J. R.; Bilitza, D.; Russell, J. M., III; Mlynczak, M. G.
2009-01-01
Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval.
NASA Astrophysics Data System (ADS)
Epstein, R.; Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Regan, S. P.; Seka, W.; Hohenberger, M.; Barrios, M. A.; Moody, J. D.
2015-11-01
The Mn/Co isoelectronic emission-line ratio from a microdot source in planar CH foil targets was measured to infer the electron temperature (Te) in the ablating plasma during two-plasmon-decay experiments at the National Ignition Facility (NIF). We examine the systematic uncertainty in the Te estimate based on the temperature and density sensitivities of the line ratio in conjunction with plausible density constraints, and its contribution to the total Te estimate uncertainty. The potential advantages of alternative microdot elements (e.g., Ti/Cr and Sc/V) are considered. The microdot mass was selected to provide ample line strength while minimizing the effect of self-absorption on the line emission, which is of particular concern, given the narrow linewidths of mid- Z emitters at subcritical electron densities. Atomic line-formation theory and detailed atomic-radiative simulations show that the straight forward interpretation of the isoelectronic ratio solely in terms of its temperature independence remains valid with lines of moderate optical thickness (up to ~ 10) at line center. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
The Charging of Dust Grains in the Inner Heliosheath
NASA Astrophysics Data System (ADS)
Avinash, K.; Slavin, J.; Zank, G. P.; Frisch, P.
2008-12-01
Equilibrium electric charge and surface potential on a dust grain in the heliosheath are calculated. The grain is charged due to heliosheath plasma flux, photo electrons flux, secondary electron emission flux and transmission flux. Realistically, the heliosheath plasma consists of solar electrons, solar wind ions [SWI] and pick up ions [PUI]. These species interact differently with TS and thus have different characteristics down stream in the heliosheath. The PUI suffer multiple reflections at TS and are accelerated to high energies in the range of ~ 106 K. The solar electrons, on the other hand, are heated adiabatically through the TS and have temperature in the range ~ 5x105 K. The SWI may have a smaller temperature typically in the range 1-5x104 K The density of electrons could be in the range ~5 x 10-4 cm-3, while the ratio of PUI to SWI density could range from 0.1 to 0.5. Taking into account these parameters, grain charging due to different plasma species and other fluxes mentioned earlier, is calculated. Our results show that (a) surface potential is very sensitive to electron temp. It goes through a maxima and for realistic values close to or less than 5x105 K it can be as big as 26V which is twice the value calculated by Kimura and Mann1. This may have implications for electrostatic disruption and the size distribution of dust particles in the heliosheath. With PUI density the surface potential increases about 10 to 20 %. Though temperature of PUI is significantly larger than that of electrons, it is not large enough to make up for the mass ratio of electrons to protons. On account small temperature and electron/proton mass ratio, the effect of SWI on dust charge is very weak. (1) H. Kimura and I. Mann, Ap.J. 499, 454 (1998).
NASA Astrophysics Data System (ADS)
Abid, O. Miloud; Menouer, S.; Yakoubi, A.; Khachai, H.; Omran, S. Bin; Murtaza, G.; Prakash, Deo; Khenata, R.; Verma, K. D.
2016-05-01
The structural, electronic, elastic, thermoelectric and thermodynamic properties of NbMSb (M = Fe, Ru, Os) half heusler compounds are reported. The full-potential linearized augmented plane wave (FP-LAPW) plus local orbital (lo) method, based on the density functional theory (DFT) was employed for the present study. The equilibrium lattice parameter results are in good compliance with the available experimental measurements. The electronic band structure and Boltzmann transport calculations indicated a narrow indirect energy band gap for the compound having electronic structure favorable for thermoelectric performance as well as with substantial thermopowers at temperature ranges from 300 K to 800 K. Furthermore, good potential for thermoelectric performance (thermopower S ≥ 500 μeV) was found at higher temperature. In addition, the analysis of the charge density, partial and total densities of states (DOS) of three compounds demonstrate their semiconducting, ionic and covalent characters. Conversely, the calculated values of the Poisson's ratio and the B/G ratio indicate their ductile makeup. The thermal properties of the compounds were calculated by quasi-harmonic Debye model as implemented in the GIBBS code.
The O IV and S IV intercombination lines in solar and stellar ultraviolet spectra
NASA Technical Reports Server (NTRS)
Cook, J. W.; Keenan, F. P.; Dufton, P. L.; Kingston, A. E.; Pradhan, A. K.; Zhang, H. L.; Doyle, J. G.; Hayes, M. A.
1995-01-01
New calculations of O IV electron density diagnostic emission-line ratios involving the 1399.8, 1401.2, 1404.8, and 14076.4 A transitions are presented. A comparison of these calculations with observational data from a quiet solar region, a sunspot, and an active region obtained with the High Resolution Telescope and Spectrograph (HRTS), two flares observed with the SO82B spectrograph on board Skylab, and Hubble Space Telescope (HST) observations by the Goddard High Resolution Spectrograph (GHRS) of Capella, gives good results using the ratio R(sub 1) = I(1407.4 A)/I(1401.2 A). However, the electron density obtained using the ratio R(sub 2) = I(1407.4 A)/I(1404.8 A) is often an order of magnitude smaller. The O IV 1404.8 A line is blended with the S IV 1404.8 A line, and we investigate whether this ratio may still be used as a density diagnostic if the S IV 1406.1 A line intensity is used to correct for the presence of S IV 1404.8 A, using previous S IV calculations by Dufton et al. We still find systematic differences compared to density determinations from line ratios that do not involve the O IV 1404.8 A line, which we suggest are due to errors in earlier theoretical calculations of the S IV atomic data, and also possibly to previously unconsidered fluorescent pumping of the upper level of the S IV 1404.8 A transition.
Active Space Dependence in Multiconfiguration Pair-Density Functional Theory.
Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura
2018-02-13
In multiconfiguration pair-density functional theory (MC-PDFT), multiconfiguration self-consistent-field calculations and on-top density functionals are combined to describe both static and dynamic correlation. Here, we investigate how the MC-PDFT total energy and its components depend on the active space choice in the case of the H 2 and N 2 molecules. The active space dependence of the on-top pair density, the total density, the ratio of on-top pair density to half the square of the electron density, and the satisfaction of the virial theorem are also explored. We find that the density and on-top pair density do not change significantly with changes in the active space. However, the on-top ratio does change significantly with respect to active space change, and this affects the on-top energy. This study provides a foundation for designing on-top density functionals and automatizing the active space choice in MC-PDFT.
Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas
NASA Astrophysics Data System (ADS)
Chowdhury, N. A.; Mannan, A.; Hasan, M. M.; Mamun, A. A.
2017-09-01
The nonlinear propagation of heavy-ion-acoustic (HIA) waves (HIAWs) in a four-component multi-ion plasma (containing inertial heavy negative ions and light positive ions, as well as inertialess nonextensive electrons and positrons) has been theoretically investigated. The nonlinear Schrödinger (NLS) equation is derived by employing the reductive perturbation method. It is found that the NLS equation leads to the modulational instability (MI) of HIAWs, and to the formation of HIA rogue waves (HIARWs), which are due to the effects of nonlinearity and dispersion in the propagation of HIAWs. The conditions for the MI of HIAWs and the basic properties of the generated HIARWs are identified. It is observed that the striking features (viz., instability criteria, growth rate of MI, amplitude and width of HIARWs, etc.) of the HIAWs are significantly modified by the effects of nonextensivity of electrons and positrons, the ratio of light positive ion mass to heavy negative ion mass, the ratio of electron number density to light positive ion number density, the ratio of electron temperature to positron temperature, etc. The relevancy of our present investigation to the observations in space (viz., cometary comae and earth's ionosphere) and laboratory (viz., solid-high intense laser plasma interaction experiments) plasmas is pointed out.
Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas.
Chowdhury, N A; Mannan, A; Hasan, M M; Mamun, A A
2017-09-01
The nonlinear propagation of heavy-ion-acoustic (HIA) waves (HIAWs) in a four-component multi-ion plasma (containing inertial heavy negative ions and light positive ions, as well as inertialess nonextensive electrons and positrons) has been theoretically investigated. The nonlinear Schrödinger (NLS) equation is derived by employing the reductive perturbation method. It is found that the NLS equation leads to the modulational instability (MI) of HIAWs, and to the formation of HIA rogue waves (HIARWs), which are due to the effects of nonlinearity and dispersion in the propagation of HIAWs. The conditions for the MI of HIAWs and the basic properties of the generated HIARWs are identified. It is observed that the striking features (viz., instability criteria, growth rate of MI, amplitude and width of HIARWs, etc.) of the HIAWs are significantly modified by the effects of nonextensivity of electrons and positrons, the ratio of light positive ion mass to heavy negative ion mass, the ratio of electron number density to light positive ion number density, the ratio of electron temperature to positron temperature, etc. The relevancy of our present investigation to the observations in space (viz., cometary comae and earth's ionosphere) and laboratory (viz., solid-high intense laser plasma interaction experiments) plasmas is pointed out.
NASA Astrophysics Data System (ADS)
Muda, M. R.; Ramli, M. M.; Mat Isa, S. S.; Halin, D. S. C.; Talip, L. F. A.; Mazelan, N. S.; Anhar, N. A. M.; Danial, N. A.
2017-06-01
New group of materials derived from hybridization of single walled carbon nanotubes (SWCNTs) and graphene oxide (GO) which resulting novel three dimensional (3D) materials generates an outstanding properties compared to corresponding SWCNTs and GO/Graphene. In this paper, we describe a simple approach using water processing method to develop integrated rGO/GO-SWCNT hybrids with different hybrid ratios. The hybrid ratios were varied into three divided ratio and the results were compared between pristine SWCNTs and GO in order to investigate the structural density and morphology of these carbonaceous materials. With an optimized ratio of rGO/GO-SWCNT, the hybrid shows a well-organized hybrid film structures with less defects density sites. The optimized mixture ratio emphasized the important of both rGO and SWCNTs in the hybrid structures. Morphological structural and defects density degrees were examined by Field Emission Scanning Electron Microscopy (FESEM) and Raman spectroscopy.
Characterization of local thermodynamic equilibrium in a laser-induced aluminum alloy plasma.
Zhang, Yong; Zhao, Zhenyang; Xu, Tao; Niu, GuangHui; Liu, Ying; Duan, Yixiang
2016-04-01
The electron temperature was evaluated using the line-to-continuum ratio method, and whether the plasma was close to the local thermodynamic equilibrium (LTE) state was investigated in detail. The results showed that approximately 5 μs after the plasma formed, the changes in the electron and excitation temperatures, which were determined using a Boltzmann plot, overlapped in the 15% error range, which indicated that the LTE state was reached. The recombination of electrons and ions and the free electron expansion process led to the deviation from the LTE state. The plasma's expansion rate slowed over time, and when the expansion time was close to the ionization equilibrium time, the LTE state was almost reached. The McWhirter criterion was adopted to calculate the threshold electron density for different species, and the results showed that experimental electron density was greater than the threshold electron density, which meant that the LTE state may have existed. However, for the nonmetal element N, the threshold electron density was greater than the value experimental value approximately 0.8 μs after the plasma formed, which meant that LTE state did not exist for N.
The stationary non-equilibrium plasma of cosmic-ray electrons and positrons
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2016-06-01
The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.
NASA Astrophysics Data System (ADS)
Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang
2018-06-01
The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Pritchett, P. L.
1988-01-01
Beam-plasma interactions associated with the cross-field and field-aligned injection of electron beams from spacecraft were investigated using a two-dimensional (three velocity component) electrostatic particle simulations. It is shown that the beam properties and plasma response can be characterized well by the ratio between the stagnation time and the plasma response time, which depends on the ratio of the ambient plasma density to the beam density, the beam width, the beam energy, and the spacecraft length. It was found that the beams injected across the field lines tend to lose their coherence after about one or two gyrations due to space-charge oscillations induced by the beam, irrespective of the spacecraft charging. These oscillations scatter the beam electrons into a hollow cylinder of a radius equal to a beam electron gyroradius and thickness of the order of two beam Debye lengths. Parallel injected beams are subjected to similar oscillations, which cause the beam to expand to fill a solid cylinder of a comparable thickness.
Properties of 10 (18)-10 (19)eV EAS at far core distance
NASA Technical Reports Server (NTRS)
Teshima, M.; Nagano, M.; Hara, T.; Hatano, Y.; Hayashida, N.; He, C. X.; Honda, M.; Ishikawa, F.; Kamata, K.; Matsubara, Y.
1985-01-01
The properties of 10 to the 18th power - 10 to the 19th power eV EAS showers such as the electron lateral distribution, the muon lateral distribution ( 1Gev), the ratio of muon density to a electron density, the shower front structure and the transition effects in scintillator of 5cm thickness are investigated with the Akeno 4 sq km/20sq km array at far core distances between 500m and 3000m. The fluctuation of densities and arrival time increase rapidly at core distances greater than 2km.
NASA Technical Reports Server (NTRS)
Fernandez, J. R.; Mertens, C. J.; Bilitza, D.; Xu, X.; Russell, J. M., III; Mlynczak, M. G.
2009-01-01
Broadband infrared limb emission at 4.3 microns is measured by the TIMED/SABER instrument. At night, these emission observations at E-region altitudes are used to derive the so called NO+(v) Volume Emission Rate (VER). NO+(v) VER can be derived by removing the background CO2(v3) 4.3 microns radiance contribution using SABER-based non-LTE radiation transfer models, and by performing a standard Abel inversion on the residual radiance. SABER observations show that NO+(v) VER is significantly enhanced during magnetic storms in accordance with increased ionization of the neutral atmosphere by auroral electron precipitation, followed by vibrational excitation of NO+ (i.e., NO+(v)) from fast exothermic ion-neutral reactions, and prompt infrared emission at 4.3 m. Due to charge neutrality, the NO+(v) VER enhancements are highly correlated with electron density enhancements, as observed for example by Incoherent Scatter Radar (ISR). In order to characterize the response of the storm-time E-region from both SABER and ISR measurements, a Storm/Quiet ratio (SQR) quantity is defined as a function of altitude. For SABER, the SQR is the ratio of the storm-to-quiet NO+(v) VER. SQR is the storm-to-quiet ratio of electron densities for ISR. In this work, we compare SABER and ISR SQR values between 100 to 120 km. Results indicate good agreement between these measurements. SQR values are intended to be used as a correction factor to be included in an empirical storm-time correction to the International Reference Ionosphere model at E-region altitudes.
Insights into neutrino decoupling gleaned from considerations of the role of electron mass
NASA Astrophysics Data System (ADS)
Grohs, E.; Fuller, George M.
2017-10-01
We present calculations showing how electron rest mass influences entropy flow, neutrino decoupling, and Big Bang Nucleosynthesis (BBN) in the early universe. To elucidate this physics and especially the sensitivity of BBN and related epochs to electron mass, we consider a parameter space of rest mass values larger and smaller than the accepted vacuum value. Electromagnetic equilibrium, coupled with the high entropy of the early universe, guarantees that significant numbers of electron-positron pairs are present, and dominate over the number of ionization electrons to temperatures much lower than the vacuum electron rest mass. Scattering between the electrons-positrons and the neutrinos largely controls the flow of entropy from the plasma into the neutrino seas. Moreover, the number density of electron-positron-pair targets can be exponentially sensitive to the effective in-medium electron mass. This entropy flow influences the phasing of scale factor and temperature, the charged current weak-interaction-determined neutron-to-proton ratio, and the spectral distortions in the relic neutrino energy spectra. Our calculations show the sensitivity of the physics of this epoch to three separate effects: finite electron mass, finite-temperature quantum electrodynamic (QED) effects on the plasma equation of state, and Boltzmann neutrino energy transport. The ratio of neutrino to plasma-component energy scales manifests in Cosmic Microwave Background (CMB) observables, namely the baryon density and the radiation energy density, along with the primordial helium and deuterium abundances. Our results demonstrate how the treatment of in-medium electron mass (i.e., QED effects) could translate into an important source of uncertainty in extracting neutrino and beyond-standard-model physics limits from future high-precision CMB data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akatsuka, Hiroshi
2009-04-15
Population densities of excited states of argon atoms are theoretically examined for ionizing argon plasma in a state of nonequilibrium under atmospheric pressure from the viewpoint of elementary processes with collisional radiative model. The dependence of excited state populations on the electron and gas temperatures is discussed. Two electron density regimes are found, which are distinguished by the population and depopulation mechanisms for the excited states in problem. When the electron impact excitation frequency for the population or depopulation is lower than the atomic impact one, the electron density of the plasma is considered as low to estimate the populationmore » and depopulation processes. Some remarkable characteristics of population and depopulation mechanisms are found for the low electron density atmospheric plasma, where thermal relaxation by atomic collisions becomes the predominant process within the group of close-energy states in the ionizing plasma of atmospheric pressure, and the excitation temperature is almost the same as the gas temperature. In addition to the collisional relaxation by argon atoms, electron impact excitation from the ground state is also an essential population mechanism. The ratios of population density of the levels pairs, between which exists a large energy gap, include information on the electron collisional kinetics. For high electron density, the effect of atomic collisional relaxation becomes weak. For this case, the excitation mechanism is explained as electron impact ladderlike excitation similar to low-pressure ionizing plasma, since the electron collision becomes the dominant process for the population and depopulation kinetics.« less
Ab-initio study of electronic structure and elastic properties of ZrC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mund, H. S., E-mail: hmoond@gmail.com; Ahuja, B. L.
2016-05-23
The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.
A Si IV/O IV Electron Density Diagnostic for the Analysis of IRIS Solar Spectra
NASA Astrophysics Data System (ADS)
Young, P. R.; Keenan, F. P.; Milligan, R. O.; Peter, H.
2018-04-01
Solar spectra of ultraviolet bursts and flare ribbons from the Interface Region Imaging Spectrograph (IRIS) have suggested high electron densities of > {10}12 cm‑3 at transition region temperatures of 0.1 MK, based on large intensity ratios of Si IV λ1402.77 to O IV λ1401.16. In this work, a rare observation of the weak O IV λ1343.51 line is reported from an X-class flare that peaked at 21:41 UT on 2014 October 24. This line is used to develop a theoretical prediction of the Si IV λ1402.77 to O IV λ1401.16 ratio as a function of density that is recommended to be used in the high-density regime. The method makes use of new pressure-dependent ionization fractions that take account of the suppression of dielectronic recombination at high densities. It is applied to two sequences of flare kernel observations from the October 24 flare. The first shows densities that vary between 3× {10}12 and 3× {10}13 cm‑3 over a seven-minute period, while the second location shows stable density values of around 2× {10}12 cm‑3 over a three-minute period.
Far-infrared line observations of planetary nebulae. 1: The O 3 spectrum
NASA Technical Reports Server (NTRS)
Dinerstein, H. L.; Lester, D. F.; Werner, M. W.
1985-01-01
Observations of the far-infrared fine structure lines of O III have been obtained for six planetary nebulae. The infrared measurements are combined with optical O III line fluxes to probe physical conditions in the gas. From the observed line intensity ratios, a simultaneous solution was obtained for electron temperature and density, as well as means of evaluating the importance of inhomogeneities. Densities determined from the far-infrared O III lines agree well density diagnostics from other ions, indicating a fairly homogeneous density in the emitting gas. Temperatures are determined separately from the O III 4363/5007 A and 5007 A/52 micron intensity ratios and compared. Systematically higher values are derived from the former ratio, which is expected from a nebula which is not isothermal. Allowance for the presence of temperature variations within these nebulae raises their derived oxygen abundances, determinations to be reconciled with the solar value.
Role of turbulence regime on determining the local density gradient
Wang, X.; Mordijck, Saskia; Doyle, E. J.; ...
2017-11-16
In this study we show that the local density gradient in the plasma core depends on the calculated mode-frequency of the most unstable linear mode and reaches a maximum when this frequency is close to zero. Previous theoretical and experimental work on AUG has shown that the ratio of electron to ion temperature, and as such the frequency of the dominant linear gyrokinetic mode, affects the local density gradient close to ρ = 0.3 [1, 2]. On DIII-D we find that by adding Electron Cyclotron Heating (ECH), we modify the dominant unstable linear gyro kinetic mode from an Ion Temperaturemore » Gradient (ITG) mode to a Trapped Electron Mode (TEM), which means that the frequency of the dominant mode changes sign (from the ion to the electron direction). Local density peaking around mid-radius increases by 50% right around the cross-over between the ITG and TEM regimes. By comparing how the particle flux changes, through the derivative of the electron density, n e, with respect to time, ∂n e/∂t, we find that the particle flux also exhibits the same trend versus mode frequency. As a result, we find that the changes in local particle transport are inversely proportional to the changes in electron density, indicating that the changes are driven by a change in thermo-diffusive pinch.« less
Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region
NASA Astrophysics Data System (ADS)
Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.
2012-05-01
We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.
Behavior of collisional sheath in electronegative plasma with q-nonextensive electron distribution
NASA Astrophysics Data System (ADS)
Borgohain, Dima Rani; Saharia, K.
2018-03-01
Electronegative plasma sheath is addressed in a collisional unmagnetized plasma consisting of q-nonextensive electrons, Boltzmann distributed negative ions and cold fluid positive ions. Considering the positive ion-neutral collisions and ignoring the effects of ionization and collisions between negative species and positive ions (neutrals), a modified Bohm sheath criterion and hence floating potential are derived by using multifluid model. Using the modified Bohm sheath criterion, the sheath characteristics such as spatial profiles of density, potential and net space charge density have been numerically investigated. It is found that increasing values of q-nonextensivity, electronegativity and collisionality lead to a decrease of the sheath thickness and an increase of the sheath potential and the net space charge density. With increasing values of the electron temperature to negative ion temperature ratio, the sheath thickness increases and the sheath potential as well as the net space charge density in the sheath region decreases.
NASA Astrophysics Data System (ADS)
Vigren, E.; Altwegg, K.; Edberg, N. J. T.; Eriksson, A. I.; Galand, M.; Henri, P.; Johansson, F.; Odelstad, E.; Tzou, C.-Y.; Valliéres, X.
2016-09-01
During 2015 January 9-11, at a heliocentric distance of ˜2.58-2.57 au, the ESA Rosetta spacecraft resided at a cometocentric distance of ˜28 km from the nucleus of comet 67P/Churyumov-Gerasimenko, sweeping the terminator at northern latitudes of 43°N-58°N. Measurements by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure Sensor (ROSINA/COPS) provided neutral number densities. We have computed modeled electron number densities using the neutral number densities as input into a Field Free Chemistry Free model, assuming H2O dominance and ion-electron pair formation by photoionization only. A good agreement (typically within 25%) is found between the modeled electron number densities and those observed from measurements by the Mutual Impedance Probe (RPC/MIP) and the Langmuir Probe (RPC/LAP), both being subsystems of the Rosetta Plasma Consortium. This indicates that ions along the nucleus-spacecraft line were strongly coupled to the neutrals, moving radially outward with about the same speed. Such a statement, we propose, can be further tested by observations of H3O+/H2O+ number density ratios and associated comparisons with model results.
NASA Astrophysics Data System (ADS)
Vigren, Erik; Altwegg, Kathrin; Edberg, Niklas J. T.; Eriksson, Anders I.; Galand, Marina; Goetz, Charlotte; Henri, Pierre; Héritier, Kevin; Lebreton, Jean-Pierre; Odelstad, Elias; Tzou, Chia-Yu
2016-04-01
The ESA Rosetta spacecraft has followed comet 67P/Churyumov-Gerasimenko closely (typically at tens to hundreds of km) since early August 2014 covering heliocentric distances from ~3.6 AU to ~1.25 AU at perihelion in August 2015. Since arrival at the comet the neutral number density, nN, at the spacecraft location, has been probed by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure Sensor (ROSINA/COPS [1]). Likewise, the dual Langmuir Probe (LAP [2]) and the Mutual Impedance Probe (MIP [3]), both being subsystems of the Rosetta Plasma Consortium (RPC [4]), have operated allowing for the retrieval of the electron number density, ne. Arguably, the electron-to-neutral number density ratio, ne/nN, accessible from these observations, is key to gain insights into the processes dictating the ionization balance within the inner coma of 67P [5]. In January 2015, at a heliocentric distance of ~2.4-2.6 AU (and when not being disturbed by by-passing co-rotating interaction regions [6]) we find that a Field Free Chemistry Free (FFCF) solar EUV deposition model reasonably well captures the observed ne/nN ratio in the H2O dominated summer hemisphere of 67P. For the same period we find ratios often elevated by more than a factor of 2 (with respect to modeled values) in the winter hemisphere and argue that this partly could be caused by high mixing ratios of CO2 [see 7]. We are currently conducting a study of ne/nN ratios in the coma of 67P when close to perihelion, which includes time-intervals when within the diamagnetic cavity as attested from observations [8] by the RPC/Fluxgate Magnetometer (MAG, [9]). Results of these investigations will be presented at the meeting. The closer distance to the sun and the enhanced activity bring about several effects that are anticipated to at least somewhat reduce ne/nN ratios from values predicted by the FFCF-model. As an example one may expect an increased influence of dissociative recombination on the ionization balance. This is not only due to the increased ion-electron pair formation from photoionization but also because the enhanced outgassing makes collisional electron cooling more efficient, reducing the electron temperature, in turn giving higher recombination coefficients. [1] Balsiger, H., et al., 2007. Space Sci. Reviews 128, 745 [2] Eriksson, A. I., et al., 2007. Space Sci. Reviews 128, 729 [3] Trotignon, J.-P., et al., 2007, Space Sci. Reviews 128, 713 [4] Carr, C., et al., 2007. Space Sci. Reviews 128, 629 [5] Vigren, E., et al., 2015. The Astrophysical Journal, 812, 54 [6] Edberg, N. J. T., et al., 2016. Submitted. [7] Hässig, M., et al., 2015. Science 347, aaa0276. [8] Goetz, C., et al., 2016. Submitted [9] Glassmeier, K.-H., et al., 2007, Space Sci. Reviews 128, 649
The density compression ratio of shock fronts associated with coronal mass ejections
NASA Astrophysics Data System (ADS)
Kwon, Ryun-Young; Vourlidas, Angelos
2018-02-01
We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with coronal mass ejections (CMEs) observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (˜2000 km s-1) observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters, and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes) than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.
The dissociative recombination of O2(+) - The quantum yield of O(1S) and O(1D)
NASA Technical Reports Server (NTRS)
Abreu, V. J.; Solomon, S. C.; Sharp, W. E.; Hays, P. B.
1983-01-01
Data from the visible airglow experiment on the Atmosphere Explorer-E satellite have been used to determine the quantum yield of O(1S) and O(1D) from the dissociative recombination of O2(+). A range of values between 0.09 and 0.23 has been obtained for the quantum yield of O(1S). It is shown that the quantum yield of O(1S) depends on the ratio of electron density to atomic oxygen density. This suggests that the quantum yield of O(1S) may depend on the degree of vibrational excitation of the recombining O2(+). The quantum yield of O(1D) has been measured to be 1.23 + or - 0.42, with no dependence on the electron-oxygen ratio.
Attarian Shandiz, Mohammad; Guinel, Maxime J-F; Ahmadi, Majid; Gauvin, Raynald
2016-02-01
A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ikjin; Chung, ChinWook; Youn Moon, Se
2013-08-15
In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energymore » distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.« less
NASA Astrophysics Data System (ADS)
Kandpal, Praveen; Pandey, R. S.
2018-05-01
In the present paper, the study of electrostatic electron cyclotron parallel flow velocity shear instability in presence of perpendicular inhomogeneous DC electric field has been carried out in the magnetosphere of Saturn. Dimensionless growth rate variation of electron cyclotron waves has been observed with respect to k⊥ ρe for various plasma parameters. Effect of velocity shear scale length (Ae), inhomogeneity (P/a), the ratio of ion to electron temperature (Ti/Te) and density gradient (ɛnρe) on the growth of electron cyclotron waves in the inner magnetosphere of Saturn has been studied and analyzed. The mathematical formulation and computation of dispersion relation and growth rate have been done by using the method of characteristic solution and kinetic approach. This theoretical analysis has been done taking the relevant data from the Cassini spacecraft in the inner magnetosphere of Saturn. We have considered ambient magnetic field data and other relevant data for this study at the radial distance of ˜4.82-5.00 Rs. In our study velocity shear and ion to electron temperature ratio have been observed to be the major sources of free energy for the electron cyclotron instability. The inhomogeneity of electric field caused a small noticeable impact on the growth rate of electrostatic electron cyclotron instability. Density gradient has been observed playing stabilizing effect on electron cyclotron instability.
Electron fluence correction factors for various materials in clinical electron beams.
Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P
2001-08-01
Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.
The Relationship between Ionospheric Slab Thickness and the Peak Density Height, hmF2
NASA Astrophysics Data System (ADS)
Meehan, J.; Sojka, J. J.
2017-12-01
The electron density profile is one of the most critical elements in the ionospheric modeling-related applications today. Ionosphere parameters, hmF2, the height of the peak density layer, and slab thickness, the ratio of the total electron content, TEC, to the peak density value, NmF2, are generally obtained from any global sounding observation network and are easily incorporated into models, theoretical or empirical, as numerical representations. Slab thickness is a convenient one-parameter summary of the electron density profile and can relate a variety of elements of interest that effect the overall electron profile shape, such as the neutral and ionospheric temperatures and gradients, the ionospheric composition, and dynamics. Using ISR data from the 2002 Millstone Hill ISR data campaign, we found, for the first time, slab thickness to be correlated to hmF2. For this, we introduce a new ionospheric index, k, which ultimately relates electron density parameters and can be a very useful tool for describing the topside ionosphere shape. Our study is an initial one location, one season, 30-day study, and future work is needed to verify the robustness of our claim. Generally, the ionospheric profile shape, requires knowledge of several ionospheric parameters: electron, ion and neutral temperatures, ion composition, electric fields, and neutral winds, and is dependent upon seasons, local time, location, and the level of solar and geomagnetic activity; however, with this new index, only readily-available, ionospheric density information is needed. Such information, as used in this study, is obtained from a bottomside electron density profile provided by an ionosonde, and TEC data provided by a local, collocated GPS receiver.
NASA Astrophysics Data System (ADS)
Du, Xia-Xia; Tian, Bo; Chai, Jun; Sun, Yan; Yuan, Yu-Qiang
2017-11-01
In this paper, we investigate a (3+1)-dimensional modified Zakharov-Kuznetsov equation, which describes the nonlinear plasma-acoustic waves in a multicomponent magnetised plasma. With the aid of the Hirota method and symbolic computation, bilinear forms and one-, two- and three-soliton solutions are derived. The characteristics and interaction of the solitons are discussed graphically. We present the effects on the soliton's amplitude by the nonlinear coefficients which are related to the ratio of the positive-ion mass to negative-ion mass, number densities, initial densities of the lower- and higher-temperature electrons and ratio of the lower temperature to the higher temperature for electrons, as well as by the dispersion coefficient, which is related to the ratio of the positive-ion mass to the negative-ion mass and number densities. Moreover, using the Lie symmetry group theory, we derive the Lie point symmetry generators and the corresponding symmetry reductions, through which certain analytic solutions are obtained via the power series expansion method and the (G'/G) expansion method. We demonstrate that such an equation is strictly self-adjoint, and the conservation laws associated with the Lie point symmetry generators are derived.
NASA Technical Reports Server (NTRS)
Richardson, R. W.
1974-01-01
Spectroscopic measurements were carried out on the NASA Lewis Bumpy Torus experiment in which a steady state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. Electron temperatures in pure helium are measured from the ratio of spectral line intensities. Measured electron temperatures range from 10 to 100 eV. Relative electron densities are also measured over the range of operating conditions. Radial profiles of temperature and relative density are measured in the two basic modes of operation of the device called the low and high pressure modes. The electron temperatures are used to estimate particle confinement times based on a steady state particle balance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, Yu. A.; Starodubov, A. V.; Fokin, A. S., E-mail: alexander1989fokin@mail.ru
The influence of the magnitude and configuration of the magnetic field on the parameters of electron bunches formed in a multivelocity electron beam is analyzed. It is shown that the use of a cathode unshielded from the magnetic field and a nonuniform magnetic field increasing along the drift space enables the formation of compact electron bunches. The ratio between the current density in such bunches and the beam current density at the entrance to the drift space reaches 10{sup 6}, which results in a substantial broadening of the output microwave spectrum due to an increase in the amplitudes of themore » higher harmonics of the fundamental frequency.« less
Yost, Andrew J.; Pimachev, Artem; Ho, Chun -Chih; ...
2016-10-10
Scanning tunneling microscopy is utilized to investigate the local density of states of a CH 3NH 3PbI 3-xCl x perovskite in cross-sectional geometry. Two electronic phases, 10-20 nm in size, with different electronic properties inside the CH 3NH 3PbI 3-xCl x perovskite layer are observed by the dI/ dV mapping and point spectra. A power law dependence of the dI/dV point spectra is revealed. In addition, the distinct electronic phases are found to have preferential orientations close to the normal direction of the film surface. Density functional theory calculations indicate that the observed electronic phases are associated with local deviationmore » of I/Cl ratio, rather than different orientations of the electric dipole moments in the ferroelectric phases. Furthermore, by comparing the calculated results with experimental data we conclude that phase A (lower contrast in dI/dV mapping at -2.0 V bias) contains a lower I/Cl ratio than that in phase B (higher contrast in dI/dV).« less
Fast Faraday fading of long range satellite signals.
NASA Technical Reports Server (NTRS)
Heron, M. L.
1972-01-01
20 MHz radio signals have been received during the day from satellite Beacon-B when it was below the optical horizon by using a bank of narrow filters to improve the signal to noise ratio. The Faraday fading rate becomes constant, under these conditions, at a level determined by the plasma frequency just below the F-layer peak. Variations in the Faraday fading rate reveal fluctuations in the electron density near the peak, while the rate of attaining the constant level depends on the shape of the electron density profile.
NASA Astrophysics Data System (ADS)
Munoz Burgos, J. M.; Schmitz, O.; Unterberg, E. A.; Loch, S. D.; Balance, C. P.
2010-11-01
We developed a time dependent solution for the He I line ratio diagnostic. Stationary solution is applied for L-mode at TEXTOR. The radial range is typically limited to a region near the separatrix due to metastable effects, and the atomic data used. We overcome this problem by applying a time dependent solution and thus avoid unphysical results. We use a new R-Matrix with Pseudostates and Convergence Cross-Coupling electron impact excitation and ionization atomic data set into the Collisional Radiative Model (CRM). We include contributions from higher Rydberg states into the CRM by means of the projection matrix. By applying this solution (to the region near the wall) and the stationary solution (near the separatrix), we triple the radial range of the current diagnostic. We explore the possibility of extending this approach to H-mode plasmas in DIII-D by estimating line emission profiles from electron temperature and density Thomson scattering data.
A simulation study of radial expansion of an electron beam injected into an ionospheric plasma
NASA Technical Reports Server (NTRS)
Koga, J.; Lin, C. S.
1994-01-01
Injections of nonrelativistic electron beams from a finite equipotential conductor into an ionospheric plasma have been simulated using a two-dimensional electrostatic particle code. The purpose of the study is to survey the simulation parameters for understanding the dependence of beam radius on physical variables. The conductor is charged to a high potential when the background plasma density is less than the beam density. Beam electrons attracted by the charged conductor are decelerated to zero velocity near the stagnation point, which is at a few Debye lengths from the conductor. The simulations suggest that the beam electrons at the stagnation point receive a large transverse kick and the beam expands radially thereafter. The buildup of beam electrons at the stagnation point produces a large electrostatic force responsible for the transverse kick. However, for the weak charging cases where the background plasma density is larger than the beam density, the radial expansion mechanism is different; the beam plasma instability is found to be responsible for the radial expansion. The simulations show that the electron beam radius for high spacecraft charging cases is of the order of the beam gyroradius, defined as the beam velocity divided by the gyrofrequency. In the weak charging cases, the beam radius is only a fraction of the beam gyroradius. The parameter survey indicates that the beam radius increases with beam density and decreases with magnetic field and beam velocity. The beam radius normalized by the beam gyroradius is found to scale according to the ratio of the beam electron Debye length to the ambient electron Debye length. The parameter dependence deduced would be useful for interpreting the beam radius and beam density of electron beam injection experiments conducted from rockets and the space shuttle.
NASA Astrophysics Data System (ADS)
Chen, C.; Saito, A.; Lin, C.; Huba, J. D.; Liu, J. G.
2010-12-01
In this study, we compare the observational data from FORMOSAT-3/COSMIC and theoretical model results performed by SAMI2 (Sami2 is Another Model of the Ionosphere) for studying the longitudinal structure of the Mid-latitude Summer Nighttime Anomaly (MSNA). In order to study the occurrence of the nighttime electron density enhancement, we defined MSNA index by the ratio of the difference of the nighttime and daytime electron densities. The observational results by the FORMOSAT-3/COSMIC satellites show that there are three obvious nighttime electron density enhancement areas around South American, European, and Northeast Asian regions during local summer. The SAMI2 model can also successfully reproduce the ionospheric MSNA structure during local summer on both hemispheres, except for Northeast Asian region. This difference between observation and model simulation may be caused by the difference between the neutral wind model and the real winds. The physical mechanisms for the longitudinal structure of the MSNA are investigated in the different model conditions. Results show that the equatorward meridional neutral winds can drive the electron density up to a higher altitude along the magnetic field lines and the longer plasma production rate by solar EUV at higher latitudes in the summer time can provide the electron density source in the nighttime ionosphere. We concluded that the combination effect by the neutral wind and the plasma production rate play the important role of the MSNA longitudinal structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shu-Xia; Zhang, Yu-Ru; Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp
A hybrid model is used to investigate the fragmentation of C{sub 4}F{sub 8} inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. C{sub x}F{sub y} (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C{sub 4}F{sub 8} inductively coupled plasma source,more » as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C{sub 4}F{sub 8} reaction set used in the model. The C{sub 4}F{sub 8} plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.« less
Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study
NASA Astrophysics Data System (ADS)
Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie
2015-06-01
A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu
2016-05-16
Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less
Simulation of radial expansion of an electron beam injected into a background plasma
NASA Technical Reports Server (NTRS)
Koga, J.; Lin, C. S.
1989-01-01
A 2-D electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.
NASA Astrophysics Data System (ADS)
Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh; Taflove, Allen; Roy, Hemant; Dravid, Vinayak; Backman, Vadim
2010-03-01
We report a study of the nanoscale mass density fluctuations of biological cells and tissues by quantifying their nanoscale light-localization properties. Transmission electron microscope (TEM) images of human cells and tissues are used to construct corresponding effective disordered optical lattices. Light-localization properties are studied by statistical analysis of the inverse participation ratio (IPR) of the eigenfunctions of these optical lattices at the nanoscales. Our results indicate elevation of the nanoscale disorder strength (e.g., refractive index fluctuations) in early carcinogenesis. Importantly, our results demonstrate that the increase in the nanoscale disorder represents the earliest structural alteration in cells undergoing carcinogenesis known to-date. Potential applications of the technique for early stage cancer detection will be discussed.
Hα and [SII] emission from warm Ionized GAS in the Scutum-Centaurus Arm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Alex S.; Benjamin, Robert A.; Gostisha, Martin C.
2014-06-01
We present Wisconsin H-Alpha Mapper [SII] λ6716 and Hα spectroscopic maps of the warm ionized medium (WIM) in the Scutum-Centaurus Arm at Galactic longitudes 310° < l < 345°. Using extinction-corrected Hα intensities (I{sub Hα}{sup c}), we measure an exponential scale height of electron density squared in the arm of H{sub n{sub e{sup 2}}}=0.30 kpc (assuming a distance of 3.5 kpc), intermediate between that observed in the inner Galaxy and in the Perseus Arm. The [S II]/Hα line ratio is enhanced at large |z| and in sightlines with faint I{sub Hα}{sup c}. We find that the [S II]/Hα line ratiomore » has a power-law relationship with I{sub Hα}{sup c} from a value of ≈1.0 at I{sub Hα}{sup c}<0.2 R (Rayleighs) to a value of ≈0.08 at I{sub Hα}{sup c}≳100 R. The line ratio is better correlated with Hα intensity than with height above the plane, indicating that the physical conditions within the WIM vary systematically with electron density. We argue that the variation of the line ratio with height is a consequence of the decrease of electron density with height. Our results reinforce the well-established picture in which the diffuse Hα emission is due primarily to emission from in situ photoionized gas, with scattered light only a minor contributor.« less
NASA Astrophysics Data System (ADS)
Mesa-Delgado, A.; Núñez-Díaz, M.; Esteban, C.; López-Martín, L.; García-Rojas, J.
2011-10-01
We present integral field spectroscopy of two selected zones in the Orion nebula obtained with the Potsdam Multi-Aperture Spectrophotometer, covering the optical spectral range from 3500 to 7200 Å and with a spatial resolution of 1 arcsec. The observed zones are located on the prominent Bright bar and on the brightest area at the north-east of the Orion south cloud, both containing remarkable ionization fronts. We obtain maps of emission-line fluxes and ratios, electron density and temperatures, and chemical abundances. We study the ionization structure and morphology of both fields, whose ionization fronts show different inclination angles with respect to the plane of the sky. We find that the maps of electron density, O+/H+ and O/H ratios show a rather similar structure. We interpret this as produced by the strong dependence on density of the [O II] lines used to derive the O+ abundance, and that our nominal values of electron density - derived from the [S II] line ratio - may be slightly higher than the appropriate value for the O+ zone. We measure the faint recombination lines of O II in the field at the north-east of the Orion south cloud, allowing us to explore the so-called abundance discrepancy problem. We find a rather constant abundance discrepancy across the field and a mean value similar to that determined in other areas of the Orion nebula, indicating that the particular physical conditions of this ionization front do not contribute to this discrepancy. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigren, E.; Edberg, N. J. T.; Eriksson, A. I.
2016-09-01
During 2015 January 9–11, at a heliocentric distance of ∼2.58–2.57 au, the ESA Rosetta spacecraft resided at a cometocentric distance of ∼28 km from the nucleus of comet 67P/Churyumov–Gerasimenko, sweeping the terminator at northern latitudes of 43°N–58°N. Measurements by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure Sensor (ROSINA/COPS) provided neutral number densities. We have computed modeled electron number densities using the neutral number densities as input into a Field Free Chemistry Free model, assuming H{sub 2}O dominance and ion-electron pair formation by photoionization only. A good agreement (typically within 25%) is found between the modeled electron numbermore » densities and those observed from measurements by the Mutual Impedance Probe (RPC/MIP) and the Langmuir Probe (RPC/LAP), both being subsystems of the Rosetta Plasma Consortium. This indicates that ions along the nucleus-spacecraft line were strongly coupled to the neutrals, moving radially outward with about the same speed. Such a statement, we propose, can be further tested by observations of H{sub 3}O{sup +}/H{sub 2}O{sup +} number density ratios and associated comparisons with model results.« less
First test of BNL electron beam ion source with high current density electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov
A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, themore » EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.« less
NASA Astrophysics Data System (ADS)
Li, Yanling; Zeng, Zhi; Lin, Haiqing
2010-06-01
The structural, elastic, electronic and dynamical properties of ReB and OsB are investigated by first-principles calculations based on density functional theory. It turns out that ReB and OsB are metallic ultra-incompressible solids with small elastic anisotropy and high hardness. The change of c/ a ratio in OsB indicates that there is a structural phase transition at about 31 GPa. Phonon spectra calculations show that both OsB and ReB are stable dynamically and there are abnormal phonon dispersions along special directions in Brillouin zone. OsB and ReB do not show superconductivity due to very weak electron-phonon interactions in them.
NASA Astrophysics Data System (ADS)
Michael, Manesh; Willington, Neethu T.; Jayakumar, Neethu; Sebastian, Sijo; Sreekala, G.; Venugopal, Chandu
2016-12-01
We investigate the existence of ion-acoustic shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdVB equation has been derived for the system, and its solution plotted for different kappa values, oxygen ion densities, as well as the temperature ratios for the ions. It is found that the amplitude of the shock wave decreases with increasing kappa values. The strength of the shock profile decreases with increasing temperatures of the positively charged oxygen ions and densities of negatively charged oxygen ions.
Gold nanoparticles with different capping systems: an electronic and structural XAS analysis.
López-Cartes, C; Rojas, T C; Litrán, R; Martínez-Martínez, D; de la Fuente, J M; Penadés, S; Fernández, A
2005-05-12
Gold nanoparticles (NPs) have been prepared with three different capping systems: a tetralkylammonium salt, an alkanethiol, and a thiol-derivatized neoglycoconjugate. Also gold NPs supported on a porous TiO(2) substrate have been investigated. X-ray absorption spectroscopy (XAS) has been used to determine the electronic behavior of the different capped/supported systems regarding the electron/hole density of d states. Surface and size effects, as well as the role of the microstructure, have been also studied through an exhaustive analysis of the EXAFS (extended X-ray absorption fine structure) data. Very small gold NPs functionalized with thiol-derivatized molecules show an increase in d-hole density at the gold site due to Au-S charge transfer. This effect is overcoming size effects (which lead to a slightly increase of the d-electron density) for high S:Au atomic ratios and core-shell microstructures where an atomically abrupt Au-S interface likely does not exist. It has been also shown that thiol functionalization of very small gold NPs is introducing a strong distortion as compared to fcc order. To the contrary, electron transfer from reduced support oxides to gold NPs can produce a higher increase in d-electron density at the gold site, as compared to naked gold clusters.
NASA Astrophysics Data System (ADS)
Petrov, Pavel
In this thesis we study the properties of strongly-coupled large-N conformal field theories (CFT's) using AdS/CFT correspondence. Chapter 1 serves as an introduction. In Chapter 2 we study the shear viscosity of strongly-coupled large-N conformal field theories. We find that it is affected by R2 corrections to the AdS action and present an example of 4D theory in which the the conjectured universal lower bound on viscosity-to-entropy ratio η/s > 1/4π is violated by 1/N corrections. This fact proves that there is no universal lower bound of 1/4π on viscosity-to-entropy ratio and may be relevant for the studies of QCD quark-gluon plasma for which this ratio is experimentally found to be close to 1/4π. In Chapter 3 we study the formation of the electron star in 4D AdS space. We show that in a gravity theory with charged fermions a layer of charged fermion fluid may form at a finite distance from the charged black hole. We show that these “electron stars” are candidate gravity duals for strongly interacting fermion systems at finite density and finite temperature. Entropy density for such systems scales as s ˜ T2/z at low temperatures as expected from IR criticality of electron stars solutions.
Measurement of polarization-transfer to bound protons in carbon and its virtuality dependence
NASA Astrophysics Data System (ADS)
Izraeli, D.; Brecelj, T.; Achenbach, P.; Ashkenazi, A.; Böhm, R.; Cohen, E. O.; Distler, M. O.; Esser, A.; Gilman, R.; Kolar, T.; Korover, I.; Lichtenstadt, J.; Mardor, I.; Merkel, H.; Mihovilovič, M.; Müller, U.; Olivenboim, M.; Piasetzky, E.; Ron, G.; Schlimme, B. S.; Schoth, M.; Sfienti, C.; Širca, S.; Štajner, S.; Strauch, S.; Thiel, M.; Weber, A.; Yaron, I.; A1 Collaboration
2018-06-01
We measured the ratio Px /Pz of the transverse to longitudinal components of polarization transferred from electrons to bound protons in 12C by the 12C (e → ,e‧ p →) process at the Mainz Microtron (MAMI). We observed consistent deviations from unity of this ratio normalized to the free-proton ratio, (Px /Pz) 12C /(Px /Pz) 1H, for both s- and p-shell knocked out protons, even though they are embedded in averaged local densities that differ by about a factor of two. The dependence of the double ratio on proton virtuality is similar to the one for knocked out protons from 2H and 4He, suggesting a universal behavior. It further implies no dependence on average local nuclear density.
The solar flare iron line to continuum ratio and the coronal abundances of iron and helium
NASA Technical Reports Server (NTRS)
Mckenzie, D. L.
1975-01-01
Narrow band Ross filter measurements of the Fe 25 line flux around 0.185 nm and simultaneous broadband measurements during a solar flare were used to determine the relationship between the solar coronal abundances of iron and helium. The Fe 25 ion population was also determined as a function of time. The proportional counter and the Ross filter on OSO-7 were utilized. The data were analyzed under the separate assumptions that (1) the electron density was high enough that a single temperature could characterize the continuum spectrum and the ionization equilibrium, and that (2) the electron density was low so that the ion populations trailed the electron temperature in time. It was found that the density was at least 5x10 to the 9th power, and that the high density assumption was valid. It was also found that the iron abundance is 0.000011 for a helium abundance of 0.2, relative to hydrogen.
Ab Initio Study of Electronic Structure, Elastic and Transport Properties of Fluoroperovskite LiBeF3
NASA Astrophysics Data System (ADS)
Benmhidi, H.; Rached, H.; Rached, D.; Benkabou, M.
2017-04-01
The aim of this work is to investigate the electronic, mechanical, and transport properties of the fluoroperovskite compound LiBeF3 by first-principles calculations using the full-potential linear muffin-tin orbital method based on density functional theory within the local density approximation. The independent elastic constants and related mechanical properties including the bulk modulus ( B), shear modulus ( G), Young's modulus ( E), and Poisson's ratio ( ν) have been studied, yielding the elastic moduli, shear wave velocities, and Debye temperature. According to the electronic properties, this compound is an indirect-bandgap material, in good agreement with available theoretical data. The electron effective mass, hole effective mass, and energy bandgaps with their volume and pressure dependence are investigated for the first time.
Characteristics of Electronegative Plasma Sheath with q-Nonextensive Electron Distribution
NASA Astrophysics Data System (ADS)
Borgohain, D. R.; Saharia, K.
2018-01-01
The characteristics of sheath in a plasma system containing q-nonextensive electrons, cold fluid ions, and Boltzmann-distributed negative ions are investigated. A modified Bohm sheath criterion is derived by using the Sagdeev pseudopotential technique. It is found that the proposed Bohm velocity depends on the degree of nonextensivity ( q), negative ion temperature to nonextensive electron temperature ratio (σ), and negative ion density ( B). Using the modified Bohm sheath criterion, the sheath characteristics, such as the spatial distribution of the potential, positive ion velocity, and density profile, have been numerically investigated, which clearly shows the effect of negative ions, as well as the nonextensive distribution of electrons. It is found that, as the nonextensivity parameter and the electronegativity increases, the electrostatic sheath potential increases sharply and the sheath width decreases.
NASA Astrophysics Data System (ADS)
Franek, James B.
Argon emission lines, particularly those in the near-infrared region (700-900nm), are used to determine plasma properties in low-temperature, partially ionized plasmas to determine effective electron temperature [Boffard et al., 2012], and argon excited state density [Boffard et al., 2009] using appropriately assumed electron energy distributions. While the effect of radiation trapping influences the interpretation of plasma properties from emission-line ratio analysis, eliminating the need to account for these effects by directly observing the 3px-to-1sy transitions [ Boffard et al., 2012] is preferable in most cases as this simplifies the analysis. In this dissertation, a 1-Torr argon, pulsed positive column in a hollow-cathode discharge is used to study the correlation between four quantities: 420.1-419.8nm emission-line ratio, metastable-atom density, reduced electric field, and electron energy distribution. The extended coronal model is used to acquire an expression for 420.1-419.8nm emission-line ratio, which is sensitive to direct electron-impact excitation of argon excited states as well as stepwise electron-impact excitation of argon excited states for the purpose of inferring plasma quantities from experimental measurements. Initial inspection of the 420.1-419.8nm emission-line ratio suggests the pulse may be empirically divided into three distinct stages labelled the Initiation Stage, Transient Stage, and Post-Transient stage. Using equilibrium electron energy distributions from simulation to deduce excitation rates [Adams et al., 2012] in the extended coronal model affords agreement between predicted and observed metastable density in the Post-Transient stage of the discharge [Franek et al., 2015]. Applying this model-assisted diagnostic technique to the characterization of plasma systems utilizing lower-resolution spectroscopic systems is not straightforward, however, as the 419.8nm and 420.1nm emission-line profiles are convolved and become insufficiently resolved for treating the convolution as two separate emission-lines. To remedy this, the argon 425.9nm emission-line is evaluated as a proxy for the 419.8 nm emission-line. Both emission-lines (419.8nm and 425.9nm) are attributed to direct excitation from the argon ground state. The intensity of the 425.9nm emission-line is compared to the intensity of the 419.8nm emission-line over a range of plasma conditions to infer the same plasma quantities from similar experimental measurements. Discrepancies between the observed intensities of the emission-lines (419.8nm, 425.9nm) are explained by electron-impact cross-sections of their parent states. It is shown that the intensity of the argon 425.9nm emission-line is similar to that of the 419.8nm emission-line. The difference between the observed emission lines (425.9nm, 419.8nm) is attributed to the electron energy distribution in the plasma.
Excitation of atomic nitrogen by electron impact
NASA Technical Reports Server (NTRS)
Stone, E. J.; Zipf, E. C.
1972-01-01
Absolute cross sections were measured for the excitation of the N I(1134, 1164, 1168, 1200, 1243, and 1743 A) multiplets by electron impact on atomic nitrogen. The presence of vibrationally excited molecular nitrogen in the discharged gas was confirmed, and its effect on the measurements is discussed. The ratio of the oscillator strengths of the 1200 and 1134 A resonance transitions is presented, as well as the branching ratio for the N I(1311/1164 A) multiplets. Striking differences in the distribution of intensity between the spectra of atomic nitrogen and molecular nitrogen excited by energetic electrons suggest an optical method for measuring the density of atomic nitrogen in the upper atmosphere.
Thermal conductivity of graphene with defects induced by electron beam irradiation
NASA Astrophysics Data System (ADS)
Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L.; Mulchandani, Ashok; Lake, Roger K.; Balandin, Alexander A.
2016-07-01
We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ~7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 1010 cm-2 to 1.8 × 1011 cm-2 the thermal conductivity decreases from ~(1.8 +/- 0.2) × 103 W mK-1 to ~(4.0 +/- 0.2) × 102 W mK-1 near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ~400 W mK-1. The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management. Electronic supplementary information (ESI) available: Additional thermal conductivity measurements data. See DOI: 10.1039/c6nr03470e
Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field
NASA Astrophysics Data System (ADS)
Xu-Fang, Bai; Ying, Zhang; Wuyunqimuge; Eerdunchaolu
2016-07-01
Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic potential quantum dot under an applied magnetic field, thus built up a quantum dot magneto-bipolaron qubit. The results show that the oscillation period of the probability density of the two electrons in the qubit decreases with increasing electron-phonon coupling strength α, resonant frequency of the magnetic field ω c, confinement strength of the quantum dot ω 0, and dielectric constant ratio of the medium η the probability density of the two electrons in the qubit oscillates periodically with increasing time t, angular coordinate φ 2, and dielectric constant ratio of the medium η the probability of electron appearing near the center of the quantum dot is larger, and the probability of electron appearing away from the center of the quantum dot is much smaller. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2013407119) and the Items of Institution of Higher Education Scientific Research of Hebei Province and Inner Mongolia, China (Grant Nos. ZD20131008, Z2015149, Z2015219, and NJZY14189).
Electron heating and energy inventory during asymmetric reconnection in a laboratory plasma
NASA Astrophysics Data System (ADS)
Yoo, J.; Na, B.; Jara-Almonte, J.; Yamada, M.; Ji, H.; Roytershteyn, V.; Argall, M. R.; Fox, W.; Chen, L. J.
2017-12-01
Electron heating and the energy inventory during asymmetric reconnection are studied in the Magnetic Reconnection Experiment (MRX) [1]. In this plasma, the density ratio is about 8 across the current sheet. Typical features of asymmetric reconnection such as the large density gradients near the low-density-side separatrices, asymmetric in-plane electric field, and bipolar out-of-plane magnetic field are observed. Unlike the symmetric case [2], electrons are also heated near the low-density-side separatrices. The measured parallel electric field may explain the observed electron heating. Although large fluctuations driven by lower-hybrid drift instabilities are also observed near the low-density-side separatrices, laboratory measurements and numerical simulations reported here suggest that they do not play a major role in electron energization. The average electron temperature increase in the exhaust region is proportional to the incoming magnetic energy per an electron/ion pair but exceeds the scaling of the previous space observations [3]. This discrepancy is explained by differences in the boundary condition and system size. The profile of electron energy gain from the electric field shows that there is additional electron energy gain associated with the electron diamagnetic current besides a large energy gain near the X-line. This additional energy gain increases electron enthalpy, not the electron temperature. Finally, a quantitative analysis of the energy inventory during asymmetric reconnection is conducted. Unlike the symmetric case where the ion energy gain is about twice more than the electron energy gain [4], electrons and ions obtain a similar amount of energy during asymmetric reconnection. [1] J. Yoo et al., accepted for a publication in J. Geophys. Res. [2] J. Yoo et al., Phys. Plasmas 21, 055706 (2014). [3] T. Phan et al., Geophys. Res. Lett. 40, 4475 (2013). [4] M. Yamada et al., Nat. Comms. 5, 4474 (2014).
Progress in Electron Beam Mastering of 100 Gbit/inch2 Density Disc
NASA Astrophysics Data System (ADS)
Takeda, Minoru; Furuki, Motohiro; Yamamoto, Masanobu; Shinoda, Masataka; Saito, Kimihiro; Aki, Yuichi; Kawase, Hiroshi; Koizumi, Mitsuru; Miyokawa, Toshiaki; Mutou, Masao; Handa, Nobuo
2004-07-01
We developed an electron beam recorder (EBR) capable of recording master discs under atmospheric conditions using a novel differential pumping head. Using the EBR and optimized fabrication process for Si-etched discs with reactive ion etching (RIE), a bottom signal jitter of 9.6% was obtained from a 36 Gbit/inch2 density disc, readout using a near-field optical pickup with an effective numerical aperture (NA) of 1.85 and a wavelength of 405 nm. We also obtained the eye patterns from a 70 Gbit/inch2 density disc readout using an optical pickup with a 2.05 NA and the same wavelength, and showed almost the same modulation ratio as the simulation value. Moreover, the capability of producing pit patterns corresponding to a 104 Gbit/inch2 density is demonstrated.
Oster, L; Horowitz, Y S; Biderman, S; Haddad, J
2003-12-01
We demonstrate the viability of the concept of using existing molecular nanostructures in thermoluminescent solid-state materials as solid-state nanodosimeters. The concept is based on mimicking radiobiology (specifically the ionization density dependence of double strand breaks in DNA) by using the similar ionization density dependence of simultaneous electron-hole capture in spatially correlated trapping and luminescent centres pairs in the thermoluminescence of LiF:Mg,Ti. This simultaneous electron-hole capture has been shown to lead to ionization density dependence in the relative intensity of peak 5a to peak 5 similar to the ratio of double-strand breaks to single-strand breaks for low energy He ions.
Kenmochi, N; Minami, T; Takahashi, C; Tei, S; Mizuuchi, T; Kobayashi, S; Nagasaki, K; Nakamura, Y; Okada, H; Kado, S; Yamamoto, S; Ohshima, S; Konoshima, S; Shi, N; Zang, L; Ohtani, Y; Kasajima, K; Sano, F
2014-11-01
A Nd:YAG Thomson scattering system has been developed for Heliotron J. The system consists of two 550 mJ 50 Hz lasers, large collection optics, and 25 radial channel (∼1 cm spatial resolution) interference polychromators. This measurement system achieves a S/N ratio of ∼50 for low-density plasma (ne ∼ 0.5 × 10(19) m(-3)). A time evolution of electron temperature profiles was measured with this system for a high-intensity gas-puff (HIGP) fueling neutral-beam-injection plasma. The peripheral temperature of the higher-density phase after HIGP recovers to the low-density pre-HIGP level, suggesting that improving particle transport in the HIGP plasma may be possible.
Microstructures of Ni-AlN composite coatings prepared by pulse electrodeposition technology
NASA Astrophysics Data System (ADS)
Xia, Fafeng; Xu, Huibin; Liu, Chao; Wang, Jinwu; Ding, Junjie; Ma, Chunhua
2013-04-01
Ni-AlN composite coating was fabricated onto the surface of steel substrates by using pulse electrodeposition (PED) technique in this work. The effect of pulse current on the nucleation and growth of grains was investigated using transmission electronic microscopy (TEM), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and atomic force microscopy (AFM), respectively. The results show that the contents of AlN nanoparticles increase with density of pulse current and on-duty ratio of pulse current increasing. Whereas the size of nickel grains decreases with density of pulse current increasing and on-duty ratio of pulse current decreasing. Ni-AlN composite coating consists of crystalline nickel (˜68 nm) and AlN particles (˜38 nm). SEM and AFM observations show that the composite coatings obtained by PED showed more compact surfaces and less grain sizes, whereas those obtained by direct current electrodepositing have rougher surfaces and bigger grain sizes.
Amplification of a high-frequency electromagnetic wave by a relativistic plasma
NASA Technical Reports Server (NTRS)
Yoon, Peter H.
1990-01-01
The amplification of a high-frequency transverse electromagnetic wave by a relativistic plasma component, via the synchrotron maser process, is studied. The background plasma that supports the transverse wave is considered to be cold, and the energetic component whose density is much smaller than that of the background component has a loss-cone feature in the perpendicular momentum space and a finite field-aligned drift speed. The ratio of the background plasma frequency squared to the electron gyrofrequency squared is taken to be sufficiently larger than unity. Such a parameter regime is relevant to many space and astrophysical situations. A detailed study of the amplification process is carried out over a wide range of physical parameters including the loss-cone index, the ratio of the electron mass energy to the temperature of the energetic component, the field-aligned drift speed, the normalized density, and the wave propagation angle.
X-ray line ratios from helium-like ions - Updated theory and SMM flare observations
NASA Technical Reports Server (NTRS)
Wolfson, C. J.; Leibacher, J. W.; Doyle, J. G.; Phillips, K. J. H.
1983-01-01
The potential which the conduction of measurements of the three principal lines emitted from helium-like ions has for the determination of plasma electron density was initially pointed out by Gabriel and Jordan (1969). The diagnostic technique is based on the fact that the ratio, R, of the intensity of a forbidden line to the intensity of an intercombination line decreases as electron density increases due to collisional excitation of levels. In the present investigation a further refinement of this procedure is provided by specifically calculating the effects of cascades from levels with principal quantum numbers up to n=6. Two improved spectrometers recently placed in operation include the SOLEX instrument on the satellite P78-1 and the X-ray Polychromator (XRP) instrument on the NASA Solar Maximum Mission satellite. Measurements obtained with one of the spectrometers making up the XRP are presented, taking into account the emission from Ne IX ions.
X-ray line ratios from helium-like ions - Updated theory and SMM flare observations
NASA Astrophysics Data System (ADS)
Wolfson, C. J.; Leibacher, J. W.; Doyle, J. G.; Phillips, K. J. H.
1983-06-01
The potential which the conduction of measurements of the three principal lines emitted from helium-like ions has for the determination of plasma electron density was initially pointed out by Gabriel and Jordan (1969). The diagnostic technique is based on the fact that the ratio, R, of the intensity of a forbidden line to the intensity of an intercombination line decreases as electron density increases due to collisional excitation of levels. In the present investigation a further refinement of this procedure is provided by specifically calculating the effects of cascades from levels with principal quantum numbers up to n=6. Two improved spectrometers recently placed in operation include the SOLEX instrument on the satellite P78-1 and the X-ray Polychromator (XRP) instrument on the NASA Solar Maximum Mission satellite. Measurements obtained with one of the spectrometers making up the XRP are presented, taking into account the emission from Ne IX ions.
NASA Astrophysics Data System (ADS)
Reader, Joseph; Podpaly, Yuri; Ralchenko, Yuri; Gillaspy, John
2013-05-01
Extreme ultraviolet spectra of highly charged krypton atoms were produced with an electron beam ion trap (EBIT) and recorded with a flat-field grazing-incidence spectrometer. The wavelength range was 3-18 nm. Wavelength calibration was provided by known lines of highly ionized Kr as well as spectra of C, O, Xe, and Ba. The observed spectra were interpreted with the aid of collisional-radiative modeling of the EBIT plasma. For the Al-like ion Kr23+ the allowed resonance lines 3s23p 2P-3s23d 2D exhibited extreme deviation from the normal ratios for lines of this multiplet. In particular, the 2P3/2-2D5/2 transition, normally the strongest, was observed to be the weakest. This effect was explained by the fact that in the low electron density environment of EBIT the 2D5/2 level is primarily populated by electron excitation from 2P3/2. However, the presence of a magnetic dipole M1 transition 3s23p 2P1/2-2P3/2 reduces the population of 2P3/2 and hence the population of 2D5/2. We are conducting further modeling with varying electron density to try to reproduce the observed line ratios. This could serve as a diagnostic tool for determining electron density in EBIT and fusion energy devices. Supported by Office of Fusion Energy Sciences of Dept. of Energy.
Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys
NASA Astrophysics Data System (ADS)
Al, Selgin; Arikan, Nihat; Demir, Süleyman; Iyigör, Ahmet
2018-02-01
The electronic band structure, elastic and vibrational spectra of Rh2FeAl and Rh2YAl alloys were computed in detail by employing an ab-initio pseudopotential method and a linear-response technique based on the density-functional theory (DFT) scheme within a generalized gradient approximation (GGA). Computed lattice constants, bulk modulus and elastic constants were compared. Rh2YAl exhibited higher ability to resist volume change than Rh2FeAl. The elastic constants, shear modulus, Young modulus, Poisson's ratio, B/G ratio electronic band structure, total and partial density of states, and total magnetic moment of alloys were also presented. Rh2FeAl showed spin up and spin down states whereas Rh2YAl showed none due to being non-magnetic. The calculated total densities of states for both materials suggest that both alloys are metallic in nature. Full phonon spectra of Rh2FeAl and Rh2YA1 alloys in the L21 phase were collected using the ab-initio linear response method. The obtained phonon frequencies were in the positive region indicating that both alloys are dynamically stable.
NASA Technical Reports Server (NTRS)
Crannell, C. J.; Joyce, G.; Ramaty, R.; Werntz, C.
1976-01-01
The gamma-ray line produced at 0.51-MeV was studied and is shown to be the result of either of free annihilation of positrons with electrons or of the decay of positronium by 2-photon emission. Positron annihilation from the bound state of positronium may also proceed by 3-photon emission, resulting in a continuum with energies up to 0.51-MeV. Accurate calculations of the rates of free annihilation and positronium formation in a solar-flare plasma are presented. Estimates of the positronium-formulation rates by charge exchange and the rates of dissociation and quenching are also considered. The temperature and density dependence of the ratio of 3-photon to 2-photon emission was obtained. It is shown that when the ratio of free electrons to neutral atoms in the plasma is approximately unity or greater, the Doppler width of the 0.51-MeV line is a function of the temperature of the annihilation region. For the small ion densities characteristics of the photosphere, the width is predominantly a function of the density.
NASA Astrophysics Data System (ADS)
Maqsood, Saba; Rashid, Muhammad; Din, Fasih Ud; Saddique, M. Bilal; Laref, A.
2018-03-01
The cubic XFeO3 (X = Sr, Ba) perovskite oxides are studied for their thermodynamic stability in the ferromagnetic phase by using density functional theory calculations. We also explore the elastic properties of these compounds in terms of elastic constants C ij, bulk modulus B, shear modulus G, anisotropy factor A, Poisson's ratio ν and the B/ G ratio. The electronic properties are examined to elucidate the magnetic order, and the thermoelectric properties of XFeO3 (X = Sr, Ba) materials are also presented. The modified Becke-Johnson local density approximation scheme has been used to compute the electronic band structure and density of states, which show that these materials are half-metallic ferromagnetic. We study the magnetic properties by computing the crystal field energy (ΔCF), John-Teller energy (ΔJT) and the exchange splitting energies Δx( d) and Δx( pd). Our results indicate that strong hybridization causes a decrease in the magnetic moment of Fe, which then produces permanent magnetic moments in the nonmagnetic sites.
Electron Excitation of High Dipole Moment Molecules
NASA Astrophysics Data System (ADS)
Goldsmith, Paul; Kauffmann, Jens
2018-01-01
Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the “dense” gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H2 molecules, ~10^5 for HCN, yields the requirements for electron excitation to be of practical importance if n(H2) < 10^{5.5} /cm3 and X(e-) > 10^{-5}, where the numerical factors reflect critical values n_c(H2) and X^*(e-). This indicates that in regions where a large fraction of carbon is ionized, X(e-) will be large enough to make electron excitation significant. The situation is in general similar for other “high density tracers”, including HCO+, CN, and CS. But there are significant differences in the critical electron fractional abundance, X^*(e-), defined by the value required for equal effect from collisions with H2 and e-. Electron excitation is, for example, unimportant for CO and C+. Electron excitation may be responsible for the surprisingly large spatial extent of the emission from dense gas tracers in some molecular clouds (Pety et al. 2017, Kauffmann, Goldsmith et al. 2017, A&A, submitted). The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO+ ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non--static.
Characterization of hot dense plasma with plasma parameters
NASA Astrophysics Data System (ADS)
Singh, Narendra; Goyal, Arun; Chaurasia, S.
2018-05-01
Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.
Sherratt, Samuel C R; Mason, R Preston
2018-01-31
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differentially influence lipid oxidation, signal transduction, fluidity, and cholesterol domain formation, potentially due in part to distinct membrane interactions. We used small angle X-ray diffraction to evaluate the EPA and DHA effects on membrane structure. Membrane vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol (C) (0.3C:POPC mole ratio) were prepared and treated with vehicle, EPA, or DHA (1:10 mol ratio to POPC). Electron density profiles generated from the diffraction data showed that EPA increased membrane hydrocarbon core electron density over a broad area, up to ± 20 Å from the membrane center, indicating an energetically favorable extended orientation for EPA likely stabilized by van der Waals interactions. By contrast, DHA increased electron density in the phospholipid head group region starting at ± 12 Å from the membrane center, presumably due to DHA-surface interactions, with coincident reduction in electron density in the membrane hydrocarbon core centered ± 7-9 Å from the membrane center. The membrane width (d-space) decreased by 5 Å in the presence of vehicle as the temperature increased from 10 °C to 30 °C due to increased acyl chain trans-gauche isomerizations, which was unaffected by addition of EPA or DHA. The influence of DHA on membrane structure was modulated by temperature changes while the interactions of EPA were unaffected. The contrasting EPA and DHA effects on membrane structure indicate distinct molecular locations and orientations that may contribute to observed differences in biological activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Auroral excitation of the N2 2P(0,0) and VK(0,9) bands
NASA Technical Reports Server (NTRS)
Solomon, Stanley C.
1989-01-01
The low-energy secondary electron flux caused by auroral electron precipitation is examined using data from the Atmosphere Explorer C satellite. An energetic electron transport algorithm is used to compute the differential electron flux produced by measured primaries. Emissions of N2 in the 2P(0,0) band at 337 nm and the VK(0,9) band at 335 nm predicted by the model are compared with photometric observation of their combined volume emission rate altitude profile made by the visible airglow experiment. Reasonable correspondence between model and measurement is obtained. Ratios of emissions at 337 nm and 630 nm to the N2(+) 1N(0,0) band at 428 nm are also studied. It is concluded that the 337/428 nm ratio responds to changes in the characteristic energy of primary auroral electrons only insofar as part of the 337 nm brightness is due to N2 VK(0,9) emission. The 630/428 nm ratio, which is strongly dependent on characteristic energy, also varies significantly with changes in atomic oxygen density.
Secondary electron emission yield from high aspect ratio carbon velvet surfaces
Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny
2017-11-01
The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvetmore » samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. Furthermore, the results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.« less
Secondary electron emission yield from high aspect ratio carbon velvet surfaces
NASA Astrophysics Data System (ADS)
Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny
2017-11-01
The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvet samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. The results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.
Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L
2012-10-01
We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.
Electron-acoustic solitary waves in dense quantum electron-ion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, A. P.; Shukla, P. K.; Bhowmik, C.
2007-08-15
A quantum hydrodynamic (QHD) model is used to investigate the propagation characteristics of nonlinear electron-acoustic solitary waves (EASWs) in a dense quantum plasma whose constituents are two groups of electrons: one inertial cold electrons and other inertialess hot electrons, and the stationary ions which form the neutralizing background. By using the standard reductive perturbation technique, a Kadomtsev-Petviashvili (KP) equation, which governs the dynamics of EASWs, is derived in both spherical and cylindrical geometry. The effects of cold electrons and the density correlations due to quantum fluctuations on the profiles of the amplitudes and widths of the solitary structures are examinedmore » numerically. The nondimensional parameter {delta}=n{sub c0}/n{sub h0}, which is the equilibrium density ratio of the cold to hot electron component, is shown to play a vital role in the formation of both bright and dark solitons. It is also found that the angular dependence of the physical quantities and the presence of cold electrons in a quantum plasma lead to the coexistence of some new interesting novel solitary structures quite distinctive from the classical ones.« less
Evidence of charge exchange pumping in calcium-xenon system
NASA Technical Reports Server (NTRS)
Chubb, D. L.
1973-01-01
Charge exchange between xenon ions and calcium atoms may produce an inversion between the 5s or 4d and 4p energy levels of the calcium ions. A low power flowing xenon plasma seeded with calcium was utilized to determine if charge exchange or electron collisions populate the 5s and 4d levels Ca(+). Line intensity ratios proportional to the density ratios n5s/n4p and n4d/n4p were measured. From the dependence of these intensity ratios on power input to the xenon plasma it was concluded that charge exchange pumping of the 5s and 4d levels predominates over electron collisional pumping of these levels. Also, by comparing intensity ratios obtained using argon and krypton in place of xenon with those obtained in xenon the same conclusion was made.
SEPAC data analysis in support of the environmental interaction program
NASA Technical Reports Server (NTRS)
Lin, Chin S.
1990-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a two dimensional electrostatic particle code. The ionization effects of spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged space craft produced an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the space craft charging potential measured during the SEPAC experiments from Spacelab 1. A second paper is presented in which a two dimensional electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.
Theory and simulations of current drive via injection of an electron beam in the ACT-1 device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuda, H.; Horton, R.; Ono, M.
1985-02-01
One- and two-dimensional particle simulations of beam-plasma interaction have been carried out in order to understand current drive experiments that use an electron beam injected into the ACT-1 device. Typically, the beam velocity along the magnetic field is V = 10/sup 9/ cm/sec while the thermal velocity of the background electrons is v/sub t/ = 10/sup 8//cm. The ratio of the beam density to the background density is about 10% so that a strong beam-plasma instability develops causing rapid diffusion of beam particles. For both one- and two- dimensional simulations, it is found that a significant amount of beam andmore » background electrons is accelerated considerably beyond the initial beam velocity when the beam density is more than a few percent of the background plasma density. In addition, electron distribution along the magnetic field has a smooth negative slope, f' (v/sub parallel/) < 0, for v/ sub parallel/ > 0 extending v/sub parallel/ = 1.5 V approx. 2 V, which is in sharp contrast to the predictions from quasilinear theory. An estimate of the mean-free path for beam electrons due to Coulomb collisions reveals that the beam electrons can propagate a much longer distance than is predicted from a quasilinear theory, due to the presence of a high energy tail. These simulation results agree well with the experimental observations from the ACT-1 device.« less
Barbui, T.; Krychowiak, M.; König, R.; ...
2016-09-27
A beam emission spectroscopy system on thermal helium (He) and neon (Ne) has been set up at Wendelstein 7-X to measure edge electron temperature and density profiles utilizing the line-ratio technique or its extension by the analysis of absolutely calibrated line emissions. The setup for a first systematic test of these techniques of quantitative atomic spectroscopy in the limiter startup phase (OP1.1) is reported together with first measured profiles. Lastly, this setup and the first results are an important test for developing the technique for the upcoming high density, low temperature island divertor regime.
Ultra-Fine Highly Energetic Core-Shell Nanoparticles with Triggerable Protective Coatings
2013-02-01
volume ratios and strong electronic coupling, which offers higher stored energy densities and decreased warhead size. Current technologies produce nano...aluminum (Al) – the most attractive high-energetic candidate for the use in explosives because of its density and high relative heat of oxide...major breakthrough in the area of explosive materials. II. Project Objectives The overall objective of this research program was to develop a new
NASA Astrophysics Data System (ADS)
Daprà, M.; Henkel, C.; Levshakov, S. A.; Menten, K. M.; Muller, S.; Bethlem, H. L.; Leurini, S.; Lapinov, A. V.; Ubachs, W.
2017-12-01
The dependence of the proton-to-electron mass ratio, μ, on the local matter density was investigated using methanol emission in the dense dark cloud core L1498. Towards two different positions in L1498, five methanol transitions were detected and an extra line was tentatively detected at a lower confidence level in one of the positions. The observed centroid frequencies were then compared with their rest-frame frequencies derived from least-squares fitting to a large data set. Systematic effects, as the underlying methanol hyperfine structure and the Doppler tracking of the telescope, were investigated and their effects were included in the total error budget. The comparison between the observations and the rest-frame frequencies constrains potential μ variation at the level of Δμ/μ < 6 × 10-8, at a 3σ confidence level. For the dark cloud, we determine a total CH3OH (A+E) beam averaged column density of ∼3-4 × 1012 cm-2 (within roughly a factor of two), an E- to A-type methanol column density ratio of N(A-CH3OH)/N(E-CH3OH) ∼1.00 ± 0.15, a density of n(H2) = 3 × 105 cm-3 (again within a factor of two) and a kinetic temperature of Tkin = 6 ± 1 K. In a kinetic model including the line intensities observed for the methanol lines, the n(H2) density is higher and the temperature is lower than that derived in previous studies based on different molecular species; the intensity of the 10 → 1-1 E line strength is not well reproduced.
Excitation of lower hybrid waves by a spiraling ion beam in a magnetized dusty plasma cylinder
NASA Astrophysics Data System (ADS)
Sharma, Suresh C.; Walia, Ritu
2008-09-01
A spiraling ion beam propagating through a magnetized dusty plasma cylinder drives electrostatic lower hybrid waves to instability via cyclotron interaction. Numerical calculations of the growth rate and unstable mode frequencies have been carried out for the Princeton Q-1 device using the experimental dusty plasma parameters [e.g., Barkan et al., Planet. Space Sci. 43, 905 (1995)]. It is found that as the density ratio δ(=nio/neo, where ni0 is the ion plasma density and ne0 is the electron density) of negatively charged dust grains to electrons increases, the unstable mode frequency of the lower hybrid waves increases. In addition, the growth rate of the instability also increases with the density ratio δ. In other words, the presence of negatively charged dust grains can further destabilize the lower hybrid wave instability. The growth rate has the largest value for the modes where Jl(pnro) is maximum [here pn=xn/r0, where pn is the perpendicular wave number in cm-1, r0 is the plasma radius, and xn are the zeros of the Bessel function J1(x )] i.e., whose eigenfunctions peak at the location of the beam. The growth rate scales as one third power of the beam current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gul, Banat, E-mail: banatgul@gmail.com; Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp; Aman-ur-Rehman, E-mail: amansadiq@gmail.com
Fluid model has been applied to perform a comparative study of hydrogen bromide (HBr)/He and HBr/Ar capacitively coupled plasma discharges that are being used for anisotropic etching process. This model has been used to identify the most dominant species in HBr based plasmas. Our simulation results show that the neutral species like H and Br, which are the key player in chemical etching, have bell shape distribution, while ions like HBr{sup +}, Br{sup +}, which play a dominant rule in the physical etching, have double humped distribution and show peaks near electrodes. It was found that the dilution of HBrmore » by Ar and/or He results in an increase in electron density and electron temperature, which results in more ionization and dissociation and hence higher densities of neutral and charged species can be achieved. The ratio of positive ion flux to the neutral flux increases with an increase in additive gas fraction. Compare to HBr/He plasma, the HBr/Ar plasma shows a maximum change in the ion density and flux and hence the etching rate can be considered in the ion-assisted and in the ion-flux etch regime in HBr/Ar discharge. The densities of electron and other dominant species in HBr/Ar plasma are higher than those of HBr/He plasma. The densities and fluxes of the active neutrals and positive ions for etching and subsequently chemical etching versus physical sputtering in HBr/Ar and HBr/He plasmas discharge can be controlled by tuning gas mixture ratio and the desire etching can be achieved.« less
The influence of gas pressure on E↔H mode transition in argon inductively coupled plasmas
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Zhang, Zhong-kai; Cao, Jin-xiang; Liu, Yu; Yu, Peng-cheng
2018-03-01
Considering the gas pressure and radio frequency power change, the mode transition of E↔H were investigated in inductively coupled plasmas. It can be found that the transition power has almost the same trend decreasing with gas pressure, whether it is in H mode or E mode. However, the transition density increases slowly with gas pressure from E to H mode. The transition points of E to H mode can be understood by the propagation of electromagnetic wave in the plasma, while the H to E should be illustrated by the electric field strength. Moreover, the electron density, increasing with the pressure and power, can be attributed to the multiple ionization, which changes the energy loss per electron-ion pair created. In addition, the optical emission characteristics in E and H mode is also shown. The line ratio of I750.4 and I811.5, taken as a proxy of the density of metastable state atoms, was used to illustrate the hysteresis. The 750.4 nm line intensity, which has almost the same trend with the 811.5 nm line intensity in H mode, both of them increases with power but decreases with gas pressure. The line ratio of 811.5/750.4 has a different change rule in E mode and H mode, and at the transition point of H to E, it can be one significant factor that results in the hysteresis as the gas pressure change. And compared with the 811.5 nm intensity, it seems like a similar change rule with RF power in E mode. Moreover, some emitted lines with lower rate constants don't turn up in E mode, while can be seen in H mode because the excited state atom density increasing with the electron density.
NASA Astrophysics Data System (ADS)
Zidi, Y.; Méçabih, S.; Abbar, B.; Amari, S.
2018-02-01
We have investigated the structural, electronic and elastic properties of transition-metal carbides ZnxNb1-xC alloys in the range of 0 ≤ x ≤ 1 using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) and GGA + U (where U is the Hubbard correlation terms) approach is used to perform the calculations presented here. The lattice parameters, the bulk modulus, its pressure derivative and the elastic constants were determined. We have obtained Young's modulus, shear modulus, Poisson's ratio, anisotropy factor by the aid of the calculated elastic constants. We discuss the total and partial densities of states and charge densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenmochi, N., E-mail: kemmchi.naoki.62r@st.kyoto-u.ac.jp; Tei, S.; Zang, L.
2014-11-15
A Nd:YAG Thomson scattering system has been developed for Heliotron J. The system consists of two 550 mJ 50 Hz lasers, large collection optics, and 25 radial channel (∼1 cm spatial resolution) interference polychromators. This measurement system achieves a S/N ratio of ∼50 for low-density plasma (n{sub e} ∼ 0.5 × 10{sup 19} m{sup −3}). A time evolution of electron temperature profiles was measured with this system for a high-intensity gas-puff (HIGP) fueling neutral-beam-injection plasma. The peripheral temperature of the higher-density phase after HIGP recovers to the low-density pre-HIGP level, suggesting that improving particle transport in the HIGP plasma maymore » be possible.« less
X-ray imaging spectroscopic diagnostics on Nike
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.; Ralchenko, Yu.
2017-10-01
Electron temperature and density diagnostics of the laser plasma produced within the focal spot of the NRL's Nike laser are being explored with the help of X-ray imaging spectroscopy. Spectra of He-like and H-like ions were taken by Nike focusing spectrometers in a range of lower (1.8 kev, Si XIV) and higher (6.7 kev, Fe XXV) x-ray energies. Data that were obtained with spatial resolution were translated into the temperature and density as functions of distance from the target. As an example electron density was determined from He-like satellites to Ly-alpha in Si XIV. The dielectronic satellites with intensity ratios that are sensitive to collisional transfer of population between different triplet groups of double-excited states 2l2l' in Si XIII were observed with high spatial and spectral resolution Lineouts taken at different axial distances from the planar Si target show changing spectral shapes due to the different electron densities as determined by supporting non-LTE simulations. These shapes are relatively insensitive to the plasma temperature which was measured using different spectral lines. This work was supported by the US DOE/NNSA.
NASA Astrophysics Data System (ADS)
Dang, Tong; Zhang, Binzheng; Wiltberge, Michael; Wang, Wenbin; Varney, Roger; Dou, Xiankang; Wan, Weixing; Lei, Jiuhou
2018-01-01
In this study, the correlations between the fluxes of precipitating soft electrons in the cusp region and solar wind coupling functions are investigated utilizing the Lyon-Fedder-Mobarry global magnetosphere model simulations. We conduct two simulation runs during periods from 20 March 2008 to 16 April 2008 and from 15 to 24 December 2014, which are referred as "Equinox Case" and "Solstice Case," respectively. The simulation results of Equinox Case show that the plasma number density in the high-latitude cusp region scales well with the solar wind number density (ncusp/nsw=0.78), which agrees well with the statistical results from the Polar spacecraft measurements. For the Solstice Case, the plasma number density of high-latitude cusp in both hemispheres increases approximately linearly with upstream solar wind number density with prominent hemispheric asymmetry. Due to the dipole tilt effect, the average number density ratio ncusp/nsw in the Southern (summer) Hemisphere is nearly 3 times that in the Northern (winter) Hemisphere. In addition to the solar wind number density, 20 solar wind coupling functions are tested for the linear correlation with the fluxes of precipitating cusp soft electrons. The statistical results indicate that the solar wind dynamic pressure p exhibits the highest linear correlation with the cusp electron fluxes for both equinox and solstice conditions, with correlation coefficients greater than 0.75. The linear regression relations for equinox and solstice cases may provide an empirical calculation for the fluxes of cusp soft electron precipitation based on the upstream solar wind driving conditions.
NASA Astrophysics Data System (ADS)
Guidoni, Silvina E.; McKenzie, David E.; Longcope, Dana W.; Plowman, Joseph E.; Yoshimura, Keiji
2013-03-01
Candle-flame shaped flares are archetypical structures that represent indirect evidence of magnetic reconnection. For long-lived events, most of their observed features can be explained with the classic magnetic reconnection model of solar flares, the CSHKP model. A flare resembling 1992 Tsuneta's famous candle-flame flare occurred on January 28 2011; we present its temperature and electron density diagnostics. This flare was observed with Hinode/XRT, SDO/AIA, and STEREO (A)/EUVI, resulting in high resolution, broad temperature coverage, and stereoscopic views of this iconic structure. Our XRT filter-ratio temperature and density maps corroborate the general reconnection scenario. The high temperature images reveal a brightening that grows in size to form a tower-like structure at the top of the post-flare arcade, a feature that has been observed in other long duration events. This tower is a localized density increase, as shown by our XRT electron density maps. Despite the extensive work on the standard reconnection scenario, there is no complete agreement among models regarding the nature of this tower-like structure. The XRT maps also reveal that reconnected loops that are successively connected at their tops to this tower develop a density increase in one of their legs that can reach over 2 times the density value of the other leg, giving the appearance of ``half-loops''. Their density is nevertheless still lower than at the tower. These jumps in density last longer than several acoustic transit times along the loops. We use STEREO images to show that the half-loop brightening is not a line-of- sight projection effect of the type suggested by Forbes and Acton (1996). This would indicate that asymmetric reconnection took place between loops originally belonging to systems with different magnetic field strengths, densities, and temperatures. We hypothesize that the heat generated by reconnection's slow shocks is then transferred to each leg of the loop at different rates. Therefore, the increase in electron density due to chromospheric evaporation is different in each leg. Thermal pressure balance between the legs is prevented by shocked plasma at the top of the loops. We also present preliminary results comparing a new fast DEM method that uses SDO/AIA data with the XRT filter ratio method. Both methods complement each other, they agree at the overlap between their instruments' temperature response functions (3-12 MK) while the SDO/AIA method works well at lower temperatures and the XRT one at higher temperatures.
Ionising sources in the coma of 67P probed by Rosetta
NASA Astrophysics Data System (ADS)
Heritier, Kevin; Galand, Marina; Henri, Pierre; Eriksson, Anders; Odelstad, Elias; Altwegg, Kathrin; Beth, Arnaud; Broiles, Thomas; Burch, Jim; Carr, Christopher; Cupido, Emanuele; Glassmeier, Karl-Heinz; Nilsson, Hans; Richter, Ingo; Rubin, Martin; Vallieres, Xavier; Vigren, Erik
2017-04-01
An ionospheric model has been developed in order to quantify the ion number density in the coma of 67P/Churyumov-Gerasimenko. The model is driven by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Cometary Pressure Sensor (COPS) neutral density and assumes isentropic expansion for the neutral density profile. The two ionisation sources considered are photo-ionisation by solar extreme ultraviolet (EUV) radiation and electron-impact ionisation. The EUV radiation is estimated from fluxes measured by the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/ Solar EUV Experiment (SEE), taking into account the phase shift and the heliocentric distance ratio; between Earth and comet 67P. The electron-impact ionisation production rates are derived from Rosetta Plasma Consortium (RPC)-Ion and Electron Sensor (IES) integrated electron fluxes and corrected for the S/C potential from RPC/LAngmuir Probe (LAP) measurements. Our results are compared with in situ measurements of the plasma density from RPC-Mutual Impedance Probe (MIP) and RPC-LAP. There is a good agreement between the modelled and RPC observed electron densities. The ionospheric model enables to distinguish the relative contributions of the different sources to the total cometary plasma. At high heliocentric distances, electron-impact ionisation becomes the dominant ionisation source and is enhanced over the winter hemisphere. As the solar activity has decreased since the beginning of the mission in 2014, the relative importance of photo-ionisation has decreased as well. However, at low heliocentric distances, photo-ionisation seems to be the most dominant ionising source, in particular through the perihelion period in summer 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greb, Arthur, E-mail: ag941@york.ac.uk; Niemi, Kari; O'Connell, Deborah
2014-12-08
A diagnostic method for the simultaneous determination of atomic oxygen densities and mean electron energies is demonstrated for an atmospheric pressure radio-frequency plasma jet. The proposed method is based on phase resolved optical emission measurements of the direct and dissociative electron-impact excitation dynamics of three distinct emission lines, namely, Ar 750.4 nm, O 777.4 nm, and O 844.6 nm. The energy dependence of these lines serves as basis for analysis by taking into account two line ratios. In this frame, the method is highly adaptable with regard to pressure and gas composition. Results are benchmarked against independent numerical simulations and two-photon absorption laser-inducedmore » fluorescence experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat; Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok
2015-04-24
Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) canmore » be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.« less
Properties of the solar wind electrons between 1 and 3.3 AU from Ulysses thermal noise measurements
NASA Technical Reports Server (NTRS)
Maksimovic, M.; Hoang, S.; Bougeret, J. L.
1995-01-01
In order to describe the distribution function f(v) of the solar wind electrons, the simplest model which is commonly used consists of the sum of two Maxwellians representing two distinct populations: a core (density n(sub c), temperature T(sub c)) and a halo (density n(sub h), temperature T(sub h)). It is possible, with the latter assumptions on the electron f(v), to determine the quasi-thermal noise (QTN) induced on an antenna by the motion of the ambient electrons in the solar wind. Using this distribution and the spectroscopy of thermal noise measurements from the radio receiver on Ulysses in the ecliptic plane, we deduce the total electron density N(sub e), the core temperature T(sub c), and the core and halo kinetic pressures N(sub c)T(sub c) and N(sub h)T(sub h). From these electron parameters, we can define a 'global' electron temperature as T(sub e) = (N(sub c)T(sub c) + N(sub h)T(sub h))/N(sub e). Here we present different radial gradients of T(sub e), between 1 and 3.3 AU, as a function of three classes of N(sub e) at 1 AU: low, intermediate, and high densities. In general all these gradients are found to be positive with different polytrope power law indexes between N(sub e) and T(sub e), which are in general lower than unity. We also show different behaviors of the ratio N(sub h)T(sub h)/N(sub c)T(sub c) for each density class considered. Some possible interpretations for these observations are discussed.
FE-XIII Infrared / FE-XIV Green Line Ratio Diagnostics (P55)
NASA Astrophysics Data System (ADS)
Srivastava, A. K.; et al.
2006-11-01
aks.astro.itbhu@gmail.com We consider the first 27-level atomic model of Fe XIII (5.9 < log Te < 6.4 K) to estimate its ground level populations, taking account of electron as well as proton collisional excitations and de-excitations, radiative cascades, radiative excitations and de-excitations. Radiative cascade is important but the effect of dilution factor is negligible at higher electron densities. The 3 P1-3P0 and 3P2-3P1 transitions in the ground configuration 3s2 3p2 of Fe XIII result in two forbidden coronal emission lines in the infrared region, namely 10747 Å and 10798 Å., while the 5303 Å green line is formed in the 3s2 3p 2 2 ground configuration of Fe XIV as a result of P3 / 2 - P1 / 2 magnetic dipole transition. The line-widths of appropriate pair of forbidden coronal emission lines observed simultaneously can be useful diagnostic tool to deduce temperature and non-thermal velocity in the large scale coronal structures using intensity ratios of the lines as the temperature signature, instead of assuming ion temperature to be equal to the electron temperature. Since the line intensity ratios IG5303/IIR10747 and IG5303/IIR10798 have very week density dependence, they are ideal monitors of temperature mapping in the solar corona.
Searching for chameleon-like scalar fields with the ammonia method
NASA Astrophysics Data System (ADS)
Levshakov, S. A.; Molaro, P.; Lapinov, A. V.; Reimers, D.; Henkel, C.; Sakai, T.
2010-03-01
Aims: We probe the dependence of the electron-to-proton mass ratio, μ = me/mp, on the ambient matter density by means of radio astronomical observations. Methods: The ammonia method, which has been proposed to explore the electron-to-proton mass ratio, is applied to nearby dark clouds in the Milky Way. This ratio, which is measured in different physical environments of high (terrestrial) and low (interstellar) densities of baryonic matter is supposed to vary in chameleon-like scalar field models, which predict strong dependences of both masses and coupling constant on the local matter density. High resolution spectral observations of molecular cores in lines of NH3 (J,K) = (1,1), HC_3N J = 2-1, and N_2H^+ J = 1-0 were performed at three radio telescopes to measure the radial velocity offsets, Δ V ≡ Vrot - Vinv, between the inversion transition of NH_3 (1,1) and the rotational transitions of other molecules with different sensitivities to the parameter Δμ/μ ≡ (μ_obs - μ_lab)/μ_lab. Results: The measured values of Δ V exhibit a statistically significant velocity offset of 23±4_stat ± 3_sys m s-1 . When interpreted in terms of the electron-to-proton mass ratio variation, this infers that Δμ/μ = (2.2±0.4_stat ± 0.3_sys) × 10-8. If only a conservative upper bound is considered, then the maximum offset between ammonia and the other molecules is |Δ V| ≤ 30 m s-1 . This provides the most accurate reference point at z = 0 for Δμ/μ of |Δ μ/μ| ≤ 3×10-8. Based on observations obtained with the Medicina 32-m telescope operated by INAF - Istituto di Radioastronomia, the 100-m telescope of the Max-Planck Institut für Radioastronomie at Effelsberg, and the Nobeyama Radio Observatory 45-m telescope of the National Astronomical Observatory of Japan.
Neutrino Oscillations within the Induced Gravitational Collapse Paradigm of Long Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Becerra, L.; Guzzo, M. M.; Rossi-Torres, F.; Rueda, J. A.; Ruffini, R.; Uribe, J. D.
2018-01-01
The induced gravitational collapse paradigm of long gamma-ray bursts associated with supernovae (SNe) predicts a copious neutrino–antineutrino (ν \\bar{ν }) emission owing to the hypercritical accretion process of SN ejecta onto a neutron star (NS) binary companion. The neutrino emission can reach luminosities of up to 1057 MeV s‑1, mean neutrino energies of 20 MeV, and neutrino densities of 1031 cm‑3. Along their path from the vicinity of the NS surface outward, such neutrinos experience flavor transformations dictated by the neutrino-to-electron-density ratio. We determine the neutrino and electron on the accretion zone and use them to compute the neutrino flavor evolution. For normal and inverted neutrino mass hierarchies and within the two-flavor formalism ({ν }e{ν }x), we estimate the final electronic and nonelectronic neutrino content after two oscillation processes: (1) neutrino collective effects due to neutrino self-interactions where the neutrino density dominates, and (2) the Mikheyev–Smirnov–Wolfenstein effect, where the electron density dominates. We find that the final neutrino content is composed by ∼55% (∼62%) of electronic neutrinos, i.e., {ν }e+{\\bar{ν }}e, for the normal (inverted) neutrino mass hierarchy. The results of this work are the first step toward the characterization of a novel source of astrophysical MeV neutrinos in addition to core-collapse SNe and, as such, deserve further attention.
NASA Astrophysics Data System (ADS)
Boulechfar, R.; Khenioui, Y.; Drablia, S.; Meradji, H.; Abu-Jafar, M.; Omran, S. Bin; Khenata, R.; Ghemid, S.
2018-05-01
Ab-initio calculations based on density functional theory have been performed to study the structural, electronic, thermodynamic and mechanical properties of intermetallic compounds Pt3Sc and Pt3Y using the full-potential linearized augmented plane wave(FP-LAPW) method. The total energy calculations performed for L12, D022 and D024 structures confirm the experimental phase stability. Using the generalized gradient approximation (GGA), the values of enthalpies formation are -1.23 eV/atom and -1.18 eV/atom for Pt3Sc and Pt3Y, respectively. The densities of states (DOS) spectra show the existence of a pseudo-gap at the Fermi level for both compounds which indicate the strong spd hybridization and directing covalent bonding. Furthermore, the density of states at the Fermi level N(EF), the electronic specific heat coefficient (γele) and the number of bonding electrons per atom are predicted in addition to the elastic constants (C11, C12 and C44). The shear modulus (GH), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), ratio of B/GH and Cauchy pressure (C12-C44) are also estimated. These parameters show that the Pt3Sc and Pt3Y are ductile compounds. The thermodynamic properties were calculated using the quasi-harmonic Debye model to account for their lattice vibrations. In addition, the influence of the temperature and pressure was analyzed on the heat capacities (Cp and Cv), thermal expansion coefficient (α), Debye temperature (θD) and Grüneisen parameter (γ).
Yu, Woo Jong; Li, Zheng; Zhou, Hailong; Chen, Yu; Wang, Yang; Huang, Yu; Duan, Xiangfeng
2014-01-01
The layered materials such as graphene have attracted considerable interest for future electronics. Here we report the vertical integration of multi-heterostructures of layered materials to enable high current density vertical field-effect transistors (VFETs). An n-channel VFET is created by sandwiching few-layer molybdenum disulfide (MoS2) as the semiconducting channel between a monolayer graphene and a metal thin film. The VFETs exhibit a room temperature on-off ratio >103, while at same time deliver a high current density up to 5,000 A/cm2, sufficient for high performance logic applications. This study offers a general strategy for the vertical integration of various layered materials to obtain both p- and n-channel transistors for complementary logic functions. A complementary inverter with larger than unit voltage gain is demonstrated by vertically stacking the layered materials of graphene, Bi2Sr2Co2O8 (p-channel), graphene, MoS2 (n-channel), and metal thin film in sequence. The ability to simultaneously achieve high on-off ratio, high current density, and logic integration in the vertically stacked multi-heterostructures can open up a new dimension for future electronics to enable three-dimensional integration. PMID:23241535
Energies and densities of electrons confined in elliptical and ellipsoidal quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Avik; Kresin, Vitaly V.
Here, we consider a droplet of electrons confined within an external harmonic potential well of elliptical or ellipsoidal shape, a geometry commonly encountered in work with semiconductor quantum dots and other nanoscale or mesoscale structures. For droplet sizes exceeding the effective Bohr radius, the dominant contribution to average system parameters in the Thomas– Fermi approximation comes from the potential energy terms, which allows us to derive expressions describing the electron droplet’s shape and dimensions, its density, total and capacitive energy, and chemical potential. Our analytical results are in very good agreement with experimental data and numerical calculations, and make itmore » possible to follow the dependence of the properties of the system on its parameters (the total number of electrons, the axial ratios and curvatures of the confinement potential, and the dielectric constant of the material). One interesting feature is that the eccentricity of the electron droplet is not the same as that of its confining potential well.« less
Energies and densities of electrons confined in elliptical and ellipsoidal quantum dots
Halder, Avik; Kresin, Vitaly V.
2016-08-09
Here, we consider a droplet of electrons confined within an external harmonic potential well of elliptical or ellipsoidal shape, a geometry commonly encountered in work with semiconductor quantum dots and other nanoscale or mesoscale structures. For droplet sizes exceeding the effective Bohr radius, the dominant contribution to average system parameters in the Thomas– Fermi approximation comes from the potential energy terms, which allows us to derive expressions describing the electron droplet’s shape and dimensions, its density, total and capacitive energy, and chemical potential. Our analytical results are in very good agreement with experimental data and numerical calculations, and make itmore » possible to follow the dependence of the properties of the system on its parameters (the total number of electrons, the axial ratios and curvatures of the confinement potential, and the dielectric constant of the material). One interesting feature is that the eccentricity of the electron droplet is not the same as that of its confining potential well.« less
LLE Review Quarterly Report (October - December 2007). Volume 113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuegel, Jonathan D.
2007-12-01
This volume of the LLE Review, covering October–December 2007, features “High-Intensity Laser–Plasma Interactions in the Refluxing Limit,” by P. M. Nilson, W. Theobald, J. Myatt, C. Stoeckl, M. Storm, O. V. Gotchev, J. D. Zuegel, R. Betti, D. D. Meyerhofer, and T. C. Sangster. In this article (p. 1), the authors report on target experiments using the Multi-Terawatt (MTW) Laser Facility to study isochoric heating of solid-density targets by fast electrons produced from intense, short-pulse laser irradiation. Electron refluxing occurs due to target-sheath field effects and contains most of the fast electrons within the target volume. This efficiently heats themore » solid-density plasma through collisions. X-ray spectroscopic measurements of absolute K α (x-radiation) photon yields and variations of the K β/K α b emission ratio both indicate that laser energy couples to fast electrons with a conversion efficiency of approximately 20%. Bulk electron temperatures of at least 200 eV are inferred for the smallest mass targets.« less
KrF laser pumping by electron beam discharge
NASA Astrophysics Data System (ADS)
Bonnet, J.; Fournier, G.; Pigache, D.
1981-09-01
The pumping of excimer lasers used in nuclear fusion and isotope separation is considered. Homogeneous ionization with an electron beam permitted discharge pumping of a KrF laser with a discharge-energy/beam-energy ratio 5. This high value is obtained to the detriment of an energy density and an efficiency which are about half the best values obtained under other conditions. This result does not modify a recent conclusion indicating that an electron beam controlled discharge has no significant advantage over a pure electron beam as regards pumping high energy KrF lasers at high repetition rate.
Adiabatic electron thermal pressure fluctuations in tokamak plasmas.
Meier, M A; Bengtson, R D; Hallock, G A; Wootton, A J
2001-08-20
Electron thermal pressure fluctuations measured in the edge plasma of the Texas Experimental Tokamak Upgrade are a fundamental component of plasma turbulence on both sides of the velocity shear layer. The ratio of specific heats, estimated from fluctuations in electron temperature and electron number density measured simultaneously at the same electrode, indicates that observed fluctuations are adiabatic. The observations are made by means of a novel Langmuir probe technique, the time domain triple-probe method, which concurrently measures multiple plasma properties at each of two electrodes with the temporal and the spatial resolution required to estimate thermodynamic properties in a turbulent plasma.
Bonding titanium to Rene 41 alloy
NASA Technical Reports Server (NTRS)
Scott, R. W.
1972-01-01
Pair of intermediate materials joined by electron beam welding method welds titanium to Rene 41 alloy. Bond is necessary for combining into one structure high strength-to-density ratio titanium fan blades and temperature resistant nickel-base alloy turbine-buckets in VTOL aircraft lift-fan rotor.
NASA Astrophysics Data System (ADS)
Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Hartouni, E. P.; Yeamans, C. B.; Rinderknecht, H. G.; Sayre, D. B.; Grim, G.; Baker, K.; Casey, D. T.; Dewald, E.; Goyon, C.; Jarrott, L. C.; Khan, S.; Lepape, S.; Ma, T.; Pickworth, L.; Shah, R.; Kline, J. L.; Perry, T.; Zylstra, A.; Yi, S. A.
2017-10-01
In deuterium-filled inertial confinement fusion implosions, 0.82 MeV 3He and 1.01 MeV T (generated by the primary DD reaction branches) can undergo fusion reactions with the thermal deuterium plasma to create secondary D3He protons and DT neutrons, respectively. In regimes of moderate fuel areal density (ρR 5 - 100 mg/cm2) the ratio of both of these secondary yields to the primary yield can be used to infer the fuel ρR, convergence ratio (CR), and an electron temperature (Te) . This technique has been used on a myriad of deuterium filled capsule implosion experiments on the NIF using the neutron time of flight (nTOF) diagnostics to measure the yield of secondary DT neutrons and CR-39 based wedge range filters (WRFs) to measure the yield of secondary D3He protons. This work is supported in part by the U.S. DoE and LLNL.
Excitation rate coefficients and line ratios for the optical and ultraviolet transitions in S II
NASA Technical Reports Server (NTRS)
Cai, Wei; Pradhan, Anil K.
1993-01-01
New calculations are reported for electron excitation collision strengths, rate coefficients, transition probabilities, and line ratios for the astrophysically important optical and UV lines in S II. The collision strengths are calculated in the close coupling approximation using the R-matrix method. The present calculations are more extensive than previous ones, including all transitions among the 12 lowest LS terms and the corresponding 28 fine-structure levels in the collisional-radiative model for S II. While the present rate coefficients for electron impact excitation are within 10-30 percent of the previous values for the low-lying optical transitions employed as density diagnostics of H II regions and nebulae, the excitation rates for the UV transitions 4S super 0 sub 3/2 - 4Psub 1/2,3/2,5/2 differ significantly from earlier calculations, by up to factor of 2. We describe temperature and density sensitive flux ratios for a number of UV lines. The present UV results are likely to be of interest in a more accurate interpretation of S II emission from the Io plasma torus in the magnetosphere of Jupiter, as well as other UV sources observed from the IUE, ASTRO 1, and the HST.
The LOCV asymmetric nuclear matter two-body density distributions versus those of FHNC
NASA Astrophysics Data System (ADS)
Tafrihi, Azar
2018-05-01
The theoretical computations of the electron-nucleus scattering can be improved, by employing the asymmetric nuclear matter (ASM) two-body density distributions (TBDD) . But, due to the sophistications of the calculations, the TBDD with arbitrary isospin asymmetry have not yet been computed in the Fermi Hypernetted Chain (FHNC) or the Monte Carlo (MC) approaches. So, in the present work, we intend to find the ASM TBDD, in the states with isospin T, spin S and spin projection Sz, in the Lowest Order Constrained Variational (LOCV) method. It is demonstrated that, at small relative distances, independent of the proton to neutron ratio β, the state-dependent TBDD have a universal shape. Expectedly, it is observed that, at low (high) β values, the nucleons prefer to make a pair in the T = 1(0) states. In addition, the strength of the tensor-dependent correlations is investigated, using the ratio of the TBDD in the TSSz = 010 state with θ = π / 2 and that of θ = 0. The mentioned ratios peak at r ∼ 0 . 9 fm, considering different β values. It is hoped that, the present results could help a better reproduction of the experimental data of the electron-nucleus scattering.
NASA Astrophysics Data System (ADS)
Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar; Parey, Vanshree; Pagare, Gitanjali
2017-10-01
The structural, electronic, magnetic and elastic properties of cubic EuMO3 (M = Ga, In) perovskites has been successfully predicted within well accepted density functional theory using full potential linearized augmented plane wave (FP-LAPW). The structural study reveals ferromagnetic stability for both the compounds. The Hubbard correlation (GGA+U) calculated spin polarized electronic band and density of states presents half-metallic nature for both the compounds. The magnetic moments calculated with different approximations were found to be approximately 6 µ B for EuGaO3 and approximately 7 µ B for EuInO3. The three independent elastic constants (C 11, C 12, C 44) have been used for the prediction of mechanical properties like Young modulus (Y), Shear modulus (G), Poisson ratio (ν), Anisotropic factor (A) under pressure. The B/G ratio presents the ductile nature for both compounds. The thermodynamic parameters like specific heat capacity, thermal expansion, Grüneisen parameter and Debye temperature etc have also been analyzed in the temperature range 0-900 K and pressure range from 0 to 30 GPa.
NASA Astrophysics Data System (ADS)
Rodriguez, M.; Jones, S.; Mentzell, E.; Gill, N.
2011-12-01
The Thermospheric Temperature Imager (TTI) on Fast, Affordable, Science and Technology SATellite (FASTSAT) measures the upper atmospheric atomic oxygen emission at 135.6 nm and the molecular nitrogen LBH emission at 135.4 nm to determine the atmospheric O/N2 density ratio. Observations of variations in this thermosheric ratio correspond to electron density variations in the ionosphere. The TTI design makes use of a Fabry-Perot interferometer to measure Doppler widened atmospheric emissions to determine neutral atmospheric temperature from low Earth orbit. FASTSAT launched November 10, 2010 and TTI is currently observing geomagnetic signatures in the aurora and airglow. This work is supported by NASA.
NASA Technical Reports Server (NTRS)
Rodriquez, Marcello; Jones, Sarah; Mentzell, Eric; Gill, Nathaniel
2011-01-01
The Thermospheric Temperature Imager (TTI) on Fast, Affordable, Science and Technology SATellite (FASTSAT) measures the upper atmospheric atomic oxygen emission at 135.6 nm and the molecular nitrogen LBH emission at 135.4 nm to determine the atmospheric O/N2 density ratio. Observations of variations in this thermospheric ratio correspond to electron density variations in the ionosphere. The TTI design makes use of a Fabry-Perot interferometer to measure Doppler widened atmospheric emissions to determine neutral atmospheric temperature from low Earth orbit. FASTSAT launched November 10, 2010 and TTI is currently observing geomagnetic signatures in the aurora and airglow. This work is supported by NASA.
Young’s modulus and Poisson’s ratio changes due to machining in porous microcracked cordierite
Cooper, R. C.; Bruno, Giovanni; Onel, Yener; ...
2016-07-25
Microstructural changes in porous cordierite caused by machining were characterized using microtensile testing, X-ray computed tomography and scanning electron microscopy. Young s moduli and Poisson s ratios were determined on ~215-380 um thick machined samples by combining digital image correlation and microtensile loading. The results provide evidence for an increase in microcrack density due to machining of the thin samples extracted from diesel particulate filter honeycombs.
High-performance single nanowire tunnel diodes.
Wallentin, Jesper; Persson, Johan M; Wagner, Jakob B; Samuelson, Lars; Deppert, Knut; Borgström, Magnus T
2010-03-10
We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27.6 at liquid helium temperature. These sub-100-nm-diameter structures are promising components for solar cells as well as electronic applications.
Electron Heating in Low-Mach-number Perpendicular Shocks. I. Heating Mechanism
NASA Astrophysics Data System (ADS)
Guo, Xinyi; Sironi, Lorenzo; Narayan, Ramesh
2017-12-01
Recent X-ray observations of merger shocks in galaxy clusters have shown that the postshock plasma has two temperatures, with the protons hotter than the electrons. By means of two-dimensional particle-in-cell simulations, we study the physics of electron irreversible heating in low-Mach-number perpendicular shocks, for a representative case with sonic Mach number of 3 and plasma beta of 16. We find that two basic ingredients are needed for electron entropy production: (1) an electron temperature anisotropy, induced by field amplification coupled to adiabatic invariance; and (2) a mechanism to break the electron adiabatic invariance itself. In shocks, field amplification occurs at two major sites: at the shock ramp, where density compression leads to an increase of the frozen-in field; and farther downstream, where the shock-driven proton temperature anisotropy generates strong proton cyclotron and mirror modes. The electron temperature anisotropy induced by field amplification exceeds the threshold of the electron whistler instability. The growth of whistler waves breaks the electron adiabatic invariance and allows for efficient entropy production. For our reference run, the postshock electron temperature exceeds the adiabatic expectation by ≃ 15 % , resulting in an electron-to-proton temperature ratio of ≃ 0.45. We find that the electron heating efficiency displays only a weak dependence on mass ratio (less than ≃ 30 % drop, as we increase the mass ratio from {m}i/{m}e=49 up to {m}i/{m}e=1600). We develop an analytical model of electron irreversible heating and show that it is in excellent agreement with our simulation results.
Modeling of dynamic bipolar plasma sheaths
NASA Astrophysics Data System (ADS)
Grossmann, J. M.; Swanekamp, S. B.; Ottinger, P. F.
1991-08-01
The behavior of a one dimensional plasma sheath is described in regimes where the sheath is not in equilibrium because it carries current densities that are either time dependent, or larger than the bipolar Child-Langmuir level determined from the injected ion flux. Earlier models of dynamic bipolar sheaths assumed that ions and electrons evolve in a series of quasi-equilibria. In addition, sheath growth was described by the equation Zenoxs = (ji)-Zenouo, where xs is the velocity of the sheath edge, ji is the ion current density, nouo is the injected ion flux density, and Ze is the ion charge. In this paper, a generalization of the bipolar electron-to-ion current density ratio formula is derived to study regimes where ions are not in equilibrium. A generalization of the above sheath growth equation is also developed which is consistent with the ion continuity equation and which reveals new physics of sheath behavior associated with the emitted electrons and their evolution. Based on these findings, two new models of dynamic bipolar sheaths are developed. Larger sheath sizes and potentials than those of earlier models are found. In certain regimes, explosive sheath growth is predicted.
Thermal conductivity of graphene with defects induced by electron beam irradiation.
Malekpour, Hoda; Ramnani, Pankaj; Srinivasan, Srilok; Balasubramanian, Ganesh; Nika, Denis L; Mulchandani, Ashok; Lake, Roger K; Balandin, Alexander A
2016-08-14
We investigate the thermal conductivity of suspended graphene as a function of the density of defects, ND, introduced in a controllable way. High-quality graphene layers are synthesized using chemical vapor deposition, transferred onto a transmission electron microscopy grid, and suspended over ∼7.5 μm size square holes. Defects are induced by irradiation of graphene with the low-energy electron beam (20 keV) and quantified by the Raman D-to-G peak intensity ratio. As the defect density changes from 2.0 × 10(10) cm(-2) to 1.8 × 10(11) cm(-2) the thermal conductivity decreases from ∼(1.8 ± 0.2) × 10(3) W mK(-1) to ∼(4.0 ± 0.2) × 10(2) W mK(-1) near room temperature. At higher defect densities, the thermal conductivity reveals an intriguing saturation-type behavior at a relatively high value of ∼400 W mK(-1). The thermal conductivity dependence on the defect density is analyzed using the Boltzmann transport equation and molecular dynamics simulations. The results are important for understanding phonon - point defect scattering in two-dimensional systems and for practical applications of graphene in thermal management.
Exciton Absorption in Semiconductor Quantum Wells Driven by a Strong Intersubband Pump Field
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Ning, Cun-Zheng
1999-01-01
Optical interband excitonic absorption of semiconductor quantum wells (QW's) driven by a coherent pump field is investigated based on semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW's. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron-hole pairs in the QW structure is low, the pump field induces an Autler-Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron-hole pairs is increased, the split contrast (the ratio between the maximum and minimum values) is decreased because the exciton effect is suppressed at higher densities due to the many-body screening.
Ion thruster performance model
NASA Technical Reports Server (NTRS)
Brophy, J. R.
1984-01-01
A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.
Study of Opacity Effects on Emission Lines at EXTRAP T2R RFP
NASA Astrophysics Data System (ADS)
Stancalie, Viorica; Rachlew, Elisabeth
We have investigated the influence of opacity on hydrogen (H-α and Ly-β) and Li-like oxygen emission lines from the EXTRAP T2R reversed field pinch. We used the Atomic Data Analysis System (AzDAS) based on the escape factor approximation for radiative transfer to calculate metastable and excited population densities via a collisional-radiative model. Population escape factor, emergent escape factor and modified line profiles are plotted vs. optical depth. The simulated emission line ratios in the density/temperature plane are in good agreement with experimental data for electron density and temperature measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drouot, T.; Gravier, E.; Reveille, T.
This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of themore » temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.« less
NASA Astrophysics Data System (ADS)
Chahal, Balwinder Singh; Singh, Manpreet; Shalini; Saini, N. S.
2018-02-01
We present an investigation for the nonlinear dust ion acoustic wave modulation in a plasma composed of charged dust grains, two temperature (cold and hot) nonextensive electrons and ions. For this purpose, the multiscale reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave number, which indicates where the modulational instability sets in, has been determined precisely for various regimes. The influence of plasma background nonextensivity on the growth rate of modulational instability is discussed. The modulated wavepackets in the form of either bright or dark type envelope solitons may exist. Formation of rogue waves from bright envelope solitons is also discussed. The investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are significantly affected by nonextensivity, dust concentration, cold electron-ion density ratio and temperature ratio.
Quiet-Time Suprathermal ( 0.1-1.5 keV) Electrons in the Solar Wind
NASA Astrophysics Data System (ADS)
Wang, L.; Tao, J.; Zong, Q.; Li, G.; Salem, C. S.; Wimmer-Schweingruber, R. F.; He, J.; Tu, C.; Bale, S. D.
2016-12-01
We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND/3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).
Quiet-time Suprathermal (~0.1-1.5 keV) Electrons in the Solar Wind
NASA Astrophysics Data System (ADS)
Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.
2016-03-01
We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).
Zheng, S; Strzalka, J; Ma, C; Opella, S J; Ocko, B M; Blasie, J K
2001-01-01
Vpu is an 81 amino acid integral membrane protein encoded by the HIV-1 genome with a N-terminal hydrophobic domain and a C-terminal hydrophilic domain. It enhances the release of virus from the infected cell and triggers degradation of the virus receptor CD4. Langmuir monolayers of mixtures of Vpu and the phospholipid 1,2-dilignoceroyl-sn-glycero-3-phosphocholine (DLgPC) at the water-air interface were studied by synchrotron radiation-based x-ray reflectivity over a range of mole ratios at constant surface pressure and for several surface pressures at a maximal mole ratio of Vpu/DLgPC. Analysis of the x-ray reflectivity data by both slab model-refinement and model-independent box-refinement methods firmly establish the monolayer electron density profiles. The electron density profiles as a function of increasing Vpu/DLgPC mole ratio at a constant, relatively high surface pressure indicated that the amphipathic helices of the cytoplasmic domain lie on the surface of the phospholipid headgroups and the hydrophobic transmembrane helix is oriented approximately normal to the plane of monolayer within the phospholipid hydrocarbon chain layer. At maximal Vpu/DLgPC mole ratio, the tilt of the transmembrane helix with respect to the monolayer normal decreases with increasing surface pressure and the conformation of the cytoplasmic domain varies substantially with surface pressure. PMID:11259297
NASA Astrophysics Data System (ADS)
Kim, Sungjin; Lieberman, M. A.; Lichtenberg, A. J.
2003-10-01
Control and reduction of neutral radical flux/ion flux ratio and electron temperature Te is required for next generation etching in the microelectronics industry. We investigate time-modulated power for these purposes using a volume-averaged (global) oxygen discharge model, We consider pressures of 10-50 mTorr and plasma densities of 10^10-10^11 cm-3. In this regime, the discharge is found to be weakly electronegative. The modulation period and the duty ratio (on-time/period) are varied to determine the optimum conditions for reduction of FR= O-atom flux/ion flux and T_e. Two chambers with different height/diameter ratios (<< 1, and unity) are examined to determine the influence of the surface-area/volume ratio. At a fixed duty ratio, both FR and Te are found to have minimum values as the pulse period is varied, with the minimum value decreasing as the duty ratio decreases. Significant reductions in FR and Te are found. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.
Wu, Tao; Deng, Kaiming; Deng, Wei-Qiao; Lu, Ruifeng
2017-09-19
BNCX monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNCX (x=1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC2-1 is a material with very small band gap (0.02 eV) among all the structures while other BNCX monolayers are semiconductors with band gap ranging from 0.51 to 1.32 eV. The carrier mobility of BNCX varies considerably from tens to millions of cm2 V-1 s-1. For BNC2-1, the hole mobility and electron mobility along both x and y directions can reach 105 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNCX monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC4, its hole mobility along y direction and electron mobility along x direction unexpectedly reach 106 orders of magnitude, even higher than that of graphene. Our findings suggest that BNCX layered materials with proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices. © 2017 IOP Publishing Ltd.
Oblique ion-acoustic cnoidal waves in two temperature superthermal electrons magnetized plasma
NASA Astrophysics Data System (ADS)
Panwar, A.; Ryu, C. M.; Bains, A. S.
2014-12-01
A study is presented for the oblique propagation of ion acoustic cnoidal waves in a magnetized plasma consisting of cold ions and two temperature superthermal electrons modelled by kappa-type distributions. Using the reductive perturbation method, the nonlinear Korteweg de-Vries equation is derived, which further gives the solutions with a special type of cnoidal elliptical functions. Both compressive and rarefactive structures are found for these cnoidal waves. Nonlinear periodic cnoidal waves are explained in terms of plasma parameters depicting the Sagdeev potential and the phase curves. It is found that the density ratio of hot electrons to ions μ significantly modifies compressive/refractive wave structures. Furthermore, the combined effects of superthermality of cold and hot electrons κ c , κ h , cold to hot electron temperature ratio σ, angle of propagation and ion cyclotron frequency ωci have been studied in detail to analyze the height and width of compressive/refractive cnoidal waves. The findings in the present study could have important implications in understanding the physics of electrostatic wave structures in the Saturn's magnetosphere where two temperature superthermal electrons are present.
NASA Technical Reports Server (NTRS)
Birmingham, T. J.; Alexander, J. K.; Desch, M. D.; Hubbard, R. F.; Pedersen, B. M.
1980-01-01
Narrow-banded emissions were observed by the Planetary Radio Astronomy experiment on the Voyager 1 spacecraft as it traversed the Io plasma torus. These waves occur between harmonics of the electron gyrofrequency and are the Jovian analogue of electrostatic emissions observed and theoretically studied for the terrestrial magnetosphere. The observed frequencies always include the component near the upper hybrid resonant frequency, (fuhr) but the distribution of the other observed emissions varies in a systematic way with position in the torus. A refined model of the electron density variation, based on identification of the fuhr line, is included. Spectra of the observed waves are analyzed in terms of the linear instability of an electron distribution function consisting of isotropic cold electrons and hot losscone electrons. The positioning of the observed auxiliary harmonics with respect to fuhr is shown to be an indicator of the cold to hot temperature ratio. It is concluded that this ratio increases systematically by an overall factor of perhaps 4 or 5 between the inner and outer portions of the torus.
Lindl, J.D.; Bangerter, R.O.
1975-10-31
Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.
NASA Astrophysics Data System (ADS)
Scharer, John; Sung, Yung-Ta; Li, Yan
2017-10-01
Fast, two-temperature electrons (>80 eV, Te =13 eV tail, 4 eV bulk) with substantial tail density fractions are created at low (< = 1.7 mtorr) Ar pressure @ 340 G in the antenna region with nozzle mirror ratio of 1.4 on MadHeX @ 900W. These distributions including a fast tail are observed upstream of a double layer. The fast, untrapped tail electrons measured downstream of the double layer have a higher temperature of 13 eV than the trapped, upstream electrons of 4 eV temperature. Upstream plasma potential fluctuations of + - 30 percent are observed. An RF-compensated Langmuir probe is used to measure the electron temperatures and densities and OES, mm wave IF and an RPA for the IEDF are also utilized. As the magnetic field is increased to 1020 G, an increase in the electron temperature and density upstream of the double layer is observed with Te= 15-25 eV with a primarily single temperature mode. Accelerated ion beam energies in the range of 65-120 eV are observed as the magnetic field is increased from 340 to 850 G. The role of the nozzle, plasma double layer and helicon wave coupling on the EEDF and ion acceleration will be discussed. Research supported in part by the University of Wisconsin.
NASA Astrophysics Data System (ADS)
Cao, Qing; Han, Shu-Jen; Tulevski, George S.
2014-09-01
One key challenge of realizing practical high-performance electronic devices based on single-walled carbon nanotubes is to produce electronically pure nanotube arrays with both a minuscule and uniform inter-tube pitch for sufficient device-packing density and homogeneity. Here we develop a method in which the alternating voltage-fringing electric field formed between surface microelectrodes and the substrate is utilized to assemble semiconducting nanotubes into well-aligned, ultrahigh-density and submonolayered arrays, with a consistent pitch as small as 21±6 nm determined by a self-limiting mechanism, based on the unique field focusing and screening effects of the fringing field. Field-effect transistors based on such nanotube arrays exhibit record high device transconductance (>50 μS μm-1) and decent on current per nanotube (~1 μA per tube) together with high on/off ratios at a drain bias of -1 V.
Quantum crystallography: A perspective.
Massa, Lou; Matta, Chérif F
2018-06-30
Extraction of the complete quantum mechanics from X-ray scattering data is the ultimate goal of quantum crystallography. This article delivers a perspective for that possibility. It is desirable to have a method for the conversion of X-ray diffraction data into an electron density that reflects the antisymmetry of an N-electron wave function. A formalism for this was developed early on for the determination of a constrained idempotent one-body density matrix. The formalism ensures pure-state N-representability in the single determinant sense. Applications to crystals show that quantum mechanical density matrices of large molecules can be extracted from X-ray scattering data by implementing a fragmentation method termed the kernel energy method (KEM). It is shown how KEM can be used within the context of quantum crystallography to derive quantum mechanical properties of biological molecules (with low data-to-parameters ratio). © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Effects of humidity on the magnetic and woody characteristics of powder-type magnetic wood
NASA Astrophysics Data System (ADS)
Oka, H.; Tokuta, H.; Namizaki, Y.; Sekino, N.
2004-05-01
Among three types of proposed magnetic wood, powder-type magnetic wood can be made of recycled magnetic materials from IT devices, consumer electronics and waste wood. Because of its wood powder content, powder-type magnetic wood shows special characteristics different from those of typical magnetic materials. We focused on the relationship between humidity and magnetic characteristics of powder-type magnetic wood. The magnetic powder ratio, wood powder density and magnetic binder density were all examined as parameters for AC permeability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiersdorfer, P.; Hell, N.; Lepson, J. K.
We identified a previously unassigned pair of lines between 169 and 170 Å in the coronae of cool stars. Here, we attribute these lines to Fe xiv and show that their intensity ratio is sensitive to the electron density. Using observations taken with the Low Energy Transmission Grating Spectrometer of the Chandra X-ray Observatory we infer a density of log (n e/cm -3) = 10.2 ± 0.7 and 10.3 ± 0.8 from the newly identified line pair in the coronae of Procyon and α Cen A, respectively.
Quantifying selective alignment of ensemble nitrogen-vacancy centers in (111) diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahara, Kosuke; Ozawa, Hayato; Iwasaki, Takayuki
2015-11-09
Selective alignment of nitrogen-vacancy (NV) centers in diamond is an important technique towards its applications. Quantification of the alignment ratio is necessary to design the optimized diamond samples. However, this is not a straightforward problem for dense ensemble of the NV centers. We estimate the alignment ratio of ensemble NV centers along the [111] direction in (111) diamond by optically detected magnetic resonance measurements. Diamond films deposited by N{sub 2} doped chemical vapor deposition have NV center densities over 1 × 10{sup 15 }cm{sup −3} and alignment ratios over 75%. Although spin coherence time (T{sub 2}) is limited to a few μs bymore » electron spins of nitrogen impurities, the combination of the selective alignment and the high density can be a possible way to optimize NV-containing diamond samples for the sensing applications.« less
NASA Astrophysics Data System (ADS)
Williams, R. T.; Grim, Joel Q.; Li, Qi; Ucer, K. B.; Bizarri, G. A.; Kerisit, S.; Gao, Fei; Bhattacharya, P.; Tupitsyn, E.; Rowe, E.; Buliga, V. M.; Burger, A.
2013-09-01
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx to volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This paper describes recent laser experiments, calculations, and numerical modeling of scintillator response.
Williams, R. T.; Grim, Joel Q.; Li, Qi; ...
2013-09-26
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx tomore » volume-based excitation density n (eh/cm 3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This study describes recent laser experiments, calculations, and numerical modeling of scintillator response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamate, E.; Draghici, M.
2012-04-15
A large area plasma source based on 12 multi-dipolar ECR plasma cells arranged in a 3 x 4 matrix configuration was built and optimized for silicon etching by negative ions. The density ratio of negative ions to electrons has exceeded 300 in Ar/SF{sub 6} gas mixture when a magnetic filter was used to reduce the electron temperature to about 1.2 eV. Mass spectrometry and electrostatic probe were used for plasma diagnostics. The new source is free of density jumps and instabilities and shows a very good stability for plasma potential, and the dominant negative ion species is F{sup -}. Themore » magnetic field in plasma volume is negligible and there is no contamination by filaments. The etching rate by negative ions measured in Ar/SF{sub 6}/O{sub 2} mixtures was almost similar with that by positive ions reaching 700 nm/min.« less
NASA Astrophysics Data System (ADS)
Khandy, Shakeel Ahmad; Gupta, Dinesh C.
2017-12-01
Ferromagnetic Heusler compounds have vast and imminent applications for novel devices, smart materials thanks to density functional theory (DFT) based simulations, which have scored out a new approach to study these materials. We forecast the structural stability of Co2TaZ alloys on the basis of total energy calculations and mechanical stability criteria. The elastic constants, robust spin-polarized ferromagnetism and electron densities in these half-metallic alloys are also discussed. The observed structural aspects calculated to predict the stability and equilibrium lattice parameters agree well with the experimental results. The elastic parameters like elastic constants, bulk, Young’s and shear moduli, poison’s and Pugh ratios, melting temperatures, etc have been put together to establish their mechanical properties. The elaborated electronic band structures along with indirect band gaps and spin polarization favour the application of these materials in spintronics and memory device technology.
Impact of impurities on zonal flow driven by trapped electron mode turbulence
NASA Astrophysics Data System (ADS)
Guo, Weixin; Wang, Lu; Zhuang, Ge
2017-12-01
The impact of impurities on the generation of zonal flow (ZF) driven by collisonless trapped electron mode turbulence in deuterium (D)-tritium (T) plasmas is investigated. An expression for ZF growth rate with impurities is derived by balancing the ZF potential shielded by polarization effects and the ZF modulated radial turbulent current. Then, it is shown that the maximum normalized ZF growth rate is reduced by the presence of fully ionized non-trace light impurities with relatively flat density profile, and slightly reduced by highly ionized trace tungsten, while the maximum normalized ZF growth rate can be enhanced by fully ionized non-trace light impurities with relatively steep density profile. In particular, the effects of high temperature helium from D-T reaction on ZF depend on the temperature ratio between electrons and high temperature helium. The possible relevance of our findings to recent experimental results and future burning plasmas is also discussed.
The aperture synthesis imaging capability of the EISCAT_3D radars
NASA Astrophysics Data System (ADS)
La Hoz, Cesar; Belyey, Vasyl
2010-05-01
The built-in Aperture Synthesis Imaging Radar (ASIR) capabilities of the EISCAT_3D system, complemented with multiple beams and rapid beam scanning, is what will make the new radar truly three dimensional and justify its name. With the EISCAT_3D radars it will be possible to make investigations in 3-dimensions of several important phenomena such as Natural Enhanced Ion Acoustic Lines (NEIALs), Polar Mesospheric Summer and Winter Echoes (PMSE and PMWE), meteors, space debris, atmospheric waves and turbulence in the mesosphere, upper troposphere and possibly the lower stratosphere. Of particular interest and novelty is the measurement of the structure in electron density created by aurora that produce incoherent scatter. With scale sizes of the order of tens of meters, the imaging of these structures will be conditioned only by the signal to noise ratio which is expected to be high during some of these events, since the electron density can be significantly enhanced. The electron density inhomogeneities and plasma structures excited by artificial ionospheric heating could conceivable be resolved by the radars provided that their variation during the integration time is not great.
A wide range real-time synchronous demodulation system for the dispersion interferometer on HL-2M
NASA Astrophysics Data System (ADS)
Wu, Tongyu; Zhang, Wei; Yin, Zejie
2017-09-01
A real-time synchronous demodulation system has been developed for the dispersion interferometer on a HL-2M tokamak. The system is based on the phase extraction method which uses a ratio of modulation amplitudes. A high-performance field programmable gate array with pipeline process capabilities is used to realize the real time synchronous demodulation algorithm. A fringe jump correction algorithm is applied to follow the fast density changes of the plasma. By using the Peripheral Component Interconnect Express protocol, the electronics can perform real-time density feedback with a temporal resolution of 100 ns. Some experimental results presented show that the electronics can obtain a wide measurement range of 2.28 × 1022 m-2 with high precision.
Morphology and ionization of the interstellar cloud surrounding the solar system.
Frisch, P C
1994-09-02
The first encounter between the sun and the surrounding interstellar cloud appears to have occurred 2000 to 8000 years ago. The sun and cloud space motions are nearly perpendicular, an indication that the sun is skimming the cloud surface. The electron density derived for the surrounding cloud from the carbon component of the anomalous cosmic ray population in the solar system and from the interstellar ratio of Mg(+) to Mg degrees toward Sirius support an equilibrium model for cloud ionization (an electron density of 0.22 to 0.44 per cubic centimeter). The upwind magnetic field direction is nearly parallel to the cloud surface. The relative sun-cloud motion indicates that the solar system has a bow shock.
NASA Technical Reports Server (NTRS)
Feldman, U.; Seely, J. F.; Bhatia, A. K.
1989-01-01
Results are presented on calculations of the 72 levels belonging to the 2s(2)2p(3), 2s2p(4), 2p(5), 2s(2)2p(2)3s, 2s(2)2p(2)3p, and 2s(2)2p(2)3d configurations of the N I isoelectronic sequence for the ions Ar XII, Ti XVI, Fe XX, Zn XXIV, and Kr XXX, for electron densities up to 10 to the 24th/cu cm. It was found that large population inversions and gain occur between levels in the 2s(2)2p(2)3p configuration and levels in the 2s(2)2p(2)3d configuration that cannot decay to the ground configuration by an electric dipole transition. For increasing electron densities, the intensities of the X-ray transitions from the 2s(2)2p(2)3p configuration to the ground configuration decrease relative to the transitions from the 2s(2)2p(2)3s and 2s(2)2p(2)3d configurations to the ground configuration. The density dependence of these X-ray line ratios is presented.
NASA Technical Reports Server (NTRS)
Richards, Philip G.
2001-01-01
The purpose of this proposed research is to improve our basic understanding of the causes of ionospheric storm behavior in the midlatitude F region ionosphere. This objective will be achieved by detailed comparisons between ground based measurements of the peak electron density (N(sub m)F(sub 2)), Atmosphere Explorer satellite measurements of ion and neutral composition, and output from the Field Line Interhemispheric Plasma (FLIP) model. The primary result will be a better understanding of changes in the neutral densities and ion chemistry during magnetic storms that will improve our capability to model the weather of the ionosphere which will be needed as a basis for ionospheric prediction. Specifically, this study seeks to answer the following questions: (1) To what extent are negative ionospheric storm phases caused by changes in the atomic to molecular ratio? (2) Are the changes in neutral density ratio due to increased N2, or decreased O, or both? (3) Are there other chemical processes (e.g., excited N2) that increase O+ loss rates during negative storms? (4) Do neutral density altitude distributions differed from hydrostatic equilibrium? (5) Why do near normal nighttime densities often follow daytime depletions of electron density; and (6) Can changes in h(sub m)F2 fully account for positive storm phases? To answer these questions, we plan to combine ground-based and space-based measurements with the aid of our ionospheric model which is ideally suited to this purpose. These proposed studies will lead to a better capability to predict long term ionospheric variability, leading to better predictions of ionospheric weather.
A model for chorus associated electrostatic bursts
NASA Technical Reports Server (NTRS)
Grabbe, C. L.
1984-01-01
The linear theory of the generation of electrostatic bursts of noise by electrons trapped in chorus wave packets is developed for a finite temperature electron beam and a Maxwellian elecron and ion background. The growth rates determined qualitatively in good agreement with those obtained by previous authors from a more idealized model. Two connected instability mechanisms seem to be occurring: a beam plasma (electron-ion two-stream) instability commonly associated with intensification of the chorus power levels, and a transitional or borderline resistive medium instability commonly associated with chorus hooks. The physical reasons for the two mechanisms is discussed. In the second case electron beams are difficult to identify in the particle data. An expression is obtained for the maximum growth rate in terms of the ratios of the beam and electron thermal velocities to the beam velocity, and of the beam density to plasma density. It is anticipated that this may allow the observed peak in the electrostatic noise spectrum to be used as a diagnostic for the beam characteristics. Previously announced in STAR as N84-12832
A physical model of the infrared-to-radio correlation in galaxies
NASA Technical Reports Server (NTRS)
Helou, G.; Bicay, M. D.
1993-01-01
We explore the implications of the IR-radio correlation in star-forming galaxies, using a simple physical model constrained by the constant global ratio q of IR to radio emission and by the radial falloff of this ratio in disks of galaxies. The modeling takes into account the diffusion, radiative decay, and escape of cosmic-ray electrons responsible for the synchrotron emission, and the full range of optical depths to dust-heating photons. We introduce two assumptions: that dust-heating photons and radio-emitting cosmic-ray electrons are created in constant proportion to each other as part of the star formation activity, and that gas and magnetic field are well coupled locally, expressed as B proportional to n exp beta, with beta between 1/3 and 2/3. We conclude that disk galaxies would maintain the observed constant ratio q under these assumptions if the disk scale height h(0) and the escape scale length l(esc) for cosmic-ray electrons followed a relation of the form l(esc) proportional to h(0) exp 1/2; the IR-to-radio ratio will then depend very weakly on interstellar density, and, therefore, on magnetic field strength or mean optical depth.
The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons
NASA Astrophysics Data System (ADS)
Yang, Huihui; Chen, Hongshan
2017-07-01
The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80042-9
Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, A. E.; Howard, N. T.; Greenwald, M.
2013-05-15
Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxesmore » from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluctuation level ratio (T(tilde sign){sub e}/T{sub e})/(ñ{sub e}/n{sub e}), but underprediction of electron heat flux. We find that changes in momentum transport (rotation profiles changing from peaked to hollow) do not correlate with changes in particle transport, and also do not correlate with changes in linear mode dominance, e.g., Ion Temperature Gradient versus Trapped Electron Mode. The new C-Mod results suggest that the drives for momentum transport differ from drives for heat and particle transport. The experimental results are inconsistent with present quasilinear models, and the strong sensitivity of core rotation to density remains unexplained.« less
Axisymmetric Plasma Equilibria in General Relativity
NASA Astrophysics Data System (ADS)
Elsässer, Klaus
Axisymmetric plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species; they remain arbitrary if no gain and loss processes are considered, in close analogy to the free flux functions in ideal magnetohydrodynamics. Several simplifying assumptions allow the reduction of the basic equations to one single scalar equation for the stream function χ of positrons or ions, respectively, playing the rôle of the Grad/Shafranov equation in magnetohydrodynamics; in particular, Maxwell's equations can be solved analytically for a quasineutral plasma when both the charge density and the toroidal electric current density are negligible (in contrast to the Tokamak situation). The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio me/mi. The χ-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.
NASA Astrophysics Data System (ADS)
Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.
2018-04-01
Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.
Low-Voltage Complementary Electronics from Ion-Gel-Gated Vertical Van der Waals Heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yongsuk; Kang, Junmo; Jariwala, Deep
2016-03-22
Low-voltage complementary circuits comprising n-type and p-type van der Waals heterojunction vertical field-effect transistors (VFETs) are demonstrated. The resulting VFETs possess high on-state current densities (>3000 A cm-2) and on/off current ratios (>104) in a narrow voltage window (<3 V).
Some strategies for quantitative scanning Auger electron microscopy
NASA Technical Reports Server (NTRS)
Browning, R.; Peacock, D. C.; Prutton, M.
1985-01-01
The general applicability of power law forms of the background in electron spectra is pointed out and exploited for background removal from under Auger peaks. This form of B(E) is found to be extremely sensitive to instrumental alignment and to fault-free construction - an observation which can be used to set up analyser configurations in an accurate way. Also, differences between N(E) and B(E) can be used to derive a spectrometer transmission function T(E). The questions of information density in an energy-analysing spatially-resolving instrument are addressed after reliable instrumental characterization has been established. Strategies involving ratio histograms, showing the population distribution of the ratio of a pair of Auger peak heights, composition scatter diagrams and windowed imaging are discussed and illustrated.
High-frequency electrostatic waves in the magnetosphere.
NASA Technical Reports Server (NTRS)
Young, T. S. T.
1973-01-01
High-frequency electrostatic microinstabilities in magnetospheric plasmas are considered in detail. Rather special plasma parameters are found to be required to match the theoretical wave spectrum with satellite observations in the magnetosphere. In particular, it is necessary to have a cold and a warm species of electrons such that (1) the warm component has an anomalous velocity distribution function that is nonmonotonic in the perpendicular component of velocity and is the source of free energy driving the instabilities, (2) the density ratio of the cold component to the hot component is greater than about 0.01, and (3) the temperature ratio of the two components for cases of high particle density is no less than 0.1. These requirements and the corresponding instability criteria are satisfied only in the trapping region; this is also the region in which the waves are most frequently observed. The range of unstable wavelengths and an estimate of the diffusion coefficient are also obtained. The wave are found to induce strong diffusion in velocity space for low-energy electrons during periods of moderate wave amplitude.
Munoz Burgos, Jorge M.; Agostini, Matteo; Scarin, Paolo; ...
2015-05-06
A 1-D kinetic collisional radiative model (CRM) with state-of-the-art atomic data is developed and employed to simulate line emission to evaluate the Thermal Helium Beam (THB) diagnostic on NSTX-U. This diagnostic is currently in operation on RFX-mod, and it is proposed to be installed on NSTX-U. The THB system uses the intensity ratios of neutral helium lines 667.8, 706.5, and 728.1 nm to derive electron temperature (eV ) and density (cm –3) profiles. The purpose of the present analysis is to evaluate the applications of this diagnostic for determining fast (~4 μs) electron temperature and density radial profiles on themore » scrape-off layer (SOL) and edge regions of NSTX-U that are needed in turbulence studies. The diagnostic is limited by the level of detection of the 728.1 nm line, which is the weakest of the three. In conclusion, this study will also aid in future design of a similar 2-D diagnostic systems on the divertor.« less
NASA Technical Reports Server (NTRS)
Finkenthal, M.; Yu, . L.; Lippmann, S.; Huang, L. K.; Moos, H. W.; Stratton, B. C.; Bhatia, A. K.
1987-01-01
Spectra of the Delta n = 0 (2-2) transitions of Be I-like ions, C III, O V, F VI, and Ne VII emitted from the TEXT tokamak, were measured with photometrically calibrated instrumentation and compared to the predictions of several models which differ in their treatment of electron impact excitation, using either the distorted wave or R-matrix approach. It was found that the ions from C III to Ne VII were located near the edge of the plasma, at densities between 10 to the 12th and 13th/cu cm. The experimental line ratios were compared with several sets of computations. Agreement is obtained between the experimental data and computations by using the R-matrix technique. This leads to the conclusion that the effect resonances must be included in collision strength calculations, particularly at low nuclear charge. The results show that the line ratios studied may be used with confidence as electron density diagnostics for laboratory or astrophysical plasmas.
Influence of defects on the charge density wave of ([SnSe] 1+δ) 1(VSe 2) 1 ferecrystals
Falmbigl, Matthias; Putzky, Daniel; Ditto, Jeffrey; ...
2015-07-14
A series of ferecrystalline compounds ([SnSe] 1+δ) 1(VSe 2) 1 with varying Sn/V ratios were synthesized using the modulated elemental reactant technique. Temperature-dependent specific heat data reveal a phase transition at 102 K, where the heat capacity changes abruptly. An abrupt increase in electrical resistivity occurs at the same temperature, correlated with an abrupt increase in the Hall coefficient. Combined with the magnitude and nature of the specific heat discontinuity, this suggests that the transition is similar to the charge density wave transitions in transition metal dichalcogenides. An ordered intergrowth was formed over a surprisingly wide compositional range of Sn/Vmore » ratios of 0.89 ≤ 1 + δ ≤ 1.37. X-ray diffraction and transmission electron microscopy reveal the formation of various volume defects in the compounds in response to the nonstoichiometry. The electrical resistivity and Hall coefficient data of samples with different Sn/V ratios show systematic variation in the carrier concentration with the Sn/V ratio. There is no significant change in the onset temperature of the charge density wave transition, only a variation in the carrier densities before and after the transition. Given the sensitivity of the charge density wave transitions of transition metal dichalcogenides to variations in composition, it is very surprising that the charge density wave transition observed at 102 K for ([SnSe] 1.15) 1(VSe 2) 1 is barely influenced by the nonstoichiometry and structural defects. As a result, this might be a consequence of the two-dimensional nature of the structurally independent VSe 2 layers.« less
Herschel Galactic Plane Survey of [NII] Fine Structure Emission
NASA Astrophysics Data System (ADS)
Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.; Pineda, Jorge L.
2015-12-01
We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10-8-10-7 Wm-2 sr-1 level over the range -60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10-50 cm-3 with an average value of 29 cm-3 and N+ column densities 1016-1017 cm-2. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.
NASA Astrophysics Data System (ADS)
Zhang, Xuemin; Qian, Jiadong; Shen, Xuhui
2014-05-01
The solar cycle variations of electron density (Ne) in the topside ionosphere are presented by observations around local time 22:30 from Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite during 2006-2008 in the low solar activity, in which the revisited orbits are selected to construct Ne time sequences at different points. The results show that electron density (Ne) reduced 50-100% since 2006 to 2008 at equatorial area and middle latitudes, with much bigger maximal Ne in 2006 but even no yearly peak in 2007 and 2008 around 30° latitude. The seasonal asymmetry is revealed by the yearly maxima of Ne in December over Southern Hemisphere always being larger than those in June over Northern Hemisphere. Furthermore, the equinoctial asymmetry is found around the magnetic equator and high northern latitudes under the low solar activity, and the latter one has not been revealed in other research. Ne from IRI2012 is close to the actual observation by DEMETER in 2008, even better than those in 2006 and 2007, indicating the great improvement of this empirical ionospheric model in this extremely low solar minimum. After comparison with the fitted results by indices of F10.7 and EUV combined with the first five periods in Ne, EUV is a little better to describe the variations in Ne during this solar minimum. By discussing the relationship among nighttime Ne and molecules in upper atmosphere, the [O/N2] density ratio is the key factor at high latitude, while [O] density plays a certain role to electron density around the equator.
QUIET-TIME SUPRATHERMAL (∼0.1–1.5 keV) ELECTRONS IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jiawei; Wang, Linghua; Zong, Qiugang
2016-03-20
We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1–1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ∼0.1–1.5 keV to a Kappa distribution function with an index κ and effective temperature T{sub eff}. We also calculate the number density n and average energy E{sub avg} of strahl andmore » halo electrons by integrating the electron measurements between ∼0.1 and 1.5 keV. We find a strong positive correlation between κ and T{sub eff} for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity)« less
NASA Astrophysics Data System (ADS)
Reginald, Nelson; St. Cyr, Orville; Davila, Joseph; Rastaetter, Lutz; Török, Tibor
2018-05-01
Obtaining reliable measurements of plasma parameters in the Sun's corona remains an important challenge for solar physics. We previously presented a method for producing maps of electron temperature and speed of the solar corona using K-corona brightness measurements made through four color filters in visible light, which were tested for their accuracies using models of a structured, yet steady corona. In this article we test the same technique using a coronal model of the Bastille Day (14 July 2000) coronal mass ejection, which also contains quiet areas and streamers. We use the coronal electron density, temperature, and flow speed contained in the model to determine two K-coronal brightness ratios at (410.3, 390.0 nm) and (423.3, 398.7 nm) along more than 4000 lines of sight. Now assuming that for real observations, the only information we have for each line of sight are these two K-coronal brightness ratios, we use a spherically symmetric model of the corona that contains no structures to interpret these two ratios for electron temperature and speed. We then compare the interpreted (or measured) values for each line of sight with the true values from the model at the plane of the sky for that same line of sight to determine the magnitude of the errors. We show that the measured values closely match the true values in quiet areas. However, in locations of coronal structures, the measured values are predictably underestimated or overestimated compared to the true values, but can nevertheless be used to determine the positions of the structures with respect to the plane of the sky, in front or behind. Based on our results, we propose that future white-light coronagraphs be equipped to image the corona using four color filters in order to routinely create coronal maps of electron density, temperature, and flow speed.
Magnetosonic cnoidal waves and solitons in a magnetized dusty plasma
NASA Astrophysics Data System (ADS)
Kaur, Nimardeep; Singh, Manpreet; Saini, N. S.
2018-04-01
An investigation of magnetosonic nonlinear periodic (cnoidal) waves is presented in a magnetized electron-ion-dust ( e -i -d ) plasma having cold dust fluid with inertialess warm ions and electrons. The reductive perturbation method is employed to derive the Korteweg-de Vries equation. The dispersion relation for magnetosonic cnoidal waves is determined in the linear limit. The magnetosonic cnoidal wave solution is derived using the Sagdeev pseudopotential approach under the specific boundary conditions. There is the formation of only positive potential magnetosonic cnoidal waves and solitary structures in the high plasma-β limit. The effects of various plasma parameters, viz., plasma beta (β), σ (temperature ratio of electrons to ions), and μd (ratio of the number density of dust to electrons) on the characteristics of magnetosonic cnoidal waves are also studied numerically. The findings of the present investigation may be helpful in describing the characteristics of various nonlinear excitations in Earth's magnetosphere, solar wind, Saturn's magnetosphere, and space/astrophysical environments, where many space observations by various satellites confirm the existence of dust grains, highly energetic electrons, and high plasma-β.
Stability of Electrons in the Virtual Cathode Region of an IEC
NASA Astrophysics Data System (ADS)
Kim, Hyng-Jin; Miley, George; Momota, Hiromu
2003-04-01
In the Inertial Electrostatic Confinement (IEC) device, electrons are confined inside a virtual anode that in turn confines ions. Prior stability studies [1, 2] have considered systems in which one species is electrostatically confined by the other, and either or both species are out of local thermal equilibrium. In the present research, electron stability in the virtual cathode region of an ion injected IEC is being studied. The ion density in an IEC is non-uniform due to the radial electrostatic potential, and increases toward the center region. The potential near the virtual cathode is assumed to have a parabolic shape and is determined assuming that the net space charge density is constant in that region. The corresponding ion distribution function is assumed to have the form f = C [sigma] (H W) /L^0.5 and the electron response is taken to be diabatic. Then using a variational principle after linearizing the hydrodynamic equations, stability properties of the electron layer are determined. Results will be presented as a function of injected ion/electron current ratios. 1. L. Chacon and D. C. Barnes, Phys. Plasma 7, 4774 (2000). 2. D. C. Barnes, L. Chacon, and J. M. Finn, Phys. Plasmas 9, 4448 (2002).
Morkötter, S; Jeon, N; Rudolph, D; Loitsch, B; Spirkoska, D; Hoffmann, E; Döblinger, M; Matich, S; Finley, J J; Lauhon, L J; Abstreiter, G; Koblmüller, G
2015-05-13
Strong surface and impurity scattering in III-V semiconductor-based nanowires (NW) degrade the performance of electronic devices, requiring refined concepts for controlling charge carrier conductivity. Here, we demonstrate remote Si delta (δ)-doping of radial GaAs-AlGaAs core-shell NWs that unambiguously exhibit a strongly confined electron gas with enhanced low-temperature field-effect mobilities up to 5 × 10(3) cm(2) V(-1) s(-1). The spatial separation between the high-mobility free electron gas at the NW core-shell interface and the Si dopants in the shell is directly verified by atom probe tomographic (APT) analysis, band-profile calculations, and transport characterization in advanced field-effect transistor (FET) geometries, demonstrating powerful control over the free electron gas density and conductivity. Multigated NW-FETs allow us to spatially resolve channel width- and crystal phase-dependent variations in electron gas density and mobility along single NW-FETs. Notably, dc output and transfer characteristics of these n-type depletion mode NW-FETs reveal excellent drain current saturation and record low subthreshold slopes of 70 mV/dec at on/off ratios >10(4)-10(5) at room temperature.
Quantum effects of nuclear motion in three-particle diatomic ions
NASA Astrophysics Data System (ADS)
Baskerville, Adam L.; King, Andrew W.; Cox, Hazel
2016-10-01
A high-accuracy, nonrelativistic wave function is used to study nuclear motion in the ground state of three-particle {a1+a2+a3-} electronic and muonic molecular systems without assuming the Born-Oppenheimer approximation. Intracule densities and center-of-mass particle densities show that as the mass ratio mai/ma3 , i =1 ,2 , becomes smaller, the localization of the like-charged particles (nuclei) a1 and a2 decreases. A coordinate system is presented to calculate center-of-mass particle densities for systems where a1≠a2 . It is shown that the nuclear motion is strongly correlated and depends on the relative masses of the nuclei a1 and a2 rather than just their absolute mass. The heavier particle is always more localized and the lighter the partner mass, the greater the localization. It is shown, for systems with ma1
Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites
NASA Astrophysics Data System (ADS)
Özgün, Özgür; Dinler, İlyas
2018-05-01
Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.
Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites
NASA Astrophysics Data System (ADS)
Özgün, Özgür; Dinler, İlyas
2018-07-01
Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EL-Shamy, E. F., E-mail: emadel-shamy@hotmail.com; Department of Physics, College of Science, King Khalid University, P.O. 9004, Abha; Al-Asbali, A. M., E-mail: aliaa-ma@hotmail.com
A theoretical investigation is carried out to study the propagation and the head-on collision of dust-acoustic (DA) shock waves in a strongly coupled dusty plasma consisting of negative dust fluid, Maxwellian distributed electrons and ions. Applying the extended Poincaré–Lighthill–Kuo method, a couple of Korteweg–deVries–Burgers equations for describing DA shock waves are derived. This study is a first attempt to deduce the analytical phase shifts of DA shock waves after collision. The impacts of physical parameters such as the kinematic viscosity, the unperturbed electron-to-dust density ratio, parameter determining the effect of polarization force, the ion-to-electron temperature ratio, and the effective dustmore » temperature-to-ion temperature ratio on the structure and the collision of DA shock waves are examined. In addition, the results reveal the increase of the strength and the steepness of DA shock waves as the above mentioned parameters increase, which in turn leads to the increase of the phase shifts of DA shock waves after collision. The present model may be useful to describe the structure and the collision of DA shock waves in space and laboratory dusty plasmas.« less
Nebular and auroral emission lines of [Cl iii] in the optical spectra of planetary nebulae
Keenan, Francis P.; Aller, Lawrence H.; Ramsbottom, Catherine A.; Bell, Kenneth L.; Crawford, Fergal L.; Hyung, Siek
2000-01-01
Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (Te) and density (Ne) emission line ratios involving both the nebular (5517.7, 5537.9 Å) and auroral (8433.9, 8480.9, 8500.0 Å) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R1 = I(5518 Å)/I(5538 Å) intensity ratio provides estimates of Ne in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R1 is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl iii] 8433.9 Å line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl iii] intensity may be reliably measured, it provides accurate determinations of Te when ratioed against the sum of the 5518 and 5538 Å line fluxes. Similarly, the 8500.0 Å line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [Cl iii] transition at 8480.9 Å is found to be blended with the He i 8480.7 Å line, except in planetary nebulae that show a relatively weak He i spectrum, where it also provides reliable estimates of Te when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl iii] lines at 3344 and 3354 Å is briefly discussed. PMID:10759562
Oblique Interaction of Dust-ion Acoustic Solitons with Superthermal Electrons in a Magnetized Plasma
NASA Astrophysics Data System (ADS)
Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa
2018-01-01
The oblique interaction between two dust-ion acoustic (DIA) solitons travelling in the opposite direction, in a collisionless magnetized plasma composed of dynamic ions, static dust (positive/negative) charged particles and interialess kappa distributed electrons is investigated. By employing extended Poincaré-Lighthill-Kuo (PLK) method, Korteweg-de Vries (KdV) equations are derived for the right and left moving low amplitude DIA solitons. Their trajectories and corresponding phase shifts before and after their interaction are also obtained. It is found that in negatively charged dusty plasma above the critical dust charged to ion density ratio the positive polarity pulse is formed, while below the critical dust charged density ratio the negative polarity pulse of DIA soliton exist. However it is found that only positive polarity pulse of DIA solitons exist for the positively charged dust particles case in a magnetized nonthermal plasma. The nonlinearity coefficient in the KdV equation vanishes for the negatively charged dusty plasma case for a particular set of parameters. Therefore, at critical plasma density composition for negatively charged dust particles case, the modified Korteweg-de Vries (mKdV) equations having cubic nonlinearity coefficient of the DIA solitons, and their corresponding phase shifts are derived for the left and right moving solitons. The effects of the system parameters including the obliqueness of solitons propagation with respect to magnetic field direction, superthermality of electrons and concentration of positively/negatively static dust charged particles on the phase shifts of the colliding solitons are also discussed and presented numerically. The results are applicable to space magnetized dusty plasma regimes.
Laboratory Photoionization Fronts in Nitrogen Gas: A Numerical Feasibility and Parameter Study
NASA Astrophysics Data System (ADS)
Gray, William J.; Keiter, P. A.; Lefevre, H.; Patterson, C. R.; Davis, J. S.; van Der Holst, B.; Powell, K. G.; Drake, R. P.
2018-05-01
Photoionization fronts play a dominant role in many astrophysical situations but remain difficult to achieve in a laboratory experiment. We present the results from a computational parameter study evaluating the feasibility of the photoionization experiment presented in the design paper by Drake et al. in which a photoionization front is generated in a nitrogen medium. The nitrogen gas density and the Planckian radiation temperature of the X-ray source define each simulation. Simulations modeled experiments in which the X-ray flux is generated by a laser-heated gold foil, suitable for experiments using many kJ of laser energy, and experiments in which the flux is generated by a “z-pinch” device, which implodes a cylindrical shell of conducting wires. The models are run using CRASH, our block-adaptive-mesh code for multimaterial radiation hydrodynamics. The radiative transfer model uses multigroup, flux-limited diffusion with 30 radiation groups. In addition, electron heat conduction is modeled using a single-group, flux-limited diffusion. In the theory, a photoionization front can exist only when the ratios of the electron recombination rate to the photoionization rate and the electron-impact ionization rate to the recombination rate lie in certain ranges. These ratios are computed for several ionization states of nitrogen. Photoionization fronts are found to exist for laser-driven models with moderate nitrogen densities (∼1021 cm‑3) and radiation temperatures above 90 eV. For “z-pinch”-driven models, lower nitrogen densities are preferred (<1021 cm‑3). We conclude that the proposed experiments are likely to generate photoionization fronts.
Bohm velocity in the presence of a hot cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palacio Mizrahi, J. H.; Krasik, Ya. E.
2013-08-15
The spatial distribution of the plasma and beam electrons in a region whose extension from a hot cathode is larger than the Debye length, but smaller than the electron mean free path, is analyzed. In addition, the influence of electrons thermionically emitted from a hot cathode and the ratio of electron-to-ion mass on the Bohm velocity and on the ion and electron densities at the plasma-sheath boundary in a gas discharge are studied. It is shown that thermionic emission has the effect of increasing the Bohm velocity, and this effect is more pronounced for lighter ions. In addition, it ismore » shown that the Bohm velocity cannot be increased to more than 24% above its value when there is no electron emission.« less
NASA Astrophysics Data System (ADS)
Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.
2015-11-01
The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yu; Liu, Haitao; Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn
The structural and electronic properties of small uranium oxide clusters U{sub n}O{sub m} (n=1-3, m=1-3n) are systematically studied within the screened hybrid density functional theory. It is found that the formation of U–O–U bondings and isolated U–O bonds are energetically more stable than U–U bondings. As a result, no uranium cores are observed. Through fragmentation studies, we find that the U{sub n}O{sub m} clusters with the m/n ratio between 2 and 2.5 are very stable, hinting that UO{sub 2+x} hyperoxides are energetically stable. Electronically, we find that the O-2p states always distribute in the deep energy range, and the U-5fmore » states always distribute at the two sides of the Fermi level. The U-6d states mainly hybridize with the U-5f states in U-rich clusters, while hybridizing with O-2p states in O-rich clusters. Our work is the first one on the screened hybrid density functional theory level studying the atomic and electronic properties of the actinide oxide clusters.« less
Inelastic X-ray Scattering Studies of Plasmons in Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Upton, M. H.; Casa, D.; Gog, T.; Misewich, J.; Hill, J. P.; Lowndes, D.; Eres, G.
2006-03-01
We report preliminary inelastic x-ray scattering measurements of the plasmon dispersions in oriented multi- and single- walled carbon nanotubes (M- and S- WCNT) and compare them to the plasmon dispersion in graphite. Two plasmon bands are observed dispersing along the nanotubes' axes: the π and π+σ plasmon bands. The π+σ plasmon band exhibits an apparent systematic variation in energy. Specifically, it has a lower energy in MWCNT than in graphite, and a still lower energy in SWCNT. The energy of the π+σ plasmon band is determined by the plasma frequency of the material, which is proportional to the square root of the electron density. We postulate that the energy shift is a result of a surface effect -- the electron wave function extends past the surface, lowering the average electron density in the bulk. The higher surface-to-volume ratio of the mostly SW sample would then lower the plasmon frequency with respect to the MWCNT sample and graphite. Thus, the systematic variation in plasmon frequency may be explained by a lowering of the net electron density by the surfaces in S- and M-WCNT. Work performed at BNL and the Advanced Photon Source was supported by the US DOE under contracts No. DE-AC02-98CH10886 and No. W-31-109-Eng-38 respectively.
NASA Astrophysics Data System (ADS)
Dahl, Carl Eric
2009-06-01
The WIMP limit set by the Xenon10 experiment in 2007 signals a new era in direct detection of dark matter, with several large-scale liquid target detectors now under construction. A major challenge in these detectors will be to understand backgrounds at the level necessary to claim a positive WIMP signal. In liquid xenon, these backgrounds are dominated by electron recoils, which may be distinguished from the WIMP signal (nuclear recoils) by their higher charge-to-light ratio. During the construction and operation of Xenon10, the prototype detector Xed probed the physics of this discrimination. Particle interactions in liquid xenon both ionize and excite xenon atoms, giving charge and scintillation signals, respectively. Some fraction of ions recombine, reducing the charge signal and creating additional scintillation. The charge-to-light ratio, determined by the initial exciton-ion ratio and the ion recombination fraction, provides the basis for discrimination between electron and nuclear recoils. Intrinsic fluctuations in the recombination fraction limit discrimination. Changes in recombination induce an exact anti-correlation between charge and light, and when calibrated this anti-correlation distinguishes recombination fluctuations from uncorrelated fluctuations in the measured signals. We determine the mean recombination and recombination fluctuations as a function of energy and applied field for electron and nuclear recoils, finding that recombination fluctuations are already the limiting factor for discrimination above ~12 keVr (nuclear recoil energy). Below 12 keVr statistical fluctuations in the number of scintillation photons counted dominate, and we project a x6 improvement in background rejection with a x2 increase in light collection efficiency. We also build a simple recombination model that successfully reproduces the mean recombination in electron and nuclear recoils, including the surprising reversal of the expected trend for recombination with ionization density in low energy electron recoils. The model also reproduces the measured recombination fluctuations to within a factor of two at high energies. Surprisingly, the model suggests that recombination at low energies is independent of ionization density, and our observed discrimination is due not to the different stopping powers of electrons and nuclei as was thought, but rather to a different initial exciton-ion ratio. We suggest two possible physical models for this new result.
Wu, Tao; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng
2017-10-19
BNC x monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNC x (x = 1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC 2 -1 is a material with very small band gap (0.02 eV) among all the structures while other BNC x monolayers are semiconductors with band gap ranging from 0.51 eV to 1.32 eV. The carrier mobility of BNC x varies considerably from tens to millions of cm 2 V -1 s -1 . For BNC 2 -1, the hole mobility and electron mobility along both x and y directions can reach 10 5 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNC x monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC 4 , its hole mobility along the y direction and electron mobility along the x direction unexpectedly reach 10 6 orders of magnitude, even higher than that of graphene. Our findings suggest that BNC x layered materials with the proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices.
NASA Astrophysics Data System (ADS)
Wu, Tao; Deng, Kaiming; Deng, Weiqiao; Lu, Ruifeng
2017-11-01
BNC x monolayer as a kind of two-dimensional material has numerous chemical atomic ratios and arrangements with different electronic structures. Via calculations on the basis of density functional theory and Boltzmann transport theory under deformation potential approximation, the band structures and carrier mobilities of BNC x (x = 1,2,3,4) nanosheets are systematically investigated. The calculated results show that BNC2-1 is a material with very small band gap (0.02 eV) among all the structures while other BNC x monolayers are semiconductors with band gap ranging from 0.51 eV to 1.32 eV. The carrier mobility of BNC x varies considerably from tens to millions of cm2 V-1 s-1. For BNC2-1, the hole mobility and electron mobility along both x and y directions can reach 105 orders of magnitude, which is similar to the carrier mobility of graphene. Besides, all studied BNC x monolayers obviously have anisotropic hole mobility and electron mobility. In particular, for semiconductor BNC4, its hole mobility along the y direction and electron mobility along the x direction unexpectedly reach 106 orders of magnitude, even higher than that of graphene. Our findings suggest that BNC x layered materials with the proper ratio and arrangement of carbon atoms will possess desirable charge transport properties, exhibiting potential applications in nanoelectronic devices.
Distribution of E/N and N sub e in a cross-flow electric discharge laser
NASA Technical Reports Server (NTRS)
Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.
1976-01-01
The spatial distribution of the ratio of electric field to neutral gas density on a flowing gas, multiple pin-to-plane discharge was measured in a high-power, closed loop laser. The laser was operated at a pressure of 140 torr (1:7:20, CO2, N2, He) with typically a 100 meter/second velocity in the 5 x 8 x 135 centimeter discharge volume. E/N ratios ranged from 2.7 x 10 to the minus 16th power to 1.4 x 10 to the minus 16th power volts/cu cm along the discharge while the electron density ranged from 2.8 x 10 to the 10th power to 1.2 x 10 to the 10th power cm/3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samir, U.; Kaufman, Y.J.; Brace, L.H.
Measurements of electron temperature, satellite potential, ion density and ion composition from the cylindrical electrostatic probe and the Bennett ion mass spectrometer on board the AE-C satellite were used to investigate the influence of the body size parameter R/sub D/=R/sub 0//lambda/sub D/ (where R/sub 0/ is the satellite radius and lambda/sub D/ is the ambient Debye length) on ion distribution in the very near wake. The investigation focused on (O/sup +/) plasmas. It was found that the ratio (..beta..) of density in the wake to ambient density varies with R/sub D/ and that the variation can be described by amore » simple exponential relationship of the form ..beta..=a/sub 0/ exp (a/sub 1/R/sub D/) for 37< or =R/sub D/< or =247 and a/sub 0/=0.006, a/sub 1/=-0.009. the present study extends that of Samir et al. (1979a).« less
Fluid simulation of relativistic electron beam driven wakefield in a cold plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bera, Ratan Kumar; Sengupta, Sudip; Das, Amita
Excitation of wakefield in a cold homogeneous plasma, driven by an ultra-relativistic electron beam is studied in one dimension using fluid simulation techniques. For a homogeneous rigid beam having density (n{sub b}) less than or equal to half the plasma density (n{sub 0}), simulation results are found to be in good agreement with the analytical work of Rosenzweig [Phys. Rev. Lett. 58, 555 (1987)]. Here, Rosenzweig's work has been analytically extended to regimes where the ratio of beam density to plasma density is greater than half and results have been verified using simulation. Further in contrast to Rosenzweig's work, ifmore » the beam is allowed to evolve in a self-consistent manner, several interesting features are observed in simulation viz. splitting of the beam into beam-lets (for l{sub b} > λ{sub p}) and compression of the beam (for l{sub b} < λ{sub p}), l{sub b} and λ{sub p}, respectively, being the initial beam length and plasma wavelength.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosseini Jenab, S. M., E-mail: mehdi.jenab@yahoo.com; Kourakis, I., E-mail: IoannisKourakisSci@gmail.com
2014-04-15
A series of numerical simulations based on a recurrence-free Vlasov kinetic algorithm presented earlier [Abbasi et al., Phys. Rev. E 84, 036702 (2011)] are reported. Electron-ion plasmas and three-component (electron-ion-dust) dusty, or complex, plasmas are considered, via independent simulations. Considering all plasma components modeled through a kinetic approach, the nonlinear behavior of ionic scale acoustic excitations is investigated. The focus is on Bernstein–Greene–Kruskal (BGK) modes generated during the simulations. In particular, we aim at investigating the parametric dependence of the characteristics of BGK structures, namely of their time periodicity (τ{sub trap}) and their amplitude, on the electron-to-ion temperature ratio andmore » on the dust concentration. In electron-ion plasma, an exponential relation between τ{sub trap} and the amplitude of BGK modes and the electron-to-ion temperature ratio is observed. It is argued that both characteristics, namely, the periodicity τ{sub trap} and amplitude, are also related to the size of the phase-space vortex which is associated with BGK mode creation. In dusty plasmas, BGK modes characteristics appear to depend on the dust particle density linearly.« less
A 2D Electron Density and Plasma Current Density Diagnostic for Opening Switches
2006-02-01
x, y)) can be recovered by taking the inverse transform of C(f - f,, y), and calculating the inverse tangent of the ratio of its real and imaginary...parts, 27rfox + (x,y) = tan-1 [Re(IT)/Im(IT)], (7) where IT represents the inverse transform of C(f - fo, y). There are a number of options available...notch filtering around f, before the inverse transform is taken. However, since frequency space is discrete due to the discrete nature of the FFT, we
Positron annihilation studies in solid substituted aromatic compounds
NASA Astrophysics Data System (ADS)
Oliveira, F. C.; Oliveira, A. M.; Donnici, C. L.; Machado, J. C.; Magalhães, W. F.; Windmöller, D.; Fulgêncio, F. H.; Souza, L. R.
2011-04-01
Positronium formation was investigated in benzene and naphthalene compounds with electron donating (sbnd NH2 and sbnd OH) and electron withdrawing (sbnd CN and sbnd NO2) substituents. The results exhibit an increase in the positronium formation yield whenever donating groups are bound to the ring and a decrease with withdrawing groups. These results can be attributed to the π-system electronic density variation in the aromatic ring. The amount of positronium obtained, I3 parameter, has been correlated with the Hammett (σ) and Brown-Okamoto (σp+) constants and adjusted through the modified Hammett equation, which employs the ratio I3/I3ϕ, yielding a satisfactory fit.
Investigations on caesium-free alternatives for H{sup −} formation at ion source relevant parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurutz, U.; Fantz, U.; AG Experimentelle Plasmaphysik, Institut für Physik, Universität Augsburg, 86135 Augsburg
2015-04-08
Negative hydrogen ions are efficiently produced in ion sources by the application of caesium. Due to a thereby induced lowering of the work function of a converter surface a direct conversion of impinging hydrogen atoms and positive ions into negative ions is maintained. However, due to the complex caesium chemistry and dynamics a long-term behaviour is inherent for the application of caesium that affects the stability and reliability of negative ion sources. To overcome these drawbacks caesium-free alternatives for efficient negative ion formation are investigated at the flexible laboratory setup HOMER (HOMogenous Electron cyclotron Resonance plasma). By the usage ofmore » a meshed grid the tandem principle is applied allowing for investigations on material induced negative ion formation under plasma parameters relevant for ion source operation. The effect of different sample materials on the ratio of the negative ion density to the electron density n{sub H{sup −}} /n{sub e} is compared to the effect of a stainless steel reference sample and investigated by means of laser photodetachment in a pressure range from 0.3 to 3 Pa. For the stainless steel sample no surface induced effect on the negative ion density is present and the measured negative ion densities are resulting from pure volume formation and destruction processes. In a first step the dependency of n{sub H{sup −}} /n{sub e} on the sample distance has been investigated for a caesiated stainless steel sample. At a distance of 0.5 cm at 0.3 Pa the density ratio is 3 times enhanced compared to the reference sample confirming the surface production of negative ions. In contrast for the caesium-free material samples, tantalum and tungsten, the same dependency on pressure and distance n{sub H{sup −}} /n{sub e} like for the stainless steel reference sample were obtained within the error margins: A density ratio of around 14.5% is measured at 4.5 cm sample distance and 0.3 Pa, linearly decreasing with decreasing distance to 7% at 1.5 cm. Thus, tantalum and tungsten do not significantly affect the negative ion density. First measurements conducted with LaB{sub 6} as well as with two types of diamond like carbon (DLC) n{sub H{sup −}} /n{sub e} of about 15% at 1 Pa were measured, which is comparable to the density ratio obtained for the stainless steel reference sample. At HOMER a surface induced enhancement of n{sub H{sup −}} is only observed when it exceeds the volume formation of H{sup −} which is also realistic for negative hydrogen ion sources.« less
Radiological properties of plastics and TLD materials its application in radiation dosimetry
NASA Astrophysics Data System (ADS)
Jabaseelan Samuel, E. James; Srinivasan, K.; Poopathi, V.
2017-05-01
In the current study, we evaluated the tissue equivalency of nine different commonly used thermoluminescence compounds and six plastic materials over the photon energy range of 15 KeV to 20 MeV. Our result confirmed that the ratio of number of electrons per gram, electron density of the entire TLD compounds and plastic materials to ICRU-44 soft tissue was lesser than unity, except in the case of polypropylene plastics. The effective atomic number ratio of all the plastic materials was also <1 excluding Poly-vinyl-chloride, and for TLD lithium borate material, it was <1 others which showed the deviation with respect to photon energy. Mass attenuation coefficient (µ/ϼ), mass absorption coefficient (µen/ρ) was calculated and the results are discussed in this paper.
NASA Technical Reports Server (NTRS)
Flower, D. R.; Goharji, A.; Cohen, M.
1984-01-01
Photoelectric visual and ultraviolet observations of the compact planetary nebula Sw St 1 are analyzed. The electron density, determined from the C III 1907/1909 A line ratio, is N(e) = (1.1 + or - 0.1) x 10 to the 5th/cu cm, consistent with the high emission measure and high critical frequency determined from observations of the thermal radio emission. The C/O abundance ratio in the nebula is found to be N(C)/N(O) = 0.72 + or - 0.1, i.e. the envelope is oxygen-rich, as suggested by the identification of the silicate feature in the 8-13 micron infrared spectrum. Difficulties remain in accurately determining the reddening constant to the nebula and its electron temperature.
High-mobility ambipolar ZnO-graphene hybrid thin film transistors.
Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok
2014-02-11
In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm(2)/V·s, and a high on-off ratio of 10(5). The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs.
Optical spectrophotometry of Wolf-Rayet galaxies
NASA Technical Reports Server (NTRS)
Vacca, William D.; Conti, Peter S.
1992-01-01
We have obtained long-slit optical spectra of 10 Wolf-Rayet galaxies and four other starburst galaxies. Using the nebular emission lines we have determined the electron temperatures, electron densities, extinctions, oxygen abundances, mass of ionized hydrogen, and numbers of ionizing photons due to hot stars in these galaxies. The various forbidden line ratios clearly indicate a stellar origin for the emission-line spectrum. From the flux of the broad He II 4686 A emission feature we have estimated the number of Wolf-Rayet stars present. We have accounted for the contribution of these stars to the total ionizing flux and have calculated the ratio of the number of these stars to the number of O stars. Wolf-Rayet galaxies are among the youngest examples of the starburst phenomenon, which we observed at a propitious moment.
Structure and electronic properties of Cu nanoclusters supported on Mo 2C(001) and MoC(001) surfaces
Posada-Pérez, Sergio; Viñes, Francesc; Rodríguez, José A.; ...
2015-09-15
In this study, the atomic structure and electronic properties of Cu n nanoclusters (n = 4, 6, 7, and 10) supported on cubic nonpolar δ-MoC(001) and orthorhombic C- or Mo-terminated polar β-Mo 2C(001) surfaces have been investigated by means of periodic density functional theory based calculations. The electronic properties have been analyzed by means of the density of states, Bader charges, and electron localization function plots. The Cu nanoparticles supported on β-Mo 2C(001), either Mo- or C-terminated, tend to present a two-dimensional structure whereas a three-dimensional geometry is preferred when supported on δ-MoC(001), indicating that the Mo:C ratio and themore » surface polarity play a key role determining the structure of supported clusters. Nevertheless, calculations also reveal important differences between the C- and Mo-terminated β-Mo 2C(001) supports to the point that supported Cu particles exhibit different charge states, which opens a way to control the reactivity of these potential catalysts.« less
Experiments on Electron-Plasma Vortex Motion Driven by a Background Vorticity Gradient.
NASA Astrophysics Data System (ADS)
Kabantsev, A. A.; Driscoll, C. F.
2000-10-01
The interaction of self-trapped vortices with a background vorticity gradient plays an important role in 2D hydrodynamics, including various aspects of relaxation and self-organization of 2D turbulence. In the present experiments, electron plasma columns with monotonically decreasing density profiles provide a vorticity background with (negative) shear in the rotational flow. Clumps of extra electrons are then retrograde vortices, rotating against the background shear; and regions with a deficit of electrons (holes) are prograde vortices. Theory predicts that clumps move up the background gradient, and holes move down the gradient, with velocities which depend differently on the ratio of the vortex trapping length to vortex radius, l / r_v. The present experiments show quantitative agreement with recent theory and simulations,(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). for the accessible regime of 0.2 < l/rv < 2. The experiments also show that moving clumps leave a spiral density wake, and that instability of these wakes results in a large number of long-lived holes.
Effective mass and Fermi surface complexity factor from ab initio band structure calculations
NASA Astrophysics Data System (ADS)
Gibbs, Zachary M.; Ricci, Francesco; Li, Guodong; Zhu, Hong; Persson, Kristin; Ceder, Gerbrand; Hautier, Geoffroy; Jain, Anubhav; Snyder, G. Jeffrey
2017-02-01
The effective mass is a convenient descriptor of the electronic band structure used to characterize the density of states and electron transport based on a free electron model. While effective mass is an excellent first-order descriptor in real systems, the exact value can have several definitions, each of which describe a different aspect of electron transport. Here we use Boltzmann transport calculations applied to ab initio band structures to extract a density-of-states effective mass from the Seebeck Coefficient and an inertial mass from the electrical conductivity to characterize the band structure irrespective of the exact scattering mechanism. We identify a Fermi Surface Complexity Factor:
NASA Astrophysics Data System (ADS)
Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Pukhov, A.; Purvis, M. A.; Townsend, A.; Keiss, D.; Wang, Y.; Wang, S.; Prieto, A.; Rocca, J. J.
2014-10-01
Irradiation of ordered nanowire arrays with high contrast femtosecond laser pulses of relativistic intensity creates volumetrically heated near solid density plasmas characterized by multi-KeV temperatures and extreme degrees of ionization. The large hydrodynamic-to-radiative lifetime ratio of these plasmas results in very efficient X-ray generation. Au nanowire array plasmas irradiated at I 5×1018 Wcm-2 are measured to convert ~ 5 percent of the laser energy into h ν > 0.9 KeV X-rays, and >1 × 10-4 into h ν > 9 KeV photons, creating bright picosecond X-ray sources. The angular distribution of the higher energy photons is measured to change from isotropic into annular as the intensity increases, while softer X-ray emission (h ν >1 KeV) remains isotropic and nearly unchanged. Model simulations suggest the unexpected annular distribution of the hard X-rays might result from bremsstrahlung of fast electrons confined in a high aspect ratio near solid density plasma in which the electron-ion collision mean free-path is of the order of the plasma thickness. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.
NASA Astrophysics Data System (ADS)
Wheatley, Vincent; Bond, Daryl; Li, Yuan; Samtaney, Ravi; Pullin, Dale
2017-11-01
The Richtmyer-Meshkov instability (RMI) of a shock accelerated perturbed density interface is important in both inertial confinement fusion and astrophysics, where the materials involved are typically in the plasma state. Initial density interfaces can be due to either temperature or ion-species discontinuities. If the Atwood number of the interfaces and specific heat ratios of the fluids are matched, these two cases behave similarly when modeled using the equations of either hydrodynamics or magnetohydrodynamics. In the two-fluid ion-electron plasma model, however, there is a significant difference between them: In the thermal interface case, there is a discontinuity in electron density that is also subject to the RMI, while for the ion-species interface case there is not. It will be shown via ideal two-fluid plasma simulations that this causes substantial differences in the dynamics of the flow between the two cases. This work was partially supported by the KAUST Office of Sponsored Research under Award URF/1/2162-01.
Electron density and effective atomic number (Zeff) determination through x-ray Moiré deflectometry
NASA Astrophysics Data System (ADS)
Valdivia Leiva, Maria Pia; Stutman, Dan; Finkenthal, Michael
2014-10-01
Talbot-Lau based Moiré deflectometry is a powerful density diagnostic capable of delivering refraction information and attenuation from a single image, through the accurate detection of X-ray phase-shift and intensity. The technique is able to accurately measure both the real part of the index of refraction δ (directly related to electron density) and the attenuation coefficient μ of an object placed in the x-ray beam. Since the atomic number Z (or Zeff for a composite sample) is proportional to these quantities, an elemental map of the effective atomic number can be obtained with the ratio of the phase and the absorption image. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest in various fields of HED research such as shocked materials and ICF experiments as Zeff is linked, by definition, to the x-ray absorption properties of a specific material. This work is supported by U.S. DoE/NNSA Grant No. 435 DENA0001835.
Particle transport in low-collisionality H-mode plasmas on DIII-D
Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; ...
2015-10-05
In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the T e/T i ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in themore » perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.« less
NASA Astrophysics Data System (ADS)
Wang, Hui; Li, Xu; Gao, Liang; Zhai, Jiao; Liu, Ru; Gao, Xueyun; Wang, Dongqi; Zhao, Lina
2016-06-01
Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio could be controlled to generate different AuNCs with versatile electronic structures, optical properties and reaction stabilities. Therefore, we propose a universal approach to obtain a specific Au/S ratio of ligand coated AuNCs by adjusting the ligand composition, thus controlling the chemicophysical properties of AuNCs with ultimately the same number of Au atoms.Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio could be controlled to generate different AuNCs with versatile electronic structures, optical properties and reaction stabilities. Therefore, we propose a universal approach to obtain a specific Au/S ratio of ligand coated AuNCs by adjusting the ligand composition, thus controlling the chemicophysical properties of AuNCs with ultimately the same number of Au atoms. Electronic supplementary information (ESI) available: The MALDI-TOF-MS identification of Au24Peptide8, the structural divisions of Au24(Cys-Cys)8 obtained based on the ``divide and protect'' approach, the structure of level-1 and -3 staple motifs, the relative energies of all stable configurations of Au24(Cys-Cys)8, orbital components of Iso1 of Au24(Cys-Cys)8, electronic structure comparison between Au24(Cys-Cys)8 and Au24(SR)20, and the coordination of Iso1. See DOI: 10.1039/c5nr08727a
2010-02-23
reflection, thus increasing the quantum efficiency by one order of magnitude and improving the light extraction from the nano-roughened device surface by...respectively. At a biased current of 400 A, the highest external quantum efficiency is over 0.2% to obtain the maximum EL power of >1 W. In...processing techniques for improving the internal and external quantum efficiencies of Si MOSLEDs via detuning the size and density of high-aspect-ratio Si
Inverted organic photovoltaic device with a new electron transport layer
NASA Astrophysics Data System (ADS)
Kim, Hyeong Pil; Yusoff, Abd Rashid bin Mohd; Kim, Hyo Min; Lee, Hee Jae; Seo, Gi Jun; Jang, Jin
2014-03-01
We demonstrate that there is a new solution-processed electron transport layer, lithium-doped zinc oxide (LZO), with high-performance inverted organic photovoltaic device. The device exhibits a fill factor of 68.58%, an open circuit voltage of 0.86 V, a short-circuit current density of -9.35 cm/mA2 along with 5.49% power conversion efficiency. In addition, we studied the performance of blend ratio dependence on inverted organic photovoltaics. Our device also demonstrates a long stability shelf life over 4 weeks in air.
The electrical and thermal transport properties of hybrid zigzag graphene-BN nanoribbons
NASA Astrophysics Data System (ADS)
Gao, Song; Lu, Wei; Zheng, Guo-Hui; Jia, Yalei; Ke, San-Huang
2017-06-01
The electron and phonon transport in hybrid graphene-BN zigzag nanoribbons are investigated by the nonequilibrium Green’s function method combined with density functional theory calculations. A 100% spin-polarized electron transport in a large energy window around the Fermi level is found and this behavior is independent of the ribbon width as long as there contain 3 zigzag carbon chains. The phonon transport calculations show that the ratio of C-chain number to BN-chain number will modify the thermal conductance of the hybrid nanoribbon in a complicated manner.
Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation
NASA Astrophysics Data System (ADS)
Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas
2018-04-01
The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
Structural and electronic properties of the alkali metal incommensurate phases
NASA Astrophysics Data System (ADS)
Woolman, Gavin; Naden Robinson, Victor; Marqués, Miriam; Loa, Ingo; Ackland, Graeme J.; Hermann, Andreas
2018-05-01
Under pressure, the alkali elements sodium, potassium, and rubidium adopt nonperiodic structures based on two incommensurate interpenetrating lattices. While all elements form the same "host" lattice, their "guest" lattices are all distinct. The physical mechanism that stabilizes these phases is not known, and detailed calculations are challenging due to the incommensurability of the lattices. Using a series of commensurate approximant structures, we tackle this issue using density functional theory calculations. In Na and K, the calculations prove accurate enough to reproduce not only the stability of the host-guest phases, but also the complicated pressure dependence of the host-guest ratio and the two guest-lattice transitions. We find Rb-IV to be metastable at all pressures, and suggest it is a high-temperature phase. The electronic structure of these materials is unique: they exhibit two distinct, coexisting types of electride behavior, with both fully localized pseudoanions and electrons localized in 1D wells in the host lattice, leading to low conductivity. While all phases feature pseudogaps in the electronic density of states, the perturbative free-electron picture applies to Na, but not to K and Rb, due to significant d -orbital population in the latter.
Structure and dynamics of the umagnetized plasma around comet 67P/CG
NASA Astrophysics Data System (ADS)
Henri, P.; Vallières, X.; Gilet, N.; Hajra, R.; Moré, J.; Goetz, C.; Richter, I.; Glassmeier, K. H.; Galand, M. F.; Heritier, K. L.; Eriksson, A. I.; Nemeth, Z.; Tsurutani, B.; Rubin, M.; Altwegg, K.
2016-12-01
At distances close enough to the Sun, when comets are characterised by a significant outgassing, the cometary neutral density may become large enough for both the cometary plasma and the cometary gas to be coupled, through ion-neutral and electron-neutral collisions. This coupling enables the formation of an unmagnetised expanding cometary ionosphere around the comet nucleus, also called diamagnetic cavity, within which the solar wind magnetic field cannot penetrate. The instruments of the Rosetta Plasma Consortium (RPC), onboard the Rosetta Orbiter, enable us to better constrain the structure, dynamics and stability of the plasma around comet 67P/CG. Recently, magnetic field measurements (RPC-MAG) have shown the existence of such a diamagnetic region around comet 67P/CG [Götz et al., 2016]. Contrary to a single, large scale, diamagnetic cavity such as what was observed around comet Halley, Rosetta have crossed several diamagnetic structures along its trajectory around comet 67P/CG. Using electron density measurements from the Mutual Impedance Probe (RPC-MIP) during the different diamagnetic cavity crossings, identified by the flux gate magnetometer (RPC-MAG), we map the unmagnetised plasma density around comet 67P/CG. Our aims is to better constrain the structure, dynamics and stability of this inner cometary plasma layer characterised by cold electrons (as witnessed by the Langmuir Probes RPC-LAP). The ionisation ratio in these unmagnetised region(s) is computed from the measured electron (RPC-MIP) and neutral gas (ROSINA/COPS) densities. In order to assess the importance of solar EUV radiation as a source of ionisation, the observed electron density will be compared to a the density expected from an ionospheric model taking into account solar radiation absorption. The crossings of diamagnetic region(s) by Rosetta show that the unmagnetised cometary plasma is particularly homogeneous, compared to the highly dynamical magnetised plasma observed in adjacent magnetised regions. Moreover, during the crossings of multiple, successive diamagnetic region(s) over time scales of tens of minutes or hours, the plasma density is almost identical in the different unmagnetised regions, suggesting that these unmagnetised regions may be a single diamagnetic structure crossed several times by Rosetta.
NASA Astrophysics Data System (ADS)
Butko, V. Y.; So, W.; Lang, D. V.; Chi, X.; Lashley, J. C.; Ramirez, A. P.
2009-12-01
In order to optimize the performance of molecular organic electronic devices it is important to study the intermolecular density of states and charge transport mechanisms in the environment of crystalline organic material. Using this approach in Field Effect Transistors (FETs) we show that material purification improves carrier mobility and decreases density of the deep localized electronic state. We also report a general exponential energy dependence of the density of localized states in a vicinity of the mobility edge (Fermi energies up to ∼7 times higher than the thermal energy (kT)) in a variety of the extensively purified molecular organic crystal FETs. This observation and the low activation energy of the order of ∼kT suggest that molecular structural misplacements of the sizes that are comparable with thermal molecular modes rather than impurity deep traps play a role in formation of these shallow states. We find that the charge carrier mobility in the FET nanochannels, μeff, is parameterized by two factors, the free-carrier mobility, μ0, and the ratio of the free carrier density to the total carrier density induced by gate bias. Crystalline FETs fabricated from rubrene, pentacene, and tetracene have a high free-carrier mobility, μ0∼50 cm2/Vs, at 300 K with lower device μeff dominated by localized shallow gap states. This relationship suggests that further improvements in electronic performance could be possible with enhanced device quality.
On the energy deposition into the plasma for an inverted fireball geometry
NASA Astrophysics Data System (ADS)
Levko, Dmitry; Gruenwald, Johannes
2017-10-01
Energy deposition into a plasma for an inverted fireball geometry is studied using a self-consistent two-dimensional Particle-in-Cell Monte Carlo collision model. In this model, the cathode is a pin which injects the fixed electron current and the anode is a hollow metal tube covered with the metal grid. We obtain an almost constant ratio between the densities of plasmas generated in the cathode-grid gap and inside the hollow anode. The results of the simulations show that there is no energy exchange between the beam and plasma electrons at low emission currents. For increasing current, however, we observe the increasing coupling between the electron beam and the thermal plasma electrons. This leads to the heating of plasma electrons and the generation of the so-called supra-thermal electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastner, S.O.; Bhatia, A.K.
A generalized method for obtaining individual level population ratios is used to obtain relative intensities of extreme ultraviolet Fe XV emission lines in the range 284 --500 A, which are density dependent for electron densities in the tokamak regime or higher. Four lines in particular are found to attain quite high intensities in the high-density limit. The same calculation provides inelastic contributions to linewidths. The method connects level populations and level widths through total probabilities t/sub i/j, related to ''taboo'' probabilities of Markov chain theory. The t/sub i/j are here evaluated for a real atomic system, being therefore of potentialmore » interest to random-walk theorists who have been limited to idealized systems characterized by simplified transition schemes.« less
An ab-initio investigation on SrLa intermetallic compound
NASA Astrophysics Data System (ADS)
Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.
2018-05-01
The electronic, elastic and thermodynamic property of CsCl-type SrLa are investigated through density functional theory. The energy-volume relation for this compound has been obtained. The band structure, density of states and charge density in (110) plane are also examined. The elastic constants (C11, C12 and C44) of SrLa is computed, then, using these elastic constants, the bulk moduli, shear moduli, Young's moduli and Poisson's ratio are also derived. The calculated results showed that CsCl-type SrLa is ductile at ambient conditions. The thermodynamic quantities such as free energy, entropy and heat capacity as a function of temperature are estimated and the results obtained are discussed.
NASA Technical Reports Server (NTRS)
Kunc, Joseph A.
1988-01-01
A novel approach for calculating the populations of the excited Li-like ions C IV, N V, O VI, and Ne VIII is presented. The populations of the 2(2P), 3(2S), 3(2P), and 3(2D) electronic levels in these ions in optically thin plasmas with a broad range of electron density, N(e), and temperature, T(e), are determined from the collisional-radiative model by solving the system of rate equations for the production of excited ions; the equations are linear with respect to the excited ion populations, and the N(e) and T(e) are taken as independent variables. These populations are used to determine the ratios of line intensities for dipole allowed transitions between various energy levels. This approach can be applied to impurities other than the lithiumlike ions and is especially useful for diagnostics of systems where nonintrusive spectroscopic techniques must be used.
A high speed PE-ALD ZnO Schottky diode rectifier with low interface-state density
NASA Astrophysics Data System (ADS)
Jin, Jidong; Zhang, Jiawei; Shaw, Andrew; Kudina, Valeriya N.; Mitrovic, Ivona Z.; Wrench, Jacqueline S.; Chalker, Paul R.; Balocco, Claudio; Song, Aimin; Hall, Steve
2018-02-01
Zinc oxide (ZnO) has recently attracted attention for its potential application to high speed electronics. In this work, a high speed Schottky diode rectifier was fabricated based on a ZnO thin film deposited by plasma-enhanced atomic layer deposition and a PtOx Schottky contact deposited by reactive radio-frequency sputtering. The rectifier shows an ideality factor of 1.31, an effective barrier height of 0.79 eV, a rectification ratio of 1.17 × 107, and cut-off frequency as high as 550 MHz. Low frequency noise measurements reveal that the rectifier has a low interface-state density of 5.13 × 1012 cm-2 eV-1, and the noise is dominated by the mechanism of a random walk of electrons at the PtO x /ZnO interface. The work shows that the rectifier can be used for both noise sensitive and high frequency electronics applications.
Ab-initio study of C15-type Laves phase superconductor LaRu2
NASA Astrophysics Data System (ADS)
Kholil, Md. Ibrahim; Islam, Md. Shahinur; Rahman, Md. Atikur
2017-01-01
Structural, elastic, electronic, optical, thermodynamic, and superconducting properties of the Laves phase superconductor LaRu2 with Tc 1.63 K were investigated using the first-principles calculations for the first time. The corresponding evaluated structural parameters are in good agreement with the available theoretical values. The different elastic properties like as, elastic constants, bulk modulus B, shear modulus G, Young's modulus E, and Poisson ratio ν were calculated using the Voigt-Reuss-Hill approximation. The ductility nature appears in both values of Cauchy pressure and Pugh's ratio. The band structure and Cauchy pressure shows that the material behaves metallic nature. The calculated total density of state is 6.80 (electrons/eV) of LaRu2. The optical properties such as reflectivity, absorption spectrum, refractive index, dielectric function, conductivity, and energy loss spectrum are also calculated. The photoconductivity reveals the metallic nature of LaRu2 and absorption coefficient is good in the infrared region. The evaluated density and Debye temperature are 9.55 gm/cm3 and 110.51 K, respectively. In addition, the study of thermodynamic properties like as minimum thermal conductivity, melting temperature, and Dulong-Petit limit are 0.26 (Wm-1 K-1), 1,471.65 K, and 74.80 (J/mole K), respectively. Finally, the investigated electron-phonon coupling constant is 0.66 of LaRu2 superconductor.
Far infrared spectroscopy of star formation regions in M82
NASA Technical Reports Server (NTRS)
Duffy, P. B.; Erickson, E. F.; Haas, M. R.; Houck, J. R.
1986-01-01
Emission lines of (O III) at 52 microns and 88 microns and of (N III) at 57 microns in the nucleus of the galaxy M82 have been observed from the Kuiper Airborne Observatory with the facility's cooled grating spectrometer. The (N III) line has not been previously detected in any extragalactic source. The fluxes in the lines indicate approx 4 x 10 to the 7th power M of ionized gas and a large population of massive stars (equivalent to 5 x 10 to the 5th power 08.5 stars), sufficient to power the infrared luminosity of the nucleus. We use the 52 to 88 micron line intensity ratio to find an average electron density of 210 + or 75 in the nucleus; this is 10 to 100 times lower than values typically observed in individual compact HII regions in our Galaxy. The relative line strengths of the (O III) and (N III) lines imply an N(++)/O(++) ratio of 0.45 + or - 0.1, significantly lower than is measured by the same method in individual HII regions at similar galactocentric distances (equal to or less than 400 pc) in our Galaxy. This lower N(++)/O(++) ratio may be due to a lower N/O ratio, higher stellar temperatures, or both, in M82. At spectral resolutions of approx. 90 km/s, all three line profiles are similarly asymmetric. They can be well fitted by two Gaussian distributions with widths of approx. 150 km/s and central velocities of approx. 110 and approx. 295 km/s, bracketing the systemic velocity of the nucleus of approx. 210 km/s. Within uncertainties, both the N(++)/O(++) ratio and the electron density are the same for both Gaussian components; this indicates no major large-scale gradient in either quantity within the nucleus.
NASA Astrophysics Data System (ADS)
Liu, Yan; Lin, Zhaojun; Zhao, Jingtao; Yang, Ming; Shi, Wenjing; Lv, Yuanjie; Feng, Zhihong
2016-04-01
The electron mobility for the prepared AlGaN/AlN/GaN heterostructure field-effect transistor (HFET) with the ratio of the gate length to the drain-to-source distance being less than 1/2 has been studied by comparing the measured electron mobility with the theoretical value. The measured electron mobility is derived from the measured capacitance-voltage (C-V) and current-voltage (I-V) characteristics, and the theoretical mobility is determined by using Matthiessen's law, involving six kinds of important scattering mechanisms. For the prepared device at room temperature, longitudinal optical phonon scattering (LO scattering) was found to have a remarkable effect on the value of the electron mobility, and polarization Coulomb field scattering (PCF scattering ) was found to be important to the changing trend of the electron mobility versus the two-dimensional electron gas (2DEG) density.
EUV observations of quiescent prominences from Skylab
NASA Technical Reports Server (NTRS)
Moe, O. K.; Cook, J. W.; Mango, S. A.
1979-01-01
Measurements of line intensities and line widths for three quiescent prominences observed with Naval Research Laboratory slit spectrograph on ATM/Skylab are reported. The wavelengths of the observed lines cover the range 1175 A to 1960 A. The measured intensities have been calibrated to within approximately a factor 2 and are average intensities over a 2 arcsec by 60 arcsec slit. Nonthermal velocities from the measured line widths are derived. The nonthermal velocity is found to increase with temperature in the prominence transition zone. Electron densities and pressures are derived from density sensitive line ratios. Electron pressures for two of the prominences are found to lie in the range 0.04-0.08 dyn/sq cm, while values for the third and most intense and active of the three prominences are in the range 0.07-0.22 dyn/sq cm.
Exact Thermal Transport Properties of Gray-Arsenic using Electon-Phonon Coupling
NASA Astrophysics Data System (ADS)
Kang, Seoung-Hun; Kwon, Young-Kyun
Using various theoretical methods, we investigate the thermoelectric property of gray arsenic. Thermoelectric devices that utilize the Seebeck effect convert heat flow into electrical energy. The conversion efficiency of such a device is determined by its figure of merit or ZT value, which is related to various transport coefficients, such as Seebeck coefficient and the ratio of its electrical conductivity to its thermal counterpart for given temperature. To calculate various transport coefficients and thus the ZT values of gray arsenic, we apply the Boltzmann transport theory to its electronic and phononic structures obtained by density functional theory and density functional perturbation theory together with maximally locallized Wannier functions. During this procedure, we evaluate its relaxation time accurately by explicitly considering electron-phonon coupling. Our result reveals that gray arsenic may be used for a good p-type thermoelectric devices.
Switching behaviors of graphene-boron nitride nanotube heterojunctions
Parashar, Vyom; Durand, Corentin P.; Hao, Boyi; ...
2015-07-20
High electron mobility of graphene has enabled their application in high-frequency analogue devices but their gapless nature has hindered their use in digital switches. In contrast, the structural analogous, h-BN sheets and BN nanotubes (BNNTs) are wide band gap insulators. Here we show that the growth of electrically insulating BNNTs on graphene can enable the use of graphene as effective digital switches. These graphene-BNNT heterojunctions were characterized at room temperature by four-probe scanning tunneling microscopy (4-probe STM) under real-time monitoring of scanning electron microscopy (SEM). A switching ratio as high as 105 at a turn-on voltage as low as 0.5more » V were recorded. Simulation by density functional theory (DFT) suggests that mismatch of the density of states (DOS) is responsible for these novel switching behaviors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, R. C.; Bruno, Giovanni; Onel, Yener
Microstructural changes in porous cordierite caused by machining were characterized using microtensile testing, X-ray computed tomography and scanning electron microscopy. Young s moduli and Poisson s ratios were determined on ~215-380 um thick machined samples by combining digital image correlation and microtensile loading. The results provide evidence for an increase in microcrack density due to machining of the thin samples extracted from diesel particulate filter honeycombs.
Simulations in support of the T4B experiment
NASA Astrophysics Data System (ADS)
Qerushi, Artan; Ross, Patrick; Lohff, Chriss; Raymond, Anthony; Montecalvo, Niccolo
2017-10-01
Simulations in support of the T4B experiment are presented. These include a Grad-Shafranov equilibrium solver and equilibrium reconstruction from flux-loop measurements, collision radiative models for plasma spectroscopy (determination of electron density and temperature from line ratios) and fast ion test particle codes for neutral beam - plasma coupling. ©2017 Lockheed Martin Corporation. All Rights Reserved.
Malik, Hitendra K; Singh, Sukhmander
2011-03-01
Rayleigh instability is investigated in a Hall thruster under the effect of finite temperature and density gradient of the plasma species. The instability occurs only when the frequency of the oscillations ω falls within a frequency band described by k{y}u₀+1/k_{y}∂²u_{0}/∂x²+Ω/k_{y}n_{0}∂n₀/∂x≪ω
Thrust and efficiency model for electron-driven magnetic nozzles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, Justin M.; Choueiri, Edgar Y.
2013-10-15
A performance model is presented for magnetic nozzle plasmas driven by electron thermal expansion to investigate how the thrust coefficient and beam divergence efficiency scale with the incoming plasma flow and magnetic field geometry. Using a transformation from cylindrical to magnetic coordinates, an approximate analytical solution is derived to the axisymmetric two-fluid equations for a collisionless plasma flow along an applied magnetic field. This solution yields an expression for the half-width at half-maximum of the plasma density profile in the far-downstream region, from which simple scaling relations for the thrust coefficient and beam divergence efficiency are derived. It is foundmore » that the beam divergence efficiency is most sensitive to the density profile of the flow into the nozzle throat, with the highest efficiencies occurring for plasmas concentrated along the nozzle axis. Increasing the expansion ratio of the magnetic field leads to efficiency improvements that are more pronounced for incoming plasmas that are not concentrated along the axis. This implies that the additional magnet required to increase the expansion ratio may be worth the added complexity for plasma sources that exhibit poor confinement.« less
Stopbands in the existence domains of acoustic solitons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nsengiyumva, F., E-mail: franco.nseng@gmail.com; Hellberg, M. A., E-mail: hellberg@ukzn.ac.za; Mace, R. L., E-mail: macer@ukzn.ac.za
2014-10-15
A fully nonlinear Sagdeev pseudopotential approach is used to study the existence domain of fast mode ion-acoustic solitons in a three-species plasma composed of cold and warm adiabatic positive ion species and Boltzmann electrons. It is shown that for appropriate values of the cold-to-warm ion charge-to-mass ratio, μ, and the effective warm ion-to-electron temperature ratio, τ, there is a range in cold to warm ion charge density ratio, f, over which a stopband in soliton speed exists. Solitons do not propagate in the stopband, although they can occur for both higher and lower speeds. The stopbands are associated with amore » limiting curve of the existence domain that is double-valued in speed for a range of values of f. Analytical estimates of the upper and lower limits of τ and μ that support stopbands are found. It is suggested that, inter alia, the analysis should be applicable to the solar wind plasma.« less
Bimodal behaviour of charge carriers in graphene induced by electric double layer
Tsai, Sing-Jyun; Yang, Ruey-Jen
2016-01-01
A theoretical investigation is performed into the electronic properties of graphene in the presence of liquid as a function of the contact area ratio. It is shown that the electric double layer (EDL) formed at the interface of the graphene and the liquid causes an overlap of the conduction bands and valance bands and increases the density of state (DOS) at the Fermi energy (EF). In other words, a greater number of charge carriers are induced for transport and the graphene changes from a semiconductor to a semimetal. In addition, it is shown that the dependence of the DOS at EF on the contact area ratio has a bimodal distribution which responses to the experimental observation, a pinnacle curve. The maximum number of induced carriers is expected to occur at contact area ratios of 40% and 60%. In general, the present results indicate that modulating the EDL provides an effective means of tuning the electronic properties of graphene in the presence of liquid. PMID:27464986
Axisymmetric plasma equilibria in a Kerr metric
NASA Astrophysics Data System (ADS)
Elsässer, Klaus
2001-10-01
Plasma equilibria near a rotating black hole are considered within the multifluid description. An isothermal two-component plasma with electrons and positrons or ions is determined by four structure functions and the boundary conditions. These structure functions are the Bernoulli function and the toroidal canonical momentum per mass for each species. The quasi-neutrality assumption (no charge density, no toroidal current) allows to solve Maxwell's equations analytically for any axisymmetric stationary metric, and to reduce the fluid equations to one single scalar equation for the stream function \\chi of the positrons or ions, respectively. The basic smallness parameter is the ratio of the skin depth of electrons to the scale length of the metric and fluid quantities, and, in the case of an electron-ion plasma, the mass ratio m_e/m_i. The \\chi-equation can be solved by standard methods, and simple solutions for a Kerr geometry are available; they show characteristic flow patterns, depending on the structure functions and the boundary conditions.
Radiological properties of normoxic polymer gel dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venning, A.J.; Nitschke, K.N.; Keall, P.J.
2005-04-01
The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% highermore » than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.« less
Optimization of metal atomic ratio of PdxRuyNiz on carbon support for ethanol oxidation
NASA Astrophysics Data System (ADS)
Charoen, Kanin; Warakulwit, Chompunuch; Prapainainar, Chaiwat; Seubsai, Anusorn; Chareonpanich, Metta; Prapainainar, Paweena
2017-11-01
The catalytic activity of palladium (Pd) on an alloy catalyst on carbon supports with regards to ethanol oxidation was enhanced by systematically varying the atomic ratio of Pd, ruthenium (Ru), and nickel (Ni) alloy catalyst. Each atomic ratio catalyst was investigated so as to find the highest current density per mass of palladium. Functionalized carbon black (C) and reduced graphene oxide (rGO) were used as carbon supports. The PdxRuyNiz/carbon catalysts were prepared by impregnation and reduction method with sodium borohydride (NaBH4) being used as the reducing agent. Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were used to characterize the functionalized carbon supports, and the synthesized PdxRuyNiz/carbon catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and inductively coupled plasma (ICP). The electrical properties of catalyst were performed by cyclic voltammetry (CV), chronoamperometry (CA), and CO-stripping to investigate the catalytic activity compared to 20%wt synthesized Pd/C. The results showed that Pd:Ru:Ni = 60:0:40 on rGO (Pd60Ni40/rGO) had the best metal atomic ratio and support for the electro-oxidation of ethanol. The maximum current density and the electrochemical surface area were 11,074 mA cm-2 mg-1Pd and 55.6 m2 g-1Pd, which were 1.7 and 2.67 times the corresponding values of synthesized Pd/C, respectively.
WEIBEL, TWO-STREAM, FILAMENTATION, OBLIQUE, BELL, BUNEMAN...WHICH ONE GROWS FASTER?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.
2009-07-10
Many competing linear instabilities are likely to occur in astrophysical settings, and it is important to assess which one grows faster for a given situation. An analytical model including the main beam plasma instabilities is developed. The full three-dimensional dielectric tensor is thus explained for a cold relativistic electron beam passing through a cold plasma, accounting for a guiding magnetic field, a return electronic current, and moving protons. Considering any orientations of the wave vector allows to retrieve the most unstable mode for any parameters set. An unified description of the filamentation (Weibel), two-stream, Buneman, Bell instabilities (and more) ismore » thus provided, allowing for the exact determination of their hierarchy in terms of the system parameters. For relevance to both real situations and PIC simulations, the electron-to-proton mass ratio is treated as a parameter, and numerical calculations are conducted with two different values, namely 1/1836 and 1/100. In the system parameter phase space, the shape of the domains governed by each kind of instability is far from being trivial. For low-density beams, the ultra-magnetized regime tends to be governed by either the two-stream or the Buneman instabilities. For beam densities equaling the plasma one, up to four kinds of modes are likely to play a role, depending of the beam Lorentz factor. In some regions of the system parameters phase space, the dominant mode may vary with the electron-to-proton mass ratio. Application is made to solar flares, intergalactic streams, and relativistic shocks physics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirse, Nishant, E-mail: nishant.sirse@dcu.ie; Mishra, Anurag; Yeom, Geun Y.
The electron density, n{sub e}, modulation is measured experimentally using a resonance hairpin probe in a pulsed, dual-frequency (2/13.56 MHz), dual-antenna, inductively coupled plasma discharge produced in argon-C{sub 4}F{sub 8} (90–10) gas mixtures. The 2 MHz power is pulsed at a frequency of 1 kHz, whereas 13.56 MHz power is applied in continuous wave mode. The discharge is operated at a range of conditions covering 3–50 mTorr, 100–600 W 13.56 MHz power level, 300–600 W 2 MHz peak power level, and duty ratio of 10%–90%. The experimental results reveal that the quasisteady state n{sub e} is greatly affected by the 2 MHz power levels and slightly affected by 13.56 MHzmore » power levels. It is observed that the electron density increases by a factor of 2–2.5 on increasing 2 MHz power level from 300 to 600 W, whereas n{sub e} increases by only ∼20% for 13.56 MHz power levels of 100–600 W. The rise time and decay time constant of n{sub e} monotonically decrease with an increase in either 2 or 13.56 MHz power level. This effect is stronger at low values of 2 MHz power level. For all the operating conditions, it is observed that the n{sub e} overshoots at the beginning of the on-phase before relaxing to a quasisteady state value. The relative overshoot density (in percent) depends on 2 and 13.56 MHz power levels. On increasing gas pressure, the n{sub e} at first increases, reaching to a maximum value, and then decreases with a further increase in gas pressure. The decay time constant of n{sub e} increases monotonically with pressure, increasing rapidly up to 10 mTorr gas pressure and at a slower rate of rise to 50 mTorr. At a fixed 2/13.56 MHz power level and 10 mTorr gas pressure, the quasisteady state n{sub e} shows maximum for 30%–40% duty ratio and decreases with a further increase in duty ratio.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S. S., E-mail: sukti@iigs.iigm.res.in; Sekar Iyengar, A. N.
It is observed that the presence of a minority component of cooler electrons in a three component plasma plays a deterministic role in the evolution of solitary waves, double layers, or the newly discovered structures called supersolitons. The inclusion of the cooler component of electrons in a single electron plasma produces sharp increase in nonlinearity in spite of a decrease in the overall energy of the system. The effect maximizes at certain critical value of the number density of the cooler component (typically 15%–20%) giving rise to a hump in the amplitude variation profile. For larger amplitudes, the hump leadsmore » to a forbidden region in the ambient cooler electron concentration which dissociates the overall existence domain of solitary wave solutions in two distinct parameter regime. It is observed that an inclusion of the cooler component of electrons as low as < 1% affects the plasma system significantly resulting in compressive double layers. The solution is further affected by the cold to hot electron temperature ratio. In an adequately hotter bulk plasma (i.e., moderately low cold to hot electron temperature ratio), the parameter domain of compressive double layers is bounded by a sharp discontinuity in the corresponding amplitude variation profile which may lead to supersolitons.« less
Effects of interface electric field on the magnetoresistance in spin devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanamoto, T., E-mail: tetsufumi.tanamoto@toshiba.co.jp; Ishikawa, M.; Inokuchi, T.
2014-04-28
An extension of the standard spin diffusion theory is presented by using a quantum diffusion theory via a density-gradient (DG) term that is suitable for describing interface quantum tunneling phenomena. The magnetoresistance (MR) ratio is greatly modified by the DG term through an interface electric field. We have also carried out spin injection and detection measurements using four-terminal Si devices. The local measurement shows that the MR ratio changes depending on the current direction. We show that the change of the MR ratio depending on the current direction comes from the DG term regarding the asymmetry of the two interfacemore » electronic structures.« less
Study of physical properties of strontium based alumino-borosilicate glasses
NASA Astrophysics Data System (ADS)
Kaur, Mandeep; Kaur, Gurbinder; Kumar, V.
2018-05-01
In the present study, an attempt has been made to study the influence of CaO/Mgo ratio (R) on different physical properties of (10+x)CaO-(10-x)-MgO-10SrO-10B2O3-20Al2O3-40SiO2 glasses. The novel glass series has been synthesized by melt quenching technique. The parameters like reflection loss and dielectric constant have been determined. Also, molar refraction, molar electronic polarizability and oxygen packing density have been calculated on the basis of measured values of density, molar volume and refractive index of the glasses.
Development of CO2 laser dispersion interferometer with photoelastic modulator
NASA Astrophysics Data System (ADS)
Akiyama, T.; Kawahata, K.; Okajima, S.; Nakayama, K.
2010-10-01
A dispersion interferometer is one of the promising methods of the electron density measurement on large and high density fusion devices. This paper describes development of a CO2 laser dispersion interferometer with a photoelastic modulator for phase modulation. In order to make the dispersion interferometer free from variations of the detected intensity, a new phase extraction method is introduced: The phase shift is evaluated from a ratio of amplitudes of the fundamental and the second harmonics of the phase modulation frequency in the detected interference signal. The proof-of-principle experiments demonstrate the feasibility of this method.
Development of CO2 laser dispersion interferometer with photoelastic modulator.
Akiyama, T; Kawahata, K; Okajima, S; Nakayama, K
2010-10-01
A dispersion interferometer is one of the promising methods of the electron density measurement on large and high density fusion devices. This paper describes development of a CO(2) laser dispersion interferometer with a photoelastic modulator for phase modulation. In order to make the dispersion interferometer free from variations of the detected intensity, a new phase extraction method is introduced: The phase shift is evaluated from a ratio of amplitudes of the fundamental and the second harmonics of the phase modulation frequency in the detected interference signal. The proof-of-principle experiments demonstrate the feasibility of this method.
NASA Astrophysics Data System (ADS)
Salem, S.; Moslem, W. M.; Radi, A.
2017-05-01
Self-similar plasma expansion approach is used to solve a plasma model based on the losing phenomenon of Titan atmospheric composition. To this purpose, a set of hydrodynamic fluid equations describing a plasma consisting of two positive ions with different masses and isothermal electrons is used. With the aid of self-similar transformation, numerical solution of the fluid equations has been performed to examine the density, velocity, and potential profiles. The effects of different plasma parameters, i.e., density and temperature ratios, are studied on the expanding plasma profiles. The present investigation could be useful to recognize the ionized particles escaping from Titan atmosphere.
Nonlinear electrostatic solitary waves in electron-positron plasmas
NASA Astrophysics Data System (ADS)
Lazarus, I. J.; Bharuthram, R.; Moolla, S.; Singh, S. V.; Lakhina, G. S.
2016-02-01
The generation of nonlinear electrostatic solitary waves (ESWs) is explored in a magnetized four component two-temperature electron-positron plasma. Fluid theory is used to derive a set of nonlinear equations for the ESWs, which propagate obliquely to an external magnetic field. The electric field structures are examined for various plasma parameters and are shown to yield sinusoidal, sawtooth and bipolar waveforms. It is found that an increase in the densities of the electrons and positrons strengthen the nonlinearity while the periodicity and nonlinearity of the wave increases as the cool-to-hot temperature ratio increases. Our results could be useful in understanding nonlinear propagation of waves in astrophysical environments and related laboratory experiments.
High-mobility ambipolar ZnO-graphene hybrid thin film transistors
Song, Wooseok; Kwon, Soon Yeol; Myung, Sung; Jung, Min Wook; Kim, Seong Jun; Min, Bok Ki; Kang, Min-A; Kim, Sung Ho; Lim, Jongsun; An, Ki-Seok
2014-01-01
In order to combine advantages of ZnO thin film transistors (TFTs) with a high on-off ratio and graphene TFTs with extremely high carrier mobility, we present a facile methodology for fabricating ZnO thin film/graphene hybrid two-dimensional TFTs. Hybrid TFTs exhibited ambipolar behavior, an outstanding electron mobility of 329.7 ± 16.9 cm2/V·s, and a high on-off ratio of 105. The ambipolar behavior of the ZnO/graphene hybrid TFT with high electron mobility could be due to the superimposed density of states involving the donor states in the bandgap of ZnO thin films and the linear dispersion of monolayer graphene. We further established an applicable circuit model for understanding the improvement in carrier mobility of ZnO/graphene hybrid TFTs. PMID:24513629
Physical Conditions of a Lensed Star-Forming Galaxy at Z=1.7
NASA Technical Reports Server (NTRS)
Rigby, Jane; Wuyts, E.; Gladders, M.; Sharon, K.; Becker, G. D.
2010-01-01
We report rest-frame optical Keck/NIRSPEC spectroscopy of the brightest lensed galaxy yet discovered, RCSGA 032727-132609 at z=1.7037. From precise measurements of the nebular lines, we infer a number of physical properties: redshift, extinction, star formation rate, ionization parameter, electron density, electron temperature, oxygen abundance, and N/O, Ne/O, and Ar/O abundance ratios. The limit on [O III] 4363 A tightly constrains the oxygen abundance via the "direct" or Tc method, for the first time in all metallicity galaxy at z approx.2. We compare this result to several standard "bright-line" O abundance diagnostics, thereby testing these empirically calibrated diagnostics in situ. Finally, we explore the positions of lensed and unlensed galaxies in standard diagnostic diagrams, and explore the diversity of ionization conditions and mass-metallicity ratios at z=2.
The Physical Conditions of a Lensed Star-Forming Galaxy at Z=1.7
NASA Technical Reports Server (NTRS)
Rigby, Jane; Wuyts, E.; Gladders, M.; Sharon, K.; Becker, G.
2011-01-01
We report rest-frame optical Keck/NIRSPEC spectroscopy of the brightest lensed galaxy yet discovered, RCSGA 032727-132609 at z=1.7037. From precise measurements of the nebular lines, we infer a number of physical properties: redshift ' extinction, star formation rate ' ionization parameter, electron density, electron temperature, oxygen abundance, and N/O, Ne/O, and Ar/O abundance ratios, The limit on [O III] 4363 A tightly constrains the oxygen abundance via the "direct" or Te method, for the first time in an average-metallicity galaxy at z approx.2. We compare this result to several standard "bright-line" O abundance diagnostics, thereby testing these empirically-calibrated diagnostics in situ. Finally, we explore the positions of lensed and unlensed galaxies in standard diagnostic diagrams, to explore the diversity of ionization conditions and mass-metallicity ratios at z=2.
NASA Astrophysics Data System (ADS)
Oudini, N.; Sirse, N.; Taccogna, F.; Ellingboe, A. R.; Bendib, A.
2018-05-01
We propose a new technique for diagnosing negative ion properties using Langmuir probe assisted pulsed laser photo-detachment. While the classical technique uses a laser pulse to convert negative ions into electron-atom pairs and a positively biased Langmuir probe tracking the change of electron saturation current, the proposed method uses a negatively biased Langmuir probe to track the temporal evolution of positive ion current. The negative bias aims to avoid the parasitic electron current inherent to probe tip surface ablation. In this work, we show through analytical and numerical approaches that, by knowing electron temperature and performing photo-detachment at two different laser wavelengths, it is possible to deduce plasma electronegativity (ratio of negative ion to electron densities) α, and anisothermicity (ratio of electron to negative ion temperatures) γ-. We present an analytical model that links the change in the collected positive ion current to plasma electronegativity and anisothermicity. Particle-In-Cell simulation is used as a numerical experiment covering a wide range of α and γ- to test the new analysis technique. The new technique is sensitive to α in the range 0.5 < α < 10 and yields γ- for large α, where negative ion flux affects the probe sheath behavior, typically α > 1.
Observations of electron gyroharmonic waves and the structure of the 10 torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birmingham, T.J.; Alexander, J.K.; Desch, M.D.
1981-09-30
Narrow-banded emission were observed by the planetary radio astronomy experiment on the Voyager 1 spacecraft as it traversed the Io plasma torus. These waves occur between harmonics of the electron gyrofrequency and are the Jovian analogue of electrostatic emissions observed and theoretically studied for the terrestrial magnetosphere. The observed frequencies always include the component near f/sub uhr'/ the upper hydbrid resonant frequency, but the distribution of the other observed emissions varies in a systematic way with position in the torus. A detailed discussion of the observations is presented. A refined model of the electron density variation, based on identification ofmore » the f/sub uhr/ line, is also included. Spectra of the observed waves are analyzed in terms of the linear instability of an electron distribution function consisting of isotropic cold electrons and hot loss cone electrons. The positioning of the observed auxiliary harmonics with respect to f/sub uhr/ is shown to be an indicator of the cold to hot temperature ratio T/sub C//T/sub H/. It is concluded that this ratio increases systematically by an overall factor of perhaps 4 or 5 between the inner (Lapprox.5 R/sub J/) and outer (Lapprox.9 R/sub J/) portions of the torus. Other relevant plasma and spectroscopic data are discussed.« less
Electron Densities in Solar Flare Loops, Chromospheric Evaporation Upflows, and Acceleration Sites
NASA Technical Reports Server (NTRS)
Aschwanden, Markus J.; Benz, Arnold O.
1996-01-01
We compare electron densities measured at three different locations in solar flares: (1) in Soft X-Ray (SXR) loops, determined from SXR emission measures and loop diameters from Yohkoh Soft X-Ray Telescope maps (n(sub e, sup SXR) = (0.2-2.5) x 10(exp 11)/ cu cm); (2) in chromospheric evaporation upflows, inferred from plasma frequency cutoffs of decimetric radio bursts detected with the 0.1-3 GHz spectrometer Phoenix of ETH Zuerich (n(sub e, sup upflow) = (0.3-11) x 10(exp 10)/cu cm; and (3) in acceleration sites, inferred from the plasma frequency at the separatrix between upward-accelerated (type III bursts) and downward-accelerated (reverse-drift bursts) electron beams [n(sub e, sup acc) = (0.6-10) x 10(exp 9)/cu cm]. The comparison of these density measurements, obtained from 44 flare episodes (during 14 different flares), demonstrates the compatibility of flare plasma density diagnostics with SXR and radio methods. The density in the upflowing plasma is found to be somewhat lower than in the filled loops, having ratios in a range n(sub e, sup upflow)/n(sub e, sup SXR) = 0.02-1.3, and a factor of 3.6 higher behind the upflow front. The acceleration sites are found to have a much lower density than the SXR-bright flare loops, i.e., n(sub e, sup acc)/n(sub e, sup SXR) = 0.005- 0.13, and thus must be physically displaced from the SXR-bright flare loops. The scaling law between electron time-of-flight distances l' and loop half-lengths s, l'/s = 1.4 +/- 0.3, recently established by Aschwanden et al. suggests that the centroid of the acceleration region is located above the SXR-bright flare loop, as envisioned in cusp geometries (e.g., in magnetic reconnection models).
HERSCHEL GALACTIC PLANE SURVEY OF [N ii] FINE STRUCTURE EMISSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.
2015-12-01
We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10{sup −8}–10{sup −7} Wm{sup −2} sr{sup −1} level over the range –60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointingmore » is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10–50 cm{sup −3} with an average value of 29 cm{sup −3} and N{sup +} column densities 10{sup 16}–10{sup 17} cm{sup −2}. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.« less
Plasma diagnostics from intensities of resonance line series of He-like ions
NASA Astrophysics Data System (ADS)
Ryazantsev, S. N.; Skobelev, I. Yu.; Faenov, A. Ya.; Grum-Grzhimailo, A. N.; Pikuz, T. A.; Pikuz, S. A.
2017-04-01
The possibility of using the relative intensities of the 1 snp 1P1-1 s 2 1S0 transitions with n = 3-6 in He-like multicharged ions to diagnose plasma in a nonstationary ionization state is considered. The calculations performed for F VIII ions show that, at electron temperatures of T e = 10-100 eV, the intensity ratios are sensitive to the plasma electron density in the range of N e = 1016-1020 cm-3. The universal calculated dependences can be used to diagnose various kinds of recombining or ionizing plasmas containing such ions.
Selectivity of peptide bond dissociation on excitation of a core electron: Effects of a phenyl group
NASA Astrophysics Data System (ADS)
Tsai, Cheng-Cheng; Chen, Jien-Lian; Hu, Wei-Ping; Lin, Yi-Shiue; Lin, Huei-Ru; Lee, Tsai-Yun; Lee, Yuan T.; Ni, Chi-Kung; Liu, Chen-Lin
2016-09-01
The selective dissociation of a peptide bond upon excitation of a core electron in acetanilide and N-benzylacetamide was investigated. The total-ion-yield near-edge X-ray absorption fine structure spectra were recorded and compared with the predictions from time-dependent density functional theory. The branching ratios for the dissociation of a peptide bond are observed as 16-34% which is quite significant. This study explores the core-excitation, the X-ray photodissociation pathways, and the theoretical explanation of the NEXAFS spectra of organic molecules containing both a peptide bond and a phenyl group.
Beiersdorfer, P.; Hell, N.; Lepson, J. K.; ...
2015-12-02
We identified a previously unassigned pair of lines between 169 and 170 Å in the coronae of cool stars. Here, we attribute these lines to Fe xiv and show that their intensity ratio is sensitive to the electron density. Using observations taken with the Low Energy Transmission Grating Spectrometer of the Chandra X-ray Observatory we infer a density of log (n e/cm -3) = 10.2 ± 0.7 and 10.3 ± 0.8 from the newly identified line pair in the coronae of Procyon and α Cen A, respectively.
Measurement of plasma densities by dual frequency multichannel boxcar THz time domain spectroscopy
NASA Astrophysics Data System (ADS)
Meier, St. M.; Tsankov, Ts V.; Luggenhölscher, D.; Czarnetzki, U.
2017-06-01
In this paper we show the development and the application of the terahertz time domain spectroscopy (THz TDS) diagnostic technique for the determination of plasma densities in low-pressure discharges. A commercially available system was modified to reach a better signal-to-noise ratio. For that the THz emitter and the detection method were changed and a fast lock-in amplifier was used to reach 38 MHz lock-in frequency. These modifications in a combination with the novel method of dual frequency multichannel boxcar embedded as a feature in the lock-in amplifier allowed us to make also time-resolved measurements. The temporal resolution can potentially go down to 100 ps and is limited only by the spectral range that needs to be recovered for the measurement of low electron densities. Further, the cause of artefacts found in all THz TDS based systems, but not understood until now, is identified and explained. As an application the electron densities in inductively coupled plasmas sustained in a magnetic multi-cusp chamber are determined. Results from steady-state discharges in noble gases (He, Ne, Ar, Kr, Xe) and time-resolved measurements in pulsed discharges in Ar and Ne are presented. The technique is benchmarked against microwave interferometry with good agreement in the applicability range of both techniques. The THz TDS performs reliably also in much denser plasmas where standard microwave interferometry fails. The lower limit for the technique is at a line-integrated electron density of 1012 cm-2, corresponding to about 1011 cm-3 for typical plasma dimensions.
Y-doping TiO2 nanorod arrays for efficient perovskite solar cells
NASA Astrophysics Data System (ADS)
Deng, Xinlian; Wang, Yanqing; Cui, Zhendong; Li, Long; Shi, Chengwu
2018-05-01
To improve the electron transportation in TiO2 nanorod arrays and charge separation in the interface of TiO2/perovskite, Y-doping TiO2 nanorod arrays with the length of 200 nm, diameter of 11 nm and areal density of 1050 μm-2 were successfully prepared by the hydrothermal method and the influence of Y/Ti molar ratios of 0%, 3%, 5% in the hydrothermal grown solutions on the growth of TiO2 nanorod arrays was investigated. The results revealed that the appropriate Y/Ti molar ratios can increase the areal density of the corresponding TiO2 nanorod arrays and improve the charge separation in the interface of the TiO2/perovskite. The Y-doping TiO2 nanorod array perovskite solar cells with the Y/Ti molar ratio of 3% exhibited a photoelectric conversion efficiency (PCE) of 18.11% along with an open-circuit voltage (Voc) of 1.06 V, short-circuit photocurrent density (Jsc) of 22.50 mA cm-2 and fill factor (FF) of 76.16%, while the un-doping TiO2 nanorod array perovskite solar cells gave a PCE of 16.42% along with Voc of 1.04 V, Jsc of 21.66 mA cm-2 and FF of 72.97%.
Understanding Bright 13 keV Kr K-shell X-ray Sources at the NIF
NASA Astrophysics Data System (ADS)
May, M. J.; Colvin, J. D.; Kemp, G. E.; Fournier, K. B.; Scott, H.; Patel, M.; Barrios, Widmann; Widmann, K.
2015-11-01
High x-ray conversion efficiency (CE) K-shell Kr sources are being investigated for High Energy Density experiments. These sources are 4.1 mm in diameter 4.4 mm tall hollow epoxy tubes having a 40 μm thick wall holding either 1.2 or 1.5 atm of Kr gas. The CE of K-shell Kr is dependent upon the peak electron temperature in the radiating plasma. In the NIF experiments, the available energy heats the source to Te = 6-7 keV, well below the temperature of Te ~25 keV needed to optimize the Kr CE. The CE is a steep function of the peak electron temperature. A spatially averaged electron temperature can be estimated from measured He(α) and Ly(α) line ratios. Some disagreement has been observed in the simulated and measured line ratios for some of these K-shell sources. Disagreements have been observed between the simulated and measured line ratios for some of these K-shell sources. To help understand this issue, Kr gas pipes have been shot with 3 ω light at ?750 kJ at ~210, ~140 TW and ~120 TW power levels with 3.7, 5.2 and 6.7 ns pulses, respectively. The power and pulse length scaling of the measured CE and K-shell line ratios and their comparison to simulations will be discussed. This work was performed under the auspic
NASA Astrophysics Data System (ADS)
Alix, K.; David, M.-L.; Dérès, J.; Hébert, C.; Pizzagalli, L.
2018-03-01
The evolution of nanometric helium bubbles in silicon has been investigated using spatially resolved electron energy-loss spectroscopy during in situ annealing in the transmission electron microscope. This approach allows the simultaneous determination of both the morphology and the helium density in the bubbles at each step of the annealing. Structural modification and helium emission from bubbles of various diameters in the range 7.5 to 20 nm and various aspect ratios of 1.1 to 1.9 have been studied. We clearly show that helium emission takes place at temperatures where bubble migration had hardly started. At higher temperatures, the migration (and coalescence) of voids is clearly revealed. For helium density lower than 150 He nm-3 , the Cerofolini's model taking into account the thermodynamical properties of an ultradense fluid reproduces well the helium emission from the bubbles, leading to an activation energy of 1.8 eV. When bubbles exhibit a higher initial helium density, the Cerofolini's model fails to reproduce the helium emission kinetics. We ascribe this to the fact that helium may be in the solid phase and we propose a tentative model to take into account the properties of the solid.
NASA Astrophysics Data System (ADS)
Yasyukevich, A. S.
2018-04-01
The focus of the paper is the ionospheric disturbances during sudden stratospheric warming (SSW) events in the Arctic region. This study examines the ionospheric behavior during 12 SSW events, which occurred in the Northern Hemisphere over 2006-2013, based on vertical sounding data from DPS-4 ionosonde located in Norilsk (88.0°E, 69.2°N). Most of the addressed events show that despite generally quiet geomagnetic conditions, notable changes in the ionospheric behavior are observed during SSWs. During the SSW evolution and peak phases, there is a daytime decrease in NmF2 values at 10-20% relative to background level. After the SSW maxima, in contrast, midday NmF2 surpasses the average monthly values for 10-20 days. These changes in the electron density are observed for both strong and weak stratospheric warmings occurring at midwinter. The revealed SSW effects in the polar ionosphere are assumed to be associated with changes in the thermospheric neutral composition, affecting the F2-layer electron density. Analysis of the Global Ultraviolet Imager data revealed the positive variations in the O/N2 ratio within the thermosphere during SSW peak and recovery periods. Probable mechanisms for SSW impact on the state of the high-latitude neutral thermosphere and ionosphere are discussed.
Howard, H T; Tyler, G L; Fjeldbo, G; Kliore, A J; Levy, G S; Brunn, D L; Dickinson, R; Edelson, R E; Martin, W L; Postal, R B; Seidel, B; Sesplaukis, T T; Shirley, D L; Stelzried, C T; Sweetnam, D N; Zygielbaum, A I; Esposito, P B; Anderson, J D; Shapiro, I I; Reasenberg, R D
1974-03-29
Analysis of the Doppler tracking data near encounter yields a value for the ratio of the mass of the sun to that of Venus of 408,523.9 +/- 1.2, which is in good agreement with prior determinations based on data from Mariner 2 and Mariner 5. Preliminary analysis indicates that the magnitudes of the fractional differences in the principal moments of inertia of Venus are no larger than 10(-4), given that the effects of gravity-field harmonics higher than the second are negligible. Additional analysis is needed to determine the influence of the higher order harmonics on this bound. Four distinct temperature inversions exist at altitudes of 56, 58, 61, and 63 kilometers. The X-band signal was much more rapidly attenuated than the S-band signal and disappeared completely at 52-kilometer altitude. The nightside ionosphere consists of two layers having a peak density of 10(4) electrons per cubic centimeter at altitudes of 140 and 120 kilometers. The dayside ionosphere has a peak density of 3 X 10(5) electrons per cubic centimeter at an altitude of 145 kilometers. The electron number density observed at higher altitudes was ten times less than that observed by Mariner 5, and no strong evidence for a well-defined plasmapause was found.
Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, N.; Tomita, K.; Sugita, K.
2012-07-15
This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe lasermore » energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.« less
Modeling electronegative plasma discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtenberg, A.J.; Lieberman, M.A.
Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}=more » 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.« less
Low-frequency Carbon Radio Recombination Lines. II. The Diffuse Interstellar Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salgado, F.; Morabito, L. K.; Oonk, J. B. R.
In the second paper of the series, we have modeled low-frequency carbon radio recombination lines (CRRLs) from the interstellar medium. Anticipating the Low Frequency Array survey of Galactic CRRLs, we focus our study on the physical conditions of the diffuse, cold neutral medium. We have used the improved departure coefficients computed in the first paper of the series to calculate line-to-continuum ratios. The results show that the line width and integrated optical depths of CRRLs are sensitive probes of the electron density, gas temperature, and emission measure of the cloud. Furthermore, the ratio of CRRL to the [C ii] atmore » the 158 μ m line is a strong function of the temperature and density of diffuse clouds. Guided by our calculations, we analyze CRRL observations and illustrate their use with data from the literature.« less
Huang, Jian; Pfeiffer, L N; West, K W
2014-01-24
In high quality updoped GaAs field-effect transistors, the two-dimensional charge carrier concentrations can be tuned to very low values similar to the density of electrons on helium surfaces. An important interaction effect, screening of the Coulomb interaction by the gate, rises as a result of the large charge spacing comparable to the distance between the channel and the gate. Based on the results of the temperature (T) dependence of the resistivity from measuring four different samples, a power-law characteristic is found for charge densities ≤2×10(9) cm(-2). Moreover, the exponent exhibits a universal dependence on a single dimensionless parameter, the ratio between the mean carrier separation and the distance to the metallic gate that screens the Coulomb interaction. Thus, the electronic properties are tuned through varying the shape of the interaction potential.
Mink, Justine E; Rojas, Jhonathan P; Logan, Bruce E; Hussain, Muhammad M
2012-02-08
Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m(2) of current density and 392 mW/m(3) of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society
Investigating the ability of solar coronal shocks to accelerate solar energetic particles
NASA Astrophysics Data System (ADS)
Kwon, R. Y.; Vourlidas, A.
2017-12-01
We estimate the density compression ratio of shocks associated with coronal mass ejections (CMEs) and investigate whether they can accelerate solar energetic particles (SEPs). Using remote-sensing, multi-viewpoint coronagraphic observations, we have developed a method to extract the sheath electron density profiles along the shock normal and estimate the density compression ratio. Our method uses the ellipsoid model to derive the 3D geometry of the sheaths, including the line-of-sight (LOS) depth. The sheath density profiles along the shock normal are modeled with double-Gaussian functions, and the modeled densities are integrated along the LOSs to be compared with the observed brightness in STEREO COR2-Ahead. The upstream densities are derived from either the pB-inversion of the brightness in a pre-event image or an empirical model. We analyze two fast halo CMEs observed on 2011 March 7 and 2014 February 25 that are associated with SEP events detected by multiple spacecraft located over a broad range of heliolongitudes. We find that the density compression peaks around the CME nose and decreases at larger position angles. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes) than past reports. This finding implies that CME shocks may be capable of accelerating energetic particles in the corona over extended spatial and temporal scales and may, therefore, be responsible for the wide longitudinal distribution of these particles in the inner heliosphere.
Parallel electron force balance and the L-H transition
Stoltzfus-Dueck, T.
2016-05-23
In one popular paradigm for the L-H transition, energy transfer to the mean flows directly depletes turbulence fluctuation energy, resulting in suppression of the turbulence and a corresponding transport bifurcation. To quantitatively evaluate this mechanism, one must remember that electron parallel force balance couples nonzonal velocity fluctuations with electron pressure fluctuations on rapid timescales, comparable with the electron transit time. For this reason, energy in the nonzonal velocity stays in a fairly fixed ratio to the free energy in electron density fluctuations, at least for frequency scales much slower than electron transit. Furthermore, in order for direct depletion of themore » energy in turbulent fluctuations to cause the L-H transition, energy transfer via Reynolds stress must therefore drain enough energy to significantly reduce the sum of the free energy in nonzonal velocities and electron pressure fluctuations. At low k⊥, the electron thermal free energy is much larger than the energy in nonzonal velocities, posing a stark challenge for this model of the L-H transition.« less
Park, Jozeph; Kim, Yang Soo; Ok, Kyung-Chul; Park, Yun Chang; Kim, Hyun You; Park, Jin-Seong; Kim, Hyun-Suk
2016-01-01
High-mobility zinc oxynitride (ZnON) semiconductors were grown by RF sputtering using a Zn metal target in a plasma mixture of Ar, N2, and O2 gas. The RF power and the O2 to N2 gas flow rates were systematically adjusted to prepare a set of ZnON films with different relative anion contents. The carrier density was found to be greatly affected by the anion composition, while the electron mobility is determined by a fairly complex mechanism. First-principles calculations indicate that excess vacant nitrogen sites (VN) in N-rich ZnON disrupt the local electron conduction paths, which may be restored by having oxygen anions inserted therein. The latter are anticipated to enhance the electron mobility, and the exact process parameters that induce such a phenomenon can only be found experimentally. Contour plots of the Hall mobility and carrier density with respect to the RF power and O2 to N2 gas flow rate ratio indicate the existence of an optimum region where maximum electron mobility is obtained. Using ZnON films grown under the optimum conditions, the fabrication of high-performance devices with field-effect mobility values exceeding 120 cm2/Vs is demonstrated based on simple reactive RF sputtering methods. PMID:27098656
NASA Astrophysics Data System (ADS)
Büyükyıldız, M.
2017-09-01
The radiological properties of some vitamins such as Retinol, Beta-carotene, Riboflavin, Niacin, Niacinamide, Pantothenic acid, Pyridoxine, Pyridoxamine, Pyridoxal, Biotin, Folic acid, Ascorbic acid, Cholecalciferol, Alpha-tocopherol, Gamma-tocopherol, Phylloquinone have been investigated with respect to total electron interaction and some heavy charged particle interaction as means of effective atomic numbers (Z_{eff}) and electron densities (N_{eff}) for the first time. Calculations were performed for total electron interaction and heavy ions such as H, He and C ion interactions in the energy region 10keV-10MeV by using a logarithmic interpolation method. Variations in Z_{eff}'s and N_{eff}'s of given vitamins have been studied according to the energy of electron or heavy charged particles, and significant variations have been observed for all types of interaction in the given energy region. The maximum values of Z_{eff} have been found in the different energy regions for different interactions remarkably and variations in N_{eff} seem approximately to be the same with variation in Z_{eff} for the given vitamins as expected. Z_{eff} values of some vitamins were plotted together and compared with each other for electron, H, He and C interactions and the ratios of Z_{eff}/ < A > have been changed in the range of 0.25-0.36, 0.20-0.36, 0.22-0.35 and 0.20-0.35 for electron, H, He and C interactions, respectively.
NASA Technical Reports Server (NTRS)
Samir, U.; Stone, N. H.; Wright, K. H., Jr.
1986-01-01
Recent results regarding the interactions between a body and its environmental space plasma, made by charged particle probes mounted in the bay of the Space Shuttle Orbiter Columbia (STS 3 mission), are compared with earlier results, obtained from small ionospheric satellites, in an attempt to widen our scope of knowledge and understanding regarding such interactions. The objective is to work toward a unified model of body-space plasma interactions in the solar system covering a variety of plasma and body conditions. The comparisons focus mainly on (1) the (wake/ram) current ratio; (2) the generation of charged particle density fluctuations (indicative of plasma turbulence) around the body; and (3) the increase in electron temperature ahead and in the wake of the satellite. The main results of the comparison are that (1) the (wake/ram) current ratio (or current depletion in the wake) for the Orbiter is 1 to 2 orders of magnitude larger than the ratio for small ionospheric satellites; and (2) fluctuations in density (or turbulence) are observed for both 'large body' (Shuttle Orbiter) and 'smaller body' (standard ionospheric satellites). However, the cause of the turbulence may not be the same for both cases; (3) the results for the electronic temperature enhancement due to the Shuttle Orbiter are in contrast with measurements from smaller ionospheric satellites. A path to follow in future Shuttle experiments is suggested and caution that care be taken in interpreting local particle and field measurements.
Interstellar absorption along the line of sight to Theta Carinae using Copernicus observations
NASA Technical Reports Server (NTRS)
Allen, M. M.; Jenkins, E. B.; Snow, T. P.
1992-01-01
A profile fitting technique is employed to identify the velocities and Doppler b values for H I and H II clouds along the line of sight to Theta Car. Total abundances and depletions for 12 elements, plus column densities for the J = 0 to J = 5 rotational levels of H2 are obtained. Electron densities for both clouds are calculated from the ratios of the fine-structure levels of C II and N II, obtaining 0.08/cu cm and 1.2/cu cm. The fine-structure levels of C I, which led to 120/cu cm, are used to calculate the neutral hydrogen density for the H I region. D I is also present in the data from the Theta Car line of sight, yielding a D/H ratio of 5 x 10 exp -6. Elemental depletions are calculated for the H I region as well. Comparison of the results for Theta Car and those for Zeta Oph and Alpha Vir shows that the absolute depletions are different; however, the relative depletions are remarkably stable for different physical conditions.
Stoichiometry effect on the irradiation response in the microstructure of zirconium carbides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young Yang; Wei-Yang Lo; Clayton Dickerson
2014-11-01
Zone-refined ultra high pure ZrC with five C/Zr ratios ranging from 0.84 to 1.17 was irradiated using a 2 MeV proton beam at 1125 C. The stoichiometry effect on the irradiation response of ZrC microstructure was examined using transmission electron microscopy following the irradiation. The irradiated microstructures generally feature a high density of perfect dislocation loops particularly at away from the graphite precipitates, and the C/Zr ratio shows a notable effect on the size and density of dislocation loops. The dislocation loops are identified as interstitial type perfect loops, and it was indirectly proved that the dislocation loop core likelymore » consists of carbon atoms. Graphite precipitates that form with excess carbon in the super-stoichiometric ZrC are detrimental, and the dramatic increases in the size of and density of dislocation loops in the vicinity of graphite precipitates in ZrC phase were observed. Irradiationinduced faceted voids were only observed in ZrC0.95, which is attributed to the pre-existing dislocation lines as biased sinks for vacancies.« less
Photoionization and heating of a supernova-driven turbulent interstellar medium
NASA Astrophysics Data System (ADS)
Barnes, J. E.; Wood, Kenneth; Hill, Alex S.; Haffner, L. M.
2014-06-01
The diffuse ionized gas (DIG) in galaxies traces photoionization feedback from massive stars. Through three-dimensional photoionization simulations, we study the propagation of ionizing photons, photoionization heating and the resulting distribution of ionized and neutral gas within snapshots of magnetohydrodynamic simulations of a supernova-driven turbulent interstellar medium. We also investigate the impact of non-photoionization heating on observed optical emission line ratios. Inclusion of a heating term which scales less steeply with electron density than photoionization is required to produce diagnostic emission line ratios similar to those observed with the Wisconsin Hα Mapper. Once such heating terms have been included, we are also able to produce temperatures similar to those inferred from observations of the DIG, with temperatures increasing to above 15 000 K at heights |z| ≳ 1 kpc. We find that ionizing photons travel through low-density regions close to the mid-plane of the simulations, while travelling through diffuse low-density regions at large heights. The majority of photons travel small distances (≲100 pc); however some travel kiloparsecs and ionize the DIG.
Polarized Sunyaev Zel'dovich tomography
NASA Astrophysics Data System (ADS)
Deutsch, Anne-Sylvie; Johnson, Matthew C.; Münchmeyer, Moritz; Terrana, Alexandra
2018-04-01
Secondary CMB polarization is induced by the late-time scattering of CMB photons by free electrons on our past light cone. This polarized Sunyaev Zel'dovich (pSZ) effect is sensitive to the electrons' locally observed CMB quadrupole, which is sourced primarily by long wavelength inhomogeneities. By combining the remote quadrupoles measured by free electrons throughout the Universe after reionization, the pSZ effect allows us to obtain additional information about large scale modes beyond what can be learned from our own last scattering surface. Here we determine the power of pSZ tomography, in which the pSZ effect is cross-correlated with the density field binned at several redshifts, to provide information about the long wavelength Universe. The signal we explore here is a power asymmetry in the cross-correlation between E or B mode CMB polarization and the density field. We compare this to the cosmic variance limited noise: the random chance to get a power asymmetry in the absence of a large scale quadrupole field. By computing the necessary transfer functions and cross-correlations, we compute the signal-to-noise ratio attainable by idealized next generation CMB experiments and galaxy surveys. We find that a signal-to-noise ratio of ~ 1‑10 is in principle attainable over a significant range of power multipoles, with the strongest signal coming from the first multipoles in the lowest redshift bins. These results prompt further assessment of realistically measuring the pSZ signal and the potential impact for constraining cosmology on large scales.
NASA Astrophysics Data System (ADS)
Hoffmann, Ryan; Dennison, J. R.; Abbott, Jonathan
2006-03-01
When incident energetic electrons interact with a material, they excite electrons within the material to escape energies. The electron emission is quantified as the ratio of emitted electrons to incident particle flux, termed electron yield. Measuring the electron yield of insulators is difficult due to dynamic surface charge accumulation which directly affects landing energies and the potential barrier that emitted electrons must overcome. Our recent measurements of highly insulating materials have demonstrated significant changes in total yield curves and yield decay curves for very small electron doses equivalent to a trapped charge density of <10^10 electrons /cm^3. The Chung-Everhart theory provides a basic model for the behavior of the electron emission spectra which we relate to yield decay curves as charge is allowed to accumulate. Yield measurements as a function of dose for polyimide (Kapton^TM) and microcrystalline SiO2 will be presented. We use our data and model to address the question of whether there is a minimal dose threshold at which the accumulated charge no longer affects the yield.
Theoretical study of the criteria and consequences of hydrodynamic electron flow in graphene.
NASA Astrophysics Data System (ADS)
Adam, Shaffique; Ho, Derek; Yudhistira, Indra; Chakraborty, Nilotpal
Experiments on graphene electrons have succeeded in entering the hydrodynamic regime, as demonstrated by successful observations of Wiedemann-Franz law violations, and evidence for electron vortices. The hydrodynamic regime is expected to occur when electron-electron interactions dominate over all other electron collision mechanisms. We calculate the electron-electron, electron-impurity and electron-phonon scattering rates as a function of temperature, charge doping and disorder (charge puddle) strength. We find that there exists a window in parameter space where electron-electron scattering dominates and hydrodynamic effects become observable. However, we also find that disorder induced carrier density inhomogeneity continues to play an important role in the vicinity of charge neutrality, even in the strongly interacting hydrodynamic regime. For example, although the ratio of thermal conductivity and electrical conductivity show a violation of the Wiedemann-Franz law in the aforementioned experiment, the electrical conductivity as a function of temperature still follows a disorder-driven universal scaling theory first predicted in This work was supported by the National Research Foundation of Singapore (NRF-NRFF2012-01).
X-ray Spectroscopic Characterization of Plasma for a Charged-Particle Energy-Loss Experiment
NASA Astrophysics Data System (ADS)
Hoffman, Nm; Lee, Cl; Wilson, Dc; Barnes, Cris W.; Petrasso, Rd; Li, C.; Hicks, D.
2000-10-01
We are pursuing an approach to a charged-particle energy-loss experiment in which charged fusion products from an imploded ICF capsule travel through a well characterized, spatially separate plasma. For this purpose, a fully ionized, uniform, nearly steady-state carbon-hydrogen plasma will be created by laser irradiation of a plastic foil. The temperature and density structure of this plasma must be determined accurately in order to relate observed energy losses to predictions of theory. Various methods for diagnosing the plasma are possible, including Thomson scattering. Alternatively, if a small admixture of higher-Z material such as chlorine is included in the plastic, x-ray spectroscopic techniques will allow the plasma's temperature and density to be determined. Electron temperature is inferred from the ratios of line strengths of various chlorine ion stages, while electron density is determined from the spectra of lithium-like satellite lines near the He beta line of helium-like chlorine. We present results from detailed-configuration accounting (DCA) models of line emission from C+H+Cl plasmas, and estimate the accuracy with which such plasmas can be characterized.
Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging
Dyck, Ondrej; Hu, Sheng; Das, Sanjib; ...
2015-11-24
Organic photovoltaic materials have recently seen intense interest from the research community. Improvements in device performance are occurring at an impressive rate; however, visualization of the active layer phase separation still remains a challenge. Our paper outlines the application of two electron energy-loss spectroscopic (EELS) imaging techniques that can complement and enhance current phase detection techniques. Specifically, the bulk plasmon peak position, often used to produce contrast between phases in energy filtered transmission electron microscopy (EFTEM), is quantitatively mapped across a sample cross section. One complementary spectrum image capturing the carbon and sulfur core loss edges is compared with themore » plasmon peak map and found to agree quite well, indicating that carbon and sulfur density differences between the two phases also allows phase discrimination. Additionally, an analytical technique for determining absolute atomic areal density is used to produce an absolute carbon and sulfur areal density map. We also show how these maps may be re-interpreted as a phase ratio map, giving quantitative information about the purity of the phases within the junction.« less
Luo, Jun-Wei; Franceschetti, Alberto; Zunger, Alex
2008-10-01
Direct carrier multiplication (DCM) occurs when a highly excited electron-hole pair decays by transferring its excess energy to the electrons rather than to the lattice, possibly exciting additional electron-hole pairs. Atomistic electronic structure calculations have shown that DCM can be induced by electron-hole Coulomb interactions, in an impact-ionization-like process whose rate is proportional to the density of biexciton states rho XX. Here we introduce a DCM "figure of merit" R2(E) which is proportional to the ratio between the biexciton density of states rhoXX and the single-exciton density of states rhoX, restricted to single-exciton and biexciton states that are coupled by Coulomb interactions. Using R2(E), we consider GaAs, InAs, InP, GaSb, InSb, CdSe, Ge, Si, and PbSe nanocrystals of different sizes. Although DCM can be affected by both quantum-confinement effects (reflecting the underly electronic structure of the confined dot-interior states) and surface effects, here we are interested to isolate the former. To this end the nanocrystal energy levels are obtained from the corresponding bulk band structure via the truncated crystal approximation. We find that PbSe, Si, GaAs, CdSe, and InP nanocrystals have larger DCM figure of merit than the other nanocrystals. Our calculations suggest that high DCM efficiency requires high degeneracy of the corresponding bulk band-edge states. Interestingly, by considering band structure effects we find that as the dot size increases the DCM critical energy E0 (the energy at which R2(E) becomes >or=1) is reduced, suggesting improved DCM. However, whether the normalized E0/epsilong increases or decreases as the dot size increases depends on dot material.
Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.
Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I
2011-03-22
We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.
Correlation of Coronal Plasma Properties and Solar Magnetic Field in a Decaying Active Region
NASA Technical Reports Server (NTRS)
Ko, Yuan-Kuen; Young, Peter R.; Muglach, Karin; Warren, Harry P.; Ugarte-Urra, Ignacio
2016-01-01
We present the analysis of a decaying active region observed by the EUV Imaging Spectrometer on Hinode during 2009 December 7-11. We investigated the temporal evolution of its structure exhibited by plasma at temperatures from 300,000 to 2.8 million degrees, and derived the electron density, differential emission measure, effective electron temperature, and elemental abundance ratios of Si/S and Fe/S (as a measure of the First Ionization Potential (FIP) Effect). We compared these coronal properties to the temporal evolution of the photospheric magnetic field strength obtained from the Solar and Heliospheric Observatory Michelson Doppler Imager magnetograms. We find that, while these coronal properties all decreased with time during this decay phase, the largest change was at plasma above 1.5 million degrees. The photospheric magnetic field strength also decreased with time but mainly for field strengths lower than about 70 Gauss. The effective electron temperature and the FIP bias seem to reach a basal state (at 1.5 x 10(exp 6) K and 1.5, respectively) into the quiet Sun when the mean photospheric magnetic field (excluding all areas <10 G) weakened to below 35 G, while the electron density continued to decrease with the weakening field. These physical properties are all positively correlated with each other and the correlation is the strongest in the high-temperature plasma. Such correlation properties should be considered in the quest for our understanding of how the corona is heated. The variations in the elemental abundance should especially be considered together with the electron temperature and density.
Jagadale, Ajay; Zhou, Xuan; Blaisdell, Douglas; Yang, Sen
2018-01-25
Lithium ion capacitors possess an ability to bridge the gap between lithium ion battery and supercapacitor. The main concern of fabricating lithium ion capacitors is poor rate capability and cyclic stability of the anode material which uses sluggish faradaic reactions to store an electric charge. Herein, we have fabricated high performance hybrid anode material based on carbon nanofibers (CNFs) and cobalt-nickel sulfide (CoNi 2 S 4 ) nanoparticles via simple electrospinning and electrodeposition methods. Porous and high conducting CNF@CoNi 2 S 4 electrode acts as an expressway network for electronic and ionic diffusion during charging-discharging processes. The effect of anode to cathode mass ratio on the performance has been studied by fabricating lithium ion capacitors with different mass ratios. The surface controlled contribution of CNF@CoNi 2 S 4 electrode was 73% which demonstrates its excellent rate capability. Lithium ion capacitor fabricated with CNF@CoNi 2 S 4 to AC mass ratio of 1:2.6 showed excellent energy density of 85.4 Wh kg -1 with the power density of 150 W kg -1 . Also, even at the high power density of 15 kW kg -1 , the cell provided the energy density of 35 Wh kg -1 . This work offers a new strategy for designing high-performance hybrid anode with the combination of simple and cost effective approaches.
NASA Astrophysics Data System (ADS)
Tran, Jonathan
Plasma turbulence and the resulting anomalous electron transport due to azimuthal current driven instabilities in Hall-effect thrusters is a promising candidate for developing predictive models for the observed anomalous transport. A theory for anomalous electron transport and current driven instabilities has been recently studied by [Lafluer et al., 2016a]. Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster modeling. Using a reduced dimension particle in cell simulation implemented in the Thermophysics Universal Research Framework developed by the Air Force Research Lab, we show collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field and the plasma density. These high-frequency and short wavelength fluctuations can lead to an effective cross-field mobility many orders of magnitude larger than what is expected from classical electron-neutral momentum collisions in the low neutral density regime. We further adapt the previous study by [Lampe et al., 1971] and [Stringer, 1964] for related current driven instabilities to electric propulsion relevant mass ratios and conditions. Finally, we conduct a preliminary study of resolving this instability with a modified hybrid simulation with the hope of integration with established hybrid Hall-effect thruster simulations.
Garcias-Morales, Cesar; Romero-Borja, Daniel; Maldonado, José-Luis; Roa, Arián E; Rodríguez, Mario; García-Merinos, J Pablo; Ariza-Castolo, Armando
2017-09-30
In this work, microwave synthesis, chemical, optical and electrochemical characterization of three small organic molecules, TPA-TPD , TPA-PT-TPD and TPA-TT-TPD with donor-acceptor structure and their use in organic photovoltaic cells are reported. For the synthesis, 5-(2-ethylhexyl)-4 H -thieno[3,4- c ]pyrrole-4,6(5 H )-dione was used as electron withdrawing fragment while the triphenylamine was used as electron donating fragment. Molecular electronic geometry and electronic distribution density were established by density functional theory (DFT) calculations and confirmed by optical and chemical characterization. These molecules were employed as electron-donors in the active layer for manufacturing bulk heterojunction organic solar cells, where [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) was used as electron-acceptor. As cathode, Field's metal (FM), an eutectic alloy (Bi/In/Sn: 32.5%, 51%, and 16.5%, respectively) with a melting point above 62 °C, was easily deposited by drop casting under vacuum-free process and at air atmosphere. Prepared devices based on TPA-TPD :PC71BM (1:4 w / w ratio) presented a large V OC = 0.97 V, with J SC = 7.9 mA/cm², a FF = 0.34, then, a power conversion efficiency (PCE) of 2.6%.
Ludeña, E V; Echevarría, L; Lopez, X; Ugalde, J M
2012-02-28
We consider the calculation of non-Born-Oppenheimer, nBO, one-particle densities for both electrons and nuclei. We show that the nBO one-particle densities evaluated in terms of translationally invariant coordinates are independent of the wavefunction describing the motion of center of mass of the whole system. We show that they depend, however, on an arbitrary reference point from which the positions of the vectors labeling the particles are determined. We examine the effect that this arbitrary choice has on the topology of the one-particle density by selecting the Hooke-Calogero model of a three-body system for which expressions for the one-particle densities can be readily obtained in analytic form. We extend this analysis to the one-particle densities obtained from full Coulomb interaction wavefunctions for three-body systems. We conclude, in view of the fact that there is a close link between the choice of the reference point and the topology of one-particle densities that the molecular structure inferred from the topology of these densities is not unique. We analyze the behavior of one-particle densities for the Hooke-Calogero Born-Oppenheimer, BO, wavefunction and show that topological transitions are also present in this case for a particular mass value of the light particles even though in the BO regime the nuclear masses are infinite. In this vein, we argue that the change in topology caused by variation of the mass ratio between light and heavy particles does not constitute a true indication in the nBO regime of the emergence of molecular structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludena, E. V.; Echevarria, L.; Lopez, X.
2012-02-28
We consider the calculation of non-Born-Oppenheimer, nBO, one-particle densities for both electrons and nuclei. We show that the nBO one-particle densities evaluated in terms of translationally invariant coordinates are independent of the wavefunction describing the motion of center of mass of the whole system. We show that they depend, however, on an arbitrary reference point from which the positions of the vectors labeling the particles are determined. We examine the effect that this arbitrary choice has on the topology of the one-particle density by selecting the Hooke-Calogero model of a three-body system for which expressions for the one-particle densities canmore » be readily obtained in analytic form. We extend this analysis to the one-particle densities obtained from full Coulomb interaction wavefunctions for three-body systems. We conclude, in view of the fact that there is a close link between the choice of the reference point and the topology of one-particle densities that the molecular structure inferred from the topology of these densities is not unique. We analyze the behavior of one-particle densities for the Hooke-Calogero Born-Oppenheimer, BO, wavefunction and show that topological transitions are also present in this case for a particular mass value of the light particles even though in the BO regime the nuclear masses are infinite. In this vein, we argue that the change in topology caused by variation of the mass ratio between light and heavy particles does not constitute a true indication in the nBO regime of the emergence of molecular structure.« less
Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects
NASA Astrophysics Data System (ADS)
Cichocki, Filippo; Domínguez-Vázquez, Adrián; Merino, Mario; Ahedo, Eduardo
2017-12-01
This paper presents a hybrid particle-in-cell (PIC) fluid approach to model the interaction of a plasma plume with a spacecraft and/or any nearby object. Ions and neutrals are modeled with a PIC approach, while electrons are treated as a fluid. After a first iteration of the code, the domain is split into quasineutral and non-neutral regions, based on non-neutrality criteria, such as the relative charge density and the Debye length-to-cell size ratio. At the material boundaries of the former quasineutral region, a dedicated algorithm ensures that the Bohm condition is met. In the latter non-neutral regions, the electron density and electric potential are obtained by solving the coupled electron momentum balance and Poisson equations. Boundary conditions for both the electric current and potential are finally obtained with a plasma sheath sub-code and an equivalent circuit model. The hybrid code is validated by applying it to a typical plasma plume-spacecraft interaction scenario, and the physics and capabilities of the model are finally discussed.
Novel plasma source for safe beryllium spectral line studies in the presence of beryllium dust
NASA Astrophysics Data System (ADS)
Stankov, B. D.; Vinić, M.; Gavrilović Božović, M. R.; Ivković, M.
2018-05-01
Plasma source for beryllium spectral line studies in the presence of beryllium dust particles was realised. The guideline during construction was to prevent exposure to formed dust, considering the toxicity of beryllium. Plasma source characterization through determination of optimal working conditions is described. The necessary conditions for Be spectral line appearance and optimal conditions for line shape measurements are found. It is proven experimentally that under these conditions dust appears coincidently with the second current maximum. The electron density measured after discharge current maximum is determined from the peak separation of the hydrogen Balmer beta spectral line, and the electron temperature is determined from the ratios of the relative intensities of Be spectral lines emitted from successive ionized stages of atoms. Maximum values of electron density and temperature are measured to be 9.3 × 1022 m-3 and 16 800 K, respectively. Construction details and testing of the BeO discharge tube in comparison with SiO2 and Al2O3 discharge tubes are also presented in this paper.
Measured emittance dependence on injection method in laser plasma accelerators
NASA Astrophysics Data System (ADS)
Barber, Samuel; van Tilborg, Jeroen; Schroeder, Carl; Lehe, Remi; Tsai, Hai-En; Swanson, Kelly; Steinke, Sven; Nakamura, Kei; Geddes, Cameron; Benedetti, Carlo; Esarey, Eric; Leemans, Wim
2017-10-01
The success of many laser plasma accelerator (LPA) based applications relies on the ability to produce electron beams with excellent 6D brightness, where brightness is defined as the ratio of charge to the product of the three normalized emittances. As such, parametric studies of the emittance of LPA generated electron beams are essential. Profiting from a stable and tunable LPA setup, combined with a carefully designed single-shot transverse emittance diagnostic, we present a direct comparison of charge dependent emittance measurements of electron beams generated by two different injection mechanisms: ionization injection and shock induced density down-ramp injection. Notably, the measurements reveal that ionization injection results in significantly higher emittance. With the down-ramp injection configuration, emittances less than 1 micron at spectral charge densities up to 2 pC/MeV were measured. This work was supported by the U.S. DOE under Contract No. DE-AC02-05CH11231, by the NSF under Grant No. PHY-1415596, by the U.S. DOE NNSA, DNN R&D (NA22), and by the Gordon and Betty Moore Foundation under Grant ID GBMF4898.
Operation of large RF sources for H-: Lessons learned at ELISE
NASA Astrophysics Data System (ADS)
Fantz, U.; Wünderlich, D.; Heinemann, B.; Kraus, W.; Riedl, R.
2017-08-01
The goal of the ELISE test facility is to demonstrate that large RF-driven negative ion sources (1 × 1 m2 source area with 360 kW installed RF power) can achieve the parameters required for the ITER beam sources in terms of current densities and beam homogeneity at a filling pressure of 0.3 Pa for pulse lengths of up to one hour. With the experience in operation of the test facility, the beam source inspection and maintenance as well as with the results of the achieved source performance so far, conclusions are drawn for commissioning and operation of the ITER beam sources. Addressed are critical technical RF issues, extrapolations to the required RF power, Cs consumption and Cs ovens, the need of adjusting the magnetic filter field strength as well as the temporal dynamic and spatial asymmetry of the co-extracted electron current. It is proposed to relax the low pressure limit to 0.4 Pa and to replace the fixed electron-to-ion ratio by a power density limit for the extraction grid. This would be highly beneficial for controlling the co-extracted electrons.
NASA Astrophysics Data System (ADS)
Choi, Garam; Lee, Won Bo
Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.
Multicomponent density functional theory embedding formulation.
Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon
2016-07-28
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.
Multicomponent density functional theory embedding formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-03-01
The influence of electron-ion collision frequency and dust charge on the growth rate of two-stream instability of the electrostatic surface wave propagating at the interface of semi-infinite complex plasma whose constituents are electrons, negatively charged dust, and streaming ions. It is found that the surface wave can be unstable if the multiplication of wave number and ion flow velocity is greater than the total plasma frequency of electrons and dusts. The analytical solution of the growth rate is derived as a function of collision frequency, dust charge, and ion-to-electron density ratio. It is found that the growth rate is inversely proportional to the collision rate, but it is enhanced as the number of electrons residing on the dust grain surface is increased. The growth rate of surface wave is compared to that of the bulk wave.
Normal and abnormal evolution of argon metastable density in high-density plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr; You, S. J., E-mail: sjyou@cnu.ac.kr
2015-05-15
A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution hasmore » seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.« less
Empirical STORM-E Model. [I. Theoretical and Observational Basis
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III
2013-01-01
Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented
An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation
NASA Astrophysics Data System (ADS)
Pecina, P.
2016-01-01
We have developed an analytical theory of radio-wave scattering from ionization of meteoric origin. It is based on an integro-differential equation for the polarization vector, P, inside the meteor trail, representing an analytical solution of the set of Maxwell equations, in combination with a generalized radar equation involving an integral of the trail volume electron density, Ne, and P represented by an auxiliary vector, Q, taken over the whole trail volume. During the derivation of the final formulae, the following assumptions were applied: transversal as well as longitudinal dimensions of the meteor trail are small compared with the distances of the relevant trail point to both the transmitter and receiver and the ratio of these distances to the wavelength of the wave emitted by the radar is very large, so that the stationary-phase method can be employed for evaluation of the relevant integrals. Further, it is shown that in the case of sufficiently low electron density, Ne, corresponding to the case of underdense trails, the classical McKinley's radar equation results as a special case of the general theory. The same also applies regarding the Fresnel characteristics. Our approach is also capable of yielding solutions to the problems of the formation of Fresnel characteristics on trails having any electron density, forward scattering and scattering on trails immersed in the magnetic field. However, we have also shown that the geomagnetic field can be removed from consideration, due to its low strength. The full solution of the above integro-differential equation, valid for any electron volume densities, has been left to subsequent works dealing with this particular problem, due to its complexity.
Spherical ion acoustic waves in pair ion plasmas with nonthermal electrons
NASA Astrophysics Data System (ADS)
Selim, M. M.
2016-04-01
Propagation of nonplanar ion acoustic waves in a plasma composed of negative and positive ions and nonthermally distributed electrons is investigated using reductive perturbation theory. The spherical Kadomtsev-Petviashvili (SKP) equation which describes the dynamics of the nonlinear spherical ion acoustic waves is derived. It is found that compressive and rarefactive ion-acoustic solitary wave characteristics significantly depend on the density and mass ratios of the positive to negative ions, the nonthermal electron parameter, and the geometry factor. The possible regions for the existence of spherical ion acoustic waves are defined precisely for typical parameters of (H+, O2 -) and (H+, H-) plasmas in the D and F-regions of the Earth's ionosphere, as well as for laboratory plasma (Ar+, F-).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baiao, D.; Varandas, C.; Medina, F.
2012-10-15
Based on the multi-foil technique, a multichannel soft x-ray diagnostic for electron temperature measurements has been recently implemented in the TJ-II stellarator. The diagnostic system is composed by four photodiodes arrays with beryllium filters of different thickness. An in-vacuum amplifier board is coupled to each array, aiming at preventing induced noise currents. The Thomson scattering and the vacuum ultraviolet survey diagnostics are used for assessing plasma profiles and composition, being the analysis carried out with the radiation code IONEQ. The electron temperature is determined through the different signal-pair ratios with temporal and spatial resolution. The design and preliminary results frommore » the diagnostic are presented.« less
Anderson, C.E.; Ehlers, K.W.
1958-06-17
An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.
NASA Astrophysics Data System (ADS)
Yushkov, E.; Petrukovich, A.; Artemyev, A.; Nakamura, R.
2017-09-01
We investigate the distribution and possible origins of thermal anisotropic electrons in the Earth's magnetotail, using 9 years of Cluster observations. We mainly focus on relation between electron anisotropy and Bz and By magnetic field components (in GSM coordinates). The anisotropy of electron population is characterized by temperature ratio T∥/T⊥ and by the maximum of phase space density ratio F∥/F⊥ (∥ and ⊥ are relative to the background magnetic field). The population identified by large F∥/F⊥ is organized as short-time (dozens of seconds) bursts with enhanced F∥ and can be observed even in the plasma sheet with small T∥/T⊥. The thermal anisotropy T∥/T⊥ is larger for time intervals characterized by stronger Bz and By: the strong By corresponds to the T∥/T⊥ peak around the magnetotail neutral plane Bx=0, whereas the strong Bz corresponds to larger T∥/T⊥ with a flat profile across the magnetotail. There is a dawn-dusk asymmetry: large T∥/T⊥ corresponds mostly to strong Bz at the dusk flank and to strong By at the dawn flank. Using these differences of the electron anisotropy dependence on By and Bz, we discuss two possible mechanisms responsible for the anisotropy formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharchev, Nikolay; Batanov, German; Petrov, Alexandr
2008-10-15
A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orzali, Tommaso, E-mail: tommaso.orzali@sematech.org; Vert, Alexey; O'Brien, Brendan
2015-09-14
The Aspect Ratio Trapping technique has been extensively evaluated for improving the quality of III-V heteroepitaxial films grown on Si, due to the potential for terminating defects at the sidewalls of SiO{sub 2} patterned trenches that enclose the growth region. However, defects propagating along the trench direction cannot be effectively confined with this technique. We studied the effect of the trench bottom geometry on the density of defects of GaAs fins, grown by metal-organic chemical vapor deposition on 300 mm Si (001) wafers inside narrow (<90 nm wide) trenches. Plan view and cross sectional Scanning Electron Microscopy and Transmission Electron Microscopy, togethermore » with High Resolution X-Ray Diffraction, were used to evaluate the crystal quality of GaAs. The prevalent defects that reach the top surface of GaAs fins are (111) twin planes propagating along the trench direction. The lowest density of twin planes, ∼8 × 10{sup 8 }cm{sup −2}, was achieved on “V” shaped bottom trenches, where GaAs nucleation occurs only on (111) Si planes, minimizing the interfacial energy and preventing the formation of antiphase boundaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Abraham, Jisha Annie, E-mail: disisjisha@yahoo.com
A theoretical study of structural, electronic, elastic and mechanical properties of CePb{sub 3} intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), which has notmore » been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh’s criteria and Cauchy's pressure (C{sub 11}-C{sub 12}). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (v{sub m}), density (ρ) and Debye temperature (θ{sub D}) of this compound are also estimated from the elastic constants.« less
Head-on collision between positron acoustic waves in homogeneous and inhomogeneous plasmas
NASA Astrophysics Data System (ADS)
Alam, M. S.; Hafez, M. G.; Talukder, M. R.; Ali, M. Hossain
2018-05-01
The head-on collision between positron acoustic solitary waves (PASWs) as well as the production of rogue waves (RWs) in homogeneous and PASWs in inhomogeneous unmagnetized plasma systems are investigated deriving the nonlinear evolution equations. The plasmas are composed of immobile positive ions, mobile cold and hot positrons, and hot electrons, where the hot positrons and hot electrons are assumed to follow the Kappa distributions. The evolution equations are derived using the appropriate coordinate transformation and the reductive perturbation technique. The effects of concentrations, kappa parameters of hot electrons and positrons, and temperature ratios on the characteristics of PASWs and RWs are examined. It is found that the kappa parameters and temperature ratios significantly modify phase shifts after head-on collisions and RWs in homogeneous as well as PASWs in inhomogeneous plasmas. The amplitudes of the PASWs in inhomogeneous plasmas are diminished with increasing kappa parameters, concentration and temperature ratios. Further, the amplitudes of RWs are reduced with increasing charged particles concentration, while it enhances with increasing kappa- and temperature parameters. Besides, the compressive and rarefactive solitons are produced at critical densities from KdV equation for hot and cold positrons, while the compressive solitons are only produced from mKdV equation for both in homogeneous and inhomogeneous plasmas.
NASA Astrophysics Data System (ADS)
Kaur, Kulwinder; Rai, D. P.; Thapa, R. K.; Srivastava, Sunita
2017-07-01
We explore the structural, electronic, mechanical, and thermoelectric properties of a new half Heusler compound HfPtPb, an all metallic heavy element, recently proposed to be stable [Gautier et al., Nat. Chem. 7, 308 (2015)]. In this work, we employ density functional theory and semi-classical Boltzmann transport equations with constant relaxation time approximation. The mechanical properties, such as shear modulus, Young's modulus, elastic constants, Poisson's ratio, and shear anisotropy factor, have been investigated. The elastic and phonon properties reveal that this compound is mechanically and dynamically stable. Pugh's ratio and Frantsevich's ratio demonstrate its ductile behavior, and the shear anisotropic factor reveals the anisotropic nature of HfPtPb. The band structure predicts this compound to be a semiconductor with a band gap of 0.86 eV. The thermoelectric transport parameters, such as Seebeck coefficient, electrical conductivity, electronic thermal conductivity, and lattice thermal conductivity, have been calculated as a function of temperature. The highest value of Seebeck coefficient is obtained for n-type doping at an optimal carrier concentration of 1.0 × 1020 e/cm3. We predict the maximum value of figure of merit (0.25) at 1000 K. Our investigation suggests that this material is an n-type semiconductor.
NASA Astrophysics Data System (ADS)
Shi, Wei; Zheng, Yifan; Taylor, André D.; Yu, Junsheng; Katz, Howard E.
2017-07-01
Layer-by-layer deposited guanine and pentacene in organic field-effect transistors (OFETs) is introduced. Through adjusting the layer thickness ratio of guanine and pentacene, the tradeoff of two electronic parameters in OFETs, charge carrier mobility and current on/off ratio, was controlled. The charge mobility was enhanced by depositing pentacene over and between guanine layers and by increasing the proportion of pentacene in the layer-by-layer system, while the current on/off ratio was increased via the decreased off current induced by the guanine layers. The tunable device performance was mainly ascribed to the trap and dopant neutralizing properties of the guanine layers, which would decrease the density of free hydroxyl groups in the OFETs. Furthermore, the cost of the devices could be reduced remarkably via the adoption of low-cost guanine.
Spectroscopic investigations of microwave generated plasmas
NASA Technical Reports Server (NTRS)
Hawley, Martin C.; Haraburda, Scott S.; Dinkel, Duane W.
1991-01-01
The study deals with the plasma behavior as applied to spacecraft propulsion from the perspective of obtaining better design and modeling capabilities. The general theory of spectroscopy is reviewed, and existing methods for converting emission-line intensities into such quantities as temperatures and densities are outlined. Attention is focused on the single-atomic-line and two-line radiance ratio methods, atomic Boltzmann plot, and species concentration. Electronic temperatures for a helium plasma are determined as a function of pressure and a gas-flow rate using these methods, and the concentrations of ions and electrons are predicted from the Saha-Eggert equations using the sets of temperatures obtained as a function of the gas-flow rate. It is observed that the atomic Boltzmann method produces more reliable results for the electronic temperature, while the results obtained from the single-line method reflect the electron temperatures accurately.
Electron-less negative ion extraction from ion-ion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafalskyi, Dmytro; Aanesland, Ane
2015-03-09
This paper presents experimental results showing that continuous negative ion extraction, without co-extracted electrons, is possible from highly electronegative SF{sub 6} ion-ion plasma at low gas pressure (1 mTorr). The ratio between the negative ion and electron densities is more than 3000 in the vicinity of the two-grid extraction and acceleration system. The measurements are conducted by both magnetized and non-magnetized energy analyzers attached to the external grid. With these two analyzers, we show that the extracted negative ion flux is almost electron-free and has the same magnitude as the positive ion flux extracted and accelerated when the grids aremore » biased oppositely. The results presented here can be used for validation of numerical and analytical models of ion extraction from ion-ion plasma.« less
NASA Astrophysics Data System (ADS)
Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.
2018-06-01
The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.
MEANS FOR CONTROLLING A NUCLEAR REACTOR
Wilson, V.C.; Overbeck, W.P.; Slotin, L.; Froman, D.K.
1957-12-17
This patent relates to nuclear reactors of the type using a solid neutron absorbing material as a means for controlling the reproduction ratio of the system and thereby the power output. Elongated rods of neutron absorbing material, such as boron steel for example, are adapted to be inserted and removed from the core of tae reactor by electronic motors and suitable drive means. The motors and drive means are controlled by means responsive to the neutron density, such as ionization chambers. The control system is designed to be responsive also to the rate of change in neutron density to automatically maintain the total power output at a substantially constant predetermined value. A safety rod means responsive to neutron density is also provided for keeping the power output below a predetermined maximum value at all times.
Langmuir probe analysis in electronegative plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bredin, Jerome, E-mail: jerome.bredin@lpp.polytechnique.fr; Chabert, Pascal; Aanesland, Ane
2014-12-15
This paper compares two methods to analyze Langmuir probe data obtained in electronegative plasmas. The techniques are developed to allow investigations in plasmas, where the electronegativity α{sub 0} = n{sub –}/n{sub e} (the ratio between the negative ion and electron densities) varies strongly. The first technique uses an analytical model to express the Langmuir probe current-voltage (I-V) characteristic and its second derivative as a function of the electron and ion densities (n{sub e}, n{sub +}, n{sub –}), temperatures (T{sub e}, T{sub +}, T{sub –}), and masses (m{sub e}, m{sub +}, m{sub –}). The analytical curves are fitted to the experimental data bymore » adjusting these variables and parameters. To reduce the number of fitted parameters, the ion masses are assumed constant within the source volume, and quasi-neutrality is assumed everywhere. In this theory, Maxwellian distributions are assumed for all charged species. We show that this data analysis can predict the various plasma parameters within 5–10%, including the ion temperatures when α{sub 0} > 100. However, the method is tedious, time consuming, and requires a precise measurement of the energy distribution function. A second technique is therefore developed for easier access to the electron and ion densities, but does not give access to the ion temperatures. Here, only the measured I-V characteristic is needed. The electron density, temperature, and ion saturation current for positive ions are determined by classical probe techniques. The electronegativity α{sub 0} and the ion densities are deduced via an iterative method since these variables are coupled via the modified Bohm velocity. For both techniques, a Child-Law sheath model for cylindrical probes has been developed and is presented to emphasize the importance of this model for small cylindrical Langmuir probes.« less
Spatial dimensions of the electron diffusion region in anti-parallel magnetic reconnection
NASA Astrophysics Data System (ADS)
Nakamura, Takuma; Nakamura, Rumi; Haseagwa, Hiroshi
2016-03-01
Spatial dimensions of the detailed structures of the electron diffusion region in anti-parallel magnetic reconnection were analyzed based on two-dimensional fully kinetic particle-in-cell simulations. The electron diffusion region in this study is defined as the region where the positive reconnection electric field is sustained by the electron inertial and non-gyrotropic pressure components. Past kinetic studies demonstrated that the dimensions of the whole electron diffusion region and the inner non-gyrotropic region are scaled by the electron inertial length de and the width of the electron meandering motion, respectively. In this study, we successfully obtained more precise scalings of the dimensions of these two regions than the previous studies by performing simulations with sufficiently small grid spacing (1/16-1/8 de) and a sufficient number of particles (800 particles cell-1 on average) under different conditions changing the ion-to-electron mass ratio, the background density and the electron βe (temperature). The obtained scalings are adequately supported by some theories considering spatial variations of field and plasma parameters within the diffusion region. In the reconnection inflow direction, the dimensions of both regions are proportional to de based on the background density. Both dimensions also depend on βe based on the background values, but the dependence in the inner region ( ˜ 0.375th power) is larger than the whole region (0.125th power) reflecting the orbits of meandering and accelerated electrons within the inner region. In the outflow direction, almost only the non-gyrotropic component sustains the positive reconnection electric field. The dimension of this single-scale diffusion region is proportional to the ion-electron hybrid inertial length (dide)1/2 based on the background density and weakly depends on the background βe with the 0.25th power. These firm scalings allow us to predict observable dimensions in real space which are indeed in reasonable agreement with past in situ spacecraft observations in the Earth's magnetotail and have important implications for future observations with higher resolutions such as the NASA Magnetospheric Multiscale (MMS) mission.
NASA Technical Reports Server (NTRS)
Zipf, E. C.
1986-01-01
The ratio of the cross sections for the direct and dissociative excitation of the OI(3s 3S0-2p 3P; 1304 A wavelength) transition, sigma A/sigma D, are accurately determined, and the sigma A/sigma D ratio is directly normalized to the ratio of the O(+) and O2(+) ionization cross sections using a high-density diffuse gas source, an electrostatically focused electron gun, a vacuum-ultraviolet monochromater, and a quadrupole mass spectrometer for simultaneous optical and composition measurements. Using revised sigma A(1304 A) values calculated with new calibration standards, the shape of the cross section for the excitation of the O(3s 3S0) state agrees well with previous results, though the absolute magnitude of sigma A(1304 A) is smaller than the results of Stone and Zipf (1974) by a factor of 2.8. The revised cross sections agree well with recent quantum calculations when cascade excitation of the 3s 3S0 state is taken into account.
Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalita, B. C., E-mail: bckalita123@gmail.com; Choudhury, M., E-mail: choudhurymamani@gmail.com
2016-10-15
Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causesmore » the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.« less
Mitigation of Hot Electrons from Laser-Plasma Instabilities in Laser-Generated X-Ray Sources
NASA Astrophysics Data System (ADS)
Fein, Jeffrey R.
This thesis describes experiments to understand and mitigate energetic or "hot" electrons from laser-plasma instabilities (LPIs) in an effort to improve radiographic techniques using laser-generated x-ray sources. Initial experiments on the OMEGA-60 laser show evidence of an underlying background generated by x-rays with energies over 10 keV on radiographs using backlit pinhole radiography, whose source is consistent with hard x-rays from LPI-generated hot electrons. Mitigating this background can dramatically reduce uncertainties in measured object densities from radiographs and may be achieved by eliminating the target components in which LPIs are most likely to grow. Experiments were performed on the OMEGA-EP laser to study hot electron production from laser-plasma instabilities in high-Z plasmas relevant to laser-generated x-ray sources. Measurements of hard x-rays show a dramatic reduction in hot-electron energy going from low-Z CH to high-Z Au targets, in a manner that is consistent with steepening electron density profiles that were also measured. The profile-steepening, we infer, increased thresholds of LPIs and contributed to the reduced hot-electron production at higher Z. Possible mechanisms for generating hot electrons include the two-plasmon decay and stimulated Raman scattering instabilities driven by multiple laser beams. Radiation hydrodynamic simulations using the CRASH code predict that both of these instabilities were above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased collisional and Landau damping of electron plasma waves. Another set of experiments were performed on the OMEGA-60 laser to test whether hard x-ray background could be mitigated in backlit pinhole imagers by controlling laser-plasma instabilities. Based on the results above, we hypothesized that LPIs and hot electrons that lead to hard x-ray background would be reduced by increasing the atomic number of the irradiated components in the pinhole imagers. Using higher-Z materials we demonstrate significant reduction in x-rays between 30-70 keV and 70% increase in the signal-to-background ratio. Based on this, a proposed backlighter and detector setup predicts a signal-to-background ratio of up to 4.5:1.
On the Foundation of Equipartition in Supernova Remnants
NASA Astrophysics Data System (ADS)
Urošević, Dejan; Pavlović, Marko Z.; Arbutina, Bojan
2018-03-01
A widely accepted paradigm is that equipartition (eqp) between the energy density of cosmic rays (CRs) and the energy density of the magnetic field cannot be sustained in supernova remnants (SNRs). However, our 3D hydrodynamic supercomputer simulations, coupled with a nonlinear diffusive shock acceleration model, provide evidence that eqp may be established at the end of the Sedov phase of evolution in which most SNRs spend the longest portions of their lives. We introduce the term “constant partition” for any constant ratio between the CR energy density and the energy density of the magnetic field in an SNR, while the term “equipartition” should be reserved for the case of approximately the same values of the energy density (also, it is constant partition in the order of magnitude) of ultra-relativistic electrons only (or CRs in total) and the energy density of the magnetic field. Our simulations suggest that this approximate constant partition exists in all but the youngest SNRs. We speculate that since evolved SNRs at the end of the Sedov phase of evolution can reach eqp between CRs and magnetic fields, they may be responsible for initializing this type of eqp in the interstellar medium. Additionally, we show that eqp between the electron component of CRs and the magnetic field may be used for calculating the magnetic field strength directly from observations of synchrotron emission from SNRs. The values of magnetic field strengths in SNRs given here are approximately 2.5 times lower than values calculated by Arbutina et al.
Two-Dimensional, Porous Nickel-Cobalt Sulfide for High-Performance Asymmetric Supercapacitors.
Li, Xiaoming; Li, Qiguang; Wu, Ye; Rui, Muchen; Zeng, Haibo
2015-09-02
High specific surface area, high electrical conductivity, and abundant channels have been recognized to favor pseudocapacitors, but their realization at the same time is still a great challenge. Here, we report on nickel-cobalt sulfide nanosheets (NSs) with both ultrathin thickness and nanoscale pores for supercapacitors. The porous Ni-Co sulfide NSs were facilely synthesized through micelle-confined growth and subsequent sulfuration. The NSs are as thin as several nanometers and have a large number of pores with a mean size of ∼7 nm, resulting in ultrahigh atom ratio at surface with unique chemical and electronic structure. Therefore, fast diffusion of ions, facile transportation of electrons and high activity make great synergistic contributions to the surface-dependent reversible redox reactions. In the resulted supercapacitors, a specific capacitance of 1304 F g(-1) is achieved at a current density of 2 A g(-1) with excellent rate capability that 85.6% of the original capacitance is remained at 20 A g(-1). The effects of crystallinity and self-doping are optimized so that 93.5% of the original capacitance is obtained after 6000 cycles at a high current density of 8 A g(-1). Finally, asymmetric supercapacitors with a high energy density of 41.4 Wh/kg are achieved at a power density of 414 W/kg.
Effect of gamma irradiation on ethylene propylene diene terpolymer rubber composites
NASA Astrophysics Data System (ADS)
Abou Zeid, M. M.; Rabie, S. T.; Nada, A. A.; Khalil, A. M.; Hilal, R. H.
2008-01-01
Composites of ethylene propylene dine terpolymer rubber (EPDM), high density polyethylene (HDPE) and ground tire rubber powder (GTR) at different ratios were subjected to gamma irradiation at various doses up to 250 kGy. The physical, mechanical and thermal properties were investigated as a function of irradiation dose and blend composition. Gamma irradiation led to a significant improvement in the properties for all blend compositions. The results indicate that the improvement in properties is inversely proportional to the substituted ratio of GTR, attributed to the development of an interfacial adhesion between GTR and blend components. The results were confirmed by examining the fracture surfaces by scanning electron microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinstein, B.; Doron, R., E-mail: ramy.doron@weizmann.ac.il; Maron, Y.
2016-04-15
We report on the first experimental verification of the traveling-wave-like picture of a magnetic-field and an associated electric potential hill propagating non-diffusively in low resistivity plasma. High spatial resolution spectroscopic method, developed here, allowed for obtaining the detailed shape of the propagating magnetic-field front. The measurements demonstrated that the ion separation, previously claimed, results from the reflection of the higher charge-to-mass ratio ions from the propagating potential hill and from climbing the hill by the lower charge-to-mass ratio ions. This ion dynamics is found to be consistent with the observed electron density evolution.
Theoretical investigations on structural, elastic and electronic properties of thallium halides
NASA Astrophysics Data System (ADS)
Singh, Rishi Pal; Singh, Rajendra Kumar; Rajagopalan, Mathrubutham
2011-04-01
Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.
Integral electrical characteristics and local plasma parameters of a RF ion thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masherov, P. E.; Riaby, V. A., E-mail: riaby2001@yahoo.com; Godyak, V. A.
2016-02-15
Comprehensive diagnostics has been carried out for a RF ion thruster based on inductively coupled plasma (ICP) source with an external flat antenna coil enhanced by ferrite core. The ICP was confined within a cylindrical chamber with low aspect ratio to minimize plasma loss to the chamber wall. Integral diagnostics of the ICP electrical parameters (RF power balance and coil current) allowed for evaluation of the antenna coils, matching networks, and eddy current loss and the true RF power deposited to plasma. Spatially resolved electron energy distribution functions, plasma density, electron temperatures, and plasma potentials were measured with movable Langmuirmore » probes.« less
Chromospheric evaporation flows and density changes deduced from Hinode/EIS during an M1.6 flare
NASA Astrophysics Data System (ADS)
Gömöry, P.; Veronig, A. M.; Su, Y.; Temmer, M.; Thalmann, J. K.
2016-04-01
Aims: We study the response of the solar atmosphere during a GOES M1.6 flare using spectroscopic and imaging observations. In particular, we examine the evolution of the mass flows and electron density together with the energy input derived from hard X-ray (HXR) in the context of chromospheric evaporation. Methods: We analyzed high-cadence sit-and-stare observations acquired with the Hinode/EIS spectrometer in the Fe xiii 202.044 Å (log T = 6.2) and Fe xvi 262.980 Å (log T = 6.4) spectral lines to derive temporal variations of the line intensity, Doppler shifts, and electron density during the flare. We combined these data with HXR measurements acquired with RHESSI to derive the energy input to the lower atmosphere by flare-accelerated electrons. Results: During the flare impulsive phase, we observe no significant flows in the cooler Fe xiii line but strong upflows, up to 80-150 km s-1, in the hotter Fe xvi line. The largest Doppler shifts observed in the Fe xvi line were co-temporal with the sharp intensity peak. The electron density obtained from a Fe xiii line pair ratio exhibited fast increase (within two minutes) from the pre-flare level of 5.01 × 109 cm-3 to 3.16 × 1010 cm-3 during the flare peak. The nonthermal energy flux density deposited from the coronal acceleration site to the lower atmospheric layers during the flare peak was found to be 1.34 × 1010 erg s-1 cm-2 for a low-energy cut-off that was estimated to be 16 keV. During the decline flare phase, we found a secondary intensity and density peak of lower amplitude that was preceded by upflows of ~15 km s-1 that were detected in both lines. The flare was also accompanied by a filament eruption that was partly captured by the EIS observations. We derived Doppler velocities of 250-300 km s-1 for the upflowing filament material. Conclusions: The spectroscopic results for the flare peak are consistent with the scenario of explosive chromospheric evaporation, although a comparatively low value of the nonthermal energy flux density was determined for this phase of the flare. This outcome is discussed in the context of recent hydrodynamic simulations. It provides observational evidence that the response of the atmospheric plasma strongly depends on the properties of the electron beams responsible for the heating, in particular the steepness of the energy distribution. The secondary peak of line intensity and electron density detected during the decline phase is interpreted as a signature of flare loops being filled by expanding hot material that is due to chromospheric evaporation. A movie is available at http://www.aanda.org
Slow electron acoustic double layer (SEADL) structures in bi-ion plasma with trapped electrons
NASA Astrophysics Data System (ADS)
Shan, Shaukat Ali; Imtiaz, Nadia
2018-05-01
The properties of ion acoustic double layer (IADL) structures in bi-ion plasma with electron trapping are investigated by using the quasi-potential analysis. The κ-distributed trapped electrons number density expression is truncated to some finite order of the electrostatic potential. By utilizing the reductive perturbation method, a modified Schamel equation which describes the evolution of the slow electron acoustic double layer (SEADL) with the modified speed due to the presence of bi-ion species is investigated. The Sagdeev-like potential has been derived which accounts for the effect of the electron trapping and superthermality in a bi-ion plasma. It is found that the superthermality index, the trapping efficiency of electrons, and ion to electron temperature ratio are the inhibiting parameters for the amplitude of the slow electron acoustic double layers (SEADLs). However, the enhanced population of the cold ions is found to play a supportive role for the low frequency DLs in bi-ion plasmas. The illustrations have been presented with the help of the bi-ion plasma parameters in the Earth's ionosphere F-region.
Lemaitre, Maxime G; Donoghue, Evan P; McCarthy, Mitchell A; Liu, Bo; Tongay, Sefaattin; Gila, Brent; Kumar, Purushottam; Singh, Rajiv K; Appleton, Bill R; Rinzler, Andrew G
2012-10-23
An improved process for graphene transfer was used to demonstrate high performance graphene enabled vertical organic field effect transistors (G-VFETs). The process reduces disorder and eliminates the polymeric residue that typically plagues transferred films. The method also allows for purposely creating pores in the graphene of a controlled areal density. Transconductance observed in G-VFETs fabricated with a continuous (pore-free) graphene source electrode is attributed to modulation of the contact barrier height between the graphene and organic semiconductor due to a gate field induced Fermi level shift in the low density of electronic-states graphene electrode. Pores introduced in the graphene source electrode are shown to boost the G-VFET performance, which scales with the areal pore density taking advantage of both barrier height lowering and tunnel barrier thinning. Devices with areal pore densities of 20% exhibit on/off ratios and output current densities exceeding 10(6) and 200 mA/cm(2), respectively, at drain voltages below 5 V.
NASA Astrophysics Data System (ADS)
Pesnell, W. Dean; Goldberg, Richard A.; Jackman, Charles H.; Chenette, D. L.; Gaines, E. E.
2000-10-01
Highly relativistic electron precipitation events (HREs) include long-lived enhancements of the flux of electrons with E>1MeV into the Earth's atmosphere. HREs also contain increased fluxes of electrons with energies above 100 keV that have been predicted to cause large depletions of mesospheric ozone. For some of the measured instantaneous values of the electron fluxes during the HRE of May 1992, relative depletions greater than 22% were predicted to occur between altitudes of 55 and 80 km, where HOx reactions cause local minima in both the ozone number density and mixing ratio altitude profiles. These ozone depletions should follow the horizontal distribution of the electron precipitation, having a distinct boundary equatorward of the L=3 magnetic shell. To search for these effects, we have analyzed ozone data from the High Resolution Doppler Imager (HRDI) instrument on UARS. Owing to the multiple, off-track viewing angles of HRDI, observations in the region affected by the electrons are taken at similar local solar times before, during, and after the electron flux increase. Our analysis limits the relative ozone depletion to values <10% during the very intense May 1992 HRE. We do observe decreases in the ozone mixing ratio at several points in the diurnal cycle that may be associated with the transport of water vapor into the mesosphere during May 1992. This masking of the precipitating electron effects by the seasonal variations in water vapor can complicate the detection of those effects.
The production and escape of nitrogen atoms on Mars
NASA Technical Reports Server (NTRS)
Fox, J. L.
1992-01-01
The lack of agreement between our previously computed values and those measured by Viking of the N-15:N-14 isotope enhancement ratio has led us to reevaluate our model of the Martian ionosphere. In previous models, we were unable to reproduce the ion profiles measured by the RPA on Viking using electron temperatures that were higher that the ion temperatures. When we increased the electron temperatures to 2500-3000 K and with a zero flux upper boundary condition, the ion densities at high altitudes exceeded the measured values by a large factor. We found that we can better fit the observed profiles if we impose a loss process at the upper boundary of our model. If the horizontal fluxes of ions do not constitute a net loss of ions, then the escape of N due to dissociative recombination is also inhibited and better agreement with the measured isotope ratio is found. The production of escaping nitrogen atoms is closely related to the production of thermospheric odd nitrogen; therefore, the densities of NO measured by Viking provide a convenient check on our nitrogen escape model. Our standard model NO densities are less that the measured values by a factor of 2-3, as are those of previous models. We find that reasonable agreement can be obtained by assuming that the rate coefficient for loss of odd nitrogen in the reaction of N with NO is smaller at temperatures that prevail in the lower Martian thermosphere than the standard value, which applies to temperatures of 200-400 K. Other aspects of this investigation are presented.
NASA Astrophysics Data System (ADS)
Tanaka, K.; Nagaoka, K.; Murakami, S.; Takahashi, H.; Osakabe, M.; Yokoyama, M.; Seki, R.; Michael, C. A.; Yamaguchi, H.; Suzuki, C.; Shimizu, A.; Tokuzawa, T.; Yoshinuma, M.; Akiyama, T.; Ida, K.; Yamada, I.; Yasuhara, R.; Funaba, H.; Kobayashi, T.; Yamada, H.; Du, X. D.; Vyacheslavov, L. N.; Mikkelsen, D. R.; Yun, G. S.; the LHD Experimental Group
2017-11-01
Surveys of the ion and electron heat transports of neutral beam (NB) heating plasma were carried out by power balance analysis in He and H rich plasma at LHD. Collisionality was scanned by changing density and heating power. The characteristics of the transport vary depending on collisionality. In low collisionality, with low density and high heating power, an ion internal transport barrier (ITB) was formed. The ion heat conductivity (χ i) is lower than electron heat conductivity (χ e) in the core region at ρ < 0.7. On the other hand, in high collisionality, with high density and low heating power, χ i is higher than χ e across the entire range of plasma. These different confinement regimes are associated with different fluctuation characteristics. In ion ITB, fluctuation has a peak at ρ = 0.7, and in normal confinement, fluctuation has a peak at ρ = 1.0. The two confinement modes change gradually depending on the collisionality. Scans of concentration ratio between He and H were also performed. The ion confinement improvements were investigated using gyro-Bohm normalization, taking account of the effective mass and charge. The concentration ratio affected the normalized χ i only in the edge region (ρ ~ 1.0). This indicates ion species effects vary depending on collisionality. Turbulence was modulated by the fast ion loss instability. The modulation of turbulence is higher in H rich than in He rich plasma.
NASA Technical Reports Server (NTRS)
Aschwanden, Markus J.; Newmark, Jeff; Delaboudiniere, Jean-Pierre; Neupert, Werner M.; Portier-Fozzani, Fabrice; Gary, G. Allen; Zucker, Arik
1998-01-01
The three-dimensional (3D) structure of solar active region NOAA 7986 observed on 1996 August 30 with the Extrem-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO) is analyzed. We develop a new method of Dynamic Stereoscopy to reconstruct the 3D geometry of dynamically changing loops, which allows us to determine the orientation of the loop plane with respect to the line-of-sight, a prerequisite to correct properly for projection effects in 3D loop models. With this method and the filter-ratio technique applied to EIT 171 A and 195 A images we determine the 3D coordinates (x(s), y(s), z(s)), the loop width) w(s), the electron density n(sub e)(s), and the electron temperature T(sub e)(s) as function of the loop length s for 30 loop segments. Fitting the loop densities with an exponential density model n(sub e)(h) we find that the so inferred scale height temperatures, T(sub e)(sup lambda) = 1.22 +/- 0.23 MK, match closely the EIT filter-ratio temperatures, T(sub e)(sup FIT) = 1.21 +/- 0.06 MK. We conclude that these rather large-scale loops (with heights of h approx. equals 50 - 200 Mm) that dominate EIT 171 A images are close to thermal equilibrium. Most of the loops show no significant thickness variation w(s), but many exhibit a trend of increasing temperature (dT/ds greater than 0) above the footpoint.
Density and beta limits in the Madison Symmetric Torus Reversed-Field Pinch
NASA Astrophysics Data System (ADS)
Caspary, Kyle Jonathan
Operational limits and the underlying physics are explored on the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP) using deuterium pellet fueling. The injection of a fast pellet provides a large source of fuel in the plasma edge upon impact with the vessel wall, capable of triggering density limit terminations for the full range of plasma current, up to 600 kA. As the pellet size and plasma density increase, approaching the empirical Greenwald limit, plasma degradation is observed in the form of current decay, increased magnetic activity in the edge and core, increased radiation and plasma cooling. The complete termination of the plasma is consistent with the Greenwald limit; however, a slightly smaller maximum density is observed in discharges without toroidal field reversal. The plasma beta is the ratio of the plasma pressure to the confining magnetic pressure. Beta limits are known to constrain other magnetic confinement devices, but no beta limit has yet been established on the RFP. On MST, the highest beta values are obtained in improved confinement discharges with pellet fueling. By using pellet injection to scan the plasma density during PPCD, we also achieve a scan of Ohmic input power due to the increase in plasma resistivity. We observe a factor of 3 or more increase in Ohmic power as we increase the density from 1*1019 to 3*10 19 m-3. Despite this increased Ohmic power, the electron contribution to beta is constant, suggesting a confinement limited beta for the RFP. The electrons and ions are classically well coupled in these cold, dense pellet fueled plasmas, so the increase in total beta at higher density is primarily due to the increased ion contribution. The interaction of pellet fueling and NBI heating is explored. Modeling of MST's neutral heating beam suggests an optimal density for beam power deposition of 2-3*1019 m-3. Low current, NBI heated discharges show evidence of an increased electron beta in this density range. Additionally, the fast ion population can enhance ablation as well as cause pellet deflection. Other exploratory experiments with the pellet injection system explore additional injection scenarios and expand the injector capabilities.
The interstellar chemistry of C3H and C3H2 isomers
Loison, Jean-Christophe; Agúndez, Marcelino; Wakelam, Valentine; Roueff, Evelyne; Gratier, Pierre; Marcelino, Núria; Nuñez Reyes, Dianailys; Cernicharo, José; Gerin, Maryvonne
2017-01-01
We report the detection of linear and cyclic isomers of C3H and C3H2 towards various starless cores and review the corresponding chemical pathways involving neutral (C3Hx with x=1,2) and ionic (C3Hx+ with x = 1,2,3) isomers. We highlight the role of the branching ratio of electronic Dissociative Recombination (DR) reactions of C3H2+ and C3H3+ isomers showing that the statistical treatment of the relaxation of C3H* and C3H2* produced in these DR reactions may explain the relative c,l-C3H and c,l-C3H2 abundances. We have also introduced in the model the third isomer of C3H2 (HCCCH). The observed cyclic-to-linear C3H2 ratio vary from 110 ± 30 for molecular clouds with a total density around 1×104 molecules.cm-3 to 30 ± 10 for molecular clouds with a total density around 4×105 molecules.cm-3, a trend well reproduced with our updated model. The higher ratio for low molecular cloud densities is mainly determined by the importance of the H + l-C3H2 → H + c-C3H2 and H + t-C3H2 → H + c-C3H2 isomerization reactions. PMID:29142332
The interstellar chemistry of C3H and C3H2 isomers
NASA Astrophysics Data System (ADS)
Loison, Jean-Christophe; Agúndez, Marcelino; Wakelam, Valentine; Roueff, Evelyne; Gratier, Pierre; Marcelino, Núria; Reyes, Dianailys Nuñez; Cernicharo, José; Gerin, Maryvonne
2017-10-01
We report the detection of linear and cyclic isomers of C3H and C3H2 towards various starless cores and review the corresponding chemical pathways involving neutral (C3Hx with x = 1,2) and ionic (C3Hx+ with x = 1,2,3) isomers. We highlight the role of the branching ratio of electronic dissociative recombination (DR) reactions of C3H2+ and C3H3+ isomers, showing that the statistical treatment of the relaxation of C3H* and C3H2* produced in these DR reactions may explain the relative c,l-C3H and c,l-C3H2 abundances. We have also introduced in the model the third isomer of C3H2 (HCCCH). The observed cyclic-to-linear C3H2 ratio varies from 110 ± 30 for molecular clouds with a total density of about 1 × 104 molecules cm-3 to 30 ± 10 for molecular clouds with a total density of about 4 × 105 molecules cm-3, a trend well reproduced with our updated model. The higher ratio for molecular clouds with low densities is determined mainly by the importance of the H + l-C3H2 → H + c-C3H2 and H + t-C3H2 → H + c-C3H2 isomerization reactions.
NASA Astrophysics Data System (ADS)
Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.
2017-12-01
Negatively charged nitrogen-vacancy (NV-) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV- center ensemble on a large scale with a long coherence lifetime. In this work, the NV- center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV- centers along three directions to improve fluorescence signal contrast. Finally, NV- center ensembles with a high concentration of roughly 1015 mm-3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV- center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.
Fingerprint-Based Structure Retrieval Using Electron Density
Yin, Shuangye; Dokholyan, Nikolay V.
2010-01-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. PMID:21287628
Fingerprint-based structure retrieval using electron density.
Yin, Shuangye; Dokholyan, Nikolay V
2011-03-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Koops, Hans W. P.
2015-12-01
The discovery of Focused Electron Beam Induced Processing and early applications of this technology led to the possible use of a novel nanogranular material “Koops-GranMat®” using Pt/C and Au/C material. which carries at room temperature a current density > 50 times the current density which high TC superconductors can carry. The explanation for the characteristics of this novel material is given. This fact allows producing novel products for many applications using Dual Beam system having a gas supply and X.Y.T stream data programming and not using GDSII layout pattern control software. Novel products are possible for energy transportation. -distribution.-switching, photon-detection above 65 meV energy for very efficient energy harvesting, for bright field emission electron sources used for vacuum electronic devices like amplifiers for HF electronics, micro-tubes, 30 GHz to 6 THz switching amplifiers with signal to noise ratio >10(!), THz power sources up to 1 Watt, in combination with miniaturized vacuum pumps, vacuum gauges, IR to THz detectors, EUV- and X-Ray sources. Since focusing electron beam induced deposition works also at low energy, selfcloning multibeam-production machines for field emitter lamps, displays, multi-beam - lithography, - imaging, and - inspection, energy harvesting, and power distribution with switches controlling field-emitter arrays for KA of currents but with < 100 V switching voltage are possible. Finally the replacement of HTC superconductors and its applications by the Koops-GranMat® having Koops-Pairs at room temperature will allow the investigation devices similar to Josephson Junctions and its applications now called QUIDART (Quantum interference devices at Room Temperature). All these possibilities will support a revolution in the optical, electric, power, and electronic technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz Ruiz, J.; White, A. E.; Ren, Y.
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less
Superconducting fluctuations and characteristic time scales in amorphous WSi
NASA Astrophysics Data System (ADS)
Zhang, Xiaofu; Lita, Adriana E.; Sidorova, Mariia; Verma, Varun B.; Wang, Qiang; Nam, Sae Woo; Semenov, Alexei; Schilling, Andreas
2018-05-01
We study magnitudes and temperature dependencies of the electron-electron and electron-phonon interaction times which play the dominant role in the formation and relaxation of photon-induced hotspots in two-dimensional amorphous WSi films. The time constants are obtained through magnetoconductance measurements in a perpendicular magnetic field in the superconducting fluctuation regime and through time-resolved photoresponse to optical pulses. The excess magnetoconductivity is interpreted in terms of the weak-localization effect and superconducting fluctuations. Aslamazov-Larkin and Maki-Thompson superconducting fluctuations alone fail to reproduce the magnetic field dependence in the relatively high magnetic field range when the temperature is rather close to Tc because the suppression of the electronic density of states due to the formation of short-lifetime Cooper pairs needs to be considered. The time scale τi of inelastic scattering is ascribed to a combination of electron-electron (τe -e) and electron-phonon (τe -p h) interaction times, and a characteristic electron-fluctuation time (τe -f l) , which makes it possible to extract their magnitudes and temperature dependencies from the measured τi. The ratio of phonon-electron (τp h -e) and electron-phonon interaction times is obtained via measurements of the optical photoresponse of WSi microbridges. Relatively large τe -p h/τp h -e and τe -p h/τe -e ratios ensure that in WSi the photon energy is more efficiently confined in the electron subsystem than in other materials commonly used in the technology of superconducting nanowire single-photon detectors (SNSPDs). We discuss the impact of interaction times on the hotspot dynamics and compare relevant metrics of SNSPDs from different materials.
Bite-outs and other depletions of mesospheric electrons
Friedrich, Martin; Rapp, Markus; Plane, John M.C.; Torkar, Klaus M.
2011-01-01
The ionised mesosphere is less understood than other parts of the ionosphere because of the challenges of making appropriate measurements in this complex region. We use rocket borne in situ measurements of absolute electron density by the Faraday rotation technique and accompanying DC-probe measurements to study the effect of particles on the D-region charge balance. Several examples of electron bite-outs, their actual depth as well as simultaneous observations of positive ions are presented. For a better understanding of the various dependencies we use the ratio β/αi (attachment rate over ion–ion recombination coefficient), derived from the electron and ion density profiles by applying a simplified ion-chemical scheme, and correlate this term with solar zenith angle and moon brightness. The probable causes are different for day and night; recent in situ measurements support existing hypotheses for daytime cases, but also reveal behaviour at night hitherto not reported in the literature. Within the large range of β/αi values obtained from the analysis of 28 high latitude night flights one finds that the intensity of scattered sunlight after sunset, and even moonlight, apparently can photodetach electrons from meteoric smoke particles (MSP) and molecular anions. The large range of values itself can best be explained by the variability of the MSPs and by occasionally occurring atomic oxygen impacting on the negative ion chemistry in the night-time mesosphere under disturbed conditions. PMID:27570472
Nonlinear Kinetic Instabilities in Plasma Wakes
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.; Haakonsen, C. B.
2015-12-01
Relative motion of a plasma and an embedded perturbing solid objectproduces a plasma wake, which is kinetically unstable. For moons,asteroids, spacecraft, probes, and planets without a magnetosphere theresponse is dominantly electrostatic, although generally with abackground magnetic field. Using high-fidelity particle-in-cellsimulations, we have observed the development of kinetic instabilitiesand their non-linear consequences in representative wakes. We havealso explained the observations with semi-analytical non-lineartheory. The ion and electron distribution function shapes are stronglyperturbed in the wake region. The ions form two opposite beamsdirected inward along the guiding magnetic field, in part because ofthe attraction of the wake's electric potential well. The electrondistribution forms a notch or dimple (of reduced phase space density)localized in velocity to orbits that dwell near the wake axis (becauseof repulsion). Those orbits are de-energized by cross-field drift downthe potential-energy ridge. The resulting Langmuir instability spawnselectron holes. The holes that move faster than the ion beams areaccelerated out of the wake by its electrostatic field without growingsubstantially. Some holes, however, remain in the wake at essentiallyzero parallel velocity. They grow, as a result of the same mechanismthat formed the notch: cross-field drift from a lower to a higherdensity. When the density rises by a factor of order two or three,they grow large enough to perturb the ions, tap their free energy, anddisrupt the ion streams well before they would become ion-ionunstable. Crucially, these processes depend strongly on theion/electron mass ratio and require close to physical ratio (1836) insimulations, to reveal their characteristics. Electron holes arisingfrom these processes may be widely present and observable in spaceplasma wakes.
Influence of irradiation conditions on plasma evolution in laser-surface interaction
NASA Astrophysics Data System (ADS)
Hermann, J.; Boulmer-Leborgne, C.; Dubreuil, B.; Mihailescu, I. N.
1993-09-01
The plasma plume induced by pulsed CO2 laser irradiation of a Ti target at power densities up to 4×108 W cm-2 was studied by emission spectroscopy. Time- and space-resolved measurements were performed by varying laser intensity, laser temporal pulse shape, ambient gas pressure, and the nature of the ambient gas. Experimental results are discussed by comparison with usual models. We show that shock wave and plasma propagation depend critically on the ratio Ivap/Ii, Ivap being the intensity threshold for surface vaporization and Ii the plasma ignition threshold of the ambient gas. Spectroscopic diagnostics of the helium breakdown plasma show maximum values of electron temperature and electron density in the order of kTe˜10 eV and ne=1018 cm-3, respectively. The plasma cannot be described by local thermodynamic equilibrium modeling. Nevertheless, excited metal atoms appear to be in equilibrium with electrons, hence, they can be used like a probe to measure the electron temperature. In order to get information on the role of the plasma in the laser-surface interaction, Ti surfaces were investigated by microscopy after irradiation. Thus an enhanced momentum transfer from the plasma to the target due to the recoil pressure of the breakdown plasma could be evidenced.
NASA Astrophysics Data System (ADS)
Ma, Deng-Hao; Zhang, Wei-Jia; Luo, Rui-Ying; Jiang, Zhao-Yi; Ma, Qiang; Ma, Xiao-Bo; Fan, Zhi-Qiang; Song, Deng-Yuan; Zhang, Lei
2016-05-01
Phosphorus doped Si nanocrystals (SNCs) emebedded in silicon-rich SiNx:H films were prepared using plasma enhanced chemical vapor deposition technique, and the effects of nitrogen incorporation on the microstructure and electronic properties of the thin films have been systematically studied. Transmission electron microscope and Raman observation revealed that nitrogen incorporation prevents the growth of Si nanocrystals, and that their sizes can be adjusted by varying the flow rate of NH3. The reduction of photoluminescence (PL) intensity in the range of 2.1-2.6 eV of photon energy was observed with increasing nitrogen impurity, and a maximal PL intensity in the range 1.6-2.0 eV was obtained when the incorporation flow ratio NH3/(SiH4+H2+PH3) was 0.02. The conductivity of the films is improved by means of proper nitrogen impurity doping, and proper doping causes the interface charge density of the heterojunction (H-J) device to be lower than the nc-Si:H/c-Si H-J device. As a result, the proper incorporation of nitrogen could not only reduce the silicon banding bond density, but also fill some carrier capture centers, and suppress the nonradiative recombination of electrons.
Nonadiabatic electron response in the Hasegawa-Wakatani equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltzfus-Dueck, T.; Scott, B. D.; Krommes, J. A.
2013-08-15
Tokamak edge turbulence is strongly influenced by parallel electron physics, which relaxes density and potential fluctuations towards electron adiabatic response. Beginning with the paradigmatic Hasegawa-Wakatani equations (HWEs) for resistive tokamak edge turbulence, a unique decomposition of the electric potential (φ) into adiabatic (a) and nonadiabatic (b) portions is derived, based on the requirement that a neither drive nor respond to the parallel current j{sub ∥}. The form of the decomposition clarifies that, at perpendicular scales large relative to the sound radius, the electron adiabatic response controls the nonzonal φ, not the fluctuating density n. Simple energy balance arguments allow onemore » to rigorously bound the ratio of rms nonzonal nonadiabatic fluctuations (b(tilde sign)) relative to adiabatic ones (ã). The role of the vorticity nonlinearity in transferring energy between adiabatic and nonadiabatic fluctuations aids intuitive understanding of self-sustained turbulence in the HWEs. When the normalized parallel resistivity is weak, b(tilde sign) becomes effectively slaved, allowing the reduction to an approximate one-field model that remains valid for strong turbulence. In addition to guiding physical intuition, the one-field reduction should greatly ease further analytical manipulations. Direct numerical simulation of the 2D HWEs confirms the convergence of the asymptotic formula for b(tilde sign)« less
NASA Astrophysics Data System (ADS)
Middleton, D. P. W.; Nikolopoulos, L. A. A.
2012-11-01
In this work, single and double ionisation yields of neon under extreme ultraviolet free-electron laser (FEL) radiation tuned in the vicinity of the autoionising states (AIS) of Ne+ were studied. Density matrix equations were developed and were used to calculate the dependence of the branching ratios of singly and doubly ionised neon on the field intensity and its duration. In addition, in response to a recent experiment [M. Martins et al., Phys. Rev. A 2011, 80, 023411], a quantitative analysis was undertaken in order to reproduce the magnitude of the branching ratios by varying the FEL photon frequency in the range 41.0-42.0 eV in accordance with the experimental report. While the reported variations of the species' branching ratios as a function of the FEL field's photon energy were found, their magnitude and shape differ. In general, the branching ratios are found to be heavily dependent on the given combination of the peak intensity and the pulse duration. Furthermore, the FEL's stochastic fluctuation has been modelled by solving the average density matrix equations and it was found that stochastic effects should also affect branching ratios, mainly due to the increase in the effective bandwidth of the pulse in comparison with the AIS's decay ionisation width. Our calculations suggest that field fluctuations generally diminish the resonance features of the branching ratios.
Walther, T; Wang, X
2016-05-01
Based on Monte Carlo simulations of X-ray generation by fast electrons we calculate curves of effective sensitivity factors for analytical transmission electron microscopy based energy-dispersive X-ray spectroscopy including absorption and fluorescence effects, as a function of Ga K/L ratio for different indium and gallium containing compound semiconductors. For the case of InGaN alloy thin films we show that experimental spectra can thus be quantified without the need to measure specimen thickness or density, yielding self-consistent values for quantification with Ga K and Ga L lines. The effect of uncertainties in the detector efficiency are also shown to be reduced. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
NASA Technical Reports Server (NTRS)
Bosomworth, D. R.; Moles, W. H.
1969-01-01
A memory and display device has been developed by combing a fast phosphor layer with a cathodochromic layer in a cathode ray tube. Images are stored as patterns of electron beam induced optical density in the cathodo-chromic material. The stored information is recovered by exciting the backing, fast phosphor layer with a constant current electron beam and detecting the emitted radiation which is modulated by absorption in the cathodochromic layer. The storage can be accomplished in one or more TV frames (1/30 sec each). More than 500 TV line resolution and close to 2:1 contrast ratio are possible. The information storage time in a dark environment is approximately 24 hours. A reconstituted (readout) electronic video signal can be generated continuously for times in excess of 10 minutes or periodically for several hours.
Nanowire growth by an electron beam induced massive phase transformation
Sood, Shantanu; Kisslinger, Kim; Gouma, Perena
2014-11-15
Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less
Soliman, Saied M; Barakat, Assem
2016-12-06
Intermolecular interactions play a vital role in crystal structures. Therefore, we conducted a topological study, using Hirshfeld surfaces and atom in molecules (AIM) analysis, to decompose and analyze, respectively, the different intermolecular interactions in six hydrazone-diacetyl platinum(II) complexes. Using AIM and natural bond orbital (NBO) analyses, we determined the type, nature, and strength of the interactions. All the studied complexes contain C-H⋯O interactions, and the presence of bond critical points along the intermolecular paths underlines their significance. The electron densities (ρ(r)) at the bond critical points (0.0031-0.0156 e/a₀³) fall within the typical range for H-bonding interactions. Also, the positive values of the Laplacian of the electron density (∇²ρ(r)) revealed the depletion of electronic charge on the interatomic path, another characteristic feature of closed-shell interactions. The ratios of the absolute potential energy density to the kinetic energy density (| V (r)|/ G (r)) and ρ(r) are highest for the O2⋯H15-N3 interaction in [Pt(COMe)₂(2-pyCMe=NNH₂)] (1); hence, this interaction has the highest covalent character of all the O⋯H intermolecular interactions. Interestingly, in [Pt(COMe)₂(H₂NN=CMe-CMe=NNH₂)] (3), there are significant N-H⋯Pt interactions. Using the NBO method, the second-order interaction energies, E (2) , of these interactions range from 3.894 to 4.061 kJ/mol. Furthermore, the hybrid Pt orbitals involved in these interactions are comprised of d xy , d xz , and s atomic orbitals.
Kurowska, Aleksandra; Zassowski, Pawel; Kostyuchenko, Anastasia S; Zheleznova, Tatyana Yu; Andryukhova, Kseniya V; Fisyuk, Alexander S; Pron, Adam; Domagala, Wojciech
2017-11-15
A structure-property study across a series of donor-acceptor-donor structures composed of mono- and bi-(1,3,4-oxadiazole) units symmetrically substituted with alkyl functionalized bi-, ter- and quaterthiophene segments is presented. Synthetically tailoring the ratio of electron-withdrawing 1,3,4-oxadiazole to electron-releasing thiophene units and their alkyl grafting pattern permitted us to scrutinize the impact of these structural factors on the redox, absorptive and emissive properties of these push-pull molecules. Contrasting trends of redox potentials were observed, with the oxidation potential closely following the donor-to-acceptor ratio, whereas the reduction potential being tuned independently by either the number of acceptor units or the conjugation length of the donor-acceptor system. Increasing the thiophene unit contribution delivered a shift from blue to green luminescence, while the structural rigidity afforded by intramolecular non-covalent interactions between 1,3,4-oxadiazole and the thiophene moieties has been identified as the prime factor determining the emission efficiency of these molecules. All six structures investigated electro-polymerize easily, yielding electroactive and electrochromic polymers. The polymer doping process is largely influenced by the length of the oligothiophene repeating unit and the alkyl chain grafting density. Polymers with relatively short oligothiophene segments are able to support polarons and polaron-pairs, whereas those with segments longer than six thiophene units could also stabilize diamagnetic charge carries - bipolarons. Increasing the alkyl chain grafting density improved the reversibility and broadened the working potential window of the p-doping process. Stable radical anions have also been investigated, bringing detailed information about the conjugation pattern of these electron-surplus species. This study delivers interesting clues towards the conscious structural design of bespoke frontier energy level oligothiophene functional materials and their polymers by incorporating a structurally matching 1,3,4-oxadiazole unit.
Reentrant Metal-Insulator Transitions in Silicon -
NASA Astrophysics Data System (ADS)
Campbell, John William M.
This thesis describes a study of reentrant metal -insulator transitions observed in the inversion layer of extremely high mobility Si-MOSFETs. Magneto-transport measurements were carried out in the temperature range 20mK-4.2 K in a ^3He/^4 He dilution refrigerator which was surrounded by a 15 Tesla superconducting magnet. Below a melting temperature (T_{M}~500 mK) and a critical electron density (n_{s }~9times10^{10} cm^{-2}), the Shubnikov -de Haas oscillations in the diagonal resistivity enormous maximum values at the half filled Landau levels while maintaining deep minima corresponding to the quantum Hall effect at filled Landau levels. At even lower electron densities the insulating regions began to spread and eventually a metal-insulator transition could be induced at zero magnetic field. The measurement of extremely large resistances in the milliKelvin temperature range required the use of very low currents (typically in the 10^ {-12} A range) and in certain measurements minimizing the noise was also a consideration. The improvements achieved in these areas through the use of shielding, optical decouplers and battery operated instruments are described. The transport signatures of the insulating state are considered in terms of two basic mechanisms: single particle localization with transport by variable range hopping and the formation of a collective state such as a pinned Wigner crystal or electron solid with transport through the motion of bound dislocation pairs. The experimental data is best described by the latter model. Thus the two dimensional electron system in these high mobility Si-MOSFETs provides the first and only experimental demonstration to date of the formation of an electron solid at zero and low magnetic fields in the quantum limit where the Coulomb interaction energy dominates over the zero point oscillation energy. The role of disorder in favouring either single particle localization or the formation of a Wigner crystal is explored by considering a variety of samples with a wide range of mobilities and by varying the ratio of the carrier density (controlled by the applied gate voltage) to the impurity density (fixed during sample growth). A phase diagram showing the boundaries between the two dimensional electron gas, the Wigner solid, and the single particle localization induced insulator is established in terms of carrier density and sample mobility.
NASA Astrophysics Data System (ADS)
Hassanimatin, M. M.; Tavassoli, S. H.
2018-05-01
A combination of electrical spark and laser induced breakdown spectroscopy (LIBS), which is called spark assisted LIBS (SA-LIBS), has shown its capability in plasma spectral emission enhancement. The aim of this paper is a detailed study of plasma emission to determine the effect of plasma and experimental parameters on increasing the spectral signal. An enhancement ratio of SA-LIBS spectral lines compared with LIBS is theoretically introduced. The parameters affecting the spectral enhancement ratio including ablated mass, plasma temperature, the lifetime of neutral and ionic spectral lines, plasma volume, and electron density are experimentally investigated and discussed. By substitution of the effective parameters, the theoretical spectral enhancement ratio is calculated and compared with the experimental one. Two samples of granite as a dielectric and aluminum as a metal at different laser pulse energies are studied. There is a good agreement between the calculated and the experimental enhancement ratio.
NASA Astrophysics Data System (ADS)
Miyata, Masanobu; Ozaki, Taisuke; Takeuchi, Tsunehiro; Nishino, Shunsuke; Inukai, Manabu; Koyano, Mikio
2018-06-01
The electron transport properties of 809 sulfides have been investigated using density functional theory (DFT) calculations in the relaxation time approximation, and a material design rule established for high-performance sulfide thermoelectric (TE) materials. Benchmark electron transport calculations were performed for Cu12Sb4S13 and Cu26V2Ge6S32, revealing that the ratio of the scattering probability of electrons and phonons ( κ lat τ el -1 ) was constant at about 2 × 1014 W K-1 m-1 s-1. The calculated thermopower S dependence of the theoretical dimensionless figure of merit ZT DFT of the 809 sulfides showed a maximum at 140 μV K-1 to 170 μV K-1. Under the assumption of constant κ lat τ el -1 of 2 × 1014 W K-1 m-1 s-1 and constant group velocity v of electrons, a slope of the density of states of 8.6 states eV-2 to 10 states eV-2 is suitable for high- ZT sulfide TE materials. The Lorenz number L dependence of ZT DFT for the 809 sulfides showed a maximum at L of approximately 2.45 × 10-8 V2 K-2. This result demonstrates that the potential of high- ZT sulfide materials is highest when the electron thermal conductivity κ el of the symmetric band is equal to that of the asymmetric band.
NASA Astrophysics Data System (ADS)
Yang, Chien-Sheng
The purpose of this research has been to (1) explore materials prepared using plasma enhanced chemical vapor deposition (PECVD) at 110sp°C for amorphous silicon thin film transistors (TFT's) fabricated on low temperature compatible, large area flexible polyethylene terephthalate (PET) substrates, and (2) develop full self-alignment technology using selective area n+ PECVD for source/drain contacts of amorphous silicon TFT's. For item (1), silicon nitride films, as gate dielectrics of TFT's, were deposited using SiHsb4+NHsb3, SiHsb4+NHsb3+Nsb2, SiHsb4+NHsb3+He, or SiHsb4+NHsb3+Hsb2 gases. Good quality silicon nitride films can be deposited using a SiHsb4+NHsb3 gas with high NHsb3/SiHsb4 ratios, or using a SiHsb4+NHsb3+Nsb2 gas with moderate NHsb3/SiHsb4 ratios. A chemical model was proposed to explain the Nsb2 dilution effect. This model includes calculations of (a) the electron energy distribution function in a plasma, (b) rate constants of electron impact dissociation, and (3) the (NHsbx) / (SiHsby) ratio in a plasma. The Nsb2 dilution was shown to have a effect of shifting the electron energy distribution into high energy, thus enhancing the (NHsbx) / (SiHsbyrbrack ratio in a plasma and promoting the deposition of N-rich silicon nitride films, which leads to decreased trap state density and a shift in trap state density to deeper in the gap. Amorphous silicon were formed successfully at 110sp°C on large area glass and plastic(PET) substrates. Linear mobilities are 0.33 and 0.12 cmsp2/Vs for TFT's on glass and plastic substrates, respectively. ON/OFF current ratios exceed 10sp7 for TFT's on glass and 10sp6 for TFT's on PET. For item (2), a novel full self-alignment process was developed for amorphous silicon TFT's. This process includes (1) back-exposure using the bottom gate metal as the mask, and (2) selective area n+ micro-crystalline silicon PECVD for source/drain contacts of amorphous silicon TFT's. TFT's fabricated using the full self-alignment process showed linear mobilities ranging from 0.5 to 1.0 cmsp2/Vs.
Electronic energy density in chemical reaction systems
NASA Astrophysics Data System (ADS)
Tachibana, Akitomo
2001-08-01
The energy of chemical reaction is visualized in real space using the electronic energy density nE(r⃗) associated with the electron density n(r⃗). The electronic energy density nE(r⃗) is decomposed into the kinetic energy density nT(r⃗), the external potential energy density nV(r⃗), and the interelectron potential energy density nW(r⃗). Using the electronic energy density nE(r⃗) we can pick up any point in a chemical reaction system and find how the electronic energy E is assigned to the selected point. We can then integrate the electronic energy density nE(r⃗) in any region R surrounding the point and find out the regional electronic energy ER to the global E. The kinetic energy density nT(r⃗) is used to identify the intrinsic shape of the reactants, the electronic transition state, and the reaction products along the course of the chemical reaction coordinate. The intrinsic shape is identified with the electronic interface S that discriminates the region RD of the electronic drop from the region RA of the electronic atmosphere in the density distribution of the electron gas. If the R spans the whole space, then the integral gives the total E. The regional electronic energy ER in thermodynamic ensemble is realized in electrochemistry as the intrinsic Volta electric potential φR and the intrinsic Herring-Nichols work function ΦR. We have picked up first a hydrogen-like atom for which we have analytical exact expressions of the relativistic kinetic energy density nTM(r⃗) and its nonrelativistic version nT(r⃗). These expressions are valid for any excited bound states as well as the ground state. Second, we have selected the following five reaction systems and show the figures of the nT(r⃗) as well as the other energy densities along the intrinsic reaction coordinates: a protonation reaction to He, addition reactions of HF to C2H4 and C2H2, hydrogen abstraction reactions of NH3+ from HF and NH3. Valence electrons possess their unique delocalized drop region remote from those heavily localized drop regions adhered to core electrons. The kinetic energy density nT(r⃗) and the tension density τ⃗S(r⃗) can vividly demonstrate the formation of the chemical bond. Various basic chemical concepts in these chemical reaction systems have been clearly visualized in real three-dimensional space.
Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng
2013-12-01
The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH2PO4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH2PO4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH2PO4 ratio might be explained by the existence of the weak phase KH2PO4. However, the low value of compressive strength with the higher MgO-to-KH2PO4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH2PO4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH2PO4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. © 2013.
NASA Astrophysics Data System (ADS)
Esteban, J. J.; Tubía, J. M.; Cuevas, J.; Gil Ibarguchi, J. I.
2012-04-01
Garnet porphyroblast textures and compositions, coupled to those of accompanying phases, are one of the most useful tools to determine the change of P-T conditions during metamorphism. This is currently done quantitatively through the use of conventional thermobarometry and pseudosection analysis, whose validity is conditioned by assumptions on the chemical mineral equilibrium (e.g. Spear, 1993). In the case of metapelites, the classic approach involves the use of core to rim compositions in zoned garnets and coexisting phases by electron microprobe analysis. Nonetheless, it is a high time consuming technique. As an alternative, we test the use of back-scattered electron (BSE) images and semi-quantitative energy-dispersive X-ray spectroscopy profiles obtained by scanning eletron microscope (SEM-EDX) to distinguish between clockwise and counterclockwise P-T paths. We applied these SEM techniques in samples of micaschist from the Yunquera Unit (Internal Zone, Betic Cordilleras, Spain) (Dürr, 1969). BSE images were obtained on selected areas covering the texturally and mineralogically most significant garnet-bearing portions, whereas semiquantitative profiles for Ca, Fe, Mg and Mn were obtained by means of EDX counting. Different types of chemical profiles were observed: (a) normal (growth) continuous zoning, (b) discontinuous, and (c) reverse continuous zoning. The patterns of chemical profiles are in agreement with changes in internal microstructures and density of inclusion. Two types of continuous growth zoning were identified in subspherical garnets bearing internal foliations. XMn and XFe ratios show the classical bell-shaped geometry while XCa increases in some cases and decreases in others towards rims. Discontinuous garnet profiles are typical of multistage garnet growth, which is outlined by the occurrence of alternating low- and high-inclusion density areas. Garnets with low-inclusion density cores show homogeneous core composition with an abrupt change towards the rims marked by a rapid increase in XCa and decrease in XFe and XMg ratios. Garnets with high-density inclusion cores depict XCa ratios at core similar to the previous ones and a sudden decrease towards the rims, whereas XFe and XMg continuously increase from core to rim. Reverse continuous profiles are typical of small idiomorphic garnets either enclosed or surrounding large muscovite porphyroblasts. These garnets show an increase in XMn and a decrease in XFe and XMg ratios from core to rim with minor variations in Ca. Taken as a whole, the chemical profiles reveal a generalized increase in Fe# [Fe/(Fe+Mg)] towards the rims that would attest to a temperature increase during the growth of the garnets. In addition, continuous and discontinuous variations in XCa ratios in large garnets suggest prograde garnet growth following a clockwise P-T path evolution, that is, a pressure increase followed by decrease under continuously increasing T conditions. As a conclusion, it is suggested that a method based mainly on the acquisition of BSE images and semiquantitative chemical profiles on selected minerals, and their interpretation using conventional thermo-barometric reasoning would be useful in the establishment of relative P-T paths that might help to save time and better identify the areas of interest for later detailed electron microprobe studies.
NASA Astrophysics Data System (ADS)
Huang, He; Liu, Libo; Chen, Yiding; Le, Huijun; Wan, Weixing
2016-01-01
The ionospheric equivalent slab thickness (EST), defined as the ratio of total electron content (TEC) to F2 layer peak electron density (NmF2), describes the thickness of the ionospheric profile. In this study, we retrieve EST from TEC data obtained from Global Ionospheric Map (GIM) and NmF2 retrieved from Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) ionospheric radio occultation data. The diurnal, seasonal, and solar activity variations of global EST are analyzed as the excellent spatial coverage of GIM and COSMIC data. During solstices, daytime EST in the summer hemisphere is larger than that in the winter hemisphere, except in some high-latitude regions, and the reverse is true for the nighttime EST. The peaks of EST often appear at 0400 local time. The presunrise enhancement in EST appears in all seasons, while the postsunset enhancement in EST is not readily observed in equinox. Both enhancements are attributed to the more remarkable electron density decay of NmF2 compared to that of TEC. The dependence of EST on solar activity is related to the inconsistent solar activity dependences of electron density at different altitudes. Furthermore, it is interesting that EST is enhanced from 0° to 120°E in longitude and 30° to 75°S in latitude during nighttime, just to the east of Weddell Sea Anomaly, during equinox and the Southern Hemisphere summer. This phenomenon is supposed to be related to the effects of geomagnetic declination-related plasma vertical drifts.
Scanning tunneling spectroscopy of MoS2 monolayer in presence of ethanol gas
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Ali; Iraji zad, Azam; Berahman, Masoud; Aghakhani Mahyari, Farzaneh; Shokouh, Seyed Hossein Hosseini
2018-04-01
Due to high surface to volume ratio and tunable band gap, two dimensional (2D) layered materials such as MoS2, is good candidate for gas sensing applications. This research mainly focuses on variation of Density of States (DOS) of MoS2 monolayes caused by ethanol adsorption. The nanosheets are synthesized by liquid exfoliation, and then using Scanning Tunneling Spectroscopy (STS) and Density Functional Theory (DFT), local electronic characteristic such as DOS and band gap in non-vacuum condition are analyzed. The results show that ethanol adsorption enhances DOS and deform orbitals near the valence and conduction bands that increase transport of carriers on the sheet.
Structural and elastic properties of AIBIIIC 2 VI semiconductors
NASA Astrophysics Data System (ADS)
Kumar, V.; Singh, Bhanu P.
2018-01-01
The plane wave pseudo-potential method within density functional theory has been used to calculate the structural and elastic properties of AIBIIIC 2 VI semiconductors. The electronic band structure, density of states, lattice constants (a and c), internal parameter (u), tetragonal distortion (η), energy gap (Eg), and bond lengths of the A-C (dAC) and B-C (dBC) bonds in AIBIIIC 2 VI semiconductors have been calculated. The values of elastic constants (Cij), bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio (υ), Zener anisotropy factor (A), Debye temperature (ϴD) and G/B ratio have also been calculated. The values of all 15 parameters of CuTlS2 and CuTlSe2 compounds, and 8 parameters of 20 compounds of AIBIIIC 2 VI family, except AgInS2 and AgInSe2, have been calculated for the first time. Reasonably good agreement has been obtained between the calculated, reported and available experimental values.
Manganese oxide micro-supercapacitors with ultra-high areal capacitance
NASA Astrophysics Data System (ADS)
Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See
2013-05-01
A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a
NASA Astrophysics Data System (ADS)
Ozbay, N.; Yargic, A. S.
2017-02-01
Carbon foam is sponge like carbonaceous material with low density, high conductivity and high strength; which is used in various applications such as catalyst supports, membrane separations, high thermally conductive heat sinks, energy absorption materials, high temperature thermal insulation. Coal or fossil oils are conventionally used to fabricate pitch, phenolic resin and polyurethane as carbon foam precursor. Biomass liquefaction is a developing technique to convert biomass resources into the industrial chemicals. In this study, oak tree bark was liquefied under mild conditions with different mass ratio of biomass/phenol; and the liquefaction product was used as polyol to produce porous resin foams. Obtained resin foams were carbonized at 400 °C, and then activated at 800 °C under nitrogen atmosphere. Structure evaluation of resin foams, carbonized foams and activated carbon foams from liquefied oak tree bark was investigated by using elemental analysis, x-ray diffraction, nitrogen adsorption/desorption isotherms, scanning electron microscopy, bulk density and compressive strength tests.
2016-11-01
a few nanoseconds. The challenge remains to diagnose plasmas via the free electron density in this short window of time and often in a small volume ...Free Electron Density in Laser-Produced Plasmas by Anthony R Valenzuela Approved for public release; distribution is...US Army Research Laboratory Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.
2014-05-20
Pauling's first two rules are examined in terms of the accumulation of the electron density between bonded pairs of atoms for a relatively large number of oxide and silicate crystals and siloxane molecules. The distribution of the electron density shows that the radius of the oxygen atom is not fixed, but that it actually decreases systematically from ~1.40 Å to ~ 0.65 Å as the polarizing power and the electronegativity of the bonded metal atoms increase and the distribution of the O atom is progressively polarized and contracted along the bond vectors by the impact of the bonded interactions. Themore » contractions result in an aspherical oxygen atom that displays as many different bonded “radii” as it has bonded interactions. The bonded radii for the metal atoms match the Shannon and Prewitt ionic radii for the more electropositive atoms like potassium and sodium, but they are systematically larger for the more electronegative atoms like aluminum, silicon and phosphorous. Pauling's first rule is based on the assumption that the radius of the oxide anion is fixed and that the radii of the cations are such that radius sum of the spherical oxide anion and a cation necessarily equals the separation between the cation-anion bonded pair with the coordination number of the cation being determined by the ratio of the radii of the cation and anion. In the case of the bonded radii, the sum of the bonded radii for the metal atoms and the oxide anion necessarily equals the bond lengths by virtue of the way that the bonded radii were determined in the partitioning of the electron density along the bond path into metal and O atom parts. But, the radius ratio for the O and M atoms is an unsatisfactory rule for determining the coordination number of the metal atom inasmuch as a bonded O atom is not, in general, spherical, and its size varies substantially along its bonded directions. But by counting the number of bond paths that radiate from a bonded atom, the coordination number of the atom is determined uniquely independent of the asphericity and sizes of the atom. A power law connection established between the bond lengths and bond strengths for crystals and molecules is mirrored by a comparable power law connection between bond length and the accumulation of the electron density between bonded pairs of atoms, a connection that is consistent with Pauling's electroneutrality postulate that the charges of the atoms in an oxide are negligibly small. The connection indicates that a one-to-one correspondence exists between the accumulation between a pair of bonded atoms and the Pauling bond strength for M-O bonded interaction for all atoms of the periodic table. The connection provides a common basis for understanding the success of the manifold applications that have been made with the bond valence theory model together with the modeling of crystal structures, chemical zoning, leaching and cation transport in batteries and the like. We believe that the wide spread applications of the model in mineralogy and material science owes much of its success to the direct connection between bond strength and the quantum mechanical observable, the electron density distribution. Comparable power law expressions established for the bonded interactions for both crystals and molecules support Pauling's assertion that his second rule has significance for molecules as well as for crystals. A simple expression is found that provides a one to one connection between the accumulation of the electron density between bonded M and O atoms and the Pauling bond strength for all M atoms of the periodic table with ~ 95 % of the variation of the bond strength being explained in terms of a linear dependence on the accumulated electron density. Compelling evidence is presented that supports the argument that the Si-O bonded interactions for tiny siloxane molecules and silicate crystals are chemically equivalent.« less
Model representation of the ambient electron density distribution in the middle atmosphere
NASA Technical Reports Server (NTRS)
Ramanamurty, Y. V.
1989-01-01
While the Langmuir probe controlled by rocket propagation experiments by the University of Illinois at midlatitude revealed the existence of a permanent D region turning point (DTP), similar measurements over the Thumba equatorial station did not clearly bring out the above daytime feature. Moreover, the calibration constant (ratio of electron density to the current drawn by the Langmuir probe) increased with height (in the 70 to 100 km region) in the case of the midlatitude observations whereas the recent measurements over Thumba showed a decrease up to about 90 km followed by an increase above 90 km. Secondly, there is the problem of reconciling the station oriented observations from the COSPAR family with the ground based radio propagation measurements from the URSI family. Thirdly, new information on Winter in Northern Europe (WINE) and in USSR is available by asking for its incorporation into any global model such as the IRI. The results of investigation of the above aspects are presented.
Temperature Variations and N+/O+ in the Orion Nebula II. The Collision Strengths
NASA Astrophysics Data System (ADS)
Rubin, R. H.; Dufour, R. J.; Martin, P. G.; Ferland, G. J.; Baldwin, J. A.; Ortiz, C. O.; Walter, D. K.
2001-03-01
We continue an investigation of electron temperature (T[e]), mean-square T[e] variation (t2), and the N+/O+ abundance ratio. Our previous analysis of HST spectra of the Orion Nebula used collision strengths for N+ by Stafford et al. (1994). Here we examine the consequences of changing just these collision strengths by using those of Lennon & Burke (1994). Rather than utilize the standard analytical, low electron density (N[e]) regime treatment for the analysis, we develop a numerical technique that is valid at any density. With Stafford et al. collision strengths, we find the average N[e] for the (N+, O+)-zone is 7500 cm-3, the average T[e] is 9160 K, t2 is 0.045, and N+/O+ is 0.14. Using Lennon & Burke values, the ``best" solution is found when these respective quantities are: 9000 cm-3, 9920 K, 0.00073, and 0.15. The value for t2 is dramatically lower than that found using Stafford et al. data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Thomas Winfield; Brown, Kathryn Elizabeth; Chavez, David E.
Here, the synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIRmore » light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. More specifically, the complexes required lower densities (0.9 g/cm 3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm 3).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kourtzanidis, Konstantinos, E-mail: kkourt@utexas.edu; Pederson, Dylan M.; Raja, Laxminarayan L.
2016-05-28
We propose and study numerically a tunable and reconfigurable metamaterial based on coupled split-ring resonators (SRRs) and plasma discharges. The metamaterial couples the magnetic-electric response of the SRR structure with the electric response of a controllable plasma slab discharge that occupies a volume of the metamaterial. Because the electric response of a plasma depends on its constitutive parameters (electron density and collision frequency), the plasma-based metamaterial is tunable and active. Using three-dimensional numerical simulations, we analyze the coupled plasma-SRR metamaterial in terms of transmittance, performing parametric studies on the effects of electron density, collisional frequency, and the position of themore » plasma slab with respect to the SRR array. We find that the resonance frequency can be controlled by the plasma position or the plasma-to-collision frequency ratio, while transmittance is highly dependent on the latter.« less
NASA Astrophysics Data System (ADS)
Bao, Quanhe; Chen, Chuanzhong; Wang, Diangang; Liu, Junming
2008-11-01
Hydroxyapatite films were produced by pulsed laser deposition from three kinds of hydroxyapatite targets and with different deposition times. A JXA-8800R electron probe microanalyzer (EPMA) with a Link ISIS300 energy spectrum analyzer was used to give the secondary electron image (SE) and determine the element composition of the films. The phases of thin film were analyzed by a D/max-γc X-ray diffractometer (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to characterize the hydroxyl, phosphate and other functional groups. The results show that deposited films were amorphous which mainly composed of droplet-like particles and vibration of PO 43- groups. With the target sintering temperature deposition times increasing, the density of droplets is decreased. While with deposition times increasing, the density of droplets is increased. With the target sintering temperature and deposition time increasing, the ratio of Ca/P is increasing and higher than that of theoretical value of HA.
Howard, H T; Tyler, G L; Esposito, P B; Anderson, J D; Reasenberg, R D; Shapiro, I I; Fjeldbo, G; Kliore, A J; Levy, G S; Brunn, D L; Dickinson, R; Edelson, R E; Martin, W L; Postal, R B; Seidel, B; Sesplaukis, T T; Shirley, D L; Stelzried, C T; Sweetnam, D N; Wood, G E; Zygielbaum, A I
1974-07-12
Analysis of the radio-tracking data from Mariner 10 yields 6,023,600 +/- 600 for the ratio of the mass of the sun to that of Mercury, in very good agreement with values determined earlier from radar data alone. Occultation measurements yielded values for the radius of Mercury of 2440 +/- 2 and 2438 +/- 2 kilometers at laditudes of 2 degrees N and 68 degrees N, respectively, again in close agreement with the average equatorial radius of 2439 +/- 1 kilometers determined from radar data. The mean density of 5.44 grams per cubic centimeter deduced for Mercury from Mariner 10 data thus virtually coincides with the prior determination. No evidence of either an ionosphere or an atmosphere was found, with the data yielding upper bounds on the electron density of about 1500 and 4000 electrons per cubic centimeter on the dayside and nightside, respectively, and an inferred upper bound on the surface pressure of 10(-8) millibar.
NASA Astrophysics Data System (ADS)
Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.
2018-05-01
When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.
Electron and ion Bernstein waves in Saturnian Magnetosphere
NASA Astrophysics Data System (ADS)
Bashir, M. F.; Waheed, A.; Ilie, R.; Naeem, I.; Maqsood, U.; Yoon, P. H.
2017-12-01
The study of Bernstein mode is presented in order to interpret the observed micro-structures (MIS) and banded emission (BEM) in the Saturnian magnetosphere. The general dispersion relation of Bernstein wave is derived using the Lerche-NewBerger sum rule for the kappa distribution function and further analyzed the both electron Bernstein (EB) and ion Bernstein (IB) waves. The observational data of particle measurements is obtained from the electron spectrometer (ELS) and the ion mass spectrometer (IMS), which are part of the Cassini Plasma Spectrometer (CAPS) instrument suite on board the Cassini spacecraft. For additional electron data, the measurements of Low Energy Magnetospheric Measurements System of the Magnetospheric Imaging Instrument (LEMMS /MIMI) are also utilized. The effect of kappa spectral index, density ratio (nohe/noce for EB and nohe/noi for IB) and the temperature ratio (The/Tce for EB and The/T(h,c)i for IB) on the dispersion properties are discussed employing the exact numerical analysis to explain the appearing of additional maxima/minima (points where the perpendicular group velocity vanishes, i.e., ∂w/∂k = 0) above/below the lower (for IB) and upper hybrid (EB) bands in the observation and their relation to the MIS and BED. The results of these waves may also be compared with the simulation results of Space Weather Modeling Framework (SWMF) .
Physicochemical Properties of Flaxseed Fortified Extruded Bean Snack.
Vadukapuram, Naveen; Hall, Clifford; Tulbek, Mehmet; Niehaus, Mary
2014-01-01
Milled flaxseed was incorporated (0-20%) into a combination of bean-corn flours and extruded in a twin screw extruder using corn curl method. Physicochemical parameters such as water activity, color, expansion ratio, bulk density, lipid content, and peroxide values of extruded snack were analyzed. Scanning electron micrographs were taken. Peroxide values and propanal contents were measured over four months of storage. Rancidity scores of extruded snack were measured using a trained panel. As expected, omega-3 fatty acids and bulk density increased with increasing flaxseed fortification levels. Extrudates with more flaxseed had decreased lightness values and expansion ratios. However, only the 15 and 20% flaxseed containing extrudates had expansion ratios that were significantly (P ≤ 0.05) different from the control. In general, no significant difference (P > 0.05) in water activity values was observed in the flaxseed fortified extrudates, except in the navy-corn based extrudates. Peroxide values increased with increased flaxseed levels and over a storage period. However, propanal values did not change significantly in the 5-10% flaxseed fortified extrudates but increased in extrudates with higher levels of flaxseed. Rancidity scores were correlated with peroxide values and did not increase significantly during storage under nitrogen flushed conditions.
Physicochemical Properties of Flaxseed Fortified Extruded Bean Snack
Vadukapuram, Naveen; Hall, Clifford
2014-01-01
Milled flaxseed was incorporated (0–20%) into a combination of bean-corn flours and extruded in a twin screw extruder using corn curl method. Physicochemical parameters such as water activity, color, expansion ratio, bulk density, lipid content, and peroxide values of extruded snack were analyzed. Scanning electron micrographs were taken. Peroxide values and propanal contents were measured over four months of storage. Rancidity scores of extruded snack were measured using a trained panel. As expected, omega-3 fatty acids and bulk density increased with increasing flaxseed fortification levels. Extrudates with more flaxseed had decreased lightness values and expansion ratios. However, only the 15 and 20% flaxseed containing extrudates had expansion ratios that were significantly (P ≤ 0.05) different from the control. In general, no significant difference (P > 0.05) in water activity values was observed in the flaxseed fortified extrudates, except in the navy-corn based extrudates. Peroxide values increased with increased flaxseed levels and over a storage period. However, propanal values did not change significantly in the 5–10% flaxseed fortified extrudates but increased in extrudates with higher levels of flaxseed. Rancidity scores were correlated with peroxide values and did not increase significantly during storage under nitrogen flushed conditions. PMID:26904633
NASA Astrophysics Data System (ADS)
Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri
2017-09-01
An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70°C for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear.
NASA Astrophysics Data System (ADS)
Shiomi, Hiromu; Kitai, Hidenori; Tsujimura, Masatoshi; Kiuchi, Yuji; Nakata, Daisuke; Ono, Shuichi; Kojima, Kazutoshi; Fukuda, Kenji; Sakamoto, Kunihiro; Yamasaki, Kimiyohi; Okumura, Hajime
2016-04-01
The effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and (000\\bar{1}) were investigated using both electrical and physical characterization methods. Hall measurements and split capacitance-voltage (C-V) measurements revealed that the difference in field-effect mobility between wet oxide and dry oxynitride interfaces was mainly attributed to the ratio of the mobile electron density to the total induced electron density. The surface states close to the conduction band edge causing a significant trapping of inversion carriers were also evaluated. High-resolution Rutherford backscattering spectroscopy (HR-RBS) analysis and high-resolution elastic recoil detection analysis (HR-ERDA) were employed to show the nanometer-scale compositional profile of the SiC-MOS interfaces for the first time. These analyses, together with cathode luminescence (CL) spectroscopy and transmission electron microscopy (TEM), suggested that the deviations of stoichiometry and roughness at the interface defined the effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and (000\\bar{1}).
NASA Astrophysics Data System (ADS)
Tokar, M. Z.; Gierse, N.; Philipps, V.; Samm, U.
2015-09-01
For the interpretation of the line radiation observed from laser induced ablation spectroscopy (LIAS) such parameters as the density and temperature of electrons within very compact clouds of atoms and singly charged ions of ablated material have to be known. Compared to the local plasma conditions prior to the laser pulse, these can be strongly changed during LIAS since new electrons are generated by the ionisation of particles ejected from the irradiated target. Because of their transience and spatial inhomogeneity it is technically difficult to measure disturbances induced in the plasma by LIAS. To overcome this uncertainty a numerical model has been elaborated, providing a self-consistent description for the spreading of ablated particles and accompanying modifications in the plasma. The results of calculations for LIAS performed on carbon-containing targets in Ohmic and additionally heated discharges in the tokamak TEXTOR are presented. Due to the increase in the electron density the ‘ionisation per photon’ ratio, S/XB factor, is significantly enhanced compared to unperturbed plasma conditions. The impact of the amount of material ablated and of the plasma conditions before LIAS on the level of the S/XB-enhancement is investigated.
Preliminary report of results from the plasma science experiment on Mariner 10
NASA Technical Reports Server (NTRS)
Bridge, H. S.; Lazarus, A. J.; Ogilvie, K. W.; Scudder, J. D.; Hartle, R. E.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Siscoe, G. L.; Yeates, C. M.
1974-01-01
Preliminary measurements of electron number density and temperature near Venus and Mercury and some results on flow speeds are presented. It is concluded that the interaction of the solar wind with Venus probably results in a bow shock characterized by H/r = 0.01 (ratio of the ionospheric scale height to the planetocentric distance of the nose of the ionopause); an extended exosphere appears unlikely. This direct interaction is indicated by the behavior of electrons with energies of 100-500 eV. Some unusual downstream effects suggest a comet-like tail several hundred scale lengths long. Near Mercury, a fully developed bow shock and magnetosheath were observed. Inside the magnetosheath there is a region analogous to the magnetosphere of the earth and populated by electrons of lower density and temperature than those found in the solar wind. The solar wind ram pressure corresponds to a stagnation pressure equivalent to a 170 gamma magnetic field. The strong solar wind interaction with Mercury is definitely magnetic, but not ionospheric or atmospheric. Spectra and particle flux varied widely while the spaceship was within the magnetosphere itself; temporal events like substorms may be responsible.
NASA Astrophysics Data System (ADS)
Wang, Shuangyue; Yan, Hongwei; Li, Dengji; Qiao, Liang; Han, Shaobo; Yuan, Xiaodong; Liu, Wei; Xiang, Xia; Zu, Xiaotao
2018-02-01
Dual-layer and tri-layer broadband antireflective (AR) films with excellent transmittance were successfully fabricated using base-/acid-catalyzed mixed sols and propylene oxide (PO) modified silica sols. The sols and films were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), transmission electron microscope (TEM), and scanning transmission electron microscope (STEM). FTIR and TEM results suggest that the PO molecules were covalently bonded to the silica particles and the bridge structure existing in PO modified silica sol is responsible for the low density of the top layer. The density ratio between different layers was measured by cross-sectional STEM, and the results are 1.69:1 and 2.1:1.7:1 from bottom-layer to top-layer for dual-layer and tri-layer films, respectively. The dual-layer film demonstrates good stability with 99.8% at the central wavelength of 351 nm and nearly 99.5% at the central wavelength of 1053 nm in laser system, and for the tri-layer AR film, the maximum transmittance reached nearly 100% at both the central wavelengths of 527 and 1053 nm.
Dependence of electron beam instability growth rates on the beam-plasma system parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strangeway, R.J.
1982-02-01
Electron beam instabilites are studied by using a simple model for an electron beam streaming through a cold plasma, the beam being of finite width perpendicular to the ambient magnetic field. Through considerations of finite geometry and the coldness of the beam and background plasma, an instability similar to the two stream instability is assumed to be the means for wave growth in the system. Having found the maximum growth rate for one set of beam-plasma system parameters, this maximum growth rate is traced as these parameters are varied. The parameters that describe the system are the beam velocity (v/submore » b/), electron gyrofrequency to ambient electron plasma frequency ratio (..cap omega../sub e//..omega../sub p/e), the beam to background number density ratio (n/sub b//n/sub a/), and the beam width (a). When ..cap omega../sub e//..omega../sub p/e>1, a mode with ..cap omega../sub e/<..omega..<..omega../sub u/hr is found to be unstable, where ..cap omega.. is the wave frequency and ..omega../sub u/hr is the upper hybrid resonance frequency. For low values of n/sub b//n/sub a/ and ..cap omega../sub e/<..omega../sub p/e, this mode is still present with ..omega../sub p/e<..omega..<..omega../sub u/hr. If the beam density is large, n/sub b//n/sub a/approx. =1, the instability occures for frequencies just above the electron gyrofrequency. This mode may well be that observed in laboratory plasma before the system undergoes the beam-plasma discharge. There is another instability present, which occurs for ..omega..approx. =..omega../sub p/e. The growth rates for this mode, which are generally larger than those found for the ..omega..approx. =..omega..uhr mode, are only weakly dependent on ..cap omega../sub d//..omega../sub p/e. That this mode is not always observed in the laboratory implies that some factors not considered in the present theory suppress this mode, specifically, finite beam length.« less
Stopping-power ratios for clinical electron beams from a scatter-foil linear accelerator.
Kapur, A; Ma, C M
1999-09-01
Restricted mass collision stopping-power ratios for electron beams from a scatter-foil medical linear accelerator (Varian Clinac 2100C) were calculated for various combinations of beams, phantoms and detector materials using the Monte Carlo method. The beams were of nominal energy 6, 12 or 20 MeV, with square dimensions 1 x 1 cm2 to 10 x 10 cm2. They were incident at nominal SSDs of 100 or 120 cm and inclined at 90 degrees or 30 degrees to the surface of homogeneous water phantoms or water phantoms interspersed with layered lung or bone-like materials. The broad beam water-to-air stopping-power ratios were within 1.3% of the AAPM TG21 protocol values and consistent with the results of Ding et al to within 0.2%. On the central axis the stopping-power ratio variations for narrow beams compared with normally incident broad beams were 0.1% or less for water-to-LiF-100, graphite, ferrous sulfate dosimeter solution, polystyrene and PMMA, 0.5% for water-to-silicon and 1% for water-to-air and water-to-photographic-film materials. The transverse variations of the stopping-power ratios were up to 4% for water-to-silicon, 7% for water-to-photographic-film materials and 10% for water-to-air in the penumbral regions (where the dose was 10% of the global dose maximum) at shallow depths compared with the values at the same depths on the central axis. In the inhomogeneous phantoms studied, the stopping-power ratio correction factors varied more significantly for air, followed by photographic materials and silicon, at various depths on the central axis in the heterogeneous regions. For the simple layered phantoms studied, the estimation of the stopping-power ratio correction factors based on the relative electron-density derived effective depth approach yielded results that were within 0.5% of the Monte Carlo derived values for all the detector materials studied.
Radial Variations in the Io Plasma Torus during the Cassini Era
NASA Technical Reports Server (NTRS)
Delamere, P. A.; Bagenal, F.; Steffl, A.
2005-01-01
A radial scan through the midnight sector of the Io plasma torus was made by the Cassini Ultraviolet Imaging Spectrograph on 14 January 2001, shortly after closest approach to Jupiter. From these data, Steffl et al. (2004a) derived electron temperature, plasma composition (ion mixing ratios), and electron column density as a function of radius from L = 6 to 0 as well as the total luminosity. We have advanced our homogeneous model of torus physical chemistry (Delamere and Bagenal, 2003) to include latitudinal and radial variations in a manner similar to the two-dimensional model by Schreier et al. (1998). The model variables include: (1) neutral source rate, (2) radial transport coefficient, (3) the hot electron fraction, (4) hot electron temperature, and (5) the neutral O/S ratio. The radial variation of parameters 1-4 are described by simple power laws, making a total of nine parameters. We have explored the sensitivity of the model results to variations in these parameters and compared the best fit with previous Voyager era models (schreier et al., 1998), galileo data (Crary et al., 1998), and Cassini observations (steffl et al., 2004a). We find that radial variations during the Cassini era are consistent with a neutral source rate of 700-1200 kg/s, an integrated transport time from L = 6 to 9 of 100-200 days, and that the core electron temperature is largely determined by a spatially and temporally varying superthermal electron population.
Evolution of star formation conditions from high-redshift to low-redshift
NASA Astrophysics Data System (ADS)
Shirazi, Maryam
2015-08-01
There are some hints indicating extreme interstellar medium (ISM) conditions at high redshift e.g., harder ionsing radiation fields and higher electron densities. By analysing the ionisation state of galaxies using their [OIII]5007/[OII]3727 line ratios we recently showed that star-forming galaxies at z~ 1. 5 -- 3. 5 have higher ionisation parameters and higher gas densities relative to that of local galaxies with similar global properties (Shirazi et al. 2014). This means the intrinsic properties e.g., the density of star forming regions at high redshift is different from what we observe in the local Universe. Based on the distribution of galaxies in the BPT diagram, it is proposed that the transition to nearby like conditions happen at 0. 8 < z < 1. 5 (Kewley et al 2013). However, we do not know how star-forming regions of the intermediate redshift galaxies are compared to that of high redshift galaxies that have higher gas fractions and are close to the peak of star formation activity in the Universe. We use the unique capability of the MUSE to indirectly trace the ISM conditions at those redshifts. We measure the spatially-resolved ionisation parameter using [OIII ]5007/ [O II]3727 ratio and we measure the spatially resolved gas density using the [OII] 3727,3729 doublet. We probe the spatial distributions of the ionisation parameter and gas density and search for systematic differences between high, intermediate and low redshift galaxies in terms of their global galaxy properties.
Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan
2017-12-15
The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Generalized Bohm’s criterion and negative anode voltage fall in electric discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Londer, Ya. I.; Ul’yanov, K. N., E-mail: kulyanov@vei.ru
2013-10-15
The value of the voltage fall across the anode sheath is found as a function of the current density. Analytic solutions are obtained in a wide range of the ratio of the directed velocity of plasma electrons v{sub 0} to their thermal velocity v{sub T}. It is shown that the voltage fall in a one-dimensional collisionless anode sheath is always negative. At the small values of v{sub 0}/v{sub T}, the obtained expression asymptotically transforms into the Langmuir formula. Generalized Bohm’s criterion for an electric discharge with allowance for the space charge density ρ(0), electric field E(0), ion velocity v{sub i}(0),more » and ratio v{sub 0}/v{sub T} at the plasma-sheath interface is formulated. It is shown that the minimum value of the ion velocity v{sub i}{sup *}(0) corresponds to the vanishing of the electric field at one point inside the sheath. The dependence of v{sub i}{sup *} (0) on ρ(0), E(0), and v{sub 0}/v{sub T} determines the boundary of the existence domain of stationary solutions in the sheath. Using this criterion, the maximum possible degree of contraction of the electron current at the anode is determined for a short high-current vacuum arc discharge.« less
NASA Astrophysics Data System (ADS)
Kandpal, Praveen; Kaur, Rajbir; Pandey, R. S.
2018-01-01
In this paper parallel flow velocity shear Kelvin-Helmholtz instability has been studied in two different extended regions of the inner magnetosphere of Saturn. The method of the characteristic solution and kinetic approach has been used in the mathematical calculation of dispersion relation and growth rate of K-H waves. Effect of magnetic field (B), inhomogeneity (P/a), velocity shear scale length (Ai), temperature anisotropy (T⊥ /T||), electric field (E), ratio of electron to ion temperature (Te /Ti), density gradient (εnρi) and angle of propagation (θ) on the dimensionless growth rate of K-H waves in the inner magnetosphere of Saturn has been observed with respect to k⊥ρi . Calculations of this theoretical analysis have been done taking the data from the Cassini in the inner magnetosphere of Saturn in the two extended regions of Rs ∼4.60-4.01 and Rs ∼4.82-5.0. In our study velocity shear, temperature anisotropy and magnitude of the electric field are observed to be the major sources of free energy for the K-H instability in both the regions considered. The inhomogeneity of electric field, electron-ion temperature ratio, and density gradient have been observed playing stabilizing effect on K-H instability. This study also indicates the effect of the vicinity of icy moon Enceladus on the growth of K-H instability.
Effect of interfaces on electron transport properties of MoS2-Au Contacts
NASA Astrophysics Data System (ADS)
Aminpour, Maral; Hapala, Prokop; Le, Duy; Jelinek, Pavel; Rahman, Talat S.; Rahman's Group Collaboration; Nanosurf Lab Collaboration
2014-03-01
Single layer MoS2 is a promising material for future electronic devices such as transistors since it has good transport characteristics with mobility greater than 200 cm-1V-1s-1 and on-off current ratios up to 108. However, before MoS2 can become a mainstream electronic material for the semiconductor industry, the design of low resistive metal-semiconductor junctions as contacts of the electronic devices needs to be addressed and studied systematically. We have examined the effect of Au contacts on the electronic transport properties of single layer MoS2 using density functional theory in combination with the non-equilibrium Green's function method. The Schottky barrier between Au contact and MoS2, transmission spectra, and I-V curves will be reported and discussed as a function of MoS2 and Au interfaces of varying geometry. This work is supported in part by the US Department of Energy under grant DE-FG02-07ER15842.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, K.; Okamoto, A.; Kitajima, S.
To investigate the deuteron and triton density ratio in core plasmas, a new methodology with measurement of tritium (DT) and deuterium (DD) neutron count rate ratio using a double-crystal time-of-flight (TOF) spectrometer is proposed. Multi-discriminator electronic circuits for the first and second detectors are used in addition to the TOF technique. The optimum arrangement of the detectors and discrimination window were examined considering the relations between the geometrical arrangement and deposited energy using a Monte Carlo Code, PHITS (Particle and Heavy Ion Transport Code System). An experiment to verify the calculations was performed using DD neutrons from an accelerator.
NASA Astrophysics Data System (ADS)
Shen, Kesheng; Jia, Guangrui; Zhang, Xianzhou; Jiao, Zhaoyong
2016-10-01
The electronic structure, elastic and optical properties of Cu2ZnGe(SexS1 - x)4 alloys are systematically analysed using first-principles calculations. The lattice parameters agree well with the theoretical and experimental values which are searched as complete as possible indicating our calculations are reliable. The elastic properties are investigated first and are compared with the similar compounds CZTS and CZTSe due to the unavailable experimental data currently. The variation of the optical properties caused by the increase of Se/S ratio is discussed. The static optical constants are calculated and the corrected values are also predicted according to the available experimental data.
Strain-induced tunable negative differential resistance in triangle graphene spirals
NASA Astrophysics Data System (ADS)
Tan, Jie; Zhang, Xiaoming; Liu, Wenguan; He, Xiujie; Zhao, Mingwen
2018-05-01
Using non-equilibrium Green’s function formalism combined with density functional theory calculations, we investigate the significant changes in electronic and transport properties of triangle graphene spirals (TGSs) in response to external strain. Tunable negative differential resistance (NDR) behavior is predicted. The NDR bias region, NDR width, and peak-to-valley ratio can be well tuned by external strain. Further analysis shows that these peculiar properties can be attributed to the dispersion widths of the p z orbitals. Moreover, the conductance of TGSs is very sensitive to the applied stress, which is promising for applications in nanosensor devices. Our findings reveal a novel approach to produce tunable electronic devices based on graphene spirals.
NASA Astrophysics Data System (ADS)
Iyorzor, B. E.; Babalola, M. I.; Adetunji, B. I.; Bakare, F. O.
2018-05-01
The structural, electronic and mechanical properties of Be{S}1-xT{e}x are studied within the concentration range of 0≤slant x≤slant 1 using first-principles plane–wave Pseudopotential density functional theory (DFT) approach. We have used generalized gradient approximation (GGA) to treat the exchange-correlation potentials. The elastic constants, bulk, shear and Young’s moduli, Poisson’s ratio, and Zener’s anisotropic factors are calculated. The results were found to be in agreement with other available theoretical and experimental values. It was also observed that the existence and increase of Tellurium concentration decreases the hardness of the alloy.
Strain-induced tunable negative differential resistance in triangle graphene spirals.
Tan, Jie; Zhang, Xiaoming; Liu, Wenguan; He, Xiujie; Zhao, Mingwen
2018-05-18
Using non-equilibrium Green's function formalism combined with density functional theory calculations, we investigate the significant changes in electronic and transport properties of triangle graphene spirals (TGSs) in response to external strain. Tunable negative differential resistance (NDR) behavior is predicted. The NDR bias region, NDR width, and peak-to-valley ratio can be well tuned by external strain. Further analysis shows that these peculiar properties can be attributed to the dispersion widths of the p z orbitals. Moreover, the conductance of TGSs is very sensitive to the applied stress, which is promising for applications in nanosensor devices. Our findings reveal a novel approach to produce tunable electronic devices based on graphene spirals.
Study electron transport coefficients for Ar, O2 and their mixtures by using EEDF program
NASA Astrophysics Data System (ADS)
Majeed, D. S. Abdul; Hussein, B. J.; Jassim, M. K.
2018-05-01
We calculated the electron transport coefficient in Ar, O2 and their mixtures for ratio of E/N where E denotes the electric field and N the density of gas atoms from 5 – 600 Td 1Td = 10-17 V.cm2. The result and parameters mean energy mobility drift velocity and others are calculated by solving Boltzmann equation. We study these gases because of its importance in thermal plasma such as shielding gas for arc welding of metals and alloys. These results are useful to find best gas mixtures to reach appropriate transport parameter and to derive the same relevant cross section data.
Method for removing atomic-model bias in macromolecular crystallography
Terwilliger, Thomas C [Santa Fe, NM
2006-08-01
Structure factor bias in an electron density map for an unknown crystallographic structure is minimized by using information in a first electron density map to elicit expected structure factor information. Observed structure factor amplitudes are combined with a starting set of crystallographic phases to form a first set of structure factors. A first electron density map is then derived and features of the first electron density map are identified to obtain expected distributions of electron density. Crystallographic phase probability distributions are established for possible crystallographic phases of reflection k, and the process is repeated as k is indexed through all of the plurality of reflections. An updated electron density map is derived from the crystallographic phase probability distributions for each one of the reflections. The entire process is then iterated to obtain a final set of crystallographic phases with minimum bias from known electron density maps.
Device and method for electron beam heating of a high density plasma
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.
NASA Astrophysics Data System (ADS)
Ma, J. Z. G.; Hirose, A.
2010-05-01
Lower-hybrid (LH) oscillitons reveal one aspect of geocomplexities. They have been observed by rockets and satellites in various regions in geospace. They are extraordinary solitary waves the envelop of which has a relatively longer period, while the amplitude is modulated violently by embedded oscillations of much shorter periods. We employ a two-fluid (electron-ion) slab model in a Cartesian geometry to expose the excitation of LH oscillitons. Relying on a set of self-similar equations, we first produce, as a reference, the well-known three shapes (sinusoidal, sawtooth, and spiky or bipolar) of parallel-propagating ion-acoustic (IA) solitary structures in the absence of electron inertia, along with their Fast Fourier Transform (FFT) power spectra. The study is then expanded to illustrate distorted structures of the IA modes by taking into account all the three components of variables. In this case, the ion-cyclotron (IC) mode comes into play. Furthermore, the electron inertia is incorporated in the equations. It is found that the inertia modulates the coupled IA/IC envelops to produce LH oscillitons. The newly excited structures are characterized by a normal low-frequency IC solitary envelop embedded by high-frequency, small-amplitude LH oscillations which are superimposed upon by higher-frequency but smaller-amplitude IA ingredients. The oscillitons are shown to be sensitive to several input parameters (e.g., the Mach number, the electron-ion mass/temperature ratios, and the electron thermal speed). Interestingly, whenever a LH oscilliton is triggered, there occurs a density cavity the depth of which can reach up to 20% of the background density, along with density humps on both sides of the cavity. Unexpectedly, a mode at much lower frequencies is also found beyond the IC band. Future studies are finally highlighted. The appendices give a general dispersion relation and specific ones of linear modes relevant to all the nonlinear modes encountered in the text.
Depletion of mesospheric sodium during extended period of pulsating aurora
NASA Astrophysics Data System (ADS)
Takahashi, T.; Hosokawa, K.; Nozawa, S.; Tsuda, T. T.; Ogawa, Y.; Tsutsumi, M.; Hiraki, Y.; Fujiwara, H.; Kawahara, T. D.; Saito, N.; Wada, S.; Kawabata, T.; Hall, C.
2017-01-01
We quantitatively evaluated the Na density depletion due to charge transfer reactions between Na atoms and molecular ions produced by high-energy electron precipitation during a pulsating aurora (PsA). An extended period of PsA was captured by an all-sky camera at the European Incoherent Scatter (EISCAT) radar Tromsø site (69.6°N, 19.2°E) during a 2 h interval from 00:00 to 02:00 UT on 25 January 2012. During this period, using the EISCAT very high frequency (VHF) radar, we detected three intervals of intense ionization below 100 km that were probably caused by precipitation of high-energy electrons during the PsA. In these intervals, the sodium lidar at Tromsø observed characteristic depletion of Na density at altitudes between 97 and 100 km. These Na density depletions lasted for 8 min and represented 5-8% of the background Na layer. To examine the cause of this depletion, we modeled the depletion rate based on charge transfer reactions with NO+ and O2+ while changing the R value which is defined as the ratio of NO+ to O2+ densities, from 1 to 10. The correlation coefficients between observed and modeled Na density depletion calculated with typical value R = 3 for time intervals T1, T2, and T3 were 0.66, 0.80, and 0.67, respectively. The observed Na density depletion rates fall within the range of modeled depletion rate calculated with R from 1 to 10. This suggests that the charge transfer reactions triggered by the auroral impact ionization at low altitudes are the predominant process responsible for Na density depletion during PsA intervals.
TH-AB-201-09 [Medical Physics, Jun 2016, v. 43(6)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirzakhanian, L; Benmakhlouf, H; Seuntjens, J
2016-06-15
Purpose: To determine the k-(Q-msr,Q)^(f-msr,f-ref ) factor, introduced in the small field formalism for five common type chambers used in the calibration of Leksell Gamma-Knife Perfexion model over a range of different phantom electron densities. Methods: Five chamber types including Exradin-A16, A14SL, A14, A1SL and IBA-CC04 are modeled in EGSnrc and PENELOPE Monte Carlo codes using the blueprints provided by the manufacturers. The chambers are placed in a previously proposed water-filled phantom and four 16-cm diameter spherical phantoms made of liquid water, Solid Water, ABS and polystyrene. Dose to the cavity of the chambers and a small water volume aremore » calculated using EGSnrc/PENELOPE codes. The calculations are performed over a range of phantom electron densities for two chamber orientations. Using the calculated dose-ratio in reference and machine specific reference field, the k-(Q-msr,Q)^(f-msr,f-ref ) factor can be determined. Results: When chambers are placed along the symmetry axis of the collimator block (z-axis), the CC04 requires the smallest correction followed by A1SL and A16. However, when detectors are placed perpendicular to z-axis, A14SL needs the smallest and A16 the largest correction. Moreover, an increase in the phantom electron density results in a linear increase in the k-(Q-msr,Q)^(f-msr,f-ref ). Depending on the chambers, the agreement between this study and a previous study performed varies between 0.05–0.70% for liquid water, 0.07–0.85% for Solid Water and 0.00–0.60% for ABS phantoms. After applying the EGSnrc-calculated k-(Q-msr,Q)^(f-msr,f-ref ) factors for A16 to the previously measured dose-rates in liquid water, Solid Water and ABS normalized to the dose-rate measured with TG-21 protocol and ABS phantom, the dose-rate ratios are found to be 1.004±0.002, 0.996±0.002 and 0.998±0.002 (3σ) respectively. Conclusion: Knowing the electron density of the phantoms, the calculated k-(Q-msr,Q)^(f-msr,f-ref ) values in this work will enable users to apply the appropriate correction for their own specific phantom material. LM acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)« less
Mechanical Anisotropic and Electronic Properties of Amm2-carbon under Pressure*
NASA Astrophysics Data System (ADS)
Xing, Meng-Jiang; Li, Xiao-Zhen; Yu, Shao-Jun; Wang, Fu-Yan
2017-09-01
Structural, electronic properties and mechanical anisotropy of Amm2-carbon are investigated utilizing frist-principles calculations by Cambridge Serial Total Energy Package (CASTEP) code. The work is performed with the generalized gradient approximation in the form of Perdew-Burke-Ernzerhof (PBE), PBEsol, Wu and Cohen (WC) and local density approximation in the form of Ceperley and Alder data as parameterized by Perdew and Zunger (CA-PZ). The mechanical anisotropy calculations show that Amm2-carbon exhibit large anisotropy in elastic moduli, such as Poisson’s ratio, shear modulus and Young’s modulus, and other anisotropy factors, such as the shear anisotropic factor and the universal anisotropic index AU. It is interestingly that the anisotropy in shear modulus and Young’s modulus, universal anisotropic index and the shear anisotropic factor all increases with increasing pressure, but the anisotropy in Poisson’s ratio decreases. The band structure calculations reveal that Amm2-carbon is a direct-band-gap semiconductor at ambient pressure, but with the pressure increasing, it becomes an indirect-band-gap semiconductor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Jiayi; Malis, Oana; Physics Department, Purdue University, West Lafayette, Indiana 47907
Two-dimensional and homogeneous growth of m-plane AlGaN by plasma-assisted molecular beam epitaxy has been realized on free-standing (1100) GaN substrates by implementing high metal-to-nitrogen (III/N) flux ratio. AlN island nucleation, often reported for m-plane AlGaN under nitrogen-rich growth conditions, is suppressed at high III/N flux ratio, highlighting the important role of growth kinetics for adatom incorporation. The homogeneity and microstructure of m-plane AlGaN/GaN superlattices are assessed via a combination of scanning transmission electron microscopy and high resolution transmission electron microscopy (TEM). The predominant defects identified in dark field TEM characterization are short basal plane stacking faults (SFs) bounded by eithermore » Frank-Shockley or Frank partial dislocations. In particular, the linear density of SFs is approximately 5 × 10{sup −5} cm{sup −1}, and the length of SFs is less than 15 nm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borhanian, J.; Shahmansouri, M.
2013-01-15
A theoretical investigation is carried out to study the existence and characteristics of propagation of dust-acoustic (DA) waves in an electron-depleted dusty plasma with two-temperature ions, which are modeled by kappa distribution functions. A three-dimensional cylindrical Kadomtsev-Petviashvili equation governing evolution of small but finite amplitude DA waves is derived by means of a reductive perturbation method. The influence of physical parameters on solitary wave structure is examined. Furthermore, the energy integral equation is used to study the existence domains of the localized structures. It is found that the present model can be employed to describe the existence of positive asmore » well as negative polarity DA solitary waves by selecting special values for parameters of the system, e.g., superthermal index of cold and/or hot ions, cold to hot ion density ratio, and hot to cold ion temperature ratio. This model may be useful to understand the excitation of nonlinear DA waves in astrophysical objects.« less
Synthesis and characterization of single-crystalline zinc tin oxide nanowires
NASA Astrophysics Data System (ADS)
Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin
2014-05-01
Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.
Synthesis and characterization of single-crystalline zinc tin oxide nanowires.
Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin
2014-01-01
Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.
Ionospheric Response to the Magnetic Storm of 22 June 2015
NASA Astrophysics Data System (ADS)
Mansilla, Gustavo A.
2018-03-01
A global study is made of the response of the total electron content of the ionosphere (TEC) to the geomagnetic storm occurred on 22 June 2015 (one of the strongest geomagnetic storms of the current Solar Cycle 24). Using data from 44 sites, a hemispheric comparison is made by considering high latitudes (> 50°), middle latitudes (30°-50°) and low latitudes (30°N-30°S). The main features observed were: increases in TEC at high latitudes prior to the storm main phase, a considerable asymmetry of TEC response at middle and low latitudes of the Northern Hemisphere and the Southern Hemisphere and decreases at equatorial latitudes. The long duration enhancements in TEC were well correlated with increases in the O/N2 ratio but decreases in TEC had not associated decreases in the O/N2 ratio as occur with the decreases in the electron density. Besides, prompt penetration electric fields can play an important role in the equatorial and low-latitude ionosphere during main phase of the storm.
Handling Density Conversion in TPS.
Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji
2016-01-01
Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.
NASA Astrophysics Data System (ADS)
Gavrilov, N. V.; Kamenetskikh, A. S.; Men'shakov, A. I.; Bureyev, O. A.
2015-11-01
For the purposes of efficient decomposition and ionization of the gaseous mixtures in a system for coatings deposition using reactive magnetron sputtering, a low-energy (100-200 eV) high-current electron beam is generated by a grid-stabilized plasma electron source. The electron source utilizes both continuous (up to 20 A) and pulse-periodic mode of discharge with a self-heated hollow cathode (10-100 A; 0.2 ms; 10-1000 Hz). The conditions for initiation and stable burning of the high-current pulse discharge are studied along with the stable generation of a low-energy electron beam within the gas pressure range of 0.01 - 1 Pa. It is shown that the use of the electron beam with controllable parameters results in reduction of the threshold values both for the pressure of gaseous mixture and for the fluxes of molecular gases. Using such a beam also provides a wide range (0.1-10) of the flux density ratios of ions and sputtered atoms over the coating surface, enables an increase in the maximum pulse density of ion current from plasma up to 0.1 A, ensures an excellent adhesion, optimizes the coating structure, and imparts improved properties to the superhard nanocomposite coatings of (Ti,Al)N/a-Si3N4 and TiC/-a-C:H. Mass-spectrometric measurements of the beam-generated plasma composition proved to demonstrate a twofold increase in the average concentration of N+ ions in the Ar-N2 plasma generated by the high-current (100 A) pulsed electron beam, as compared to the dc electron beam.
NASA Astrophysics Data System (ADS)
Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.
2016-10-01
A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.
NASA Astrophysics Data System (ADS)
Pramchu, Sittichain; Jaroenjittichai, Atchara Punya; Laosiritaworn, Yongyut
2018-03-01
In this work, density functional theory (DFT) was employed to investigate the effect of strain and interface on electronic structures and magnetic properties of L10-FePt/Ag heterojunction. Two possible interface structures of L10-FePt(001)/Ag(001), that is, interface between Fe and Ag layers (Fe/Ag) and between Pt and Ag layers (Pt/Ag), were inspected. It was found that Pt/Ag interface is more stable than Fe/Ag interface due to its lower formation energy. Further, under the lattice mismatch induced tensile strain, the enhancement of magnetism for both Fe/Ag and Pt/Ag interface structures has been found to have progressed, though the magnetic moments of "interfacial" Fe and Pt atoms have been found to have decreased. To explain this further, the local density of states (LDOS) analysis suggests that interaction between Fe (Pt) and Ag near Fe/Ag (Pt/Ag) interface leads to spin symmetry breaking of the Ag atom and hence induces magnetism magnitude. In contrast, the magnetic moments of interfacial Fe and Pt atoms reduce because of the increase in the electronic states near the Fermi level of the minority-spin electrons. In addition, the significant enhancements of the LDOS near the Fermi levels of the minority-spin electrons signify the boosting of the transport properties of the minority-spin electrons and hence the spin-dependent electron transport at this ferromagnet/metal interface. From this work, it is expected that this clarification of the interfacial magnetism may inspire new innovation on how to improve spin-dependent electron transport for enhancing the giant magnetoresistance (GMR) ratio of potential GMR-based spintronic devices.
NASA Technical Reports Server (NTRS)
Habbal, Shadia Rifai; Esser, Ruth
1994-01-01
We present a simple technique describing how limits on the helium abundance, alpha, defined as the ratio of helium to proton number density, can be inferred from measurements of the electron density and temperature below 1.5 solar radius. As an illustration, we apply this technique to two different data sets: emission-line intensities in the extreme ultraviolet (EUV) and white-light observations, both measured in polar coronal holes. For the EUV data, the temperature gradient is derived from line intensity ratios, and the density gradient is replaced by the gradient of the line intensity. The lower limit on alpha derived from these data is 0.2-0.3 at 1 solar radius and drops very sharply to interplanetary values of a few percent below 1.06 solar radius. The white-light observations yield density gradients in the inner corona beyond 1.25 solar radius but do not have corresponding temperature gradients. In this case we consider an isothermal atmosphere, and derive an upper limit of 0.2 for alpha. These examples are used to illustrate how this technique could be applicable to the more extensive data to be obtained with the upcoming SOHO mission. Although only ranges on alpha can be derived, the application of the technique to data currently available merely points to the fact that alpha can be significantly large in the inner corona.
Whistler turbulence heating of electrons and ions: Three-dimensional particle-in-cell simuations
Gary, S. Peter; Hughes, R. Scott; Wang, Joseph
2016-01-14
In this study, the decay of whistler turbulence in a collisionless, homogeneous, magnetized plasma is studied using three-dimensional particle-in-cell simulations. The simulations are initialized with a narrowband, relatively isotropic distribution of long wavelength whistler modes. A first ensemble of simulations at electron betamore » $${\\beta }_{{\\rm{e}}}$$ = 0.25 and ion-to-electron mass ratio $${m}_{{\\rm{i}}}$$/$${m}_{{\\rm{e}}}$$ = 400 is carried out on a domain cube of dimension $$L{\\omega }_{\\mathrm{pi}}$$/c = 5.12 where $${\\omega }_{\\mathrm{pi}}$$ is the ion plasma frequency. The simulations begin with a range of dimensionless fluctuating field energy densities, $${\\epsilon }_{{\\rm{o}}}$$, and follow the fluctuations as they cascade to broadband, anisotropic turbulence which dissipates at shorter wavelengths, heating both electrons and ions. The electron heating is stronger and preferentially parallel/antiparallel to the background magnetic field $${{\\boldsymbol{B}}}_{{\\rm{o}}};$$ the ion energy gain is weaker and is preferentially in directions perpendicular to $${{\\boldsymbol{B}}}_{{\\rm{o}}}$$. The important new results here are that, over 0.01 < $${\\epsilon }_{{\\rm{o}}}$$ < 0.25, the maximum rate of electron heating scales approximately as $${\\epsilon }_{{\\rm{o}}}$$, and the maximum rate of ion heating scales approximately as $${\\epsilon }_{{\\rm{o}}}^{1.5}$$. A second ensemble of simulations at $${\\epsilon }_{{\\rm{o}}}$$ = 0.10 and $${\\beta }_{{\\rm{e}}}$$ = 0.25 shows that, over 25 < $${m}_{{\\rm{i}}}$$/$${m}_{{\\rm{e}}}\\;$$< 1836, the ratio of the maximum ion heating rate to the maximum electron heating rate scales approximately as $${m}_{{\\rm{e}}}$$/$${m}_{{\\rm{i}}}$$.« less
Some experiments with the tunnel probe in a low temperature magnetized plasma
NASA Astrophysics Data System (ADS)
Kovačič, J.; Gyergyek, T.; Kavaš, B.; Vodnik, M.; Kavčič, J.; Gunn, J. P.
2018-02-01
Experiments were performed using a Tunnel Probe (TP) inside the weakly-ionised plasma of the Linear Magnetized Plasma Device (LMPD). The TP is designed as a concave probe, which should annihilate the problem of sheath expansion in the ion branch of the I-V characteristic. As the ion saturation current is consequently well defined, the ion parallel current and plasma density can be more accurately calculated. Furthermore the ratio between the ion saturation currents on the two collectors (tunnel ring and the back-plate) can be used to derive the electron temperature. The TP has been repeatedly used with success on the former Castor and Tore-Supra tokamaks and will be used on the upgraded version of Tore-supra, namely the WEST tokamak, as well [1, 2]. It was however never used successfully in a low-temperature plasma. We studied the feasibility of the TP use in a low-temperature plasma for direct measurements of plasma temperature and density. The various probe characteristic dimensions, such as the distance between the two collectors, the aperture size and the probe radius were varied to see influence of the individual probe feature. We also varied the level of magnetization of the charged particle species, the background gas pressure (which influences the electron energy distribution function), the plasma density (important for the ratio between the λ D and the ion Larmor radius). The sensitivity of the probe alignment to the magnetic field lines was also studied. We found, that the ion saturation current does not necessarily saturate and that the probe works according to expectations only in a limited amount of regimes.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
Anomalous evolution of Ar metastable density with electron density in high density Ar discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Min; Chang, Hong-Young; You, Shin-Jae
2011-10-15
Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. Onmore » the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.« less
MAVEN observations of dayside peak electron densities in the ionosphere of Mars
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Andersson, Laila; Girazian, Zachary; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.; Eparvier, Frank G.; Jakosky, Bruce M.
2017-01-01
The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The Mars Atmosphere and Volatile EvolutioN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis was lowered to 125 km, provided the first opportunity since Viking to sample in situ a complete dayside electron density profile including the main peak. Here we present peak electron density measurements from 37 deep dip orbits and describe conditions at the altitude of the main peak, including the electron temperature and composition of the ionosphere and neutral atmosphere. We find that the dependence of the peak electron density and the altitude of the main peak on solar zenith angle are well described by analytical photochemical theory. Additionally, we find that the electron temperatures at the main peak display a dependence on solar zenith angle that is consistent with the observed variability in the peak electron density. Several peak density measurements were made in regions of large crustal magnetic field, but there is no clear evidence that the crustal magnetic field strength influences the peak electron density, peak altitude, or electron temperature. Finally, we find that the fractional abundance of O2+ and CO2+ at the peak altitude is variable but that the two species together consistently represent 95% of the total ion density.
Ground-echo characteristics for a ground-target pulse-Doppler radar fuze of high duty ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C.S.
1973-11-21
From Tri-service electronic fuse symposium; Washington, District of Columbia, USA (26 Nov 1973). A pulse-Doppler radar fuze for use against ground targets at high burst heights can operate at low peak power provided a high duty ratio is used. The high duty ratio brings about ambiguous ground return that is prevented from firing the fuze by randomly coding the phase of the transmitted pulses. This causes the ambiguous return to appear as random noise. This paper provides formulas for the calculation of the clutter-noise power density and of the signal power so that the performance of the radar can bemore » determined. The paper also discusses the myth of decorrelation'' that is alleged to destroy the transmittedphase modulation in the echo and so make it useless. (auth)« less
NASA Astrophysics Data System (ADS)
Nazirfakhr, Maryam; Shahhoseini, Ali
2018-03-01
By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of H-terminated zigzag graphene nanoribbon (H/ZGNR) and O-terminated ZGNR/H-terminated ZGNR (O/ZGNR-H/ZGNR) heterostructure under finite bias. Moreover, the effect of width and symmetry on the electronic transport properties of both models is also considered. The results reveal that asymmetric H/ZGNRs have linear I-V characteristics in whole bias range, but symmetric H-ZGNRs show negative differential resistance (NDR) behavior which is inversely proportional to the width of the H/ZGNR. It is also shown that the I-V characteristic of O/ZGNR-H/ZGNR heterostructure shows a rectification effect, whether the geometrical structure is symmetric or asymmetric. The fewer the number of zigzag chains, the bigger the rectification ratio. It should be mentioned that, the rectification ratios of symmetric heterostructures are much bigger than asymmetric one. Transmission spectrum, density of states (DOS), molecular projected self-consistent Hamiltonian (MPSH) and molecular eigenstates are analyzed subsequently to understand the electronic transport properties of these ZGNR devices. Our findings could be used in developing nanoscale rectifiers and NDR devices.
NASA Astrophysics Data System (ADS)
Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui
2016-09-01
By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 104 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios.
Bandgap engineering of GaN nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Bang-Ming; Yan, Hui; Wang, Ru-Zhi, E-mail: wrz@bjut.edu.cn, E-mail: yamcy@csrc.ac.cn
2016-05-15
Bandgap engineering has been a powerful technique for manipulating the electronic and optical properties of semiconductors. In this work, a systematic investigation of the electronic properties of [0001] GaN nanowires was carried out using the density functional based tight-binding method (DFTB). We studied the effects of geometric structure and uniaxial strain on the electronic properties of GaN nanowires with diameters ranging from 0.8 to 10 nm. Our results show that the band gap of GaN nanowires depends linearly on both the surface to volume ratio (S/V) and tensile strain. The band gap of GaN nanowires increases linearly with S/V, whilemore » it decreases linearly with increasing tensile strain. These linear relationships provide an effect way in designing GaN nanowires for their applications in novel nano-devices.« less
Shokuhfar, Ali; Arab, Behrouz
2013-09-01
Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young's moduli, elastic stiffness constants, and Poisson's ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Praveen Kumar, E-mail: praveenyadav@rrcat.gov.in; Nayak, Maheswar; Rai, Sanjay Kumar
The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase inmore » crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.« less
Hinrichs, Saskia; Patten, Nicole L.; Waite, Anya M.
2013-01-01
Coral health indices are important components of the management assessments of coral reefs, providing insight into local variation in reef condition, as well as tools for comparisons between reefs and across various time scales. Understanding how such health indices vary in space and time is critical to their successful implementation as management tools. Here we compare autotrophic and heterotrophic coral health indices, examining specifically the temporal variation driven by the local environmental variation, at three scales (diel, daily and seasonal). We compared metabolic indices (RNA/DNA ratio, protein concentration) and autotrophic indices (Chlorophyll a (Chl a), zooxanthellae density, effective quantum yield (yield) and relative electron transport rate (rETR)) for two dominant Acropora species, A. digitifera and A. spicifera at Ningaloo Reef (north-western Australia) in August 2010 (austral winter) and February 2011 (austral summer). Clear seasonal patterns were documented for metabolic indices, zooxanthellae density and rETR, while cyclic diel patterns only occurred for yield and rETR, and RNA/DNA ratio. Significant daily variation was observed for RNA/DNA ratio, Chl a concentration, yield and rETR. Results suggest that zooxanthellae density and protein concentrations are good long-term indicators of coral health whose variance is largely seasonal, while RNA/DNA ratio and rETR can be used for both long-term (seasonal) and short-term (diel) coral monitoring. Chl a can be used to describe changes between days and yield for both diel and daily variations. Correlations between health indices and light history showed that short-term changes in irradiance had the strongest impact on all health indices except zooxanthellae density for A. digitifera; for A. spicifera no correlation was observed at all. However, cumulative irradiance over the several days before sampling showed significant correlations with most health indices suggesting that a time-lag effect has to be taken into account when interpreting diel variations in coral condition. PMID:23696848
Hinrichs, Saskia; Patten, Nicole L; Waite, Anya M
2013-01-01
Coral health indices are important components of the management assessments of coral reefs, providing insight into local variation in reef condition, as well as tools for comparisons between reefs and across various time scales. Understanding how such health indices vary in space and time is critical to their successful implementation as management tools. Here we compare autotrophic and heterotrophic coral health indices, examining specifically the temporal variation driven by the local environmental variation, at three scales (diel, daily and seasonal). We compared metabolic indices (RNA/DNA ratio, protein concentration) and autotrophic indices (Chlorophyll a (Chl a), zooxanthellae density, effective quantum yield (yield) and relative electron transport rate (rETR)) for two dominant Acropora species, A. digitifera and A. spicifera at Ningaloo Reef (north-western Australia) in August 2010 (austral winter) and February 2011 (austral summer). Clear seasonal patterns were documented for metabolic indices, zooxanthellae density and rETR, while cyclic diel patterns only occurred for yield and rETR, and RNA/DNA ratio. Significant daily variation was observed for RNA/DNA ratio, Chl a concentration, yield and rETR. Results suggest that zooxanthellae density and protein concentrations are good long-term indicators of coral health whose variance is largely seasonal, while RNA/DNA ratio and rETR can be used for both long-term (seasonal) and short-term (diel) coral monitoring. Chl a can be used to describe changes between days and yield for both diel and daily variations. Correlations between health indices and light history showed that short-term changes in irradiance had the strongest impact on all health indices except zooxanthellae density for A. digitifera; for A. spicifera no correlation was observed at all. However, cumulative irradiance over the several days before sampling showed significant correlations with most health indices suggesting that a time-lag effect has to be taken into account when interpreting diel variations in coral condition.
Device and method for electron beam heating of a high density plasma
Thode, L.E.
A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.
Shielding in ungated field emitter arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J. R.; Jensen, K. L.; Shiffler, D. A.
Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can bemore » used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.« less
Core transport properties in JT-60U and JET identity plasmas
NASA Astrophysics Data System (ADS)
Litaudon, X.; Sakamoto, Y.; de Vries, P. C.; Salmi, A.; Tala, T.; Angioni, C.; Benkadda, S.; Beurskens, M. N. A.; Bourdelle, C.; Brix, M.; Crombé, K.; Fujita, T.; Futatani, S.; Garbet, X.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Hoang, G. T.; Hogeweij, G. M. D.; Matsunaga, G.; Nakano, T.; Oyama, N.; Parail, V.; Shinohara, K.; Suzuki, T.; Takechi, M.; Takenaga, H.; Takizuka, T.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.; ITPA Transport Group; JT-60 Team; EFDA contributors, JET
2011-07-01
The paper compares the transport properties of a set of dimensionless identity experiments performed between JET and JT-60U in the advanced tokamak regime with internal transport barrier, ITB. These International Tokamak Physics Activity, ITPA, joint experiments were carried out with the same plasma shape, toroidal magnetic field ripple and dimensionless profiles as close as possible during the ITB triggering phase in terms of safety factor, normalized Larmor radius, normalized collision frequency, thermal beta, ratio of ion to electron temperatures. Similarities in the ITB triggering mechanisms and sustainment were observed when a good match was achieved of the most relevant normalized profiles except the toroidal Mach number. Similar thermal ion transport levels in the two devices have been measured in either monotonic or non-monotonic q-profiles. In contrast, differences between JET and JT-60U were observed on the electron thermal and particle confinement in reversed magnetic shear configurations. It was found that the larger shear reversal in the very centre (inside normalized radius of 0.2) of JT-60U plasmas allowed the sustainment of stronger electron density ITBs compared with JET. As a consequence of peaked density profile, the core bootstrap current density is more than five times higher in JT-60U compared with JET. Thanks to the bootstrap effect and the slightly broader neutral beam deposition, reversed magnetic shear configurations are self-sustained in JT-60U scenarios. Analyses of similarities and differences between the two devices address key questions on the validity of the usual assumptions made in ITER steady scenario modelling, e.g. a flat density profile in the core with thermal transport barrier? Such assumptions have consequences on the prediction of fusion performance, bootstrap current and on the sustainment of the scenario.
Overdense microwave plasma heating in the CNT stellarator
NASA Astrophysics Data System (ADS)
Hammond, K. C.; Diaz-Pacheco, R. R.; Köhn, A.; Volpe, F. A.; Wei, Y.
2018-02-01
Overdense plasmas have been attained with 2.45 GHz microwave heating in the low-field, low-aspect-ratio CNT stellarator. Densities higher than four times the ordinary (O) mode cutoff density were measured with 8 kW of power injected in the O-mode and, alternatively, with 6.5 kW in the extraordinary (X) mode. The temperature profiles peak at the plasma edge. This was ascribed to collisional damping of the X-mode at the upper hybrid resonant layer. The X-mode reaches that location by tunneling, mode-conversions or after polarization-scrambling reflections off the wall and in-vessel coils, regardless of the initial launch being in O- or X-mode. This interpretation was confirmed by full-wave numerical simulations. Also, as the CNT plasma is not completely ionized at these low microwave power levels, electron density was shown to increase with power. A dependence on magnetic field strength was also observed, for O-mode launch.
431 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes
NASA Astrophysics Data System (ADS)
Growden, Tyler A.; Zhang, Weidong; Brown, Elliott R.; Storm, David F.; Hansen, Katurah; Fakhimi, Parastou; Meyer, David J.; Berger, Paul R.
2018-01-01
We report on the design and fabrication of high current density GaN/AlN double barrier resonant tunneling diodes grown via plasma assisted molecular-beam epitaxy on bulk GaN substrates. A quantum-transport solver was used to model and optimize designs with high levels of doping and ultra-thin AlN barriers. The devices displayed repeatable room temperature negative differential resistance with peak-to-valley current ratios ranging from 1.20 to 1.60. A maximum peak tunneling current density (Jp) of 431 kA/cm2 was observed. Cross-gap near-UV (370-385 nm) electroluminescence (EL) was observed above +6 V when holes, generated from a polarization induced Zener tunneling effect, recombine with electrons in the emitter region. Analysis of temperature dependent measurements, thermal resistance, and the measured EL spectra revealed the presence of severe self-heating effects.
Optical conductivity of partially oxidized graphene from first principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasehnia, F., E-mail: f.nasehnia@gmail.com; Seifi, M., E-mail: Seifi@guilan.ac.ir
2015-07-07
We investigate the geometry, electronic structure, and optical properties of partially oxidized graphene using density functional theory. Our calculations show that oxygen atoms are chemisorbed on graphene plane and distort carbon atoms vertically, with almost no change in the in-plane structure. The ground state configurations for different oxygen coverages ranging from 2% to 50% (O/C ratio) are calculated and show the strong tendency of oxygen adatoms to aggregate and form discrete islands on graphene plane. It is found that the opened band gap due to oxygen functionalization depends on the oxygen density and the adsorption configuration. The gap is notmore » significant for oxygen densities lower than 8%. The optical conductivities are calculated in the infrared, visible, and ultraviolet regions and show different characteristic features depending on the degree of oxidation. These results imply that optical measurement techniques can be employed to monitor oxidation (or reduction) process as contact-free methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R.; Ding, R.; Stangeby, P. C.
The three-dimensional Monte Carlo code ERO has been used to simulate dedicated DIII-D experiments in which Mo and W samples with different sizes were exposed to controlled and well-diagnosed divertor plasma conditions to measure the gross and net erosion rates. Experimentally, the net erosion rate is significantly reduced due to the high local redeposition probability of eroded high-Z materials, which according to the modelling is mainly controlled by the electric field and plasma density within the Chodura sheath. Similar redeposition ratios were obtained from ERO modelling with three different sheath models for small angles between the magnetic field and themore » material surface, mainly because of their similar mean ionization lengths. The modelled redeposition ratios are close to the measured value. Decreasing the potential drop across the sheath can suppress both gross and net erosion because sputtering yield is decreased due to lower incident energy while the redeposition ratio is not reduced owing to the higher electron density in the Chodura sheath. Taking into account material mixing in the ERO surface model, the net erosion rate of high-Z materials is shown to be strongly dependent on the carbon impurity concentration in the background plasma; higher carbon concentration can suppress net erosion. As a result, the principal experimental results such as net erosion rate and profile and redeposition ratio are well reproduced by the ERO simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rome, M.; Cavaliere, F.; Maero, G.
2013-03-19
Modifications have been implemented in the Penning-Malmberg device ELTRAP aimed at performing studies on the dynamics of space-charge dominated nanosecond electron bunches traveling along the magnetic field. In particular, a Thomson backscattering apparatus has been developed where an infrared (IR) laser pulse collides with the bunched electron beam. The frequency-shifted backscattered radiation, acquired by means of a photomultiplier (PMT), can be exploited to evaluate information on energy, energy spread and density of the bunch. The achievable sensitivity of the diagnostics has been estimated, and valuable information on the main parameters affecting the signal-to-noise (S/N) ratio has been obtained [B. Paroli,more » F. Cavaliere, M. Cavenago, F. De Luca, M. Ikram, G. Maero, C. Marini, R. Pozzoli, and M. Rome, JINST 7, P01008 (2012)]. A series of upgrades are under way, aimed at increasing the S/N ratio through the use of a new laser for the electron source, the insertion of a stray light shield, and the optimization of the detection electronics. Moreover, electromagnetic simulations relevant to the design and implementation of a microwave heating system are presented. The generation of an electron plasma in ELTRAP by means of a low-power radio frequency (RF) drive in the MHz range applied on one of the trap electrodes and under ultra-high vacuum (UHV) conditions has previously been demonstrated [B. Paroli, F. De Luca, G. Maero, F. Pozzoli, and M. Rome, Plasma Sources Sci. Technol. 19, 045013 (2010)]. The new heating system will allow the extension of the RF studies to the GHz range and in particular the production of a more energetic electron plasma via cyclotron resonant excitation.« less
Dependences of Ratio of the Luminosity to Ionization on Velocity and Chemical Composition of Meteors
NASA Technical Reports Server (NTRS)
Narziev, M.
2011-01-01
On the bases of results simultaneous photographic and radio echo observations, the results complex radar and television observations of meteors and also results of laboratory modeling of processes of a luminescence and ionization, correlation between of luminous intensity Ip to linear electronic density q from of velocities and chemical structure are investigated. It is received that by increasing value of velocities of meteors and decrease of nuclear weight of substance of particles, lg Ip/q decreased more than one order.
Zou, Yuan; Li, Qunqing; Liu, Junku; Jin, Yuanhao; Qian, Qingkai; Jiang, Kaili; Fan, Shoushan
2013-11-13
SWNT thin films with different nanotube densities are fabricated by CVD while controlling the concentration of catalyst and growth time. Three layers of SWNT films are transferred to flexible substrates serving as electrodes and channel materials, respectively. All-carbon nanotube TFTs with an on/off ratio as high as 10(5) are obtained. Inverters are fabricated on top of the flexible substrates with symmetric input/output behavior. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.
NASA Astrophysics Data System (ADS)
Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese
2016-03-01
In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Hietzke, W. H.
1982-01-01
The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU.
Exotic chemical arrangements and magnetic moment evolution of NixPt1-x (0 ≤x≤ 1) nanoparticles
NASA Astrophysics Data System (ADS)
Mokkath, Junais Habeeb
2018-06-01
We present a systematic study on the chemical ordering pattern and the magnetic properties of NixPt1-x (0 ⩽ x≤ 1) nanoparticles having a size of 1.5 nm by means of an approach which combines basin hopping structure sampling technique and spin-polarized density functional theory. We found exotic chemical ordering patterns for different Ni/Pt ratios. In addition, we observed a sharp phase transition from non-magnetic to ferromagnetic behaviour around x = 67%. We show that this is a direct consequence of a unique atomic arrangement on the surface in which Ni atoms club together causing the strong Ni-Ni magnetic interaction. The observed magnetic properties are correlated to the electronic density of states.
Biparametric equilibria bifurcations of the Pierce diode: A one-dimensional plasma-filled device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terra, Maisa O.
2011-03-15
The equilibria bifurcations of the biparametric version of the classical Pierce diode, a one-dimensional plasma-filled device, are analyzed in detail. Our investigation reveals that this spatiotemporal model is not structurally stable in relation to a second control parameter, the ratio of the plasma ion density to the injected electron beam density. For the first time, we relate the existence of one-fluid chaotic regions with specific biparametric equilibria bifurcations, identifying the restricted regions in the parametric plane where they occur. We show that the system presents several biparametric scenarios involving codimension-two transcritical bifurcations. Finally, we provide the spatial profile of themore » stable and unstable one-fluid equilibria in order to describe their metamorphoses.« less
NASA Astrophysics Data System (ADS)
Brosius, Jeffrey W.
2013-11-01
We obtained rapid cadence (11.2 s) EUV stare spectra of a solar microflare with the Extreme-ultraviolet Imaging Spectrometer aboard Hinode. The intensities of lines formed at temperatures too cool to be found in the corona brightened by factors around 16 early during this event, indicating that we observed a site of energy deposition in the chromosphere. We derive the density evolution of the flare plasma at temperature around 2 MK from the intensity ratio of Fe XIV lines at 264.789 Å and 274.204 Å. From both lines we removed the bright pre-flare quiescent emission, and from 274.204 we removed the blended emission of Si VII λ274.180 based on the Si VII λ274.180/275.361 intensity ratio, which varies only slightly with density. In this way the flare electron density is derived with emission from only the flare plasma. The density increased by an order of magnitude from its pre-flare quiescent average of (3.43 ± 0.19) × 109 cm-3 to its maximum impulsive phase value of (3.04 ± 0.57) × 1010 cm-3 in 2 minutes. The fact that this rapid increase in density is not accompanied by systematic, large upward velocities indicates that the density increase is not due to the filling of loops with evaporated chromospheric material, but rather due to material being directly heated in the chromosphere, likely by magnetic reconnection. The density increase may be due to a progression of reconnection sites to greater depths in the chromosphere, where it has access to larger densities, or it may be due to compression of 2 MK plasma by the 10 MK plasma as it attempts to expand against the high-density chromospheric plasma.
Absolute empirical rate coefficient for the excitation of the 117.6 nm line in C III
NASA Astrophysics Data System (ADS)
Gardner, L. D.; Daw, A. N.; Janzen, P. H.; Atkins, N.; Kohl, J. L.
2005-05-01
We have measured the absolute cross sections for electron impact excitation (EIE) of C2+ (2s2p 3P° - 2p2 3P) for energies from below threshold to 17 eV above and derived EIE rate coefficients required for astrophysical applications. The uncertainty in the rate coefficient at a typical solar temperature of formation of C2+ is less than ± 6 %. Ions are produced in a 5 GHz Electron Cyclotron Resonance (ECR) ion source, extracted, formed into a beam, and transported to a collision chamber where they collide with electrons from an electron beam inclined at 45 degrees. The beams are modulated and the radiation from the decay of the excited ions at λ 117.6 nm is detected synchronously using an absolutely calibrated optical system that subtends slightly over π steradians. The fractional population of the C2+ metastable state in the incident ion beam has been determined experimentally to be 0.42 ± 0.03 (1.65 σ). At the reported ± 15 % total experimental uncertainty level (1.65 σ), the measured structure and absolute scale of the cross section are in fairly good agreement with 6-term close-coupling R-matrix calculations and 90-term R-matrix with pseudo-states calculations, although some minor differences are seen just above threshold. As density-sensitive line intensity ratios vary by only about a factor of 5 as the density changes by nearly a factor of 100, even a 30 % uncertainty in the excitation rate can lead to a factor of 3 error in density. This work is supported by NASA Supporting Research and Technology grants NAG5- 9516 and NAG5-12863 in Solar and Heliospheric Physics and by the Smithsonian Astrophysical Observatory.
Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions
NASA Astrophysics Data System (ADS)
Qi, Y. Y.; Ning, L. N.; Wang, J. G.; Qu, Y. Z.
2013-12-01
Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ɛ /I2p (I2p is the ionization energy of 2p state and ɛ is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δnlc, corresponding to the special plasma condition when the bound state |nl⟩ just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δnlc, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.
NASA Astrophysics Data System (ADS)
Tsujimura, T., Ii; Kubo, S.; Takahashi, H.; Makino, R.; Seki, R.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Ida, K.; Suzuki, C.; Emoto, M.; Yokoyama, M.; Kobayashi, T.; Moon, C.; Nagaoka, K.; Osakabe, M.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Okada, K.; Ejiri, A.; Mutoh, T.
2015-11-01
The central electron temperature has successfully reached up to 7.5 keV in large helical device (LHD) plasmas with a central high-ion temperature of 5 keV and a central electron density of 1.3× {{10}19} m-3. This result was obtained by heating with a newly-installed 154 GHz gyrotron and also the optimisation of injection geometry in electron cyclotron heating (ECH). The optimisation was carried out by using the ray-tracing code ‘LHDGauss’, which was upgraded to include the rapid post-processing three-dimensional (3D) equilibrium mapping obtained from experiments. For ray-tracing calculations, LHDGauss can automatically read the relevant data registered in the LHD database after a discharge, such as ECH injection settings (e.g. Gaussian beam parameters, target positions, polarisation and ECH power) and Thomson scattering diagnostic data along with the 3D equilibrium mapping data. The equilibrium map of the electron density and temperature profiles are then extrapolated into the region outside the last closed flux surface. Mode purity, or the ratio between the ordinary mode and the extraordinary mode, is obtained by calculating the 1D full-wave equation along the direction of the rays from the antenna to the absorption target point. Using the virtual magnetic flux surfaces, the effects of the modelled density profiles and the magnetic shear at the peripheral region with a given polarisation are taken into account. Power deposition profiles calculated for each Thomson scattering measurement timing are registered in the LHD database. The adjustment of the injection settings for the desired deposition profile from the feedback provided on a shot-by-shot basis resulted in an effective experimental procedure.
Analysis of computed tomography density of liver before and after amiodarone administration.
Matsuda, Masazumi; Otaka, Aoi; Tozawa, Tomoki; Asano, Tomoyuki; Ishiyama, Koichi; Hashimoto, Manabu
2018-05-01
To evaluate CT density of liver changes between before and after amiodarone administration. Twenty-five patients underwent non-enhanced CT including the liver before and after amiodarone administration. We set regions of interest (ROIs) at liver S8, spleen, paraspinal muscle, and calculated average CT density in these ROIs, then compared CT density between liver and other organs. Statistical differences between CT density of liver and various ratios before and after administration were determined, along with correlations between cumulative dose of amiodarone and liver density after administration, density change of liver, and various ratios after administration. Liver density, liver-to-spleen ratio, and liver-to-paraspinal muscle ratio differed significantly between before and after amiodarone administration. No significant correlations were found between cumulative doses of amiodarone and any of liver density after administration, density change of liver, or various ratios after administration. CT density of liver after amiodarone administration was significantly higher than that before administration. No correlations were identified between cumulative dose of amiodarone and either liver density after administration or density change of liver. Amiodarone usage should be checked when radiologists identify high density of the liver on CT.
Electron (charge) density studies of cellulose models
USDA-ARS?s Scientific Manuscript database
Introductory material first describes electron density approaches and demonstrates visualization of electron lone pairs and bonding as concentrations of electron density. Then it focuses on the application of Bader’s Quantum Theory of Atoms-in-Molecules (AIM) to cellulose models. The purpose of the ...
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Flynn, Casey L.; Andrews, David J.; Duru, Firdevs; Morgan, David D.
2016-10-01
Radio occultation electron densities measurements from the Mariner 9 and Viking spacecraft, which orbited Mars in the 1970s, have recently become available in a digital format. These data are highly complementary to the radio occultation electron density profiles from Mars Global Surveyor, which were restricted in solar zenith angle and altitude. We have compiled data from the Mariner 9, Viking, and Mars Global Surveyor radio occultation experiments for comparison to electron density measurements made by Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), the topside radar sounder on Mars Express, and MARSIS-based empirical density models. We find that the electron densities measured by radio occultation are in generally good agreement with the MARSIS data and model, especially near the altitude of the peak electron density but that the MARSIS data and model display a larger plasma scale height than the radio occultation profiles at altitudes between the peak density and 200 km. Consequently, the MARSIS-measured and model electron densities are consistently larger than radio occultation densities at altitudes 200-300 km. Finally, we have analyzed transitions in the topside ionosphere, at the boundary between the photochemically controlled and transport-controlled regions, and identified the average transition altitude, or altitude at which a change in scale height occurs. The average transition altitude is 200 km in the Mariner 9 and Viking radio occultation profiles and in profiles of the median MARSIS radar sounding electron densities.
Advanced morphological analysis of patterns of thin anodic porous alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toccafondi, C.; Istituto Italiano di Tecnologia, Department of Nanostructures, Via Morego 30, Genova I 16163; Stępniowski, W.J.
2014-08-15
Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for themore » thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.« less