Sample records for electron diffraction study

  1. Ultrafast electron diffraction optimized for studying structural dynamics in thin films and monolayers

    PubMed Central

    Badali, D. S.; Gengler, R. Y. N.; Miller, R. J. D.

    2016-01-01

    A compact electron source specifically designed for time-resolved diffraction studies of free-standing thin films and monolayers is presented here. The sensitivity to thin samples is achieved by extending the established technique of ultrafast electron diffraction to the “medium” energy regime (1–10 kV). An extremely compact design, in combination with low bunch charges, allows for high quality diffraction in a lensless geometry. The measured and simulated characteristics of the experimental system reveal sub-picosecond temporal resolution, while demonstrating the ability to produce high quality diffraction patterns from atomically thin samples. PMID:27226978

  2. Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M

    2008-10-01

    Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10(7)-10(8) electrons packed in bunches of approximately 100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haishuang; Krysiak, Yaşar; Hoffmann, Kristin

    The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along themore » b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.« less

  4. Structure analysis of the single-domain Si(111)4 × 1-In surface by μ-probe Auger electron diffraction and μ-probe reflection high energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Anno, K.; Kono, S.

    1991-10-01

    A single-domain Si(111)4 × 1-In surface has been studied by μ-probe reflection high-energy electron diffraction (RHEED) to elucidate the symmetry of the 4 × 1 surface. Azimuthal diffraction patterns of In MNN Auger electron have been obtained by a μ-probe Auger electron diffraction (AED) apparatus from the single-domain Si(111)4 × 1-In surface. On the basis of information from scanning tunneling microscopy [J. Microsc. 152 (1988) 727] and under the assumption that the 4 × 1 surface is composed of In-overlayers, the μ-probe AED patterns were kinematically analyzed to reach a concrete model of indium arrangement.

  5. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    PubMed

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Low-energy electron point projection microscopy/diffraction study of suspended graphene

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Hao; Chang, Wei-Tse; Lin, Chun-Yueh; Chang, Mu-Tung; Hsieh, Chia-Tso; Wang, Chang-Ran; Lee, Wei-Li; Hwang, Ing-Shouh

    2017-11-01

    In this work, we present our study of suspended graphene with low-energy electrons based on a point projection microscopic/diffractive imaging technique. Both exfoliated and chemical vapor deposition (CVD) graphene samples were studied in an ultra-high vacuum chamber. This method allows imaging of individual adsorbates at the nanometer scale and characterizing graphene layers, graphene lattice orientations, ripples on graphene membranes, etc. We found that long-duration exposure to low-energy electron beams induced aggregation of adsorbates on graphene when the electron dose rate was above a certain level. We also discuss the potential of this technique to conduct coherent diffractive imaging for determining the atomic structures of biological molecules adsorbed on suspended graphene.

  7. The use of analytical surface tools in the fundamental study of wear. [atomic nature of wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Various techniques and surface tools available for the study of the atomic nature of the wear of materials are reviewed These include chemical etching, x-ray diffraction, electron diffraction, scanning electron microscopy, low-energy electron diffraction, Auger emission spectroscopy analysis, electron spectroscopy for chemical analysis, field ion microscopy, and the atom probe. Properties of the surface and wear surface regions which affect wear, such as surface energy, crystal structure, crystallographic orientation, mode of dislocation behavior, and cohesive binding, are discussed. A number of mechanisms involved in the generation of wear particles are identified with the aid of the aforementioned tools.

  8. High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Bender, H A; Wilcox, N S

    2010-01-01

    Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.

  9. Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald

    2015-01-01

    Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Dynamic diffraction effects and coherent breathing oscillations in ultrafast electron diffraction in layered 1T-TaSeTe

    PubMed Central

    Wei, Linlin; Sun, Shuaishuai; Guo, Cong; Li, Zhongwen; Sun, Kai; Liu, Yu; Lu, Wenjian; Sun, Yuping; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2017-01-01

    Anisotropic lattice movements due to the difference between intralayer and interlayer bonding are observed in the layered transition-metal dichalcogenide 1T-TaSeTe following femtosecond laser pulse excitation. Our ultrafast electron diffraction investigations using 4D-transmission electron microscopy (4D-TEM) clearly reveal that the intensity of Bragg reflection spots often changes remarkably due to the dynamic diffraction effects and anisotropic lattice movement. Importantly, the temporal diffracted intensity from a specific crystallographic plane depends on the deviation parameter s, which is commonly used in the theoretical study of diffraction intensity. Herein, we report on lattice thermalization and structural oscillations in layered 1T-TaSeTe, analyzed by dynamic diffraction theory. Ultrafast alterations of satellite spots arising from the charge density wave in the present system are also briefly discussed. PMID:28470025

  11. Time-resolved measurements with streaked diffraction patterns from electrons generated in laser plasma wakefield

    NASA Astrophysics Data System (ADS)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme

    2013-10-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.

  12. A compact electron gun for time-resolved electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A., E-mail: derek.wann@york.ac.uk

    A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolutionmore » of the diffraction pattern.« less

  13. Transmission electron microscope studies of extraterrestrial materials

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  14. Transmission Kikuchi diffraction and transmission electron forescatter imaging of electropolished and FIB manufactured TEM specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zieliński, W., E-mail: wiziel@inmat.pw.edu.pl; Płociński, T.; Kurzydłowski, K.J.

    2015-06-15

    We present a study of the efficiency of the utility of scanning electron microscope (SEM)-based transmission methods for characterizing grain structure in thinned bulk metals. Foils of type 316 stainless steel were prepared by two methods commonly used for transmission electron microscopy — double-jet electropolishing and focused ion beam milling. A customized holder allowed positioning of the foils in a configuration appropriate for both transmission electron forward scatter diffraction, and for transmission imaging by the use of a forescatter detector with two diodes. We found that both crystallographic orientation maps and dark-field transmitted images could be obtained for specimens preparedmore » by either method. However, for both methods, preparation-induced artifacts may affect the quality or accuracy of transmission SEM data, especially those acquired by the use of transmission Kikuchi diffraction. Generally, the quality of orientation data was better for specimens prepared by electropolishing, due to the absence of ion-induced damage. - Highlights: • The transmission imaging and diffraction techniques are emerging in scanning electron microscopy (SEM) as promising new field of materials characterization. • The manuscript titled: “Transmission Kikuchi Diffraction and Transmission Electron Forescatter Imaging of Electropolished and FIB Manufactured TEM Specimens” documents how different specimen thinning procedures can effect efficiency of transmission Kikuchi diffraction and transmission electron forescatter imaging. • The abilities to make precision crystallographic orientation maps and dark-field images in transmission was studied on electropolished versus focus ion beam manufactured TEM specimens. • Depending on the need, electropolished and focused ion beam technique may produce suitable specimens for transmission imaging and diffraction in SEM.« less

  15. Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes

    NASA Astrophysics Data System (ADS)

    Buchanan, Karl G.; Kral, Milo V.

    2012-06-01

    The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.

  16. Modulated Electron Emission by Scattering-Interference of Primary Electrons

    NASA Astrophysics Data System (ADS)

    Valeri, Sergio; di Bona, Alessandro

    We review the effects of scattering-interference of the primary, exciting beam on the electron emission from ordered atomic arrays. The yield of elastically and inelastically backscattered electrons, Auger electrons and secondary electrons shows a marked dependence on the incidence angle of primary electrons. Both the similarity and the relative importance of processes experienced by incident and excident electrons are discussed. We also present recent studies of electron focusing and defocusing along atomic chains. The interplay between these two processes determines the in-depth profile of the primary electron intensity anisotropy. Finally, the potential for surface-structural studies and limits for quantitative analysis are discussed, in comparison with the Auger electron diffraction (AED) and photoelectron diffraction (PD) techniques.

  17. Study of residual stresses in CT test specimens welded by electron beam

    NASA Astrophysics Data System (ADS)

    Papushkin, I. V.; Kaisheva, D.; Bokuchava, G. D.; Angelov, V.; Petrov, P.

    2018-03-01

    The paper reports result of residual stress distribution studies in CT specimens reconstituted by electron beam welding (EBW). The main aim of the study is evaluation of the applicability of the welding technique for CT specimens’ reconstitution. Thus, the temperature distribution during electron beam welding of a CT specimen was calculated using Green’s functions and the residual stress distribution was determined experimentally using neutron diffraction. Time-of-flight neutron diffraction experiments were performed on a Fourier stress diffractometer at the IBR-2 fast pulsed reactor in FLNP JINR (Dubna, Russia). The neutron diffraction data estimates yielded a maximal stress level of ±180 MPa in the welded joint.

  18. Evidence for the suppression of incident beam effects in Auger electron diffraction

    NASA Astrophysics Data System (ADS)

    Davoli, I.; Gunnella, R.; Bernardini, R.; De Crescenzi, M.

    1998-01-01

    Auger electron diffraction (AED) of the Cu(100) surface has been studied through the anisotropy of the elastic backdiffused beam electrons, the L 2,3M 4,5M 4,5 (LVV) and the M 2,3M 4,5M 4,5 (MVV) transitions in polar scan along the two main directions [001], [011] and in azimuth scan at normal emission. The intensity anisotropies of the low and high kinetic energy Auger lines are in antiphase to each other as in experiments in which these transitions are excited by X-ray photons. This behaviour has been exploited to single out the origin of the physical mechanisms accompanying the diffraction of the emitted electrons. Incident beam effects appear to be sizeable only when the collection of the AED spectra are made with an angle integrating electron analyser (cylindrical mirror analyser or low electron energy diffraction apparatus), but they appear negligible when electron collection is performed through a small solid-angle detector. The conclusions reached by our measurements are supported by good agreement with experimental and theoretical X-ray photoelectron diffraction data and demonstrate that, when the incident beam energy is sufficiently higher than the kinetic energy of the Auger electron detected, the influence of the incident beam on AED is negligible.

  19. Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope.

    PubMed

    Brodusch, N; Demers, H; Gauvin, R

    2013-04-01

    A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  20. Electron Diffraction Using Transmission Electron Microscopy

    PubMed Central

    Bendersky, Leonid A.; Gayle, Frank W.

    2001-01-01

    Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈10 nm3). The NIST Materials Science and Engineering Laboratory has a history of discovery and characterization of new structures through electron diffraction, alone or in combination with other diffraction methods. This paper provides a survey of some of this work enabled through electron microscopy. PMID:27500060

  1. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genderen, E. van; Clabbers, M. T. B.; Center for Cellular Imaging and NanoAnalytics

    A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at roommore » temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)« less

  2. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

    PubMed Central

    He, Z.-H.; Beaurepaire, B.; Nees, J. A.; Gallé, G.; Scott, S. A.; Pérez, J. R. Sánchez; Lagally, M. G.; Krushelnick, K.; Thomas, A. G. R.; Faure, J.

    2016-01-01

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes. PMID:27824086

  3. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

    DOE PAGES

    He, Z. -H.; Beaurepaire, B.; Nees, J. A.; ...

    2016-11-08

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here in this paper, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scalemore » by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes.« less

  4. Auger electron diffraction study of Fe 1- xNi x alloys epitaxially grown on Cu(100)

    NASA Astrophysics Data System (ADS)

    Martin, M. G.; Foy, E.; Chevrier, F.; Krill, G.; Asensio, M. C.

    1999-08-01

    We have combined Auger electron diffraction (AED), low-energy electron diffraction (LEED) and high-energy electron diffraction (RHEED) to examine the structure of Fe xNi 1- x alloys when the Fe content approaches 65%. At this concentration, the 'invar effect' takes place, so the magnetization falls to zero, and the thermal expansion coefficient is very small. The Fe xNi 1- x alloys, grown as metastable thin films by molecular-beam epitaxy on Cu(100) substrates, were studied as a function of the x stoichiometry. In contrast to the related bulk alloy compounds, we observe the collapse of the fcc-to-bcc structural transition in the Fe-rich films. Furthermore, the local atomic structure around Fe and Ni in the alloy has been simultaneously determined by the angular intensity distributions of Fe L 3VV (703 eV) and Ni L 3VV (848 eV) Auger electrons measured as a function of polar and azimuthal angles. For the films deposited at room temperature, we have confirmed the pseudomorphic growth morphology and the uniformity of the alloys.

  5. ELECTRON MICROSCOPE AND X-RAY DIFFRACTION STUDIES ON A HOMOLOGOUS SERIES OF SATURATED PHOSPHATIDYLCHOLINES.

    PubMed

    ELBERS, P F; VERVERGAERT, P H

    1965-05-01

    Three homologous saturated phosphatidylcholines were studied by electron microscopy after tricomplex fixation. The results are compared with those obtained by x-ray diffraction analysis of the same and some other homologous compounds, in the dry crystalline state and after tricomplex fixation. By electron microscopy alternating dark and light bands are observed which are likely to correspond to phosphatide double layers. X-Ray diffraction reveals the presence of lamellar structures of regular spacing. The layer spacings obtained by both methods are in good agreement. From the electron micrographs the width of the polar parts of the double layers can be derived directly. The width of the carboxylglycerylphosphorylcholine moiety of the layers is found by extrapolating the x-ray diffraction data to zero chain length of the fatty acids. When from this width the contribution of the carboxylglyceryl part of the molecules is subtracted, again we find good agreement with the electron microscope measurements. An attempt has been made to account for the different layer spacings measured in terms of orientation of the molecules within the double layers.

  6. Fine Structure of Diffuse Scattering Rings in Al-Li-Cu Quasicrystal: A Comparative X-ray and Electron Diffraction Study

    NASA Astrophysics Data System (ADS)

    Donnadieu, P.; Dénoyer, F.

    1996-11-01

    A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.

  7. Molecular structures and intramolecular dynamics of pentahalides

    NASA Astrophysics Data System (ADS)

    Ischenko, A. A.

    2017-03-01

    This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.

  8. Electron-spectroscopy and -diffraction study of the conductivity of CVD diamond ( 0 0 1 )2×1 surface

    NASA Astrophysics Data System (ADS)

    Kono, S.; Takano, T.; Shimomura, M.; Goto, T.; Sato, K.; Abukawa, T.; Tachiki, M.; Kawarada, H.

    2003-04-01

    A chemical vapor deposition as-grown diamond (0 0 1) single-domain 2 × 1 surface was studied by electron-spectroscopy and electron-diffraction in ultrahigh vacuum (UHV). In order to change the surface conductivity (SC) of the diamond in UHV, three annealing stages were used; without annealing, annealing at 300 °C and annealing at 550 °C. From low energy electron diffraction and X-ray photoelectron spectroscopic (XPS) studies, an existence of SC was suggested for the first two stages of annealing and an absence of SC was suggested for the last stage of annealing. Changes in C KVV Auger electron spectroscopic spectra, C KVV Auger electron diffraction (AED) patterns and C 1s XPS peak positions were noticed between the annealing stages at 300 and 550 °C. These changes are interpreted as such that the state of hydrogen involvement in a subsurface of diamond (0 0 1)2 × 1 changes as SC changes. In particular, the presence of local disorder in diamond configuration in SC subsurface is pointed out from C KVV AED. From C 1s XPS peak shifts, a lower bound for the Fermi-level for SC layers from the valence band top is presented to be ˜0.5 eV.

  9. Electron diffraction study of the sillenites Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39}: Evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scurti, Craig A.; Arenas, D. J.; Auvray, Nicolas

    We present an electron diffraction study of three sillenites, Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39}, and Bi{sub 25}InO{sub 39} synthesized using the solid-state method. We explore a hypothesis, inspired by optical studies in the literature, that suggests that trivalent sillenites have additional disorder not present in the tetravalent compounds. Electron diffraction patterns of Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39} show streaks that confirm deviations from the ideal sillenite structure. Multi-slice simulations of electron-diffraction patterns are presented for different perturbations to the sillenite structure - partial substitution of the M site by Bi{sup 3+}, random and ordered oxygen-vacancies, and amore » frozen-phonon model. Although comparison of experimental data to simulations cannot be conclusive, we consider the streaks as evidence of short-range ordered oxygen-vacancies.« less

  10. Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.

    PubMed

    Yamanaka, Takamitsu

    2005-09-01

    The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.

  11. Energy-resolved coherent diffraction from laser-driven electronic motion in atoms

    NASA Astrophysics Data System (ADS)

    Shao, Hua-Chieh; Starace, Anthony F.

    2017-10-01

    We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron pulses, the rapid 2 s -2 p quantum beat motion of the target electron is imaged as a time-dependent asymmetric oscillation of the diffraction pattern.

  12. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, L. W.; Lin, L.; Huang, S. L.

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  13. Single-electron pulses for ultrafast diffraction

    PubMed Central

    Aidelsburger, M.; Kirchner, F. O.; Krausz, F.; Baum, P.

    2010-01-01

    Visualization of atomic-scale structural motion by ultrafast electron diffraction and microscopy requires electron packets of shortest duration and highest coherence. We report on the generation and application of single-electron pulses for this purpose. Photoelectric emission from metal surfaces is studied with tunable ultraviolet pulses in the femtosecond regime. The bandwidth, efficiency, coherence, and electron pulse duration are investigated in dependence on excitation wavelength, intensity, and laser bandwidth. At photon energies close to the cathode’s work function, the electron pulse duration shortens significantly and approaches a threshold that is determined by interplay of the optical pulse width and the acceleration field. An optimized choice of laser wavelength and bandwidth results in sub-100-fs electron pulses. We demonstrate single-electron diffraction from polycrystalline diamond films and reveal the favorable influences of matched photon energies on the coherence volume of single-electron wave packets. We discuss the consequences of our findings for the physics of the photoelectric effect and for applications of single-electron pulses in ultrafast 4D imaging of structural dynamics. PMID:21041681

  14. A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings

    NASA Astrophysics Data System (ADS)

    Barwick, Brett; Gronniger, Glen; Yuan, Lu; Liou, Sy-Hwang; Batelaan, Herman

    2006-10-01

    Electron diffraction from metal coated freestanding nanofabricated gratings is presented, with a quantitative path integral analysis of the electron-grating interactions. Electron diffraction out to the 20th order was observed indicating the high quality of our nanofabricated gratings. The electron beam is collimated to its diffraction limit with ion-milled material slits. Our path integral analysis is first tested against single slit electron diffraction, and then further expanded with the same theoretical approach to describe grating diffraction. Rotation of the grating with respect to the incident electron beam varies the effective distance between the electron and grating bars. This allows the measurement of the image charge potential between the electron and the grating bars. Image charge potentials that were about 15% of the value for that of a pure electron-metal wall interaction were found. We varied the electron energy from 50to900eV. The interaction time is of the order of typical metal image charge response times and in principle allows the investigation of image charge formation. In addition to the image charge interaction there is a dephasing process reducing the transverse coherence length of the electron wave. The dephasing process causes broadening of the diffraction peaks and is consistent with a model that ascribes the dephasing process to microscopic contact potentials. Surface structures with length scales of about 200nm observed with a scanning tunneling microscope, and dephasing interaction strength typical of contact potentials of 0.35eV support this claim. Such a dephasing model motivated the investigation of different metallic coatings, in particular Ni, Ti, Al, and different thickness Au-Pd coatings. Improved quality of diffraction patterns was found for Ni. This coating made electron diffraction possible at energies as low as 50eV. This energy was limited by our electron gun design. These results are particularly relevant for the use of these gratings as coherent beam splitters in low energy electron interferometry.

  15. In situ investigation of deformation mechanisms in magnesium-based metal matrix composites

    NASA Astrophysics Data System (ADS)

    Farkas, Gergely; Choe, Heeman; Máthis, Kristián; Száraz, Zoltán; Noh, Yoonsook; Trojanová, Zuzanka; Minárik, Peter

    2015-07-01

    We studied the effect of short fibers on the mechanical properties of a magnesium alloy. In particular, deformation mechanisms in a Mg-Al-Sr alloy reinforced with short alumina fibers were studied in situ using neutron diffraction and acoustic emission methods. The fibers' plane orientation with respect to the loading axis was found to be a key parameter, which influences the acting deformation processes, such as twinning or dislocation slip. Furthermore, the twinning activity was much more significant in samples with parallel fiber plane orientation, which was confirmed by both acoustic emission and electron backscattering diffraction results. Neutron diffraction was also used to assist in analyzing the acoustic emission and electron backscattering diffraction results. The simultaneous application of the two in situ methods, neutron diffraction and acoustic emission, was found to be beneficial for obtaining complementary datasets about the twinning and dislocation slip in the magnesium alloys and composites used in this study.

  16. Breaking resolution limits in ultrafast electron diffraction and microscopy.

    PubMed

    Baum, Peter; Zewail, Ahmed H

    2006-10-31

    Ultrafast electron microscopy and diffraction are powerful techniques for the study of the time-resolved structures of molecules, materials, and biological systems. Central to these approaches is the use of ultrafast coherent electron packets. The electron pulses typically have an energy of 30 keV for diffraction and 100-200 keV for microscopy, corresponding to speeds of 33-70% of the speed of light. Although the spatial resolution can reach the atomic scale, the temporal resolution is limited by the pulse width and by the difference in group velocities of electrons and the light used to initiate the dynamical change. In this contribution, we introduce the concept of tilted optical pulses into diffraction and imaging techniques and demonstrate the methodology experimentally. These advances allow us to reach limits of time resolution down to regimes of a few femtoseconds and, possibly, attoseconds. With tilted pulses, every part of the sample is excited at precisely the same time as when the electrons arrive at the specimen. Here, this approach is demonstrated for the most unfavorable case of ultrafast crystallography. We also present a method for measuring the duration of electron packets by autocorrelating electron pulses in free space and without streaking, and we discuss the potential of tilting the electron pulses themselves for applications in domains involving nuclear and electron motions.

  17. Digital electron diffraction – seeing the whole picture

    PubMed Central

    Beanland, Richard; Thomas, Paul J.; Woodward, David I.; Thomas, Pamela A.; Roemer, Rudolf A.

    2013-01-01

    The advantages of convergent-beam electron diffraction for symmetry determination at the scale of a few nm are well known. In practice, the approach is often limited due to the restriction on the angular range of the electron beam imposed by the small Bragg angle for high-energy electron diffraction, i.e. a large convergence angle of the incident beam results in overlapping information in the diffraction pattern. Techniques have been generally available since the 1980s which overcome this restriction for individual diffracted beams, by making a compromise between illuminated area and beam convergence. Here a simple technique is described which overcomes all of these problems using computer control, giving electron diffraction data over a large angular range for many diffracted beams from the volume given by a focused electron beam (typically a few nm or less). The increase in the amount of information significantly improves the ease of interpretation and widens the applicability of the technique, particularly for thin materials or those with larger lattice parameters. PMID:23778099

  18. Transmission Electron Microscopy of Single Wall Carbon Nanotube/Polymer Nanocomposites: A First-Principles Study

    NASA Technical Reports Server (NTRS)

    Sola, Francisco; Xia, Zhenhai; Lebrion-Colon, Marisabel; Meador, Michael A.

    2012-01-01

    The physics of HRTEM image formation and electron diffraction of SWCNT in a polymer matrix were investigated theoretically on the basis of the multislice method, and the optics of a FEG Super TWIN Philips CM 200 TEM operated at 80 kV. The effect of nanocomposite thickness on both image contrast and typical electron diffraction reflections of nanofillers were explored. The implications of the results on the experimental applicability to study dispersion, chirality and diameter of nanofillers are discussed.

  19. Low-energy transmission electron diffraction and imaging of large-area graphene

    PubMed Central

    Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili

    2017-01-01

    Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials. PMID:28879233

  20. Low-energy transmission electron diffraction and imaging of large-area graphene.

    PubMed

    Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili

    2017-09-01

    Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials.

  1. Applications of the diffraction and interference of light and electronic waves

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian; Lanning, Robert

    2010-10-01

    As part of a NSF sponsored program, called STAIRSTEP, at Lamar University we work on improving the basic knowledge of our physics majors in topics with broader impact in various areas of science and engineering [1]. The purpose is to facilitate a deeper understanding of some fundamental concepts in the field of optics through hands-on experience [2]. We choose to study the interference/diffraction of light and matter waves, because of its fundamental importance in physics with many applications. We target multiple goals in our field of study such as to understand the formation of electronic waves (wave packets) and their interaction with atoms in crystals (electron diffraction); the Fourier analysis of light with applications in spectroscopy, etc. We can show that a crystal lattice Fourier transforms the sinusoidal waves associated to free electrons fired toward the crystal. Our studies led to a simple and instructive recipe for discovering the arrangement of atoms in crystals from the analysis of the diffraction patterns produced by radiation or by electrons transmitted through crystals. [1] Doerschuk P. et al., 39th ASEE/IEEE Frontiers in Education Conference, San Antonio 2009, M3F-1. [2] Bahrim C, Innovation 2006 -- World Innovations in Engineering Education and Research, Chapter 17, iNEER Innovation Series, ISBN 0-9741252-5-3.

  2. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    NASA Astrophysics Data System (ADS)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  3. X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics

    NASA Astrophysics Data System (ADS)

    Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2018-06-01

    X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.

  4. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-01

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately ten meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  5. Auger electron diffraction study of the growth of Fe(001) films on ZnSe(001)

    NASA Astrophysics Data System (ADS)

    Jonker, B. T.; Prinz, G. A.

    1991-03-01

    The growth of Fe films on ZnSe(001) epilayers and bulk GaAs(001) substrates has been studied to determine the mode of film growth, the formation of the interface, and the structure of the overlayer at the 1-10 monolayer level. Auger electron diffraction (AED), x-ray photoelectron spectroscopy (XPS), and reflection high-energy electron diffraction data are obtained for incremental deposition of the Fe(001) overlayer. The coverage dependence of the AED forward scattering peaks reveals a predominantly layer-by-layer mode of film growth at 175 °C on ZnSe, while a more three-dimensional growth mode occurs on the oxide-desorbed GaAs(001) substrate. XPS studies of the semiconductor 3d levels indicate that the Fe/ZnSe interface is less reactive than the Fe/GaAs interface.

  6. Breaking resolution limits in ultrafast electron diffraction and microscopy

    PubMed Central

    Baum, Peter; Zewail, Ahmed H.

    2006-01-01

    Ultrafast electron microscopy and diffraction are powerful techniques for the study of the time-resolved structures of molecules, materials, and biological systems. Central to these approaches is the use of ultrafast coherent electron packets. The electron pulses typically have an energy of 30 keV for diffraction and 100–200 keV for microscopy, corresponding to speeds of 33–70% of the speed of light. Although the spatial resolution can reach the atomic scale, the temporal resolution is limited by the pulse width and by the difference in group velocities of electrons and the light used to initiate the dynamical change. In this contribution, we introduce the concept of tilted optical pulses into diffraction and imaging techniques and demonstrate the methodology experimentally. These advances allow us to reach limits of time resolution down to regimes of a few femtoseconds and, possibly, attoseconds. With tilted pulses, every part of the sample is excited at precisely the same time as when the electrons arrive at the specimen. Here, this approach is demonstrated for the most unfavorable case of ultrafast crystallography. We also present a method for measuring the duration of electron packets by autocorrelating electron pulses in free space and without streaking, and we discuss the potential of tilting the electron pulses themselves for applications in domains involving nuclear and electron motions. PMID:17056711

  7. Femtosecond time-resolved MeV electron diffraction

    DOE PAGES

    Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; ...

    2015-06-02

    We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS 2 are obtained utilizing a 5 fC (~3 × 10 4 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated bymore » observing the evolution of Bragg and superlattice peaks of 1T-TaS 2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.« less

  8. Effect of screw threading dislocations and inverse domain boundaries in GaN on the shape of reciprocal-space maps.

    PubMed

    Barchuk, Mykhailo; Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf; Rafaja, David

    2017-04-01

    The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features.

  9. Application of δ recycling to electron automated diffraction tomography data from inorganic crystalline nanovolumes.

    PubMed

    Rius, Jordi; Mugnaioli, Enrico; Vallcorba, Oriol; Kolb, Ute

    2013-07-01

    δ Recycling is a simple procedure for directly extracting phase information from Patterson-type functions [Rius (2012). Acta Cryst. A68, 399-400]. This new phasing method has a clear theoretical basis and was developed with ideal single-crystal X-ray diffraction data. On the other hand, introduction of the automated diffraction tomography (ADT) technique has represented a significant advance in electron diffraction data collection [Kolb et al. (2007). Ultramicroscopy, 107, 507-513]. When combined with precession electron diffraction, it delivers quasi-kinematical intensity data even for complex inorganic compounds, so that single-crystal diffraction data of nanometric volumes are now available for structure determination by direct methods. To check the tolerance of δ recycling to missing data-collection corrections and to deviations from kinematical behaviour of ADT intensities, δ recycling has been applied to differently shaped nanocrystals of various inorganic materials. The results confirm that it can phase ADT data very efficiently. In some cases even more complete structure models than those derived from conventional direct methods and least-squares refinement have been found. During this study it has been demonstrated that the Wilson-plot scaling procedure is largely insensitive to sample thickness variations and missing absorption corrections affecting electron ADT intensities.

  10. Structural and electron diffraction scaling of twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Zhang, Kuan; Tadmor, Ellad B.

    2018-03-01

    Multiscale simulations are used to study the structural relaxation in twisted graphene bilayers and the associated electron diffraction patterns. The initial twist forms an incommensurate moiré pattern that relaxes to a commensurate microstructure comprised of a repeating pattern of alternating low-energy AB and BA domains surrounding a high-energy AA domain. The simulations show that the relaxation mechanism involves a localized rotation and shrinking of the AA domains that scales in two regimes with the imposed twist. For small twisting angles, the localized rotation tends to a constant; for large twist, the rotation scales linearly with it. This behavior is tied to the inverse scaling of the moiré pattern size with twist angle and is explained theoretically using a linear elasticity model. The results are validated experimentally through a simulated electron diffraction analysis of the relaxed structures. A complex electron diffraction pattern involving the appearance of weak satellite peaks is predicted for the small twist regime. This new diffraction pattern is explained using an analytical model in which the relaxation kinematics are described as an exponentially-decaying (Gaussian) rotation field centered on the AA domains. Both the angle-dependent scaling and diffraction patterns are in quantitative agreement with experimental observations. A Matlab program for extracting the Gaussian model parameters accompanies this paper.

  11. Electron diffraction covering a wide angular range from Bragg diffraction to small-angle diffraction.

    PubMed

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Mori, Shigeo

    2018-04-09

    We construct an electron optical system to investigate Bragg diffraction (the crystal lattice plane, 10-2 to 10-3 rad) with the objective lens turned off by adjusting the current in the intermediate lenses. A crossover was located on the selected-area aperture plane. Thus, the dark-field imaging can be performed by using a selected-area aperture to select Bragg diffraction spots. The camera length can be controlled in the range of 0.8-4 m without exciting the objective lens. Furthermore, we can observe the magnetic-field dependence of electron diffraction using the objective lens under weak excitation conditions. The diffraction mode for Bragg diffraction can be easily switched to a small-angle electron diffraction mode having a camera length of more than 100 m. We propose this experimental method to acquire electron diffraction patterns that depict an extensive angular range from 10-2 to 10-7 rad. This method is applied to analyze the magnetic microstructures in three distinct magnetic materials, i.e. a uniaxial magnetic structure of BaFe10.35Sc1.6Mg0.05O19, a martensite of a Ni-Mn-Ga alloy, and a helical magnetic structure of Ba0.5Sr1.5Zn2Fe12O22.

  12. Hybrid Modes in Long Wavelength Free Electron Lasers

    DTIC Science & Technology

    2010-12-01

    response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and...diffraction along one axis, allowing free space diffraction along the other axis. We continue the analysis of the relativistic electron beam, co-propagating...control diffraction along one axis, allowing free space diffraction along the other axis. We continue the analysis of the relativistic electron beam, co

  13. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    DOE PAGES

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-19

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately tenmore » meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.« less

  14. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately tenmore » meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.« less

  15. Ultrafast electron diffraction study of ab-plane dynamics in superconducting Bi2Sr<2CaCu2O8+d

    NASA Astrophysics Data System (ADS)

    Konstantinova, Tatiana; Reid, Alexander; Wu, Lijun; Durr, Hermann; Wang, Xijie; Zhu, Yimei

    The role of phonons and other collective modes in cooperative electron phenomena in high-TC cuprate superconductors is an extensively interesting topic. Time-resolved experiments provide temporal hierarchy of the bosonic modes interacting with electrons. However, majority of research in this field explore dynamics of electronic states and can only make indirect conclusion about involvement of the lattice. We report time-resolved study of optimally doped Bi2Sr2CaCu2O8+d lattice response to photo-excitation by means of ultrafast electron diffraction that is directly sensitive to atomic motion. Data analysis utilizing Bloch-wave calculation of diffraction peak intensity allows separation of Cu-O in-plane vibration building up on the sub picosecond time scale from the low energy phonon population growth with a much slower rate. This study confirms the assumption of strong electron coupling to the Cu-O plane phonons. This work was supported by the US DOE, Office of Science, Basic Energy Science, Materials Science and Engineering Division under Contract No: DE-AC02-98CH10886; DOE LDRD funding under contract DE-AC02-76SF00515 and BNL.

  16. Structural dynamics of surfaces by ultrafast electron crystallography: experimental and multiple scattering theory.

    PubMed

    Schäfer, Sascha; Liang, Wenxi; Zewail, Ahmed H

    2011-12-07

    Recent studies in ultrafast electron crystallography (UEC) using a reflection diffraction geometry have enabled the investigation of a wide range of phenomena on the femtosecond and picosecond time scales. In all these studies, the analysis of the diffraction patterns and their temporal change after excitation was performed within the kinematical scattering theory. In this contribution, we address the question, to what extent dynamical scattering effects have to be included in order to obtain quantitative information about structural dynamics. We discuss different scattering regimes and provide diffraction maps that describe all essential features of scatterings and observables. The effects are quantified by dynamical scattering simulations and examined by direct comparison to the results of ultrafast electron diffraction experiments on an in situ prepared Ni(100) surface, for which structural dynamics can be well described by a two-temperature model. We also report calculations for graphite surfaces. The theoretical framework provided here allows for further UEC studies of surfaces especially at larger penetration depths and for those of heavy-atom materials. © 2011 American Institute of Physics

  17. Femtosecond Electron Wave Packet Propagation and Diffraction: Towards Making the ``Molecular Movie"

    NASA Astrophysics Data System (ADS)

    Miller, R. J. Dwayne

    2003-03-01

    Time-resolved electron diffraction harbors great promise for achieving atomic resolution of the fastest chemical processes. The generation of sufficiently short electron pulses to achieve this real time view of a chemical reaction has been limited by problems in maintaining short electron pulses with realistic electron densities to the sample. The propagation dynamics of femtosecond electron packets in the drift region of a photoelectron gun are investigated with an N-body numerical simulation and mean-field model. This analyis shows that the redistribution of electrons inside the packet, arising from space-charge and dispersion contributions, changes the pulse envelope and leads to the development of a spatially linear axial velocity distribution. These results have been used in the design of femtosecond photoelectron guns with higher time resolution and novel electron-optical methods of pulse characterization that are approaching 100 fs timescales. Time-resolved diffraction studies with electron pulses of approximately 500 femtoseconds have focused on solid-liquid phase transitions under far from equilibrium conditions. This work gives a microscopic description of the melting process and illustrates the promise of atomically resolving transition state processes.

  18. Observations on the Role of Hydrogen in Facet Formation in Near-alpha Titanium (Preprint)

    DTIC Science & Technology

    2011-05-01

    using quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning...quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning electron...tilt fractography / electron backscatter diffraction (EBSD) technique in which both the crystallographic orientation of the fractured grain and the

  19. Total-scattering pair-distribution function of organic material from powder electron diffraction data.

    PubMed

    Gorelik, Tatiana E; Schmidt, Martin U; Kolb, Ute; Billinge, Simon J L

    2015-04-01

    This paper shows that pair-distribution function (PDF) analyses can be carried out on organic and organometallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction and nanodiffraction in transmission electron microscopy or nanodiffraction in scanning transmission electron microscopy modes. The methods were demonstrated on organometallic complexes (chlorinated and unchlorinated copper phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam damage of the sample are possible to resolve.

  20. rf streak camera based ultrafast relativistic electron diffraction.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.

  1. Non-destructive detection of cross-sectional strain and defect structure in an individual Ag five-fold twinned nanowire by 3D electron diffraction mapping.

    PubMed

    Fu, Xin; Yuan, Jun

    2017-07-24

    Coherent x-ray diffraction investigations on Ag five-fold twinned nanowires (FTNWs) have drawn controversial conclusions concerning whether the intrinsic 7.35° angular gap could be compensated homogeneously through phase transformation or inhomogeneously by forming disclination strain field. In those studies, the x-ray techniques only provided an ensemble average of the structural information from all the Ag nanowires. Here, using three-dimensional (3D) electron diffraction mapping approach, we non-destructively explore the cross-sectional strain and the related strain-relief defect structures of an individual Ag FTNW with diameter about 30 nm. The quantitative analysis of the fine structure of intensity distribution combining with kinematic electron diffraction simulation confirms that for such a Ag FTNW, the intrinsic 7.35° angular deficiency results in an inhomogeneous strain field within each single crystalline segment consistent with the disclination model of stress-relief. Moreover, the five crystalline segments are found to be strained differently. Modeling analysis in combination with system energy calculation further indicates that the elastic strain energy within some crystalline segments, could be partially relieved by the creation of stacking fault layers near the twin boundaries. Our study demonstrates that 3D electron diffraction mapping is a powerful tool for the cross-sectional strain analysis of complex 1D nanostructures.

  2. The Heisenberg Uncertainty Principle Demonstrated with An Electron Diffraction Experiment

    ERIC Educational Resources Information Center

    Matteucci, Giorgio; Ferrari, Loris; Migliori, Andrea

    2010-01-01

    An experiment analogous to the classical diffraction of light from a circular aperture has been realized with electrons. The results are used to introduce undergraduate students to the wave behaviour of electrons. The diffraction fringes produced by the circular aperture are compared to those predicted by quantum mechanics and are exploited to…

  3. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Feichao; Liu, Shengguang; Zhu, Pengfei

    2014-08-15

    A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities inmore » various areas of sciences.« less

  4. High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun.

    PubMed

    Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao; Zhang, Jie; Cao, Jianming

    2014-08-01

    A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.

  5. Total-scattering pair-distribution function of organic material from powder electron diffraction data

    DOE PAGES

    Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; ...

    2015-04-01

    This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering datamore » and avoiding beam-damage of the sample are possible to resolve.« less

  6. Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhumagulova, K. N., E-mail: dzhumagulova.karlygash@gmail.com; Shalenov, E. O.; Ramazanov, T. S.

    2015-08-15

    Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer–Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.

  7. Three dimensional X-ray Diffraction Contrast Tomography Reconstruction of Polycrystalline Strontium Titanate during Sintering and Electron Backscatter Diffraction Validation

    NASA Astrophysics Data System (ADS)

    Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.

    The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.

  8. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  9. A pipeline for comprehensive and automated processing of electron diffraction data in IPLT.

    PubMed

    Schenk, Andreas D; Philippsen, Ansgar; Engel, Andreas; Walz, Thomas

    2013-05-01

    Electron crystallography of two-dimensional crystals allows the structural study of membrane proteins in their native environment, the lipid bilayer. Determining the structure of a membrane protein at near-atomic resolution by electron crystallography remains, however, a very labor-intense and time-consuming task. To simplify and accelerate the data processing aspect of electron crystallography, we implemented a pipeline for the processing of electron diffraction data using the Image Processing Library and Toolbox (IPLT), which provides a modular, flexible, integrated, and extendable cross-platform, open-source framework for image processing. The diffraction data processing pipeline is organized as several independent modules implemented in Python. The modules can be accessed either from a graphical user interface or through a command line interface, thus meeting the needs of both novice and expert users. The low-level image processing algorithms are implemented in C++ to achieve optimal processing performance, and their interface is exported to Python using a wrapper. For enhanced performance, the Python processing modules are complemented with a central data managing facility that provides a caching infrastructure. The validity of our data processing algorithms was verified by processing a set of aquaporin-0 diffraction patterns with the IPLT pipeline and comparing the resulting merged data set with that obtained by processing the same diffraction patterns with the classical set of MRC programs. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. A pipeline for comprehensive and automated processing of electron diffraction data in IPLT

    PubMed Central

    Schenk, Andreas D.; Philippsen, Ansgar; Engel, Andreas; Walz, Thomas

    2013-01-01

    Electron crystallography of two-dimensional crystals allows the structural study of membrane proteins in their native environment, the lipid bilayer. Determining the structure of a membrane protein at near-atomic resolution by electron crystallography remains, however, a very labor-intense and time-consuming task. To simplify and accelerate the data processing aspect of electron crystallography, we implemented a pipeline for the processing of electron diffraction data using the Image Processing Library & Toolbox (IPLT), which provides a modular, flexible, integrated, and extendable cross-platform, open-source framework for image processing. The diffraction data processing pipeline is organized as several independent modules implemented in Python. The modules can be accessed either from a graphical user interface or through a command line interface, thus meeting the needs of both novice and expert users. The low-level image processing algorithms are implemented in C++ to achieve optimal processing performance, and their interface is exported to Python using a wrapper. For enhanced performance, the Python processing modules are complemented with a central data managing facility that provides a caching infrastructure. The validity of our data processing algorithms was verified by processing a set of aquaporin-0 diffraction patterns with the IPLT pipeline and comparing the resulting merged data set with that obtained by processing the same diffraction patterns with the classical set of MRC programs. PMID:23500887

  11. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells.

    PubMed

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie

    2011-04-01

    Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies. © 2010 Elsevier Ltd. All rights reserved.

  12. Coincidence studies of diffraction structures in binary encounter electron spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, C.; Hagmann, S.; Richard, P.

    The authors have measured binary encounter electron (BEe) production in collisions of 0.3 MeV/u Cu{sup q+} (q=4,12) projectiles on H{sub 2} targets from 0 to 70 degrees with respect to the beam direction. Prominent features are the appearance of the BEe peak splitting and a very strong forward peaked angular distribution which are attributed to the diffractive scattering of the quasifree target electrons in the short range potential of the projectile. Using electron-projectile final charge state coincidence techniques, different collision reaction channels can be separated. Measurements of this type are being pursued.

  13. Femtosecond gas phase electron diffraction with MeV electrons.

    PubMed

    Yang, Jie; Guehr, Markus; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin

    2016-12-16

    We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.

  14. Bunch evolution study in optimization of MeV ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Lu, Xian-Hai; Du, Ying-Chao; Huang, Wen-Hui; Tang, Chuan-Xiang

    2014-12-01

    Megaelectronvolt ultrafast electron diffraction (UED) is a promising detection tool for ultrafast processes. The quality of diffraction image is determined by the transverse evolution of the probe bunch. In this paper, we study the contributing terms of the emittance and space charge effects to the bunch evolution in the MeV UED scheme, employing a mean-field model with an ellipsoidal distribution as well as particle tracking simulation. The small transverse dimension of the drive laser is found to be critical to improve the reciprocal resolution, exploiting both smaller emittance and larger transverse bunch size before the solenoid. The degradation of the reciprocal spatial resolution caused by the space charge effects should be carefully controlled.

  15. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.

    PubMed

    Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud

    2017-09-08

    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.

  16. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

    PubMed Central

    Nederlof, Igor; van Genderen, Eric; Li, Yao-Wang; Abrahams, Jan Pieter

    2013-01-01

    When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e− Å−2), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins. PMID:23793148

  17. Three-dimensional electron diffraction of plant light-harvesting complex

    PubMed Central

    Wang, Da Neng; Kühlbrandt, Werner

    1992-01-01

    Electron diffraction patterns of two-dimensional crystals of light-harvesting chlorophyll a/b-protein complex (LHC-II) from photosynthetic membranes of pea chloroplasts, tilted at different angles up to 60°, were collected to 3.2 Å resolution at -125°C. The reflection intensities were merged into a three-dimensional data set. The Friedel R-factor and the merging R-factor were 21.8 and 27.6%, respectively. Specimen flatness and crystal size were critical for recording electron diffraction patterns from crystals at high tilts. The principal sources of experimental error were attributed to limitations of the number of unit cells contributing to an electron diffraction pattern, and to the critical electron dose. The distribution of strong diffraction spots indicated that the three-dimensional structure of LHC-II is less regular than that of other known membrane proteins and is not dominated by a particular feature of secondary structure. ImagesFIGURE 1FIGURE 2 PMID:19431817

  18. Imaging electronic motions by ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Shao, Hua-Chieh; Starace, Anthony F.

    2017-08-01

    Recently ultrafast electron diffraction and microscopy have reached unprecedented temporal resolution, and transient structures with atomic precision have been observed in various reactions. It is anticipated that these extraordinary advances will soon allow direct observation of electronic motions during chemical reactions. We therefore performed a series of theoretical investigations and simulations to investigate the imaging of electronic motions in atoms and molecules by ultrafast electron diffraction. Three prototypical electronic motions were considered for hydrogen atoms. For the case of a breathing mode, the electron density expands and contracts periodically, and we show that the time-resolved scattering intensities reflect such changes of the charge radius. For the case of a wiggling mode, the electron oscillates from one side of the nucleus to the other, and we show that the diffraction images exhibit asymmetric angular distributions. The last case is a hybrid mode that involves both breathing and wiggling motions. Owing to the demonstrated ability of ultrafast electrons to image these motions, we have proposed to image a coherent population transfer in lithium atoms using currently available femtosecond electron pulses. A frequency-swept laser pulse adiabatically drives the valence electron of a lithium atom from the 2s to 2p orbitals, and a time-delayed electron pulse maps such motion. Our simulations show that the diffraction images reflect this motion both in the scattering intensities and the angular distributions.

  19. Electron irradiation induced effects on the physico-chemical properties of L-Arginine Maleate Dihydrate (LAMD) single crystals

    NASA Astrophysics Data System (ADS)

    Thomas, Prince; Dhole, S. D.; Joseph, Ginson P.

    2018-07-01

    Single crystals of L-Arginine Maleate Dihydrate (LAMD) have been synthesized by slow solvent evaporation technique and irradiated with 6 MeV electrons at fluences of 0.5 ×1015e /cm2 , 1.0 ×1015e /cm2 and 1.5 ×1015e /cm2 . The Powder X-ray Diffraction (PXRD) studies showed that the intensity of the diffraction peaks of the Electron Beam (EB) irradiated crystals decreases with irradiation fluence. The electron irradiation induced effects on the optical parameters such as cut-off wavelength, band gap, Urbach energy and refractive index have been studied and the results are tabulated. The electronic parameters such as valence electron plasma energy, ℏωp , Penn gap, Ep , Fermi energy, EF and Electronic polarizability, α for pure and irradiated LAMD crystals are calculated. The electrical and thermal properties of the pure and irradiated LAMD crystals are also investigated.

  20. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.; Pritzker, A. N.

    1974-01-01

    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  1. Quantitative theory of diffraction by cylindrical scroll nanotubes.

    PubMed

    Khadiev, Azat; Khalitov, Zufar

    2018-05-01

    A quantitative theory of Fraunhofer diffraction by right- and left-handed multiwalled cylindrical scroll nanotubes is developed on the basis of the kinematical approach. The proposed theory is mainly dedicated to structural studies of individual nanotubes by the selected-area electron diffraction technique. Strong and diffuse reflections of the scroll nanotube were studied and explicit formulas that govern relations between the direct and reciprocal lattice of the scroll nanotube are achieved.

  2. Incident-beam effects in electron-stimulated Auger-electron diffraction

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Cao, Jianming

    1991-04-01

    We have examined incident-beam effects in electron-stimulated Auger-electron diffraction (AED) on a cleaved GaAs(110) surface. The results indicate that incident-beam diffraction is significant in an AED experiment, and that the dissipative nature of the incident beam in contributing to the Auger process must be accounted for. We have developed a qualitative model that describes the trend of the polar-angle dependence of the Auger intensity for both the incident and exit beams. In calculating the diffraction features, we used a zeroth-order approximation to simulate the dissipation of the incident beam, which is found to adequately describe the experimental data.

  3. Structural phase transitions and time-resolved dynamics of solid-supported interfacial methanol observed by reflection electron diffraction

    NASA Astrophysics Data System (ADS)

    Yang, Ding-Shyue; He, Xing; Wu, Chengyi

    Due to their large scattering cross sections with matter, electrons are suitable for contactless probing of solid-supported surface assemblies, especially in a reflection geometry. Direct visualization of assembly structures through electron diffraction further enables studies of ultrafast structural dynamics through the pump-probe scheme as well as discoveries of hidden phase changes in equilibrium that have been obscure in spectroscopic measurements. In this presentation, we report our first observation of unique two-stage transformations of interfacial methanol on smooth hydrophobic surfaces. The finding may reconcile the inconsistent previous reports of the crystallization temperature using various indirect methods. Dynamically, energy transfer across a solid-molecule interface following photoexcitation of the substrate is found to be highly dependent on the structure of interfacial methanol. If it is only 2-dimensionally ordered, as the film thickness increases, a prolonged time in the decrease of diffraction intensity is seen, signifying an inefficient vibrational coupling in the surface normal direction. Implications of the dynamics results and an outlook of interfacial studies using time-resolved and averaged electron diffraction will be discussed. We gratefully acknowledge the support from the R. A. Welch Foundation (Grant No. E-1860), the Donors of the American Chemical Society Petroleum Research Fund (ACS-PRF), and the University of Houston.

  4. Strain analysis from nano-beam electron diffraction: Influence of specimen tilt and beam convergence.

    PubMed

    Grieb, Tim; Krause, Florian F; Schowalter, Marco; Zillmann, Dennis; Sellin, Roman; Müller-Caspary, Knut; Mahr, Christoph; Mehrtens, Thorsten; Bimberg, Dieter; Rosenauer, Andreas

    2018-07-01

    Strain analyses from experimental series of nano-beam electron diffraction (NBED) patterns in scanning transmission electron microscopy are performed for different specimen tilts. Simulations of NBED series are presented for which strain analysis gives results that are in accordance with experiment. This consequently allows to study the relation between measured strain and actual underlying strain. A two-tilt method which can be seen as lowest-order electron beam precession is suggested and experimentally implemented. Strain determination from NBED series with increasing beam convergence is performed in combination with the experimental realization of a probe-forming aperture with a cross inside. It is shown that using standard evaluation techniques, the influence of beam convergence on spatial resolution is lower than the influence of sharp rings around the diffraction disc which occur at interfaces and which are caused by the tails of the intensity distribution of the electron probe. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Carrier Dynamics and Application of the Phase Coherent Photorefractive Effect in ZnSe Quantum Wells

    NASA Astrophysics Data System (ADS)

    Dongol, Amit

    The intensity dependent diffraction efficiency of a phase coherent photorefractive (PCP) ZnSe quantum well (QW) is investigated at 80 K in a two-beam four-wave mixing (FWM) configuration using 100 fs laser pulses with a repetition rate of 80 MHz. The observed diffraction efficiencies of the first and second-order diffracted beam are on the order of 10-3 and 10-5, respectively, revealing nearly no intensity dependence. The first-order diffraction is caused by the PCP effect where the probe-pulse is diffracted due to a long-living incoherent electron density grating in the QW. The second-order diffraction is created by a combination of diffraction processes. For negative probe-pulse delay, the exciton polarization is diffracted at the electron grating twice by a cascade effect. For positive delay, the diffracted signal is modified by the destructive interference with a chi(5) generated signal due to a dynamical screening effect. Model calculations of the signal traces based on the optical Bloch equations considering inhomogeneous broadening of exciton energies are in good agreement with the experimental data. To study the carrier dynamics responsible for the occurrence of the PCP effect, threebeam FWM experiments are carried out. The non-collinear wave-vectors k1 , k2 and k3 at central wavelength of 441 nm (~2.81 eV) were resonantly tuned to the heavy-hole exciton transition energy at 20 K. In the FWM experiment the time coincident strong pump pulses k1 and k2 create both an exciton density grating in the QW and an electron-hole pair grating in the GaAs while the delayed weak pulse k3 simultaneously probes the exciton lifetime as well as the electron grating capture time. The model calculations are in good agreement with the experimental results also providing information about the transfer delay of electrons arriving from the substrate to the QW. For negative probe-pulse delay we still observe a diffracted signal due to the long living electron density grating in the QW. The electron grating build-up and decay times are also studied with the modified three-beam FWM set-up. Using an optical shutter for pump pulses k1and k2, the dynamics of the electron grating formation and its decay is continuously probed by a delayed pulse k3. The obtained build-up and decay times are found to depend nearly linearly on the intensity of incident pulses k1 and k2 being on the order of several microseconds at low pump intensities. The PCP effect in ZnSe QW possesses a time-gating capability which can be used for real-time holographic imaging. In this work we demonstrate contrast enhanced real time holographic imaging (CEHI) of floating glass beads and of living unicellular animals (Paramecium and Euglena cells) in aqueous solution. We also demonstrate CEHI of a ~100 im thick wire concealed behind a layer of chicken skin. The results demonstrate the potential of PCP QWs for real-time and depth-resolved imaging of moving micrometer sized biological objects in transparent media or of obscured objects in turbid media.

  6. Exploring coherent electron excitation and migration dynamics by electron diffraction with ultrashort X-ray pulses.

    PubMed

    Yuan, Kai-Jun; Bandrauk, André D

    2017-10-04

    Exploring ultrafast charge migration is of great importance in biological and chemical reactions. We present a scheme to monitor attosecond charge migration in molecules by electron diffraction with spatial and temporal resolutions from ab initio numerical simulations. An ultraviolet pulse creates a coherent superposition of electronic states, after which a time-delayed attosecond X-ray pulse is used to ionize the molecule. It is found that diffraction patterns in the X-ray photoelectron spectra show an asymmetric structure, which is dependent on the time delay between the pump-probe pulses, encoding the information of molecular orbital symmetry and chemical bonding. We describe these phenomena by developing an electronic time-dependent ultrafast molecular photoionization model of a coherent superposition state. The periodical distortion of electron diffraction patterns illustrates the evolution of the electronic coherence, providing a tool for attosecond imaging of ultrafast molecular reaction processes.

  7. The effect of Sr and Bi on the Si(100) surface oxidation - Auger electron spectroscopy, low energy electron diffraction, and X-ray photoelectron spectroscopy study

    NASA Technical Reports Server (NTRS)

    Fan, W. C.; Mesarwi, A.; Ignatiev, A.

    1990-01-01

    The effect of Sr and Bi on the oxidation of the Si(100) surface has been studied by Auger electron spectroscopy, low electron diffraction, and X-ray photoelectron spectroscopy. A dramatic enhancement, by a factor of 10, of the Si oxidation has been observed for Si(100) with a Sr overlayer. The SR-enhanced Si oxidation has been studied as a function of O2 exposure and Sr coverage. In contrast to the oxidation promotion of Sr on Si, it has been also observed that a Bi overlayer on Si(100) reduced Si oxidation significantly. Sr adsorption on the Si(100) with a Bi overlayer enhances Si oxidation only at Sr coverage of greater than 0.3 ML.

  8. Electron coherent diffraction tomography of a nanocrystal

    NASA Astrophysics Data System (ADS)

    Dronyak, Roman; Liang, Keng S.; Tsai, Jin-Sheng; Stetsko, Yuri P.; Lee, Ting-Kuo; Chen, Fu-Rong

    2010-05-01

    Coherent diffractive imaging (CDI) with electron or x-ray sources is a promising technique for investigating the structure of nanoparticles down to the atomic scale. In electron CDI, a two-dimensional reconstruction is demonstrated using highly coherent illumination from a field-emission gun as a source of electrons. In a three-dimensional (3D) electron CDI, we experimentally determine the morphology of a single MgO nanocrystal using the Bragg diffraction geometry. An iterative algorithm is applied to invert the 3D diffraction pattern about a (200) reflection of the nanoparticle measured at an angular range of 1.8°. The results reveal a 3D image of the sample at ˜8 nm resolution, and agree with a simulation. Our work demonstrates an alternative approach to obtain the 3D structure of nanocrystals with an electron microscope.

  9. Suppressing Ghost Diffraction in E-Beam-Written Gratings

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel; Backlund, Johan

    2009-01-01

    A modified scheme for electron-beam (E-beam) writing used in the fabrication of convex or concave diffraction gratings makes it possible to suppress the ghost diffraction heretofore exhibited by such gratings. Ghost diffraction is a spurious component of diffraction caused by a spurious component of grating periodicity as described below. The ghost diffraction orders appear between the main diffraction orders and are typically more intense than is the diffuse scattering from the grating. At such high intensity, ghost diffraction is the dominant source of degradation of grating performance. The pattern of a convex or concave grating is established by electron-beam writing in a resist material coating a substrate that has the desired convex or concave shape. Unfortunately, as a result of the characteristics of electrostatic deflectors used to control the electron beam, it is possible to expose only a small field - typically between 0.5 and 1.0 mm wide - at a given fixed position of the electron gun relative to the substrate. To make a grating larger than the field size, it is necessary to move the substrate to make it possible to write fields centered at different positions, so that the larger area is synthesized by "stitching" the exposed fields.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashida, Misa; Malac, Marek; Egerton, Ray F.

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy ofmore » the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.« less

  11. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    NASA Astrophysics Data System (ADS)

    Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan

    2006-11-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  12. Neutron powder diffraction study on the iron-based nitride superconductor ThFeAsN

    NASA Astrophysics Data System (ADS)

    Mao, Huican; Wang, Cao; Maynard-Casely, Helen E.; Huang, Qingzhen; Wang, Zhicheng; Cao, Guanghan; Li, Shiliang; Luo, Huiqian

    2017-03-01

    We report neutron diffraction and transport results on the newly discovered superconducting nitride ThFeAsN with T_c= 30 \\text{K} . No magnetic transition, but a weak structural distortion around 160 K, is observed by cooling from 300 K to 6 K. Analysis on the resistivity, Hall transport and crystal structure suggests that this material behaves as an electron optimally doped pnictide superconductor due to extra electrons from nitrogen deficiency or oxygen occupancy at the nitrogen site, which, together with the low arsenic height, may enhance the electron itinerancy and reduce the electron correlations, thus suppressing the static magnetic order.

  13. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    PubMed

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  14. Surface structure of Bi2Sr2CaCu2O(8+delta) high-temperature superconductors studied using low-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Mitzi, D. B.; Lindau, I.

    1988-12-01

    The surface structure of Bi2Sr2CaCu2O(8+delta) has been studied using low-energy electron diffraction (LEED). Sharp diffraction spots indicative of a well-ordered surface are observed. The LEED patterns unequivocally show that this type of material preferentially cleaves along the a-b planes of the nearly tetragonal unit cell. A superstructure extending along one of the axes in the a-b plane (b) is found to have a periodicity of 27 + or - 0.5 A, in good agreement with earlier studies of the three-dimensional crystal structure. The superstructure at the surface is nonlocal in character and reflects the long-range superlattice of the bulk along the b axis. Intensity modulations of the diffraction spots oriented along the b axis are also reported and discussed in terms of the cell dimension of the unit cell along the b axis.

  15. Ultrafast molecular processes mapped by femtosecond x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Elsaesser, Thomas

    2012-02-01

    X-ray diffraction with a femtosecond time resolution allows for mapping photoinduced structural dynamics on the length scale of a chemical bond and in the time domain of atomic and molecular motion. In a pump-probe approach, a femtosecond excitation pulse induces structural changes which are probed by diffracting a femtosecond hard x-ray pulse from the excited sample. The transient angular positions and intensities of diffraction peaks give insight into the momentary atomic or molecular positions and into the distribution of electronic charge density. The simultaneous measurement of changes on different diffraction peaks is essential for determining atom positions and charge density maps with high accuracy. Recent progress in the generation of ultrashort hard x-ray pulses (Cu Kα, wavelength λ=0.154 nm) in laser-driven plasma sources has led to the implementation of the powder diffraction and the rotating crystal method with a time resolution of 100 fs. In this contribution, we report new results from powder diffraction studies of molecular materials. A first series of experiments gives evidence of a so far unknown concerted transfer of electrons and protons in ammonium sulfate [(NH4)2SO4], a centrosymmetric structure. Charge transfer from the sulfate groups results in the sub-100 fs generation of a confined electron channel along the c-axis of the unit cell which is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. A second study addresses atomic rearrangements and charge dislocations in the non-centrosymmetric potassium dihydrogen phosphate [KH2PO4, KDP]. Photoexcitation generates coherent low-frequency motions along the LO and TO phonon coordinates, leaving the average atomic positions unchanged. The time-dependent maps of electron density demonstrate a concomitant oscillatory relocation of electronic charge with a spatial amplitude of the order of a chemical bond length, two orders of magnitude larger than the vibrational amplitudes. The coherent phonon motions drive the charge relocation, similar to a soft mode driven phase transition between the ferro- and paraelectric phase of KDP.

  16. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weathersby, S. P.; Brown, G.; Chase, T. F.

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition ratemore » with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.« less

  17. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.

    PubMed

    Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  18. High-resolution scanning precession electron diffraction: Alignment and spatial resolution.

    PubMed

    Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A

    2017-03-01

    Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Diffraction and pulse slippage in the Boeing 1 kW FEL oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, J.; Wong, R.K.; Colson, W.B.

    1995-12-31

    A four-dimensional simulation in x, y, z, and t, including betatron motion of the electrons, is used to study the combined effects of diffraction, pulse slippage and desynchronism in the Boeing 1 kW FEL oscillator.

  20. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berecz, Tibor, E-mail: berecz@eik.bme.hu; Jenei, Péter, E-mail: jenei@metal.elte.hu; Csóré, András, E-mail: csorean@gmail.com

    2016-03-15

    The microstructure and the dislocation density in as-quenched ferrous lath martensite were studied by different methods. The blocks, packets and variants formed due to martensitic transformation were identified and their sizes were determined by electron backscatter diffraction (EBSD). Concomitant transmission electron microscopy (TEM) investigation revealed that the laths contain subgrains with the size between 50 and 100 nm. A novel evaluation procedure of EBSD images was elaborated for the determination of the density and the space distribution of geometrically necessary dislocations from the misorientation distribution. The total dislocation density obtained by X-ray diffraction line profile analysis was in good agreementmore » with the value determined by EBSD, indicating that the majority of dislocations formed due to martensitic transformation during quenching are geometrically necessary dislocations.« less

  1. Near Edge X-Ray Absorption and X-Ray Photoelectron Diffraction Studies of the Structural Environment of Ge-Si Systems

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Pinto, N.; Bernardini, R.; de Crescenzi, M.; Sacchi, M.

    Near edge X-ray absorption spectroscopy (XAS), X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) are powerful techniques for the qualitative study of the structural and electronic properties of several systems. The recent development of a multiple scattering approach to simulating experimental spectra opened a friendly way to the study of structural environments of solids and surfaces. This article reviews recent X-ray absorption experiments using synchrotron radiation which were performed at Ge L edges and core level electron diffraction measurements obtained using a traditional X-ray source from Ge core levels for ultrathin Ge films deposited on silicon substrates. Thermodynamics and surface reconstruction have been found to play a crucial role in the first stages of Ge growth on Si(001) and Si(111) surfaces. Both techniques show the occurrence of intermixing processes even for room-temperature-grown Ge/Si(001) samples and give a straightforward measurement of the overlayer tetragonal distortion. The effects of Sb as a surfactant on the Ge/Si(001) interface have also been investigated. In this case, evidence of layer-by-layer growth of the fully strained Ge overlayer with a reduced intermixing is obtained when one monolayer of Sb is predeposited on the surface.

  2. Excitation of phonons in medium-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.

    1996-03-01

    The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.

  3. On the Use of Dynamical Diffraction Theory To Refine Crystal Structure from Electron Diffraction Data: Application to KLa5O5(VO4)2, a Material with Promising Luminescent Properties.

    PubMed

    Colmont, Marie; Palatinus, Lukas; Huvé, Marielle; Kabbour, Houria; Saitzek, Sébastien; Djelal, Nora; Roussel, Pascal

    2016-03-07

    A new lanthanum oxide, KLa5O5(VO4)2, was synthesized using a flux growth technique that involved solid-state reaction under an air atmosphere at 900 °C. The crystal structure was solved and refined using an innovative approach recently established and based on three-dimensional (3D) electron diffraction data, using precession of the electron beam and then validated against Rietveld refinement and denisty functional theory (DFT) calculations. It crystallizes in a monoclinic unit cell with space group C2/m and has unit cell parameters of a = 20.2282(14) Å, b = 5.8639(4) Å, c = 12.6060(9) Å, and β = 117.64(1)°. Its structure is built on Cresnel-like two-dimensional (2D) units (La5O5) of 4*3 (OLa4) tetrahedra, which run parallel to (001) plane, being surrounded by isolated VO4 tetrahedra. Four isolated vanadate groups create channels that host K(+) ions. Substitution of K(+) cations by another alkali metal is possible, going from lithium to rubidium. Li substitution led to a similar phase with a primitive monoclinic unit cell. A complementary selected area electron diffraction (SAED) study highlighted diffuse streaks associated with stacking faults observed on high-resolution electron microscopy (HREM) images of the lithium compound. Finally, preliminary catalytic tests for ethanol oxidation are reported, as well as luminescence evidence. This paper also describes how solid-state chemists can take advantages of recent progresses in electron crystallography, assisted by DFT calculations and powder X-ray diffraction (PXRD) refinements, to propose new structural types with potential applications to the physicist community.

  4. Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications.

    PubMed

    Winkelmann, A; Nolze, G; Vespucci, S; Naresh-Kumar, G; Trager-Cowan, C; Vilalta-Clemente, A; Wilkinson, A J; Vos, M

    2017-09-01

    We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  5. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-05-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.

  6. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    PubMed Central

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651

  7. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    NASA Astrophysics Data System (ADS)

    He, Z.-H.; Thomas, A. G. R.; Beaurepaire, B.; Nees, J. A.; Hou, B.; Malka, V.; Krushelnick, K.; Faure, J.

    2013-02-01

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  8. Ultrafast structural dynamics of boron nitride nanotubes studied using transmitted electrons.

    PubMed

    Li, Zhongwen; Sun, Shuaishuai; Li, Zi-An; Zhang, Ming; Cao, Gaolong; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2017-09-14

    We investigate the ultrafast structural dynamics of multi-walled boron nitride nanotubes (BNNTs) upon femtosecond optical excitation using ultrafast electron diffraction in a transmission electron microscope. Analysis of the time-resolved (100) and (002) diffraction profiles reveals highly anisotropic lattice dynamics of BNNTs, which can be attributed to the distinct nature of the chemical bonds in the tubular structure. Moreover, the changes in (002) diffraction positions and intensities suggest that the lattice response of BNNTs to the femtosecond laser excitation involves a fast and a slow lattice dynamic process. The fast process with a time constant of about 8 picoseconds can be understood to be a result of electron-phonon coupling, while the slow process with a time constant of about 100 to 300 picoseconds depending on pump laser fluence is tentatively associated with an Auger recombination effect. In addition, we discuss the power-law relationship of a three-photon absorption process in the BNNT nanoscale system.

  9. Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grygiel, C.; Lebius, H.; Bouffard, S.

    2012-01-15

    The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX (''Analyse en Ligne sur IRRSUD par diffraction de rayons X''), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accelerateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIXmore » to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO{sub 3}. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO{sub 3}, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO{sub 3}, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.« less

  10. Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold-field emission scanning electron microscope for nanomaterials characterization.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald

    2013-01-01

    Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.

  11. Defect ordering in YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6: Synthesis and characterization by neutron and electron diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Y. P.; Greedan, J. E.; O'Reilly, A. H.; Reimers, J. N.; Stager, C. V.; Post, M. L.

    1990-02-01

    Polycrystalline samples of YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6 were prepared by oxygen titration of YBa 2 Cu 3O 6.0 at 450°C followed by slow cooling to room temperature. Both samples showed evidence for the a' = 2a supercell in individual grains by electron diffraction as reported previously. In addition the superlattice was observed in neutron powder diffraction indicating that the bulk material is also well ordered. In this study the YBa 2Cu 3O 6.6 phase showed longer correlation lengths for ordering along both a* and b* than YBa 2Cu 3O 6.5. For the former compound the powder-averaged, sample-averaged a* correlation distance is 26A˚from neutron diffraction. Analysis of electron diffraction profiles on selected single crystals give correlation lengths along a*, b*, and c* of 100, 200, and 50A˚, respectively. Dark field imaging discloses the presence of striped, ordered domains elongated along b* with a distribution of sizes. Both neutron diffraction and dark field imaging indicate that the volume fraction of the ordered domains is about 50%. A correlation is noted between the Meissner Effect and the extent of defect ordering in the bulk samples of the two phases.

  12. Diffraction and microscopy with attosecond electron pulse trains

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Attosecond spectroscopy1-7 can resolve electronic processes directly in time, but a movie-like space-time recording is impeded by the too long wavelength ( 100 times larger than atomic distances) or the source-sample entanglement in re-collision techniques8-11. Here we advance attosecond metrology to picometre wavelength and sub-atomic resolution by using free-space electrons instead of higher-harmonic photons1-7 or re-colliding wavepackets8-11. A beam of 70-keV electrons at 4.5-pm de Broglie wavelength is modulated by the electric field of laser cycles into a sequence of electron pulses with sub-optical-cycle duration. Time-resolved diffraction from crystalline silicon reveals a < 10-as delay of Bragg emission and demonstrates the possibility of analytic attosecond-ångström diffraction. Real-space electron microscopy visualizes with sub-light-cycle resolution how an optical wave propagates in space and time. This unification of attosecond science with electron microscopy and diffraction enables space-time imaging of light-driven processes in the entire range of sample morphologies that electron microscopy can access.

  13. Two-dimensional mapping of polarizations of rhombohedral nanostructures in the orthorhombic phase of KNbO3 by the combined use of scanning transmission electron microscopy and convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Tsuda, Kenji; Tanaka, Michiyoshi

    2015-08-01

    Rhombohedral nanostructures previously found in the orthorhombic phase of KNbO3, by convergent-beam electron diffraction [Tsuda et al., Appl. Phys. Lett. 102, 051913 (2013)], have been investigated by the combined use of scanning transmission electron microscopy and convergent-beam electron diffraction. Two-dimensional distributions of the rhombohedral nanostructures, or nanometer-scale spatial fluctuations of polarization clusters, have been successfully visualized. The correlation length of the observed spatial fluctuations of local polarizations is related to the cpc/apc ratio and the transition entropy.

  14. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction.

    PubMed

    Sokolowski-Tinten, K; Shen, X; Zheng, Q; Chase, T; Coffee, R; Jerman, M; Li, R K; Ligges, M; Makasyuk, I; Mo, M; Reid, A H; Rethfeld, B; Vecchione, T; Weathersby, S P; Dürr, H A; Wang, X J

    2017-09-01

    We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.

  15. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction

    PubMed Central

    Sokolowski-Tinten, K.; Shen, X.; Zheng, Q.; Chase, T.; Coffee, R.; Jerman, M.; Li, R. K.; Ligges, M.; Makasyuk, I.; Mo, M.; Reid, A. H.; Rethfeld, B.; Vecchione, T.; Weathersby, S. P.; Dürr, H. A.; Wang, X. J.

    2017-01-01

    We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels. PMID:28795080

  16. Teaching Diffraction of Light and Electrons: Classroom Analogies to Classic Experiments

    ERIC Educational Resources Information Center

    Velentzas, Athanasios

    2014-01-01

    Diffraction and interference are phenomena that demonstrate the wave nature of light and of particles. Experiments relating to the diffraction/interference of light can easily be carried out in an educational lab, but it may be impossible to perform experiments involving electrons because of the lack of specialized equipment needed for such…

  17. Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping

    DOE PAGES

    Pekin, Thomas C.; Gammer, Christoph; Ciston, Jim; ...

    2017-01-28

    Scanning nanobeam electron diffraction strain mapping is a technique by which the positions of diffracted disks sampled at the nanoscale over a crystalline sample can be used to reconstruct a strain map over a large area. However, it is important that the disk positions are measured accurately, as their positions relative to a reference are directly used to calculate strain. Here in this study, we compare several correlation methods using both simulated and experimental data in order to directly probe susceptibility to measurement error due to non-uniform diffracted disk illumination structure. We found that prefiltering the diffraction patterns with amore » Sobel filter before performing cross correlation or performing a square-root magnitude weighted phase correlation returned the best results when inner disk structure was present. Lastly, we have tested these methods both on simulated datasets, and experimental data from unstrained silicon as well as a twin grain boundary in 304 stainless steel.« less

  18. Exploring transmission Kikuchi diffraction using a Timepix detector

    NASA Astrophysics Data System (ADS)

    Vespucci, S.; Winkelmann, A.; Mingard, K.; Maneuski, D.; O'Shea, V.; Trager-Cowan, C.

    2017-02-01

    Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods.

  19. Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam

    PubMed Central

    Sawaya, Michael R.; Cascio, Duilio; Gingery, Mari; Rodriguez, Jose; Goldschmidt, Lukasz; Colletier, Jacques-Philippe; Messerschmidt, Marc M.; Boutet, Sébastien; Koglin, Jason E.; Williams, Garth J.; Brewster, Aaron S.; Nass, Karol; Hattne, Johan; Botha, Sabine; Doak, R. Bruce; Shoeman, Robert L.; DePonte, Daniel P.; Park, Hyun-Woo; Federici, Brian A.; Sauter, Nicholas K.; Schlichting, Ilme; Eisenberg, David S.

    2014-01-01

    It has long been known that toxins produced by Bacillus thuringiensis (Bt) are stored in the bacterial cells in crystalline form. Here we describe the structure determination of the Cry3A toxin found naturally crystallized within Bt cells. When whole Bt cells were streamed into an X-ray free-electron laser beam we found that scattering from other cell components did not obscure diffraction from the crystals. The resolution limits of the best diffraction images collected from cells were the same as from isolated crystals. The integrity of the cells at the moment of diffraction is unclear; however, given the short time (∼5 µs) between exiting the injector to intersecting with the X-ray beam, our result is a 2.9-Å-resolution structure of a crystalline protein as it exists in a living cell. The study suggests that authentic in vivo diffraction studies can produce atomic-level structural information. PMID:25136092

  20. Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter

    PubMed Central

    Yakovlev, Vladislav S.; Stockman, Mark I.; Krausz, Ferenc; Baum, Peter

    2015-01-01

    For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction can reveal localised atomic-scale origins of optical and electronic phenomena. In particular, we point out nontrivial relations between microscopic electric current and density in undoped graphene. PMID:26412407

  1. Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter

    DOE PAGES

    Yakovlev, Vladislav S.; Stockman, Mark I.; Krausz, Ferenc; ...

    2015-09-28

    For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction can reveal localised atomic-scale origins of optical and electronic phenomena. Here, we point out nontrivial relations between microscopic electric current and density in undoped graphene.

  2. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chun-Yueh; Chang, Wei-Tse; Chen, Yi-Sheng

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This workmore » demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.« less

  3. The structure of denisovite, a fibrous nanocrystalline polytypic disordered ‘very complex’ silicate, studied by a synergistic multi-disciplinary approach employing methods of electron crystallography and X-ray powder diffraction

    PubMed Central

    Schowalter, Marco; Schmidt, Martin U.; Czank, Michael; Depmeier, Wulf; Rosenauer, Andreas

    2017-01-01

    Denisovite is a rare mineral occurring as aggregates of fibres typically 200–500 nm diameter. It was confirmed as a new mineral in 1984, but important facts about its chemical formula, lattice parameters, symmetry and structure have remained incompletely known since then. Recently obtained results from studies using microprobe analysis, X-ray powder diffraction (XRPD), electron crystallography, modelling and Rietveld refinement will be reported. The electron crystallography methods include transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-angle annular dark-field imaging (HAADF), high-resolution transmission electron microscopy (HRTEM), precession electron diffraction (PED) and electron diffraction tomography (EDT). A structural model of denisovite was developed from HAADF images and later completed on the basis of quasi-kinematic EDT data by ab initio structure solution using direct methods and least-squares refinement. The model was confirmed by Rietveld refinement. The lattice parameters are a = 31.024 (1), b = 19.554 (1) and c = 7.1441 (5) Å, β = 95.99 (3)°, V = 4310.1 (5) Å3 and space group P12/a1. The structure consists of three topologically distinct dreier silicate chains, viz. two xonotlite-like dreier double chains, [Si6O17]10−, and a tubular loop-branched dreier triple chain, [Si12O30]12−. The silicate chains occur between three walls of edge-sharing (Ca,Na) octahedra. The chains of silicate tetrahedra and the octahedra walls extend parallel to the z axis and form a layer parallel to (100). Water molecules and K+ cations are located at the centre of the tubular silicate chain. The latter also occupy positions close to the centres of eight-membered rings in the silicate chains. The silicate chains are geometrically constrained by neighbouring octahedra walls and present an ambiguity with respect to their z position along these walls, with displacements between neighbouring layers being either Δz = c/4 or −c/4. Such behaviour is typical for polytypic sequences and leads to disorder along [100]. In fact, the diffraction pattern does not show any sharp reflections with l odd, but continuous diffuse streaks parallel to a* instead. Only reflections with l even are sharp. The diffuse scattering is caused by (100) nano­lamellae separated by stacking faults and twin boundaries. The structure can be described according to the order–disorder (OD) theory as a stacking of layers parallel to (100). PMID:28512570

  4. Joint Services Electronics Program.

    DTIC Science & Technology

    1985-12-01

    NavyOffice of Naval Research 800 Ouincy Street Arlington, Virginia -*i. I. This document has been approved I-- for pjiblic release and salo; its C=3...Type of Report & Period Covered.- Department of the Navy Annual Report - Office of Naval Research Oct. 1984- Sept. 1985 . 800 Quincy Street 14...TECHNOLOGY TRANSITION 1 III. RESEARCH SUMMARY 10 A. DIFFRACTION STUDIES/ 10 - - 4.4 1. Diffraction by Non-Conducting Surfaces 10 (a) Diffraction by a

  5. The significance of Bragg's law in electron diffraction and microscopy, and Bragg's second law.

    PubMed

    Humphreys, C J

    2013-01-01

    Bragg's second law, which deserves to be more widely known, is recounted. The significance of Bragg's law in electron diffraction and microscopy is then discussed, with particular emphasis on differences between X-ray and electron diffraction. As an example of such differences, the critical voltage effect in electron diffraction is described. It is then shown that the lattice imaging of crystals in high-resolution electron microscopy directly reveals the Bragg planes used for the imaging process, exactly as visualized by Bragg in his real-space law. Finally, it is shown how in 2012, for the first time, on the centennial anniversary of Bragg's law, single atoms have been identified in an electron microscope using X-rays emitted from the specimen. Hence atomic resolution X-ray maps of a crystal in real space can be formed which give the positions and identities of the different atoms in the crystal, or of a single impurity atom in the crystal.

  6. Electron diffraction and microscopy study of nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Deniz, Hakan

    Carbon nanotubes have many excellent properties that are strongly influenced by their atomic structure. The realization of the ultimate potential of carbon nanotubes in technological applications necessitates a precise control of the structure of as-grown nanotubes as well as the identification of their atomic structures. Transmission electron microscopy (TEM) is a technique that can deliver this by combining the high resolution imaging and electron diffraction simultaneously. In this study, a new catalyst system (the Co/Si) was investigated in the production of single-walled carbon nanotubes (SWNTs) by laser ablation. It was discovered that the Co/Si mixture as a catalyst was as successful as the Ni/Co in the synthesis of SWNTs. The isolated individual SWNTs were examined by using nanobeam electron diffraction for the structure identification and it was found that carbon nanotubes grown by this catalyst mixture tend to be slightly more metallic. The electron diffraction technique has been refined to establish a new methodology to determine the chirality of each shell in a carbon nanotube and it has been applied to determine the atomic structure of double-walled carbon nanotubes (DWNT), few-walled carbon nanotubes (FWNT) and multi-walled carbon nanotubes (MWNT). We observed that there is no strong correlation in the structure of two adjacent shells in DWNTs. Several FWNTs and MWNTs have been examined by our new electron diffraction method to determine their atomic structures and to test the efficiency and the reliability of this method for structure identification. We now suggest that a carbon nanotube of up to 25 shells can be studied and the chirality of each shell can be identified by this new technique. The guidelines for the automation of such procedure have been laid down and explained in this work. The atomic structure of tungsten disulfide (WS2) nanotubes was studied by using the methods developed for the structure determination of carbon nanotubes. The WS2 nanotubes are another example of the tube forming ability of the layered structures and a member of the family of inorganic fullerene-like structures. These nanotubes are much larger in diameter than carbon nanotubes. The tubes studied here have helicities less than 18° and usually have near zigzag structure. The short-range order (SRO) in the atomic structure of carbon soot produced by laser ablation was investigated using electron diffraction and radial distribution function (RDF) analysis. The effects of the furnace temperature and the metal catalyst on the SRO in the carbon soot were also studied. It was discovered that the SRO structure is the same for all carbon soot samples studied and is very similar to that of amorphous carbon. These techniques were also applied to determine the atomic structure of amorphous boron nanowires. We found out that the atomic structure of these boron nanowires agree well with the previously reported structure of bulk amorphous boron.

  7. Quasi-parallel precession diffraction: Alignment method for scanning transmission electron microscopes.

    PubMed

    Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S

    2018-06-06

    A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.

  8. In-situ magnetization/heating electron holography to study the magnetic ordering in arrays of nickel metallic nanowires.

    PubMed

    Ortega, Eduardo; Santiago, Ulises; Giuliani, Jason G; Monton, Carlos; Ponce, Arturo

    2018-05-01

    Magnetic nanostructures of different size, shape, and composition possess a great potential to improve current technologies like data storage and electromagnetic sensing. In thin ferromagnetic nanowires, their magnetization behavior is dominated by the competition between magnetocrystalline anisotropy (related to the crystalline structure) and shape anisotropy. In this way electron diffraction methods like precession electron diffraction (PED) can be used to link the magnetic behavior observed by Electron Holography (EH) with its crystallinity. Using off-axis electron holography under Lorentz conditions, we can experimentally determine the magnetization distribution over neighboring nanostructures and their diamagnetic matrix. In the case of a single row of nickel nanowires within the alumina template, the thin TEM samples showed a dominant antiferromagnetic arrangement demonstrating long-range magnetostatic interactions playing a major role.

  9. In-situ magnetization/heating electron holography to study the magnetic ordering in arrays of nickel metallic nanowires

    NASA Astrophysics Data System (ADS)

    Ortega, Eduardo; Santiago, Ulises; Giuliani, Jason G.; Monton, Carlos; Ponce, Arturo

    2018-05-01

    Magnetic nanostructures of different size, shape, and composition possess a great potential to improve current technologies like data storage and electromagnetic sensing. In thin ferromagnetic nanowires, their magnetization behavior is dominated by the competition between magnetocrystalline anisotropy (related to the crystalline structure) and shape anisotropy. In this way electron diffraction methods like precession electron diffraction (PED) can be used to link the magnetic behavior observed by Electron Holography (EH) with its crystallinity. Using off-axis electron holography under Lorentz conditions, we can experimentally determine the magnetization distribution over neighboring nanostructures and their diamagnetic matrix. In the case of a single row of nickel nanowires within the alumina template, the thin TEM samples showed a dominant antiferromagnetic arrangement demonstrating long-range magnetostatic interactions playing a major role.

  10. Comments on the paper "Bragg's law diffraction simulations for electron backscatter diffraction analysis" by Josh Kacher, Colin Landon, Brent L. Adams & David Fullwood.

    PubMed

    Maurice, Claire; Fortunier, Roland; Driver, Julian; Day, Austin; Mingard, Ken; Meaden, Graham

    2010-06-01

    This comment on the paper "Bragg's Law diffraction simulations for electron backscatter diffraction analysis" by Kacher et al. explains the limitations in determining elastic strains using synthetic EBSD patterns. Of particular importance are those due to the accuracy of determination of the EBSD geometry projection parameters. Additional references and supporting information are provided. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Anomalous Diffraction in Crystallographic Phase Evaluation

    PubMed Central

    Hendrickson, Wayne A.

    2014-01-01

    X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017

  12. Facing the phase problem in Coherent Diffractive Imaging via Memetic Algorithms.

    PubMed

    Colombo, Alessandro; Galli, Davide Emilio; De Caro, Liberato; Scattarella, Francesco; Carlino, Elvio

    2017-02-09

    Coherent Diffractive Imaging is a lensless technique that allows imaging of matter at a spatial resolution not limited by lens aberrations. This technique exploits the measured diffraction pattern of a coherent beam scattered by periodic and non-periodic objects to retrieve spatial information. The diffracted intensity, for weak-scattering objects, is proportional to the modulus of the Fourier Transform of the object scattering function. Any phase information, needed to retrieve its scattering function, has to be retrieved by means of suitable algorithms. Here we present a new approach, based on a memetic algorithm, i.e. a hybrid genetic algorithm, to face the phase problem, which exploits the synergy of deterministic and stochastic optimization methods. The new approach has been tested on simulated data and applied to the phasing of transmission electron microscopy coherent electron diffraction data of a SrTiO 3 sample. We have been able to quantitatively retrieve the projected atomic potential, and also image the oxygen columns, which are not directly visible in the relevant high-resolution transmission electron microscopy images. Our approach proves to be a new powerful tool for the study of matter at atomic resolution and opens new perspectives in those applications in which effective phase retrieval is necessary.

  13. Structures of Astromaterials Revealed by EBSD

    NASA Technical Reports Server (NTRS)

    Zolensky, M.

    2018-01-01

    Groups at the Johnson Space Center and the University of Tokyo have been using electron back-scattered diffraction (EBSD) to reveal the crystal structures of extraterrestrial minerals for many years. Even though we also routinely use transmission electron microscopy, synchrotron X-ray diffraction (SXRD), and conventional electron diffraction, we find that EBSD is the most powerful technique for crystal structure elucidation in many instances. In this talk I describe a few of the cases where we have found EBSD to provide crucial, unique information. See attachment.

  14. Electron density studies of methyl cellobioside

    USDA-ARS?s Scientific Manuscript database

    Experimental X-ray diffraction crystallography determines the variations in electron density that result from the periodic array of atoms in a crystal. Normally, the positions and type of atom are determined from the electron density based on an approximation that the atoms are spherical. However, t...

  15. Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys

    NASA Astrophysics Data System (ADS)

    Chen, B.; Moon, S. K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K.

    2018-02-01

    The microstructural and mechanical properties of AlSi10Mg alloys fabricated by additive manufacturing (AM) and powder metallurgy (PM) routes were investigated and compared. The microstructures were examined by scanning electron microscopy assisted with electron-dispersive spectroscopy. The crystalline features were studied by x-ray diffraction and electron backscatter diffraction. Room-temperature tensile tests and Vickers hardness measurements were performed to characterize the mechanical properties. It was found that the AM alloy had coarser Al grains but much finer Si precipitates compared with the PM alloy. Consequently, the AM alloy showed more than 100% increment in strength and hardness compared with the PM alloy due to the presence of ultrafine forms of Si, while exhibiting moderate ductility.

  16. Serial single molecule electron diffraction imaging: diffraction background of superfluid helium droplets

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; He, Yunteng; Lei, Lei; Alghamdi, Maha; Oswalt, Andrew; Kong, Wei

    2017-08-01

    In an effort to solve the crystallization problem in crystallography, we have been engaged in developing a method termed "serial single molecule electron diffraction imaging" (SS-EDI). The unique features of SS-EDI are superfluid helium droplet cooling and field-induced orientation: together the two features constitute a molecular goniometer. Unfortunately, the helium atoms surrounding the sample molecule also contribute to a diffraction background. In this report, we analyze the properties of a superfluid helium droplet beam and its doping statistics, and demonstrate the feasibility of overcoming the background issue by using the velocity slip phenomenon of a pulsed droplet beam. Electron diffraction profiles and pair correlation functions of ferrocene-monomer-doped droplets and iodine-nanocluster-doped droplets are presented. The timing of the pulsed electron gun and the effective doping efficiency under different dopant pressures can both be controlled for size selection. This work clears any doubt of the effectiveness of superfluid helium droplets in SS-EDI, thereby advancing the effort in demonstrating the "proof-of-concept" one step further.

  17. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    NASA Astrophysics Data System (ADS)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  18. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    NASA Astrophysics Data System (ADS)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  19. Application of a real-space three-dimensional image reconstruction method in the structural analysis of noncrystalline biological macromolecules enveloped by water in coherent x-ray diffraction microscopy.

    PubMed

    Kodama, Wataru; Nakasako, Masayoshi

    2011-08-01

    Coherent x-ray diffraction microscopy is a novel technique in the structural analyses of particles that are difficult to crystallize, such as the biological particles composing living cells. As water is indispensable for maintaining particles in functional structures, sufficient hydration of targeted particles is required during sample preparation for diffraction microscopy experiments. However, the water enveloping particles also contributes significantly to the diffraction patterns and reduces the electron-density contrast of the sample particles. In this study, we propose a protocol for the structural analyses of particles in water by applying a three-dimensional reconstruction method in real space for the projection images phase-retrieved from diffraction patterns, together with a developed density modification technique. We examined the feasibility of the protocol through three simulations involving a protein molecule in a vacuum, and enveloped in either a droplet or a cube-shaped water. The simulations were carried out for the diffraction patterns in the reciprocal planes normal to the incident x-ray beam. This assumption and the simulation conditions corresponded to experiments using x-ray wavelengths of shorter than 0.03 Å. The analyses demonstrated that our protocol provided an interpretable electron-density map. Based on the results, we discuss the advantages and limitations of the proposed protocol and its practical application for experimental data. In particular, we examined the influence of Poisson noise in diffraction patterns on the reconstructed three-dimensional electron density in the proposed protocol.

  20. Device and method for creating Gaussian aberration-corrected electron beams

    DOEpatents

    McMorran, Benjamin; Linck, Martin

    2016-01-19

    Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.

  1. Ultrafast electron crystallography: Transient structures of molecules, surfaces, and phase transitions

    PubMed Central

    Ruan, Chong-Yu; Vigliotti, Franco; Lobastov, Vladimir A.; Chen, Songye; Zewail, Ahmed H.

    2004-01-01

    The static structure of macromolecular assemblies can be mapped out with atomic-scale resolution by using electron diffraction and microscopy of crystals. For transient nonequilibrium structures, which are critical to the understanding of dynamics and mechanisms, both spatial and temporal resolutions are required; the shortest scales of length (0.1–1 nm) and time (10–13 to 10–12 s) represent the quantum limit, the nonstatistical regime of rates. Here, we report the development of ultrafast electron crystallography for direct determination of structures with submonolayer sensitivity. In these experiments, we use crystalline silicon as a template for different adsorbates: hydrogen, chlorine, and trifluoroiodomethane. We observe the coherent restructuring of the surface layers with subangstrom displacement of atoms after the ultrafast heat impulse. This nonequilibrium dynamics, which is monitored in steps of 2 ps (total change ≤10 ps), contrasts that of the nanometer substrate. The effect of adsorbates and the phase transition at higher fluences were also studied through the evolution of streaks of interferences, Bragg spots (and their rocking curves), and rings in the diffraction patterns. We compare these results with kinematical theory and those of x-ray diffraction developed to study bulk behaviors. The sensitivity achieved here, with the 6 orders of magnitude larger cross section than x-ray diffraction, and with the capabilities of combined spatial (≈0.01 Å) and temporal (300–600 fs) resolutions, promise diverse applications for this ultrafast electron crystallography tabletop methodology. PMID:14745037

  2. Enhancement of diffraction efficiency and storage life of poly(vinyl chloride)-based optical recording medium with incorporation of an electron donor

    NASA Astrophysics Data System (ADS)

    John, Beena Mary; Ushamani, M.; Sreekumar, K.; Joseph, Rani; Sudha Kartha, C.

    2007-01-01

    The diffraction efficiency, sensitivity, and storage life of methylene blue-sensitized poly(vinyl chloride) film was improved by the addition of an electron donor in the matrix. The addition of pyridine enhanced the diffraction efficiency by two times, and storage life of the gratings was increased to 2-3 days.

  3. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector.

    PubMed

    van Genderen, E; Clabbers, M T B; Das, P P; Stewart, A; Nederlof, I; Barentsen, K C; Portillo, Q; Pannu, N S; Nicolopoulos, S; Gruene, T; Abrahams, J P

    2016-03-01

    Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).

  4. Single-shot coherent diffraction imaging of microbunched relativistic electron beams for free-electron laser applications.

    PubMed

    Marinelli, A; Dunning, M; Weathersby, S; Hemsing, E; Xiang, D; Andonian, G; O'Shea, F; Miao, Jianwei; Hast, C; Rosenzweig, J B

    2013-03-01

    With the advent of coherent x rays provided by the x-ray free-electron laser (FEL), strong interest has been kindled in sophisticated diffraction imaging techniques. In this Letter, we exploit such techniques for the diagnosis of the density distribution of the intense electron beams typically utilized in an x-ray FEL itself. We have implemented this method by analyzing the far-field coherent transition radiation emitted by an inverse-FEL microbunched electron beam. This analysis utilizes an oversampling phase retrieval method on the transition radiation angular spectrum to reconstruct the transverse spatial distribution of the electron beam. This application of diffraction imaging represents a significant advance in electron beam physics, having critical applications to the diagnosis of high-brightness beams, as well as the collective microbunching instabilities afflicting these systems.

  5. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization

    PubMed Central

    Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.

    2017-01-01

    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686

  6. Quantum diffraction and shielding effects on the low-energy electron-ion bremsstrahlung in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590

    2015-10-15

    The quantum diffraction and shielding effects on the low-energy bremsstrahlung process are investigated in two-component semiclassical plasmas. The impact-parameter analysis with the micropotential taking into account the quantum diffraction and shielding effects is employed to obtain the electron-ion bremsstrahlung radiation cross section as a function of the de Broglie wavelength, density parameter, impact parameter, photon energy, and projectile energy. The result shows that the influence of quantum diffraction and shielding strongly suppresses the bremsstrahlung radiation spectrum in semiclassical plasmas. It is found that the quantum diffraction and shielding effects have broaden the photon emission domain. It is also found thatmore » the photon emission domain is almost independent of the radiation photon energy. In addition, it is found that the influence of quantum diffraction and shielding on the bremsstrahlung spectrum decreases with an increase of the projectile energy. The density effect on the electron-ion bremsstrahlung cross section is also discussed.« less

  7. Holographic Reconstruction of Photoelectron Diffraction and Its Circular Dichroism for Local Structure Probing

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2018-06-01

    The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.

  8. Radiation damage free ghost diffraction with atomic resolution

    DOE PAGES

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...

    2017-12-21

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  9. Radiation damage free ghost diffraction with atomic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zheng; Medvedev, Nikita; Chapman, Henry N.

    The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less

  10. Local nanoscale strain mapping of a metallic glass during in situ testing

    NASA Astrophysics Data System (ADS)

    Gammer, Christoph; Ophus, Colin; Pekin, Thomas C.; Eckert, Jürgen; Minor, Andrew M.

    2018-04-01

    The local elastic strains during tensile deformation in a CuZrAlAg metallic glass are obtained by fitting an elliptic shape function to the characteristic amorphous ring in electron diffraction patterns. Scanning nanobeam electron diffraction enables strain mapping with a resolution of a few nanometers. Here, a fast direct electron detector is used to acquire the diffraction patterns at a sufficient speed to map the local transient strain during continuous tensile loading in situ in the transmission electron microscope. The elastic strain in tensile direction was found to increase during loading. After catastrophic fracture, a residual elastic strain that relaxes over time was observed.

  11. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal.

    PubMed

    Clabbers, M T B; van Genderen, E; Wan, W; Wiegers, E L; Gruene, T; Abrahams, J P

    2017-09-01

    Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm 3 , i.e. no more than 6 × 10 5 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures.

  12. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal

    PubMed Central

    Clabbers, M. T. B.; van Genderen, E.; Wiegers, E. L.; Gruene, T.; Abrahams, J. P.

    2017-01-01

    Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm3, i.e. no more than 6 × 105 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures. PMID:28876237

  13. Langmuir-Blodgett films of random copolymers of fluoroalkyl(meth)acrylate and methacrylic acid: Fabrication and X-ray diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronov, V.; Feigin, L.A.; Budovskaya, L.D.

    1994-12-31

    Langmuir-Blodgett films of amphiphilic fluorinated copolymers were fabricated and studied by X-ray diffraction. Although these films show poor interlayer periodicity, they possess a uniform thickness even in the case of very thin films of one bilayer (22 {angstrom}). This feature was used to obtain complex LB structures (superlattices) with alteration of copolymer and fatty acid bilayers. X-ray diffraction data proved the regular periodical organization of these structures and allowed to calculate electron density distribution across the superlattices.

  14. Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems.

    PubMed

    Liu, Jingyue

    2005-06-01

    Scanning transmission electron microscopy (STEM) techniques can provide imaging, diffraction and spectroscopic information, either simultaneously or in a serial manner, of the specimen with an atomic or a sub-nanometer spatial resolution. High-resolution STEM imaging, when combined with nanodiffraction, atomic resolution electron energy-loss spectroscopy and nanometer resolution X-ray energy dispersive spectroscopy techniques, is critical to the fundamental studies of importance to nanoscience and nanotechnology. The availability of sub-nanometer or sub-angstrom electron probes in a STEM instrument, due to the use of a field emission gun and aberration correctors, ensures the greatest capabilities for studies of sizes, shapes, defects, crystal and surface structures, and compositions and electronic states of nanometer-size regions of thin films, nanoparticles and nanoparticle systems. The various imaging, diffraction and spectroscopy modes available in a dedicated STEM or a field emission TEM/STEM instrument are reviewed and the application of these techniques to the study of nanoparticles and nanostructured catalysts is used as an example to illustrate the critical role of the various STEM techniques in nanotechnology and nanoscience research.

  15. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.

  16. Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study

    NASA Astrophysics Data System (ADS)

    Kotsedi, L.; Kaviyarasu, K.; Fuku, X. G.; Eaton, S. M.; Amara, E. H.; Bireche, F.; Ramponi, R.; Maaza, M.

    2017-11-01

    The two-temperature model was used to gain insight into the thermal evolution of the hot electrons and the crystal lattice of the molybdenum thin coating during femtosecond laser treatment. The heat from the laser raised the bulk temperature of the sample through heat transfer from the hot electron to the crystal lattice of the material, which then led to the melting of the top layer of the film. This process resulted in the hot melt reacting ambient oxygen, which in turn oxidized the surface of molybdenum coating. The topological study and morphology of the oxidized film was conducted using high-resolution scanning electron microscope, with micrographs taken in both the cross-sectional geometry and normal incidence to the electron beam. The molybdenum oxide nanorods were clearly observed and the x-ray diffraction patterns showed the diffraction peaks due to molybdenum oxide.

  17. Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy.

    PubMed

    Takayama, Yuki; Yonekura, Koji

    2016-03-01

    Coherent X-ray diffraction imaging at cryogenic temperature (cryo-CXDI) allows the analysis of internal structures of unstained, non-crystalline, whole biological samples in micrometre to sub-micrometre dimensions. Targets include cells and cell organelles. This approach involves preparing frozen-hydrated samples under controlled humidity, transferring the samples to a cryo-stage inside a vacuum chamber of a diffractometer, and then exposing the samples to coherent X-rays. Since 2012, cryo-coherent diffraction imaging (CDI) experiments have been carried out with the X-ray free-electron laser (XFEL) at the SPring-8 Ångstrom Compact free-electron LAser (SACLA) facility in Japan. Complementary use of cryo-electron microscopy and/or light microscopy is highly beneficial for both pre-checking samples and studying the integrity or nature of the sample. This article reports the authors' experience in cryo-XFEL-CDI of biological cells and organelles at SACLA, and describes an attempt towards reliable and higher-resolution reconstructions, including signal enhancement with strong scatterers and Patterson-search phasing.

  18. A combined temperature-dependent electron and single-crystal X-ray diffraction study of the fresnoite compound Rb 2V 4+V 25+O 8

    NASA Astrophysics Data System (ADS)

    Withers, Ray L.; Höche, Thomas; Liu, Yun; Esmaeilzadeh, Saeid; Keding, Ralf; Sales, Brian

    2004-10-01

    High-purity Rb2V3O8 has been grown and temperature-dependent electron and single-crystal X-ray diffraction used to carefully investigate its fresnoite-type reciprocal lattice. In contrast to other recently investigated representatives of the fresnoite family of compounds, Rb2V3O8 is not incommensurately modulated with an incommensurate basal plane primary modulation wave vector given by q∼0.3 <110>*. A careful low-temperature electron diffraction study has, however, revealed the existence of weak incommensurate satellite reflections characterized by the primitive primary modulation wave vector q1∼0.16c*. The reciprocal space positioning of these incommensurate satellite reflections, the overall (3+1)-d superspace group symmetry, as well as the shapes of the refined displacement ellipsoids determined from single-crystal XRD refinement, are all consistent with their arising from a distinct type of condensed rigid unit modes (RUMs) of distortion of the Rb2V3O8 parent structure.

  19. Polaron hopping in olivine phosphates studied by nuclear resonant scattering

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June

    Valence fluctuations of Fe2+ and Fe3+ were studied in a solid solution of LixFePO4 by nuclear resonant forward scattering of synchrotron x rays while the sample was heated in a diamond-anvil pressure cell. The spectra acquired at different temperatures and pressures were analyzed for the frequencies of valence changes using the Blume-Tjon model of a system with a fluctuating Hamiltonian. These frequencies were analyzed to obtain activation energies and an activation volume for polaron hopping. There was a large suppression of hopping frequency with pressure, giving an anomalously large activation volume. This large, positive value is typical of ion diffusion, which indicates correlated motions of polarons, and Li+ ions that alter the dynamics of both. In a parallel study of NaxFePO4, the interplay between sodium ordering and electron mobility was investigated using a combination of synchrotron x-ray diffraction and nuclear resonant scattering. Conventional Mossbauer spectra were collected while the sample was heated in a resistive furnace. An analysis of the temperature evolution of the spectral shapes was used to identify the onset of fast electron hopping and determine the polaron hopping rate. Synchrotron x-ray diffraction measurements were carried out in the same temperature range. Reitveld analysis of the diffraction patterns was used to determine the temperature of sodium redistribution on the lattice. The diffraction analysis also provides new information about the phase stability of the system. The temperature evolution of the iron site occupancies from the Mossbauer measurements, combined with the synchrotron diffraction results give strong evidence for a relationship between the onset of fast electron dynamics and the redistribution of sodium in the lattice. Measurements of activation barriers for polaron hopping gave fundamental insights about the correlation between electronic carriers and mobile ions. This work established that polaron-ion interactions can alter the local dynamics of electron and ion transport. These types of coupled processes may be common in many materials used for battery electrodes, and new details concerning the influence of polaron-ion interactions on the charge dynamics are relevant to optimizing their electrochemical performance.

  20. High-Resolution Infrared and Electron-Diffraction Studies of Trimethylenecyclopropane ([3]-Radialene)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Corey; Holmes, Joshua; Nibler, Joseph W.

    2013-05-16

    Combined high-resolution spectroscopic, electron-diffraction, and quantum theoretical methods are particularly advantageous for small molecules of high symmetry and can yield accurate structures that reveal subtle effects of electron delocalization on molecular bonds. The smallest of the radialene compounds, trimethylenecyclopropane, [3]-radialene, has been synthesized and examined in the gas phase by these methods. The first high-resolution infrared spectra have been obtained for this molecule of D3h symmetry, leading to an accurate B0 rotational constant value of 0.1378629(8) cm-1, within 0.5% of the value obtained from electronic structure calculations (density functional theory (DFT) B3LYP/cc-pVTZ). This result is employed in an analysis ofmore » electron-diffraction data to obtain the rz bond lengths (in Å): C-H = 1.072 (17), C-C = 1.437 (4), and C=C = 1.330 (4). The analysis does not lead to an accurate value of the HCH angle; however, from comparisons of theoretical and experimental angles for similar compounds, the theoretical prediction of 117.5° is believed to be reliable to within 2°. The effect of electron delocalization in radialene is to reduce the single C-C bond length by 0.07 Å compared to that in cyclopropane.« less

  1. From quantum to classical interactions between a free electron and a surface

    NASA Astrophysics Data System (ADS)

    Beierle, Peter James

    Quantum theory is often cited as being one of the most empirically validated theories in terms of its predictive power and precision. These attributes have led to numerous scientific discoveries and technological advancements. However, the precise relationship between quantum and classical physics remains obscure. The prevailing description is known as decoherence theory, where classical physics emerges from a more general quantum theory through environmental interaction. Sometimes referred to as the decoherence program, it does not solve the quantum measurement problem. We believe experiments performed between the microscopic and macroscopic world may help finish the program. The following considers a free electron that interacts with a surface (the environment), providing a controlled decoherence mechanism. There are non-decohering interactions to be examined and quantified before the weaker decohering effects are filtered out. In the first experiment, an electron beam passes over a surface that's illuminated by low-power laser light. This induces a surface charge redistribution causing the electron deflection. This phenomenon's parameters are investigated. This system can be well understood in terms of classical electrodynamics, and the technological applications of this electron beam switch are considered. Such phenomena may mask decoherence effects. A second experiment tests decoherence theory by introducing a nanofabricated diffraction grating before the surface. The electron undergoes diffraction through the grating, but as the electron passes over the surface it's predicted by various physical models that the electron will lose its wave interference property. Image charge based models, which predict a larger loss of contrast than what is observed, are falsified (despite experiencing an image charge force). A theoretical study demonstrates how a loss of contrast may not be due to the irreversible process decoherence, but dephasing (a reversible process due to randomization of the wavefunction's phase). To resolve this ambiguity, a correlation function on an ensemble of diffraction patterns is analyzed after an electron undergoes either process in a path integral calculation. The diffraction pattern is successfully recovered for dephasing, but not for decoherence, thus verifying it as a potential tool in experimental studies to determine the nature of the observed process.

  2. Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet

    DTIC Science & Technology

    2012-01-01

    polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that

  3. Comparison of quartz crystallographic preferred orientations identified with optical fabric analysis, electron backscatter and neutron diffraction techniques.

    PubMed

    Hunter, N J R; Wilson, C J L; Luzin, V

    2017-02-01

    Three techniques are used to measure crystallographic preferred orientations (CPO) in a naturally deformed quartz mylonite: transmitted light cross-polarized microscopy using an automated fabric analyser, electron backscatter diffraction (EBSD) and neutron diffraction. Pole figure densities attributable to crystal-plastic deformation are variably recognizable across the techniques, particularly between fabric analyser and diffraction instruments. Although fabric analyser techniques offer rapid acquisition with minimal sample preparation, difficulties may exist when gathering orientation data parallel with the incident beam. Overall, we have found that EBSD and fabric analyser techniques are best suited for studying CPO distributions at the grain scale, where individual orientations can be linked to their source grain or nearest neighbours. Neutron diffraction serves as the best qualitative and quantitative means of estimating the bulk CPO, due to its three-dimensional data acquisition, greater sample area coverage, and larger sample size. However, a number of sampling methods can be applied to FA and EBSD data to make similar approximations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  4. Four-dimensional ultrafast electron microscopy of phase transitions

    PubMed Central

    Grinolds, Michael S.; Lobastov, Vladimir A.; Weissenrieder, Jonas; Zewail, Ahmed H.

    2006-01-01

    Reported here is direct imaging (and diffraction) by using 4D ultrafast electron microscopy (UEM) with combined spatial and temporal resolutions. In the first phase of UEM, it was possible to obtain snapshot images by using timed, single-electron packets; each packet is free of space–charge effects. Here, we demonstrate the ability to obtain sequences of snapshots (“movies”) with atomic-scale spatial resolution and ultrashort temporal resolution. Specifically, it is shown that ultrafast metal–insulator phase transitions can be studied with these achieved spatial and temporal resolutions. The diffraction (atomic scale) and images (nanometer scale) we obtained manifest the structural phase transition with its characteristic hysteresis, and the time scale involved (100 fs) is now studied by directly monitoring coordinates of the atoms themselves. PMID:17130445

  5. Publications - GMC 58 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 58 Publication Details Title: X-ray diffraction and scanning electron microscopy mineral , Michael, and Core Laboratories, 1985, X-ray diffraction and scanning electron microscopy mineral analyses

  6. Non-spectroscopic composition measurements of SrTiO 3-La 0.7Sr 0.3MnO 3 multilayers using scanning convergent beam electron diffraction

    DOE PAGES

    Ophus, Colin; Ercius, Peter; Huijben, Mark; ...

    2017-02-08

    The local atomic structure of a crystalline sample aligned along a zone axis can be probed with a focused electron probe, which produces a convergent beam electron diffraction pattern. The introduction of high speed direct electron detectors has allowed for experiments that can record a full diffraction pattern image at thousands of probe positions on a sample. By incoherently summing these patterns over crystalline unit cells, we demonstrate in this paper that in addition to crystal structure and thickness, we can also estimate the local composition of a perovskite superlattice sample. This is achieved by matching the summed patterns tomore » a library of simulated diffraction patterns. Finally, this technique allows for atomic-scale chemical measurements without requiring a spectrometer or hardware aberration correction.« less

  7. Neutron and electron diffraction studies of La(Zn1/2Ti1/2)O3 perovskite.

    PubMed

    Ubic, Rick; Hu, Yi; Abrahams, Isaac

    2006-08-01

    The crystallography and microwave dielectric properties of La(Zn(1/2)Ti(1/2))O(3) (LZT) ceramics prepared via the mixed-oxide route were investigated in this study. While samples were largely single phase, small amounts of ZnO impurity were detected in sintered pellets. Observed reflections in electron and neutron diffraction patterns indicate that the symmetry of LZT is P2(1)/n. The B site is ordered on {110} or pseudocubic {111}, but the presence of the pseudocubic 1/2(111) reflection is in itself insufficient to indicate the existence of such order. Rietveld refinements of the neutron diffraction data yield an excellent fit for such a model. The structure is highly twinned, with variants related through common {211} composition planes and 90 degrees rotations about <011>. The microwave dielectric properties measured were epsilon(r) = 34, Qf = 36,090 and tau(f) = -70 MK(-1).

  8. A transmission Kikuchi diffraction study of cementite in a quenched and tempered steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Ahmed A., E-mail: asaleh@uow.edu.au; Casillas, Gilberto; Pereloma, Elena V.

    2016-04-15

    This is the first transmission Kikuchi diffraction (TKD) study to report the indexing of nano-sized cementite as distinct structures and its orientation relationship with the body-centered cubic matrix in a quenched and tempered steel. Crystallographic analysis via TKD and selected area diffraction returned the well-known Bagaryatskii and Isaichev orientation relationships. However, the indexing of nano-sized cementite via TKD was sensitive to the thickness of the electron transparent region such that TEM remains the most precise method to characterise such precipitates. - Highlights: • Nano-sized cementite in a QT steel has been investigated by TKD and TEM. • Cementite has beenmore » indexed as distinct structures via TKD. • Crystallographic analysis returned the Bagaryatskii and Isaichev ORs. • Success of TKD is sensitive to the thickness of the electron transparent region. • TEM remains the most precise technique to characterise nano-sized precipitates.« less

  9. Structural studies of homoisoflavonoids: NMR spectroscopy, X-ray diffraction, and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sievänen, Elina; Toušek, Jaromír; Lunerová, Kamila; Marek, Jaromír; Jankovská, Dagmar; Dvorská, Margita; Marek, Radek

    2010-08-01

    In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometries and crystal packing determined by X-ray diffraction are used for characterizing the intermolecular interactions. Electron distribution is crucial for the stability of radicals and hence the antioxidant efficiency of flavonoid structures. The hydrogen bonding governs the formation of complexes of homoisoflavonoids with biological targets.

  10. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    PubMed Central

    van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.

    2016-01-01

    Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375

  11. Studies of Atomic Free Radicals Stored in a Cryogenic Environment

    NASA Technical Reports Server (NTRS)

    Lee, David M.; Hubbard, Dorthy (Technical Monitor); Alexander, Glen (Technical Monitor)

    2003-01-01

    Impurity-Helium Solids are porous gel-like solids consisting of impurity atoms and molecules surrounded by thin layers of solid helium. They provide an ideal medium for matrix isolation of free radicals to prevent recombination and store chemical energy. In this work electron spin resonance, nuclear magnetic resonance, X-ray diffraction, and ultrasound techniques have all been employed to study the properties of these substances. Detailed studies via electron spin resonance of exchange tunneling chemical reactions involving hydrogen and deuterium molecular and atomic impurities in these solids have been performed and compared with theory. Concentrations of hydrogen approaching the quantum solid criterion have been produced. Structured studies involving X ray diffraction, ultrasound, and electron spin resonance have shown that the impurities in impurity helium solids are predominantly contained in impurity clusters, with each cluster being surrounded by thin layers of solid helium.

  12. Structure resolution by electron diffraction tomography of the complex layered iron-rich Fe-2234-type Sr{sub 5}Fe{sub 6}O{sub 15.4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepoittevin, Christophe, E-mail: christophe.lepoittevin@neel.cnrs.fr

    2016-10-15

    The crystal structure of the strontium ferrite Sr{sub 5}Fe{sub 6}O{sub 15.4}, was solved by direct methods on electron diffraction tomography data acquired on a transmission electron microscope. The refined cell parameters are a=27.4047(3) Å, b=5.48590(7) Å and c=42.7442(4) Å in Fm2m symmetry. Its structure is built up from the intergrowth sequence between a quadruple perovskite-type layer with a complex rock-salt (RS)-type block. In the latter iron atoms are found in two different environments : tetragonal pyramid and tetrahedron. The structural model was refined by Rietveld method based on the powder X-ray diffraction pattern. - Highlights: • Complex structure of Sr{submore » 5}Fe{sub 6}O{sub 15.4} solved by electron diffraction tomography. • Observed Fourier maps allow determining missing oxygen atoms in the structure. • Structural model refined from powder X-ray diffraction data. • Intergrowth between quadruple perovskite layer with double rock-salt-type layer.« less

  13. Photon-assisted electron energy loss spectroscopy and ultrafast imaging.

    PubMed

    Howie, Archie

    2009-08-01

    A variety of ways is described in which photons can be used not only for ultrafast electron microscopy but also to enormously widen the energy range of spatially-resolved electron spectroscopy. Periodic chains of femtosecond laser pulses are a particularly important and accurately timed source for single-shot imaging and diffraction as well as for several forms of pump-probe microscopy at even higher spatial resolution and sub-picosecond timing. Many exciting new fields are opened up for study by these developments. Ultrafast, single shot diffraction with intense pulses of X-rays supplemented by phase retrieval techniques may eventually offer a challenging alternative and purely photon-based route to dynamic imaging at high spatial resolution.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; He, Yunteng; Kong, Wei, E-mail: wei.kong@oregonstate.edu

    We report electron diffraction of ferrocene doped in superfluid helium droplets. By taking advantage of the velocity slip in our pulsed droplet beam using a pulsed electron gun, and by doping with a high concentration of ferrocene delivered via a pulsed valve, we can obtain high quality diffraction images from singly doped droplets. Under the optimal doping conditions, 80% of the droplets sampled in the electron beam are doped with just one ferrocene molecule. Extension of this size selection method to dopant clusters has also been demonstrated. However, incomplete separation of dopant clusters might require deconvolution and modeling of themore » doping process. This method can be used for studies of nucleation processes in superfluid helium droplets.« less

  15. One step synthesis of porous graphene by laser ablation: A new and facile approach

    NASA Astrophysics Data System (ADS)

    Kazemizadeh, Fatemeh; Malekfar, Rasoul

    2018-02-01

    Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.

  16. An electron diffraction study of alkali chloride vapors

    NASA Technical Reports Server (NTRS)

    Mawhorter, R. J.; Fink, M.; Hartley, J. G.

    1985-01-01

    A study of monomers and dimers of the four alkali chlorides NaCl, KCl, RbCl, and CsCl in the vapor phase using the counting method of high energy electron diffraction is reported. Nozzle temperatures from 850-960 K were required to achieve the necessary vapor pressures of approximately 0.01 torr. Using harmonic calculations for the monomer and dimer 1 values, a consistent set of structures for all four molecules was obained. The corrected monomer distances reproduce the microwave values very well. The experiment yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.

  17. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  18. Transmission electron diffraction determination of the Ge(001)-(2 × 1) surface structure

    NASA Astrophysics Data System (ADS)

    Collazo-Davila, C.; Grozea, D.; Landree, E.; Marks, L. D.

    1997-04-01

    The lateral displacements in the Ge(001)-(2 × 1) surface reconstruction have been determined using transmission electron diffraction (TED). The best-fit model includes displacements extending six layers into the bulk. The atomic positions found agree with X-ray studies to within a few hundredths of an ångström. With the positions determined so precisely, it is suggested that the Ge(001)-(2 × 1) surface can now serve as a standard for comparison with theoretical surface structure calculations. The results from the currently available theoretical studies on the surface are compared with the experimentally determined structure.

  19. Nanobelt formation of magnesium hydroxide sulfate hydrate via a soft chemistry process.

    PubMed

    Zhou, Zhengzhi; Sun, Qunhui; Hu, Zeshan; Deng, Yulin

    2006-07-13

    The nanobelt formation of magnesium hydroxide sulfate hydrate (MHSH) via a soft chemistry approach using carbonate salt and magnesium sulfate as reactants was successfully demonstrated. X-ray diffraction (XRD), energy dispersion X-ray spectra (EDS), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis revealed that the MHSH nanobelts possessed a thin belt structure (approximately 50 nm in thickness) and a rectangular cross profile (approximately 200 nm in width). The MHSH nanobelts suffered decomposition under electron beam irradiation during TEM observation and formed MgO with the pristine nanobelt morphology preserved. The formation process of the MHSH nanobelts was studied by tracking the morphology of the MHSH nanobelts during the reaction. A possible chemical reaction mechanism is proposed.

  20. Electron and lattice dynamics of transition metal thin films observed by ultrafast electron diffraction and transient optical measurements.

    PubMed

    Nakamura, A; Shimojima, T; Nakano, M; Iwasa, Y; Ishizaka, K

    2016-11-01

    We report the ultrafast dynamics of electrons and lattice in transition metal thin films (Au, Cu, and Mo) investigated by a combination of ultrafast electron diffraction (UED) and pump-probe optical methods. For a single-crystalline Au thin film, we observe the suppression of the diffraction intensity occuring in 10 ps, which direcly reflects the lattice thermalization via the electron-phonon interaction. By using the two-temperature model, the electron-phonon coupling constant ( g ) and the electron and lattice temperatures ( T e , T l ) are evaluated from UED, with which we simulate the transient optical transmittance. The simulation well agrees with the experimentally obtained transmittance data, except for the slight deviations at the initial photoexcitation and the relaxed quasi-equilibrium state. We also present the results similarly obtained for polycrystalline Au, Cu, and Mo thin films and demonstrate the electron and lattice dynamics occurring in metals with different electron-phonon coupling strengths.

  1. DISTRIBUTION SYSTEM SOLIDS - A RESEARCH APPROACH

    EPA Science Inventory

    The U.S. EPA's AWBERC research facility is equipped with capabilities to analyze a variety of solids in support many Laboratory-wide research studies. Techniques available on site include X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microsco...

  2. Study of thermal stability of spontaneously grown superlattice structures by metalorganic vapor phase epitaxy in AlxGa1-xAs/GaAs heterostructure

    NASA Astrophysics Data System (ADS)

    Pradhan, A.; Maitra, T.; Mukherjee, S.; Mukherjee, S.; Satpati, B.; Nayak, A.; Bhunia, S.

    2018-04-01

    Spontaneous superlattice ordering in a length scale larger than an atomic layer has been observed in AlxGa1-xAs layers grown on (100) GaAs substrates by metalorganic vapor phase epitaxy. Transmission electron microscopic image clearly revealed superlattice structures and the selected area electron diffraction showed closely spaced superlattice spots around the main diffraction pattern. High resolution x-ray diffraction showed distinct and sharp superlattice peaks symmetrically positioned around the central (004) Bragg peak and the similar measurement for (002) planes, which is quasi-forbidden for Bragg reflections showed only superlattice peaks. Thermal annealing studies showed the superlattice structure was stable up to 800 °C and disappeared after annealing at 900 °C retaining the crystallinity of the epilayer. Study of inter-diffusivitiesin such superlattice structures has been carried out using high temperaturex-ray diffraction results. Here we present (004) x-ray θ-2θ scans of the AlGaAs/GaAs (100) sample with annealing time for different temperatures. Conclusions regarding interdiffusion in such superlattice structures are drawn from high temperature X-ray measurements.

  3. Disentangling atomic-layer-specific x-ray absorption spectra by Auger electron diffraction spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi

    2009-11-01

    In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.

  4. Feynman Path Integral Approach to Electron Diffraction for One and Two Slits: Analytical Results

    ERIC Educational Resources Information Center

    Beau, Mathieu

    2012-01-01

    In this paper we present an analytic solution of the famous problem of diffraction and interference of electrons through one and two slits (for simplicity, only the one-dimensional case is considered). In addition to exact formulae, various approximations of the electron distribution are shown which facilitate the interpretation of the results.…

  5. Dark-field phase retrieval under the constraint of the Friedel symmetry in coherent X-ray diffraction imaging.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2014-11-17

    Coherent X-ray diffraction imaging (CXDI) is a lensless imaging technique that is suitable for visualizing the structures of non-crystalline particles with micrometer to sub-micrometer dimensions from material science and biology. One of the difficulties inherent to CXDI structural analyses is the reconstruction of electron density maps of specimen particles from diffraction patterns because saturated detector pixels and a beam stopper result in missing data in small-angle regions. To overcome this difficulty, the dark-field phase-retrieval (DFPR) method has been proposed. The DFPR method reconstructs electron density maps from diffraction data, which are modified by multiplying Gaussian masks with an observed diffraction pattern in the high-angle regions. In this paper, we incorporated Friedel centrosymmetry for diffraction patterns into the DFPR method to provide a constraint for the phase-retrieval calculation. A set of model simulations demonstrated that this constraint dramatically improved the probability of reconstructing correct electron density maps from diffraction patterns that were missing data in the small-angle region. In addition, the DFPR method with the constraint was applied successfully to experimentally obtained diffraction patterns with significant quantities of missing data. We also discuss this method's limitations with respect to the level of Poisson noise in X-ray detection.

  6. Ultrafast electron diffraction and electron microscopy: present status and future prospects

    NASA Astrophysics Data System (ADS)

    Ishchenko, A. A.; Aseyev, S. A.; Bagratashvili, V. N.; Panchenko, V. Ya; Ryabov, E. A.

    2014-07-01

    Acting as complementary research tools, high time-resolved spectroscopy and diffractometry techniques proceeding from various physical principles open up new possibilities for studying matter with necessary integration of the 'structure-dynamics-function' triad in physics, chemistry, biology and materials science. Since the 1980s, a new field of research has started at the leading research laboratories, aimed at developing means of filming the coherent dynamics of nuclei in molecules and fast processes in biological objects ('atomic and molecular movies'). The utilization of ultrashort laser pulse sources has significantly modified traditional electron beam approaches to and provided high space-time resolution for the study of materials. Diffraction methods using frame-by-frame filming and the development of the main principles of the study of coherent dynamics of atoms have paved the way to observing wave packet dynamics, the intermediate states of reaction centers, and the dynamics of electrons in molecules, thus allowing a transition from the kinetics to the dynamics of the phase trajectories of molecules in the investigation of chemical reactions.

  7. Auger electron diffraction study of V/Fe(100) interface formation

    NASA Astrophysics Data System (ADS)

    Huttel, Y.; Avila, J.; Asensio, M. C.; Bencok, P.; Richter, C.; Ilakovac, V.; Heckmann, O.; Hricovini, K.

    1998-05-01

    Vanadium atoms present a magnetic moment different to zero when they are part of a thin film deposited on Fe or as a bimetallic Fe-V alloy. The understanding of this phenomenon can only be achieved with a correct structural description of these types of systems. We report an Auger electron diffraction investigation of V films grown on body cubic centred (b.c.c.) Fe(100) substrates. Angular-scanned Auger electron diffraction (AED) patterns of V L 23M 23M 4 (473 eV) and Fe L 3VV (703 eV) show the formation of a well-ordered V/Fe interface even at room temperature. The AED patterns of V films in the range of vanadium submonolayer provide evidence of an isotropic Auger emission, indicating the absence of interdiffusion of V atoms into the Fe substrate and absence of cluster growth of the V film. The annealing of these films up to 400°C does not activate the substitution of the topmost Fe surface layers by V atoms.

  8. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  9. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  10. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    PubMed Central

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Lyubimov, Artem Y; Hattne, Johan; Brewster, Aaron S; Sauter, Nicholas K; Brunger, Axel T; Weis, William I

    2015-01-01

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited. DOI: http://dx.doi.org/10.7554/eLife.05421.001 PMID:25781634

  11. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA

    PubMed Central

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147

  12. Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and cellular organelles by using the X-ray free-electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi

    2016-07-01

    Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.

  13. Single-slit electron diffraction with Aharonov-Bohm phase: Feynman's thought experiment with quantum point contacts.

    PubMed

    Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan

    2014-01-10

    In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics.

  14. Photoelectron spectra of the decomposition of ethylene on /110/ tungsten

    NASA Technical Reports Server (NTRS)

    Plummer, E. W.; Waclawski, B. J.; Vorburger, T. V.

    1974-01-01

    The experimental apparatus used in the investigation consisted of an ultrahigh-vacuum chamber, a triple-grid, a microwave-excited resonance lamp, and an electron energy analyzer. The chemical nature of the chemisorbed species was studied, taking into account the energy distribution of photoemitted electrons, work function determinations, and low-energy electron diffraction patterns.

  15. Double-shot MeV electron diffraction and microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musumeci, P.; Cesar, D.; Maxson, J.

    Here in this paper, we study by numerical simulations a time-resolved MeV electron scattering mode where two consecutive electron pulses are used to capture the evolution of a material sample on 10 ps time scales. The two electron pulses are generated by illuminating a photocathode in a radiofrequency photogun by two short laser pulses with adjustable delay. A streak camera/deflecting cavity is used after the sample to project the two electron bunches on two well separated regions of the detector screen. By using sufficiently short pulses, the 2D spatial information from each snapshot can be preserved. This “double-shot” technique enablesmore » the efficient capture of irreversible dynamics in both diffraction and imaging modes. Finally, in this work, we demonstrate both modes in start-to-end simulations of the UCLA Pegasus MeV microscope column.« less

  16. Double-shot MeV electron diffraction and microscopy

    DOE PAGES

    Musumeci, P.; Cesar, D.; Maxson, J.

    2017-05-19

    Here in this paper, we study by numerical simulations a time-resolved MeV electron scattering mode where two consecutive electron pulses are used to capture the evolution of a material sample on 10 ps time scales. The two electron pulses are generated by illuminating a photocathode in a radiofrequency photogun by two short laser pulses with adjustable delay. A streak camera/deflecting cavity is used after the sample to project the two electron bunches on two well separated regions of the detector screen. By using sufficiently short pulses, the 2D spatial information from each snapshot can be preserved. This “double-shot” technique enablesmore » the efficient capture of irreversible dynamics in both diffraction and imaging modes. Finally, in this work, we demonstrate both modes in start-to-end simulations of the UCLA Pegasus MeV microscope column.« less

  17. Compression of subrelativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction.

    PubMed

    van Oudheusden, T; Pasmans, P L E M; van der Geer, S B; de Loos, M J; van der Wiel, M J; Luiten, O J

    2010-12-31

    We demonstrate the compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching by inverting the positive space-charge-induced velocity chirp. This inversion is induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs.

  18. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

    DOE PAGES

    Popp, David; Loh, N. Duane; Zorgati, Habiba; ...

    2017-06-02

    A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determinemore » that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.« less

  19. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popp, David; Loh, N. Duane; Zorgati, Habiba

    A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determinemore » that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.« less

  20. Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns

    NASA Astrophysics Data System (ADS)

    Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.

    2015-11-01

    Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.

  1. Observation of coherent optical phonons excited by femtosecond laser radiation in Sb films by ultrafast electron diffraction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru

    2017-03-15

    The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinationsmore » of these phonon modes in the Sb sample have also been experimentally observed.« less

  2. Measurements and Diagnostics of Diamond Films and Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.

    1999-01-01

    The commercial potential of chemical-vapor-deposited (CVD) diamond films has been established and a number of applications have been identified through university, industry, and government research studies. This paper discusses the methodologies used for property measurement and diagnostic of CVD diamond films and coatings. Measurement and diagnostic techniques studied include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and friction examination. Each measurement and diagnostic technique provides unique information. A combination of techniques can provide the technical information required to understand the quality and properties of CVD diamond films, which are important to their application in specific component systems and environments. In this study the combination of measurement and diagnostic techniques was successfully applied to correlate deposition parameters and resultant diamond film composition, crystallinity, grain size, surface roughness, and coefficient of friction.

  3. Low-energy Auger electron diffraction: influence of multiple scattering and angular momentum

    NASA Astrophysics Data System (ADS)

    Chassé, A.; Niebergall, L.; Kucherenko, Yu.

    2002-04-01

    The angular dependence of Auger electrons excited from single-crystal surfaces is treated theoretically within a multiple-scattering cluster model taking into account the full Auger transition matrix elements. In particular the model has been used to discuss the influence of multiple scattering and angular momentum of the Auger electron wave on Auger electron diffraction (AED) patterns in the region of low kinetic energies. Theoretical results of AED patterns are shown and discussed in detail for Cu(0 0 1) and Ni(0 0 1) surfaces, respectively. Even though Cu and Ni are very similar in their electronic and scattering properties recently strong differences have been found in AED patterns measured in the low-energy region. It is shown that the differences may be caused to superposition of different electron diffraction effects in an energy-integrated experiment. A good agreement between available experimental and theoretical results has been achieved.

  4. Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion

    DTIC Science & Technology

    2010-08-24

    X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical

  5. Atomic structure solution of the complex quasicrystal approximant Al77Rh15Ru8 from electron diffraction data.

    PubMed

    Samuha, Shmuel; Mugnaioli, Enrico; Grushko, Benjamin; Kolb, Ute; Meshi, Louisa

    2014-12-01

    The crystal structure of the novel Al77Rh15Ru8 phase (which is an approximant of decagonal quasicrystals) was determined using modern direct methods (MDM) applied to automated electron diffraction tomography (ADT) data. The Al77Rh15Ru8 E-phase is orthorhombic [Pbma, a = 23.40 (5), b = 16.20 (4) and c = 20.00 (5) Å] and has one of the most complicated intermetallic structures solved solely by electron diffraction methods. Its structural model consists of 78 unique atomic positions in the unit cell (19 Rh/Ru and 59 Al). Precession electron diffraction (PED) patterns and high-resolution electron microscopy (HRTEM) images were used for the validation of the proposed atomic model. The structure of the E-phase is described using hierarchical packing of polyhedra and a single type of tiling in the form of a parallelogram. Based on this description, the structure of the E-phase is compared with that of the ε6-phase formed in Al-Rh-Ru at close compositions.

  6. Investigation of the effect of phase nonuniformities and the microwave field distribution on the electronic efficiency of a diffraction-radiation generator

    NASA Astrophysics Data System (ADS)

    Maksimov, P. P.; Tsvyk, A. I.; Shestopalov, V. P.

    1985-10-01

    The effect of local phase nonuniformities of the diffraction gratings and the field distribution of the open cavity on the electronic efficiency of a diffraction-radiation generator (DRG) is analyzed numerically on the basis of a self-consistent system of nonlinear stationary equations for the DRG. It is shown that the interaction power and efficiency of a DRG can be increased by the use of an open cavity with a nonuniform diffraction grating and a complex form of microwave field distribution over the interaction space.

  7. Imaging ultrafast dynamics of molecules with laser-induced electron diffraction.

    PubMed

    Lin, C D; Xu, Junliang

    2012-10-14

    We introduce a laser-induced electron diffraction method (LIED) for imaging ultrafast dynamics of small molecules with femtosecond mid-infrared lasers. When molecules are placed in an intense laser field, both low- and high-energy photoelectrons are generated. According to quantitative rescattering (QRS) theory, high-energy electrons are produced by a rescattering process where electrons born at the early phase of the laser pulse are driven back to rescatter with the parent ion. From the high-energy electron momentum spectra, field-free elastic electron-ion scattering differential cross sections (DCS), or diffraction images, can be extracted. With mid-infrared lasers as the driving pulses, it is further shown that the DCS can be used to extract atomic positions in a molecule with sub-angstrom spatial resolution, in close analogy to the standard electron diffraction method. Since infrared lasers with pulse duration of a few to several tens of femtoseconds are already available, LIED can be used for imaging dynamics of molecules with sub-angstrom spatial and a few-femtosecond temporal resolution. The first experiment with LIED has shown that the bond length of oxygen molecules shortens by 0.1 Å in five femtoseconds after single ionization. The principle behind LIED and its future outlook as a tool for dynamic imaging of molecules are presented.

  8. Synthesis of zirconia (ZrO2) nanowires via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Baek, M. K.; Park, S. J.; Choi, D. J.

    2017-02-01

    Monoclinic zirconia nanowires were synthesized by chemical vapor deposition using ZrCl4 powder as a starting material at 1200 °C and 760 Torr. Graphite was employed as a substrate, and an Au thin film was pre-deposited on the graphite as a catalyst. The zirconia nanostructure morphology was observed through scanning electron microscopy and transmission electron microscopy. Based on X-ray diffraction, selected area electron diffraction, and Raman spectroscopy data, the resulting crystal structure was found to be single crystalline monoclinic zirconia. The homogeneous distributions of Zr, O and Au were studied by scanning transmission electron microscopy with energy dispersive X-ray spectroscopy mapping, and there was no metal droplet at the nanowire tips despite the use of an Au metal catalyst. This result is apart from that of conventional metal catalyzed nanowires.

  9. Stress in recrystallized quartz by electron backscatter diffraction mapping

    NASA Astrophysics Data System (ADS)

    Llana-Fúnez, S.

    2017-07-01

    The long-term state of stress at middle and lower crustal depths can be estimated through the study of the microstructure of exhumed rocks from active and/or ancient shear zones. Constitutive equations for deformation mechanisms in experimentally deformed rocks relate differential stress to the size of recrystallized grains. Cross et al. (2017) take advantage of electron backscatter diffraction mapping to systematically separate new recrystallized grains from host grains on the basis of the measurable lattice distorsion within the grains. They produce the first calibrated piezometer for quartz with this technique, reproducing within error a previous calibration based on optical microscopy.

  10. Mapping molecular motions leading to charge delocalization with ultrabright electrons

    NASA Astrophysics Data System (ADS)

    Sciaini, German

    2014-05-01

    Ultrafast diffraction has broken the barrier to atomic exploration by combining the atomic spatial resolution of diffraction techniques with the temporal resolution of ultrafast spectroscopy. X-ray free electron lasers, slicing techniques and femtosecond laser-driven X-ray and electron sources have been successfully applied for the study of ultrafast structural dynamics in a variety of samples. Yet, the application of fs-diffraction to the study of rather sensitive organic molecular crystals remains unexplored. Organic crystals are composed by weak scattering centres, often present low melting points, poor heat conductivity and are, typically, radiation sensitive. Low repetition rates (about tens of Hertz) are therefore required to overcome accumulative heating effects from the laser excitation that can degrade the sample and mask the structural dynamics. This imparts tremendous constraints on source brightness to acquire enough diffraction data before adverse photo-degradation effects have played a non-negligible role in the crystalline structure. We implemented ultra-bright femtosecond electron diffraction to obtain a movie of the relevant molecular motions driving the photo-induced insulator-to-metal phase transition in the organic charge-transfer salt (EDO-TTF)2PF6. On the first few picoseconds (0 - 10 ps) the structural evolution, well-described by three main reaction coordinates, reaches a transient intermediate state (TIS). Model structural refinement calculations indicate that fast sliding of flat EDO-TTF molecules with consecutive motion of PF6 counter-ions drive the formation of TS instead of the expected flattening of initially bent EDO-TTF moieties which seems to evolve through a slower thermal pathway that brings the system into a final high temperature-type state. These findings establish the potential of ultrabright femtosecond electron sources for probing the primary processes governing structural dynamics with atomic resolution in labile systems relevant to chemistry and biology. For more information vide-infra Gao et al., Funding for this project was provided by the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation and Grant Agencies in Japan, vide infra Nature reference for more details.

  11. Characterization of ultrafine grained Cu-Ni-Si alloys by electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Altenberger, I.; Kuhn, H. A.; Gholami, M.; Mhaede, M.; Wagner, L.

    2014-08-01

    A combination of rotary swaging and optimized precipitation hardening was applied to generate ultra fine grained (UFG) microstructures in low alloyed high performance Cu-based alloy CuNi3Si1Mg. As a result, ultrafine grained (UFG) microstructures with nanoscopically small Ni2Si-precipitates exhibiting high strength, ductility and electrical conductivity can be obtained. Grain boundary pinning by nano-precipitates enhances the thermal stability. Electron channeling contrast imaging (ECCI) and especially electron backscattering diffraction (EBSD) are predestined to characterize the evolving microstructures due to excellent resolution and vast crystallographic information. The following study summarizes the microstructure after different processing steps and points out the consequences for the most important mechanical and physical properties such as strength, ductility and conductivity.

  12. Strongly coupled electronic, magnetic, and lattice degrees of freedom in LaCo 5 under pressure

    DOE PAGES

    Stillwell, Ryan L.; Jeffries, Jason R.; McCall, Scott K.; ...

    2015-11-25

    In this study, we have performed high-pressure magnetotransport and x-ray diffraction measurements on ferromagnetic LaCo 5, confirming the theoretically predicted electronic topological transition driving the magnetoelastic collapse seen in the related compound YCo 5. Our x-ray diffraction results show an anisotropic lattice collapse of the c axis near 10 GPa that is also commensurate with a change in the majority charge carriers evident from high-pressure Hall effect measurements. The coupling of the electronic, magnetic, and lattice degrees of freedom is further substantiated by the evolution of the anomalous Hall effect, which couples to the magnetization of the ordered state ofmore » LaCo 5.« less

  13. Correlation-driven insulator-metal transition in near-ideal vanadium dioxide films

    DOE PAGES

    Gray, A. X.; Jeong, J.; Aetukuri, N. P.; ...

    2016-03-18

    We use polarization- and temperature-dependent x-ray absorption spectroscopy, in combination with photoelectron microscopy, x-ray diffraction, and electronic transport measurements, to study the driving force behind the insulator-metal transition in VO 2. We show that both the collapse of the insulating gap and the concomitant change in crystal symmetry in homogeneously strained single-crystalline VO 2 films are preceded by the purely electronic softening of Coulomb correlations within V-V singlet dimers. Furthermore, this process starts 7 K (±0.3 K) below the transition temperature, as conventionally defined by electronic transport and x-ray diffraction measurements, and sets the energy scale for driving the near-room-temperaturemore » insulator-metal transition in this technologically promising material.« less

  14. The molecular and crystal structure of dextrans: a combined electron and X-ray diffraction study. II. A low temperature, hydrated polymorph.

    PubMed

    Guizard, C; Chanzy, H; Sarko, A

    1985-06-05

    The crystal and molecular structure of a dextran hydrate has been determined through combined electron and X-ray diffraction analysis, aided by stereochemical model refinement. A total of 65 hk0 electron diffraction intensities were measured on frozen single crystals held at the temperature of liquid nitrogen, to a resolution limit of 1.6 A. The X-ray intensities were measured from powder patterns recorded from collections of the single crystals. The structure crystallizes in a monoclinic unit cell with parameters a = 25.71 A, b = 10.21 A, c (chain axis) = 7.76 A and beta = 91.3 degrees. The space group is P2(1) with b axis unique. The unit cell contains six chains and eight water molecules, with three chains of the same polarity and four water molecules constituting the asymmetric unit. Along the chain direction the asymmetric unit is a dimer residue; however, the individual glucopyranose residues are very nearly related by a molecular 2-fold screw axis. The conformation of the chain is very similar to that in the anhydrous structure, but the chain packing differs in the two structures in that the rotational positions of the chains about the helix axes (the chain setting angles) are considerably different. The chains still pack in the form of sheets that are separated by water molecules. The difference in the chain setting angles between the anhydrous and hydrate structures corresponds to the angle between like unit cell axes observed in the diffraction diagrams recorded from hybrid crystals containing both polymorphs. Despite some beam damage effects, the structure was determined to a satisfactory degree of agreement, with the residuals R''(electron diffraction) = 0.258 and R(X-ray) = 0.127.

  15. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less

  16. On the bulk degradation of yttria-stabilized nanocrystalline zirconia dental implant abutments: an electron backscatter diffraction study.

    PubMed

    Ocelík, V; Schepke, U; Rasoul, H Haji; Cune, M S; De Hosson, J Th M

    2017-08-01

    Degradation of yttria-stabilized zirconia dental implants abutments due to the tetragonal to monoclinic phase transformation was studied in detail by microstructural characterization using Electron Back Scatter Diffraction (EBSD). The amount and distribution of the monoclinic phase, the grain-size distribution and crystallographic orientations between tetragonal and monoclinic crystals in 3 mol.% yttria-stabilized polycrystalline zirconia (3Y-TZP) were determined in two different types of nano-crystalline dental abutments, even for grains smaller than 400 nm. An important and novel conclusion is that no substantial bulk degradation of 3Y-TZP dental implant abutments was detected after 1 year of clinical use.

  17. Effect of iron doping on structural and microstructural properties of nanocrystalline ZnSnO3 thin films prepared by spray pyrolysis techniques

    NASA Astrophysics Data System (ADS)

    Pathan, Idris G.; Suryawanshi, Dinesh N.; Bari, Anil R.; Patil, Lalchand A.

    2018-05-01

    This work presents the effect of iron doping having different volume ratios (1 ml, 2.5 ml and 5 ml) on the structural, microstructural and electrical properties of zinc stannate thin films, prepared by spray pyrolysis method. These properties were characterized with X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). In our study, XRD pattern indicates that ZnSnO3 has a perovskite phase with face exposed hexahedron structure. The electron diffraction fringes observed are in consistent with the peak observed in XRD patterns. Moreover the sensor reported in our study is cost-effective, user friendly and easy to fabricate.

  18. Electronic and geometric structure of thin CoO(100) films studied by angle-resolved photoemission spectroscopy and Auger electron diffraction

    NASA Astrophysics Data System (ADS)

    Heiler, M.; Chassé, A.; Schindler, K.-M.; Hollering, M.; Neddermeyer, H.

    2000-05-01

    We have prepared ordered thin films of CoO by evaporating cobalt in an O 2 atmosphere on to a heated (500 K) Ag(100) substrate. The geometric and electronic structure of the films was characterized by means of Auger electron diffraction (AED) and angle-resolved photoemission spectroscopy (ARUPS), respectively. The experimental AED results were compared with simulated data, which showed that the film grows in (100) orientation on the Ag(100) substrate. Synchrotron-radiation-induced photoemission investigations were performed in the photon energy range from 25 eV to 67 eV. The dispersion of the transitions was found to be similar to that of previous results on a single-crystal CoO(100) surface. The resonance behaviour of the photoemission lines in the valence-band region was investigated by constant-initial-state (CIS) spectroscopy. The implications of this behaviour for assignment of the photoemission lines to specific electronic transitions is discussed and compared with published theoretical models of the electronic structure.

  19. Folding and stacking defects of graphene flakes probed by electron nanobeam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persichetti, L.; Fanfoni, M.; Sgarlata, A.

    2011-07-25

    Combining nanoscale imaging with local electron spectroscopy and diffraction has provided direct information on folding and stacking defects of graphene flakes produced by unrolled multi-walled carbon nanotubes. Structural data obtained by nanoarea electron diffraction complemented with systematic electron energy loss spectroscopy measurements of the surface plasmon losses of single flakes show the presence of flat bilayer regions coexisting with folded areas where the topology of buckled graphene resembles that of warped carbon nanostructures.

  20. Epitaxy of Fe/Cu/Si(1 1 1) ultrathin films: an Auger electron diffraction study

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Bernardini, R.; Montecchiari, A.; Carboni, R.; De Crescenzi, M.

    2001-06-01

    Epitaxial Fe films, with thickness in the range between 1 and 50 ML (monolayer, ML), were grown in ultrahigh vacuum conditions on the 7×7 reconstructed (1 1 1)-Si surface. The films were evaporated on a Cu thick buffer layer to avoid iron silicides formation. Auger electron diffraction (AED) technique has been used to investigate the growth of the pseudomorphic film of fcc γ-Fe(1 1 1) and the successive growth of bcc Fe(1 1 0) domains in the Kurdjumov-Sachs orientation. The early stages of growth have been carefully investigated through AED to assess the pseudomorphism of iron γ-phase. AED patterns clearly show the presence of diffraction features that are fingerprints of the existence of a few bcc arranged atomic structures even for 1 ML iron coverage.

  1. Reaction of water with MgO(100) surfaces: Part III. X-ray standing wave studies

    NASA Astrophysics Data System (ADS)

    Liu, P.; Kendelewicz, T.; Nelson, E. J.; Brown, G. E.

    1998-09-01

    Clean MgO(100) surfaces cleaved in vacuum and exposed to water vapor or bulk water were studied using the X-ray standing wave (XSW) technique in back reflection mode and surface sensitive, element specific O KLL and Mg KLL Auger electron yield detection. The effects of surface charging were mitigated, but not entirely eliminated, by using a low-energy electron flood gun. Simulation of the XSW signal showed that the effect of surface charging on the XSW data could be minimized with careful experimental design. We demonstrate that the XSW method can be applied to studies of insulating surfaces, and our results for MgO(100) surfaces exposed to water vapor or bulk water indicate the following: (1) the vacuum-cleaved clean surface undergoes no surface reconstruction or significant relaxation perpendicular to the surface; (2) Mg-OH distances on surfaces exposed to water vapor or bulk water measured perpendicular to the (100) surface are the same as in bulk MgO; and (3) the z-position of the surface Mg atoms does not change within the estimated error [±2% of the (200) spacing] after the surface is fully hydroxylated. Our results for the clean, vacuum-cleaved surface disagree with results from impact collision ion-scattering spectroscopy and surface-extended electron-loss fine structure for MgO(100), which indicate 15 and 17% inward relaxation, respectively, and they support results from low-energy electron diffraction, reflection high-energy electron diffraction, and photoelectron diffraction that show little, if any, relaxation or rumpling of the surface.

  2. Densely packed beta-structure at the protein-lipid interface of porin is revealed by high-resolution cryo-electron microscopy.

    PubMed

    Sass, H J; Büldt, G; Beckmann, E; Zemlin, F; van Heel, M; Zeitler, E; Rosenbusch, J P; Dorset, D L; Massalski, A

    1989-09-05

    Porin is an integral membrane protein that forms channels across the outer membrane of Escherichia coli. Electron microscopic studies of negatively stained two-dimensional porin crystals have shown three stain accumulations per porin trimer, revealing the locations of pores spanning the membrane. In this study, reconstituted porin lattices embedded in glucose were investigated using the low-dose technique on a cryo-electron microscope equipped with a helium-cooled superconducting objective lens. The specimen temperature was maintained at 5 K to yield an improved microscopic and specimen stability. Under these conditions, we obtained for the first time electron diffraction patterns from porin lattices to a resolution of 3.2 A and images showing optical diffraction up to a resolution of 4.9 A. Applying correlation averaging techniques to the digitized micrographs, we were able to reconstruct projected images of the porin trimer to a resolution of up to 3.5 A. In the final projection maps, amplitudes from electron diffraction and phases from these images were combined. The predominant feature is a high-density narrow band (about 6 A in thickness) that delineates the outer perimeter of the trimer. Since the molecule consists of almost exclusively beta-sheet structure, as revealed by spectroscopic data, we conclude that this band is a cylindrical beta-pleated sheet crossing the membrane nearly perpendicularly to its plane. Another intriguing finding is a low-density area (about 70 A2) situated in the centre of the trimer.

  3. Classification and assessment of retrieved electron density maps in coherent X-ray diffraction imaging using multivariate analysis.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to visualize structures of non-crystalline particles of micrometer to submicrometer size from materials and biological science. In the structural analysis of CXDI, the electron density map of a sample particle can theoretically be reconstructed from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction is difficult because diffraction patterns are affected by Poisson noise and miss data in small-angle regions due to the beam stop and the saturation of detector pixels. In contrast to X-ray protein crystallography, in which the phases of diffracted waves are experimentally estimated, phase retrieval in CXDI relies entirely on the computational procedure driven by the PR algorithms. Thus, objective criteria and methods to assess the accuracy of retrieved electron density maps are necessary in addition to conventional parameters monitoring the convergence of PR calculations. Here, a data analysis scheme, named ASURA, is proposed which selects the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a diffraction pattern. Each electron density map composed of J pixels is expressed as a point in a J-dimensional space. Principal component analysis is applied to describe characteristics in the distribution of the maps in the J-dimensional space. When the distribution is characterized by a small number of principal components, the distribution is classified using the k-means clustering method. The classified maps are evaluated by several parameters to assess the quality of the maps. Using the proposed scheme, structure analysis of a diffraction pattern from a non-crystalline particle is conducted in two stages: estimation of the overall shape and determination of the fine structure inside the support shape. In each stage, the most accurate and probable density maps are objectively selected. The validity of the proposed scheme is examined by application to diffraction data that were obtained from an aggregate of metal particles and a biological specimen at the XFEL facility SACLA using custom-made diffraction apparatus.

  4. Recombinant Reflectin-Based Optical Materials

    DTIC Science & Technology

    2012-01-01

    sili- con substrates were placed in a sealed plastic box. The RH was controlled using a Dydra electronic cigar humidifier and monitored using a Fisher...diffraction gratings to generate diffraction patterns. Nano-spheres and la- mellar microstructures of refCBA samples were observed by scanning electron ...samples were observed by scanning electron microscopy and atomic force microscopy. Despite the reduced complexity of the refCBA protein compared to natural

  5. Coherent Diffractive Imaging: From Nanometric Down to Picometric Resolution

    NASA Astrophysics Data System (ADS)

    De Caro, Liberato; Carlino, Elvio; Siliqi, Dritan; Giannini, Cinzia

    Coherent diffractive imaging (CDI) is a novel technique for inspecting (crystalline and non-crystalline) matter from nanometric down to picometric resolution. It was used originally with X-rays and, more recently, with electrons (so-called electron diffractive imaging, or EDI). This chapter introduces basic concepts concerning CDI and addresses the different types of X-ray CDI experiments that have been conducted, namely plane wave CDI from isolated objects in forward scattering, focused-beam Fresnel CDI from isolated objects in forward scattering, Bragg CDI from nanocrystals, and keyhole CDI and ptychography from extended objects. A CDI experiment with a transmission electron microscope, alternatively named an EDI experiment, is also introduced.

  6. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki

    2016-05-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.

  7. Electrodeposition of CdSe on GaAs and InP substrates

    NASA Astrophysics Data System (ADS)

    Etcheberry, A.; Cachet, H.; Cortes, R.; Froment, M.

    2001-06-01

    Epitaxial CdSe layers have been electrodeposited on the (1 0 0) and ( 1¯ 1¯ 1¯) faces of GaAs and InP single crystals. Chemical composition and crystalline quality of CdSe have been studied by X-photoelectron spectroscopy, reflection high energy electron diffraction and X-ray diffraction. Influence of the substrate has been pointed out.

  8. Au crystal growth on natural occurring Au-Ag aggregate elucidated by means of precession electron diffraction (PED)

    NASA Astrophysics Data System (ADS)

    Roqué Rosell, Josep; Portillo Serra, Joaquim; Aiglsperger, Thomas; Plana-Ruiz, Sergi; Trifonov, Trifon; Proenza, Joaquín A.

    2018-02-01

    In the present work, a lamella from an Au-Ag aggregate found in Ni-laterites has been examined using Transmission Electron Microscope to produce a series of Precision Electron Diffraction (PED) patterns. The analysis of the structural data obtained, coupled with Energy Dispersive X-ray microanalysis, made it possible to determine the orientation of twinned native gold growing on the Au-Ag aggregate. The native Au crystal domains are found to have grown at the outermost part of the aggregate whereas the inner core of the aggregate is an Au-Ag alloy (∼4 wt% Ag). The submicron structural study of the natural occurring Au aggregate points to the mobilization and precipitation of gold in laterites and provides insights on Au aggregates development at supergene conditions. This manuscript demonstrates the great potential of electron crystallographic analysis, and in particular, PED to study submicron structural features of micron sized mineral aggregates by using the example of a gold grain found in a Ni-laterite deposits.

  9. Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography.

    PubMed

    Krysiak, Yaşar; Barton, Bastian; Marler, Bernd; Neder, Reinhard B; Kolb, Ute

    2018-03-01

    Nanoscaled porous materials such as zeolites have attracted substantial attention in industry due to their catalytic activity, and their performance in sorption and separation processes. In order to understand the properties of such materials, current research focuses increasingly on the determination of structural features beyond the averaged crystal structure. Small particle sizes, various types of disorder and intergrown structures render the description of structures at atomic level by standard crystallographic methods difficult. This paper reports the characterization of a strongly disordered zeolite structure, using a combination of electron exit-wave reconstruction, automated diffraction tomography (ADT), crystal disorder modelling and electron diffraction simulations. Zeolite beta was chosen for a proof-of-principle study of the techniques, because it consists of two different intergrown polymorphs that are built from identical layer types but with different stacking sequences. Imaging of the projected inner Coulomb potential of zeolite beta crystals shows the intergrowth of the polymorphs BEA and BEB. The structures of BEA as well as BEB could be extracted from one single ADT data set using direct methods. A ratio for BEA/BEB = 48:52 was determined by comparison of the reconstructed reciprocal space based on ADT data with simulated electron diffraction data for virtual nanocrystals, built with different ratios of BEA/BEB. In this way, it is demonstrated that this smart interplay of the above-mentioned techniques allows the elaboration of the real structures of functional materials in detail - even if they possess a severely disordered structure.

  10. X-Ray Spectroscopies of Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver

    This dissertation provides a perspective on the role of x-ray spectroscopy and diffraction diagnostics in experimental studies of warm dense matter (WDM). The primary focus of the work I discuss is the development of techniques to measure the structure and state variables of laboratory-generated WDM with a view towards both phenomenlogy and placing contraints on theoretical models. I present techniques adapted to two experimental venues for WDM studies: large-scale laser plasma facilities and x-ray free electron lasers. My focus is on the latter, in the context of which I have studied a dose enhancement technique that exploits nonlocal heat transport in nanostructured targets and considered several aspects of optimizing x-ray diffraction measurements. This work came into play in beam runs at the Linac Coherent Light Source (LCLS) in which my group performed x-ray diffraction studies of several materials heated to eV-scale temperatures. The results from these experiments include confirmation of the persistence of long-range crystalline order upon heating of metal oxides to tens of eV temperarures on the 40 fs timescale. One material, MgO, additionally manifested a surprising anomalous early onset in delocalization of valence charge density, contradicting predictions of all models based on either ground state electronic structure or (high-energy density) plasma physics. This particular result outlines a future path for studies of ordered insulators heated to temperatures on the order of the band gap. Such experiments will offer strong tests of electronic strucure theory, implementing a scientific approach that sees measurement of real-space charge density via x-ray diffraction (XRD) as a particularly effectve means to constrain density functional theory (DFT)-based modeling of the solid state/plasma transitional regime.

  11. The collection of MicroED data for macromolecular crystallography.

    PubMed

    Shi, Dan; Nannenga, Brent L; de la Cruz, M Jason; Liu, Jinyang; Sawtelle, Steven; Calero, Guillermo; Reyes, Francis E; Hattne, Johan; Gonen, Tamir

    2016-05-01

    The formation of large, well-ordered crystals for crystallographic experiments remains a crucial bottleneck to the structural understanding of many important biological systems. To help alleviate this problem in crystallography, we have developed the MicroED method for the collection of electron diffraction data from 3D microcrystals and nanocrystals of radiation-sensitive biological material. In this approach, liquid solutions containing protein microcrystals are deposited on carbon-coated electron microscopy grids and are vitrified by plunging them into liquid ethane. MicroED data are collected for each selected crystal using cryo-electron microscopy, in which the crystal is diffracted using very few electrons as the stage is continuously rotated. This protocol gives advice on how to identify microcrystals by light microscopy or by negative-stain electron microscopy in samples obtained from standard protein crystallization experiments. The protocol also includes information about custom-designed equipment for controlling crystal rotation and software for recording experimental parameters in diffraction image metadata. Identifying microcrystals, preparing samples and setting up the microscope for diffraction data collection take approximately half an hour for each step. Screening microcrystals for quality diffraction takes roughly an hour, and the collection of a single data set is ∼10 min in duration. Complete data sets and resulting high-resolution structures can be obtained from a single crystal or by merging data from multiple crystals.

  12. Direct Measurement of Polarization-Induced Fields in GaN/AlN by Nano-Beam Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Carvalho, Daniel; Müller-Caspary, Knut; Schowalter, Marco; Grieb, Tim; Mehrtens, Thorsten; Rosenauer, Andreas; Ben, Teresa; García, Rafael; Redondo-Cubero, Andrés; Lorenz, Katharina; Daudin, Bruno; Morales, Francisco M.

    2016-06-01

    The built-in piezoelectric fields in group III-nitrides can act as road blocks on the way to maximizing the efficiency of opto-electronic devices. In order to overcome this limitation, a proper characterization of these fields is necessary. In this work nano-beam electron diffraction in scanning transmission electron microscopy mode has been used to simultaneously measure the strain state and the induced piezoelectric fields in a GaN/AlN multiple quantum well system.

  13. System design and verification of the precession electron diffraction technique

    NASA Astrophysics Data System (ADS)

    Own, Christopher Su-Yan

    2005-07-01

    Bulk structural crystallography is generally a two-part process wherein a rough starting structure model is first derived, then later refined to give an accurate model of the structure. The critical step is the determination of the initial model. As materials problems decrease in length scale, the electron microscope has proven to be a versatile and effective tool for studying many problems. However, study of complex bulk structures by electron diffraction has been hindered by the problem of dynamical diffraction. This phenomenon makes bulk electron diffraction very sensitive to specimen thickness, and expensive equipment such as aberration-corrected scanning transmission microscopes or elaborate methodology such as high resolution imaging combined with diffraction and simulation are often required to generate good starting structures. The precession electron diffraction technique (PED), which has the ability to significantly reduce dynamical effects in diffraction patterns, has shown promise as being a "philosopher's stone" for bulk electron diffraction. However, a comprehensive understanding of its abilities and limitations is necessary before it can be put into widespread use as a standalone technique. This thesis aims to bridge the gaps in understanding and utilizing precession so that practical application might be realized. Two new PED systems have been built, and optimal operating parameters have been elucidated. The role of lens aberrations is described in detail, and an alignment procedure is given that shows how to circumvent aberration in order to obtain high-quality patterns. Multislice simulation is used for investigating the errors inherent in precession, and is also used as a reference for comparison to simple models and to experimental PED data. General trends over a large sampling of parameter space are determined. In particular, we show that the primary reflection intensity errors occur near the transmitted beam and decay with increasing angle and decreasing specimen thickness. These errors, occurring at the lowest spatial frequencies, fortuitously coincide with reflections for which phases are easiest to determine via imaging methods. A general two-beam dynamical model based upon an existing approximate model is found to be fairly accurate across most experimental conditions, particularly where it is needed for providing a correction to distorted data. Finally, the practical structure solution procedure using PED is demonstrated for several model material systems. Of the experiment parameters investigated, the cone semi-angle is found to be the most important (it should be as large as possible), followed closely by specimen thickness (thinner is better). Assuming good structure projection characteristics in the specimen, the thickness tractable by PED is extended to 40-50 nm without correction, demonstrated for complex oxides. With a forward calculation based upon the two-beam dynamical model (using known structure factors), usable specimen thickness can be extended past 150 nm. For a priori correction, using the squared amplitudes approximates the two-beam model for most thicknesses if the scattering from the structure adheres to psuedo-kinematical behavior. Practically, crystals up to 60 nm in thickness can now be processed by the precession methods developed in this thesis.

  14. Orientation and phase mapping in the transmission electron microscope using precession-assisted diffraction spot recognition: state-of-the-art results.

    PubMed

    Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S

    2013-10-01

    A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  15. Use of reciprocal lattice layer spacing in electron backscatter diffraction pattern analysis

    PubMed

    Michael; Eades

    2000-03-01

    In the scanning electron microscope using electron backscattered diffraction, it is possible to measure the spacing of the layers in the reciprocal lattice. These values are of great use in confirming the identification of phases. The technique derives the layer spacing from the higher-order Laue zone rings which appear in patterns from many materials. The method adapts results from convergent-beam electron diffraction in the transmission electron microscope. For many materials the measured layer spacing compares well with the calculated layer spacing. A noted exception is for higher atomic number materials. In these cases an extrapolation procedure is described that requires layer spacing measurements at a range of accelerating voltages. This procedure is shown to improve the accuracy of the technique significantly. The application of layer spacing measurements in EBSD is shown to be of use for the analysis of two polytypes of SiC.

  16. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    USDA-ARS?s Scientific Manuscript database

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  17. Development of Thin Films as Potential Structural Cathodes to Enable Multifunctional Energy-Storage Structural Composite Batteries for the U.S. Army’s Future Force

    DTIC Science & Technology

    2011-09-01

    glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,

  18. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.

    PubMed

    Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio

    2016-05-30

    The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.

  19. Mechanisms of decoherence in electron microscopy.

    PubMed

    Howie, A

    2011-06-01

    The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Auger electron diffraction in thin CoO films on Au(1 1 1)

    NASA Astrophysics Data System (ADS)

    Chassé, A.; Niebergall, L.; Heiler, M.; Neddermeyer, H.; Schindler, K.-M.

    The local structure of thin CoO films grown on a single crystal Au(1 1 1) surface has been studied by Auger electron diffraction (AED). Therefore, the angular dependence of the Auger electron intensity of Co-LMM and O-KLL Auger electrons was recorded in the total half-space above the film. Such 2 π-scans immediately reflect the symmetry of the surface and the local structure of the film. The experimental data are compared to multiple-scattering cluster calculations, where both the influence of multiple-scattering effects and effects of Auger transition matrix elements have been investigated. We have found that the AED patterns of a CoO film in forward-scattering conditions do not always provide straightforward information on the local structure of the film, whereas the multiple-scattering approximation applied gives very good agreement between experimental and theoretical results.

  1. Microstructural investigation of nickel silicide thin films and the silicide-silicon interface using transmission electron microscopy.

    PubMed

    Bhaskaran, M; Sriram, S; Mitchell, D R G; Short, K T; Holland, A S; Mitchell, A

    2009-01-01

    This article discusses the results of transmission electron microscopy (TEM)-based investigation of nickel silicide (NiSi) thin films grown on silicon. Nickel silicide is currently used as the CMOS technology standard for local interconnects and in electrical contacts. Films were characterized with a range of TEM-based techniques along with glancing angle X-ray diffraction. The nickel silicide thin films were formed by vacuum annealing thin films of nickel (50 nm) deposited on (100) silicon. The cross-sectional samples indicated a final silicide thickness of about 110 nm. This investigation studied and reports on three aspects of the thermally formed thin films: the uniformity in composition of the film using jump ratio maps; the nature of the interface using high resolution imaging; and the crystalline orientation of the thin films using selected-area electron diffraction (SAED). The analysis highlighted uniform composition in the thin films, which was also substantiated by spectroscopy techniques; an interface exhibiting the desired abrupt transition from silicide to silicon; and desired and preferential crystalline orientation corresponding to stoichiometric NiSi, supported by glancing angle X-ray diffraction results.

  2. Two-Dimensional Light Diffraction from an EPROM Chip

    ERIC Educational Resources Information Center

    Ekkens, Tom

    2018-01-01

    In introductory physics classes, a laser pointer and a compact disc are all the items required to illustrate diffraction of light in a single dimension. If a two-dimensional diffraction pattern is desired, double axis diffraction grating material is available or a CCD sensor can be extracted from an unused electronics device. This article presents…

  3. Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.

    2018-06-01

    Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.

  4. Mapping of reciprocal space of La{sub 0.30}CoO{sub 2} in 3D: Analysis of superstructure diffractions and intergrowths with Co{sub 3}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brázda, Petr, E-mail: brazda@fzu.cz; Palatinus, Lukáš; Klementová, Mariana

    2015-07-15

    We have used electron diffraction tomography and powder X-ray diffraction to elucidate the structural properties of layered cobaltate γ-La{sub 0.30}CoO{sub 2}. The structure consists of hexagonal sheets of edge-sharing CoO{sub 6} octahedra interleaved by lanthanum monolayers. The La{sup 3+} cations occupy only one third of available P2 sites, forming a 2-dimensional a√3×a√3 superstructure in a–b plane. The results show that there exists no order in the mutual relative shift between the neighbouring La interlayers within the a–b plane. This is manifested in the observed monotonous decrease of the diffracted intensity of the superstructure diffractions along c{sup ⁎} in both X-raymore » and electron diffraction data. The observed lack of stacking order differentiates the La{sub x}CoO{sub 2} from its Ca and Sr analogues where at least a partial stacking order of the cationic interlayers is manifested in experimental data published in literature. - Highlights: • We use electron diffraction tomography for reciprocal space mapping of La{sub 0.30}CoO{sub 2}. • We observed a complete disorder of the stacking of Lanthanum interlayers. • Co{sub 3}O{sub 4} intergrown with La{sub 0.30}CoO{sub 2} crystals brings about fake superstructure diffractions. • Twinning of Co{sub 3}O{sub 4} enhances the problem of fake superstructure diffractions.« less

  5. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing

    PubMed Central

    Wan, Wei; Sun, Junliang; Su, Jie; Hovmöller, Sven; Zou, Xiaodong

    2013-01-01

    Implementation of a computer program package for automated collection and processing of rotation electron diffraction (RED) data is described. The software package contains two computer programs: RED data collection and RED data processing. The RED data collection program controls the transmission electron microscope and the camera. Electron beam tilts at a fine step (0.05–0.20°) are combined with goniometer tilts at a coarse step (2.0–3.0°) around a common tilt axis, which allows a fine relative tilt to be achieved between the electron beam and the crystal in a large tilt range. An electron diffraction (ED) frame is collected at each combination of beam tilt and goniometer tilt. The RED data processing program processes three-dimensional ED data generated by the RED data collection program or by other approaches. It includes shift correction of the ED frames, peak hunting for diffraction spots in individual ED frames and identification of these diffraction spots as reflections in three dimensions. Unit-cell parameters are determined from the positions of reflections in three-dimensional reciprocal space. All reflections are indexed, and finally a list with hkl indices and intensities is output. The data processing program also includes a visualizer to view and analyse three-dimensional reciprocal lattices reconstructed from the ED frames. Details of the implementation are described. Data collection and data processing with the software RED are demonstrated using a calcined zeolite sample, silicalite-1. The structure of the calcined silicalite-1, with 72 unique atoms, could be solved from the RED data by routine direct methods. PMID:24282334

  6. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing.

    PubMed

    Wan, Wei; Sun, Junliang; Su, Jie; Hovmöller, Sven; Zou, Xiaodong

    2013-12-01

    Implementation of a computer program package for automated collection and processing of rotation electron diffraction (RED) data is described. The software package contains two computer programs: RED data collection and RED data processing. The RED data collection program controls the transmission electron microscope and the camera. Electron beam tilts at a fine step (0.05-0.20°) are combined with goniometer tilts at a coarse step (2.0-3.0°) around a common tilt axis, which allows a fine relative tilt to be achieved between the electron beam and the crystal in a large tilt range. An electron diffraction (ED) frame is collected at each combination of beam tilt and goniometer tilt. The RED data processing program processes three-dimensional ED data generated by the RED data collection program or by other approaches. It includes shift correction of the ED frames, peak hunting for diffraction spots in individual ED frames and identification of these diffraction spots as reflections in three dimensions. Unit-cell parameters are determined from the positions of reflections in three-dimensional reciprocal space. All reflections are indexed, and finally a list with hkl indices and intensities is output. The data processing program also includes a visualizer to view and analyse three-dimensional reciprocal lattices reconstructed from the ED frames. Details of the implementation are described. Data collection and data processing with the software RED are demonstrated using a calcined zeolite sample, silicalite-1. The structure of the calcined silicalite-1, with 72 unique atoms, could be solved from the RED data by routine direct methods.

  7. Electron backscatter diffraction as a domain analysis technique in BiFeO(3)-PbTiO(3) single crystals.

    PubMed

    Burnett, T L; Comyn, T P; Merson, E; Bell, A J; Mingard, K; Hegarty, T; Cain, M

    2008-05-01

    xBiFeO(3)-(1-x)PbTiO(3) single crystals were grown via a flux method for a range of compositions. Presented here is a study of the domain configuration in the 0.5BiFeO(3)-0.5PbTiO(3) composition using electron backscatter diffraction to demonstrate the ability of the technique to map ferroelastic domain structures at the micron and submicron scale. The micron-scale domains exhibit an angle of approximately 85 degrees between each variant, indicative of a ferroelastic domain wall in a tetragonal system with a spontaneous strain, c/a - 1 of 0.10, in excellent agreement with the lattice parameters derived from x-ray diffraction. Contrast seen in forescatter images is attributed to variations in the direction of the electrical polarization vector, providing images of ferroelectric domain patterns.

  8. Pressure-induced Lifshitz transition in NbP: Raman, x-ray diffraction, electrical transport, and density functional theory

    NASA Astrophysics Data System (ADS)

    Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Qi, Yanpeng; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.

    2018-02-01

    We report high-pressure Raman, synchrotron x-ray diffraction, and electrical transport studies on Weyl semimetals NbP and TaP along with first-principles density functional theoretical (DFT) analysis. The frequencies of first-order Raman modes of NbP harden with increasing pressure and exhibit a slope change at Pc˜9 GPa. The pressure-dependent resistivity exhibits a minimum at Pc. The temperature coefficient of resistivity below Pc is positive as expected for semimetals but changes significantly in the high-pressure phase. Using DFT calculations, we show that these anomalies are associated with a pressure-induced Lifshitz transition, which involves the appearance of electron and hole pockets in its electronic structure. In contrast, the results of Raman and synchrotron x-ray diffraction experiments on TaP and DFT calculations show that TaP is quite robust under pressure and does not undergo any phase transition.

  9. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: The effect of substrate on magnetic properties of Co/Cu multilayer nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ren, Yong; Wang, Jian-Bo; Liu, Qing-Fang; Han, Xiang-Hua; Xue, De-Sheng

    2009-08-01

    Ordered Co/Cu multilayer nanowire arrays have been fabricated into anodic aluminium oxide templates with Ag and Cu substrate by direct current electrodeposition. This paper studies the morphology, structure and magnetic properties by transmission electron microscopy, selective area electron diffraction, x-ray diffraction, and vibrating sample magnetometer. X-ray diffraction patterns reveal that both as-deposited nanowire arrays films exhibit face-centred cubic structure. Magnetic measurements indicate that the easy magnetization direction of Co/Cu multilayer nanowire arrays films on Ag substrate is perpendicular to the long axis of nanowire, whereas the easy magnetization direction of the sample with Cu substrate is parallel to the long axis of nanowire. The change of easy magnetization direction attributed to different substrates, and the magnetic properties of the nanowire arrays are discussed.

  10. Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Fortmann-Grote, C.; Bielecki, J.; Jurek, Z.; Santra, R.; Ziaja-Motyka, B.; Mancuso, A. P.

    2017-08-01

    We employ start-to-end simulations to model coherent diffractive imaging of single biomolecules using x-ray free electron lasers. This technique is expected to yield new structural information about biologically relevant macromolecules thanks to the ability to study the isolated sample in its natural environment as opposed to crystallized or cryogenic samples. The effect of the solvent on the diffraction pattern and interpretability of the data is an open question. We present first results of calculations where the solvent is taken into account explicitly. They were performed with a molecular dynamics scheme for a sample consisting of a protein and a hydration layer of varying thickness. Through R-factor analysis of the simulated diffraction patterns from hydrated samples, we show that the scattering background from realistic hydration layers of up to 3 Å thickness presents no obstacle for the resolution of molecular structures at the sub-nm level.

  11. Blois 5: Experimental summary

    NASA Astrophysics Data System (ADS)

    Albrow, M. G.

    1993-09-01

    The author gives a summary talk of the best experimental data given at the 5th Blois Workshop on Elastic and Diffractive Scattering. He addresses the following eight areas in his talk: total and elastic cross sections; single diffractive excitation; electron-proton scattering; di-jets and rapidity gaps; areas of future study; spins and asymmetries; high-transverse momentum and masses at the Tevatron; and disoriented chiral condensates and cosmic radiation.

  12. Novel radio-frequency gun structures for ultrafast relativistic electron diffraction.

    PubMed

    Musumeci, P; Faillace, L; Fukasawa, A; Moody, J T; O'Shea, B; Rosenzweig, J B; Scoby, C M

    2009-08-01

    Radio-frequency (RF) photoinjector-based relativistic ultrafast electron diffraction (UED) is a promising new technique that has the potential to probe structural changes at the atomic scale with sub-100 fs temporal resolution in a single shot. We analyze the limitations on the temporal and spatial resolution of this technique considering the operating parameters of a standard 1.6 cell RF gun (which is the RF photoinjector used for the first experimental tests of relativistic UED at Stanford Linear Accelerator Center; University of California, Los Angeles; Brookhaven National Laboratory), and study the possibility of employing novel RF structures to circumvent some of these limits.

  13. Synthesis of nanostructured vanadium powder by high-energy ball milling: X-ray diffraction and high-resolution electron microscopy characterization

    NASA Astrophysics Data System (ADS)

    Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran

    2016-10-01

    Vanadium metal powders, ball milled with different surfactants viz., stearic acid, KCl and NaCl, have been studied by X-ray diffraction and transmission electron microscopy. The surfactants alter the microstructural and morphological characteristics of the powders. Ball milling with stearic acid results in solid-state amorphization, while powders milled with KCl yield vanadium-tungsten carbide nanocomposite mixtures. NaCl proved to be an excellent surfactant for obtaining nanostructured fusion-grade vanadium powders. In order to understand the reaction mechanism behind any interstitial addition in the ball-milled powders, CHNOS analysis was performed.

  14. Geometry of phase-separated domains in phospholipid bilayers by diffraction-contrast electron microscopy.

    PubMed Central

    Hui, S W

    1981-01-01

    The sizes and shapes of solidus (gel) phase domains in the hydrated molecular bilayers of dilauroylphosphatidylcholine/dipalmitoylphasphatidylcholine (DLPC/DPPC) (1:1) and phosphatidylserine (PS)/DPPC (1:2) are visualized directly by low dose diffraction-contrast electron microscopy. The temperature and humidity of the bilayers are controlled by an environmental chamber set in an electron microscope. The contrast between crystalline domains is enhanced by electron optical filtering of the diffraction patterns of the bilayers. The domains are seen as a patchwork in the plane of the bilayer, with an average width of 0.2-0.5 micrometer. The percentage of solidus area measured from diffraction-contrast micrographs at various temperatures agrees in general with those depicted by known phase diagrams. The shape and size of the domains resemble those seen by freeze-fracture in multilamellar vesicles. Temperature-related changes in domain size and in phase boundary per unit area are more pronounced in the less miscible DLPC/DPPC mixture. No significant change in these geometric parameters with temperature is found in the PS/DPPC mixture. Mapping domains by their molecular diffraction signals not only verifies the existance of areas of different molecular packing during phase separation but also provides a quantitative measurement of structural boundaries and defects in lipid bilayers. Images FIGURE 1 FIGURE 3 FIGURE 6 PMID:6894707

  15. Vapor phase diamond growth technology

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1981-01-01

    Ion beam deposition chambers used for carbon film generation were designed and constructed. Features of the developed equipment include: (1) carbon ion energies down to approx. 50 eV; (2) in suit surface monitoring with HEED; (3) provision for flooding the surface with ultraviolet radiation; (4) infrared laser heating of substrate; (5) residual gas monitoring; (6) provision for several source gases, including diborane for doping studies; and (7) growth from either hydrocarbon source gases or from carbon/argon arc sources. Various analytical techniques for characterization of from carbon/argon arc sources. Various analytical techniques for characterization of the ion deposited carbon films used to establish the nature of the chemical bonding and crystallographic structure of the films are discussed. These include: H2204/HN03 etch; resistance measurements; hardness tests; Fourier transform infrared spectroscopy; scanning auger microscopy; electron spectroscopy for chemical analysis; electron diffraction and energy dispersive X-ray analysis; electron energy loss spectroscopy; density measurements; secondary ion mass spectroscopy; high energy electron diffraction; and electron spin resonance. Results of the tests are summarized.

  16. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings.

    PubMed

    Schmitt, Thorsten; de Groot, Frank M F; Rubensson, Jan Erik

    2014-09-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned.

  17. Formation, structure, and orientation of gold silicide on gold surfaces

    NASA Technical Reports Server (NTRS)

    Green, A. K.; Bauer, E.

    1976-01-01

    The formation of gold silicide on Au films evaporated onto Si(111) surfaces is studied by Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Surface condition, film thickness, deposition temperature, annealing temperature, and heating rate during annealing are varied. Several oriented crystalline silicide layers are observed.

  18. Diffraction of real and virtual photons in a pyrolytic graphite crystal as source of intensive quasimonochromatic X-ray beam

    NASA Astrophysics Data System (ADS)

    Bogomazova, E. A.; Kalinin, B. N.; Naumenko, G. A.; Padalko, D. V.; Potylitsyn, A. P.; Sharafutdinov, A. F.; Vnukov, I. E.

    2003-01-01

    A series of experiments on the parametric X-rays radiation (PXR) generation and radiation soft component diffraction of relativistic electrons in pyrolytic graphite (PG) crystals have been carried out at the Tomsk synchrotron. It is shown that the experimental results with PG crystals are explained by the kinematic PXR theory if we take into account a contribution of the real photons diffraction (transition radiation, bremsstrahlung and PXR photons as well). The measurements of the emission spectrum of channeled electrons in the photon energy range much smaller than the characteristic energy of channeling radiation have been performed with a crystal-diffraction spectrometer. For electrons incident along the <1 1 0> axis of a silicon crystal, the radiation intensity in the energy range 30⩽ ω⩽360 keV exceeds the bremsstrahlung one almost by an order of magnitude. Different possibilities to create an effective source of the monochromatic X-ray beam based on the real and virtual photons diffraction in the PG crystals have been considered.

  19. Combining experiment and optical simulation in coherent X-ray nanobeam characterization of Si/SiGe semiconductor heterostructures

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2016-07-06

    Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less

  20. Dynamical electron diffraction simulation for non-orthogonal crystal system by a revised real space method.

    PubMed

    Lv, C L; Liu, Q B; Cai, C Y; Huang, J; Zhou, G W; Wang, Y G

    2015-01-01

    In the transmission electron microscopy, a revised real space (RRS) method has been confirmed to be a more accurate dynamical electron diffraction simulation method for low-energy electron diffraction than the conventional multislice method (CMS). However, the RRS method can be only used to calculate the dynamical electron diffraction of orthogonal crystal system. In this work, the expression of the RRS method for non-orthogonal crystal system is derived. By taking Na2 Ti3 O7 and Si as examples, the correctness of the derived RRS formula for non-orthogonal crystal system is confirmed by testing the coincidence of numerical results of both sides of Schrödinger equation; moreover, the difference between the RRS method and the CMS for non-orthogonal crystal system is compared at the accelerating voltage range from 40 to 10 kV. Our results show that the CMS method is almost the same as the RRS method for the accelerating voltage above 40 kV. However, when the accelerating voltage is further lowered to 20 kV or below, the CMS method introduces significant errors, not only for the higher-order Laue zone diffractions, but also for zero-order Laue zone. These indicate that the RRS method for non-orthogonal crystal system is necessary to be used for more accurate dynamical simulation when the accelerating voltage is low. Furthermore, the reason for the increase of differences between those diffraction patterns calculated by the RRS method and the CMS method with the decrease of the accelerating voltage is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  1. Attosecond electron pulses for 4D diffraction and microscopy

    PubMed Central

    Baum, Peter; Zewail, Ahmed H.

    2007-01-01

    In this contribution, we consider the advancement of ultrafast electron diffraction and microscopy to cover the attosecond time domain. The concept is centered on the compression of femtosecond electron packets to trains of 15-attosecond pulses by the use of the ponderomotive force in synthesized gratings of optical fields. Such attosecond electron pulses are significantly shorter than those achievable with extreme UV light sources near 25 nm (≈50 eV) and have the potential for applications in the visualization of ultrafast electron dynamics, especially of atomic structures, clusters of atoms, and some materials. PMID:18000040

  2. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speedmore » higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.« less

  3. Noble Gas Isotopic Signatures and X-Ray and Electron Diffraction Characteristics of Tagish Lake Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Nakamura, T.; Noguchi, T.; Zolensky, M. E.; Takaoka, N.

    2001-01-01

    Noble gas isotopic signatures and X-ray and electron diffraction characteristics of Tagish Lake indicate that it is a unique carbonaceous chondrite rich in saponite, Fe-Mg-Ca carbonate, primordial noble gases, and presolar grains. Additional information is contained in the original extended abstract.

  4. Electron Matter Optics and the Quantum Electron Stern-Gerlach Magnet

    NASA Astrophysics Data System (ADS)

    McGregor, Scot; Bach, Roger; Yin, Xiaolu; Liou, Sy-Hwang; Batelaan, Herman; Gronniger, Glen

    2011-05-01

    We explore electron interferometry for the purpose of performing fundamental quantum mechanical experiments and sensing applications. To this end electron matter optics elements, in particular, a diffraction limited single slit, a double slit, and a nano-fabricated grating diffraction apparatus as well as a Mach-Zehnder IFM were previously developed. The double slit diffraction pattern has been recorded one electron at a time. Furthermore, the capability of closing each slit on demand has been developed, in that way realizing the thought experiment that Feynman explains in his lectures. The capability of the Mach-Zehnder interferometer to sense DC and AC electromagnetic fields for industrial applications is currently under investigation. Also, the construction of a new type of interferometer that has the potential to significantly increase the enclosed area and thus its sensitivity is in progress. Finally an idea to separate an electron beam fully into its two spin component using an electron interferometer is presented. We gratefully acknowledge funding by NSF Grant No. 0969506 and R. B. and S. M. acknowledge DOE-GAANN fellowships.

  5. A protocol for searching the most probable phase-retrieved maps in coherent X-ray diffraction imaging by exploiting the relationship between convergence of the retrieved phase and success of calculation.

    PubMed

    Sekiguchi, Yuki; Hashimoto, Saki; Kobayashi, Amane; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2017-09-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for visualizing the structures of non-crystalline particles with size in the submicrometer to micrometer range in material sciences and biology. In the structural analysis of CXDI, the electron density map of a specimen particle projected along the direction of the incident X-rays can be reconstructed only from the diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction, relying entirely on the computational procedure, sometimes fails because diffraction patterns miss the data in small-angle regions owing to the beam stop and saturation of the detector pixels, and are modified by Poisson noise in X-ray detection. To date, X-ray free-electron lasers have allowed us to collect a large number of diffraction patterns within a short period of time. Therefore, the reconstruction of correct electron density maps is the bottleneck for efficiently conducting structure analyses of non-crystalline particles. To automatically address the correctness of retrieved electron density maps, a data analysis protocol to extract the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a single diffraction pattern is proposed. Through monitoring the variations of the phase values during PR calculations, the tendency for the PR calculations to succeed when the retrieved phase sets converged on a certain value was found. On the other hand, if the phase set was in persistent variation, the PR calculation tended to fail to yield the correct electron density map. To quantify this tendency, here a figure of merit for the variation of the phase values during PR calculation is introduced. In addition, a PR protocol to evaluate the similarity between a map of the highest figure of merit and other independently reconstructed maps is proposed. The protocol is implemented and practically examined in the structure analyses for diffraction patterns from aggregates of gold colloidal particles. Furthermore, the feasibility of the protocol in the structure analysis of organelles from biological cells is examined.

  6. Structural and optical properties of WTe2 single crystals synthesized by DVT technique

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.

    2018-05-01

    Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.

  7. Structure Evolution and Distributions of Grain-Boundary Misorientainons in Submicrocrystalline Molybdenum Irradiated with a Pulsed Electron Beam

    NASA Astrophysics Data System (ADS)

    Stepanova, E. N.; Grabovetskaya, G. P.; Teresov, A. D.; Mishin, I. P.

    2018-05-01

    Using the methods of electron backscatter diffraction, electron microscopy and X-ray diffraction analysis, it is demonstrated that irradiation of the surface of a submicrocrystalline molybdenum specimen with a pulsed electron beam in a non-melt regime results in the formation of a gradient structure in its bulk. The irradiation temperature is shown to affect the density of defects, the value of stress, and the distributions of grain-boundary misorientations in the surface and bulk of the submicrocrystalline molybdenum specimens.

  8. Detection of expansion at large angle grain boundaries using electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balluffi, R.W.; Bristowe, P.D.

    1984-02-01

    Lamarre and Sass (LS) (Scripta Metall. 17: 1141(1983)) observed a grain boundary electron diffraction effect from a large angle twist boundary which they claim can be used to obtain the volume expansion at the grain boundary in a direction normal to it. This paper considers the case where the intensity from the grain boundary region, is close to lattice reflections on the same element of the boundary diffraction lattice. Analysis of this complex problem show that the simplified model of LS is misleading in this case. (DLC)

  9. Graphene unit cell imaging by holographic coherent diffraction.

    PubMed

    Longchamp, Jean-Nicolas; Latychevskaia, Tatiana; Escher, Conrad; Fink, Hans-Werner

    2013-06-21

    We have imaged a freestanding graphene sheet of 210 nm in diameter with 2 Å resolution by combining coherent diffraction and holography with low-energy electrons. The entire sheet is reconstructed from a single diffraction pattern displaying the arrangement of 660.000 individual graphene unit cells at once. Given the fact that electrons with kinetic energies of the order of 100 eV do not damage biological molecules, it will now be a matter of developing methods for depositing individual proteins onto such graphene sheets.

  10. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution.

    PubMed

    Pennacchio, Francesco; Vanacore, Giovanni M; Mancini, Giulia F; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio

    2017-07-01

    Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 10 5 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.

  11. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution

    PubMed Central

    Pennacchio, Francesco; Vanacore, Giovanni M.; Mancini, Giulia F.; Oppermann, Malte; Jayaraman, Rajeswari; Musumeci, Pietro; Baum, Peter; Carbone, Fabrizio

    2017-01-01

    Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons. PMID:28713841

  12. Quantitative Analysis of Electron Beam Damage in Organic Thin Films

    PubMed Central

    2017-01-01

    In transmission electron microscopy (TEM) the interaction of an electron beam with polymers such as P3HT:PCBM photovoltaic nanocomposites results in electron beam damage, which is the most important factor limiting acquisition of structural or chemical data at high spatial resolution. Beam effects can vary depending on parameters such as electron dose rate, temperature during imaging, and the presence of water and oxygen in the sample. Furthermore, beam damage will occur at different length scales. To assess beam damage at the angstrom scale, we followed the intensity of P3HT and PCBM diffraction rings as a function of accumulated electron dose by acquiring dose series and varying the electron dose rate, sample preparation, and the temperature during acquisition. From this, we calculated a critical dose for diffraction experiments. In imaging mode, thin film deformation was assessed using the normalized cross-correlation coefficient, while mass loss was determined via changes in average intensity and standard deviation, also varying electron dose rate, sample preparation, and temperature during acquisition. The understanding of beam damage and the determination of critical electron doses provides a framework for future experiments to maximize the information content during the acquisition of images and diffraction patterns with (cryogenic) transmission electron microscopy. PMID:28553431

  13. High Pressure X-Ray Diffraction Studies of Bi2-xSbxTe3 (x = 0,1,2)

    NASA Astrophysics Data System (ADS)

    Jacobsen, M. K.; Kumar, R. S.; Cornelius, A. L.; Sinogeiken, S. V.; Nico, M. F.

    2007-12-01

    Recently, pressure tuning of the thermoelectric figure of merit has been reported for several materials Bi2Te3 based thermoelectric materials [2],[10],[12]. In order to investigate the bulk properties of Bi2Te3, Sb2Te3, and their solid solution in detail, we have performed structural studies up to 20 GPa. Our diffraction results show that all three compounds transform from the ambient pressure structure to a high pressure phase between 7 and 10 GPa. In addition, these diffraction results have been converted to Vinet and Holzapfel equations of state to test the claim of electronic topological transitions in these structures [3].

  14. Development of splitting convergent beam electron diffraction (SCBED).

    PubMed

    Houdellier, Florent; Röder, Falk; Snoeck, Etienne

    2015-12-01

    Using a combination of condenser electrostatic biprism with dedicated electron optic conditions for sample illumination, we were able to split a convergent beam electron probe focused on the sample in two half focused probes without introducing any tilt between them. As a consequence, a combined convergent beam electron diffraction pattern is obtained in the back focal plane of the objective lens arising from two different sample areas, which could be analyzed in a single pattern. This splitting convergent beam electron diffraction (SCBED) pattern has been tested first on a well-characterized test sample of Si/SiGe multilayers epitaxially grown on a Si substrate. The SCBED pattern contains information from the strained area, which exhibits HOLZ lines broadening induced by surface relaxation, with fine HOLZ lines observed in the unstrained reference part of the sample. These patterns have been analyzed quantitatively using both parts of the SCBED transmitted disk. The fine HOLZ line positions are used to determine the precise acceleration voltage of the microscope while the perturbed HOLZ rocking curves in the stained area are compared to dynamical simulated ones. The combination of these two information leads to a precise evaluation of the sample strain state. Finally, several SCBED setups are proposed to tackle fundamental physics questions as well as applied materials science ones and demonstrate how SCBED has the potential to greatly expand the range of applications of electron diffraction and electron holography. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Zemax simulations describing collective effects in transition and diffraction radiation.

    PubMed

    Bisesto, F G; Castellano, M; Chiadroni, E; Cianchi, A

    2018-02-19

    Transition and diffraction radiation from charged particles is commonly used for diagnostics purposes in accelerator facilities as well as THz sources for spectroscopy applications. Therefore, an accurate analysis of the emission process and the transport optics is crucial to properly characterize the source and precisely retrieve beam parameters. In this regard, we have developed a new algorithm, based on Zemax, to simulate both transition and diffraction radiation as generated by relativistic electron bunches, therefore considering collective effects. In particular, unlike other previous works, we take into account electron beam physical size and transverse momentum, reproducing some effects visible on the produced radiation, not observable in a single electron analysis. The simulation results have been compared with two experiments showing an excellent agreement.

  16. Nanox: a miniature mechanical stress rig designed for near-field X-ray diffraction imaging techniques.

    PubMed

    Gueninchault, N; Proudhon, H; Ludwig, W

    2016-11-01

    Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al-Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment.

  17. Nanox: a miniature mechanical stress rig designed for near-field X-ray diffraction imaging techniques

    PubMed Central

    Gueninchault, N.; Proudhon, H.; Ludwig, W.

    2016-01-01

    Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al–Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment. PMID:27787253

  18. Synthesis of Large-grain, Single-crystalline Monolayer and AB-stacking Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Luyao; Lin, Yung-Chen; Zhang, Yi; Chang, Han-Wen; Yeh, Wen-Cheng; Zhou, Chongwu; USC Nanotechnology Research Laboratory Team

    2013-03-01

    We report the growth of large-grain, single-crystalline monolayer and AB-stacking bilayer graphene by the combination of ambient pressure chemical vapor deposition and low pressure chemical vapor deposition. The shape of the monolayer graphene was modified to be either hexagons or flowers under different growth conditions. The size of the bilayer graphene region was enlarged under ambient pressure growth conditions with low methane concentration. Raman spectra and selected area electron diffraction of individual graphene grain indicated that the each graphene grain is single-crystalline. With electron beam lithography patterned PMMA seeds, graphene nucleation can be controlled and graphene monolayer and bilayer arrays were synthesized on copper foil. Electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Mork Family Department of Chemical Engineering and Materials Science

  19. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    NASA Astrophysics Data System (ADS)

    Mo, M. Z.; Shen, X.; Chen, Z.; Li, R. K.; Dunning, M.; Sokolowski-Tinten, K.; Zheng, Q.; Weathersby, S. P.; Reid, A. H.; Coffee, R.; Makasyuk, I.; Edstrom, S.; McCormick, D.; Jobe, K.; Hast, C.; Glenzer, S. H.; Wang, X.

    2016-11-01

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined. This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.

  20. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    PubMed

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  1. Diffraction contrast as a sensitive indicator of femtosecond sub-nanoscale motion in ultrafast transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Cremons, Daniel R.; Schliep, Karl B.; Flannigan, David J.

    2013-09-01

    With ultrafast transmission electron microscopy (UTEM), access can be gained to the spatiotemporal scales required to directly visualize rapid, non-equilibrium structural dynamics of materials. This is achieved by operating a transmission electron microscope (TEM) in a stroboscopic pump-probe fashion by photoelectrically generating coherent, well-timed electron packets in the gun region of the TEM. These probe photoelectrons are accelerated down the TEM column where they travel through the specimen before reaching a standard, commercially-available CCD detector. A second laser pulse is used to excite (pump) the specimen in situ. Structural changes are visualized by varying the arrival time of the pump laser pulse relative to the probe electron packet at the specimen. Here, we discuss how ultrafast nanoscale motions of crystalline materials can be visualized and precisely quantified using diffraction contrast in UTEM. Because diffraction contrast sensitively depends upon both crystal lattice orientation as well as incoming electron wavevector, minor spatial/directional variations in either will produce dynamic and often complex patterns in real-space images. This is because sections of the crystalline material that satisfy the Laue conditions may be heterogeneously distributed such that electron scattering vectors vary over nanoscale regions. Thus, minor changes in either crystal grain orientation, as occurs during specimen tilting, warping, or anisotropic expansion, or in the electron wavevector result in dramatic changes in the observed diffraction contrast. In this way, dynamic contrast patterns observed in UTEM images can be used as sensitive indicators of ultrafast specimen motion. Further, these motions can be spatiotemporally mapped such that direction and amplitude can be determined.

  2. Electron crystallography with the EIGER detector

    PubMed Central

    Tinti, Gemma; Fröjdh, Erik; van Genderen, Eric; Gruene, Tim; Schmitt, Bernd; de Winter, D. A. Matthijs; Weckhuysen, Bert M.; Abrahams, Jan Pieter

    2018-01-01

    Electron crystallography is a discipline that currently attracts much attention as method for inorganic, organic and macromolecular structure solution. EIGER, a direct-detection hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland, has been tested for electron diffraction in a transmission electron microscope. EIGER features a pixel pitch of 75 × 75 µm2, frame rates up to 23 kHz and a dead time between frames as low as 3 µs. Cluster size and modulation transfer functions of the detector at 100, 200 and 300 keV electron energies are reported and the data quality is demonstrated by structure determination of a SAPO-34 zeotype from electron diffraction data. PMID:29765609

  3. Review of high energy diffraction in real and virtual photon-proton scattering at HERA

    NASA Astrophysics Data System (ADS)

    Wolf, G.

    2010-11-01

    The electron-proton collider HERA at DESY opened the door for the study of diffraction in real and virtual photon-proton scattering at centre-of-mass energies W up to 250 GeV and for large negative mass squared -Q2 of the virtual photon up to Q2 = 1600 GeV2. At W = 220 GeV and Q2 = 4 GeV2, diffraction accounts for about 15% of the total virtual photon-proton cross section, decreasing to ≈5% at Q2 = 200 GeV2. An overview of the results obtained by the experiments H1 and ZEUS on the production of neutral vector mesons and on inclusive diffraction up to the year 2008 is presented.

  4. Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro

    2009-06-01

    Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.

  5. Positrons in surface physics

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2016-12-01

    Within the last decade powerful methods have been developed to study surfaces using bright low-energy positron beams. These novel analysis tools exploit the unique properties of positron interaction with surfaces, which comprise the absence of exchange interaction, repulsive crystal potential and positron trapping in delocalized surface states at low energies. By applying reflection high-energy positron diffraction (RHEPD) one can benefit from the phenomenon of total reflection below a critical angle that is not present in electron surface diffraction. Therefore, RHEPD allows the determination of the atom positions of (reconstructed) surfaces with outstanding accuracy. The main advantages of positron annihilation induced Auger-electron spectroscopy (PAES) are the missing secondary electron background in the energy region of Auger-transitions and its topmost layer sensitivity for elemental analysis. In order to enable the investigation of the electron polarization at surfaces low-energy spin-polarized positrons are used to probe the outermost electrons of the surface. Furthermore, in fundamental research the preparation of well defined surfaces tailored for the production of bound leptonic systems plays an outstanding role. In this report, it is envisaged to cover both the fundamental aspects of positron surface interaction and the present status of surface studies using modern positron beam techniques.

  6. Magneto-structural studies of sol-gel synthesized nanocrystalline manganese substituted nickel ferrites

    NASA Astrophysics Data System (ADS)

    Pandav, R. S.; Patil, R. P.; Chavan, S. S.; Mulla, I. S.; Hankare, P. P.

    2016-11-01

    Nanocrystalline NiFe2-xMnxO4 (2≥x≥0) ferrites were prepared by sol-gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels.

  7. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    NASA Astrophysics Data System (ADS)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will directly translate to use at hard x-ray free electron lasers.

  8. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    PubMed Central

    Schmitt, Thorsten; de Groot, Frank M. F.; Rubensson, Jan-Erik

    2014-01-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned. PMID:25177995

  9. Diffracted diffraction radiation and its application to beam diagnostics

    NASA Astrophysics Data System (ADS)

    Goponov, Yu. A.; Shatokhin, R. A.; Sumitani, K.; Syshchenko, V. V.; Takabayashi, Y.; Vnukov, I. E.

    2018-03-01

    We present theoretical considerations for diffracted diffraction radiation and also propose an application of this process to diagnosing ultra-relativistic electron (positron) beams for the first time. Diffraction radiation is produced when relativistic particles move near a target. If the target is a crystal or X-ray mirror, diffraction radiation in the X-ray region is expected to be diffracted at the Bragg angle and therefore be detectable. We present a scheme for applying this process to measurements of the beam angular spread, and consider how to conduct a proof-of-principle experiment for the proposed method.

  10. In-Depth View of the Structure and Growth of SnO2 Nanowires and Nanobrushes.

    PubMed

    Stuckert, Erin P; Geiss, Roy H; Miller, Christopher J; Fisher, Ellen R

    2016-08-31

    Strategic application of an array of complementary imaging and diffraction techniques is critical to determine accurate structural information on nanomaterials, especially when also seeking to elucidate structure-property relationships and their effects on gas sensors. In this work, SnO2 nanowires and nanobrushes grown via chemical vapor deposition (CVD) displayed the same tetragonal SnO2 structure as revealed via powder X-ray diffraction bulk crystallinity data. Additional characterization using a range of electron microscopy imaging and diffraction techniques, however, revealed important structure and morphology distinctions between the nanomaterials. Tailoring scanning transmission electron microscopy (STEM) modes combined with transmission electron backscatter diffraction (t-EBSD) techniques afforded a more detailed view of the SnO2 nanostructures. Indeed, upon deeper analysis of individual wires and brushes, we discovered that, despite a similar bulk structure, wires and brushes grew with different crystal faces and lattice spacings. Had we not utilized multiple STEM diffraction modes in conjunction with t-EBSD, differences in orientation related to bristle density would have been overlooked. Thus, it is only through a methodical combination of several structural analysis techniques that precise structural information can be reliably obtained.

  11. Diffraction efficiency of plasmonic gratings fabricated by electron beam lithography using a silver halide film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer,, E-mail: sudheer@rrcat.gov.in, E-mail: sudheer.rrcat@gmail.com; Tiwari, P.; Srivastava, Himanshu

    2016-07-28

    The silver nanoparticle surface relief gratings of ∼10 μm period are fabricated using electron beam lithography on the silver halide film substrate. Morphological characterization of the gratings shows that the period, the shape, and the relief depth in the gratings are mainly dependent on the number of lines per frame, the spot size, and the accelerating voltage of electron beam raster in the SEM. Optical absorption of the silver nanoparticle gratings provides a broad localized surface plasmon resonance peak in the visible region, whereas the intensity of the peaks depends on the number density of silver nanoparticles in the gratings. Themore » maximum efficiency of ∼7.2% for first order diffraction is observed for the grating fabricated at 15 keV. The efficiency is peaking at 560 nm with ∼380 nm bandwidth. The measured profiles of the diffraction efficiency for the gratings are found in close agreement with the Raman-Nath diffraction theory. This technique provides a simple and efficient method for the fabrication of plasmonic nanoparticle grating structures with high diffraction efficiency having broad wavelength tuning.« less

  12. Microstructural characterization of Ti-6Al-4V alloy subjected to the duplex SMAT/plasma nitriding.

    PubMed

    Pi, Y; Faure, J; Agoda-Tandjawa, G; Andreazza, C; Potiron, S; Levesque, A; Demangel, C; Retraint, D; Benhayoune, H

    2013-09-01

    In this study, microstructural characterization of Ti-6Al-4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross-section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X-ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X-ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Copyright © 2013 Wiley Periodicals, Inc.

  13. Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Li, Decong; Deng, Shuping; Tang, Yu; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Yang, Peizhi; Deng, Shukang

    2018-06-01

    In this study, n-type Bi-doped single-crystal PbTe thermoelectric materials were prepared by melting and slow cooling method according to the stoichiometric ratio of Pb:Bi:Te = 1-x:x:1 (x = 0, 0.1, 0.15, 0.2, 0.25). The X-ray diffraction patterns of Pb1-xBixTe samples show that all main diffraction peaks are well matched with the PbTe matrix, which has a face-centered cubic structure with the space group Fm 3 bar m . Electron probe microanalysis reveals that Pb content decreases gradually, and Te content remains invariant basically with the increase of Bi content, indicating that Bi atoms are more likely to replace Pb atoms. Thermal analysis shows that the prepared samples possess relatively high thermal stability. Simultaneously, transmission electron microscopy and selected area electron diffraction pattern indicate that the prepared samples have typical single-crystal structures with good mechanical properties. Moreover, the electrical conductivity of the prepared samples improved significantly compared with that of the pure sample, and the maximum ZT value of 0.84 was obtained at 600 K by the sample with x = 0.2.

  14. High current table-top setup for femtosecond gas electron diffraction.

    PubMed

    Zandi, Omid; Wilkin, Kyle J; Xiong, Yanwei; Centurion, Martin

    2017-07-01

    We have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We present here a device that uses pulse compression to overcome the Coulomb broadening and deliver femtosecond electron pulses on a gas target. The velocity mismatch can be compensated using laser pulses with a tilted intensity front to excite the sample. The temporal resolution of the setup was determined with a streak camera to be better than 400 fs for pulses with up to half a million electrons and a kinetic energy of 90 keV. The high charge per pulse, combined with a repetition rate of 5 kHz, results in an average beam current that is between one and two orders of magnitude higher than previously demonstrated.

  15. High current table-top setup for femtosecond gas electron diffraction

    DOE PAGES

    Zandi, Omid; Wilkin, Kyle J.; Xiong, Yanwei; ...

    2017-05-08

    Here, we have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We also present here a device that uses pulse compression tomore » overcome the Coulomb broadening and deliver femtosecond electron pulses on a gas target. The velocity mismatch can be compensated using laser pulses with a tilted intensity front to excite the sample. The temporal resolution of the setup was determined with a streak camera to be better than 400 fs for pulses with up to half a million electrons and a kinetic energy of 90 keV. Finally, the high charge per pulse, combined with a repetition rate of 5 kHz, results in an average beam current that is between one and two orders of magnitude higher than previously demonstrated.« less

  16. Measuring the Shock Stage of Asteroid Regolith Grains by Electron Back-Scattered Diffraction

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Martinez, James; Sitzman, Scott; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Ozawa, Hikaru; hide

    2018-01-01

    We have been analyzing Itokawa samples in order to definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by electron and X-ray diffraction. These techniques would then be available for samples returned from other asteroid regoliths.

  17. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica

    NASA Astrophysics Data System (ADS)

    Sett, Arghya; Gadewar, Manoj; Sharma, Pragya; Deka, Manab; Bora, Utpal

    2016-06-01

    In this study, we report a novel method of gold nanoparticle (AuNP) synthesis using aqueous fruit extract of Dillenia indica. The phytochemicals present in the fruit extract act as an effective reducing and capping agent to synthesize AuNPs. The synthesized AuNPs were characterized by spectrophotometry, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM studies revealed the particles of various sizes and mainly spherical in shape. Selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images confirmed the crystallinity of the particles. The XRD patterns showed peaks at (111), (200), (220) which exhibited preferential orientation of the AuNPs as face-centered cubic crystal. FTIR measurements confirmed the coating of phenolic compounds on the AuNPs indicating a possible role of biomolecules for the capping and efficient stabilization of the AuNPs. The synthesized AuNPs did not show any form of cytotoxicity in the normal fibroblast cell line L929.

  18. Individual analysis of inter and intragrain defects in electrically characterized polycrystalline silicon nanowire TFTs by multicomponent dark-field imaging based on nanobeam electron diffraction two-dimensional mapping

    NASA Astrophysics Data System (ADS)

    Asano, Takanori; Takaishi, Riichiro; Oda, Minoru; Sakuma, Kiwamu; Saitoh, Masumi; Tanaka, Hiroki

    2018-04-01

    We visualize the grain structures for individual nanosized thin film transistors (TFTs), which are electrically characterized, with an improved data processing technique for the dark-field image reconstruction of nanobeam electron diffraction maps. Our individual crystal analysis gives the one-to-one correspondence of TFTs with different grain boundary structures, such as random and coherent boundaries, to the characteristic degradations of ON-current and threshold voltage. Furthermore, the local crystalline uniformity inside a single grain is detected as the difference in diffraction intensity distribution.

  19. Mapping 180° polar domains using electron backscatter diffraction and dynamical scattering simulations

    DOE PAGES

    Burch, Matthew J.; Fancher, Chris M.; Patala, Srikanth; ...

    2016-11-18

    A novel technique, which directly and nondestructively maps polar domains using electron backscatter diffraction (EBSD) is described and demonstrated. Through dynamical diffraction simulations and quantitative comparison to experimental EBSD patterns, the absolute orientation of a non-centrosymmetric crystal can be determined. With this information, the polar domains of a material can be mapped. The technique is demonstrated by mapping the non-ferroelastic, or 180°, ferroelectric domains in periodically poled LiNbO 3 single crystals. Furthermore, the authors demonstrate the possibility of mapping polarity using this technique in other polar materials system.

  20. The molecular structure of 4-methylpyridine-N-oxide: Gas-phase electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Belova, Natalya V.; Girichev, Georgiy V.; Kotova, Vitaliya E.; Korolkova, Kseniya A.; Trang, Nguyen Hoang

    2018-03-01

    The molecular structure of 4-methylpiridine-N-oxide, 4-MePyO, has been studied by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both, quantum chemistry and GED analyses resulted in CS molecular symmetry with the planar pyridine ring. Obtained molecular parameters confirm the hyperconjugation in the pyridine ring and the sp2 hybridization concept of the nitrogen and carbon atoms in the ring. The experimental geometric parameters are in a good agreement with the parameters for non-substituted N-oxide and reproduced very closely by DFT calculations. The presence of the electron-donating CH3 substituent in 4-MePyO leads to a decrease of the ipso-angle and to an increase of r(N→O) in comparison with the non-substituted PyO. Electron density distribution analysis has been performed in terms of natural bond orbitals (NBO) scheme. The nature of the semipolar N→O bond is discussed.

  1. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    PubMed Central

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne

    2016-01-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918

  2. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction.

    PubMed

    Müller, Knut; Krause, Florian F; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-12-15

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

  3. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

    NASA Astrophysics Data System (ADS)

    Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-12-01

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

  4. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

    PubMed Central

    Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-01-01

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms. PMID:25501385

  5. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    NASA Astrophysics Data System (ADS)

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne

    2016-12-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.

  6. Facile synthesis of Co3O4 hexagonal plates by flux method

    NASA Astrophysics Data System (ADS)

    Han, Ji-Long; Meng, Qing-Fen; Gao, Sheng-Li

    2018-01-01

    Using a novel flux method, a hexagonal plate of Co3O4 was directly synthesized. In this method, CoCl2·6H2O, NaOH, and the cosolvent H3BO3 were heated to 750 °C for 2 h in a corundum crucible. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microscope (HRTEM). Furthermore, XRD studies indicated that the product consisted of a cubic phase of Co3O4, and the phase existed in a completely crystalline form. Then, SEM results indicated that these hexagonal plates tiered up and they had diameters in the range of 2-10 μm. According to the results of SAED and HRTEM analyses, the interlayer spacing was about 0.24 nm, which corresponds to the interlayer distance of (3 1 1) crystal plane of cubic Co3O4.

  7. Structural characterization of precious-mean quasiperiodic Mo/V single-crystal superlattices grown by dual-target magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Birch, J.; Severin, M.; Wahlström, U.; Yamamoto, Y.; Radnoczi, G.; Riklund, R.; Sundgren, J.-E.; Wallenberg, L. R.

    1990-05-01

    A class of quasiperiodic superlattice structures, which can be generated by the concurrent inflation rule A-->AmB and B-->A (where m=positive integer), has been studied both theoretically and experimentally. Given that the ratios between the thicknesses of the two superlattice building blocks, A and B, are chosen to be γ(m)=[m+(m2+4)1/2]/2 (known as the ``precious means''), then the x-ray- and electron-diffraction peak positions are analytically found to be located at the wave vectors q=2πΛ-1r[γ(m)]k, where r and k are integers and Λ is an average superlattice wavelength. The analytically obtained results have been compared to experimental results from single-crystalline Mo/V superlattice structures, generated with m=1, 2, and 3. The superlattices were grown by dual-target dc-magnetron sputtering on MgO(001) substrates kept at 700 °C. X-ray diffraction (XRD) and selected-area electron diffraction (SAED) showed that the analytical model mentioned above predicts the peak positions of the experimental XRD and SAED spectra with a very high accuracy. Furthermore, numerical calculations of the diffraction intensities based on a kinematical model of diffraction showed good agreement with the experimental data for all three cases. In addition to a direct verification of the quasiperiodic modulation, both conventional and high-resolution cross-sectional transmission electron microscopy (XTEM) showed that the superlattices are of high crystalline quality with sharp interfaces. Based on lattice resolution images, the width of the interfaces was determined to be less than two (002) lattice-plane spacings (~=0.31 nm).

  8. Space charge effects in ultrafast electron diffraction and imaging

    NASA Astrophysics Data System (ADS)

    Tao, Zhensheng; Zhang, He; Duxbury, P. M.; Berz, Martin; Ruan, Chong-Yu

    2012-02-01

    Understanding space charge effects is central for the development of high-brightness ultrafast electron diffraction and microscopy techniques for imaging material transformation with atomic scale detail at the fs to ps timescales. We present methods and results for direct ultrafast photoelectron beam characterization employing a shadow projection imaging technique to investigate the generation of ultrafast, non-uniform, intense photoelectron pulses in a dc photo-gun geometry. Combined with N-particle simulations and an analytical Gaussian model, we elucidate three essential space-charge-led features: the pulse lengthening following a power-law scaling, the broadening of the initial energy distribution, and the virtual cathode threshold. The impacts of these space charge effects on the performance of the next generation high-brightness ultrafast electron diffraction and imaging systems are evaluated.

  9. Experimental and theoretical study of rotationally inelastic diffraction of H2(D2) from methyl-terminated Si(111)

    NASA Astrophysics Data System (ADS)

    Nihill, Kevin J.; Hund, Zachary M.; Muzas, Alberto; Díaz, Cristina; del Cueto, Marcos; Frankcombe, Terry; Plymale, Noah T.; Lewis, Nathan S.; Martín, Fernando; Sibener, S. J.

    2016-08-01

    Fundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H2 and D2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H2 (D2) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H2(D2)/CH3-Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.

  10. Influence of electron irradiation on the structural and thermal properties of silk fibroin films

    NASA Astrophysics Data System (ADS)

    Asha, S.; Sangappa, Sanjeev, Ganesh

    2015-06-01

    Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.

  11. Effects of moiré lattice structure on electronic properties of graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lunan; Wu, Yun; Hershberger, M. T.

    Here, we study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6√3×6√3 reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that ismore » then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.« less

  12. Effects of moiré lattice structure on electronic properties of graphene

    NASA Astrophysics Data System (ADS)

    Huang, Lunan; Wu, Yun; Hershberger, M. T.; Mou, Daixiang; Schrunk, Benjamin; Tringides, Michael C.; Hupalo, Myron; Kaminski, Adam

    2017-07-01

    We study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6 √{3 }×6 √{3 } reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that is then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.

  13. Effect of Cooling Rates on γ → α Transformation and Metastable States in Fe-Cu Alloys with Addition of Ni

    NASA Astrophysics Data System (ADS)

    Crozet, C.; Verdier, M.; Lay, S.; Antoni-Zdziobek, A.

    2018-07-01

    α/γ phase transformations occurring in Fe-10Cu-xNi alloys (0 ≤ x ≤ 15 in mass%) were studied using X-ray diffraction, scanning electron microscopy, electron back scattered diffraction, transmission electron microscopy and chemical analysis, combining X-ray microanalysis with energy dispersive spectrometry in the scanning electron microscope and electron microprobe analysis with wavelength dispersive spectrometry. The influence of cooling rate on the microstructure was investigated using ice-brine quenching and 2 °C/min slow cooling rate performed with dilatometry. Ni addition induces metastable transformations on cooling: massive and bainitic ferrite are formed depending on the alloy composition and cooling rate. Moreover, most of the Cu phase precipitates on cooling giving rise to a fine distribution of Cu particles in the ferrite grains. For both cooling conditions, the hardness increases with increasing Ni content and a higher hardness is obtained in the quenched alloy for each composition. The change in hardness is correlated to the effect of Ni solid solution, transformation structure and size of Cu particles.

  14. Effects of moiré lattice structure on electronic properties of graphene

    DOE PAGES

    Huang, Lunan; Wu, Yun; Hershberger, M. T.; ...

    2017-07-10

    Here, we study structural and electronic properties of graphene grown on silicone carbide (SiC) substrate using a scanning tunneling microscope, spot-profile-analysis low-energy electron diffraction, and angle-resolved photoemission spectroscopy. We find several new replicas of Dirac cones in the Brillouin zone. Their locations can be understood in terms of a combination of basis vectors linked to SiC 6 × 6 and graphene 6√3×6√3 reconstruction. Therefore, these new features originate from the moiré caused by the lattice mismatch between SiC and graphene. More specifically, Dirac cone replicas are caused by underlying weak modulation of the ionic potential by the substrate that ismore » then experienced by the electrons in the graphene. We also demonstrate that this effect is equally strong in single- and trilayer graphene; therefore, the additional Dirac cones are intrinsic features rather than the result of photoelectron diffraction. These new features in the electronic structure are very important for the interpretation of recent transport measurements and can assist in tuning the properties of graphene for practical applications.« less

  15. Electron Emission in Highly Charged Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Liao, Chunlei

    1995-01-01

    This dissertation addresses the problem of electron emission in highly charged ion-atom collisions. The study is carried out by measuring doubly differential cross sections (DDCS) of emitted electrons for projectiles ranging from fluorine up to gold at ejection angles (theta _{L}) from 0^circ to 70^circ with respect to the beam direction. Prominent features are a very strong forward peaked angular distribution of emitted electrons and the appearance of strong diffraction structures in the binary encounter electron (BEe) region for projectiles heavier than chlorine. This is in clear contradiction to the results found with fluorine projectiles, where the BEe production increases slightly with increasing theta_{L} and no structure is observed in the BEe region. Both can be understood in the impulse approximation as elastic scattering of quasi free target electrons in the projectile potential. Our measurements also show that the violation of q ^2 scaling of the DDCS previously established for 0^circ electron spectra persists for all emission angles and almost all electron energies. In ion-atom collisions, besides electrons from target, electrons from projectile ionization are also presented in the emitted electron spectra. Using electron-projectile coincidence technique, different collision channels can be separated. In order to eliminate the speculations of contributions from projectile related capture and loss channels, coincidence studies of diffraction structures are initiated. In the 0^circ electron spectrum of 0.3 MeV/u I^{6+} impacting on H_2, strong autoionization peaks are observed on the shoulders of the cusp peak. The energies of these autoionization lines in the projectile rest frame are determined by high-resolution electron spectroscopy, and collision mechanism is probed by electron-charge state selected projectile coincidence technique.

  16. A Chemical and Structural Study of the A1N-Si Interface

    NASA Technical Reports Server (NTRS)

    George, T.; Beye, R.

    1997-01-01

    Samples of A1N grown on silicon [111] subtrates were examined using electron enery loss spectroscopy (EELS) and selected area diffraction (SAD) with high-resolution transmission electron microscopy (TEM) to determine the source of out-of-place tilts and in-plane rotations of the A1N crystallites at the Si interface.

  17. Origin of Pressure-induced Superconducting Phase in K xFe 2-ySe 2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    DOE PAGES

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; ...

    2016-08-08

    Pressure dependence of the electronic and crystal structures of K xFe 2–ySe 2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change ofmore » Fermi surface topology. Lastly, our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.« less

  18. Depth Resolution Dependence on Sample Thickness and Incident Energy in On-Axis Transmission Kikuchi Diffraction in Scanning Electron Microscope (SEM).

    PubMed

    Brodu, Etienne; Bouzy, Emmanuel

    2017-12-01

    Transmission Kikuchi diffraction is an emerging technique aimed at producing orientation maps of the structure of materials with a nanometric lateral resolution. This study investigates experimentally the depth resolution of the on-axis configuration, via a twinned silicon bi-crystal sample specifically designed and fabricated. The measured depth resolution varies from 30 to 65 nm in the range 10-30 keV, with a close to linear dependence with incident energy and no dependence with the total sample thickness. The depth resolution is explained in terms of two mechanisms acting concomitantly: generation of Kikuchi diffraction all along the thickness of the sample, associated with continuous absorption on the way out. A model based on the electron mean free path is used to account for the dependence with incident energy of the depth resolution. In addition, based on the results in silicon, the use of the mean absorption coefficient is proposed to predict the depth resolution for any atomic number and incident energy.

  19. Origin of Pressure-induced Superconducting Phase in KxFe2-ySe2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; Okazaki, Hiroyuki; Ozaki, Toshinori; Takano, Yoshihiko; Lin, Jung-Fu; Fujita, Hidenori; Kagayama, Tomoko; Shimizu, Katsuya; Hiraoka, Nozomu; Ishii, Hirofumi; Liao, Yen-Fa; Tsuei, Ku-Ding; Mizuki, Jun'Ichiro

    2016-08-01

    Pressure dependence of the electronic and crystal structures of KxFe2-ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.

  20. Measurements of Auger Electron Diffraction Using a 180° Deflection Toroidal Analyzer

    NASA Astrophysics Data System (ADS)

    Shiraki, Susumu; Ishii, Hideshi; Nihei, Yoshimasa; Owari, Masanori

    A 180° deflection toroidal analyzer is a novel electron spectrometer, which allows the simultaneous registration of the wide range of polar angles in a given azimuth of the sample. Therefore, measurements of photo- and Auger electron intensities over π steradians can be performed rapidly by azimuthal rotation of the sample. Using this analyzer, two-dimensional patterns of electron-beam-excited O KVV and Mg KVV Auger electron diffraction (AED) from a MgO(001) surface were measured in short acquisition times. The AED patterns obtained were compared with theoretical ones calculated by the multiple-scattering scheme. The agreement between experimental and theoretical data was good for both O KVV and Mg KVV transitions.

  1. Surface buckling of black phosphorus: Determination, origin, and influence on electronic structure

    NASA Astrophysics Data System (ADS)

    Dai, Zhongwei; Jin, Wencan; Yu, Jie-Xiang; Grady, Maxwell; Sadowski, Jerzy T.; Kim, Young Duck; Hone, James; Dadap, Jerry I.; Zang, Jiadong; Osgood, Richard M.; Pohl, Karsten

    2017-12-01

    The surface structure of black phosphorus materials is determined using surface-sensitive dynamical microspot low energy electron diffraction (μ LEED ) analysis using a high spatial resolution low energy electron microscopy (LEEM) system. Samples of (i) crystalline cleaved black phosphorus (BP) at 300 K and (ii) exfoliated few-layer phosphorene (FLP) of about 10 nm thickness which were annealed at 573 K in vacuum were studied. In both samples, a significant surface buckling of 0.22 Å and 0.30 Å, respectively, is measured, which is one order of magnitude larger than previously reported. As direct evidence for large buckling, we observe a set of (for the flat surface forbidden) diffraction spots. Using first-principles calculations, we find that the presence of surface vacancies is responsible for the surface buckling in both BP and FLP, and is related to the intrinsic hole doping of phosphoresce materials previously reported.

  2. Characterization of the α phase nucleation in a two-phase metastable β titanium alloy

    NASA Astrophysics Data System (ADS)

    Lenain, A.; Clément, N.; Jacques, P. J.; Véron, M.

    2005-12-01

    Beta titanium alloys are increasingly the best choice for automotive and aerospace applications due to their high performance-to-density ratio. Among these alloys, the TIMETAL Ti-LCB is already used in the automotive industry because it presents excellent mechanical properties and a lower cost compared with other Ti alloys. The current study deals with the characterization of the nucleation and growth of the α phase in several thermomechanical processes, because the distribution and size of the α phase strongly influence the mechanical properties of the resulting microstructures. Several heat treatments were conducted after either cold rolling or annealing. The resulting microstructures were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, or electron backscatter diffraction. It was observed that the morphology and the volume fraction of the α phase are strongly dependent on the holding temperature, on the heating or cooling rate, and on the β grain size.

  3. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, M. Z., E-mail: mmo09@slac.stanford.edu; Shen, X.; Chen, Z.

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.« less

  4. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, M. Z.; Shen, X.; Chen, Z.

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 µm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime« less

  5. An investigation of the initiation stage of hot corrosion in Ni-base alloys

    NASA Technical Reports Server (NTRS)

    Huang, T. T.; Meier, G. H.

    1979-01-01

    The mechanisms which lead to the destruction of a normally protective scale during the initial stages of hot corrosion of 14 nickel-base alloys contaminated with Na2SO4 and other condensed deposits were investigated. A continuous reading microbalance was used to record weight changes at temperatures between 900 C and 1000 C at 1 atmosphere pressure of slowly flowing oxygen. The reaction was initiated by raising a preheated furnace around the quartz tube in which the specimen was supported with oxygen flowing. The furnace was raised in a time period of seconds. At 900 C, the system and specimen came to thermal equilibrium in less than one minute. Oxidized specimens were studied using optical and scanning electron metallography and X-ray diffraction techniques. Transmission electron microscopy and electron diffraction spectroscopy were also used to identify the structure of carbides in some of the commercial alloys.

  6. Surface buckling of black phosphorus: Determination, origin, and influence on electronic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Zhongwei; Jin, Wencan; Yu, Jie-Xiang

    The surface structure of black phosphorus materials is determined using surface-sensitive dynamical microspot low energy electron diffraction ( μ LEED ) analysis using a high spatial resolution low energy electron microscopy (LEEM) system. Samples of (i) crystalline cleaved black phosphorus (BP) at 300 K and (ii) exfoliated few-layer phosphorene (FLP) of about 10 nm thickness which were annealed at 573 K in vacuum were studied. In both samples, a significant surface buckling of 0.22 Å and 0.30 Å, respectively, is measured, which is one order of magnitude larger than previously reported. As direct evidence for large buckling, we observe amore » set of (for the flat surface forbidden) diffraction spots. Using first-principles calculations, we find that the presence of surface vacancies is responsible for the surface buckling in both BP and FLP, and is related to the intrinsic hole doping of phosphoresce materials previously reported.« less

  7. Surface buckling of black phosphorus: Determination, origin, and influence on electronic structure

    DOE PAGES

    Dai, Zhongwei; Jin, Wencan; Yu, Jie-Xiang; ...

    2017-12-29

    The surface structure of black phosphorus materials is determined using surface-sensitive dynamical microspot low energy electron diffraction ( μ LEED ) analysis using a high spatial resolution low energy electron microscopy (LEEM) system. Samples of (i) crystalline cleaved black phosphorus (BP) at 300 K and (ii) exfoliated few-layer phosphorene (FLP) of about 10 nm thickness which were annealed at 573 K in vacuum were studied. In both samples, a significant surface buckling of 0.22 Å and 0.30 Å, respectively, is measured, which is one order of magnitude larger than previously reported. As direct evidence for large buckling, we observe amore » set of (for the flat surface forbidden) diffraction spots. Using first-principles calculations, we find that the presence of surface vacancies is responsible for the surface buckling in both BP and FLP, and is related to the intrinsic hole doping of phosphoresce materials previously reported.« less

  8. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    DOE PAGES

    Mo, M. Z.; Shen, X.; Chen, Z.; ...

    2016-08-04

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 µm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime« less

  9. Lunar sample contracts

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1974-01-01

    The major scientific accomplishments through 1971 are reported for the particle track studies of lunar samples. Results are discussed of nuclear track measurements by optical and electron microscopy, thermoluminescence, X-ray diffraction, and differential thermal analysis.

  10. Cooperative inter- and intra-layer lattice dynamics of photoexcited multi-walled carbon nanotubes studied by ultrafast electron diffraction.

    PubMed

    Sun, Shuaishuai; Li, Zhongwen; Li, Zi-An; Xiao, Ruijuan; Zhang, Ming; Tian, Huanfang; Yang, Huaixin; Li, Jianqi

    2018-04-26

    Optical tuning and probing ultrafast structural response of nanomaterials driven by electronic excitation constitute a challenging but promising approach for understanding microscopic mechanisms and applications in microelectromechanical systems and optoelectrical devices. Here we use pulsed electron diffraction in a transmission electron microscope to investigate laser-induced tubular lattice dynamics of multi-walled carbon nanotubes (MWCNTs) with varying laser fluence and initial specimen temperature. Our photoexcitation experiments demonstrate cooperative and inverse collective atomic motions in intralayer and interlayer directions, whose strengths and rates depend on pump fluence. The electron-driven and thermally driven structural responses with opposite amplitudes cause a crossover between intralayer and interlayer directions. Our ab initio calculations support these findings and reveal that electrons excited from π to π* orbitals in a carbon tube weaken the intralayer bonds while strengthening the interlayer bonds along the radial direction. Moreover, by probing the structural dynamics of MWCNTs at initial temperatures of 300 and 100 K, we uncover the concomitance of thermal and nonthermal dynamical processes and their mutual influence in MWCNTs. Our results illustrate the nature of electron-driven nonthermal process and electron-phonon thermalization in the MWCNTs, and bear implications for the intricate energy conversion and transfer in materials at the nanoscale.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asha, S.; Sangappa,; Sanjeev, Ganesh, E-mail: ganeshanjeev@rediffmail.com

    Radiation-induced changes in Bombyx mori silk fibroin (SF) films under electron irradiation were investigated and correlated with dose. SF films were irradiated in air at room temperature using 8 MeV electron beam in the range 0-150 kGy. Various properties of the irradiated SF films were studied using X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Electron irradiation was found to induce changes in the physical and thermal properties, depending on the radiation dose.

  12. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    PubMed

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Symposium LL: Nanowires--Synthesis Properties Assembly and Application

    DTIC Science & Technology

    2010-09-10

    dedicated hard x - ray microscopy beamline is operated in partnership with the Advanced Photon Source to provide fluorescence, diffraction, and...characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X - ray diffraction (XRD) measurements, proving it to be...Investigation of Preferred Growth Direction of GaN Nanorods by Synchrotron X - ray Reciprocal Space Mapping. Yuri Sohn1, Sanghwa Lee1, Chinkyo Kim1 and Dong

  14. Quantitative measurements of magnetic vortices using position resolved diffraction in Lorentz STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzec, N. J.

    2002-03-05

    A number of electron column techniques have been developed over the last forty years to permit visualization of magnetic fields in specimens. These include: Fresnel imaging, Differential Phase Contrast, Electron Holography and Lorentz STEM. In this work we have extended the LSTEM methodology using Position Resolved Diffraction (PRD) to quantitatively measure the in-plane electromagnetic fields of thin film materials. The experimental work reported herein has been carried out using the ANL AAEM HB603Z 300 kV FEG instrument 5. In this instrument, the electron optical column was operated in a zero field mode, at the specimen, where the objective lens ismore » turned off and the probe forming lens functions were reallocated to the C1, C2, and C3 lenses. Post specimen lenses (P1, P2, P3, P4) were used to magnify the transmitted electrons to a YAG screen, which was then optically transferred to a Hamamatsu ORCA ER CCD array. This CCD was interfaced to an EmiSpec Data Acquisition System and the data was subsequently transferred to an external computer system for detailed quantitative analysis. In Position Resolved Diffraction mode, we digitally step a focused electron probe across the region of interest of the specimen while at the same time recording the complete diffraction pattern at each point in the scan.« less

  15. Fabrication of Mesoporous Silica/Alumina Hybrid Membrane Film Nanocomposites using Template Sol-Gel Synthesis of Amphiphilic Triphenylene

    NASA Astrophysics Data System (ADS)

    Lintang, H. O.; Jalani, M. A.; Yuliati, L.; Salleh, M. M.

    2017-05-01

    Herein we reported that by introducing a one-dimensional (1D) substrate with a porous structure such as anodic aluminum oxide (AAO) membrane, mesoporous silica/alumina hybrid nanocomposites were successfully fabricated by using amphiphilic triphenylene (TPC10TEG) as a template in sol-gel synthesis (TPC10TEG/silicahex). For the optical study of the nanocomposites, TPC10TEG/silicahex showed absorption peak at 264 nm due to the ordered and long-range π-π stacking of the disc-like aromatic triphenylene core. Moreover, the hexagonal arrangement of TPC10TEG/silicahex was proven based on their diffraction peaks of d 100 and d 200 at 2θ = 2.52° and 5.04° and images of transmission electron microscopy (TEM), respectively. For fabrication of mesoporous silica/alumina hybrid membrane, TPC10TEG/silicahex was drop-casted onto AAO membrane for penetration into the porous structure via gravity. X-ray diffraction (XRD) analysis on the resulted hybrid nanocomposites showed that the diffraction peaks of d 100 and d 200 of TPC10TEG/silicahex were still preserved, indicating that the hexagonal arrangements of mesoporous silica were maintained even on AAO substrate. The morphology study on the hybrid nanocomposites using TEM, scanning electron microscope (SEM) and field emission scanning electron microscope (FE-SEM) showed the successful filling of most AAO channels with the TPC10TEG/silicahex nanocomposites.

  16. Effect of processing on the microstructure of finger millet by X-ray diffraction and scanning electron microscopy.

    PubMed

    Dharmaraj, Usha; Parameswara, P; Somashekar, R; Malleshi, Nagappa G

    2014-03-01

    Finger millet is one of the important minor cereals, and carbohydrates form its major chemical constituent. Recently, the millet is processed to prepare hydrothermally treated (HM), decorticated (DM), expanded (EM) and popped (PM) products. The present research aims to study the changes in the microstructure of carbohydrates using X-ray diffraction and scanning electron microscopy. Processing the millet brought in significant changes in the carbohydrates. The native millet exhibited A-type pattern of X-ray diffraction with major peaks at 2θ values of 15.3, 17.86 and 23.15°, whereas, all other products showed V-type pattern with single major peak at 2θ values ranging from 19.39 to 19.81°. The corresponding lattice spacing and the number of unit cells in a particular direction of reflection also reduced revealing that crystallinity of starch has been decreased depending upon the processing conditions. Scanning electron microscopic studies also revealed that the orderly pattern of starch granules changed into a coherent mass due to hydrothermal treatment, while high temperature short time treatment rendered a honey-comb like structure to the product. However, the total carbohydrates and non-starch polysaccharide contents almost remained the same in all the products except for DM and EM, but the individual carbohydrate components changed significantly depending on the type of processing.

  17. A comparative study of heterostructured CuO/CuWO4 nanowires and thin films

    NASA Astrophysics Data System (ADS)

    Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins

    2017-12-01

    A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.

  18. Surface structure of bulk 2H-MoS2(0001) and exfoliated suspended monolayer MoS2: A selected area low energy electron diffraction study

    NASA Astrophysics Data System (ADS)

    Dai, Zhongwei; Jin, Wencan; Grady, Maxwell; Sadowski, Jerzy T.; Dadap, Jerry I.; Osgood, Richard M.; Pohl, Karsten

    2017-06-01

    We have used selected area low energy electron diffraction intensity-voltage (μLEED-IV) analysis to investigate the surface structure of crystalline 2H molybdenum disulfide (MoS2) and mechanically exfoliated and suspended monolayer MoS2. Our results show that the surface structure of bulk 2H-MoS2 is distinct from its bulk and that it has a slightly smaller surface relaxation at 320 K than previously reported at 95 K. We concluded that suspended monolayer MoS2 shows a large interlayer relaxation compared to the MoS2 sandwich layer terminating the bulk surface. The Debye temperature of MoS2 was concluded to be about 600 K, which agrees with a previous theoretical study. Our work has shown that the dynamical μLEED-IV analysis performed with a low energy electron microscope (LEEM) is a powerful technique for determination of the local atomic structures of currently extensively studied two-dimensional (2-D) materials.

  19. Surface structure of bulk 2H-MoS 2 (0001) and exfoliated suspended monolayer MoS 2 : A selected area low energy electron diffraction study

    DOE PAGES

    Dai, Zhongwei; Jin, Wencan; Grady, Maxwell; ...

    2017-02-10

    Here, we used selected area low energy electron diffraction intensity-voltage (μLEED-IV) analysis to investigate the surface structure of crystalline 2H molybdenum disulfide (MoS 2) and mechanically exfoliated and suspended monolayer MoS 2. Our results show that the surface structure of bulk 2H-MoS 2 is distinct from its bulk and that it has a slightly smaller surface relaxation at 320 K than previously reported at 95 K. We concluded that suspended monolayer MoS 2 shows a large interlayer relaxation compared to the MoS 2 sandwich layer terminating the bulk surface. The Debye temperature of MoS 2 was concluded to be aboutmore » 600 K, which agrees with a previous theoretical study. Our work has shown that the dynamical μLEED-IV analysis performed with a low energy electron microscope (LEEM) is a powerful technique for determination of the local atomic structures of currently extensively studied two-dimensional (2-D) materials.« less

  20. Microstructural and microtextural characterization of oxide scale on steel using electron backscatter diffraction.

    PubMed

    Birosca, S; Dingley, D; Higginson, R L

    2004-03-01

    High-temperature oxidation of steel has been extensively studied. The microstructure of iron oxides is, however, not well understood because of the difficulty in imaging it using conventional methods, such as optical or electron microscopy. A knowledge of the oxide microstructure and texture is critical in understanding how the oxide film behaves during high-temperature deformation of steels and more importantly how it can be removed following processing. Recently, electron back-scatter diffraction (EBSD) has proved to be a powerful technique for distinguishing the different phases in scales. This technique gives valuable information both on the microstructure and on the orientation relationships between the steel and the scale layers. In the current study EBSD has been used to investigate the microstructure and microtexture of iron oxide layers grown on interstitial free steel at different times and temperatures. Heat treatments have been carried out under normal oxidation conditions in order to relate the results to real steel manufacturing in industry. The composition, morphologies, microstructure and microtexture of selected conditions have been studied using EBSD.

  1. Analysis of a Novel Diffractive Scanning Wire Beam Position Monitor (BPM) for Discriminative Profiling of Electron Vs. X Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatchyn, Roman; /SLAC

    2011-09-01

    Recent numerical studies of Free Electron Lasers (FELs) operating in the Self Amplified Spontaneous Emission (SASE) regime indicate a large sensitivity of the gain to the degree of transverse overlap (and associated phase coherence) between the electron and photon beams traveling down the insertion device. Simulations of actual systems imply that accurate detection and correction for this relative loss of overlap, rather than correction for the absolute departure of the electron beam from a fixed axis, is the preferred function of an FEL amplifier's Beam Position Monitor (BPM) and corrector systems. In this note we propose a novel diffractive BPMmore » with the capability of simultaneously detecting and resolving the absolute (and relative) transverse positions and profiles of electron and x-ray beams co-propagating through an undulator. We derive the equations governing the performance of the BPM and examine its predicted performance for the SLAC Linac Coherent Light Source (LCLS), viz., for profiling multi-GeV electron bunches co-propagating with one-to-several-hundred keV x-ray beams. Selected research and development (r&d) tasks for fabricating and testing the proposed BPM are discussed.« less

  2. Molecular geometry of vanadium dichloride and vanadium trichloride: a gas-phase electron diffraction and computational study.

    PubMed

    Varga, Zoltán; Vest, Brian; Schwerdtfeger, Peter; Hargittai, Magdolna

    2010-03-15

    The molecular geometries of VCl2 and VCl3 have been determined by computations and gas-phase electron diffraction (ED). The ED study is a reinvestigation of the previously published analysis for VCl2. The structure of the vanadium dichloride dimer has also been calculated. According to our joint ED and computational study, the evaporation of a solid sample of VCl2 resulted in about 66% vanadium trichloride and 34% vanadium dichloride in the vapor. Vanadium dichloride is unambiguously linear in its 4Sigma(g)+ ground electronic state. For VCl3, all computations yielded a Jahn-Teller-distorted ground-state structure of C(2v) symmetry. However, it lies merely less than 3 kJ/mol lower than the 3E'' state (D(3h) symmetry). Due to the dynamic nature of the Jahn-Teller effect in this case, rigorous distinction cannot be made between the planar models of either D(3h) symmetry or C(2v) symmetry for the equilibrium structure of VCl3. Furthermore, the presence of several low-lying excited electronic states of VCl3 is expected in the high-temperature vapor. To our knowledge, this is the first experimental and computational study of the VCl3 molecule.

  3. Study of the solid-state amorphization of (GaSb){sub 1-x}Ge{sub x} semiconductors by real-time neutron diffraction and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, V. K., E-mail: fedotov@issp.ac.ru; Ponyatovsky, E. G.

    2011-12-15

    The spontaneous amorphization of high-pressure quenched phases of the GaSb-Ge system has been studied by neutron diffraction while slowly heating the phases at atmospheric pressure. The sequence of changes in the structural parameters of the initial crystalline phase and the final amorphous phase is established. The behavior of the phases and the correlation in the structural features of the phase transitions and anomalous thermal effects exhibit signs of the inhomogeneous model of solid-state amorphization.

  4. Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam.

    PubMed

    Liu, Shenggang; Hu, Min; Zhang, Yaxin; Li, Yuebao; Zhong, Renbin

    2009-09-01

    This paper explores the physics of the electromagnetic diffraction radiation of a subwavelength holes array excited by a set of evanescent waves generated by a line charge of electron beam moving parallel to the array. Activated by a uniformly moving line charge, numerous physical phenomena occur such as the diffraction radiation on both sides of the array as well as the electromagnetic penetration or transmission below or above the cut-off through the holes. As a result the subwavelength holes array becomes a radiation array. Making use of the integral equation with relevant Green's functions, an analytical theory for such a radiation system is built up. The results of the numerical calculations based on the theory agree well with that obtained by the computer simulation. The relation among the effective surface plasmon wave, the electromagnetic penetration or transmission of the holes and the diffraction radiation is revealed. The energy dependence of and the influence of the hole thickness on the diffraction radiation and the electromagnetic penetration or transmission are investigated in detail. Therefore, a distinct diffraction radiation phenomenon is discovered.

  5. Epitaxial titanium diboride films grown by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Zhai, H. Y.; Christen, H. M.; Cantoni, C.; Goyal, A.; Lowndes, D. H.

    2002-03-01

    Epitaxial, smooth, and low-resistivity titanium diboride (TiB2) films have been grown on SiC substrates using pulsed-laser deposition. Combined studies from ex situ x-ray diffraction and in situ reflection high-energy electron diffraction indicate the crystallographic alignment between TiB2 and SiC both parallel and normal to the substrate. Atomic force microscopy and scanning electron microscopy studies show that these epitaxial films have a smooth surface, and the resistivity of these films is comparable to that of single-crystal TiB2. Growth of these films is motivated by this material's structural and chemical similarity and lattice match to the newly discovered superconductor MgB2, both to gain further insight into the physical mechanisms of diborides in general and, more specifically, as a component of MgB2-based thin-film heterostructures.

  6. RBS/C, HRTEM and HRXRD study of damage accumulation in irradiated SrTiO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagielski, Jacek; Jozwik, Przemyslaw A.; Jozwik Biala, Iwona

    2013-05-14

    Damage accumulation in argon-irradiated SrTiO3 single crystals has been studied by using combination of Rutherford Backscattering/Channeling (RBS/C), High Resolution Transmission Electron Microscopy (HRTEM) and High Resolution X-Ray Diffraction (HRXRD) techniques. The RBS/C spectra were fitted using McChasy, a Monte Carlo simulation code allowing the quantitative analysis of amorphous-like and dislocation-like types of defects. The results were interpreted by using a Multi-Step Damage Accumulation model which assumes, that the damage accumulation occurs in a series of structural transformations, the defect transformations are triggered by a stress caused by formation of a free volume in the irradiated crystal. This assumption has beenmore » confirmed by High Resolution Transmission Electron Microscopy and High Resolution X-Ray Diffraction analysis.« less

  7. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    NASA Astrophysics Data System (ADS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-12-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  8. Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers

    NASA Astrophysics Data System (ADS)

    Bollmann, Tjeerd R. J.

    2018-04-01

    Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.

  9. Nanofiber-Based Bulk-Heterojunction Organic Solar Cells Using Coaxial Electrospinning

    DTIC Science & Technology

    2012-01-01

    chains are likely oriented with the [010] direction, perpendicular to the substrate, in the fi lm device. Glancing incidence X - ray diffraction (GIXD...Electron and X - ray diffraction measurements were per- formed in order to study the structural order in annealed fi bers and devices. For reference... angle X - ray scattering (SAXS/WAXS) beamline 7.3.3 of the Advanced Light Source at Lawrence Berkeley National Laboratory at 10 keV (1.24 Å) from a bend

  10. Dark-field transmission electron microscopy and the Debye-Waller factor of graphene

    PubMed Central

    Hubbard, William A.; White, E. R.; Dawson, Ben; Lodge, M. S.; Ishigami, Masa; Regan, B. C.

    2014-01-01

    Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary. PMID:25242882

  11. Extracting conformational structure information of benzene molecules via laser-induced electron diffraction

    DOE PAGES

    Ito, Yuta; Wang, Chuncheng; Le, Anh-Thu; ...

    2016-05-01

    Here, we have measured the angular distributions of high energy photoelectrons of benzene molecules generated by intense infrared femtosecond laser pulses. These electrons arise from the elastic collisions between the benzene ions with the previously tunnel-ionized electrons that have been driven back by the laser field. Theory shows that laser-free elastic differential cross sections (DCSs) can be extracted from these photoelectrons, and the DCS can be used to retrieve the bond lengths of gas-phase molecules similar to the conventional electron diffraction method. From our experimental results, we have obtained the C-C and C-H bond lengths of benzene with a spatialmore » resolution of about 10 pm. Our results demonstrate that laser induced electron diffraction (LIED) experiments can be carried out with the present-day ultrafast intense lasers already. Looking ahead, with aligned or oriented molecules, more complete spatial information of the molecule can be obtained from LIED, and applying LIED to probe photo-excited molecules, a “molecular movie” of the dynamic system may be created with sub-A°ngstrom spatial and few-ten femtosecond temporal resolutions.« less

  12. Dark-field transmission electron microscopy and the Debye-Waller factor of graphene.

    PubMed

    Shevitski, Brian; Mecklenburg, Matthew; Hubbard, William A; White, E R; Dawson, Ben; Lodge, M S; Ishigami, Masa; Regan, B C

    2013-01-15

    Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary.

  13. Flat ion milling: a powerful tool for preparation of cross-sections of lead-silver alloys.

    PubMed

    Brodusch, Nicolas; Boisvert, Sophie; Gauvin, Raynald

    2013-06-01

    While conventional mechanical and chemical polishing results in stress, deformation and polishing particles embedded on the surface, flat milling with Ar+ ions erodes the material with no mechanical artefacts. This flat milling process is presented as an alternative method to prepare a Pb-Ag alloy cross-section for scanning electron microscopy. The resulting surface is free of scratches with very little to no stress induced, so that electron diffraction and channelling contrast are possible. The results have shown that energy dispersive spectrometer (EDS) mapping, electron channelling contrast imaging and electron backscatter diffraction can be conducted with only one sample preparation step. Electron diffraction patterns acquired at 5 keV possessed very good pattern quality, highlighting an excellent surface condition. An orientation map was acquired at 20 keV with an indexing rate of 90.1%. An EDS map was performed at 5 keV, and Pb-Ag precipitates of sizes lower than 100 nm were observed. However, the drawback of the method is the generation of a noticeable surface topography resulting from the interaction of the ion beam with a polycrystalline and biphasic sample.

  14. Soft-template synthesis of single-crystalline CdS dendrites.

    PubMed

    Niu, Haixia; Yang, Qing; Tang, Kaibin; Xie, Yi; Zhu, Yongchun

    2006-01-01

    The single-crystalline CdS dendrites have been fabricated from the reaction of CdCl2 and thiourea at 180 degrees C, in which glycine was employed as a soft template. The obtained products were explored by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected area electronic diffraction. The optical properties of CdS dendrites have been investigated by ultraviolet and visible light (UV-vis) and photoluminescence techniques. The investigations indicated that the dendrites were grown due to the anisotropic properties enhanced by the use of Glycine in the route.

  15. Optical analysis of high power free electron laser resonators

    NASA Astrophysics Data System (ADS)

    Knapp, C. E.; Viswanathan, V. K.; Appert, Q. D.; Bender, S. C.; McVey, B. D.

    1987-06-01

    The first part of this paper briefly describes the optics code used at Los Alamos National Laboratory to do optical analyses of various components of a free electron laser. The body of the paper then discusses the recent results in modeling low frequency gratings and ripple on the surfaces of liquid-cooled mirrors. The ripple is caused by structural/thermal effects in the mirror surface due to heating by optical absorption in high power resonators. Of interest is how much ripple can be permitted before diffractive losses or optical mode distortions become unacceptable. Preliminary work is presented involving classical diffraction problems to support the ripple study. The limitations of the techniques are discussed and the results are compared to experimental results where available.

  16. Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Okada, Koichi; Kohiki, Shigemi; Nishi, Sachio; Shimooka, Hirokazu; Deguchi, Hiroyuki; Mitome, Masanori; Bando, Yoshio; Shishido, Toetsu

    2007-09-01

    Transmission electron microscopy revealed that Fe3O4 nanoparticles with diameter of ≈200 nm dispersed in Fe doped indium tin oxide (Fe@ITO) powders exhibiting co-occurrence of room temperature ferromagnetism and superparamagnetism. Although we observed no X-ray diffraction peak from Fe related compounds for Fe0.19@ITO (ITO: In1.9Sn0.1O3) powders, the powders showed both hysteresis loop in field dependent magnetization at 300 K and divergence of zero-field-cooled magnetization from field-cooled magnetization. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy demonstrated that the nanoparticle with diameter of ≈200 nm consists of Fe and oxygen. Transmission electron diffraction revealed that crystal structure of the nanoparticle is inverse spinel type Fe3O4. The Fe3O4 crystalline phase by electron diffraction is consistent with the saturation magnetization of 1.3 μB/Fe and magnetic anomaly at ≈110 K observed for the powders.

  17. Free-electron-laser coherent diffraction images of individual drug-carrying liposome particles in solution.

    PubMed

    Huang, Chi-Feng; Liang, Keng S; Hsu, Tsui-Ling; Lee, Tsung-Tse; Chen, Yi-Yun; Yang, Shun-Min; Chen, Hsiang-Hsin; Huang, Shih-Hsin; Chang, Wei-Hau; Lee, Ting-Kuo; Chen, Peilin; Peng, Kuei-En; Chen, Chien-Chun; Shi, Cheng-Zhi; Hu, Yu-Fang; Margaritondo, Giorgio; Ishikawa, Tetsuya; Wong, Chi-Huey; Hwu, Y

    2018-02-08

    Using the excellent performances of a SACLA (RIKEN/HARIMA, Japan) X-ray free electron laser (X-FEL), coherent diffraction imaging (CDI) was used to detect individual liposome particles in water, with or without inserted doxorubicin nanorods. This was possible because of the electron density differences between the carrier, the liposome, and the drug. The result is important since liposome nanocarriers at present dominate drug delivery systems. In spite of the low cross-section of the original ingredients, the diffracted intensity of drug-free liposomes was sufficient for spatial reconstruction yielding quantitative structural information. For particles containing doxorubicin, the structural parameters of the nanorods could be extracted from CDI. Furthermore, the measurement of the electron density of the solution enclosed in each liposome provides direct evidence of the incorporation of ammonium sulphate into the nanorods. Overall, ours is an important test for extending the X-FEL analysis of individual nanoparticles to low cross-sectional systems in solution, and also for its potential use to optimize the manufacturing of drug nanocarriers.

  18. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE PAGES

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin; ...

    2016-03-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  19. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kevin

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. Furthermore, the observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.

  20. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells

    PubMed Central

    Jakobi, Arjen J.; Passon, Daniel M.; Knoops, Kèvin; Stellato, Francesco; Liang, Mengning; White, Thomas A.; Seine, Thomas; Messerschmidt, Marc; Chapman, Henry N.; Wilmanns, Matthias

    2016-01-01

    The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined. PMID:27006771

  1. Diffraction-controlled backscattering threshold and application to Raman gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Harvey A.; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544; Mounaix, Philippe

    2011-04-15

    In most classic analytical models of linear stimulated scatter, light diffraction is omitted, a priori. However, modern laser optic typically includes a variant of the random phase plate [Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984)], resulting in diffraction limited laser intensity fluctuations - or localized speckles - which may result in explosive reflectivity growth as the average laser intensity approaches a critical value [H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)]. Among the differences between stimulated Raman scatter (SRS) and stimulated Brillouin scatter is that the SRS scattered light diffracts more stronglymore » than the laser light with increase of electron density. This weakens the tendency of the SRS light to closely follow the most amplified paths, diminishing gain. Let G{sub 0} be the one-dimensional power gain exponent of the stimulated scatter. In this paper we show that differential diffraction gives rise to an increase of G{sub 0} at the SRS physical threshold with increase of electron density up to a drastic disruption of SRS as electron density approaches one fourth of its critical value from below. For three wave interaction lengths not small compared to a speckle length, this is a physically robust Raman gap mechanism.« less

  2. Nanoscale monoclinic domains in epitaxial SrRuO{sub 3} thin films deposited by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghica, C., E-mail: cghica@infim.ro; Negrea, R. F.; Nistor, L. C.

    2014-07-14

    In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO{sub 3} layers used as bottom electrodes in multiferroic coatings onto SrTiO{sub 3} substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO{sub 3} thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO{sub 3} orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence ofmore » structurally disordered nanometric domains in the SrRuO{sub 3} bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (−4% ÷ −5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO{sub 6} octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO{sub 3} structure.« less

  3. Low-energy electron diffraction study of Si(111)-(√3x √3)R30∘ -B

    NASA Astrophysics Data System (ADS)

    Marino, K. E.; Huang, Y. T.; Diehl, R. D.; Tu, Weison; Mulugeta, Daniel; Snijders, P. C.; Weitering, H. H.

    2014-03-01

    Metal-semiconductor interfaces are important for the function and manufacture of advanced electronics, such as those used in computers, tablets and phones. They also exhibit many interesting physical phenomena that are interesting from a fundamental point of view, including exotic phases and phase transitions. This study involves the analysis and modeling of the surface structure of a thin film of boron on the Si(111) surface. The addition of metal atoms to the surface of Si(111) simplifies its structure by removing a ``rippling'' that is present on the clean surface. The low-energy electron diffraction (LEED) data were measured at a surface temperature of 80 K at ORNL. The LEED analysis utilized the SATLEED analysis programs. The results are similar to those obtained in an earlier LEED study for this interface, but the precision is higher due to the larger dataset employed., The results of this study will be compared to other studies of this and similar systems. We acknowledge the Eberly College of Science for funding this project. González, Guo, Ortega, Flores, Weitering. Phys. Rev. Lett. 102, 115501 (2009)

  4. Effect of gamma-irradiation on thermal decomposition kinetics, X-ray diffraction pattern and spectral properties of tris(1,2-diaminoethane)nickel(II)sulphate

    NASA Astrophysics Data System (ADS)

    Jayashri, T. A.; Krishnan, G.; Rema Rani, N.

    2014-12-01

    Tris(1,2-diaminoethane)nickel(II)sulphate was prepared, and characterised by various chemical and spectral techniques. The sample was irradiated with 60Co gamma rays for varying doses. Sulphite ion and ammonia were detected and estimated in the irradiated samples. Non-isothermal decomposition kinetics, X-ray diffraction pattern, Fourier transform infrared spectroscopy, electronic, fast atom bombardment mass spectra, and surface morphology of the complex were studied before and after irradiation. Kinetic parameters were evaluated by integral, differential, and approximation methods. Irradiation enhanced thermal decomposition, lowering thermal and kinetic parameters. The mechanism of decomposition is controlled by R3 function. From X-ray diffraction studies, change in lattice parameters and subsequent changes in unit cell volume and average crystallite size were observed. Both unirradiated and irradiated samples of the complex belong to trigonal crystal system. Decrease in the intensity of the peaks was observed in the infrared spectra of irradiated samples. Electronic spectral studies revealed that the M-L interaction is unaffected by irradiation. Mass spectral studies showed that the fragmentation patterns of the unirradiated and irradiated samples are similar. The additional fragment with m/z 256 found in the irradiated sample is attributed to S8+. Surface morphology of the complex changed upon irradiation.

  5. Role of Emission Character in Auger Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Idzerda, Y. U.

    A review of the interpretation of the angle-dependent Auger intensity pattern by both Auger electron diffraction (AED), which is concerned with identifying the nearby atomic structure, and angle-resolved Auger electron spectroscopy (ARAES), which is concerned with identifying the character of the emitted electron source function, is presented. The importance of the emission character of the Auger electron (in terms of its angular momentum, l, and its magnetic quantum number, m) in understanding the generation of the AED and ARAES patterns is described. Understanding of how the various direct and secondary mechanisms for the Auger electron generation can affect the populations of these states can also be used to help identify the multiplet structure within the Auger lineshape as well as elucidate the core hole generation process.

  6. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godec, Matjaz, E-mail: matjaz.godec@imt.si; Batic, Barbara Setina; Mandrino, Djordje

    2010-04-15

    A microstructural characterization of the powder-metallurgy high-speed-steel S390 Microclean was performed based on an elemental distribution of the carbide phase as well as crystallographic analyses. The results showed that there were two types of carbides present: vanadium-rich carbides, which were not chemically homogeneous and exhibited a tungsten-enriched or tungsten-depleted central area; and chemically homogeneous tungsten-rich M{sub 6}C-type carbides. Despite the possibility of chemical inhomogenities, the crystallographic orientation of each of the carbides was shown to be uniform. Using electron backscatter diffraction the vanadium-rich carbides were determined to be either cubic VC or hexagonal V{sub 6}C{sub 5}, while the tungsten-rich carbidesmore » were M{sub 6}C. The electron backscatter diffraction results were also verified using X-ray diffraction. Several electron backscatter diffraction pattern maps were acquired in order to define the fraction of each carbide phase as well as the amount of martensite phase. The fraction of martensite was estimated using band-contrast images, while the fraction of carbides was calculated using the crystallographic data.« less

  7. Multiobjective optimizations of a novel cryocooled dc gun based ultrafast electron diffraction beam line

    NASA Astrophysics Data System (ADS)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan

    2016-09-01

    We present the results of multiobjective genetic algorithm optimizations of a single-shot ultrafast electron diffraction beam line utilizing a 225 kV dc gun with a novel cryocooled photocathode system and buncher cavity. Optimizations of the transverse projected emittance as a function of bunch charge are presented and discussed in terms of the scaling laws derived in the charge saturation limit. Additionally, optimization of the transverse coherence length as a function of final rms bunch length at the sample location have been performed for three different sample radii: 50, 100, and 200 μ m , for two final bunch charges: 1 05 electrons (16 fC) and 1 06 electrons (160 fC). Example optimal solutions are analyzed, and the effects of disordered induced heating estimated. In particular, a relative coherence length of Lc ,x/σx=0.27 nm /μ m was obtained for a final bunch charge of 1 05 electrons and final bunch length of σt≈100 fs . For a final charge of 1 06 electrons the cryogun produces Lc ,x/σx≈0.1 nm /μ m for σt≈100 - 200 fs and σx≥50 μ m . These results demonstrate the viability of using genetic algorithms in the design and operation of ultrafast electron diffraction beam lines.

  8. Quantum games with a multi-slit electron diffraction set-up

    NASA Astrophysics Data System (ADS)

    Iqbal, A.

    2003-05-01

    A set-up is proposed to play a quantum version of the famous bimatrix game of Prisoners' Dilemma. Multi-slit electron diffraction with each player's pure strategy consisting of opening one of the two slits at his/her disposal are essential features of the set-up. Instead of entanglement the association of waves with travelling material objects is suggested as another resource to play quantum games.

  9. Measurement and Interpretation of Diffuse Scattering in X-Ray Diffraction for Macromolecular Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    X-ray diffraction from macromolecular crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering reflects the mean electron density in the unit cells of the crystal. The diffuse scattering arises from correlations in the variations of electron density that may occur from one unit cell to another, and therefore contains information about collective motions in proteins.

  10. X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene

    PubMed Central

    Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.

    2016-01-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076

  11. A pseudo-tetragonal tungsten bronze superstructure: a combined solution of the crystal structure of K6.4(Nb,Ta)(36.3)O94 with advanced transmission electron microscopy and neutron diffraction.

    PubMed

    Paria Sena, Robert; Babaryk, Artem A; Khainakov, Sergiy; Garcia-Granda, Santiago; Slobodyanik, Nikolay S; Van Tendeloo, Gustaaf; Abakumov, Artem M; Hadermann, Joke

    2016-01-21

    The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) Å, b = 12.493(3) Å, c = 3.95333(15) Å. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.

  12. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  13. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE PAGES

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan; ...

    2016-02-22

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  14. Nanouric acid or nanocalcium phosphate as central nidus to induce calcium oxalate stone formation: a high-resolution transmission electron microscopy study on urinary nanocrystallites

    PubMed Central

    Gao, Jie; Xue, Jun-Fa; Xu, Meng; Gui, Bao-Song; Wang, Feng-Xin; Ouyang, Jian-Ming

    2014-01-01

    Purpose This study aimed to accurately analyze the relationship between calcium oxalate (CaOx) stone formation and the components of urinary nanocrystallites. Method High-resolution transmission electron microscopy (HRTEM), selected area electron diffraction, fast Fourier transformation of HRTEM, and energy dispersive X-ray spectroscopy were performed to analyze the components of these nanocrystallites. Results The main components of CaOx stones are calcium oxalate monohydrate and a small amount of dehydrate, while those of urinary nanocrystallites are calcium oxalate monohydrate, uric acid, and calcium phosphate. The mechanism of formation of CaOx stones was discussed based on the components of urinary nanocrystallites. Conclusion The formation of CaOx stones is closely related both to the properties of urinary nanocrystallites and to the urinary components. The combination of HRTEM, fast Fourier transformation, selected area electron diffraction, and energy dispersive X-ray spectroscopy could be accurately performed to analyze the components of single urinary nanocrystallites. This result provides evidence for nanouric acid and/or nanocalcium phosphate crystallites as the central nidus to induce CaOx stone formation. PMID:25258530

  15. Microstructural Analysis of Ti-6Al-4V Components Made by Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Coleman, Rashadd L.

    Electron Beam Additive Manufacturing (EBAM) is a relatively new additive manufacturing (AM) technology that uses a high-energy electron beam to melt and fuse powders to build full-density parts in a layer by layer fashion. EBAM can fabricate metallic components, particularly, of complex shapes, in an efficient and cost-effective manner compared to conventional manufacturing means. EBAM is an enabling technology for rapid manufacturing (RM) of metallic components, and thus, can efficiently integrate the design and manufacturing of aerospace components. However, EBAM for aerospace-related applications remain limited because the effect of the EBAM process on part characteristics is not fully understood. In this study, various techniques including microhardness, optical microscopy (OM), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and electron backscatter diffraction (EBSD) were used to characterize Ti-6Al-4V components processed using EBAM. The results were compared to Ti-6Al-4V components processed using conventional techniques. In this study it is shown that EBAM built Ti-64 components have increased hardness, elastic modulus, and yield strength compared to wrought Ti-6Al-4V. Further, it is also shown in this study that the horizontal build EBAM Ti-6Al-4V has increased hardness, elastic modulus, and yield strength compared to vertical build EBAM due to a preferential growth of the beta phase.

  16. Three-dimensional reconstruction for coherent diffraction patterns obtained by XFEL.

    PubMed

    Nakano, Miki; Miyashita, Osamu; Jonic, Slavica; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tama, Florence

    2017-07-01

    The three-dimensional (3D) structural analysis of single particles using an X-ray free-electron laser (XFEL) is a new structural biology technique that enables observations of molecules that are difficult to crystallize, such as flexible biomolecular complexes and living tissue in the state close to physiological conditions. In order to restore the 3D structure from the diffraction patterns obtained by the XFEL, computational algorithms are necessary as the orientation of the incident beam with respect to the sample needs to be estimated. A program package for XFEL single-particle analysis based on the Xmipp software package, that is commonly used for image processing in 3D cryo-electron microscopy, has been developed. The reconstruction program has been tested using diffraction patterns of an aerosol nanoparticle obtained by tomographic coherent X-ray diffraction microscopy.

  17. Three-dimensional nanostructure determination from a large diffraction data set recorded using scanning electron nanodiffraction.

    PubMed

    Meng, Yifei; Zuo, Jian-Min

    2016-09-01

    A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can be extended to multiphase nanocrystalline materials as well. Thus, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.

  18. Structure determination of Ba5AlF13 by coupling electron, synchrotron and neutron powder diffraction, solid-state NMR and ab initio calculations.

    PubMed

    Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck

    2016-10-04

    The room temperature structure of Ba 5 AlF 13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ( 19 F and 27 Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19 F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba 5 AlF 13 , including site-specific dynamical disorder in the fluorine sub-network.

  19. Application of ASTAR(TM)/Precession Electron Diffraction Technique to Quantitatively Study Defects in Nanocrystalline Metallic Materials

    NASA Astrophysics Data System (ADS)

    Ghamarian, Iman

    Nanocrystalline metallic materials have the potential to exhibit outstanding performance which leads to their usage in challenging applications such as coatings and biomedical implant devices. To optimize the performance of nanocrystalline metallic materials according to the desired applications, it is important to have a decent understanding of the structure, processing and properties of these materials. Various efforts have been made to correlate microstructure and properties of nanocrystalline metallic materials. Based on these research activities, it is noticed that microstructure and defects (e.g., dislocations and grain boundaries) play a key role in the behavior of these materials. Therefore, it is of great importance to establish methods to quantitatively study microstructures, defects and their interactions in nanocrystalline metallic materials. Since the mechanisms controlling the properties of nanocrystalline metallic materials occur at a very small length scale, it is fairly difficult to study them. Unfortunately, most of the characterization techniques used to explore these materials do not have the high enough spatial resolution required for the characterization of these materials. For instance, by applying complex profile-fitting algorithms to X-ray diffraction patterns, it is possible to get an estimation of the average grain size and the average dislocation density within a relatively large area. However, these average values are not enough for developing meticulous phenomenological models which are able to correlate microstructure and properties of nanocrystalline metallic materials. As another example, electron backscatter diffraction technique also cannot be used widely in the characterization of these materials due to problems such as relative poor spatial resolution (which is 90 nm) and the degradation of Kikuchi diffraction patterns in severely deformed nano-size grain metallic materials. In this study, ASTAR(TM)/precession electron diffraction is introduced as a relatively new orientation microscopy technique to characterize defects (e.g., geometrically necessary dislocations and grain boundaries) in challenging nanocrystalline metallic materials. The capability of this characterization technique to quantitatively determine the dislocation density distributions of geometrically necessary dislocations in severely deformed metallic materials is assessed. Based on the developed method, it is possible to determine the distributions and accumulations of dislocations with respect to the nearest grain boundaries and triple junctions. Also, the competency of this technique to study the grain boundary character distributions of nanocrystalline metallic materials is presented.

  20. Microstructure, crystallography and diagenetic alteration in fossil ostrich eggshells from Upper Palaeolithic sites of Indian peninsular region.

    PubMed

    Jain, Sonal; Bajpai, Sunil; Kumar, Giriraj; Pruthi, Vikas

    2016-05-01

    Biominerals studies are of importance as they provide an understanding of natural evolutionary processes. In this study we have investigated the fossil ostrich eggshells using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD). SEM studies demonstrated the ultrastructure of fossil eggshells and formation of calcified cuticular layer. The presence of calcified cuticle layer in eggshell is the basis for ancient DNA studies as it contains preserved biomolecules. EBSD accentuates the crystallographic structure of the ostrich eggshells with sub-micrometer resolution. It is a non-destructive tool for evaluating the extent of diagenesis in a biomineral. EBSD analysis revealed the presence of dolomite in the eggshells. This research resulted in the complete recognition of the structure of ostrich eggshells as well as the nature and extent of diagenesis in these eggshells which is vital for genetic and paleoenvironmental studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Optical, electrochemical and thermal properties of Mn2+ doped CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Muruganandam, S.; Anbalagan, G.; Murugadoss, G.

    2015-08-01

    Mn2+ doped (1-5 and 10 %) CdS nanoparticles have been synthesized by the chemical precipitation method using polyvinylpyrrolidone as a capping agent. The particle size, morphology and optical properties have been studied by X-ray powder diffraction, transmission electron microscopy, UV-Visible and photoluminescence spectroscopy. Powder diffraction data have confirmed that the crystallite size is around 2-5 nm. The band gap of the nanoparticles has been calculated using UV-Visible absorption spectra. An optimum concentration, Mn2+ (3 %) has been selected by optical study. The functional groups of the capping agent have been identified by fourier transform infrared spectroscopy study. The presence of dopant (Mn2+) has been confirmed by electron paramagnetic resonance spectroscopy. Thermal properties of CdS:Mn2+ have been analyzed using thermogravimetric-differential thermal analyser. The electrochemical properties of the undoped and doped samples have been studied by cyclic voltammetry for electrode applications. In addition, magnetic properties of Mn2+ doped CdS have been studied using a vibrating sample magnetometer.

  2. Adsorption and photodecomposition of Mo(CO)[sub 6] on Si(111) 7[times]7: An infrared reflection absorption spectroscopy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, L.J.; Buntin, S.A.; Chu, P.M.

    1994-02-15

    The adsorption and photodecomposition of Mo(CO)[sub 6] adsorbed on Si(111) 7[times]7 surfaces has been studied with Auger electron spectroscopy, temperature programmed desorption, low energy electron diffraction and infrared reflection absorption spectroscopy in a single external reflection configuration. The external-reflection technique is demonstrated to have adequate sensitivity to characterize submonolayer coverages of photogenerated Mo(CO)[sub [ital x

  3. Applications of High Throughput (Combinatorial) Methodologies to Electronic, Magnetic, Optical, and Energy-Related Materials

    DTIC Science & Technology

    2013-06-17

    of the films without having to fabricate capacitors. In addition, the use of X - ray diffraction (XRD) analysis enabled Chikyow et al.40 to identify an...effects of Al doping and annealing on the thermal stabil- ity of the Y2O3/Si gate stack were studied by X - ray photoemission spectroscopy (XPS) and X - ray ...the major diffraction features in the phase distribution. For a given structural phase, the X - ray peak intensity allows one to track the compositional

  4. Determination of the geometric corrugation of graphene on SiC(0001) by grazing incidence fast atom diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zugarramurdi, A.; Debiossac, M.; Lunca-Popa, P.

    2015-03-09

    We present a grazing incidence fast atom diffraction (GIFAD) study of monolayer graphene on 6H-SiC(0001). This system shows a Moiré-like 13 × 13 superlattice above the reconstructed carbon buffer layer. The averaging property of GIFAD results in electronic and geometric corrugations that are well decoupled; the graphene honeycomb corrugation is only observed with the incident beam parallel to the zigzag direction while the geometric corrugation arising from the superlattice is revealed along the armchair direction. Full-quantum calculations of the diffraction patterns show the very high GIFAD sensitivity to the amplitude of the surface corrugation. The best agreement between the calculated and measuredmore » diffraction intensities yields a corrugation height of 0.27 ± 0.03 Å.« less

  5. Influence of neutron irradiation on the microstructure of nuclear graphite: An X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Bouwman, W. G.; Schut, H.; van Staveren, T. O.; Heijna, M. C. R.; Pappas, C.

    2017-04-01

    Neutron irradiation effects on the microstructure of nuclear graphite have been investigated by X-ray diffraction on virgin and low doses (∼ 1.3 and ∼ 2.2 dpa), high temperature (750° C) irradiated samples. The diffraction patterns were interpreted using a model, which takes into account the turbostratic disorder. Besides the lattice constants, the model introduces two distinct coherent lengths in the c-axis and the basal plane, that characterise the volumes from which X-rays are scattered coherently. The methodology used in this work allows to quantify the effect of irradiation damage on the microstructure of nuclear graphite seen by X-ray diffraction. The results show that the changes of the deduced structural parameters are in agreement with previous observations from electron microscopy, but not directly related to macroscopic changes.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Pragya; Srivastava, A. K.; Khattak, B. Q.

    Polymethyl methacrylate (PMMA) is characterized for electron beam interactions in the resist layer in lithographic applications. PMMA thin films (free standing) were prepared by solvent casting method. These films were irradiated with 30keV electron beam at different doses. Structural and chemical properties of the films were studied by means of X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy The XRD results showed that the amorphization increases with electron beam irradiation dose. FTIR spectroscopic analysis reveals that electron beam irradiation promotes the scission of carbonyl group and depletes hydrogen and converts polymeric structure into hydrogen depleted carbon network.

  7. Determination of the five parameter grain boundary character distribution of nanocrystalline alpha-zirconium thin films using transmission electron microscopy

    DOE PAGES

    Ghamarian, I.; Samani, P.; Rohrer, G. S.; ...

    2017-03-24

    Grain boundary engineering and other fundamental materials science problems (e.g., phase transformations and physical properties) require an improvement in the understanding of the type and population of grain boundaries in a given system – yet, databases are limited in number and spare in detail, including for hcp crystals such as zirconium. One way to rapidly obtain databases to analyze is to use small-grained materials and high spatial resolution orientation microscopy techniques, such as ASTAR™/precession electron diffraction. To demonstrate this, a study of grain boundary character distributions was conducted for α-zirconium deposited at room temperature on fused silica substrates using physicalmore » vapor deposition. The orientation maps of the nanocrystalline thin films were acquired by the ASTARα/precession electron diffraction technique, a new transmission electron microscope based orientation microscopy method. The reconstructed grain boundaries were classified as pure tilt, pure twist, 180°-twist and 180°-tilt grain boundaries based on the distribution of grain boundary planes with respect to the angle/axis of misorientation associated with grain boundaries. The results of the current study were compared to the results of a similar study on α-titanium and the molecular dynamics results of grain boundary energy for α-titanium.« less

  8. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.

    PubMed

    Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B

    2015-07-01

    Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR). Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Scanning electron microscopy, x-ray diffraction, and electron microprobe analysis of calcific deposits on intrauterine contraceptive devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, S.R.; Wilkinson, E.J.

    Deposits found on intrauterine contraceptive devices (IUDs) were studied by scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray microanalysis. All seven devices, including five plastic and two copper IUDs, were coated with a crust containing cellular, acellular, and fibrillar material. The cellular material was composed of erythrocytes, leukocytes, cells of epithelial origin, sperm, and bacteria. Some of the bacteria were filamentous, with acute-angle branching. The fibrillar material appeared to be fibrin. Most of the acellular material was amorphous; calcite was identified by x-ray diffraction, and x-ray microanalysis showed only calcium. Some of the acellular material, particularly that on themore » IUD side of the crust, was organized in spherulitic crystals and was identified as calcium phosphate by x-ray microanalysis. The crust was joined to the IUD surface by a layer of fibrillar and amorphous material. It is suggested that the initial event in the formation of calcific deposits on IUD surfaces is the deposition of an amorphous and fibrillar layer. Various types of cells present in the endometrial environment adhere to this layer and then calcify. Thus, the deposition of calcific material on the IUDs is a calcification phenomenon, not unlike the formation of plaque on teeth.« less

  10. Molecular structure and conformational preferences of 1-bromo-1-silacyclohexane, CH2(CH2CH2)2SiH-Br, as studies by gas-phase electron diffraction and quantum chemistry

    NASA Astrophysics Data System (ADS)

    Belyakov, A. V.; Baskakov, A. A.; Naraev, V. N.; Rykov, A. N.; Oberhammer, H.; Arnason, I.; Wallevik, S. O.

    2012-10-01

    The molecular structure of axial and equatorial conformer of the 1-bromo-1-silacyclohexane molecule, CH2(CH2CH2)2SiH-Br, as well as thermodynamic equilibrium between these species are investigated by means of gas-phase electron diffraction and quantum chemistry on the MP2(full)/SDB-AUG-cc-PVTZ level of theory. It is revealed that according to electron diffraction data, the compound exists in the gasphase as a mixture of conformers possessing the chair conformation of the six-membered ring and C s symmetry and differing in the axial and equatorial position of the Si-Br bond (ax. = 80(5) mol %, eq. = 20(7) mol %) at 352 K, that corresponds to the value of A = ( G {ax/○} - G {eq/○}) = -0.82(32) kcal/mol. It is found that observed data agree well with theoretical ones. Using Natural Bond Orbital (NBO) analysis it is revealed that axial conformer of 1-bromo-1-silacyclohexane molecule is an example of the stabilization of the form that is unfavorable from the point of view of steric effects and effects of conjugations. It is concluded that stabilization is achieved due to electrostatic interactions.

  11. Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography.

    PubMed

    Barnes, Christopher O; Kovaleva, Elena G; Fu, Xiaofeng; Stevenson, Hilary P; Brewster, Aaron S; DePonte, Daniel P; Baxter, Elizabeth L; Cohen, Aina E; Calero, Guillermo

    2016-07-15

    Serial femtosecond crystallography (SFX) employing high-intensity X-ray free-electron laser (XFEL) sources has enabled structural studies on microcrystalline protein samples at non-cryogenic temperatures. However, the identification and optimization of conditions that produce well diffracting microcrystals remains an experimental challenge. Here, we report parallel SFX and transmission electron microscopy (TEM) experiments using fragmented microcrystals of wild type (WT) homoprotocatechuate 2,3-dioxygenase (HPCD) and an active site variant (H200Q). Despite identical crystallization conditions and morphology, as well as similar crystal size and density, the indexing efficiency of the diffraction data collected using the H200Q variant sample was over 7-fold higher compared to the diffraction results obtained using the WT sample. TEM analysis revealed an abundance of protein aggregates, crystal conglomerates and a smaller population of highly ordered lattices in the WT sample as compared to the H200Q variant sample. While not reported herein, the 1.75 Å resolution structure of the H200Q variant was determined from ∼16 min of beam time, demonstrating the utility of TEM analysis in evaluating sample monodispersity and lattice quality, parameters critical to the efficiency of SFX experiments. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Phase study of titanium dioxide nanoparticle prepared via sol-gel process

    NASA Astrophysics Data System (ADS)

    Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan

    2018-03-01

    In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.

  13. Cryo-electron microscopy of membrane proteins.

    PubMed

    Goldie, Kenneth N; Abeyrathne, Priyanka; Kebbel, Fabian; Chami, Mohamed; Ringler, Philippe; Stahlberg, Henning

    2014-01-01

    Electron crystallography is used to study membrane proteins in the form of planar, two-dimensional (2D) crystals, or other crystalline arrays such as tubular crystals. This method has been used to determine the atomic resolution structures of bacteriorhodopsin, tubulin, aquaporins, and several other membrane proteins. In addition, a large number of membrane protein structures were studied at a slightly lower resolution, whereby at least secondary structure motifs could be identified.In order to conserve the structural details of delicate crystalline arrays, cryo-electron microscopy (cryo-EM) allows imaging and/or electron diffraction of membrane proteins in their close-to-native state within a lipid bilayer membrane.To achieve ultimate high-resolution structural information of 2D crystals, meticulous sample preparation for electron crystallography is of outmost importance. Beam-induced specimen drift and lack of specimen flatness can severely affect the attainable resolution of images for tilted samples. Sample preparations that sandwich the 2D crystals between symmetrical carbon films reduce the beam-induced specimen drift, and the flatness of the preparations can be optimized by the choice of the grid material and the preparation protocol.Data collection in the cryo-electron microscope using either the imaging or the electron diffraction mode has to be performed applying low-dose procedures. Spot-scanning further reduces the effects of beam-induced drift. Data collection using automated acquisition schemes, along with improved and user-friendlier data processing software, is increasingly being used and is likely to bring the technique to a wider user base.

  14. Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.

    PubMed

    Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong

    2015-10-01

    Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.

  15. Auger electron intensity variations in oxygen-exposed large grain polycrystalline silver

    NASA Technical Reports Server (NTRS)

    Lee, W. S.; Outlaw, R. A.; Hoflund, G. B.; Davidson, M. R.

    1989-01-01

    Auger electron spectroscopic studies of the grains in oxygen-charged polycrystal-line silver show significant intensity variations as a function of crystallographic orientation. These intensity variations were observed by studies of the Auger images and line scans of the different grains (randomly selected) for each silver transition energy. The results can be attributed to the diffraction of the ejected Auger electrons and interpreted by corresponding changes in the electron mean-free path for inelastic scattering and by oxygen atom accumulation in the subsurface. The subsurface (second layer) octahedral sites increased in size because of surface relaxation and serve as a stable reservoir for the dissolved oxygen.

  16. Dynamics of reflection high-energy electron diffraction intensity oscillations during molecular beam epitaxial growth of GaAs on (111)B GaAs substrates

    NASA Astrophysics Data System (ADS)

    Yen, M. Y.; Haas, T. W.

    1990-06-01

    We have observed intensity oscillations in reflection high-energy electron diffraction during molecular beam epitaxial growth of GaAs on (111)B GaAs substrates. These oscillations only exist over a narrow range of growth conditions and their behavior is strongly dependent on the migration kinetics of group III and the molecular dissociative reaction of group V elements.

  17. Stress Corrosion Cracking Facet Crystallography of Ti-8Al-1Mo-1V (Preprint)

    DTIC Science & Technology

    2011-05-01

    fractography and electron backscatter diffraction. The results indicate that most facets are formed nearly perpendicular to the loading direction on...of Ti-8Al- 1Mo-1V have been characterized using quantitative fractography and electron backscatter diffraction. The results indicate that most facets...EBSD and quantitative tilt fractography [27;29] allow for determination of the crystallographic fracture plane to an accuracy between 1o [29] and

  18. Nanostructure size determination in p-type porous silicon by the use of transmission electron diffraction image processing

    NASA Astrophysics Data System (ADS)

    Ramirez-Porras, A.

    2005-06-01

    The structure of p-type porous silicon (PS) has been investigated by the use of transmission electron diffraction (TED) microscopy and image processing. The results suggest the presence of well oriented crystalline phases and polycrystalline phases characterized by random orientation. These phases are believed to be formed by spheres with a mean diameter of 4.3 nm and a standard deviation of 1.3 nm.

  19. Crystallographic data processing for free-electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco

    2013-07-01

    A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show thatmore » the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.« less

  20. A method to correct coordinate distortion in EBSD maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.B., E-mail: yubz@dtu.dk; Elbrønd, A.; Lin, F.X.

    2014-10-15

    Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. -more » Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction.« less

  1. Reflection high energy electron diffraction observation of surface mass transport at the two- to three-dimensional growth transition of InAs on GaAs(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, F.; Arciprete, F.; Fanfoni, M.

    2005-12-19

    We have followed by reflection high-energy electron diffraction the nucleation of InAs quantum dots on GaAs(001), grown by molecular-beam epitaxy with growth interruptions. Surface mass transport gives rise, at the critical InAs thickness, to a huge nucleation of three-dimensional islands within 0.2 monolayers (ML). Such surface mass diffusion has been evidenced by observing the transition of the reflection high-energy electron diffraction pattern from two- to three-dimensional during the growth interruption after the deposition of 1.59 ML of InAs. It is suggested that the process is driven by the As{sub 2} adsorption-desorption process and by the lowering of the In bindingmore » energy due to compressive strain. The last condition is met first in the region surrounding dots at step edges where nucleation predominantly occurs.« less

  2. Trans-pent-2-ene. Electron diffraction, vibrational analysis and molecular mechanics

    NASA Astrophysics Data System (ADS)

    Ter Brake, J. H. M.; Mijlhoff, F. C.

    1981-12-01

    The molecular structure of trans-pent-2-ene has been investigated, using electron diffraction, vibrational analysis and molecular mechanics. It is possible to Fit a model, describing trans-pent-2-ene as a semi-rigid molecule with one conformer only, to the electron diffraction data. However, molecular mechanics shows that trans-pent-2-ene is not a semi-rigid molecule. The large-amplitude motion is described, using all pseudo-conformers at 10° intervals around the circle of rotation. The resulting rα structure is: r[-C-C] = 148.4(1), r[-CC-] = 133.4(2), r[-C-C-] = 157.6(5), r[C-H] = 108.2(1)pm; ∠[-C-CC-] = 125.4(3), ∠[C-C-C-] = 115.6(6), ∠[-C-C-H] = 12.7(6), ∠[-CC-H] = 129(2)°. Standard deviations given in parentheses refer to the last significant digit.

  3. Automated grain mapping using wide angle convergent beam electron diffraction in transmission electron microscope for nanomaterials.

    PubMed

    Kumar, Vineet

    2011-12-01

    The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.

  4. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    PubMed

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  5. Electron transfer in a virtual quantum state of LiBH4 induced by strong optical fields and mapped by femtosecond x-ray diffraction.

    PubMed

    Stingl, J; Zamponi, F; Freyer, B; Woerner, M; Elsaesser, T; Borgschulte, A

    2012-10-05

    Transient polarizations connected with a spatial redistribution of electronic charge in a mixed quantum state are induced by optical fields of high amplitude. We determine for the first time the related transient electron density maps, applying femtosecond x-ray powder diffraction as a structure probe. The prototype ionic material LiBH4 driven nonresonantly by an intense sub-40 fs optical pulse displays a large-amplitude fully reversible electron transfer from the BH4(-) anion to the Li+ cation during excitation. Our results establish this mechanism as the source of the strong optical polarization which agrees quantitatively with theoretical estimates.

  6. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    PubMed Central

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  7. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes andmore » oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.« less

  8. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.

    PubMed

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; Schafer, Donald W; Messerschmidt, Marc; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Grosse-Kunstleve, Ralf W; Zwart, Petrus H; White, William E; Glatzel, Pieter; Adams, Paul D; Bogan, Michael J; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko

    2013-04-26

    Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.

  9. Single-crystal X-ray diffraction study of SrGeO3 high-pressure perovskite phase at 100 K

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Akihiko; Arima, Hiroshi; Ohtaka, Osamu; Fujiwara, Keiko; Yoshiasa, Akira

    2017-10-01

    Single-crystal X-ray diffraction study of SrGeO3 perovskite (cubic; space group Pmɜ¯m) synthesized at 6 GPa and 1223 K was conducted at a low temperature of 100 K. The residual electron density revealed the presence of the bonding electron at the center of the Ge-O bond, in accordance with our previous conclusion that the Ge-O bond is strongly covalent. From comparison with our previous structure-refinement result at 296 K, the mean square displacement (MSD) of the O atom in the direction of the Ge-O bond is suggested to exhibit no significant temperature dependence, in contrast to that in the direction perpendicular to the bond. Thus, the strong covalency of the Ge-O bond can have a large influence on the temperature dependence of thermal vibration of the O atom.

  10. Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.

    PubMed

    Shareef, M Y; Messer, P F; van Noort, R

    1993-01-01

    In this study the preparation of a machinable hydroxyapatite from mixtures of a fine, submicrometer powder and either a coarse powder composed of porous aggregates up to 50 microns or a medium powder composed of dense particles of 3 microns median size is described. These were characterized using X-ray diffraction, transmission and scanning electron microscopy and infra-red spectroscopy. Test-pieces were formed by powder pressing and slip casting mixtures of various combinations of the fine, medium and coarse powders. The fired test-pieces were subjected to measurements of firing shrinkage, porosity, bulk density, tensile strength and fracture toughness. The microstructure and composition were examined using scanning electron microscopy and X-ray diffraction. For both processing methods, a uniform interconnected microporous structure was produced of a high-purity hydroxyapatite. The maximum tensile strength and fracture toughness that could be attained while retaining machinability were 37 MPa and 0.8 MPa m1/2 respectively.

  11. Diffractive optical elements on non-flat substrates using electron beam lithography

    NASA Technical Reports Server (NTRS)

    Maker, Paul D. (Inventor); Muller, Richard E. (Inventor); Wilson, Daniel W. (Inventor)

    2002-01-01

    The present disclosure describes a technique for creating diffraction gratings on curved surfaces with electron beam lithography. The curved surface can act as an optical element to produce flat and aberration-free images in imaging spectrometers. In addition, the fabrication technique can modify the power structure of the grating orders so that there is more energy in the first order than for a typical grating. The inventors noticed that by using electron-beam lithography techniques, a variety of convex gratings that are well-suited to the requirements of imaging spectrometers can be manufactured.

  12. Convergent beam electron-diffraction investigation of lattice mismatch and static disorder in GaAs/GaAs1-xNx intercalated GaAs/GaAs1-xNx:H heterostructures

    NASA Astrophysics Data System (ADS)

    Frabboni, S.; Grillo, V.; Gazzadi, G. C.; Balboni, R.; Trotta, R.; Polimeni, A.; Capizzi, M.; Martelli, F.; Rubini, S.; Guzzinati, G.; Glas, F.

    2012-09-01

    Hydrogen incorporation in diluted nitride semiconductors dramatically modifies the electronic and structural properties of the crystal through the creation of nitrogen-hydrogen complexes. We report a convergent beam electron-diffraction characterization of diluted nitride semiconductor-heterostructures patterned at a sub-micron scale and selectively exposed to hydrogen. We present a method to determine separately perpendicular mismatch and static disorder in pristine and hydrogenated heterostructures. The roles of chemical composition and strain on static disorder have been separately assessed.

  13. Compression of high-density 0.16 pC electron bunches through high field gradients for ultrafast single shot electron diffraction: The Compact RF Gun

    PubMed Central

    Daoud, Hazem; Floettmann, Klaus; Dwayne Miller, R. J.

    2017-01-01

    We present an RF gun design for single shot ultrafast electron diffraction experiments that can produce sub-100 fs high-charge electron bunches in the 130 keV energy range. Our simulations show that our proposed half-cell RF cavity is capable of producing 137 keV, 27 fs rms (60 fs FWHM), 106 electron bunches with an rms spot size of 276 μm and a transverse coherence length of 2.0 nm. The required operation power is 9.2 kW, significantly lower than conventional rf cavity designs and a key design feature. This electron source further relies on high electric field gradients at the cathode to simultaneously accelerate and compress the electron bunch to open up new space-time resolution domains for atomically resolved dynamics. PMID:28428973

  14. Direct Visualization of Orbital Flipping in Volborthite by Charge Density Analysis Using Detwinned Data

    NASA Astrophysics Data System (ADS)

    Sugawara, Kento; Sugimoto, Kunihisa; Fujii, Tatsuya; Higuchi, Takafumi; Katayama, Naoyuki; Okamoto, Yoshihiko; Sawa, Hiroshi

    2018-02-01

    The distribution of d-orbital valence electrons in volborthite [Cu3V2O7(OH)2 • 2H2O] was investigated by charge density analysis of the multipole model refinement. Diffraction data were obtained by synchrotron radiation single-crystal X-ray diffraction experiments. Data reduction by detwinning of the multiple structural domains was performed using our developed software. In this study, using high-quality data, we demonstrated that the water molecules in volborthite can be located by the hydrogen bonding in cavities that consist of Kagome lattice layers of CuO4(OH)2 and pillars of V2O7. Final multipole refinements before and after the structural phase transition directly visualized the deformation electron density of the valence electrons. We successfully directly visualized the orbital flipping of the d-orbital dx2-y2, which is the highest level of 3d orbitals occupied by d9 electrons in volborthite. The developed techniques and software can be employed for investigations of structural properties of systems with multiple structural domains.

  15. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Harish, G. S.; Sreedhara Reddy, P.

    2015-09-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  16. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  17. Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections

    NASA Astrophysics Data System (ADS)

    Rădulescu, Dragoş; Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Grumezescu, Alexandru Mihai; Socol, Gabriel; Oprea, Alexandra Elena; Rădulescu, Marius; Surdu, Adrian; Trusca, Roxana; Rădulescu, Radu; Chifiriuc, Mariana Carmen; Stan, Miruna S.; Constanda, Sabrina; Dinischiotu, Anca

    2016-06-01

    In this study we aimed to obtain functionalized thin films based on hydroxyapatite/poly(lactic-co-glycolic acid) (HAp/PLGA) containing ceftriaxone/cefuroxime antibiotics (ATBs) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The prepared thin films were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), selected area electron diffraction (SAED), and infra red (IR) analysis. HAp/PLGA/ATBs thin films sustained the growth of human osteoblasts, proving their good biocompatibility. The microscopic evaluation and the culture-based quantitative assay of the E. coli biofilm development showed that the thin films inhibited the initial step of microbial attachment as well as the subsequent colonization and biofilm development on the respective surfaces. This study demonstrates that MAPLE technique could represent an appealing technique for the fabrication of antibiotics-containing polymeric implant coatings. The bioevaluation results recommend this type of surfaces for the prevention of bone implant microbial contamination and for the enhanced stimulation of the implant osseointegration process.

  18. Topology of the electron density of d0 transition metal compounds at subatomic resolution.

    PubMed

    Batke, Kilian; Eickerling, Georg

    2013-11-14

    Accurate X-ray diffraction experiments allow for a reconstruction of the electron density distribution of solids and molecules in a crystal. The basis for the reconstruction of the electron density is in many cases a multipolar expansion of the X-ray scattering factors in terms of spherical harmonics, a so-called multipolar model. This commonly used ansatz splits the total electron density of each pseudoatom in the crystal into (i) a spherical core, (ii) a spherical valence, and (iii) a nonspherical valence contribution. Previous studies, for example, on diamond and α-silicon have already shown that this approximation is no longer valid when ultrahigh-resolution diffraction data is taken into account. We report here the results of an analysis of the calculated electron density distribution in the d(0) transition metal compounds [TMCH3](2+) (TM = Sc, Y, and La) at subatomic resolution. By a detailed molecular orbital analysis, it is demonstrated that due to the radial nodal structure of the 3d, 4d, and 5d orbitals involved in the TM-C bond formation a significant polarization of the electron density in the inner electronic shells of the TM atoms is observed. We further show that these polarizations have to be taken into account by an extended multipolar model in order to recover accurate electron density distributions from high-resolution structure factors calculated for the title compounds.

  19. Ballistic protons in incoherent exclusive vector meson production as a measure of rare parton fluctuations at an electron-ion collider

    DOE PAGES

    Lappi, T.; Venugopalan, R.; Mantysaari, H.

    2015-02-25

    We argue that the proton multiplicities measured in Roman pot detectors at an electron ion collider can be used to determine centrality classes in incoherent diffractive scattering. Incoherent diffraction probes the fluctuations in the interaction strengths of multi-parton Fock states in the nuclear wavefunctions. In particular, the saturation scale that characterizes this multi-parton dynamics is significantly larger in central events relative to minimum bias events. As an application, we examine the centrality dependence of incoherent diffractive vector meson production. We identify an observable which is simultaneously very sensitive to centrality triggered parton fluctuations and insensitive to details of the model.

  20. Tests of Si(111)-7 × 7 structural models by comparison with transmission electron diffraction patterns

    NASA Astrophysics Data System (ADS)

    McRae, E. G.; Petroff, P. M.

    1984-11-01

    Several structural models of the Si(111)-7 × 7 surface are tested by comparing calculated and observed transmission electron diffraction (TED) patterns. The models comprise "adatom" models where the unit mesh contains 12 adatoms or atom clusters in a locally (2 × 2) arrangement, and "triangle-dimer" models where the unit mesh contains 9 dimers or pairs of dimers bordering a triangular subunit of the unit mesh. The distribution of diffraction intensity among fractional-order spots is calculated kinematically and compared with TED patterns observed by Petroff and Wilson and others. No agreement is found for adatom models. Good but not perfect agreement is found for one triangle-dimer model.

  1. Thin Film Research. Volume 1

    DTIC Science & Technology

    1985-05-30

    Order (FECO) ......... 23 3. X -Ray Diffraction ............................... 26 4. Transmission Electron Microscopy (TEM) ............... 26 5...remained amorphous after bombardment, as evidenced by X - ray diffraction, and showed no other changes. 0 (2) For Sb203, the crystallite size was reduced...main effect on MgF2 was the reduction in crystallite size. The films were too thir. for meaningful x - ray diffraction analysis. Durability and

  2. Morphological and phase evolution of TiO 2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2009-04-01

    Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.

  3. Step-induced deconstruction and step-height evolution of the Au(110) surface

    NASA Astrophysics Data System (ADS)

    Romahn, U.; von Blanckenhagen, P.; Kroll, C.; Göpel, W.

    1993-05-01

    We use temperature-dependent high-resolution low-energy electron diffraction and spot-profile analysis low-energy electron diffraction to study the Au(110) surface at room temperature up to 786 K. The experimental data were analyzed within the framework of the kinematic theory. Oscillations were determined of the positions of half order and fundamental Bragg peaks as well as of the full width at half maximum of the specular peak as a function of perpendicular momentum transfer. Evidence of mono- atomic steps occurring in the [001] direction was found below and around the (2×1)-->(1×1) transition at Tc. Above Tc, the surface gets smoother in the [001] direction; at the roughening temperature, TR, the evolution of multiple-height steps starts in both symmetry directions.

  4. Understanding Intense Laser Interactions with Solid Density Plasma

    DTIC Science & Technology

    2017-01-04

    obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter...with negligible pump-probe jitter being possible with future laser- wakefield-accelerator ultrafast-electron-diffraction schemes. Distribution

  5. Diffractive Optical Elements for Spectral Imaging

    NASA Technical Reports Server (NTRS)

    Wilson, D.; Maker, P.; Muller, R.; Mourolis, P.; Descour, M.; Volin, C.; Dereniak, E.

    2000-01-01

    Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometer.

  6. Diffractive Optical Elements for Spectral Imaging

    NASA Technical Reports Server (NTRS)

    Wilson, D.; Maker, P.; Muller, R.; Maker, P.; Mouroulis, P.; Descour, M.; Volin, C.; Dereniak, E.

    2000-01-01

    Diffractive optical elements fabricated on flat and non-flat substrates frequently act as dispersive elements in imaging spectrometers. We describe the design and electron-beam fabrication of blazed and computer-generated-hologram gratings for slit and tomographic imaging spectrometers.

  7. Three-dimensional nanostructure determination from a large diffraction data set recorded using scanning electron nanodiffraction

    DOE PAGES

    Meng, Yifei; Zuo, Jian -Min

    2016-07-04

    A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can bemore » extended to multiphase nanocrystalline materials as well. Furthermore, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.« less

  8. Thermal analysis, X-ray powder diffraction and electron microscopy data related with the production of 1:1 Caffeine:Glutaric Acid cocrystals.

    PubMed

    Duarte, Íris; Andrade, Rita; Pinto, João F; Temtem, Márcio

    2016-09-01

    The data presented in this article are related to the production of 1:1 Caffeine:Glutaric Acid cocrystals as part of the research article entitled "Green production of cocrystals using a new solvent-free approach by spray congealing" (Duarte et al., 2016) [1]. More specifically, here we present the thermal analysis and the X-ray powder diffraction data for pure Glutaric Acid, used as a raw material in [1]. We also include the X-ray powder diffraction and electron microscopy data obtained for the 1:1 Caffeine:Glutaric Acid cocrystal (form II) produced using the cooling crystallization method reported in "Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile" (Yu et al., 2010) [2]. Lastly, we show the X-ray powder diffraction data obtained for assessing the purity of the 1:1 Caffeine:Glutaric cocrystals produced in [1].

  9. Enhancing resolution in coherent x-ray diffraction imaging.

    PubMed

    Noh, Do Young; Kim, Chan; Kim, Yoonhee; Song, Changyong

    2016-12-14

    Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  10. Investigation of structural, optical, catalytic, fluorescence studies of eco-friendly synthesized Bi2S3 nanostructures

    NASA Astrophysics Data System (ADS)

    Ayodhya, Dasari; Veerabhadram, Guttena

    2017-02-01

    A simple solution phase method has been developed for the synthesis of ribonucleosides capped Bi2S3 nanostructures (NSs) with an average diameter of 15 nm and length of below 100 nm. Transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and X-ray diffraction (XRD) studies revealed that these NSs were grown from a colloidal dispersion of amorphous Bi2S3 particles, which was first formed through a thermal reaction at a temperature of 60 °C. The phase and structure of the Bi2S3 NSs have been identified by using X-ray powder diffraction. The crystal structure had orthorhombic structure. The surface properties and morphology have been investigated using scanning electron microscope (SEM) technique. The N2 sorption-desorption experiments showed that the surface area of the NSs was 6.35 m2 g-1 by Brunauer-Emmett-Teller (BET). The experiments showed that the Bi2S3 NSs prepared in the present work could be used as catalyst for the reduction of SO dye using a reducing agent. It was found that the as-obtained Bi2S3 NSs contributed to the best catalytic activity. Photoluminescence experiments showed a quenching of the Bi2S3 fluorescence with increasing L-cysteine (Cys) content in the solution. Furthermore, the proposed NSs as sensor were employed for the determination of metal ions with satisfactory results.

  11. Effect of Cu2+ substitution on the structural, optical and magnetic behaviour ofchemically derived manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Vasuki, G.; Balu, T.

    2018-06-01

    Mixed spinel copper manganese ferrite (CuXMn1‑XFe2O4, X = 0, 0.25, 0.5, 0.75, 1) nanoparticles were synthesized by chemical co-precipitation technique. From the powder x-ray diffraction analysis the lattice constant, volume of unit cell, x-ray density, hopping lengths, crystallite size, surface area, dislocation density and microstrain were calculated. The substitution of Cu2+ ions shows a considerable reduction in the crystallite size of manganese ferrite from 34 nm to 22 nm. Further a linear fit of Williamson-Hall plot has been drawn to determine the microstrain and crystallite size. The crystallite size and morphology were further observed through high resolution transmission electron microscope and scanning electron microscope. The diffraction rings observed from selected area electron diffraction pattern exhibits the crystalline nature of all the samples. The energy dispersive x-ray analysis shows the composition of all the elements incorporated in the synthesized nanomaterials. FTIR studies reveal the absorption peaks that correspond to the metal-oxygen vibrations in the tetrahedral and octahedral sites. From the UV–vis absorption spectra the band gap energy, refractive index and optical dielectric constant were determined. Magnetic studies carried out using vibrating sample magnetometer shows interesting behaviour in the variation of magnetisation and coercivity. Peculiar magnetic behaviour is observed when Cu2+ ions are substituted in manganese ferrites. All the synthesized materials have very low value of squareness ratio which attributes to the superparamagnetic behaviour.

  12. System and method for compressive scanning electron microscopy

    DOEpatents

    Reed, Bryan W

    2015-01-13

    A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.

  13. X-ray photoelectron-diffraction study of intermixing and morphology at the Ge/Si(001) and Ge/Sb/Si(001) interface

    NASA Astrophysics Data System (ADS)

    Gunnella, R.; Castrucci, P.; Pinto, N.; Davoli, I.; Sébilleau, D.; de Crescenzi, M.

    1996-09-01

    We used the XPD (x-ray photoelectron diffraction) and AED (Auger electron diffraction) from Ge core levels to probe the crystalline structure of 3 and 6 ML of Ge epitaxially grown by molecular-beam epitaxy on the Si(001) surface. In order to check the film tetragonal distortion and the pseudomorphic growth morphology, we used two different temperatures of the substrate during the deposition: room temperature and 400 °C. Evidence for an interfacial intermixing has been found by means of the observation of the angular behavior of the intensity of the emitted electrons. We also investigated the effects of Sb as a surfactant on such an interface. In this case indications of a laminar growth of strained Ge overlayer with reduced intermixing is obtained when 1 ML of Sb is predeposited on the substrate. Furthermore making use of a multiple-scattering approach to reproduce the experimental XPD patterns, a higher amount of accessible information on the morphology of the interface, beyond the determination of the strain content, is obtained.

  14. Diffraction contrast near heterostructure boundaries--its nature and its application.

    PubMed

    Bangert, U; Harvey, A J

    1993-03-01

    Two phenomena of diffraction contrast arising at or near III-V compound heterostructure boundaries are described and quantitatively analyzed. In the first observation alpha/delta-fringe contrast at boundaries inclined to the electron beam is discussed. Theoretical fringe profiles are generated according to the theory by Gevers et al. in 1964, which are then compared with experimental profiles. Applications to the characterization of AlGaAs/GaAs and InGaAsP/InP interfaces regarding composition, abruptness, and lattice tilt are presented. In the second study a new and very sensitive characterization technique for the direct determination of the strain in strained-layer structures is described. The method uses electron microscope images of 90 degrees-wedges, which exhibit a shift in the thickness contours due to strain relaxation at the edge, and compares these to images which are obtained theoretically by implementing finite element strain calculations in wedges in the dynamical theory of diffraction contrast. The considerable potential of this method is demonstrated on the strain analysis of strained GaInAs/GaAs structures.

  15. Examining the ground layer of St. Anthony from Padua 19th century oil painting by Raman spectroscopy, scanning electron microscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš

    2013-01-01

    In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM-EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.

  16. Visible diffraction from quasi-crystalline arrays of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Butler, Timothy P.; Butt, Haider; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.

    2015-08-01

    Large area arrays of vertically-aligned carbon nanotubes (VACNTs) are patterned in a quasi-crystalline Penrose tile arrangement through electron beam lithography definition of Ni catalyst dots and subsequent nanotube growth by plasma-enhanced chemical vapour deposition. When illuminated with a 532 nm laser beam high-quality and remarkable diffraction patterns are seen. The diffraction is well matched to theoretical calculations which assume apertures to be present at the location of the VACNTs for transmitted light. The results show that VACNTs act as diffractive elements in reflection and can be used as spatially phased arrays for producing tailored diffraction patterns.

  17. The continuous reinvention of diffractive optics

    NASA Astrophysics Data System (ADS)

    Kress, Bernard C.

    2004-02-01

    We show in this paper how the field of diffractive optics has moved during these past twenty years from academic research to main stream industry and consumer electronics. We analyze the main driving forces, the various enabling technologies and techniques for both design, fabrication and mass production of diffractive optics, and the successive markets in which this technology has been able to provide economically viable solutions to specific industrials needs. More specifically, we will see how niche applications making use of special features of diffractive optics seem to survive the applications involving the same diffractives, issued from the successive main technology driven investment bubbles.

  18. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    NASA Astrophysics Data System (ADS)

    Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.

    2016-07-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Häusler, I., E-mail: ines.haeusler@bam.de; Dörfel, I., E-mail: Ilona.doerfel@bam.de; Peplinski, B., E-mail: Burkhard.peplinski@bam.de

    A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ballmore » milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS{sub 2} and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. - Highlights: • Ball milling of iron oxides, MoS{sub 2}, and graphite to simulate a tribofilm • Increasing coefficient of friction after ball milling of the model blend • Drastically change of the diffraction pattern of the powder mixture • TEM & XPS showed the components of the milled mixture and the process during milling. • MoS{sub 2} and graphite suffered a loss in translation symmetry or became amorphous.« less

  20. Pulse compressor with aberration correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankos, Marian

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separatormore » to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded into a model describing the key electron-optical parameters of the complete pulse compressor. The simulations reveal that the mirror pulse compressor can reduce the temporal spread of UEDs and DTEMs to the sub-100 femtosecond level for practical electron bunch sizes. EOI’s pulse compressors can be designed and built to attach to different types of UEDs and DTEMs, thus making them suitable for enhancing the study of the structure, composition, and bonding states of new materials at ultrafast time scales to advance material science research in the field of nanotechnology as well as biomedical research.« less

  1. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

    DOE PAGES

    Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn; ...

    2018-04-30

    In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less

  2. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn

    In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less

  3. Experimental and theoretical study of rotationally inelastic diffraction of H{sub 2}(D{sub 2}) from methyl-terminated Si(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nihill, Kevin J.; Hund, Zachary M.; Sibener, S. J., E-mail: s-sibener@uchicago.edu

    2016-08-28

    Fundamental details concerning the interaction between H{sub 2} and CH{sub 3}–Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H{sub 2} and D{sub 2} from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H{sub 2} compared to the strong RID features observed for D{sub 2} over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuationmore » of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH{sub 3}–Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H{sub 2} and D{sub 2} have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H{sub 2} (D{sub 2}) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H{sub 2}(D{sub 2})/CH{sub 3}−Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H{sub 2} with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.« less

  4. When holography meets coherent diffraction imaging.

    PubMed

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the phase problem can be solved in a fast and unambiguous manner. We demonstrate the reconstruction of various diffraction patterns of objects recorded with visible light as well as with low-energy electrons. Although we have demonstrated our HCDI method using laser light and low-energy electrons, it can also be applied to any other coherent radiation such as X-rays or high-energy electrons.

  5. Dose-dependent high-resolution electron ptychography

    NASA Astrophysics Data System (ADS)

    D'Alfonso, A. J.; Allen, L. J.; Sawada, H.; Kirkland, A. I.

    2016-02-01

    Recent reports of electron ptychography at atomic resolution have ushered in a new era of coherent diffractive imaging in the context of electron microscopy. We report and discuss electron ptychography under variable electron dose conditions, exploring the prospects of an approach which has considerable potential for imaging where low dose is needed.

  6. Two-dimensional collagen-graphene as colloidal templates for biocompatible inorganic nanomaterial synthesis

    PubMed Central

    Kumari, Divya; Sheikh, Lubna; Bhattacharya, Soumya; Webster, Thomas J; Nayar, Suprabha

    2017-01-01

    In this study, natural graphite was first converted to collagen-graphene composites and then used as templates for the synthesis of nanoparticles of silver, iron oxide, and hydroxyapatite. X-ray diffraction did not show any diffraction peaks of graphene in the composites after inorganic nucleation, compared to the naked composite which showed (002) and (004) peaks. Scanning electron micrographs showed lateral gluing/docking of these composites, possibly driven by an electrostatic attraction between the positive layers of one stack and negative layers of another, which became distorted after inorganic nucleation. Docking resulted in single layer-like characteristics in certain places, as seen under transmission electron microscopy, but sp2/sp3 ratios from Raman analysis inferred three-layer composite formation. Strain-induced folding of these layers into uniform clusters at the point of critical nucleation, revealed beautiful microstructures under scanning electron microscopy. Lastly, cell viability studies using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed the highest cell viability for the collagen-graphene-hydroxyapatite composites. In this manner, this study provided – to the field of nanomedicine – a new process for the synthesis of several nanoparticles (with low toxicity) of high interest for numerous medical applications. PMID:28553102

  7. Two-dimensional collagen-graphene as colloidal templates for biocompatible inorganic nanomaterial synthesis.

    PubMed

    Kumari, Divya; Sheikh, Lubna; Bhattacharya, Soumya; Webster, Thomas J; Nayar, Suprabha

    2017-01-01

    In this study, natural graphite was first converted to collagen-graphene composites and then used as templates for the synthesis of nanoparticles of silver, iron oxide, and hydroxyapatite. X-ray diffraction did not show any diffraction peaks of graphene in the composites after inorganic nucleation, compared to the naked composite which showed (002) and (004) peaks. Scanning electron micrographs showed lateral gluing/docking of these composites, possibly driven by an electrostatic attraction between the positive layers of one stack and negative layers of another, which became distorted after inorganic nucleation. Docking resulted in single layer-like characteristics in certain places, as seen under transmission electron microscopy, but sp 2 /sp 3 ratios from Raman analysis inferred three-layer composite formation. Strain-induced folding of these layers into uniform clusters at the point of critical nucleation, revealed beautiful microstructures under scanning electron microscopy. Lastly, cell viability studies using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed the highest cell viability for the collagen-graphene-hydroxyapatite composites. In this manner, this study provided - to the field of nanomedicine - a new process for the synthesis of several nanoparticles (with low toxicity) of high interest for numerous medical applications.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghamarian, I.; Samani, P.; Rohrer, G. S.

    Grain boundary engineering and other fundamental materials science problems (e.g., phase transformations and physical properties) require an improvement in the understanding of the type and population of grain boundaries in a given system – yet, databases are limited in number and spare in detail, including for hcp crystals such as zirconium. One way to rapidly obtain databases to analyze is to use small-grained materials and high spatial resolution orientation microscopy techniques, such as ASTAR™/precession electron diffraction. To demonstrate this, a study of grain boundary character distributions was conducted for α-zirconium deposited at room temperature on fused silica substrates using physicalmore » vapor deposition. The orientation maps of the nanocrystalline thin films were acquired by the ASTARα/precession electron diffraction technique, a new transmission electron microscope based orientation microscopy method. The reconstructed grain boundaries were classified as pure tilt, pure twist, 180°-twist and 180°-tilt grain boundaries based on the distribution of grain boundary planes with respect to the angle/axis of misorientation associated with grain boundaries. The results of the current study were compared to the results of a similar study on α-titanium and the molecular dynamics results of grain boundary energy for α-titanium.« less

  9. A general way for quantitative magnetic measurement by transmitted electrons

    NASA Astrophysics Data System (ADS)

    Song, Dongsheng; Li, Gen; Cai, Jianwang; Zhu, Jing

    2016-01-01

    EMCD (electron magnetic circular dichroism) technique opens a new door to explore magnetic properties by transmitted electrons. The recently developed site-specific EMCD technique makes it possible to obtain rich magnetic information from the Fe atoms sited at nonequivalent crystallographic planes in NiFe2O4, however it is based on a critical demand for the crystallographic structure of the testing sample. Here, we have further improved and tested the method for quantitative site-specific magnetic measurement applicable for more complex crystallographic structure by using the effective dynamical diffraction effects (general routine for selecting proper diffraction conditions, making use of the asymmetry of dynamical diffraction for design of experimental geometry and quantitative measurement, etc), and taken yttrium iron garnet (Y3Fe5O12, YIG) with more complex crystallographic structure as an example to demonstrate its applicability. As a result, the intrinsic magnetic circular dichroism signals, spin and orbital magnetic moment of iron with site-specific are quantitatively determined. The method will further promote the development of quantitative magnetic measurement with high spatial resolution by transmitted electrons.

  10. Harnessing AIA Diffraction Patterns to Determine Flare Footpoint Temperatures

    NASA Astrophysics Data System (ADS)

    Bain, H. M.; Schwartz, R. A.; Torre, G.; Krucker, S.; Raftery, C. L.

    2014-12-01

    In the "Standard Flare Model" energy from accelerated electrons is deposited at the footpoints of newly reconnected flare loops, heating the surrounding plasma. Understanding the relation between the multi-thermal nature of the footpoints and the energy flux from accelerated electrons is therefore fundamental to flare physics. Extreme ultraviolet (EUV) images of bright flare kernels, obtained from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory, are often saturated despite the implementation of automatic exposure control. These kernels produce diffraction patterns often seen in AIA images during the most energetic flares. We implement an automated image reconstruction procedure, which utilizes diffraction pattern artifacts, to de-saturate AIA images and reconstruct the flare brightness in saturated pixels. Applying this technique to recover the footpoint brightness in each of the AIA EUV passbands, we investigate the footpoint temperature distribution. Using observations from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we will characterize the footpoint accelerated electron distribution of the flare. By combining these techniques, we investigate the relation between the nonthermal electron energy flux and the temperature response of the flare footpoints.

  11. The use of castor oil and ricinoleic acid in lead chalcogenide nanocrystal synthesis

    NASA Astrophysics Data System (ADS)

    Kyobe, Joseph W. M.; Mubofu, Egid B.; Makame, Yahya M. M.; Mlowe, Sixberth; Revaprasadu, Neerish

    2016-08-01

    A green solution-based thermolysis method for the synthesis of lead chalcogenide (PbE, E = S, Se, Te) nanocrystals in castor oil (CSTO) and its isolate ricinoleic acid (RA) is described. The blue shift observed from the optical spectra of CSTO and RA-capped PbE nanocrystals (NCs) confirmed the evidence of quantum confinement. The dimensions of PbE NCs obtained from NIR absorption spectra, transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were in good agreement. The particle sizes estimated were in the range of 20, 25, and 130 nm for castor oil-capped PbS, PbSe, and PbTe, respectively. Well-defined close to cubic-shaped particles were observed in the scanning electron microscopy (SEM) images of PbSe and PbTe nanocrystals. The high-resolution TEM and selective area electron diffraction (SAED) micrographs of the as-synthesized crystalline PbE NCs showed distinct lattice fringes with d-spacing distances corroborating with the standard values reported in literature.

  12. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Oluwaniyi, Omolara O.; Adegoke, Haleemat I.; Adesuji, Elijah T.; Alabi, Aderemi B.; Bodede, Sunday O.; Labulo, Ayomide H.; Oseghale, Charles O.

    2016-08-01

    Biosynthesizing of silver nanoparticles using microorganisms or various plant parts have proven more environmental friendly, cost-effective, energy saving and reproducible when compared to chemical and physical methods. This investigation demonstrated the plant-mediated synthesis of silver nanoparticles using the aqueous leaf extract of Thevetia peruviana. UV-Visible spectrophotometer was used to measure the surface plasmon resonance of the nanoparticles at 460 nm. Fourier Transform Infrared showed that the glycosidic -OH and carbonyl functional group present in extract were responsible for the reduction and stabilization of the silver nanoparticles. X ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Selected Area Electron Diffraction analyses were used to confirm the nature, morphology and shape of the nanoparticles. The silver nanoparticles are spherical in shape with average size of 18.1 nm. The synthesized silver nanoparticles showed activity against fungal pathogens and bacteria. The zone of inhibition observed in the antimicrobial study ranged between 10 and 20 mm.

  13. Reflection high energy electron diffraction study of nitrogen plasma interactions with a GaAs (100) surface

    NASA Astrophysics Data System (ADS)

    Hauenstein, R. J.; Collins, D. A.; Cai, X. P.; O'Steen, M. L.; McGill, T. C.

    1995-05-01

    Effect of a nitrogen electron-cyclotron-resonance (ECR) microwave plasma on near-surface composition, crystal structure, and morphology of the As-stabilized GaAs (100) surface is investigated with the use of digitally image-processed in situ reflection high energy electron diffraction. Nitridation is performed on molecular beam epitaxially (MBE) grown GaAs surfaces near 600 °C under typical conditions for ECR microwave plasma-assisted MBE growth of GaN films on GaAs. Brief plasma exposures (≊3-5 s) are shown to result in a specular, coherently strained, relatively stable, GaN film approximately one monolayer in thickness, which can be commensurately overgrown with GaAs while longer exposures (up to 1 min) result in incommensurate zincblende epitaxial GaN island structures. Specular and nonspecular film formations are explained in terms of N-for-As surface and subsurface anion exchange reactions, respectively. Commensurate growth of ultrathin buried GaN layers in GaAs is achieved.

  14. Digital diffractive optics: Have diffractive optics entered mainstream industry yet?

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Hejmadi, Vic

    2010-05-01

    When a new technology is integrated into industry commodity products and consumer electronic devices, and sold worldwide in retail stores, it is usually understood that this technology has then entered the realm of mainstream technology and therefore mainstream industry. Such a leap however does not come cheap, as it has a double edge sword effect: first it becomes democratized and thus massively developed by numerous companies for various applications, but also it becomes a commodity, and thus gets under tremendous pressure to cut down its production and integration costs while not sacrificing to performance. We will show, based on numerous examples extracted from recent industry history, that the field of Diffractive Optics is about to undergo such a major transformation. Such a move has many impacts on all facets of digital diffractive optics technology, from the optical design houses to the micro-optics foundries (for both mastering and volume replication), to the final product integrators or contract manufacturers. The main causes of such a transformation are, as they have been for many other technologies in industry, successive technological bubbles which have carried and lifted up diffractive optics technology within the last decades. These various technological bubbles have been triggered either by real industry needs or by virtual investment hype. Both of these causes will be discussed in the paper. The adjective ""digital"" in "digital diffractive optics" does not refer only, as it is done in digital electronics, to the digital functionality of the element (digital signal processing), but rather to the digital way they are designed (by a digital computer) and fabricated (as wafer level optics using digital masking techniques). However, we can still trace a very strong similarity between the emergence of micro-electronics from analog electronics half a century ago, and the emergence of digital optics from conventional optics today.

  15. The possibility of using platinum foils with a rippled surface as diffraction gratings

    NASA Astrophysics Data System (ADS)

    Korsukov, V. E.; Ankudinov, A. V.; Butenko, P. N.; Knyazev, S. A.; Korsukova, M. M.; Obidov, B. A.; Shcherbakov, I. P.

    2014-09-01

    The atomic structure and surface relief of thin cold-rolled platinum foils upon recrystallization annealing and loading under ultrahigh vacuum conditions have been studied by low energy electron diffraction (LEED), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). The surface of samples upon high-temperature annealing and subsequent uniaxial extension of recrystallized Pt foils represents a fractal structure of unidirectional ripples on various spatial scales. The total fractal dimension of this surface is D GW = 2.3, while the fractal dimensions along and across ripples are D ‖ ≈ 1 and D ⊥ ≈ 1.3, respectively. The optical spectra of a halogen lamp and a PRK-2 mercury lamp were recorded using these rippled Pt foils as reflection diffraction gratings. It is shown that Pt foils with this surface relief can be used as reflection diffraction gratings for electromagnetic radiation in a broad spectral range.

  16. Anisotropic deformation of extruded magnesium alloy AZ31 under uniaxial compression: A study with simultaneous in situ synchrotron x-ray imaging and diffraction

    DOE PAGES

    Lu, L.; Huang, J. W.; Fan, D.; ...

    2016-08-29

    In situ synchrotron x-ray imaging and diffraction are used to investigate anisotropic deformation of an extruded magnesium alloy AZ31 under uniaxial compression along two different directions, with the loading axis (LA) either parallel or perpendicular to the extrusion direction (ED), referred to as LA∥ED and LAED, respectively. Multiscale measurements including stress–strain curves (macroscale), x-ray digital image correlation (mesoscale), and diffraction (microscale) are obtained simultaneously. Electron backscatter diffraction is performed on samples collected at various strains to characterize deformation twins. The rapid increase in strain hardening rate for the LA∥ED loading is attributed to marked {101¯2} extension twinning and subsequent homogenizationmore » of deformation, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate.« less

  17. Valence fluctuating compound α-YbAlB4 studied by 174Yb Mössbauer spectroscopy and X-ray diffraction using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Oura, Momoko; Ikeda, Shugo; Masuda, Ryo; Kobayashi, Yasuhiro; Seto, Makoto; Yoda, Yoshitaka; Hirao, Naohisa; Kawaguchi, Saori I.; Ohishi, Yasuo; Suzuki, Shintaro; Kuga, Kentaro; Nakatsuji, Satoru; Kobayashi, Hisao

    2018-05-01

    The structural properties and the Yb 4 f electronic state of the valence fluctuating α-YbAlB4 have been investigated by powder X-ray diffraction under pressure and 174Yb Mössbauer spectroscopy with magnetic fields at low temperature, respectively, using synchrotron radiation. Powder X-ray diffraction patterns showed that the crystal structure does not change up to p ∼ 18 GPa at 8 K and the volume decreases smoothly. However, the pressure dependence of the difference in the structure factor between the (060) and (061) diffraction lines changes at ∼ 3.4 GPa, indicating the change of atomic coordination parameters. The 174Yb Mössbauer spectroscopy measurements at 2 K with 10 and 50 kOe suggest that the electrical quadrupole interaction changes by applied magnetic fields.

  18. Influence of gamma ray irradiation on stoichiometry of hydrothermally synthesized bismuth telluride nanoparticles

    NASA Astrophysics Data System (ADS)

    Abishek, N. S.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth telluride (Bi2Te3) nanoparticles were synthesized by the hydrothermal method at 200 °C for 24 h. The synthesized Bi2Te3 nanoparticles were irradiated with gamma rays at doses of 50 kGy and 100 kGy. The structural characterization of the pre-irradiated and post-irradiated samples was carried out by X-ray diffraction technique and was found to have rhombohedral phase having R3 ¯m (166) space group. The X-ray diffraction peaks were found to shift towards lower diffraction angle with gamma ray irradiation. The morphologies and compositions of the grown Bi2Te3 nanoparticles were studied using Field Emission Scanning Electron Microscope and X-ray energy dispersive analysis, respectively. The possible cause for the shift in the X-ray diffraction peaks with gamma ray irradiation has been discussed in the present work.

  19. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong

    2016-09-01

    High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the “diffract and destroy” approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems.

  20. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser

    PubMed Central

    Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong

    2016-01-01

    High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the “diffract and destroy” approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems. PMID:27659203

  1. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser.

    PubMed

    Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong

    2016-09-23

    High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the "diffract and destroy" approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems.

  2. Effect of process parameters on microstructure and mechanical properties of friction stir welded joints: A review

    NASA Astrophysics Data System (ADS)

    Wanare, S. P.; Kalyankar, V. D.

    2018-04-01

    Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.

  3. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokarski, Tomasz, E-mail: tokarski@agh.edu.pl

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis ofmore » very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.« less

  4. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    NASA Astrophysics Data System (ADS)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is highly conserved in these four fossil specimens. Finally, the results of this study indicate that bioapatite can be preserved in even the most ancient vertebrate specimens, further supporting the idea that fossilization is a preservational process. This work also underlines the importance of using appropriately selected characterization and analytical techniques for the study of fossil bone, especially from the perspective of spatial resolution and the scale of the bone structural features in question.

  5. Green synthesis of BiVO4 nanorods via aqueous extracts of Callistemon viminalis

    NASA Astrophysics Data System (ADS)

    Mohamed, H. E. A.; Sone, B. T.; Fuku, X. G.; Dhlamini, M. S.; Maaza, M.

    2018-05-01

    Nowadays, the development of efficient green chemistry methods for synthesis of metal oxides nanoparticles has become a major focus of researchers. These methods are being investigated in order to find an eco-friendly technique for production of well-characterized nanoparticles. In this contribution we report for the first time, the synthesis and structural characterization of n-type Bismuth vanadate (BiVO4) nanoparticles using aqueous extracts of Callistemon viminalis as a chelating agent. To ascertain the formation of BiVO4, X-Ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), Electron Dispersion X-ray Spectroscopy (EDS), Fourier Transform Infra-red Spectroscopy (FTIR), and Photoluminescence spectroscopy (PL) were carried out.

  6. Large-scale synthesis of monodisperse magnesium ferrite via an environmentally friendly molten salt route.

    PubMed

    Lou, Zhengsong; He, Minglong; Wang, Ruikun; Qin, Weiwei; Zhao, Dejian; Chen, Changle

    2014-02-17

    Sub-micrometer-sized magnesium ferrite spheres consisting of uniform small particles have been prepared using a facile, large-scale solid-state reaction employing a molten salt technique. Extensive structural characterization of the as-prepared samples has been performed using scanning electron microscope, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and X-ray diffraction. The yield of the magnesium ferrite sub-micrometer spheres is up to 90%, and these sub-micrometer spheres are made up of square and rectangular nanosheets. The magnetic properties of magnesium ferrite sub-micrometer spheres are investigated, and the magnetization saturation value is about 24.96 emu/g. Moreover, the possible growth mechanism is proposed based on the experimental results.

  7. Direct observation of anti-phase boundaries in heteroepitaxy of GaSb thin films grown on Si(001) by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Woo, S. Y.; Hosseini Vajargah, S.; Ghanad-Tavakoli, S.; Kleiman, R. N.; Botton, G. A.

    2012-10-01

    Unambiguous identification of anti-phase boundaries (APBs) in heteroepitaxial films of GaSb grown on Si has been so far elusive. In this work, we present conventional transmission electron microscopy (TEM) diffraction contrast imaging using superlattice reflections, in conjunction with convergent beam electron diffraction analysis, to determine a change in polarity across APBs in order to confirm the presence of anti-phase disorder. In-depth analysis of anti-phase disorder is further supported with atomic resolution high-angle annular dark-field scanning transmission electron microscopy. The nature of APBs in GaSb is further elucidated by a comparison to previous results for GaAs epilayers grown on Si.

  8. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The ultrafast laser excitation of matters leads to non-equilibrium states with complex solid-liquid phase transition dynamics. We used electron diffraction at mega-electronvolt energies to visualize the ultrafast melting of gold on the atomic scale length. For energy densities approaching the irreversible melting regime, we first observed heterogeneous melting on time scales of 100 ps to 1000 ps, transitioning to homogeneous melting that occurs catastrophically within 10-20 ps at higher energy densities. We showed evidence for the heterogeneous coexistence of solid and liquid. We determined the ion and electron temperature evolution and found superheated conditions. Our results constrain the electron-ion couplingmore » rate, determine the Debye temperature and reveal the melting sensitivity to nucleation seeds.« less

  9. Crystallization of TiO2 Nanotubes by In Situ Heating TEM

    PubMed Central

    Casu, Alberto; Lamberti, Andrea

    2018-01-01

    The thermally-induced crystallization of anodically grown TiO2 amorphous nanotubes has been studied so far under ambient pressure conditions by techniques such as differential scanning calorimetry and in situ X-ray diffraction, then looking at the overall response of several thousands of nanotubes in a carpet arrangement. Here we report a study of this phenomenon based on an in situ transmission electron microscopy approach that uses a twofold strategy. First, a group of some tens of TiO2 amorphous nanotubes was heated looking at their electron diffraction pattern change versus temperature, in order to determine both the initial temperature of crystallization and the corresponding crystalline phases. Second, the experiment was repeated on groups of few nanotubes, imaging their structural evolution in the direct space by spherical aberration-corrected high resolution transmission electron microscopy. These studies showed that, differently from what happens under ambient pressure conditions, under the microscope’s high vacuum (p < 10−5 Pa) the crystallization of TiO2 amorphous nanotubes starts from local small seeds of rutile and brookite, which then grow up with the increasing temperature. Besides, the crystallization started at different temperatures, namely 450 and 380 °C, when the in situ heating was performed irradiating the sample with electron beam energy of 120 or 300 keV, respectively. This difference is due to atomic knock-on effects induced by the electron beam with diverse energy. PMID:29342894

  10. Ultrafast structural and electronic dynamics of the metallic phase in a layered manganite

    PubMed Central

    Piazza, L.; Ma, C.; Yang, H. X.; Mann, A.; Zhu, Y.; Li, J. Q.; Carbone, F.

    2013-01-01

    The transition between different states in manganites can be driven by various external stimuli. Controlling these transitions with light opens the possibility to investigate the microscopic path through which they evolve. We performed femtosecond (fs) transmission electron microscopy on a bi-layered manganite to study its response to ultrafast photoexcitation. We show that a photoinduced temperature jump launches a pressure wave that provokes coherent oscillations of the lattice parameters, detected via ultrafast electron diffraction. Their impact on the electronic structure are monitored via ultrafast electron energy loss spectroscopy, revealing the dynamics of the different orbitals in response to specific structural distortions. PMID:26913564

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.L.; Chen, P.Y.; Tsai, Y.T.

    The crystallography of lenticular martensite, which formed in coarse austenite grains (size about 80 μm) after subzero treatment at − 196 °C (liquid nitrogen) for different holding times, was investigated using electron backscatter diffraction (EBSD). For the sample treated with 15 min of isothermal holding, more than 50 martensite plates (with a thickness of larger than 1 μm) that formed within a coarse austenite grain were employed to obtain the pole figures. The pole figures clearly indicated that the individual plate of lenticular martensite approximately adopted the Kurdjumov–Sachs (K–S) orientation relationship with respect to the austenite matrix. For the samplemore » treated with 30 s of isothermal holding, a few martensite plates that formed in variant pairings in a coarse austenite grain were analyzed. The results showed that zigzag couplings (including spear couplings), the major product of plate martensite, had an absolute dominance of a specific variant pair (V1/V17). The orientation gradient within a lenticular martensite plate was also measured using convergent beam electron diffraction (CBED). The evidence strongly suggests that the spread in diffracted intensity within pole figures is related to the misorientation gradient within the lenticular martensite plate. - Highlights: • The orientation relationship between lenticular martensite and austenite was investigated by pole figures via Electron Backscatter Diffraction (EBSD). • The initial stage of lenticular martensite formation was investigated, excluding interference from hard impingement. • In addition to EBSD, convergent beam electron diffraction (CBED) was used to measure the misorientation angle from the midrib to the untwinned region in lenticular martensite plate. • Zigzag couplings (including spear couplings), the major product of plate martensite, had an absolute dominance of a specific variant pair (V1/V17).« less

  12. Investigation of Synthetic Mg(1.3)V(1.7)O4 Spinel with MgO Inclusions: Case Study of a Spinel with an Apparently occupied Interstitial Site

    NASA Technical Reports Server (NTRS)

    Uchida, Hinako; Righter, Kevin; Lavina, Barbara; Nowell, Matthew M.; Wright, Stuart I.; Downs, Robert T.; Yang, Hexiong

    2007-01-01

    A magnesium vanadate spinel crystal, ideally MgV2O4, synthesized at 1 bar, 1200 C and equilibrated under FMQ + 1.3 log f(sub o2) condition, was investigated using single-crystal X-ray diffraction, electron microprobe, and electron backscatter (EBSD). The initial X-ray structure refinements gave tetrahedral and octahedral site occupancies, along with the presence of 0.053 apfu Mg at an interstitial octahedral site . Back-scattered electron (BSE) images and electron microprobe analyses revealed the existence of an Mg-rich phase in the spinel matrix, which was too small (less than or equal to 3microns) for an accurate chemical determination. The EBSD analysis combined with X-ray energy dispersive spectroscop[y (XEDS) suggested that the Mg-rich inclusions are periclase oriented coherently with the spinel matrix. The final structure refinements were optimized by subtracting the X-ray intensity contributions (approx. 9%) of periclase reflections, which eliminated the interstitial Mg. This study provides insight into possible origins of refined interstitial cations reported in the the literature for spinel, and points to the difficulty of using only X-ray diffraction data to distinguish a spinel with interstitial cations from one with coherently oriented MgO inclusions.

  13. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    DOE PAGES

    Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan; ...

    2017-09-01

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.

  14. Micro-emulsion-assisted synthesis of ZnS nanospheres and their photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yao; He Xiaoyan; Cao Minhua

    2008-11-03

    ZnS nanospheres with rough surface were synthesized by using a micro-emulsion-assisted solvothemal process. The molar ratio of [water]/[surfactant] played an important role in controlling the size of the ZnS nanospheres. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field emission-scanning electron microscope (FE-SEM), and selected area electron diffraction (SAED) were used for the characterization of the resulting ZnS nanospheres. A possible formation mechanism was proposed. These ZnS nanospheres exhibited a good photocatalytic activity for degradation of an aqueous p-nitrophenol solution and the total organic carbon (TOC) of the degradation product has also been investigated.

  15. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortmann-Grote, Carsten; Buzmakov, Alexey; Jurek, Zoltan

    Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. In conclusion, it is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.

  16. Surface Diagnostics in Tribology Technology and Advanced Coatings Development

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This paper discusses the methodologies used for surface property measurement of thin films and coatings, lubricants, and materials in the field of tribology. Surface diagnostic techniques include scanning electron microscopy, transmission electron microscopy, atomic force microscopy, stylus profilometry, x-ray diffraction, electron diffraction, Raman spectroscopy, Rutherford backscattering, elastic recoil spectroscopy, and tribology examination. Each diagnostic technique provides specific measurement results in its own unique way. In due course it should be possible to coordinate the different pieces of information provided by these diagnostic techniques into a coherent self-consistent description of the surface properties. Examples are given on the nature and character of thin diamond films.

  17. Comparison of dislocation content measured with transmission electron microscopy and micro-Laue diffraction based streak analysis

    DOE PAGES

    Zhang, C.; Balachandran, S.; Eisenlohr, P.; ...

    2017-10-04

    The subsurface dislocation content in a Ti-5Al-2.5Sn (wt%) uniaxial tension sample deformed at ambient temperature was characterized by peak streak analysis of micro-Laue diffraction patterns collected non-destructively by differential aperture X-raymicroscopy, and with focused ion beam transmission electron microscopy of material in the same volume. This comparison reveals that micro-Laue diffraction streak analysis based on an edge dislocation assumption can accurately identify the dominant dislocation slip system history (Burgers vector and plane observed by TEM), despite the fact that dislocations have predominantly screw character. As a result, other dislocations identified by TEM were not convincingly discernible from the peak streakmore » analysis.« less

  18. Comparison of dislocation content measured with transmission electron microscopy and micro-Laue diffraction based streak analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C.; Balachandran, S.; Eisenlohr, P.

    The subsurface dislocation content in a Ti-5Al-2.5Sn (wt%) uniaxial tension sample deformed at ambient temperature was characterized by peak streak analysis of micro-Laue diffraction patterns collected non-destructively by differential aperture X-raymicroscopy, and with focused ion beam transmission electron microscopy of material in the same volume. This comparison reveals that micro-Laue diffraction streak analysis based on an edge dislocation assumption can accurately identify the dominant dislocation slip system history (Burgers vector and plane observed by TEM), despite the fact that dislocations have predominantly screw character. As a result, other dislocations identified by TEM were not convincingly discernible from the peak streakmore » analysis.« less

  19. Elucidating the Wavelength Dependence of Phonon Scattering in Nanoparticle-Matrix Composites using Phonon Spectroscopy

    DTIC Science & Technology

    2016-07-11

    composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically   Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3

  20. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles. Measurements were performed on the development of coherent scatter imaging to provide tissue type information in mammography. Atomic coordinates from x-ray diffraction data were used to study the nuclear quadrupole interactions and nature of molecular binding in DNA/RNA nucleobases and molecular solid BF3 systems.

  1. Ultrafast large-amplitude relocation of electronic charge in ionic crystals

    PubMed Central

    Zamponi, Flavio; Rothhardt, Philip; Stingl, Johannes; Woerner, Michael; Elsaesser, Thomas

    2012-01-01

    The interplay of vibrational motion and electronic charge relocation in an ionic hydrogen-bonded crystal is mapped by X-ray powder diffraction with a 100 fs time resolution. Photoexcitation of the prototype material KH2PO4 induces coherent low-frequency motions of the PO4 tetrahedra in the electronically excited state of the crystal while the average atomic positions remain unchanged. Time-dependent maps of electron density derived from the diffraction data demonstrate an oscillatory relocation of electronic charge with a spatial amplitude two orders of magnitude larger than the underlying vibrational lattice motions. Coherent longitudinal optical and tranverse optical phonon motions that dephase on a time scale of several picoseconds, drive the charge relocation, similar to a soft (transverse optical) mode driven phase transition between the ferro- and paraelectric phase of KH2PO4. PMID:22431621

  2. New modes of electron microscopy for materials science enabled by fast direct electron detectors

    NASA Astrophysics Data System (ADS)

    Minor, Andrew

    There is an ongoing revolution in the development of electron detector technology that has enabled modes of electron microscopy imaging that had only before been theorized. The age of electron microscopy as a tool for imaging is quickly giving way to a new frontier of multidimensional datasets to be mined. These improvements in electron detection have enabled cryo-electron microscopy to resolve the three-dimensional structures of non-crystalized proteins, revolutionizing structural biology. In the physical sciences direct electron detectors has enabled four-dimensional reciprocal space maps of materials at atomic resolution, providing all the structural information about nanoscale materials in one experiment. This talk will highlight the impact of direct electron detectors for materials science, including a new method of scanning nanobeam diffraction. With faster detectors we can take a series of 2D diffraction patterns at each position in a 2D STEM raster scan resulting in a four-dimensional data set. For thin film analysis, direct electron detectors hold the potential to enable strain, polarization, composition and electrical field mapping over relatively large fields of view, all from a single experiment.

  3. Oriented Nucleation of both Ge-Fresnoite and Benitoite/BaGe4O9 during the Surface Crystallisation of Glass Studied by Electron Backscatter Diffraction

    PubMed Central

    Wisniewski, Wolfgang; Patschger, Marek; Murdzheva, Steliana; Thieme, Christian; Rüssel, Christian

    2016-01-01

    Two glasses of the compositions 2 BaO - TiO2 - 2.75 GeO2 and 2 BaO – TiO2 –3.67 GeO2 (also known as BTG55) are annealed at temperatures from 680 to 970 °C to induce surface crystallization. The resulting samples are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD). Ge-Fresnoite (Ba2TiGe2O8, BTG) is observed at the immediate surface of all samples and oriented nucleation is proven in both compositions. After a very fast kinetic selection, the crystal growth of BTG into the bulk occurs via highly oriented dendrites where the c-axes are oriented perpendicular to the surface. The growth of this oriented layer is finally blocked by dendritc BTG originating from bulk nucleation. The secondary phases BaTiGe3O9 (benitoite) and BaGe4O9 are also identified near the surface by XRD and localized by EBSD which additionally indicates orientation preferences for these phases. This behaviour is in contrast with previous reports from the Ba2TiSi2O8 as well as the Sr2TiSi2O8 systems. PMID:26853738

  4. Real time measurements of surface growth evolution in magnetron sputtered single crystal Mo/V superlattices using in situ reflection high energy electron diffraction analysis

    NASA Astrophysics Data System (ADS)

    Svedberg, E. B.; Birch, J.; Edvardsson, C. N. L.; Sundgren, J.-E.

    1999-07-01

    The use of video recording of reflection high energy electron diffraction (RHEED) patterns for assessing the dynamic evolution of the surface morphology and crystallinity during growth was evaluated. As an example, Mo/V(001) superlattices with varying layer thickness (with periods Λ of 2.5 to 8.9 nm and a constant Mo:V ratio of 1:1) were examined. During the deposition, changes from two- to three-dimensional growth were observed in situ. From prior transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies, it is known that this transition is associated with a critical thickness and concurrent roughening of the V layer. Video recording and subsequent image and data processing allowed the surface morphology to be continuously followed during growth. Post-growth analyses of the recorded data provided the evolution of surface lattice parameters and short range [1-2 monolayer (ML)] surface roughnesses with a time resolution of 200-400 ms (0.02-0.04 nm thickness resolution). During growth of Mo, a smoothening effect could be observed while the growth of V evidently increased the surface roughness from 1 to 2 ML. Furthermore, the onset of coherency strain relaxation of the topmost growing layers was observed to occur at 2.0-2.5 nm layer thicknesses for both materials, which is in qualitative agreement with theoretical predictions.

  5. Erratum to: Psammoma bodies in two types of human ovarian tumours: a mineralogical study

    NASA Astrophysics Data System (ADS)

    Meng, Fanlu; Wang, Changqiu; Li, Yan; Lu, Anhuai; Mei, Fang; Liu, Jianying; Du, Jingyun; Zhang, Yan

    2015-06-01

    Psammoma body (PB) is a common form of calcification in pathological diagnosis and closely relevant to tumours. This paper focuses on the mineralogical characteristics of PBs in ovarian serous cancer and teratoma by using polarization microscope (POM), environmental scanning electron microscope (ESEM), micro-Fourier transform infrared spectroscopy (micro-FT-IR), transmission electron microscope (TEM), micro-area synchrotron radiation X-ray powder diffraction (μ-SRXRD) and fluorescence (μ-SRXRF). Both the PBs in tissues and separated from eight typical cases were investigated. POM and ESEM observation revealed the inside-out growth pattern of PBs. μ-SRXRD and micro-FT-IR results demonstrated the dominant mineral phase of PBs in ovarian serous cancer and teratoma was AB-type carbonate hydroxyapatite (Ca10[(PO4)6-x-y(CO3)x(HPO4)y][(OH)2-u(CO3)u] with 0 ≤ x,y,u ≤ 2). As observed by ESEM and TEM, the layer-rich PBs in teratoma were up to 70 μm and mainly consisted of 5 nm-wide, 5-12 nm-long columnar crystals; the PBs in ovarian serous cancer with a maximum diameter of 35 μm were composed of slightly longer columnar crystals and granulates with 20-100 nm in diameter. The selected area electron diffraction patterns showed dispersed polycrystalline diffraction rings with arching behavior of (002) diffraction, indicating the aggregated nanocrystals grew in the preferred orientation of (002) face. The EDX and μ-SRXRF results together indicated the existence of Na, Mg, Zn and Sr in PBs. These detailed mineralogical characteristics may help uncover the nature of the pathological PBs in ovary.

  6. Psammoma bodies in two types of human ovarian tumours: a mineralogical study

    NASA Astrophysics Data System (ADS)

    Fanlu, Meng; Changqiu, Wang; Yan, Li; Anhuai, Lu; Fang, Mei; Jianying, Liu; Jingyun, Du; Yan, Zhang

    2015-06-01

    Psammoma body (PB) is a common form of calcification in pathological diagnosis and closely relevant to tumours. This paper focuses on the mineralogical characteristics of PBs in ovarian serous cancer and teratoma by using polarization microscope (POM), environmental scanning electron microscope (ESEM), micro-Fourier transform infrared spectroscopy (micro-FT-IR), transmission electron microscope (TEM), micro-area synchrotron radiation X-ray powder diffraction (μ-SRXRD) and fluorescence (μ-SRXRF). Both the PBs in tissues and separated from eight typical cases were investigated. POM and ESEM observation revealed the inside-out growth pattern of PBs. μ-SRXRD and micro-FT-IR results demonstrated the dominant mineral phase of PBs in ovarian serous cancer and teratoma was AB-type carbonate hydroxyapatite (Ca10[(PO4)6-x-y(CO3)x(HPO4 2-)y][(OH)2-u(CO3)u] with 0 ≤ x,y,u ≤ 2). As observed by ESEM and TEM, the layer-rich PBs in teratoma were up to 70 μm and mainly consisted of 5 nm-wide, 5-12 nm-long columnar crystals; the PBs in ovarian serous cancer with a maximum diameter of 35 μm were composed of slightly longer columnar crystals and granulates with 20-100 nm in diameter. The selected area electron diffraction patterns showed dispersed polycrystalline diffraction rings with arching behavior of (002) diffraction, indicating the aggregated nanocrystals grew in the preferred orientation of (002) face. The EDX and μ-SRXRF results together indicated the existence of Na, Mg, Zn and Sr in PBs. These detailed mineralogical characteristics may help uncover the nature of the pathological PBs in ovary.

  7. Zirconium and silver co-doped TiO2 nanoparticles as visible light catalyst for reduction of 4-nitrophenol, degradation of methyl orange and methylene blue

    NASA Astrophysics Data System (ADS)

    Naraginti, Saraschandra; Stephen, Finian Bernard; Radhakrishnan, Adhithya; Sivakumar, A.

    2015-01-01

    Catalytic activity of Zr and Ag co-doped TiO2 nanoparticles on the reduction of 4-nitrophenol, degradation of methylene blue and methyl orange was studied using sodium borohydride as reducing agent. The nanoparticles were characterized using X-ray diffraction, energy dispersive X-ray, high resolution transmission electron microscopy, selected area electron diffraction and UV-Vis spectroscopy. The rate of the reduction/degradation was found to increase with increasing amount of the photocatalyst which could be attributed to higher dispersity and small size of the nanoparticles. The catalytic activity of Zr and Ag co-doped TiO2 nanoparticles showed no significant difference even after recycling the catalyst four times indicating a promising potential for industrial application of the prepared photocatalyst.

  8. Structure and magnetic properties of mono- and bi-layer graphene films on ultraprecision figured 4H-SiC(0001) surfaces.

    PubMed

    Hattori, Azusa N; Okamoto, Takeshi; Sadakuni, Shun; Murata, Junji; Oi, Hideo; Arima, Kenta; Sano, Yasuhisa; Hattori, Ken; Daimon, Hiroshi; Endo, Katsuyoshi; Yamauchi, Kazuto

    2011-04-01

    Monolayer and bilayer graphene films with a few hundred nm domain size were grown on ultraprecision figured 4H-SiC(0001) on-axis and 8 degrees -off surfaces by annealing in ultra-high vacuum. Using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, reflection high-energy electron diffraction, low-energy electron diffraction (LEED), Raman spectroscopy, and scanning tunneling microscopy, we investigated the structure, number of graphene layers, and chemical bonding of the graphene surfaces. Moreover, the magnetic property of the monolayer graphene was studied using in-situ surface magneto-optic Kerr effect at 40 K. LEED spots intensity distribution and XPS spectra for monolayer and bilayer graphene films could become an obvious and accurate fingerprint for the determination of graphene film thickness on SiC surface.

  9. A Chemical Understanding of the Band Convergence in Thermoelectric CoSb 3 Skutterudites: Influence of Electron Population, Local Thermal Expansion, and Bonding Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanus, Riley; Guo, Xingyu; Tang, Yinglu

    2017-01-13

    N-Type skutterudites, such as Yb xCo 4Sb 12, have recently been shown to exhibit high valley degeneracy with possible band convergence, explaining the excellent thermoelectric efficiency of these materials. Using a combined theoretical and experimental approach involving temperature-dependent synchrotron diffraction, molecular orbital diagrams, and computational studies, the chemical nature of critical features in the band structure is highlighted. We identify how n-type doping on the filler site induces structural changes that are observed in both the diffraction data and computational results. Additionally, we show how chemical n-type doping slightly alters the electronic band structure, moving the high-valley degeneracy secondary conductionmore » band closer to the primary conduction band and thus inducing band convergence.« less

  10. Synthesis, characterization of (3E)-1-(6-chloro-2-methyl-4-phenyl quinolin-3-Yl)-3-aryl prop-2-en-1-ones through IR, NMR, single crystal X-ray diffraction and insights into their electronic structure using DFT calculations

    NASA Astrophysics Data System (ADS)

    Sarveswari, S.; Srikanth, A.; Arul Murugan, N.; Vijayakumar, V.; Jasinski, Jerry P.; Beauchesne, Hanna C.; Jarvis, Ethan E.

    2015-02-01

    3E-1-(6-Chloro-2-methyl-4-phenylquinolin-3-yl)-3-arylprop-2-en-1-ones were synthesized and characterized by FTIR, 1H NMR, 13C NMR, HSQC, DEPT-135. In addition the compound 3E-1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(2,5-dimethoxyphenyl)prop-2-en-1-one was subjected to the single crystal X-ray diffraction studies. Density functional theory calculations were carried out for this chalcone and its derivatives to investigate into their electronic structure, chemical reactivity, linear and non-linear optical properties. The structure predicted from DFT for chalcone is in good agreement with the structure from XRD measurement.

  11. Synthesis and characterization of hollow spherical copper phosphide (Cu 3P) nanopowders

    NASA Astrophysics Data System (ADS)

    Liu, Shuling; Qian, Yitai; Xu, Liqiang

    2009-03-01

    In this paper, hollow spherical Cu 3P nanopowders were synthesized by using copper sulfate pentahydrate (CuSO 4ṡ5H 2O) and yellow phosphorus in a mixed solvent of glycol, ethanol and water at 140-180 ∘C for 12 h. X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), electron diffraction pattern (ED) and transmission electronic microscopy (TEM) studies show that the as-synthesized nanocrystal is pure hexagonal phase Cu 3P with a hollow spherical morphology. Based on the TEM observations, a possible aggregation growth mechanism was proposed for the formation of Cu 3P hollow structures. Meanwhile, the effects of some key factors such as solvents, reaction temperature and reaction time on the final formation of the Cu 3P hollow structure were also discussed.

  12. Electronic interaction in an outer-sphere mixed-valence double salt: a polarized neutron diffraction study of K(3)(MnO(4))(2).

    PubMed

    Cannon, Roderick D; Jayasooriya, Upali A; Tilford, Claire; Anson, Christopher E; Sowrey, Frank E; Rosseinsky, David R; Stride, John A; Tasset, Francis; Ressouche, Eric; White, Ross P; Ballou, Rafik

    2004-11-01

    The mixed-valence double salt K(3)(MnO(4))(2) crystallizes in space group P2(1)/m with Z = 2. The manganese centers Mn1 and Mn2 constitute discrete "permanganate", [Mn(VII)O(4)](-), and "manganate", [Mn(VI)O(4)](2-), ions, respectively. There is a spin-ordering transition to an antiferromagnetic state at ca. T = 5 K. The spin-density distribution in the paramagnetic phase at T = 10 K has been determined by polarized neutron diffraction, confirming that unpaired spin is largely confined to the nominal manganate ion Mn2. Through use of both Fourier refinement and maximum entropy methods, the spin on Mn1 is estimated as 1.75 +/- 1% of one unpaired electron with an upper limit of 2.5%.

  13. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    NASA Technical Reports Server (NTRS)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  14. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging.

    PubMed

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-11-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  15. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging

    PubMed Central

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-01-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 106 noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 106 diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode. PMID:24121336

  16. Photoelectron and Auger electron diffraction studies of a sulfur-terminated GaAs(001)-(2×6) surface

    NASA Astrophysics Data System (ADS)

    Shimoda, M.; Tsukamoto, S.; Koguchi, N.

    1998-01-01

    Core-level X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) have been applied to investigate the sulfur-terminated GaAs(001)-(2×6) surface. No forward scattering peaks were found in the XPD pattern of S 2s emission, indicating that adsorbed S atoms form a single layer on the GaAs substrate. In accordance with the zincblende structure of GaAs, the AED patterns of Ga L 3M 45M 45 and As L 3M 45M 45 emission almost coincide with each other, if one of the emissions is rotated by 90° around the [001] direction. This fact suggests that the diffraction patterns mainly reflect the structure of the bulk GaAs crystal. In order to investigate the surface structure, AED patterns in large polar angles were analyzed with single scattering cluster (SSC) calculations. The best result was obtained with a model cluster where the S-S bond length was set at 0.28 nm, 30% shorter than the corresponding length of the ideal (1×1) structure, and the adsorption height was set at 0.12-0.13 nm, 10% shorter than the ideal interlayer distance of GaAs(001) planes. These values are in good agreement with the results of STM measurements. A modulation of the inter-dimer distance was also found, suggesting the existence of missing dimers.

  17. Synthesis and characterization of Ti-Si-C-N films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtansky, D.V.; Levashov, E.A.; Sheveiko, A.N.

    1999-09-01

    This study represents one of the first attempts to deposit multicomponent (more than three components) thin films by magnetron sputtering of multiphase composite targets (three phases or even more). Films of Ti-Si-C-N were synthesized through dc magnetron sputtering of xTiC + yTi{sub 3}SiC{sub 2} + zA composite targets (A was TiSi{sub 2}, SiC, or a mixture of these phases) in an argon atmosphere or in a gaseous mixture of argon and nitrogen. The as-deposited films were characterized using Auger electron spectroscopy, X-ray diffraction, transmission electron microscopy using selected area electron diffraction and high-resolution techniques, and microhardness. It was shown thatmore » the substrate temperature and the nitrogen concentration in the reactive gas had a strong influence on the structure and the composition of the as-deposited films. Polycrystalline grains contained a high density of dislocations and exhibited a curved appearance of the lattice fringes that is probably due to the presence of the long-range stress fields. The measurements of the lattice parameters using the selected area electron diffraction pattern (SA EDP) method indicated, with a high probability, that the polycrystalline grains consist of clusters of atoms with varying compositions. The grain boundaries in the nanocrystalline Ti-Si-C-N films had both ordered and disordered regions, although some regions close to the interface exhibited neither a fully crystalline nor a homogeneously amorphous structure. The contribution of compressive stress as determined by an increase in the fcc lattice parameter is also discussed.« less

  18. Diffraction of electrons at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ascolani, H.; Barrachina, R. O.; Guraya, M. M.; Zampieri, G.

    1992-08-01

    We present a theory of the elastic scattering of electrons from crystalline surfaces that contains both low-energy-electron-diffraction (LEED) effects at low energies and x-ray-photoelectron- and Auger-electron-diffraction (XPD/AED) effects at intermediate energies. The theory is based on a cluster-type approach to the scattering problem and includes temperature effects. The transition from one regime to the other may be explained as follows: At low energies all the scattered waves add coherently, and the intensity is dominated by LEED effects. At intermediate energies the thermal vibration of the atoms destroys the long-range coherency responsible for the LEED peaks, but affects little the interference of those waves that share parts of their paths inside the solid. Thus, the interference of these waves comes to dominate the intensity, giving rise to structures similar to those observed in XPD/AED experiments. We perform a calculation of the elastic reflection of electrons from Cu(001) that is in good agreement with the experiment in the range 200-1500 eV. At low energies the intensity is dominated by LEED peaks; at 400 eV LEED peaks and XPD/AED structures coexist; and above this energy the intensity is dominated by the latter. We analyze the contributions to the intensity at intermediate energies of the interferences in the incoming and outgoing parts of the electron path.

  19. Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets

    DOE PAGES

    Pullen, M. G.; Wolter, B.; Le, A. -T.; ...

    2016-06-22

    The ability to directly follow and time-resolve the rearrangement of the nuclei within molecules is a frontier of science that requires atomic spatial and few-femtosecond temporal resolutions. While laser-induced electron diffraction can meet these requirements, it was recently concluded that molecules with particular orbital symmetries (such as pg) cannot be imaged using purely backscattering electron wave packets without molecular alignment. Here, we demonstrate, in direct contradiction to these findings, that the orientation and shape of molecular orbitals presents no impediment for retrieving molecular structure with adequate sampling of the momentum transfer space. We overcome previous issues by showcasing retrieval ofmore » the structure of randomly oriented O 2 and C 2H 2 molecules, with π g and π u symmetries, respectively, and where their ionization probabilities do not maximize along their molecular axes. As a result, while this removes a serious bottleneck for laser-induced diffraction imaging, we find unexpectedly strong backscattering contributions from low-Z atoms.« less

  20. Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses

    DOE PAGES

    Yang, Jie; Guehr, Markus; Vecchione, Theodore; ...

    2016-04-05

    Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angström spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 Å) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule.more » In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Lastly, our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.« less

Top