Sample records for electron donor-acceptor interactions

  1. 2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCusker, James

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  2. Solvent as electron donor: Donor/acceptor electronic coupling is a dynamical variable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castner, E.W. Jr.; Kennedy, D.; Cave, R.J.

    2000-04-06

    The authors combine analysis of measurements by femtosecond optical spectroscopy, computer simulations, and the generalized Mulliken-Hush (GMH) theory in the study of electron-transfer reactions and electron donor-acceptor interactions. The study focus is on ultrafast photoinduced electron-transfer reactions from aromatic amine solvent donors to excited-state acceptors. The experimental results from femtosecond dynamical measurements fall into three categories: six coumarin acceptors reductively quenched by N,N-dimethylaniline (DMA), eight electron-donating amine solvents reductively quenching coumarin 152 (7-(dimethylamino)-4-(trifluoromethyl)-coumarin), and reductive quenching dynamics of two coumarins by DMA as a function of dilution in the nonreactive solvents toluene and chlorobenzene. Applying a combination of molecular dynamicsmore » trajectories, semiempirical quantum mechanical calculations (of the relevant adiabatic electronic states), and GMH theory to the C152/DMA photoreaction, the authors calculate the electron donor/acceptor interaction parameter H{sub DA} at various time frames, H{sub DA} is strongly modulated by both inner-sphere and outer-sphere nuclear dynamics, leading us to conclude that H{sub DA} must be considered as a dynamical variable.« less

  3. Nanographenes as electron-deficient cores of donor-acceptor systems.

    PubMed

    Liu, Yu-Min; Hou, Hao; Zhou, Yan-Zhen; Zhao, Xin-Jing; Tang, Chun; Tan, Yuan-Zhi; Müllen, Klaus

    2018-05-15

    Conjugation of nanographenes (NGs) with electro-active molecules can establish donor-acceptor π-systems in which the former generally serve as the electron-donating moieties due to their electronic-rich nature. In contrast, here we report a series of reversed donor-acceptor structures are obtained by C-N coupling of electron-deficient perchlorinated NGs with electron-rich anilines. Selective amination at the vertexes of the NGs is unambiguously shown through X-ray crystallography. By varying the donating ability of the anilino groups, the optical and assembly properties of donor-acceptor NGs can be finely modulated. The electron-deficient concave core of the resulting conjugates can host electron-rich guest molecules by intermolecular donor-acceptor interactions and gives rise to charge-transfer supramolecular architectures.

  4. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    PubMed

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  5. Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions.

    PubMed

    Beaujuge, Pierre M; Amb, Chad M; Reynolds, John R

    2010-11-16

    With the development of light-harvesting organic materials for solar cell applications and molecular systems with fine-tuned colors for nonemissive electrochromic devices (e.g., smart windows, e-papers), a number of technical challenges remain to be overcome. Over the years, the concept of "spectral engineering" (tailoring the complex interplay between molecular physics and the various optical phenomena occurring across the electromagnetic spectrum) has become increasingly relevant in the field of π-conjugated organic polymers. Within the spectral engineering toolbox, the "donor-acceptor" approach uses alternating electron-rich and electron-deficient moieties along a π-conjugated backbone. This approach has proved especially valuable in the synthesis of dual-band and broadly absorbing chromophores with useful photovoltaic and electrochromic properties. In this Account, we highlight and provide insight into a present controversy surrounding the origin of the dual band of absorption sometimes encountered in semiconducting polymers structured using the "donor-acceptor" approach. Based on empirical evidence, we provide some schematic representations to describe the possible mechanisms governing the evolution of the two-band spectral absorption observed on varying the relative composition of electron-rich and electron-deficient substituents along the π-conjugated backbone. In parallel, we draw attention to the choice of the method employed to estimate and compare the absorption coefficients of polymer chromophores exhibiting distinct repeat unit lengths, and containing various extents of solubilizing side-chains along their backbone. Finally, we discuss the common assumption that "donor-acceptor" systems should have systematically lower absorption coefficients than their "all-donor" counterparts. The proposed models point toward important theoretical parameters which could be further explored at the macromolecular level to help researchers take full advantage of the

  6. Single molecule-level study of donor-acceptor interactions and nanoscale environment in blends

    NASA Astrophysics Data System (ADS)

    Quist, Nicole; Grollman, Rebecca; Rath, Jeremy; Robertson, Alex; Haley, Michael; Anthony, John; Ostroverkhova, Oksana

    2017-02-01

    Organic semiconductors have attracted considerable attention due to their applications in low-cost (opto)electronic devices. The most successful organic materials for applications that rely on charge carrier generation, such as solar cells, utilize blends of several types of molecules. In blends, the local environment strongly influences exciton and charge carrier dynamics. However, relationship between nanoscale features and photophysics is difficult to establish due to the lack of necessary spatial resolution. We use functionalized fluorinated pentacene (Pn) molecule as single molecule probes of intermolecular interactions and of the nanoscale environment in blends containing donor and acceptor molecules. Single Pn donor (D) molecules were imaged in PMMA in the presence of acceptor (A) molecules using wide-field fluorescence microscopy. Two sample configurations were realized: (i) a fixed concentration of Pn donor molecules, with increasing concentration of acceptor molecules (functionalized indenflouorene or PCBM) and (ii) a fixed concentration of acceptor molecules with an increased concentration of the Pn donor. The D-A energy transfer and changes in the donor emission due to those in the acceptor- modified polymer morphology were quantified. The increase in the acceptor concentration was accompanied by enhanced photobleaching and blinking of the Pn donor molecules. To better understand the underlying physics of these processes, we modeled photoexcited electron dynamics using Monte Carlo simulations. The simulated blinking dynamics were then compared to our experimental data, and the changes in the transition rates were related to the changes in the nanoscale environment. Our study provides insight into evolution of nanoscale environment during the formation of bulk heterojunctions.

  7. Electron-Transfer Dynamics for a Donor-Bridge-Acceptor Complex in Ionic Liquids.

    PubMed

    DeVine, Jessalyn A; Labib, Marena; Harries, Megan E; Rached, Rouba Abdel Malak; Issa, Joseph; Wishart, James F; Castner, Edward W

    2015-08-27

    Intramolecular photoinduced electron transfer from an N,N-dimethyl-p-phenylenediamine donor bridged by a diproline spacer to a coumarin 343 acceptor was studied using time-resolved fluorescence measurements in three ionic liquids and in acetonitrile. The three ionic liquids have the bis[(trifluoromethyl)sulfonyl]amide anion paired with the tributylmethylammonium, 1-butyl-1-methylpyrrolidinium, and 1-decyl-1-methylpyrrolidinium cations. The dynamics in the two-proline donor-bridge-acceptor complex are compared to those observed for the same donor and acceptor connected by a single proline bridge, studied previously by Lee et al. (J. Phys. Chem. C 2012, 116, 5197). The increased conformational freedom afforded by the second bridging proline resulted in multiple energetically accessible conformations. The multiple conformations have significant variations in donor-acceptor electronic coupling, leading to dynamics that include both adiabatic and nonadiabatic contributions. In common with the single-proline bridged complex, the intramolecular electron transfer in the two-proline system was found to be in the Marcus inverted regime.

  8. Understanding the Charge Transfer at the Interface of Electron Donors and Acceptors: TTF–TCNQ as an Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changwon; Atalla, Viktor; Smith, Sean

    Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less

  9. Understanding the Charge Transfer at the Interface of Electron Donors and Acceptors: TTF–TCNQ as an Example

    DOE PAGES

    Park, Changwon; Atalla, Viktor; Smith, Sean; ...

    2017-06-16

    Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less

  10. Ultrafast photoinduced charge transport in Pt(II) donor-acceptor assembly bearing naphthalimide electron acceptor and phenothiazine electron donor.

    PubMed

    Sazanovich, Igor V; Best, Jonathan; Scattergood, Paul A; Towrie, Michael; Tikhomirov, Sergei A; Bouganov, Oleg V; Meijer, Anthony J H M; Weinstein, Julia A

    2014-12-21

    Visible light-induced charge transfer dynamics were investigated in a novel transition metal triad acceptor-chromophore-donor, (NDI-phen)Pt(II)(-C≡C-Ph-CH2-PTZ)2 (1), designed for photoinduced charge separation using a combination of time-resolved infrared (TRIR) and femtosecond electronic transient absorption (TA) spectroscopy. In 1, the electron acceptor is 1,4,5,8-naphthalene diimide (NDI), and the electron donor is phenothiazine (PTZ), and [(phen)Pt(-C≡C-Ph-)], where phen is 1,10-phenanthroline, represents the chromophoric core. The first excited state observed in 1 is a (3)MLCT/LL'CT, with {Pt(II)-acetylide}-to-phen character. Following that, charge transfer from the phen-anion onto the NDI subunit to form NDI(-)-phen-[Pt-(C≡C)2](+)-PTZ2 occurs with a time constant of 2.3 ps. This transition is characterised by appearance of the prominent NDI-anion features in both TRIR and TA spectra. The final step of the charge separation in 1 proceeds with a time constant of ∼15 ps during which the hole migrates from the [Pt-(C≡C)2] subunit to one of the PTZ groups. Charge recombination in 1 then occurs with two distinct time constants of 36 ns and 107 ns, corresponding to the back electron transfer to each of the two donor groups; a rather rare occurrence which manifests that the hole in the final charge-separated state is localised on one of the two donor PTZ groups. The assignment of the nature of the excited states and dynamics in 1 was assisted by TRIR investigations of the analogous previously reported ((COOEt)2bpy)Pt(C≡C-Ph-CH2-PTZ)2 (2), (J. E. McGarrah and R. Eisenberg, Inorg. Chem., 2003, 42, 4355; J. E. McGarrah, J. T. Hupp and S. N. Smirnov, J. Phys. Chem. A, 2009, 113, 6430) as well as (bpy)Pt(C≡C-Ph-C7H15)2, which represent the acceptor-free dyad, and the chromophoric core, respectively. Thus, the step-wise formation of the full charge-separated state on the picosecond time scale and charge recombination via tunnelling have been established; and

  11. Photoinduced electron transfer in fixed distance chlorophyll-quinone donor-acceptor molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, M.R.; Johnson, D.G.; Svec, W.A.

    1987-01-01

    A series of fixed distance chlorophyll-quinone donor-acceptor molecules have been prepared. The donor consists of either methyl pyropheophorbide a or methyl pyrochlorophyllide a, while the acceptor is either benzoquinone or naphthoquinone. The acceptors are fused to a triptycene spacer group, which in turn is attached to the donors at their vinyl groups. Picosecond transient absorption measurements have been used to identify electron transfer from the lowest excited singlet state of the donor to the acceptor as the mechanism of fluorescence quenching in these molecules. The charge separation rate constants increase from 2 x 10/sup 10/ s/sup -1/ to 4 xmore » 10/sup 11/ s/sup -1/ as the free energy of charge separation increases, while the radical pair recombination rate constants decrease from 1.2 x 10/sup 11/ s/sup -1/ to 2 x 10/sup 9/ s/sup -1/ as the free energy of recombination increases. The resulting total reorganization energy lambda = 0.9 eV.« less

  12. Donor-bridge-acceptor energetics determine the distance dependence of electron tunneling in DNA

    NASA Astrophysics Data System (ADS)

    Lewis, Frederick D.; Liu, Jianqin; Weigel, Wilfried; Rettig, Wolfgang; Kurnikov, Igor V.; Beratan, David N.

    2002-10-01

    Electron transfer (ET) processes in DNA are of current interest because of their involvement in oxidative strand cleavage reactions and their relevance to the development of molecular electronics. Two mechanisms have been identified for ET in DNA, a single-step tunneling process and a multistep charge-hopping process. The dynamics of tunneling reactions depend on both the distance between the electron donor and acceptor and the nature of the molecular bridge separating the donor and acceptor. In the case of protein and alkane bridges, the distance dependence is not strongly dependent on the properties of the donor and acceptor. In contrast, we show here that the distance decay of DNA ET rates varies markedly with the energetics of the donor and acceptor relative to the bridge. Specifically, we find that an increase in the energy of the bridge states by 0.25 eV (1 eV = 1.602 × 1019 J) relative to the donor and acceptor energies for photochemical oxidation of nucleotides, without changing the reaction free energy, results in an increase in the characteristic exponential distance decay constant for the ET rates from 0.71 to 1.1 Å1. These results show that, in the small tunneling energy gap regime of DNA ET, the distance dependence is not universal; it varies strongly with the tunneling energy gap. These DNA ET reactions fill a "missing link" or transition regime between the large barrier (rapidly decaying) tunneling regime and the (slowly decaying) hopping regime in the general theory of bridge-mediated ET processes.

  13. Modeling donor/acceptor interactions: Combined roles of theory and computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, M.D.

    2000-03-05

    An extended superexchange model for electron transfer (ET) matrix elements (H{sub DA}) has been formulated as a superposition of McConnell-type pathways and implemented by combined use of configuration interaction wave functions (obtained using the INDO/s model of Zerner and co-workers) and the generalized Muliken-Hush formulation of charge-localized diabatic states. Applications are made for et (and hold transfer) in several donor/bridge/acceptor radical anion (and cation) systems, (DBA){sup {+-}}, allowing detailed comparison with experimental H{sub DA} estimates. For the case of oligo phenylene ethynylene (OPE) bridges, the role of {pi} and {sigma} electronic manifolds for different distributions of phenylene torsion angles ismore » analyzed in detail.« less

  14. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers

    NASA Astrophysics Data System (ADS)

    Barrejón, Myriam; Gobeze, Habtom B.; Gómez-Escalonilla, María J.; Fierro, José Luis G.; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando

    2016-08-01

    Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an

  15. Interplay between barrier width and height in electron tunneling: photoinduced electron transfer in porphyrin-based donor-bridge-acceptor systems.

    PubMed

    Pettersson, Karin; Wiberg, Joanna; Ljungdahl, Thomas; Mårtensson, Jerker; Albinsson, Bo

    2006-01-12

    The rate of electron tunneling in molecular donor-bridge-acceptor (D-B-A) systems is determined both by the tunneling barrier width and height, that is, both by the distance between the donor and acceptor as well as by the energy gap between the donor and bridge moieties. These factors are therefore important to control when designing functional electron transfer systems, such as constructs for photovoltaics, artificial photosynthesis, and molecular scale electronics. In this paper we have investigated a set of D-B-A systems in which the distance and the energy difference between the donor and bridge states (DeltaEDB) are systematically varied. Zinc(II) and gold(III) porphyrins were chosen as electron donor and acceptor because of their suitable driving force for photoinduced electron transfer (-0.9 eV in butyronitrile) and well-characterized photophysics. We have previously shown, in accordance with the superexchange mechanism for electron transfer, that the electron transfer rate is proportional to the inverse of DeltaEDB in a series of zinc/gold porphyrin D-B-A systems with bridges of constant edge to edge distance (19.6 A) and varying DeltaEDB (3900-17 600 cm(-1)). Here, we use the same donor and acceptor but the bridge is shortened or extended giving a set of oligo-p-phenyleneethynylene bridges (OPE) with four different edge to edge distances ranging from 12.7 to 33.4 A. These two sets of D-B-A systems-ZnP-RB-AuP+ and ZnP-nB-AuP+-have one bridge in common, and hence, for the first time both the distance and DeltaEDB dependence of electron transfer can be studied simultaneously in a systematic way.

  16. Fragment charge difference method for estimating donor-acceptor electronic coupling: Application to DNA π-stacks

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Rösch, Notker

    2002-09-01

    The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.

  17. Electron Donor-Acceptor Nature of the Ethanol-CO2 Dimer

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Martin-Drumel, Marie-Aline; McCarthy, Michael A.

    2017-08-01

    Supercritical CO2 is an appealing nontoxic, environmentally friendly solvent for the industrial extraction of many classes of compounds, from caffeine to natural product drug precursors to petrochemical impurities. Apolar in isolation, the ability of supercritical CO2 to dissolve polar species has been empirically shown to be greatly enhanced by the addition of a small molar percentage of a polar cosolvent, often ethanol. Computational work predicts that the isolated ethanol-CO2 complex can exist either in an electron-donor configuration or through a hydrogen-bonding one; yet, neither has been previously experimentally observed. Here, we demonstrate by rotational spectroscopy that the isolated, gas-phase ethanol-CO2 dimer is an electron donor-acceptor complex.

  18. Wide-range light-harvesting donor-acceptor assemblies through specific intergelator interactions via self-assembly.

    PubMed

    Samanta, Suman K; Bhattacharya, Santanu

    2012-12-03

    We have synthesized two new low-molecular-mass organogelators based on tri-p-phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor-acceptor self-assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen-bonding, π-stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J-type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor-acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy-transfer studies. Interestingly, an energy-transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene-donor-acceptor-rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light-harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Targeting ideal acceptor-donor materials based on hexabenzocoronene

    NASA Astrophysics Data System (ADS)

    Santos Silva, H.; Metz, Sebastian; Hiorns, Roger C.; Bégué, D.

    2018-06-01

    A series of new hybrid donor-acceptor materials based on hexabenzocoronenes (HBC) functionalized with electron donors is investigated by combining a variety of quantum mechanical and molecular dynamic methodologies for use in organic photovoltaic (OPV) devices. Segments of a low band gap alternating copolymer constructed of benzo[1,2-b;3,4-b]dithiophene and thieno[3,4-c]pyrrole-4,6-dione were attached to the conjugated HBC core. The copolymer was chosen for its known high performance in OPVs, and both moieties were singled out due to their exceptional resistance to photo-oxidation, an important requirement for such applications. The macromolecular topology of these systems are expected to induce supra-molecular columns, such as those common to discotic liquid crystals, conducive to the effective percolation of electrons in OPV devices. A challenge with these systems, that of the mixing of the electronic structures of the donor and acceptor moieties that result in excitonic losses and charge recombination, was diminished by trialling a range of linking units. It was found possible to propose ideal donor-acceptor structures with enhanced charge dissociations and transfers in the π-stacking direction for use in OPV and other organic electronic devices.

  20. Self-assembly properties of semiconducting donor-acceptor-donor bithienyl derivatives of tetrazine and thiadiazole-effect of the electron accepting central ring.

    PubMed

    Zapala, Joanna; Knor, Marek; Jaroch, Tomasz; Maranda-Niedbala, Agnieszka; Kurach, Ewa; Kotwica, Kamil; Nowakowski, Robert; Djurado, David; Pecaut, Jacques; Zagorska, Malgorzata; Pron, Adam

    2013-11-26

    Scanning tunneling microscopy was used to study the effect of the electron-accepting unit and the alkyl substituent's position on the type and extent of 2D supramolecular organization of penta-ring donor-acceptor-donor (DAD) semiconductors, consisting of either tetrazine or thiadiazole central acceptor ring symmetrically attached to two bithienyl groups. Microscopic observations of monomolecular layers on HOPG of four alkyl derivatives of the studied adsorbates indicate significant differences in their 2D organizations. Ordered monolayers of thiadiazole derivatives are relatively loose and, independent of the position of alkyl substituents, characterized by large intermolecular separation of acceptor units in the adjacent molecules located in the face-to-face configuration. The 2D supramolecular architecture in both derivatives of thiadiazole is very sensitive to the alkyl substituent's position. Significantly different behavior is observed for derivatives of tetrazine (which is a stronger electron acceptor). Stronger intermolecular DA interactions in these adsorbates generate an intermolecular shift in the monolayer, which is a dominant factor determining the 2D structural organization. As a consequence of this molecular arrangement, tetrazine groups (A segments) face thiophene rings (D segments) of the neighboring molecules. Monolayers of tetrazine derivatives are therefore much more densely packed and characterized by similar π-stacking of molecules independently of the position of alkyl substituents. Moreover, a comparative study of 3D supramolecular organization, deduced from the X-ray diffraction patterns, is also presented clearly confirming the polymorphism of the studied adsorbates.

  1. Theoretical study of solvent effects on the electronic coupling matrix elements in rigidly linked donor-acceptor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cave, R.J.; Newton, M.D.; Kumar, K.

    1995-12-07

    The recently developed generalized Mulliken-Hush approach for the calculation of the electronic coupling matrix element for electron-transfer processes is applied to two rigidly linked donor-bridge-acceptor systems having dimethoxyanthracene as the donor and a dicarbomethoxycyclobutene unit as the acceptor. The dependence of the electronic coupling matrix element as a function of bridge type is examined with and without solvent molecules present. For clamp-shaped bridge structures solvent can have a dramatic effect on the electronic coupling matrix element. The behavior with variation of solvent is in good agreement with that observed experimentally for these systems. 23 refs., 2 tabs.

  2. Reinforced self-assembly of donor-acceptor π-conjugated molecules to DNA templates by dipole-dipole interactions together with complementary hydrogen bonding interactions for biomimetics.

    PubMed

    Yang, Wanggui; Chen, Yali; Wong, Man Shing; Lo, Pik Kwan

    2012-10-08

    One of the most important criteria for the successful DNA-templated polymerization to generate fully synthetic biomimetic polymers is to design the complementary structural monomers, which assemble to the templates strongly and precisely before carrying polymerization. In this study, water-soluble, laterally thymine-substituted donor-acceptor π-conjugated molecules were designed and synthesized to self-assemble with complementary oligoadenines templates, dA(20) and dA(40), into stable and tubular assemblies through noncovalent interactions including π-π stacking, dipole-dipole interactions, and the complementary adenine-thymine (A-T) hydrogen-bonding. UV-vis, fluorescence, circular dichroism (CD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques were used to investigate the formation of highly robust nanofibrous structures. Our results have demonstrated for the first time that the dipole-dipole interactions are stronger and useful to reinforce the assembly of donor-acceptor π-conjugated molecules to DNA templates and the formation of the stable and robust supramolecular nanofibrous complexes together with the complementary hydrogen bonding interactions. This provides an initial step toward DNA-templated polymerization to create fully synthetic DNA-mimetic polymers for biotechnological applications. This study also presents an opportunity to precisely position donor-acceptor type molecules in a controlled manner and tailor-make advanced materials for various biotechnological applications.

  3. Impact of Thermal Annealing on Organic Photovoltaic Cells Using Regioisomeric Donor-Acceptor-Acceptor Molecules.

    PubMed

    Zhang, Tao; Han, Han; Zou, Yunlong; Lee, Ying-Chi; Oshima, Hiroya; Wong, Ken-Tsung; Holmes, Russell J

    2017-08-02

    We report a promising set of donor-acceptor-acceptor (D-A-A) electron-donor materials based on coplanar thieno[3,2-b]/[2,3-b]indole, benzo[c][1,2,5]thiadiazole, and dicyanovinylene, which are found to show broadband absorption with high extinction coefficients. The role of the regioisomeric electron-donating thienoindole moiety on the physical and structural properties is examined. Bulk heterojunction (BHJ) organic photovoltaic cells (OPVs) based on the thieno[2,3-b]indole-based electron donor NTU-2, using C 70 as an electron acceptor, show a champion power conversion efficiency of 5.2% under AM 1.5G solar simulated illumination. This efficiency is limited by a low fill factor (FF), as has previously been the case in D-A-A systems. In order to identify the origin of the limited FF, further insight into donor layer charge-transport behavior is realized by examining planar heterojunction OPVs, with emphasis on the evolution of film morphology with thermal annealing. Compared to as-deposited OPVs that exhibit insufficient donor crystallinity, crystalline OPVs based on annealed thin films show an increase in the short-circuit current density, FF, and power conversion efficiency. These results suggest that that the crystallization of D-A-A molecules might not be realized spontaneously at room temperature and that further processing is needed to realize efficient charge transport in these materials.

  4. Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: Correction of the two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-02-01

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽda=(E2-E1)μ12/Rda+(2E3-E1-E2)2μ13μ23/Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  5. Estimation of electronic coupling in pi-stacked donor-bridge-acceptor systems: correction of the two-state model.

    PubMed

    Voityuk, Alexander A

    2006-02-14

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of V(da) because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a pi stack, where donor and acceptor are separated by a bridging unit, can be obtained as V(da) = (E(2)-E(1))mu(12)R(da) + (2E(3)-E(1)-E(2))2mu(13)mu(23)R(da) (2), where E(1), E(2), and E(3) are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, mu(ij) is the transition dipole moments between the states i and j, and R(da) is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  6. Increasing Saturated Electron-Drift Velocity in Donor-Acceptor Doped pHEMT Heterostructures

    NASA Astrophysics Data System (ADS)

    Protasov, D. Yu.; Gulyaev, D. V.; Bakarov, A. K.; Toropov, A. I.; Erofeev, E. V.; Zhuravlev, K. S.

    2018-03-01

    Field dependences of the electron-drift velocity in typical pseudomorphic high-electron-mobility transistor (pHEMT) heteroepitaxial structures (HESs) and in those with donor-acceptor doped (DApHEMT) heterostructures with quantum-well (QW) depth increased by 0.8-0.9 eV with the aid of acceptor layers have been studied by a pulsed technique. It is established that the saturated electron-drift velocity in DA-pHEMT-HESs is 1.2-1.3 times greater than that in the usual pHEMT-HESs. The electroluminescence (EL) spectra of DA-pHEMT-HESs do not contain emission bands related to the recombination in widebandgap layers (QW barriers). The EL intensity in these HESs is not saturated with increasing electric field. This is indicative of a suppressed real-space transfer of hot electrons from QW to barrier layers, which accounts for the observed increase in the saturated electron-drift velocity.

  7. Defining donor and acceptor strength in conjugated copolymers

    NASA Astrophysics Data System (ADS)

    Hedström, Svante; Wang, Ergang; Persson, Petter

    2017-03-01

    The progress in efficiency of organic photovoltaic devices is largely driven by the development of new donor-acceptor (D-A) copolymers. The number of possible D-A combinations escalates rapidly with the ever-increasing number of donor and acceptor units, and the design process often involves a trial-and-error approach. We here present a computationally efficient methodology for the prediction of optical and electronic properties of D-A copolymers based on density functional theory calculations of donor- and acceptor-only homopolymers. Ten donors and eight acceptors are studied, as well as all of their 80 D-A copolymer combinations, showing absorption energies of 1.3-2.3 eV, and absorption strengths varying by up to a factor of 2.5. Focus lies on exhibited trends in frontier orbital energies, optical band gaps, and absorption intensities, as well as their relation to the molecular structure. Based on the results, we define the concept of donor and acceptor strength, and calculate this quantity for all investigated units. The light-harvesting capabilities of the 80 D-A copolymers were also assessed. This gives a valuable theoretical guideline to the design of D-A copolymers with the potential to reduce the synthesis efforts in the development of new polymers.

  8. The ETHANOL-CO_2 Dimer is AN Electron Donor-Acceptor Complex

    NASA Astrophysics Data System (ADS)

    McGuire, Brett A.; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    Supercritical (sc) CO_2 is a common industrial solvent for the extraction of caffeine, nicotine, petrochemicals, and natural products. The ability of apolar scCO_2 to dissolve polar solutes is greatly enhanced by the addition of a polar co-solvent, often methanol or ethanol. Experimental and theoretical work show that methanol interactions in scCO_2 are predominantly hydrogen bonding, while the gas-phase complex is an electron donor-acceptor (EDA) configuration. Ethanol, meanwhile, is predicted to form EDA complexes both in scCO_2 and in the gas phase, but there have been no experimental measurements to support this conclusion. Here, we report a combined chirped-pulse and cavity FTMW study of the ethanol-CO_2 complex. Comparison with theory indicates the EDA complex is dominant under our experimental conditions. We confirm the structure with isotopic substitution, and derive a semi-experimental equilibrium structure. Our results are consistent with theoretical predictions that the linearity of the CO_2 subgroup is broken by the complexation interaction.

  9. Non-fullerene electron acceptors for organic photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  10. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below <2 eV. The energy levels of small molecules SM-1 to SM-4 were suitable for use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  11. Tumor cell membrane-targeting pH-dependent electron donor-acceptor fluorescence systems with low background signals.

    PubMed

    Han, Liang; Liu, Mingming; Ye, Deyong; Zhang, Ning; Lim, Ed; Lu, Jing; Jiang, Chen

    2014-03-01

    Minimizing the background signal is crucial for developing tumor-imaging techniques with sufficient specificity and sensitivity. Here we use pH difference between healthy tissues and tumor and tumor targeting delivery to achieve this goal. We synthesize fluorophore-dopamine conjugate as pH-dependent electron donor-acceptor fluorescence system. Fluorophores are highly sensitive to electron-transfer processes, which can alter their optical properties. The intrinsic redox properties of dopamine are oxidation of hydroquinone to quinone at basic pH and reduction of quinone to hydroquinone at acidic pH. Quinone can accept electron then quench fluorescence. We design tumor cell membrane-targeting carrier for delivery. We demonstrate quenched fluorophore-quinone can be specially transferred to tumor extracellular environment and tumor-accumulated fluorophore can be activated by acidic pH. These tumor-targeting pH-dependent electron donor-acceptor fluorescence systems may offer new opportunity for developing tumor-imaging techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Photoinduced electron transfer in rigidly linked dimethoxynapthalene-N-methylpyridinium donor-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Clayton, Andrew H. A.; Ghiggino, Kenneth P.; Wilson, Gerard J.; Keyte, Peter J.; Paddon-Row, Michael N.

    1992-07-01

    Photoinduced electron transfer (ET) is studied in a series of novel molecules containing a dimethoxynaphthalene (DMN) donor and either a pyridine (P) or N-methylpyridinium (P-Me +) acceptor covalently linked via a rigid nonbornalogous bridge ( n sigma bonds in length). ET rates of the order of 10 10 s -1 were measured for the DMN- n-P-Me + series ( n = 4, 6), while no appreciable ET was observed for the DMN- n-P compounds. Electronic and nuclear factors are discussed and the results rationalized in terms of Marcus—Hush and non-adiabatic ET theories.

  13. Tuning Optoelectronic Properties of Organic Semiconductors Via Donor-Acceptor Cocrystals and Interfacial Composites

    NASA Astrophysics Data System (ADS)

    Wang, Chen

    Organic donor-acceptor (D-A) interaction has attracted intensive research interest because of the promising applications in electronic devices and renewable energy. Depending on the interaction process, the optoelectronic properties of organic semiconductors may change dramatically. To improve their performance and expand the applications, we have investigated the structure-property relationship in D-A cocrystals and nanofibril composites. These materials provide unique D-A interface structures, thus allowing tunable charge transfer across the interface, which can be modified and controlled by exquisite molecule design and supramolecular assembly. In Chapter 2, we studied the fabrication, conductivity, and chemiresistive sensor performance of tetrathiafulvalene (TTF) - 7,7,8,8-tetracyanoquinodimethane (TCNQ) charge transfer cocrystal microfibers. Compared to TCNQ and TTF, TTF-TCNQ cocrystal has much higher conductivity under ambient conditions, due to the high yield of charge separation, which also induces high polarization at the interface, resulting in different binding intensity towards alkyl and aromatic amines. Based on this investment, we developed a TTF-TCNQ chemiresistive sensor to efficiently discriminate alkyl and aromatic amine vapors. In Chapter 3, we further designed a new series of D-A cocrystals, and studied the coassembly and optical properties. The cocrystal is composed of coronene and perylene diimide at 1:1 molar ratio and belongs to the triclinic system, as confirmed by X-ray analysis. The donor and acceptor molecules perform an alternate pi-pi stacking along the (100) direction, leading to the strong one-dimensional growth tendency of macroscopic cocrystal. Additionally, due to the charge transfer interaction, the cocrystal shows a new and largely red-shifted photoluminescence band, compared to the crystals of the components. In Chapter 4, we alternatively developed a series of donor-acceptor nanofibril composites, in which the donor and

  14. Interactions of chloride and formate at the donor and the acceptor side of photosystem II.

    PubMed

    Jajoo, Anjana; Bharti, Sudhakar; Kawamori, Asako

    2005-02-01

    Chloride is required for the maximum activity of the oxygen evolving complex (OEC) while formate inhibits the function of OEC. On the basis of the measurements of oxygen evolution rates and the S(2) state multiline EPR signal, an interaction between the action of chloride and formate at the donor side of PS II has been suggested. Moreover, the Fe(2)+Q-A EPR signals were measured to investigate a common binding site of both these anions at the PS II acceptor side. Other monovalent anions like bromide, nitrate etc. could influence the effects of formate to a small extent at the donor side of PS II, but not significantly at the acceptor side of PS II. The results presented in this paper clearly suggest a competitive binding of formate and chloride at the PS II acceptor side.

  15. Energy transfer and correlations in cavity-embedded donor-acceptor configurations.

    PubMed

    Reitz, Michael; Mineo, Francesca; Genes, Claudiu

    2018-06-13

    The rate of energy transfer in donor-acceptor systems can be manipulated via the common interaction with the confined electromagnetic modes of a micro-cavity. We analyze the competition between the near-field short range dipole-dipole energy exchange processes and the cavity mediated long-range interactions in a simplified model consisting of effective two-level quantum emitters that could be relevant for molecules in experiments under cryogenic conditions. We find that free-space collective incoherent interactions, typically associated with sub- and superradiance, can modify the traditional resonant energy transfer scaling with distance. The same holds true for cavity-mediated collective incoherent interactions in a weak-coupling but strong-cooperativity regime. In the strong coupling regime, we elucidate the effect of pumping into cavity polaritons and analytically identify an optimal energy flow regime characterized by equal donor/acceptor Hopfield coefficients in the middle polariton. Finally we quantify the build-up of quantum correlations in the donor-acceptor system via the two-qubit concurrence as a measure of entanglement.

  16. Synthesis and photophysical properties of new catenated electron donor-acceptor materials with magnesium and free base porphyrins as donors and C60 as the acceptor

    NASA Astrophysics Data System (ADS)

    Kirner, Sabrina V.; Guldi, Dirk M.; Megiatto, Jackson D., Jr.; Schuster, David I.

    2014-12-01

    A new series of nanoscale electron donor-acceptor systems with [2]catenane architectures has been synthesized, incorporating magnesium porphyrin (MgP) or free base porphyrin (H2P) as electron donor and C60 as electron acceptor, surrounding a central tetrahedral Cu(i)-1,10-phenanthroline (phen) complex. Model catenated compounds incorporating only one or none of these photoactive moieties were also prepared. The synthesis involved the use of Sauvage's metal template protocol in combination with the 1,3-dipolar cycloaddition of azides and alkynes (``click chemistry''), as in other recent reports from our laboratories. Ground state electron interactions between the individual constituents was probed using electrochemistry and UV-vis absorption spectroscopy, while events occurring following photoexcitation in tetrahydrofuran (under both aerobic and anaerobic conditions) at various wavelengths were followed by means of time-resolved transient absorption and emission spectroscopies on the femtosecond and nanosecond time scales, respectively, complemented by measurements of quantum yields for generation of singlet oxygen. From similar studies with model catenates containing one or neither of the chromophores, the events following photoexcitation could be elucidated. The results were compared with those previously reported for analogous catenates based on zinc porphyrin (ZnP). It was determined that a series of energy transfer (EnT) and electron transfer (ET) processes take place in the present catenates, ultimately generating long-distance charge separated (CS) states involving oxidized porphyrin and reduced C60 moieties, with lifetimes ranging from 400 to 1060 nanoseconds. Shorter lived short-distance CS states possessing oxidized copper complexes and reduced C60, with lifetimes ranging from 15 to 60 ns, were formed en route to the long-distance CS states. The dynamics of the ET processes were analyzed in terms of their thermodynamic driving forces. It was clear that

  17. Methods for the synthesis of donor-acceptor cyclopropanes

    NASA Astrophysics Data System (ADS)

    Tomilov, Yu V.; Menchikov, L. G.; Novikov, R. A.; Ivanova, O. A.; Trushkov, I. V.

    2018-03-01

    The interest in cyclopropane derivatives is caused by the facts that, first, the three-carbon ring is present in quite a few natural and biologically active compounds and, second, compounds with this ring are convenient building blocks for the synthesis of diverse molecules (acyclic, alicyclic and heterocyclic). The carbon–carbon bonds in cyclopropane are kinetically rather inert; hence, they need to be activated to be involved in reactions. An efficient way of activation is to introduce vicinal electron-donating and electron-withdrawing substituents into the ring; these substrates are usually referred to as donor-acceptor cyclopropanes. This review gives a systematic account of the key methods for the synthesis of donor-acceptor cyclopropanes. The most important among them are reactions of nucleophilic alkenes with diazo compounds and iodonium ylides and approaches based on reactions of electrophilic alkenes with sulfur ylides (the Corey–Chaykovsky reaction). Among other methods used for this purpose, noteworthy are cycloalkylation of CH-acids, addition of α-halocarbonyl compounds to alkenes, cyclization via 1,3-elimination, reactions of alkenes with halocarbenes followed by reduction, the Simmons–Smith reaction and some other. The scope of applicability and prospects of various methods for the synthesis of donor-acceptor cyclopropanes are discussed. The bibliography includes 530 references.

  18. Synthesis and Characterization of Organic Dyes Containing Various Donors and Acceptors

    PubMed Central

    Wu, Tzi-Yi; Tsao, Ming-Hsiu; Chen, Fu-Lin; Su, Shyh-Gang; Chang, Cheng-Wen; Wang, Hong-Paul; Lin, Yuan-Chung; Ou-Yang, Wen-Chung; Sun, I-Wen

    2010-01-01

    New organic dyes comprising carbazole, iminodibenzyl, or phenothiazine moieties, respectively, as the electron donors, and cyanoacetic acid or acrylic acid moieties as the electron acceptors/anchoring groups were synthesized and characterized. The influence of heteroatoms on carbazole, iminodibenzyl and phenothiazine donors, and cyano-substitution on the acid acceptor is evidenced by spectral, electrochemical, photovoltaic experiments, and density functional theory calculations. The phenothiazine dyes show solar-energy-to-electricity conversion efficiency (η) of 3.46–5.53%, whereas carbazole and iminodibenzyl dyes show η of 2.43% and 3.49%, respectively. PMID:20162019

  19. Synthesis, and spectroscopic studies of charge transfer complex of 1,2-dimethylimidazole as an electron donor with π-acceptor 2,4-dinitro-1-naphthol in different polar solvents

    NASA Astrophysics Data System (ADS)

    Miyan, Lal; Khan, Ishaat M.; Ahmad, Afaq

    2015-07-01

    The charge transfer (CT) complex of 1,2-dimethylimidazole (DMI) as an electron donor with π acceptor 2,4-dinitro-1-naphthol (DNN) has been studied spectrophotometrically in different solvents like chloroform, acetonitrile, methanol, methylene chloride, etc. at room temperature. The CT complex which is formed through the transfer of lone pair electrons from DMI to DNN exhibits well resolved CT bands and the regions of these bands were remarkably different from those of the donor and acceptor. The stoichiometry of the CT complex was found to be 1:1 by a straight-line method between donor and acceptor with maximum absorption bands. The novel CT complex has been characterized by FTIR, TGA-DTA, powder XRD, 1H NMR and 13C NMR spectroscopic techniques. The Benesi-Hildebrand equation has been used to determine the formation constant (KCT), molar extinction coefficient (εCT), standard gibbs free energy (ΔG°) and other physical parameters of the CT complex. The formation constant recorded higher values and molar extinction coefficient recorded lower values in chloroform compared with methylene chloride, methanol and acetonitrile, confirming the strong interaction between the molecular orbital's of donor and acceptor in the ground state in less polar solvent. This CT complex has been studied by absorption spectra of donor 1,2-dimethylimidazole (DMI) and acceptor 2,4-dinitro-1-naphthol (DNN) by using the spectrophotometric technique in various solvents at room temperature.

  20. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    PubMed

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be

  1. An Overview of Electron Acceptors in Microbial Fuel Cells

    PubMed Central

    Ucar, Deniz; Zhang, Yifeng; Angelidaki, Irini

    2017-01-01

    Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed at the cathode as electron acceptors through reduction. Some contaminants can also function as electron mediators at the anode or cathode. While previous studies have done a thorough assessment of electron donors, cathodic electron acceptors and mediators have not been as well described. Oxygen is widely used as an electron acceptor due to its high oxidation potential and ready availability. Recent studies, however, have begun to assess the use of different electron acceptors because of the (1) diversity of redox potential, (2) needs of alternative and more efficient cathode reaction, and (3) expanding of MFC based technologies in different areas. The aim of this review was to evaluate the performance and applicability of various electron acceptors and mediators used in MFCs. This review also evaluated the corresponding performance, advantages and disadvantages, and future potential applications of select electron acceptors (e.g., nitrate, iron, copper, perchlorate) and mediators. PMID:28469607

  2. Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-04-01

    Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.

  3. Donor-acceptor cocrystal based on hexakis(alkoxy)triphenylene and perylenediimide derivatives with an ambipolar transporting property

    NASA Astrophysics Data System (ADS)

    Su, Yajun; Li, Yan; Liu, Jiangang; Xing, Rubo; Han, Yanchun

    2015-01-01

    An organic donor-acceptor cocrystal with an ambipolar transporting property was constructed based on N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) and 2,3,6,7,10,11-hexakis-(hexyloxy)-triphenylene (H6TP). The cocrystal with an alternating stacking of H6TP and EP-PDI molecules was formed through both drop-casting and spin-coating processes, especially at the optimized ratios of H6TP/EP-PDI (2/1, 1/1). The formation of the cocrystal was driven by the strong π-π interaction and the weaker steric hindrance, resulting from the smaller side groups, between the donor and acceptor molecules. Field effect transistors (FETs) based on the H6TP/EP-PDI cocrystal exhibited relatively balanced hole/electron transport, with a hole mobility of 1.14 × 10-3 cm2 V-1 s-1 and an electron mobility of 1.40 × 10-3 cm2 V-1 s-1.An organic donor-acceptor cocrystal with an ambipolar transporting property was constructed based on N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) and 2,3,6,7,10,11-hexakis-(hexyloxy)-triphenylene (H6TP). The cocrystal with an alternating stacking of H6TP and EP-PDI molecules was formed through both drop-casting and spin-coating processes, especially at the optimized ratios of H6TP/EP-PDI (2/1, 1/1). The formation of the cocrystal was driven by the strong π-π interaction and the weaker steric hindrance, resulting from the smaller side groups, between the donor and acceptor molecules. Field effect transistors (FETs) based on the H6TP/EP-PDI cocrystal exhibited relatively balanced hole/electron transport, with a hole mobility of 1.14 × 10-3 cm2 V-1 s-1 and an electron mobility of 1.40 × 10-3 cm2 V-1 s-1. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05915h

  4. Tuning the Rectification Ratio by Changing the Electronic Nature (Open-Shell and Closed-Shell) in Donor-Acceptor Self-Assembled Monolayers.

    PubMed

    Souto, Manuel; Yuan, Li; Morales, Dayana C; Jiang, Li; Ratera, Imma; Nijhuis, Christian A; Veciana, Jaume

    2017-03-29

    This Communication describes the mechanism of charge transport across self-assembled monolayers (SAMs) of two donor-acceptor systems consisting of a polychlorotriphenylmethyl (PTM) electron-acceptor moiety linked to an electron-donor ferrocene (Fc) unit supported by ultraflat template-stripped Au and contacted by a eutectic alloy of gallium and indium top contacts. The electronic and supramolecular structures of these SAMs were well characterized. The PTM unit can be switched between the nonradical and radical forms, which influences the rectification behavior of the junction. Junctions with nonradical units rectify currents via the highest occupied molecular orbital (HOMO) with a rectification ratio R = 99, but junctions with radical units have a new accessible state, a single-unoccupied molecular orbital (SUMO), which turns rectification off and drops R to 6.

  5. Influence of Different Electron Donors and Acceptors on Dehalorespiration of Tetrachloroethene by Desulfitobacterium frappieri TCE1

    PubMed Central

    Gerritse, Jan; Drzyzga, Oliver; Kloetstra, Geert; Keijmel, Mischa; Wiersum, Luit P.; Hutson, Roger; Collins, Matthew D.; Gottschal, Jan C.

    1999-01-01

    Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 μm and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35°C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H2, formate, l-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except formate and H2) are oxidized to acetate and CO2. When l-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher (up to 1.4 μmol of chloride released · min−1 · mg of protein−1). Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumarate or nitrate. PMID:10583967

  6. Spectrophotometric and spectroscopic studies of charge transfer complexes of p-toluidine as an electron donor with picric acid as an electron acceptor in different solvents

    NASA Astrophysics Data System (ADS)

    Singh, Neeti; Khan, Ishaat M.; Ahmad, Afaq

    2010-04-01

    The charge transfer complexes of the donor p-toluidine with π-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ Go), oscillator strength ( f), transition dipole moment ( μEN), resonance energy ( RN) and ionization potential ( ID). The results indicate that the formation constant ( KCT) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used.

  7. Organic photovoltaic cells based on unconventional electron donor fullerene and electron acceptor copper hexadecafluorophthalocyanine

    NASA Astrophysics Data System (ADS)

    Yang, J. L.; Sullivan, P.; Schumann, S.; Hancox, I.; Jones, T. S.

    2012-01-01

    We demonstrate organic discrete heterojunction photovoltaic cells based on fullerene (C60) and copper hexadecafluorophthalocyanine (F16CuPc), in which the C60 and F16CuPc act as the electron donor and the electron acceptor, respectively. The C60/F16CuPc cells fabricated with conventional and inverted architectures both exhibit comparable power conversion efficiencies. Furthermore, we show that the photocurrent in both cells is generated by a conventional exciton dissociation mechanism rather than the exciton recombination mechanism recently proposed for a similar C60/F16ZnPc system [Song et al., J. Am. Chem. Soc. 132, 4554 (2010)]. These results demonstrate that new unconventional material systems are a potential way to fabricate organic photovoltaic cells with inverted as well as conventional architectures.

  8. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor-Bridge-Acceptor Molecules.

    PubMed

    Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V

    2017-03-30

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analogue of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.

  9. The separation distance distribution in electron-donor-acceptor systems and the wavelength dependence of free ion yields

    NASA Astrophysics Data System (ADS)

    Zhou, Jinwei; Findley, Bret R.; Braun, Charles L.; Sutin, Norman

    2001-06-01

    We recently reported that free radical ion quantum yields for electron-donor-acceptor (EDA) systems of alkylbenzenes-tetracyanoethylene (TCNE) exhibit a remarkable wavelength dependence in dichloromethane, a medium polarity solvent. We proposed that weak absorption by long-distance, unassociated or "random" D⋯A pairs is mainly responsible for the free radical ion yield. Here a model for the wavelength dependence of the free ion yield is developed for four systems in which differing degrees of EDA complex formation are present: 1,3,5-tri-tert-butylbenzene-TCNE in which only random pairs exist due to the bulky groups on the electron donor, and toluene—TCNE, 1,3,5-triethylbenzene-TCNE and 1,3,5-trimethylbenzene-TCNE. Mulliken-Hush theory is used to determine the excitation distance distribution of unassociated, random pairs at different wavelengths. For each absorption distribution, free radical ion yields at different wavelengths are then calculated using Onsager's result for the ion separation probability. Encouraging agreement between the calculated yields and our experimental results is obtained. As far as we are aware, this is the first time that photoexcitation of unassociated donor/acceptor pairs has been invoked as the source of separated radical ion pairs.

  10. Exploring the formation pathways of donor-acceptor catenanes in aqueous dynamic combinatorial libraries.

    PubMed

    Cougnon, Fabien B L; Au-Yeung, Ho Yu; Pantoş, G Dan; Sanders, Jeremy K M

    2011-03-09

    The discovery through dynamic combinatorial chemistry (DCC) of a new generation of donor-acceptor [2]catenanes highlights the power of DCC to access unprecedented structures. While conventional thinking has limited the scope of donor-acceptor catenanes to strictly alternating stacks of donor (D) and acceptor (A) aromatic units, DCC is demonstrated in this paper to give access to unusual DAAD, DADD, and ADAA stacks. Each of these catenanes has specific structural requirements, allowing control of their formation. On the basis of these results, and on the observation that the catenanes represent kinetic bottlenecks in the reaction pathway, we propose a mechanism that explains and predicts the structures formed. Furthermore, the spontaneous assembly of catenanes in aqueous dynamic systems gives a fundamental insight into the role played by hydrophobic effect and donor-acceptor interactions when building such complex architectures.

  11. Fine-tuning of electronic properties in donor-acceptor conjugated polymers based on oligothiophenes

    NASA Astrophysics Data System (ADS)

    Imae, Ichiro; Sagawa, Hitoshi; Harima, Yutaka

    2018-03-01

    A novel series of donor-acceptor conjugated polymers having oligothiophenes with well-defined structures were synthesized and their optical, electrochemical, and photovoltaic properties were investigated. It was found that the absorption bands of polymers were red-shifted with increasing number of ethylenedioxy groups added to each oligothiophene unit and that their band edges reached over 1000 nm. The systematical fine-tuning of the electronic properties was achieved using the chemical structures of oligothiophene units. Photovoltaic cells based on polymer/(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) exhibited power conversion efficiencies in the range from 0.004 to 1.10%, reflecting the electronic properties of the polymers.

  12. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications.

    PubMed

    Li, Wenting; Lee, Taegweon; Oh, Soong Ju; Kagan, Cherie R

    2011-10-01

    We report the synthesis, properties, and photovoltaic applications of a new conjugated copolymer (C12DPP-π-BT) containing a donor group (bithiophene) and an acceptor group (2,5-didodecylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione), bridged by a phenyl group. Using cyclic voltammetry, we found the energy levels of C12DPP-π-BT are intermediate to common electron donor and acceptor photovoltaic materials, poly (3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), respectively. Whereas P3HT and PCBM are exclusively electron donating or accepting, we predict C12DPP-π-BT may uniquely serve as either an electron donor or an acceptor when paired with PCBM or P3HT forming junctions with large built-in potentials. We confirmed the ambipolar nature of C12DPP-π-BT in space charge limited current measurements and in C12DPP-π-BT:PCBM and C12DPP-π-BT:P3HT bulk heterojunction solar cells, achieving power conversion efficiencies of 1.67% and 0.84%, respectively, under illumination of AM 1.5G (100 mW/cm(2)). Adding diiodooctane to C12DPP-π-BT:PCBM improved donor-acceptor inter-mixing and film uniformity, and therefore enhanced charge separation and overall device efficiency. Using higher-molecular-weight polymer C12DPP-π-BT in both C12DPP-π-BT:PCBM and C12DPP-π-BT:P3HT devices improved charge transport and hence the performance of the solar cells. In addition, we compared the structural and electronic properties of C12DPP-π-BT:PCBM and C12DPP-π-BT:P3HT blends, representing the materials classes of polymer:fullerene and polymer:polymer blends. In C12DPP-π-BT:PCBM blends, higher short circuit currents were obtained, consistent with faster charge transfer and balanced electron and hole transport, but lower open circuit voltages may be reduced by trap-assisted recombination and interfacial recombination losses. In contrast, C12DPP-π-BT:P3HT blends exhibit higher open circuit voltage, but short circuit currents were limited by charge transfer

  13. The electronic structure and second-order nonlinear optical properties of donor-acceptor acetylenes - A detailed investigation of structure-property relationships

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Graham, Eva; Khundkar, Lutfur R.; Perry, Joseph W.; Cheng, L.-T.; Perry, Kelly J.

    1991-01-01

    A series of donor-acceptor acetylene compounds was synthesized in which systematic changes in both the conjugation length and the donor-acceptor strength were made. The effect of these structural changes on the spectroscopic and electronic properties of the molecules and, ultimately, on the measured second-order molecular hyperpolarizabilities (beta) was investigated. It was found that increases in the donor-acceptor strength resulted in increases in the magnitude of beta. For this class of molecules, the increase is dominated by the energy of the intramolecular charge-transfer transition, while factors such as the ground to excited-state dipole moment change and the transition-moment integral are much less important. Increasing the conjugation length from one to two acetylene linkers did not result in an increase in the value of beta; however, beta increased sharply in going from two acetylenes to three. This increase is attributed to the superposition of several nearly isoenergetic excited states.

  14. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blendmore » using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.« less

  15. Spectrophotometric and spectroscopic studies of charge transfer complexes of p-toluidine as an electron donor with picric acid as an electron acceptor in different solvents.

    PubMed

    Singh, Neeti; Khan, Ishaat M; Ahmad, Afaq

    2010-04-01

    The charge transfer complexes of the donor p-toluidine with pi-acceptor picric acid have been studied spectrophotometrically in various solvents such as carbon tetrachloride, chloroform, dichloromethane acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant (K(CT)), molar extinction coefficient (epsilon(CT)), standard free energy (DeltaG(o)), oscillator strength (f), transition dipole moment (mu(EN)), resonance energy (R(N)) and ionization potential (I(D)). The results indicate that the formation constant (K(CT)) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Enhanced nonlinear optical responses in donor-acceptor ionic complexes via photo induced energy transfer.

    PubMed

    Mamidala, Venkatesh; Polavarapu, Lakshminarayana; Balapanuru, Janardhan; Loh, Kian Ping; Xu, Qing-Hua; Ji, Wei

    2010-12-06

    By complexion of donor and acceptor using ionic interactions, the enhanced nonlinear optical responses of donor-acceptor ionic complexes in aqueous solution were studied with 7-ns laser pulses at 532 nm. The optical limiting performance of negatively charged gold nanoparticles or graphene oxide (Acceptor) was shown to be improved significantly when they were mixed with water-soluble, positively-charged porphyrin (Donor) derivative. In contrast, no enhancement was observed when mixing with negatively-charged porphyrin. Transient absorption studies of the donor-acceptor complexes confirmed that the addition of energy transfer pathway were responsible for excited-state deactivation, which results in the observed enhancement. Fluence, angle-dependent scattering and time correlated single photon counting measurements suggested that the enhanced nonlinear scattering due to faster nonradiative decay should play a major role in the enhanced optical limiting responses.

  17. Enhanced Efficiency in Fullerene-Free Polymer Solar Cell by Incorporating Fine-designed Donor and Acceptor Materials.

    PubMed

    Ye, Long; Sun, Kai; Jiang, Wei; Zhang, Shaoqing; Zhao, Wenchao; Yao, Huifeng; Wang, Zhaohui; Hou, Jianhui

    2015-05-06

    Among the diverse nonfullerene acceptors, perylene bisimides (PBIs) have been attracting much attention due to their excellent electron mobility and tunable molecular and electronic properties by simply engineering the bay and head linkages. Herein, guided by two efficient small molecular acceptors, we designed, synthesized, and characterized a new nonfullerene small molecule PPDI with fine-tailored alkyl chains. Notably, a certificated PCE of 5.40% is realized in a simple structured fullerene-free polymer solar cell comprising PPDI as the electron acceptor and a fine-tailored 2D-conjugated polymer PBDT-TS1 as the electron donor. Moreover, the device behavior, morphological feature, and origin of high efficiency in PBDT-TS1/PPDI-based fullerene-free PSC were investigated. The synchronous selection and design of donor and acceptor materials reported here offer a feasible strategy for realizing highly efficient fullerene-free organic photovoltaics.

  18. FRET two-hybrid assay by linearly fitting FRET efficiency to concentration ratio between acceptor and donor

    NASA Astrophysics Data System (ADS)

    Du, Mengyan; Yang, Fangfang; Mai, Zihao; Qu, Wenfeng; Lin, Fangrui; Wei, Lichun; Chen, Tongsheng

    2018-04-01

    We here introduce a fluorescence resonance energy transfer (FRET) two-hybrid assay method to measure the maximal donor(D)- and acceptor(A)-centric FRET efficiency (ED,max and EA,max) of the D-A complex and its stoichiometry by linearly fitting the donor-centric FRET efficiency (ED) to the acceptor-to-donor concentration ratio (RC) and acceptor-centric FRET efficiency (EA) to 1/RC, respectively. We performed this method on a wide-field fluorescence microscope for living HepG2 cells co-expressing FRET tandem constructs and free donor/acceptor and obtained correct ED, EA, and stoichiometry values of those tandem constructs. Evaluation on the binding of Bad with Bcl-XL in Hela cells showed that Bad interacted strongly with Bcl-XL to form a Bad-Bcl-XL complex on mitochondria, and one Bad interacted mainly with one Bcl-XL molecule in healthy cells, while with multiple (maybe 2) Bcl-XL molecules in apoptotic cells.

  19. Structure and electronic properties of Alq3 derivatives with electron acceptor/donor groups at the C4 positions of the quinolate ligands: a theoretical study.

    PubMed

    Rao, Joshi Laxmikanth; Bhanuprakash, Kotamarthi

    2011-12-01

    The molecular structures of the ground (S(0)) and first singlet excited (S(1)) states of Alq3 derivatives in which pyrazolyl and 3-methylpyrazolyl groups are substituted at the C4 positions of the 8-hydroxyquinolate ligands as electron acceptors, and piperidinyl and N-methylpiperazinyl groups are substituted at the same positions as electron donors, have been optimized using the B3LYP/6-31G and CIS/6-31G methods, respectively. In order to analyze the electronic transitions in these derivatives, the frontier molecular orbital characteristics were analyzed systematically, and it was found that the highest occupied molecular orbital is localized on the A ligand while the lowest unoccupied molecular orbital is localized on the B ligand in their ground states, similar to what is seen for mer-Alq3. The absorption and emission spectra were evaluated at the TD-PBE0/6-31G level, and it was observed that electron acceptor substitution causes a red-shift in the emission spectra, which is also seen experimentally. The reorganization energies were calculated at the B3LYP/6-31G level and the results show that acceptor/donor substitution has a significant effect on the intrinsic charge mobilities of these derivatives as compared to mer-Alq3.

  20. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electronmore » acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.« less

  1. Donor-acceptor cocrystal based on hexakis(alkoxy)triphenylene and perylenediimide derivatives with an ambipolar transporting property.

    PubMed

    Su, Yajun; Li, Yan; Liu, Jiangang; Xing, Rubo; Han, Yanchun

    2015-02-07

    An organic donor-acceptor cocrystal with an ambipolar transporting property was constructed based on N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) and 2,3,6,7,10,11-hexakis-(hexyloxy)-triphenylene (H6TP). The cocrystal with an alternating stacking of H6TP and EP-PDI molecules was formed through both drop-casting and spin-coating processes, especially at the optimized ratios of H6TP/EP-PDI (2/1, 1/1). The formation of the cocrystal was driven by the strong π-π interaction and the weaker steric hindrance, resulting from the smaller side groups, between the donor and acceptor molecules. Field effect transistors (FETs) based on the H6TP/EP-PDI cocrystal exhibited relatively balanced hole/electron transport, with a hole mobility of 1.14 × 10(-3) cm(2) V(-1) s(-1) and an electron mobility of 1.40 × 10(-3) cm(2) V(-1) s(-1).

  2. Simulation study on the effects of chemical structure and molecular size on the acceptor strength in poly(3-hexylthiophene)-based copolymer with alternating donor and acceptor for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Rassamesard, Areefen; Pengpan, Teparksorn

    2017-02-01

    This research assessed the effects of various chemical structures and molecular sizes on the simulated geometric parameters, electron structures, and spectroscopic properties of single-chain complex alternating donor-acceptor (D-A) monomers and copolymers that are intended for use as photoactive layer in a polymer solar cell by using Kohn-Sham density functional theory with B3LYP exchange-correlation functional. The 3-hexylthiophene (3HT) was selected for electron donor, while eight chemicals, namely thiazole (Z), thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), thiadiazolothieno-pyrazine (TPD), oxadiazole (OXD) and 5-diphenyl-1,2,4-triazole (TAZ), were employed as electron acceptor functional groups. The torsional angle, bridge bond length, intramolecular charge transfer, energy levels, and molecular orbitals were analyzed. The simulation results reveal that the geometry and electron structure of donor-acceptor monomer and copolymer are significantly impacted by heterocyclic rings, heteroatoms, fused rings, degree of steric hindrance and coplanarity of the acceptor molecular structure. Planar conformation was obtained from the D copolymer, and a pseudo-planar structure with the TD copolymer. The TAZ acceptor exhibited strong steric hindrance due to its bulky structure and non-planarity of its structure. An analysis of the electron structures indicated that the degree of intramolecular electron-withdrawing capability had the rank order TAZ  <  Z  <  D  <  TPD  <  OXD  <  TP  <  BT  <  TD. The TD is indicated as the most effective acceptor among those that were simulated. However, the small energy gaps of TD as well as TPD copolymer indicate that these two copolymers can be used in transparent conducting materials. The copolymer based on BT acceptor exhibited good intramolecular charge transfer and absorbed at 656 nm wavelength which is close to the maximum flux of solar

  3. Generalization of the Förster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling

    NASA Astrophysics Data System (ADS)

    Jang, Seogjoo

    2007-11-01

    The Förster resonance energy transfer theory is generalized for inelastic situations with quantum mechanical modulation of the donor-acceptor coupling. Under the assumption that the modulations are independent of the electronic excitation of the donor and the acceptor, a general rate expression is derived, which involves two dimensional frequency-domain convolution of the donor emission line shape, the acceptor absorption line shape, and the spectral density of the modulation of the donor-acceptor coupling. For two models of modulation, detailed rate expressions are derived. The first model is the fluctuation of the donor-acceptor distance, approximated as a quantum harmonic oscillator coupled to a bath of other quantum harmonic oscillators. The distance fluctuation results in additional terms in the rate, which in the small fluctuation limit depend on the inverse eighth power of the donor-acceptor distance. The second model is the fluctuation of the torsional angle between the two transition dipoles, which is modeled as a quantum harmonic oscillator coupled to a bath of quantum harmonic oscillators and causes sinusoidal modulation of the donor-acceptor coupling. The rate expression has new elastic and inelastic terms, depending sensitively on the value of the minimum energy torsional angle. Experimental implications of the present theory and some of the open theoretical issues are discussed.

  4. Spectral investigations of multiple charge transfer complex of p-nitrophenol as an electron acceptor with donor p-dimethylaminobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Naeem, A.; Khan, I. M.; Ahmad, A.

    2011-10-01

    The convincing evidence have been given that both the interactions π-π and π-π* (between p-nitrophenol ( p-NTP) and p-dimethylaminobenzaldehyde ( p-DAB)) are simultaneously involved. This has been established by using IR spectrometry. Association constant K evaluated by the method of Foster under the condition [A]0 = [D]0 with apply in this equation, [A]0/ A = 1/ Kɛλ[D]0 + 2/ɛλ, where [A]0 is the initial concentration of acceptor equal to [D]0, A is the absorbance of the complex at λ, K is the association constant, and ɛλ is the molar absorptivity of the complex at λ. In the IR spectral studies of several related organic compounds, one comes to the conclusion that p-NTP shows a broad band centred at 1600 cm-1 and to nitro asymmetric stretching vibrations. In the complex while the 1500 cm-1 band remains without shift, the broad band localized at 1600 cm-1 shift to 1610 cm-1. A shift of 10 cm-1 shows weak interactions. Studies on molecular complexes of organ metallic donors and acceptors are of very recent origin. Though alkyl donors have been extensively studied, very few studies have appeared on aryl donors.

  5. Effect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives.

    PubMed

    Kurowska, Aleksandra; Zassowski, Pawel; Kostyuchenko, Anastasia S; Zheleznova, Tatyana Yu; Andryukhova, Kseniya V; Fisyuk, Alexander S; Pron, Adam; Domagala, Wojciech

    2017-11-15

    A structure-property study across a series of donor-acceptor-donor structures composed of mono- and bi-(1,3,4-oxadiazole) units symmetrically substituted with alkyl functionalized bi-, ter- and quaterthiophene segments is presented. Synthetically tailoring the ratio of electron-withdrawing 1,3,4-oxadiazole to electron-releasing thiophene units and their alkyl grafting pattern permitted us to scrutinize the impact of these structural factors on the redox, absorptive and emissive properties of these push-pull molecules. Contrasting trends of redox potentials were observed, with the oxidation potential closely following the donor-to-acceptor ratio, whereas the reduction potential being tuned independently by either the number of acceptor units or the conjugation length of the donor-acceptor system. Increasing the thiophene unit contribution delivered a shift from blue to green luminescence, while the structural rigidity afforded by intramolecular non-covalent interactions between 1,3,4-oxadiazole and the thiophene moieties has been identified as the prime factor determining the emission efficiency of these molecules. All six structures investigated electro-polymerize easily, yielding electroactive and electrochromic polymers. The polymer doping process is largely influenced by the length of the oligothiophene repeating unit and the alkyl chain grafting density. Polymers with relatively short oligothiophene segments are able to support polarons and polaron-pairs, whereas those with segments longer than six thiophene units could also stabilize diamagnetic charge carries - bipolarons. Increasing the alkyl chain grafting density improved the reversibility and broadened the working potential window of the p-doping process. Stable radical anions have also been investigated, bringing detailed information about the conjugation pattern of these electron-surplus species. This study delivers interesting clues towards the conscious structural design of bespoke frontier energy

  6. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    NASA Astrophysics Data System (ADS)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  7. Incorporating fluorinated moieties in fully conjugated donor-acceptor block copolymers

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin; Wang, Qing; Gomez, Enrique D.

    Fully conjugated donor-acceptor block copolymers are promising candidates for photovoltaics due to their ability to microphase separate at length scales commensurate with exciton diffusion lengths. These materials can also serve as model systems to study the relationship between molecular structure, microstructure, and optoelectronic properties of conjugated polymers. The development of new donor-acceptor block copolymers relies on the manipulation of the chemical structure to fine tune properties and improve overall performance when employed in photovoltaic devices. To this end, we have demonstrated the incorporation of fluorinated moieties in conjugated block copolymers. The introduction of fluorine, a strong electron withdrawing element, is known to influence phase separation and the bandgap, and as a result, optoelectronic properties. Fluorine was introduced to the acceptor block of poly(3-hexylthiophene-2,5-diyl)-block-poly((9,9-bis(2-octyl)fluorene-2,7-diyl)-alt-(4,7-di(thiophene-2-yl)-2,1,3-benzothiadiazole)-5 ',5?-diyl) (P3HT- b-PFTBT). PFTBTs were prepared with di-fluorinated and mono-fluorinated TBT. We find that fluorination impacts the bandgap, morphology and performance in devices.

  8. Charge Transfer and Collection in Dilute Organic Donor-Acceptor Heterojunction Blends.

    PubMed

    Ding, Kan; Liu, Xiao; Forrest, Stephen R

    2018-05-09

    Experimental and theoretical approaches are used to understand the role of nanomorphology on exciton dissociation and charge collection at dilute donor-acceptor (D-A) organic heterojunctions (HJs). Specifically, two charge transfer (CT) states in D-A mixed HJs comprising nanocrystalline domains of tetraphenyldibenzoperiflanthene (DBP) as the donor and C 70 as the acceptor are unambiguously related to the nanomorphology of the mixed layer. Alternating DBP:C 70 multilayer stacks are used to identify and control the optical properties of the CT states, as well as to simulate the dilute mixed heterojunctions. A kinetic Monte Carlo model along with photoluminescence spectroscopy and scanning transmission electron microscopy are used to quantitatively evaluate the layer morphology under various growth conditions. As a result, we are able to understand the counterintuitive observation of high charge extraction efficiency and device performance of DBP:C 70 mixed layer photovoltaics at surprisingly low (∼10%) donor concentrations.

  9. Donor-acceptor-donor thienyl/bithienyl-benzothiadiazole/quinoxaline model oligomers: experimental and theoretical studies.

    PubMed

    Pina, João; de Melo, J Seixas; Breusov, D; Scherf, Ullrich

    2013-09-28

    A comprehensive spectral and photophysical investigation of four donor-acceptor-donor (DAD) oligomers consisting of electron-deficient 2,1,3-benzothiadiazole or quinoxaline moieties linked to electron-rich thienyl or bithienyl units has been undertaken. Additionally, a bis(dithienyl) substituted naphthalene was also investigated. The D-A-D nature of these oligomers resulted in the presence of an intramolecular charge transfer (ICT) state, which was further substantiated by solvatochromism studies (analysis with the Lippert-Mataga formalism). Hereby, significant differences have been obtained for the fluorescence quantum yields of the oligomers in the non-polar solvent methylcyclohexane vs. the polar ethanol. The study was further complemented with the determination of the optimized ground-state molecular geometries for the oligomers together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours using DFT calculations. The electronic transitions show a clear HOMO to LUMO charge-transfer character. In contrast to the thiophene oligomers (the oligothiophenes with n = 1-7), where the intersystem crossing (ISC) yield decreases with n, the studied DAD oligomers were found to show an increase in the ISC efficiency with the number of (donor) thienyl units.

  10. Hydrophobic interactions in donor-disulphide-acceptor (DSSA) probes looking beyond fluorescence resonance energy transfer theory.

    PubMed

    Sanjeeva, Shilpa Kammaradi; Korrapati, Swathi; Nair, Chandrasekhar B; Rao, P V Subba; Pullela, Phani Kumar; Vijayalakshmi, U; Siva, Ramamoorthy

    2014-07-01

    Donor-linker-acceptor (DSSA) is a concept in fluorescence chemistry with acceptor being a fluorescent compound (FRET) or quencher. The DSSA probes used to measure thiol levels in vitro and in vivo. The reduction potential of these dyes are in the range of -0.60 V, much lower than the best thiol reductant reported in literature, the DTT (-0.33 V). DSSA disulphide having an unusually low reduction potential compared to the typical thiol reductants is a puzzle. Secondly, DSSA probes have a cyclized rhodamine ring as acceptor which does not have any spectral overlap with fluorescein, but quenches its absorbance and fluorescence. To understand the structural features of DSSA probes, we have synthesized DSSANa and DSSAOr. The calculated reduction potential of these dyes suggest that DSSA probes have an alternate mechanism from the FRET based quenching, namely hydrophobic interaction or dye to dye quenching. The standard reduction potential change with increasing complexity and steric hindrance of the molecule is small, suggesting that ultra- low Eo' has no contribution from the disulphide linker and is based on structural interactions between fluorescein and cyclized rhodamine. Our results help to understand the DSSA probe quenching mechanism and provide ways to design fluorescent probes.

  11. On vibrational circular dichroism chirality transfer in electron donor-acceptor complexes: a prediction for the quinine···BF3 system.

    PubMed

    Rode, Joanna E; Jamróz, Michał H; Dobrowolski, Jan Cz; Sadlej, Joanna

    2012-08-02

    Vibrational circular dichroism (VCD) chirality transfer occurs when an achiral molecule interacts with a chiral one and becomes VCD-active. Unlike for H-bonds, for organic electron donor-acceptor (EDA) complexes this phenomenon remains almost unknown. Here, the VCD chirality transfer from chiral quinine to achiral BF3 is studied at the B3LYP/aug-cc-pVDZ level. Accessibility of four quinine electron donor sites changes with conformation. Therefore, the quinine conformational landscape was explored and a considerable agreement between X-ray and the most stable conformer geometries was achieved. The BF3 complex through the aliphatic quinuclidine N atom is definitely dominating and is predicted to be easily recognizable in the VCD spectrum. Out of several VCD chirality transfer modes, the ν(s)(BF3) mode, the most intense in the entire VCD spectrum, satisfies the VCD mode robustness criterion and can be used for monitoring the chirality transfer phenomenon in quinine···BF3 system.

  12. Long-Lived Charge Separation at Heterojunctions between Semiconducting Single-Walled Carbon Nanotubes and Perylene Diimide Electron Acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Hyun Suk; Sisto, Thomas J.; Peurifoy, Samuel

    Nonfullerene electron acceptors have facilitated a recent surge in the efficiencies of organic solar cells, although fundamental studies of the nature of exciton dissociation at interfaces with nonfullerene electron acceptors are still relatively sparse. Semiconducting single-walled carbon nanotubes (s-SWCNTs), unique one-dimensional electron donors with molecule-like absorption and highly mobile charges, provide a model system for studying interfacial exciton dissociation. Here, we investigate excited-state photodynamics at the heterojunction between (6,5) s-SWCNTs and two perylene diimide (PDI)-based electron acceptors. Each of the PDI-based acceptors, hPDI2-pyr-hPDI2 and Trip-hPDI2, is deposited onto (6,5) s-SWCNT films to form a heterojunction bilayer. Transient absorption measurements demonstratemore » that photoinduced hole/electron transfer occurs at the photoexcited bilayer interfaces, producing long-lived separated charges with lifetimes exceeding 1.0 us. Both exciton dissociation and charge recombination occur more slowly for the hPDI2-pyr-hPDI2 bilayer than for the Trip-hPDI2 bilayer. To explain such differences, we discuss the potential roles of the thermodynamic charge transfer driving force available at each interface and the different molecular structure and intermolecular interactions of PDI-based acceptors. As a result, detailed photophysical analysis of these model systems can develop the fundamental understanding of exciton dissociation between organic electron donors and nonfullerene acceptors, which has not been systematically studied.« less

  13. Long-Lived Charge Separation at Heterojunctions between Semiconducting Single-Walled Carbon Nanotubes and Perylene Diimide Electron Acceptors

    DOE PAGES

    Kang, Hyun Suk; Sisto, Thomas J.; Peurifoy, Samuel; ...

    2018-04-13

    Nonfullerene electron acceptors have facilitated a recent surge in the efficiencies of organic solar cells, although fundamental studies of the nature of exciton dissociation at interfaces with nonfullerene electron acceptors are still relatively sparse. Semiconducting single-walled carbon nanotubes (s-SWCNTs), unique one-dimensional electron donors with molecule-like absorption and highly mobile charges, provide a model system for studying interfacial exciton dissociation. Here, we investigate excited-state photodynamics at the heterojunction between (6,5) s-SWCNTs and two perylene diimide (PDI)-based electron acceptors. Each of the PDI-based acceptors, hPDI2-pyr-hPDI2 and Trip-hPDI2, is deposited onto (6,5) s-SWCNT films to form a heterojunction bilayer. Transient absorption measurements demonstratemore » that photoinduced hole/electron transfer occurs at the photoexcited bilayer interfaces, producing long-lived separated charges with lifetimes exceeding 1.0 us. Both exciton dissociation and charge recombination occur more slowly for the hPDI2-pyr-hPDI2 bilayer than for the Trip-hPDI2 bilayer. To explain such differences, we discuss the potential roles of the thermodynamic charge transfer driving force available at each interface and the different molecular structure and intermolecular interactions of PDI-based acceptors. As a result, detailed photophysical analysis of these model systems can develop the fundamental understanding of exciton dissociation between organic electron donors and nonfullerene acceptors, which has not been systematically studied.« less

  14. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    PubMed Central

    2015-01-01

    Conspectus The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together

  15. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com; Universidad Nacional de Colombia, Bogota; Almonacid, Hannia

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of theirmore » critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.« less

  16. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    PubMed

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  17. Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique; Aplan, Melissa; Lee, Youngmin

    Weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. The lack of control of interfacial structure has also prevented studies of how driving forces promote charge photogeneration, leading to conflicting hypotheses in the organic photovoltaic literature. Our approach has focused on utilizing block copolymer architectures -where critical interfaces are controlled and stabilized by covalent bonds- to provide the hierarchical structure needed for high-performance organic electronics from self-assembled soft materials. For example, we have demonstrated control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers to achieve 3% power conversion efficiencies in non-fullerene photovoltaics. Furthermore, incorporating the donor-acceptor interface within the molecular structure facilitates studies of charge transfer processes. Conjugated block copolymers enable studies of the driving force needed for exciton dissociation to charge transfer states, which must be large to maximize charge photogeneration but must be minimized to prevent losses in photovoltage in solar cell devices. Our work has systematically varied the chemical structure, energetics, and dielectric constant to perturb charge transfer. As a consequence, we predict a minimum dielectric constant needed to minimize the driving force and therefore simultaneously maximize photocurrent and photovoltage in organic photovoltaic devices.

  18. Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.

    PubMed

    Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li

    2018-03-21

    Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

  19. Phenothiazine-anthraquinone donor-acceptor molecules: synthesis, electronic properties and DFT-TDDFT computational study.

    PubMed

    Zhang, Wen-Wei; Mao, Wei-Li; Hu, Yun-Xia; Tian, Zi-Qi; Wang, Zhi-Lin; Meng, Qing-Jin

    2009-09-17

    Two donor-acceptor molecules with different pi-electron conjugative units, 1-((10-methyl-10H-phenothiazin-3-yl)ethynyl)anthracene-9,10-dione (AqMp) and 1,1'-(10-methyl-10H-phenothiazine-3,7-diyl)bis(ethyne-2,1-diyl)dianthracene-9,10-dione (Aq2Mp), have been synthesized and investigated for their photochemical and electrochemical properties. Density functional theory (DFT) calculations provide insights into their molecular geometry, electronic structures, and properties. These studies satisfactorily explain the electrochemistry of the two compounds and indicate that larger conjugative effect leads to smaller HOMO-LUMO gap (Eg) in Aq2Mp. Both compounds show ICT and pi --> pi* transitions in the UV-visible range in solution, and Aq2Mp has a bathochromic shift and shows higher oscillator strength of the absorption, which has been verified by time-dependent DFT (TDDFT) calculations. The differences between AqMp and Aq2Mp indicate that the structural and conjugative effects have great influence on the electronic properties of the molecules.

  20. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells.

    PubMed

    Dou, Chuandong; Long, Xiaojing; Ding, Zicheng; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang

    2016-01-22

    A double B←N bridged bipyridyl (BNBP) is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low-lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P-BNBP-T) exhibits high electron mobility, low-lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all-polymer solar cell (all-PSC) devices with P-BNBP-T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38%, which is among the highest values of all-PSCs with PTB7 as the electron donor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Creating Graphitic Carbon Nitride Based Donor-π-Acceptor-π-Donor Structured Catalysts for Highly Photocatalytic Hydrogen Evolution.

    PubMed

    Li, Kui; Zhang, Wei-De

    2018-03-01

    Conjugated polymers with tailored donor-acceptor units have recently attracted considerable attention in organic photovoltaic devices due to the controlled optical bandgap and retained favorable separation of charge carriers. Inspired by these advantages, an effective strategy is presented to solve the main obstructions of graphitic carbon nitride (g-C 3 N 4 ) photocatalyst for solar energy conversion, that is, inefficient visible light response and insufficient separation of photogenerated electrons and holes. Donor-π-acceptor-π-donor polymers are prepared by incorporating 4,4'-(benzoc 1,2,5 thiadiazole-4,7-diyl) dianiline (BD) into the g-C 3 N 4 framework (UCN-BD). Benefiting from the visible light band tail caused by the extended π conjugation, UCN-BD possesses expanded visible light absorption range. More importantly, the BD monomer also acts as an electron acceptor, which endows UCN-BD with a high degree of intramolecular charge transfer. With this unique molecular structure, the optimized UCN-BD sample exhibits a superior performance for photocatalytic hydrogen evolution upon visible light illumination (3428 µmol h -1 g -1 ), which is nearly six times of that of the pristine g-C 3 N 4 . In addition, the photocatalytic property remains stable for six cycles in 3 d. This work provides an insight into the synthesis of g-C 3 N 4 -based D-π-A-π-D systems with highly visible light response and long lifetime of intramolecular charge carriers for solar fuel production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Charge transfer complex studies between some non-steroidal anti-inflammatory drugs and π-electron acceptors

    NASA Astrophysics Data System (ADS)

    Duymus, Hulya; Arslan, Mustafa; Kucukislamoglu, Mustafa; Zengin, Mustafa

    2006-12-01

    Charge transfer (CT) complexes of some non-steroidal anti-inflammatory drugs, naproxen and etodolac which are electron donors with some π-acceptors, such as tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), p-chloranil ( p-CHL), have been investigated spectrophotometrically in chloroform at 21 °C. The coloured products are measured spectrophotometrically at different wavelength depending on the electronic transition between donors and acceptors. Beer's law is obeyed and colours were produced in non-aqueous media. All complexes were stable at least 2 h except for etodolac with DDQ stable for 5 min. The equilibrium constants of the CT complexes were determined by the Benesi-Hildebrand equation. The thermodynamic parameters Δ H, Δ S, Δ G° were calculated by Van't Hoff equation. Stochiometries of the complexes formed between donors and acceptors were defined by the Job's method of the continuous variation and found in 1:1 complexation with donor and acceptor at the maximum absorption bands in all cases.

  3. Photoinduced Charge Transfer and Electrochemical Properties of Triphenylamine Ih-Sc3N@C80 Donor-Acceptor Conjugates

    PubMed Central

    Pinzón, Julio R.; Gasca, Diana C.; Shankara, Gayathri. S; Bottari, Giovanni; Torres, Tomás; Guldi, Dirk M.; Echegoyen, Luis

    2009-01-01

    Two isomeric [5,6]-pyrrolidine-Ih-Sc3N@C80 electron donor acceptor conjugates containing triphenylamine (TPA) as the donor system were synthesized. Electrochemical and photophysical studies of the novel conjugates were made and compared with those of their C60 analogues, in order to determine i) the effect of the linkage position (N-substituted versus 2-substituted pyrrolidine) of the donor system in the formation of photoinduced charge separated states, ii) the thermal stability towards the retro-cycloaddition reaction and iii) the effect of changing C60 for Ih-Sc3N@C80 as the electron acceptor. It was found that when the donor is connected to the pyrrolidine nitrogen atom, the resulting dyad produces a significantly longer lived radical pair than the corresponding 2-substituted isomer for both the C60 and Ih-Sc3N@C80 dyads. In addition to that, the N-substituted TPA-Ih-Sc3N@C80 dyad has much better thermal stability than the 2-subtituted one. Finally, the Ih-Sc3N@C80 dyads have considerably longer lived charge separated states than their C60 analogues, thus approving the advantage of using Ih-Sc3N@C80 instead of C60 as the acceptor for the construction of fullerene based donor acceptor conjugates. These findings are important for the design and future application of Ih-Sc3N@C80 dyads as materials for the construction of plastic organic solar cells. PMID:19445462

  4. Tunneling Kinetics and Nonadiabatic Proton-Coupled Electron Transfer in Proteins: The Effect of Electric Fields and Anharmonic Donor-Acceptor Interactions.

    PubMed

    Salna, Bridget; Benabbas, Abdelkrim; Russo, Douglas; Champion, Paul M

    2017-07-20

    A proper description of proton donor-acceptor (D-A) distance fluctuations is crucial for understanding tunneling in proton-coupled electron transport (PCET). The typical harmonic approximation for the D-A potential results in a Gaussian probability distribution, which does not appropriately reflect the electronic repulsion forces that increase the energetic cost of sampling shorter D-A distances. Because these shorter distances are the primary channel for thermally activated tunneling, the analysis of tunneling kinetics depends sensitively on the inherently anharmonic nature of the D-A interaction. Thus, we have used quantum chemical calculations to account for the D-A interaction and developed an improved model for the analysis of experimental tunneling kinetics. Strong internal electric fields are also considered and found to contribute significantly to the compressive forces when the D-A distance distribution is positioned below the van der Waals contact distance. This model is applied to recent experiments on the wild type (WT) and a double mutant (DM) of soybean lipoxygenase-1 (SLO). The compressive force necessary to prepare the tunneling-active distribution in WT SLO is found to fall in the ∼ nN range, which greatly exceeds the measured values of molecular motor and protein unfolding forces. This indicates that ∼60-100 MV/cm electric fields, aligned along the D-A bond axis, must be generated by an enzyme conformational interconversion that facilitates the PCET tunneling reaction. Based on the absolute value of the measured tunneling rate, and using previously calculated values of the electronic matrix element, the population of this tunneling-active conformation is found to lie in the range 10 -5 -10 -7 , indicating this is a rare structural fluctuation that falls well below the detection threshold of recent ENDOR experiments. Additional analysis of the DM tunneling kinetics leads to a proposal that a disordered (high entropy) conformation could be

  5. Spectrophotometric and spectroscopic studies of charge transfer complex of 1-Naphthylamine as an electron donor with picric acid as an electron acceptor in different polar solvents

    NASA Astrophysics Data System (ADS)

    Singh, Neeti; Ahmad, Afaq

    2010-08-01

    The charge transfer complex of 1-Naphthylamine as a donor with π-acceptor picric acid has been studied spectrophotometrically in different solvents at room temperature. The results indicate that the formation of charge transfer complex is high in less polar solvent. The stoichiometry of the complex was found to be 1:1 by straight line method. The data are analysed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G o), oscillator strength ( ƒ), transition dipole moment ( μ EN), resonance energy ( R N) and ionization potential ( I D). It is concluded that the formation constant ( KCT) of the complex is found to be depends upon the nature of both electron acceptor and donor and also on the polarity of solvents. Further the charge transfer molecular complex between picric acid and 1-Naphthylamine is stabilized by hydrogen bonding.

  6. Long-range electron transfer in zinc-phthalocyanine-oligo(phenylene-ethynylene)-based donor-bridge-acceptor dyads.

    PubMed

    Göransson, Erik; Boixel, Julien; Fortage, Jérôme; Jacquemin, Denis; Becker, Hans-Christian; Blart, Errol; Hammarström, Leif; Odobel, Fabrice

    2012-11-05

    In the context of long-range electron transfer for solar energy conversion, we present the synthesis, photophysical, and computational characterization of two new zinc(II) phthalocyanine oligophenylene-ethynylene based donor-bride-acceptor dyads: ZnPc-OPE-AuP(+) and ZnPc-OPE-C(60). A gold(III) porphyrin and a fullerene has been used as electron accepting moieties, and the results have been compared to a previously reported dyad with a tin(IV) dichloride porphyrin as the electron acceptor (Fortage et al. Chem. Commun. 2007, 4629). The results for ZnPc-OPE-AuP(+) indicate a remarkably strong electronic coupling over a distance of more than 3 nm. The electronic coupling is manifested in both the absorption spectrum and an ultrafast rate for photoinduced electron transfer (k(PET) = 1.0 × 10(12) s(-1)). The charge-shifted state in ZnPc-OPE-AuP(+) recombines with a relatively low rate (k(BET) = 1.0 × 10(9) s(-1)). In contrast, the rate for charge transfer in the other dyad, ZnPc-OPE-C(60), is relatively slow (k(PET) = 1.1 × 10(9) s(-1)), while the recombination is very fast (k(BET) ≈ 5 × 10(10) s(-1)). TD-DFT calculations support the hypothesis that the long-lived charge-shifted state of ZnPc-OPE-AuP(+) is due to relaxation of the reduced gold porphyrin from a porphyrin ring based reduction to a gold centered reduction. This is in contrast to the faster recombination in the tin(IV) porphyrin based system (k(BET) = 1.2 × 10(10) s(-1)), where the excess electron is instead delocalized over the porphyrin ring.

  7. Next Generation Highly Conducting Organic Films Using Novel Donor-Acceptor Molecules for Opto-electronic Applications

    DTIC Science & Technology

    2010-06-01

    addition, a new class of donor molecules was invented in the course of the DRI program. 2.1 Polymer Based Donor-acceptor Material The following work by...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information

  8. Donor-π-Acceptor Polymer with Alternating Triarylborane and Triphenylamine Moieties.

    PubMed

    Li, Haiyan; Jäkle, Frieder

    2010-05-12

    A luminescent main chain donor-π-acceptor-type polymer (4) was prepared via organometallic polycondensation reaction followed by post modification. With both electron-rich amine and electron-deficient borane moieties embedded in the main chain, 4 exhibits an interesting ambipolar character: it can be reduced and oxidized electrochemically at moderate potentials and shows a strong solvatochromic effect in the emission spectra. Complexation studies show that 4 selectively binds to fluoride and cyanide; quantitative titration with cyanide reveals a two-step binding process. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2

    NASA Astrophysics Data System (ADS)

    Mandal, Suman; Pal, Somnath; Kundu, Asish K.; Menon, Krishnakumar S. R.; Hazarika, Abhijit; Rioult, Maxime; Belkhou, Rachid

    2016-08-01

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  10. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    PubMed

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  11. Tetrahydrothiophene 1-oxide as an electron acceptor for Escherichia coli.

    PubMed Central

    Meganathan, R; Schrementi, J

    1987-01-01

    Escherichia coli used tetrahydrothiophene 1-oxide (THTO) as an electron acceptor for anaerobic growth with glycerol as a carbon source; the THTO was reduced to tetrahydrothiophene. Cell extracts also reduced THTO to tetrahydrothiophene in the presence of a variety of electron donors. Chlorate-resistant (chl) mutants (chlA, chlB, chlD, and chlE) were unable to grow with THTO as the electron acceptor. However, growth and THTO reduction by the chlD mutant were restored by high concentrations of molybdate. Similarly, mutants of E. coli that are blocked in the menaquinone (vitamin K2) biosynthetic pathway, i.e., menB, menC, and menD mutants, did not grow with THTO as an electron acceptor. Growth and THTO reduction were restored in these mutants by the presence of appropriate intermediates of the vitamin K biosynthetic pathway. PMID:3294808

  12. Charged dopants in neutral supercells through substitutional donor (acceptor): nitrogen donor charging of the nitrogen-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Löfgren, Robin; Pawar, Ravinder; Öberg, Sven; Larsson, J. Andreas

    2018-02-01

    Charged defects are traditionally computed by adding (subtracting) electrons for negative (positive) impurities. When using periodic boundary conditions this results in artificially charged supercells that also require a compensating background charge of the opposite sign, which makes slab supercells problematic because of an arbitrary dependence on the vacuum thickness. In this work, we test the method of using neutral supercells through the use of a substitutional electron donor (acceptor) to describe charged systems. We use density functional theory (DFT) to compare the effects of charging the well-studied NV-center in diamond by a substitutional donor nitrogen. We investigate the influence of the donor-N on the NV-center properties as a function of the distance between them, and find that they converge toward those obtained when adding an electron. We analyze the spin density and conclude that the donor-N has a zero magnetic moment, and thus, will not be seen in electron spin resonance. We validate our DFT energies through comparison to GW simulations. Charging the NV-center with a substitutional donor-N enables accurate calculations of slabs, without the ambiguity of using charged supercells. Implantation of donor-N atoms opens up the possibility to engineer NV-centers with the desired charge state for future ICT and sensor applications.

  13. Donor-Acceptor-Collector Ternary Crystalline Films for Efficient Solid-State Photon Upconversion.

    PubMed

    Ogawa, Taku; Hosoyamada, Masanori; Yurash, Brett; Nguyen, Thuc-Quyen; Yanai, Nobuhiro; Kimizuka, Nobuo

    2018-06-25

    It is pivotal to achieve efficient triplet-triplet annihilation based photon upconversion (TTA-UC) in the solid-state for enhancing potentials of renewable energy production devices. However, the UC efficiency of solid materials is largely limited by low fluorescence quantum yields that originate from the aggregation of TTA-UC chromophores, and also by severe back energy transfer from the acceptor singlet state to the singlet state of the triplet donor in the condensed state. In this work, to overcome these issues, we introduce a highly fluorescent singlet energy collector as the third component of donor-doped acceptor crystalline films, in which dual energy migration, i.e., triplet energy migration for TTA-UC and succeeding singlet energy migration for transferring energy to a collector, takes place. To demonstrate this scheme, a highly fluorescent singlet energy collector was added as the third component of donor-doped acceptor crystalline films. An anthracene-based acceptor containing alkyl chains and a carboxylic moiety is mixed with the triplet donor Pt(II) octaethylporphyrin (PtOEP) and the energy collector 2,5,8,11-tetra- tert-butylperylene (TTBP) in solution, and spin-coating of the mixed solution gives acceptor films of nanofibrous crystals homogeneously doped with PtOEP and TTBP. Interestingly, delocalized singlet excitons in acceptor crystals are found to diffuse effectively over the distance of ~37 nm. Thanks to this high diffusivity, only 0.5 mol% of doped TTBP can harvest most of the singlet excitons, which successfully doubles the solid-state fluorescent quantum yield of acceptor/TTBP blend films to 76%. Furthermore, since the donor PtOEP and the collector TTBP are separately isolated in the nanofibrous acceptor crystals, the singlet back energy transfer from the collector to the donor is effectively avoided. Such efficient singlet energy collection and inhibited back energy transfer processes result in a large increase of UC efficiency up to 9

  14. General theory of excitation energy transfer in donor-mediator-acceptor systems.

    PubMed

    Kimura, Akihiro

    2009-04-21

    General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.

  15. Nonradiative inter- and intramolecular energy transfer from the aromatic donor anisole to a synthesized photoswitchable acceptor system.

    PubMed

    Bardhan, Munmun; Bhattacharya, Sudeshna; Misra, Tapas; Mukhopadhyay, Rupa; De, Asish; Chowdhury, Joydeep; Ganguly, Tapan

    2010-02-01

    We report steady state and time resolved fluorescence measurements on acetonitrile (ACN) solutions of the model compounds, energy donor anisole (A) and a photoswitchable acceptor N,N'-1,2-phenylene di-p-tosylamide (B) and the multichromophore (M) where A and B are connected by a spacer containing both rigid triple (acetylenic) and flexible methylene bonds. Both steady state and time correlated single photon counting measurements demonstrate that though intermolecular energy transfer, of Forster type, between the donor and acceptor moieties occurs with rate 10(8)s(-1) but when these two reacting components are linked by a spacer (multichromophore, M) the observed transfer rate ( approximately 10(11)s(-1)) enhances. This seemingly indicates that the imposition of the spacer by inserting a triple bond may facilitate in the propagation of electronic excitation energy through bond. The time resolved fluorescence measurements along with the theoretical predictions using Configuration interaction singles (CIS) method by using 6-31G (d,p) basis set, implemented in the Gaussian package indicate the formations of the two excited conformers of B. The experimental findings made from the steady state and time resolved fluorescence measurements demonstrate that, though two different isomeric species of the acceptor B are formed in the excited singlet states, the prevailing singlet-singlet nonradiative energy transfer route was found from the donor A to the relatively longer-lived isomeric species of B. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  16. 9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor.

    PubMed

    Bin, Haijun; Yang, Yankang; Zhang, Zhi-Guo; Ye, Long; Ghasemi, Masoud; Chen, Shanshan; Zhang, Yindong; Zhang, Chunfeng; Sun, Chenkai; Xue, Lingwei; Yang, Changduk; Ade, Harald; Li, Yongfang

    2017-03-29

    In the last two years, polymer solar cells (PSCs) developed quickly with n-type organic semiconductor (n-OSs) as acceptor. In contrast, the research progress of nonfullerene organic solar cells (OSCs) with organic small molecule as donor and the n-OS as acceptor lags behind. Here, we synthesized a D-A structured medium bandgap organic small molecule H11 with bithienyl-benzodithiophene (BDTT) as central donor unit and fluorobenzotriazole as acceptor unit, and achieved a power conversion efficiency (PCE) of 9.73% for the all organic small molecules OSCs with H11 as donor and a low bandgap n-OS IDIC as acceptor. A control molecule H12 without thiophene conjugated side chains on the BDT unit was also synthesized for investigating the effect of the thiophene conjugated side chains on the photovoltaic performance of the p-type organic semiconductors (p-OSs). Compared with H12, the 2D-conjugated H11 with thiophene conjugated side chains shows intense absorption, low-lying HOMO energy level, higher hole mobility and ordered bimodal crystallite packing in the blend films. Moreover, a larger interaction parameter (χ) was observed in the H11 blends calculated from Hansen solubility parameters and differential scanning calorimetry measurements. These special features combined with the complementary absorption of H11 donor and IDIC acceptor resulted in the best PCE of 9.73% for nonfullerene all small molecule OSCs up to date. Our results indicate that fluorobenzotriazole based 2D conjugated p-OSs are promising medium bandgap donors in the nonfullerene OSCs.

  17. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  18. Tailored donor-acceptor polymers with an A-D1-A-D2 structure: controlling intermolecular interactions to enable enhanced polymer photovoltaic devices.

    PubMed

    Qin, Tianshi; Zajaczkowski, Wojciech; Pisula, Wojciech; Baumgarten, Martin; Chen, Ming; Gao, Mei; Wilson, Gerry; Easton, Christopher D; Müllen, Klaus; Watkins, Scott E

    2014-04-23

    Extensive efforts have been made to develop novel conjugated polymers that give improved performance in organic photovoltaic devices. The use of polymers based on alternating electron-donating and electron-accepting units not only allows the frontier molecular orbitals to be tuned to maximize the open-circuit voltage of the devices but also controls the optical band gap to increase the number of photons absorbed and thus modifies the other critical device parameter-the short circuit current. In fact, varying the nonchromophoric components of a polymer is often secondary to the efforts to adjust the intermolecular aggregates and improve the charge-carrier mobility. Here, we introduce an approach to polymer synthesis that facilitates simultaneous control over both the structural and electronic properties of the polymers. Through the use of a tailored multicomponent acceptor-donor-acceptor (A-D-A) intermediate, polymers with the unique structure A-D1-A-D2 can be prepared. This approach enables variations in the donor fragment substituents such that control over both the polymer regiochemistry and solubility is possible. This control results in improved intermolecular π-stacking interactions and therefore enhanced charge-carrier mobility. Solar cells using the A-D1-A-D2 structural polymer show short-circuit current densities that are twice that of the simple, random analogue while still maintaining an identical open-circuit voltage. The key finding of this work is that polymers with an A-D1-A-D2 structure offer significant performance benefits over both regioregular and random A-D polymers. The chemical synthesis approach that enables the preparation of A-D1-A-D2 polymers therefore represents a promising new route to materials for high-efficiency organic photovoltaic devices.

  19. Donor/acceptor coupling in mixed-valent dinuclear iron polypyridyl complexes: experimental and theoretical considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, C.M.; Derr, D.L.; Ferrere, S.

    1996-06-05

    Coupling between donor and acceptor orbitals for optically-induced intervalence electron transfer processes has been considered for a series of rigid mixed-valent dinuclear tris(2,2`-bipyridine)iron complexes. Each of the four complexes considered ontains three saturated bridges which link the two tris(2,2`-bipyridine)iron moieties. The bridging linkages are -CH{sub 2}CH{sub 2}-, -CH{sub 2}CH{sub 2}CH{sub 2}-, -CH{sub 2}OCH{sub 2}-. Despite differences in the composition of the bridges X-ray diffraction and/or molecular dynamics calculations show that the metal-metal separation and relative bipyridine orientations among all four complexes are nearly identical. Consequently, the only factor which differs significantly among these complexes and which might affect the donor-acceptormore » coupling in the mixed-valent forms is their connectivity. Theses complexes thus provide a unique opportunity to focus on potential superexchange coupling in the absence of ambiguities introduced by other structural and energetic considerations. Theories developed by Mulliken and Hush have been applied to intervalence charge-transfer transitions in order to obtain values of the coupling matrix elements, H{sub 12}. Configuration interaction calculations were also carried out for each of the [Fe{sub 2}(L){sub 3}]{sub 5+} complexes to provide theoretical values of H{sub 12} and the effective donor/acceptor separation distances (r{sub DA}). Experimental and theoretical results for H{sub 12} are in excellent agreement. 31 refs., 3 figs., 4 tabs.« less

  20. Self-Assembly of Electron Donor-Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both One- and Two-Photon Cellular Imaging.

    PubMed

    Zhang, Jinfeng; Chen, Wencheng; Kalytchuk, Sergii; Li, King Fai; Chen, Rui; Adachi, Chihaya; Chen, Zhan; Rogach, Andrey L; Zhu, Guangyu; Yu, Peter K N; Zhang, Wenjun; Cheah, Kok Wai; Zhang, Xiaohong; Lee, Chun-Sing

    2016-05-11

    In this study, we report fluorescent organic nanoprobes with intense blue, green, and orange-red emissions prepared by self-assembling three carbazole derivatives into nanorods/nanoparticles. The three compounds consist of two or four electron-donating carbazole groups linked to a central dicyanobenzene electron acceptor. Steric hindrance from the carbazole groups leads to noncoplanar 3D molecular structures favorable to fluorescence in the solid state, while the donor-acceptor structures endow the molecules with good two-photon excited emission properties. The fluorescent organic nanoprobes exhibit good water dispersibility, low cytotoxicity, superior resistance against photodegradation and photobleaching. Both one- and two-photon fluorescent imaging were shown in the A549 cell line. Two-photon fluorescence imaging with the fluorescent probes was demonstrated to be more effective in visualizing and distinguishing cellular details compared to conventional one-photon fluorescence imaging.

  1. Improvement of photovoltaic performance by substituent effect of donor and acceptor structure of TPA-based dye-sensitized solar cells.

    PubMed

    Inostroza, Natalia; Mendizabal, Fernando; Arratia-Pérez, Ramiro; Orellana, Carlos; Linares-Flores, Cristian

    2016-01-01

    We report a computational study of a series of organic dyes built with triphenylamine (TPA) as an electron donor group. We designed a set of six dyes called (TPA-n, where n = 0-5). In order to enhance the electron-injection process, the electron-donor effect of some specific substituent was studied. Thus, we gave insights into the rational design of organic TPA-based chromophores for use in dye-sensitized solar cells (DSSCs). In addition, we report the HOMO, LUMO, the calculated excited state oxidized potential E(dye*)(eV) and the free energy change for electron-injection ΔGinject(eV), and the UV-visible absorption bands for TPA-n dyes by a time-dependent density functional theory (TDDFT) procedure at the B3LYP and CAM-B3LYP levels with solvent effect. The results demonstrate that the introduction of the electron-acceptor groups produces an intramolecular charge transfer showing a shift of the absorption wavelengths of TPA-n under studies. Graphical Abstract Several organic dyes TPA-n with different donors and acceptors are modeled. A strong conjugation acrros the donor and anchoring groips (TPA-n) bas been studied. Candidate TPA-3 shows a promising results.

  2. Contrasting performance of donor-acceptor copolymer pairs in ternary blend solar cells and two-acceptor copolymers in binary blend solar cells.

    PubMed

    Khlyabich, Petr P; Rudenko, Andrey E; Burkhart, Beate; Thompson, Barry C

    2015-02-04

    Here two contrasting approaches to polymer-fullerene solar cells are compared. In the first approach, two distinct semi-random donor-acceptor copolymers are blended with phenyl-C61-butyric acid methyl ester (PC61BM) to form ternary blend solar cells. The two poly(3-hexylthiophene)-based polymers contain either the acceptor thienopyrroledione (TPD) or diketopyrrolopyrrole (DPP). In the second approach, semi-random donor-acceptor copolymers containing both TPD and DPP acceptors in the same polymer backbone, termed two-acceptor polymers, are blended with PC61BM to give binary blend solar cells. The two approaches result in bulk heterojunction solar cells that have the same molecular active-layer components but differ in the manner in which these molecular components are mixed, either by physical mixing (ternary blend) or chemical "mixing" in the two-acceptor (binary blend) case. Optical properties and photon-to-electron conversion efficiencies of the binary and ternary blends were found to have similar features and were described as a linear combination of the individual components. At the same time, significant differences were observed in the open-circuit voltage (Voc) behaviors of binary and ternary blend solar cells. While in case of two-acceptor polymers, the Voc was found to be in the range of 0.495-0.552 V, ternary blend solar cells showed behavior inherent to organic alloy formation, displaying an intermediate, composition-dependent and tunable Voc in the range from 0.582 to 0.684 V, significantly exceeding the values achieved in the two-acceptor containing binary blend solar cells. Despite the differences between the physical and chemical mixing approaches, both pathways provided solar cells with similar power conversion efficiencies, highlighting the advantages of both pathways toward highly efficient organic solar cells.

  3. Electron Acceptors Based on α-Substituted Perylene Diimide (PDI) for Organic Solar Cells

    DOE PAGES

    Zhao, Donglin; Wu, Qinghe; Cai, Zhengxu; ...

    2016-02-20

    The ortho-position functionalized perylene diimide derivatives (αPPID, αPBDT) were synthesized and used as the electron acceptors in nonfullerene organic photovoltaics. Due to the good planarity of ortho-position functionalized PDI, the αPPID and αPBDT show strong tendency to form aggregate because of their enhanced intermolecular pie-pie interaction. Moreover, they maintain the pure domains and the same packing order as in the pure film if they are blended with PBT7-TH and the SCLC measurement also shows the high electron mobility. The inverted OPVs employing αPDI-based compounds as acceptor and PBT7-TH as the donor give the highest PCE of 4.92 % for αPBDTmore » based device and 3.61 % for αPPID based device, which is 39 % and 4 % higher than that for their counterpart βPBDT and βPPID. The charge separation study shows the more efficient exciton dissociation at interfaces between PDI based compounds and PBT7-TH. In conclusion, the results suggest that compared to beta-substituted ones, alpha-substituted PDI derivatives are more promising electron acceptors for OPV.« less

  4. Development and Characterization of New Donor-Acceptor Conjugated Polymers and Fullerene Nanoparticles for High Performance Bulk Heterojunction Solar Cells

    DTIC Science & Technology

    2011-01-14

    thieno[3,4-c] pyrrole -4,6-dione (TPD)–based donor–acceptor polymer, PBTTPD, that exhibits high crystallinity and a low-lying highest occupied molecular...release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Bithiophene/thieno[3,4-c] pyrrole -4,6-dione (TPD)?based donor?acceptor polymer...nearby fullerene acceptors. The electron-deficient thieno[3,4-c] pyrrole -4,6-dione (TPD) moiety exhibits a symmetric, rigidly fused, coplanar

  5. Ultrafast Electron Transfer across a Nanocapsular Wall: Coumarins as Donors, Viologen as Acceptor, and Octa Acid Capsule as the Mediator.

    PubMed

    Chuang, Chi-Hung; Porel, Mintu; Choudhury, Rajib; Burda, Clemens; Ramamurthy, V

    2018-01-11

    Results of our study on ultrafast electron transfer (eT) dynamics from coumarins (coumarin-1, coumarin-480, and coumarin-153) incarcerated within octa acid (OA) capsules as electron donors to methyl viologen dissolved in water as acceptor are presented. Upon photoexcitation, coumarin inside the OA capsule transfers an electron to the acceptor electrostatically attached to the capsule leading to a long-lived radical-ion pair separated by the OA capsular wall. This charge-separated state returns to the neutral ground state via back electron transfer on the nanosecond time scale. This system allows for ultrafast electron transfer processes through a molecular wall from the apolar capsular interior to the highly polar (aqueous) environment on the femtosecond time scale. Employing femtosecond transient absorption spectroscopy, distinct rates of both forward (1-25 ps) and backward eT (700-1200 ps) processes were measured. Further understanding of the energetics is provided using Rehm-Weller analysis for the investigated photoinduced eT reactions. The results provide the rates of the eT across a molecular wall, akin to an isotropic solution, depending on the standard free energy of the reaction. The insights from this work could be utilized in the future design of efficient electron transfer processes across interfaces separating apolar and polar environments.

  6. Excited state dynamics can be used to probe donor-acceptor distances for H-tunneling reactions catalyzed by flavoproteins.

    PubMed

    Hardman, Samantha J O; Pudney, Christopher R; Hay, Sam; Scrutton, Nigel S

    2013-12-03

    In enzyme systems where fast motions are thought to contribute to H-transfer efficiency, the distance between hydrogen donor and acceptor is a very important factor. Sub-ångstrom changes in donor-acceptor distance can have a large effect on the rate of reaction, so a sensitive probe of these changes is a vital tool in our understanding of enzyme function. In this study we use ultrafast transient absorption spectroscopy to investigate the photoinduced electron transfer rates, which are also very sensitive to small changes in distance, between coenzyme analog, NAD(P)H4, and the isoalloxazine center in the model flavoenzymes morphinone reductase (wild-type and selected variants) and pentaerythritol tetranitrate reductase (wild-type). It is shown that upon addition of coenzyme to the protein the rate of photoinduced electron transfer is increased. By comparing the magnitude of this increase with existing values for NAD(P)H4-FMN distances, based on charge-transfer complex absorbance and experimental kinetic isotope effect reaction data, we show that this method can be used as a sensitive probe of donor-acceptor distance in a range of enzyme systems. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baruah, Tunna; Garnica, Amanda; Paggen, Marina

    2016-04-14

    We study the electronic structure of C{sub 60} fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Ourmore » results show that all functionalized fullerenes with an exception of the C{sub 60}-pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C{sub 60} fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C{sub 61}-butyric acid methyl ester (PCBM)-P3MT complex.« less

  8. Fullerene derivatives as electron donor for organic photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Taojun; Wang, Xiao-Feng, E-mail: xf-wang@yz.yamagata-u.ac.jp, E-mail: ziruo@yz.yamagata-u.ac.jp; Sano, Takeshi

    2013-11-11

    We demonstrated the performance of unconventional, all-fullerene-based, planar heterojunction (PHJ) organic photovoltaic (OPV) cells using fullerene derivatives indene-C{sub 60} bisadduct (ICBA) and phenyl C{sub 61}-butyric acid methyl ester as the electron donors with fullerene C{sub 70} as the electron acceptor. Two different charge generation processes, including charge generation in the fullerene bulk and exciton dissociation at the donor-acceptor interface, have been found to exist in such all-fullerene-based PHJ cells and the contribution to the total photocurrent from each process is strongly dependent on the thickness of fullerene donor. The optimized 5 nm ICBA/40 nm C{sub 70} PHJ cell gives clear external quantummore » efficiency responses for the long-wavelength photons corresponding to the dissociation of strongly bound Frenkel excitons, which is hardly observed in fullerene-based single layer reference devices. This approach using fullerene as a donor material provides further possibilities for developing high performance OPV cells.« less

  9. Donor assists acceptor binding and catalysis of human α1,6-fucosyltransferase.

    PubMed

    Kötzler, Miriam P; Blank, Simon; Bantleon, Frank I; Wienke, Martin; Spillner, Edzard; Meyer, Bernd

    2013-08-16

    α1,6-Core-fucosyltransferase (FUT8) is a vital enzyme in mammalian physiological and pathophysiological processes such as tumorigenesis and progress of, among others, non-small cell lung cancer and colon carcinoma. It was also shown that therapeutic antibodies have a dramatically higher efficacy if the α1,6-fucosyl residue is absent. However, specific and potent inhibitors for FUT8 and related enzymes are lacking. Hence, it is crucial to elucidate the structural basis of acceptor binding and the catalytic mechanism. We present here the first structural model of FUT8 in complex with its acceptor and donor molecules. An unusually large acceptor, i.e., a hexasaccharide from the core of N-glycans, is required as minimal structure. Acceptor substrate binding of FUT8 is being dissected experimentally by STD NMR and SPR and theoretically by molecular dynamics simulations. The acceptor binding site forms an unusually large and shallow binding site. Binding of the acceptor to the enzyme is much faster and stronger if the donor is present. This is due to strong hydrogen bonding between O6 of the proximal N-acetylglucosamine and an oxygen atom of the β-phosphate of GDP-fucose. Therefore, we propose an ordered Bi Bi mechanism for FUT8 where the donor molecule binds first. No specific amino acid is present that could act as base during catalysis. Our results indicate a donor-assisted mechanism, where an oxygen of the β-phosphate deprotonates the acceptor. Knowledge of the mechanism of FUT8 is now being used for rational design of targeted inhibitors to address metastasis and prognosis of carcinomas.

  10. Hydrogen Bond Donor/Acceptor Cosolvent-Modified Choline Chloride-Based Deep Eutectic Solvents.

    PubMed

    Pandey, Ashish; Bhawna; Dhingra, Divya; Pandey, Siddharth

    2017-04-27

    Deep eutectic solvents (DESs) have emerged as nontoxic and inexpensive alternatives not only to the common organic solvents but to the ionic liquids as well. Some of the common and popular, and perhaps the most investigated, DESs are the ones comprising an ammonium salt and an appropriate hydrogen bond (HB) donor in a predetermined mole ratio. The formation of the DES is attributed to the H-bonding interaction(s) present between the salt and the HB donor. Consequently, addition of a predominantly HB donor or a predominantly HB acceptor cosolvent to such DESs may result in intriguing features and properties. We present investigation of two DESs constituted of salt choline chloride along with HB donors urea and glycerol, respectively, in 1:2 mol ratio, named reline and glyceline as the cosolvent of very high HB donating acidity and no HB accepting basicity 2,2,2-trifluoroethanol (TFE) and of very high HB accepting basicity and no HB donating acidity hexamethylphosphoramide (HMPA), respectively, is added. TFE shows up to 0.25 mole fraction miscibility with both reline and glyceline. While up to 0.25 mole fraction HMPA in glyceline results in transparent mixtures, this cosolvent is found to be completely immiscible with reline. From the perspective of the solvatochromic absorbance and fluorescence probes, it is established that the cybotactic region dipolarity within up to 0.25 mole fraction TFE/HMPA-added DES strongly depends on the functionalities present on the solute. Fourier transform infrared absorbance and Raman spectroscopic investigations reveal no major shifts in vibrational transitions as TFE/HMPA is added to the DES; spectral band broadening, albeit small, is observed nonetheless. Excess molar volumes and excess logarithmic viscosities of the mixtures indicate that while TFE may interstitially accommodate itself within H-bonded network of reline, it does appear to form H-bonds with the constituents of the glyceline. Increase in overall net repulsive

  11. Design of a New Fused-Ring Electron Acceptor with Excellent Compatibility to Wide-Bandgap Polymer Donors for High-Performance Organic Photovoltaics.

    PubMed

    Liu, Wenrui; Zhang, Jianyun; Zhou, Zichun; Zhang, Dongyang; Zhang, Yuan; Xu, Shengjie; Zhu, Xiaozhang

    2018-05-16

    Fused-ring electron acceptors (FREAs) have recently received intensive attention. Besides the continuing development of new FREAs, the demand for FREAs featuring good compatibility to donor materials is becoming more and more urgent, which is highly desirable for screening donor materials and achieving new breakthroughs. In this work, a new FREA is developed, ZITI, featuring an octacyclic dithienocyclopentaindenoindene central core. The core is designed by linking 2,7-dithienyl substituents and indenoindene with small methylene groups, in which the indeno[1,2-b]thiophene-2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile part provides a large and unoccupied π-surface. Most notably, ZITI possesses an excellent compatibility with commercially available polymer donors, delivering very high power conversion efficiencies of over 13%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  13. Stepwise Bay Annulation of Indigo for the Synthesis of Desymmetrized Electron Acceptors and Donor–Acceptor Constructs

    DOE PAGES

    Kolaczkowski, Matthew A.; He, Bo; Liu, Yi

    2016-10-10

    In this work, a selective stepwise annulation of indigo has been demonstrated as a means of providing both monoannulated and differentially double-annulated indigo derivatives. Disparate substitution of the electron accepting bay-annulated indigo system allows for fine control over both the electronic properties as well as donor-acceptor structural architectures. Optical and electronic properties were characterized computationally as well as through UV-vis absorption spectroscopy and cyclic voltammetry. Finally, this straightforward method provides a modular approach for the design of indigo-based materials with tailored optoelectronic properties.

  14. Fundamental Studies on Donor-acceptor Conjugated Polymers Containing 'Heavy' Group 14 and Group 16 Elements

    NASA Astrophysics Data System (ADS)

    Gibson, Gregory Laird

    One advantage of conjugated polymers as organic materials is that their properties may be readily tuned through covalent modifications. This thesis presents studies on the structure-property relationships resulting from single- and double-atom substitutions on an alternating donor-acceptor conjugated polymer. Specifically, single selenium and tellurium atoms have been incorporated into the acceptor monomer in place of sulfur; silicon and germanium atoms have been substituted in place of carbon at the donor monomer bridge position. The carbon-donor/ tellurium-acceptor polymer was synthesized by a post-polymerization reaction sequence and demonstrated the utility of heavy group 16 atoms to red shift a polymer absorption spectrum. Density functional theory calculations point to a new explanation for this result invoking the lower heavy atom ionization energy and reduced aromaticity of acceptor monomers containing selenium and tellurium compared to sulfur. Absorption and emission experiments demonstrate that both silicon and germanium substitutions in the donor slightly blue shift the polymer absorption spectrum. Polymers containing sulfur in the acceptor are the strongest light absorbers of all polymers studied here. Molecular weight and phenyl end capping studies show that molecular weight appears to affect polymer absorption to the greatest degree in a medium molecular weight regime and that these effects have a significant aggregation component. Solar cell devices containing either the silicon- or germanium-donor/selenium-acceptor polymer display improved red light harvesting or hole mobility relative to their structural analogues. Overall, these results clarify the effects of single atom substitution on donor-acceptor polymers and aid in the future design of polymers containing heavy atoms.

  15. Molecular origin of photovoltaic performance in donor- block-acceptor all-conjugated block copolymers

    DOE PAGES

    Smith, Kendall A.; Lin, Yen -Hao; Mok, Jorge W.; ...

    2015-11-03

    All-conjugated block copolymers may be an effective route to self-assembled photovoltaic devices, but we lack basic information on the relationship between molecular characteristics and photovoltaic performance. Here, we synthesize a library of poly(3-hexylthiophene) (P3HT) block poly((9,9-dialkylfluorene)-2,7-diyl-alt-[4,7-bis(alkylthiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT) donor- block-acceptor all-conjugated block copolymers and carry out a comprehensive study of processing conditions, crystallinity, domain sizes, and side-chain structure on photovoltaic device performance. We find that all block copolymers studied exhibit an out-of-plane crystal orientation after deposition, and on thermal annealing at high temperatures the crystal orientation flips to an in-plane orientation. By varying processing conditions on polymer photovoltaic devices, we showmore » that the crystal orientation has only a modest effect (15-20%) on photovoltaic performance. The addition of side-chains to the PFTBT block is found to decrease photovoltaic power conversion efficiencies by at least an order of magnitude. Through grazing-incidence X-ray measurements we find that the addition of side-chains to the PFTBT acceptor block results in weak segregation and small (< 10 nm) block copolymer self-assembled donor and acceptor domains. This work is the most comprehensive to date on all-conjugated block copolymer systems and suggests that photovoltaic performance of block copolymers depends strongly on the miscibility of donor and acceptor blocks, which impacts donor and acceptor domain sizes and purity. Lastly, strategies for improving the device performance of block copolymer photovoltaics should seek to increase segregation between donor and acceptor polymer domains.« less

  16. Molecular origin of photovoltaic performance in donor- block-acceptor all-conjugated block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kendall A.; Lin, Yen -Hao; Mok, Jorge W.

    All-conjugated block copolymers may be an effective route to self-assembled photovoltaic devices, but we lack basic information on the relationship between molecular characteristics and photovoltaic performance. Here, we synthesize a library of poly(3-hexylthiophene) (P3HT) block poly((9,9-dialkylfluorene)-2,7-diyl-alt-[4,7-bis(alkylthiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT) donor- block-acceptor all-conjugated block copolymers and carry out a comprehensive study of processing conditions, crystallinity, domain sizes, and side-chain structure on photovoltaic device performance. We find that all block copolymers studied exhibit an out-of-plane crystal orientation after deposition, and on thermal annealing at high temperatures the crystal orientation flips to an in-plane orientation. By varying processing conditions on polymer photovoltaic devices, we showmore » that the crystal orientation has only a modest effect (15-20%) on photovoltaic performance. The addition of side-chains to the PFTBT block is found to decrease photovoltaic power conversion efficiencies by at least an order of magnitude. Through grazing-incidence X-ray measurements we find that the addition of side-chains to the PFTBT acceptor block results in weak segregation and small (< 10 nm) block copolymer self-assembled donor and acceptor domains. This work is the most comprehensive to date on all-conjugated block copolymer systems and suggests that photovoltaic performance of block copolymers depends strongly on the miscibility of donor and acceptor blocks, which impacts donor and acceptor domain sizes and purity. Lastly, strategies for improving the device performance of block copolymer photovoltaics should seek to increase segregation between donor and acceptor polymer domains.« less

  17. Design principle for efficient charge separation at the donor-acceptor interface for high performance organic solar cell device

    NASA Astrophysics Data System (ADS)

    Nie, Wanyi; Gupta, Gautam; Crone, Brian; Wang, Hsing-Lin; Mohite, Aditya; MPA-11 Material synthesis and integrated device Team; MPA-chemistry Team

    2014-03-01

    The performance of donor (D) /acceptor (A) structure based organic electronic devices, such as solar cell, light emitting devices etc., relays on the charge transfer process at the interface dramatically. In organic solar cell, the photo-induced electron-hole pair is tightly bonded and will form a charge transfer (CT) state at the D/A interface after dissociation. There is a large chance for them to recombine through CT state and thus is a major loss that limit the overall performance. Here, we report three different strategies that allow us to completely suppress the exciplex (or charge transfer state) recombination between any D/A system. We observe that the photocurrent increases by 300% and the power conversion efficiency increases by 4-5 times simply by inserting a spacer layer in the form of an a) insulator b) Oliogomer or using a c) heavy atom at the donor-acceptor interface in a P3HT/C60 bilayer device. By using those different functional mono layers, we successfully suppressed the exciplex recombination in evidence of increased photocurrent and open circuit voltage. Moreover, these strategies are applicable universally to any donor-acceptor interface. And we demonstrated such strategies in a bulk-heterojunction device which improved the power conversion efficiency from 3.5% up to 4.6%.

  18. Reactive Black 5 as electron donor and/or electron acceptor in dual chamber of solar photocatalytic fuel cell.

    PubMed

    Khalik, Wan Fadhilah; Ho, Li-Ngee; Ong, Soon-An; Voon, Chun-Hong; Wong, Yee-Shian; Yusuf, Sara Yasina; Yusoff, NikAthirah; Lee, Sin-Li

    2018-07-01

    The role of azo dye Reactive Black 5 (RB5) as an electron donor and/or electron acceptor could be distinguished in dual chamber of photocatalytic fuel cell (PFC). The introduction of RB5 in anode chamber increased the voltage generation in the system since degradation of RB5 might produce electrons which also would transfer through external circuit to the cathode chamber. The removal efficiency of RB5 with open and closed circuit was 8.5% and 13.6%, respectively and removal efficiency for open circuit was low due to the fact that recombination of electron-hole pairs might happen in anode chamber since without connection to the cathode, electron cannot be transferred. The degradation of RB5 in cathode chamber with absence of oxygen showed that electrons from anode chamber was accepted by dye molecules to break its azo bond. The presence of oxygen in cathode chamber would improve the oxygen reduction rate which occurred at Platinum-loaded carbon (Pt/C) cathode electrode. The V oc , J sc and P max for different condition of ultrapure water at cathode chamber also affected their fill factor. The transportation of protons to cathode chamber through Nafion membrane could decrease the pH of ultrapure water in cathode chamber and undergo hydrogen evolution reaction in the absence of oxygen which then increased degradation rate of RB5 as well as its electricity generation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Spectroscopic investigations of the charge-transfer interaction between the drug reserpine and different acceptors: Towards understanding of drug-receptor mechanism

    NASA Astrophysics Data System (ADS)

    Eldaroti, Hala H.; Gadir, Suad A.; Refat, Moamen S.; Adam, Abdel Majid A.

    2013-11-01

    The study of the charge-transfer interaction of the drugs may be useful in understanding the drug-receptor interactions and the mechanism of drug action. Structural and thermal stability of charge-transfer (CT) complexes formed between the drug reserpine (Res) as a donor and quinol (QL), picric acid (PA), tetracyanoquinodimethane (TCNQ) or dichlorodicyanobenzoquinone (DDQ) as acceptors were reported. Elemental analysis, electronic absorption, spectrophotometric titration, IR, Raman, 1H NMR and X-ray powder diffraction (XRD) were used to characterize the new products. The thermal stability of the synthesized CT complexes was investigated using thermogravimetric (TG) analyses, and the morphology and particle size of these complexes were obtained from scanning electron microscopy (SEM). The stoichiometry of the complexes (donor:acceptor molar ratio) was determined to be 1:1 for all complexes. Accordingly the formed CT complexes could be formulated as [(Res)(QL)], [(Res)(PA)], [(Res)(TCNQ)] and [(Res)(DDQ)]. It was found that the obtained CT complexes are nanoscale, semi-crystalline particles, thermally stable and formed through spontaneous reaction. The results obtained herein are satisfactory for estimation of drug Res in the pharmaceutical form.

  20. Studies of Luminescence Performance on Carbazole Donor and Quinoline Acceptor Based Conjugated Polymer.

    PubMed

    Upadhyay, Anjali; S, Karpagam

    2016-03-01

    We report on the synthesis of conjugated polymer (CV-QP) containing carbazole (donor) and quinoline (acceptor) using Wittig methodology. The structural, optical and thermal properties of the polymer were investigated by FT-IR, NMR, GPC, UV, PL, cyclic voltammetry, atomic force microscopy (AFM) and thermogravimetric analysis (TGA). The polymer exhibits thermal stability upto 200 °C and shows good solubility in common organic solvents. The polymer has optical absorption band in a thin film at 360 nm and emission band formed at 473 nm. The optical energy band gap was found to be 2.69 eV as calculated from the onset absorption edge. Fluorescence quenching of the polymer CV-QP was found by using DMA (electron donor) and DMTP (electron acceptor). AFM image indicated that triangular shaped particles were observed and the particle size was found as 1.1 μm. The electrochemical studies of CV-QP reveal that, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the CV-QP are 6.35 and 3.70 eV, which indicated that the polymers are expected to provide charge transporting properties for the development of polymer light-emitting diodes (PLEDs).

  1. Synthesis and characterization of donor-acceptor copolymers carrying triphenylamine units for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Neumann, Katharina; Thelakkat, Mukundan

    2012-09-01

    The synthesis and analysis of solution processable polymers for organic solar cells is crucial for innovative solar cell technologies such as printing processes. In the field of donor materials for photovoltaic applications, polymers based on tetraphenylamine (TPA) are well known hole conducting materials. Here, we synthesized two conjugated TPA containing copolymers via Suzuki polycondensation. We investigated the tuning of the energy levels of the TPA based polymers by two different concepts. Firstly, we introduced an acceptor unit in the side chain. The main-chain of this copolymer was built from TPA units. The resulting copolymer 2-(4-((4'-((4-(2-ethylhexyloxy)phenyl)(paratolyl) amino)biphenyl-4-yl)(para-tolyl)amino)benzylidene) malononitrile P1 showed a broader absorption up to 550 nm. Secondly, we used a donor-acceptor concept by synthesizing a copolymer with alternating electron donating TPA and electron withdrawing Thieno[3,4-b]thiophene ester units. Consequently, the absorption maximum in the copolymer octyl-6-(4-((4-(2-ethylhexyloxy)phenyl)(p-tolyl)amino)phenyl)-4-methylthieno[3,4-b]thiophene-2-carboxylate P2 was red shifted to 580 nm. All three polymers showed high thermal stability. By UV-vis and Cyclic voltammetry measurements the optical and electrochemical properties of the polymers were analyzed.

  2. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    PubMed

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  3. New acceptor-bridge-donor strategy for enhancing NLO response with long-range excess electron transfer from the NH2...M/M3O donor (M = Li, Na, K) to inside the electron hole cage C20F19 acceptor through the unusual σ chain bridge (CH2)4.

    PubMed

    Bai, Yang; Zhou, Zhong-Jun; Wang, Jia-Jun; Li, Ying; Wu, Di; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung

    2013-04-04

    Using the strong electron hole cage C20F19 acceptor, the NH2...M/M3O (M = Li, Na, and K) complicated donors with excess electron, and the unusual σ chain (CH2)4 bridge, we construct a new kind of electride molecular salt e(-)@C20F19-(CH2)4-NH2...M(+)/M3O(+) (M = Li, Na, and K) with excess electron anion inside the hole cage (to be encapsulated excess electron-hole pair) serving as a new A-B-D strategy for enhancing nonlinear optical (NLO) response. An interesting push-pull mechanism of excess electron generation and its long-range transfer is exhibited. The excess electron is pushed out from the (super)alkali atom M/M3O by the lone pair of NH2 in the donor and further pulled inside the hole cage C20F19 acceptor through the efficient long σ chain (CH2)4 bridge. Owing to the long-range electron transfer, the new designed electride molecular salts with the excess electron-hole pair exhibit large NLO response. For the e(-)@C20F19-(CH2)4-NH2...Na(+), its large first hyperpolarizability (β0) reaches up to 9.5 × 10(6) au, which is about 2.4 × 10(4) times the 400 au for the relative e(-)@C20F20...Na(+) without the extended chain (CH2)4-NH2. It is shown that the new strategy is considerably efficient in enhancing the NLO response for the salts. In addition, the effects of different bridges and alkali atomic number on β0 are also exhibited. Further, three modulating factors are found for enhancing NLO response. They are the σ chain bridge, bridge-end group with lone pair, and (super)alkali atom. The new knowledge may be significant for designing new NLO materials and electronic devices with electrons inside the cages. They may also be the basis of establishing potential organic chemistry with electron-hole pair.

  4. Design of donor-acceptor copolymers for organic photovoltaic materials: a computational study.

    PubMed

    Turan, Haydar Taylan; Kucur, Oğuzhan; Kahraman, Birce; Salman, Seyhan; Aviyente, Viktorya

    2018-01-31

    80 different push-pull type organic chromophores which possess Donor-Acceptor (D-A) and Donor-Thiophene-Acceptor-Thiophene (D-T-A-T) structures have been systematically investigated by means of density functional theory (DFT) and time-dependent DFT (TD-DFT) at the B3LYP/6-311G* level. The introduction of thiophene (T) in the chain has allowed us to monitor the effect of π-spacers. Benchmark studies on the methodology have been carried out to predict the HOMO and LUMO energies and optical band gaps of the D-A systems accurately. The HOMO and LUMO energies and transition dipoles are seen to converge for tetrameric oligomers, and the latter have been used as optimal chain length to evaluate various geometrical and optoelectronic properties such as bond length alternations, distortion energies, frontier molecular orbital energies, reorganization energies and excited-state vertical transition of the oligomers. Careful analysis of our findings has allowed us to propose potential donor-acceptor couples to be used in organic photovoltaic cells.

  5. Pt–Mg, Pt–Ca, and Pt–Zn lantern complexes and metal-only donor–acceptor interactions [Pt-Mg Pt-Ca and Pt-Zn compounds with metal-only donor-acceptor interactions

    DOE PAGES

    Baddour, Frederick G.; Hyre, Ariel S.; Guillet, Jesse L.; ...

    2016-12-12

    Here, Pt-based heterobimetallic lantern complexes of the form [PtM(SOCR) 4(L)] have been shown previously to form intermolecular metallophilic interactions and engage in antiferromagnetic coupling between lanterns having M atoms with open shell configurations. In order to understand better the influence of the carboxylate bridge and terminal ligand on the electronic structure, as well as the metal–metal interactions within each lantern unit, a series of diamagnetic lantern complexes, [PtMg(SAc) 4(OH 2)] (1), [PtMg(tba) 4(OH 2)] (2), [PtCa(tba) 4(OH 2)] (3), [PtZn(tba) 4(OH 2)] (4), and a mononuclear control (Ph 4P) 2[Pt(SAc) 4] (5) have been synthesized. Crystallographic data show close Pt–Mmore » contacts enforced by the lantern structure in each dinuclear case. 195Pt-NMR spectroscopy of 1–4, (Ph 4P) 2[Pt(SAc) 4] (5), and several previously reported lanterns revealed a strong chemical shift dependence on the identity of the second metal (M), mild influence by the thiocarboxylate ligand (SOCR; R = CH 3 (thioacetate, SAc), C 6H 5 (thiobenzoate, tba)), and modest influence from the terminal ligand (L). Fluorescence spectroscopy has provided evidence for a Pt···Zn metallophilic interaction in [PtZn(SAc) 4(OH 2)], and computational studies demonstrate significant dative character. In all of 1–4, the short Pt–M distances suggest that metal-only Lewis donor (Pt)–Lewis acceptor (M) interactions could be present. DFT and NBO calculations, however, show that only the Zn examples have appreciable covalent character, whereas the Mg and Ca complexes are much more ionic.« less

  6. Pt–Mg, Pt–Ca, and Pt–Zn lantern complexes and metal-only donor–acceptor interactions [Pt-Mg Pt-Ca and Pt-Zn compounds with metal-only donor-acceptor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baddour, Frederick G.; Hyre, Ariel S.; Guillet, Jesse L.

    Here, Pt-based heterobimetallic lantern complexes of the form [PtM(SOCR) 4(L)] have been shown previously to form intermolecular metallophilic interactions and engage in antiferromagnetic coupling between lanterns having M atoms with open shell configurations. In order to understand better the influence of the carboxylate bridge and terminal ligand on the electronic structure, as well as the metal–metal interactions within each lantern unit, a series of diamagnetic lantern complexes, [PtMg(SAc) 4(OH 2)] (1), [PtMg(tba) 4(OH 2)] (2), [PtCa(tba) 4(OH 2)] (3), [PtZn(tba) 4(OH 2)] (4), and a mononuclear control (Ph 4P) 2[Pt(SAc) 4] (5) have been synthesized. Crystallographic data show close Pt–Mmore » contacts enforced by the lantern structure in each dinuclear case. 195Pt-NMR spectroscopy of 1–4, (Ph 4P) 2[Pt(SAc) 4] (5), and several previously reported lanterns revealed a strong chemical shift dependence on the identity of the second metal (M), mild influence by the thiocarboxylate ligand (SOCR; R = CH 3 (thioacetate, SAc), C 6H 5 (thiobenzoate, tba)), and modest influence from the terminal ligand (L). Fluorescence spectroscopy has provided evidence for a Pt···Zn metallophilic interaction in [PtZn(SAc) 4(OH 2)], and computational studies demonstrate significant dative character. In all of 1–4, the short Pt–M distances suggest that metal-only Lewis donor (Pt)–Lewis acceptor (M) interactions could be present. DFT and NBO calculations, however, show that only the Zn examples have appreciable covalent character, whereas the Mg and Ca complexes are much more ionic.« less

  7. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.

    PubMed

    Kumar, Challa V; Duff, Michael R

    2008-12-01

    Specific donor and acceptor pairs have been assembled in bovine serum albumin (BSA), at neutral pH and room temperature, and these dye-protein complexes indicated efficient donor to acceptor singlet-singlet energy transfer. For example, pyrene-1-butyric acid served as the donor and Coumarin 540A served as the acceptor. Both the donor and the acceptor bind to BSA with affinity constants in excess of 2x10(5) M(-1), as measured in absorption and circular dichroism (CD) spectral titrations. Simultaneous binding of both the donor and the acceptor chromophores was supported by CD spectra and one chromophore did not displace the other from the protein host, even when limited concentrations of the host were used. For example, a 1:1:1 complex between the donor, acceptor and the host can be readily formed, and spectral data clearly show that the binding sites are mutually exclusive. The ternary complexes (two different ligands bound to the same protein molecule) provided opportunities to examine singlet-singlet energy transfer between the protein-bound chromophores. Donor emission was quenched by the addition of the acceptor, in the presence of limited amounts of BSA, while no energy transfer was observed in the absence of the protein host, under the same conditions. The excitation spectra of the donor-acceptor-host complexes clearly show the sensitization of acceptor emission by the donor. Protein denaturation, as induced by the addition of urea or increasing the temperature to 360 K, inhibited energy transfer, which indicate that protein structure plays an important role. Sensitization also proceeded at low temperature (77 K) and diffusion of the donor or the acceptor is not required for energy transfer. Stern-Volmer quenching plots show that the quenching constant is (3.1+/-0.2)x10(4) M(-1), at low acceptor concentrations (<35 microM). Other albumins such as human and porcine proteins also served as good hosts for the above experiments. For the first time, non

  8. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT).

    PubMed

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-11-22

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La 3+ donor-doped, Fe 3+ acceptor-doped and La 3+ /Fe 3+ -co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  9. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT)

    PubMed Central

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-01-01

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT. PMID:28774067

  10. Theory for electron transfer from a mixed-valence dimer with paramagnetic sites to a mononuclear acceptor

    NASA Astrophysics Data System (ADS)

    Bominaar, E. L.; Achim, C.; Borshch, S. A.

    1999-06-01

    Polynuclear transition-metal complexes, such as Fe-S clusters, are the prosthetic groups in a large number of metalloproteins and serve as temporary electron storage units in a number of important redox-based biological processes. Polynuclearity distinguishes clusters from mononuclear centers and confers upon them unique properties, such as spin ordering and the presence of thermally accessible excited spin states in clusters with paramagnetic sites, and fractional valencies in clusters of the mixed-valence type. In an earlier study we presented an effective-mode (EM) analysis of electron transfer from a binuclear mixed-valence donor with paramagnetic sites to a mononuclear acceptor which revealed that the cluster-specific attributes have an important impact on the kinetics of long-range electron transfer. In the present study, the validity of these results is tested in the framework of more detailed theories which we have termed the multimode semiclassical (SC) model and the quantum-mechanical (QM) model. It is found that the qualitative trends in the rate constant are the same in all treatments and that the semiclassical models provide a good approximation of the more rigorous quantum-mechanical description of electron transfer under physiologically relevant conditions. In particular, the present results corroborate the importance of electron transfer via excited spin states in reactions with a low driving force and justify the use of semiclassical theory in cases in which the QM model is computationally too demanding. We consider cases in which either one or two donor sites of a dimer are electronically coupled to the acceptor. In the case of multiconnectivity, the rate constant for electron transfer from a valence-delocalized (class-III) donor is nonadditive with respect to transfer from individual metal sites of the donor and undergoes an order-of-magnitude change by reversing the sign of the intradimer metal-metal resonance parameter (β). In the case of

  11. Field emission analysis of band bending in donor/acceptor heterojunction

    NASA Astrophysics Data System (ADS)

    Xing, Yingjie; Li, Shuai; Wang, Guiwei; Zhao, Tianjiao; Zhang, Gengmin

    2016-06-01

    The donor/acceptor heterojunction plays an important role in organic solar cells. An investigation of band bending in the donor/acceptor heterojunction is helpful in analysis of the charge transport behavior and for the improvement of the device performance. In this work, we report an approach for detection of band bending in a donor/acceptor heterojunction that has been prepared on a small and sharp tungsten tip. In situ field emission measurements are performed after the deposition process, and a linear Fowler-Nordheim plot is obtained from the fresh organic film surface. The thickness-dependent work function is then measured in the layer-by-layer deposited heterojunction. Several different types of heterojunction (zinc phthalocyanine (ZnPc)/C60, copper phthalocyanine (CuPc)/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, and CuPc/C60) are fabricated and analyzed. The different charge transfer directions in the heterojunctions are distinguished by field emission measurements. The calculation method used to determine the band bending is then discussed in detail. A triple layer heterojunction (C60/ZnPc/CuPc) is also analyzed using this method. A small amount of band bending is measured in the outer CuPc layer. This method provides an independent reference method for determination of the band bending in an organic heterojunction that will complement photoemission spectroscopy and current-voltage measurement methods.

  12. Microbial reduction of vanadium (V) in groundwater: Interactions with coexisting common electron acceptors and analysis of microbial community.

    PubMed

    Liu, Hui; Zhang, Baogang; Yuan, Heyang; Cheng, Yutong; Wang, Song; He, Zhen

    2017-12-01

    Vanadium (V) pollution in groundwater has posed serious risks to the environment and public health. Anaerobic microbial reduction can achieve efficient and cost-effective remediation of V(V) pollution, but its interactions with coexisting common electron acceptors such as NO 3 - , Fe 3+ , SO 4 2- and CO 2 in groundwater remain unknown. In this study, the interactions between V(V) reduction and reduction of common electron acceptors were examined with revealing relevant microbial community and identifying dominant species. The results showed that the presence of NO 3 - slowed down the removal of V(V) in the early stage of the reaction but eventually led to a similar reduction efficiency (90.0% ± 0.4% in 72-h operation) to that in the reactor without NO 3 - . The addition of Fe 3+ , SO 4 2- , or CO 2 decreased the efficiency of V(V) reduction. Furthermore, the microbial reduction of these coexisting electron acceptors was also adversely affected by the presence of V(V). The addition of V(V) as well as the extra dose of Fe 3+ , SO 4 2- and CO 2 decreased microbial diversity and evenness, whereas the reactor supplied with NO 3 - showed the increased diversity. High-throughput 16S rRNA gene pyrosequencing analysis indicated the accumulation of Geobacter, Longilinea, Syntrophobacter, Spirochaeta and Anaerolinea, which might be responsible for the reduction of multiple electron acceptors. The findings of this study have demonstrated the feasibility of anaerobic bioremediation of V(V) and the possible influence of coexisting electron acceptors commonly found in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Efficient Förster resonance energy transfer in 1,2,3-triazole linked BODIPY-Zn(II) meso-tetraphenylporphyrin donor-acceptor arrays.

    PubMed

    Leonardi, Matthew J; Topka, Michael R; Dinolfo, Peter H

    2012-12-17

    Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC) reactivity was successfully employed to synthesize three donor-acceptor energy transfer (EnT) arrays that contain one (Dyad), three (Tetrad) and four (Pentad) 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) donors connected to a Zn-tetraphenylporphyrin acceptor via 1,2,3-triazole linkages. The photophysical properties of the three arrays, along with individual donor and acceptor chromophores, were investigated by UV-vis absorption and emission spectroscopy, fluorescence lifetimes, and density functional theory (DFT) electronic structure modeling. Comparison of the UV-vis absorption spectra and frontier molecular orbitals from DFT calculations of the three arrays with ZnTPP, ZnTTrzlP, and Trzl-BODIPY shows that the electronic structure of the chromophores is essentially unperturbed by the 1,2,3-triazole linkage. Time-dependent DFT (TDDFT) calculations on the Dyad reproduce the absorption spectra in THF and show no evidence of excited state mixing of the donor and acceptor. The BODIPY singlet excited state emission is significantly quenched in all three arrays, consistent with EnT to the porphyrin core, with efficiencies of 95.8, 97.5, and 97.2% for the Dyad, Tetrad, and Pentad, respectively. Fluorescence excitation spectra of the three arrays, measured at the porphyrin emission, mirror the absorption profile of both the porphyrin and BODIPY chromophores and are consistent with the Förster resonance energy transfer (FRET) mechanism. Applying Förster theory to the spectroscopic data of the chromophores gives EnT efficiency estimates that are in close agreement with experimental values, suggesting that the through-space mechanism plays a dominant role in the three arrays.

  14. A charge carrier transport model for donor-acceptor blend layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Janine, E-mail: janine.fischer@iapp.de; Widmer, Johannes; Koerner, Christian

    2015-01-28

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C{sub 60} in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for themore » characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (E{sub t} = 0.14 eV, N{sub t} = 1.2 × 10{sup 18 }cm{sup −3}) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer.« less

  15. Impact on electronic structure of donor/acceptor blend in organic photovoltaics by decontamination of molybdenum-oxide surface

    NASA Astrophysics Data System (ADS)

    Ito, Yuta; Akaike, Kouki; Fukuda, Takeshi; Sato, Daisuke; Fuse, Takuya; Iwahashi, Takashi; Ouchi, Yukio; Kanai, Kaname

    2018-05-01

    Molybdenum oxide (MoOx) is widely used as the hole-transport layer in bulk-heterojunction organic photovoltaics (BHJ-OPVs). During the fabrication of solution-processed BHJ-OPVs on vacuum-deposited MoOx film, the film must be exposed to N2 atmosphere in a glove box, where the donor/acceptor blends are spin-coated from a mixed solution. Employing photoelectron spectroscopy, we reveal that the exposure of the MoOx film to such atmosphere contaminates the MoOx surface. Annealing the contaminated MoOx film at 160 °C for 5 min, prior to spin-coating the blend film, can partially remove the carbon and oxygen adsorbed on the MoOx surface during the exposure of MoOx. However, the contamination layer on the MoOx surface does not affect the energy-level alignment at the interface between MoOx and the donor/acceptor blend. Hence, significant improvement in the performance of BHJ-OPVs by mildly annealing the MoOx layer, which was previously reported, can be explained by the reduction of undesired contamination.

  16. Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer.

    PubMed

    Karasawa, Satoshi; Araki, Toshio; Nagai, Takeharu; Mizuno, Hideaki; Miyawaki, Atsushi

    2004-07-01

    GFP (green fluorescent protein)-based FRET (fluorescence resonance energy transfer) technology has facilitated the exploration of the spatio-temporal patterns of cellular signalling. While most studies have used cyan- and yellow-emitting FPs (fluorescent proteins) as FRET donors and acceptors respectively, this pair of proteins suffers from problems of pH-sensitivity and bleeding between channels. In the present paper, we demonstrate the use of an alternative additional donor/acceptor pair. We have cloned two genes encoding FPs from stony corals. We isolated a cyan-emitting FP from Acropara sp., whose tentacles exhibit cyan coloration. Similar to GFP from Renilla reniformis, the cyan FP forms a tight dimeric complex. We also discovered an orange-emitting FP from Fungia concinna. As the orange FP exists in a complex oligomeric structure, we converted this protein into a monomeric form through the introduction of three amino acid substitutions, recently reported to be effective for converting DsRed into a monomer (Clontech). We used the cyan FP and monomeric orange FP as a donor/acceptor pair to monitor the activity of caspase 3 during apoptosis. Due to the close spectral overlap of the donor emission and acceptor absorption (a large Förster distance), substantial pH-resistance of the donor fluorescence quantum yield and the acceptor absorbance, as well as good separation of the donor and acceptor signals, the new pair can be used for more effective quantitative FRET imaging.

  17. Modular supramolecular approach for co-crystallization of donors and acceptors into ordered networks

    DOEpatents

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alex K.; Tayi, Alok S.; Sue, Andrew C. H.; Narayanan, Ashwin

    2016-09-20

    Organic charge-transfer (CT) co-crystals in a mixed stack system are disclosed, wherein a donor molecule (D) and an acceptor molecule (A) occupy alternating positions (DADADA) along the CT axis. A platform is provided which amplifies the molecular recognition of donors and acceptors and produces co-crystals at ambient conditions, wherein the platform comprises (i) a molecular design of the first constituent (.alpha.-complement), (ii) a molecular design of the second compound (.beta.-complement), and (iii) a solvent system that promotes co-crystallization.

  18. Modular supramolecular approach for co-crystallization of donors and acceptors into ordered networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alexander K.

    Organic charge-transfer (CT) co-crystals in a mixed stack system are disclosed, wherein a donor molecule (D) and an acceptor molecule (A) occupy alternating positions (DADADA) along the CT axis. A platform is provided which amplifies the molecular recognition of donors and acceptors and produces co-crystals at ambient conditions, wherein the platform comprises (i) a molecular design of the first constituent (.alpha.-complement), (ii) a molecular design of the second compound (.beta.-complement), and (iii) a solvent system that promotes co-crystallization.

  19. Highly efficient exciplex organic light-emitting diodes incorporating a heptazine derivative as an electron acceptor.

    PubMed

    Li, Jie; Nomura, Hiroko; Miyazaki, Hiroshi; Adachi, Chihaya

    2014-06-11

    Highly efficient exciplex systems incorporating a heptazine derivative () as an electron acceptor and 1,3-di(9H-carbazol-9-yl)benzene () as an electron donor are developed. An organic light-emitting diode containing 8 wt% : as an emitting layer exhibits a maximum external quantum efficiency of 11.3%.

  20. THz emission of donor and acceptor doped GaAs/AlGaAs quantum well structures with inserted thin AlAs monolayer

    NASA Astrophysics Data System (ADS)

    van Dommelen, Paphavee; Daengngam, Chalongrat; Kalasuwan, Pruet

    2018-04-01

    In this paper, we explore THz range optical intersubband transition energies in a donor doped quantum well of a GaAs/AlGaAs system as a function of the insertion position of an AlAs monolayer in the GaAs quantum well. In simulated models, the optical transition energies between electron subband levels 1 and 2 were higher in the doped structure than in the undoped structure. This may be because the envelope wave function of the second electron subband strongly overlapped the envelope wave function of the first electron subband and influenced the optical intersubband transition between the two levels in the THz range. At different levels of bias voltage at the Schottky barrier on the donor doped structure, the electric field in the growth direction of the structure linearly increased the further away the AlAs monolayer was placed from the reference position. We also simulated the optical transition energies between acceptor energy levels of the acceptor doped structure as a function of the insertion position of the AlAs monolayer. The acceptor doped structure induced THz range emission whereas the undoped structure induced mid-IR emission.

  1. Rotaxanes and Photovoltaic Materials Based on Pi-Conjugated Donors and Acceptors: Toward Energy Transduction on the Nanoscale

    NASA Astrophysics Data System (ADS)

    Bruns, Carson J.

    The flow of energy between its various forms is central to our understanding of virtually all natural phenomena, from the origins and fate of the universe to the mechanisms that underpin Life. Therefore, a deeper fundamental understanding of how to manage energy processes at the molecular scale will open new doors in science and technology. This dissertation describes organic molecules and materials that are capable of transducing various forms of energy on the nanoscale, namely, a class of mechanically interlocked molecules known as rotaxanes for electrochemical-to-mechanical energy transduction (Part I), and a class of thin films known as organic photovoltaics (OPVs) for solar-to-electric energy transduction (Part II). These materials are all based on conjugated molecules with a capacity to donate or accept pi-electrons. A contemporary challenge in molecular nanotechnology is the development of artificial molecular machines (AMMs) that mimic the ability of motor proteins (e.g. myosin, kinesin) to perform mechanical work by leveraging a combination of energy sources and rich structural chemistry. Part I describes the synthesis, characterization, molecular dynamics, and switching properties of a series of `daisy chain' and oligorotaxane AMM prototypes. All compounds are templated by charge transfer and hydrogen bonding interactions between pi-associated 1,5-dioxynaphthlene donors appended with polyether groups and pi-acceptors of either neutral (naphthalenediimide) or charged (4,4´-bipyridinium) varieties, and are synthesized using efficient one-pot copper(I)-catalyzed azide-alkyne cycloaddition `click chemistry' protocols. The interlocked architectures of these rotaxanes enable them to express sophisticated secondary structures (i.e. foldamers) and mechanical motions in solution, which have been elucidated using dynamic 1H NMR spectroscopy. Furthermore, molecular dynamics simulations, cyclic voltammetry, and spectroelectrochemistry experiments have demonstrated

  2. Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Boning; Liang, Min; Zmich, Nicole

    Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less

  3. Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors

    DOE PAGES

    Wu, Boning; Liang, Min; Zmich, Nicole; ...

    2018-01-29

    Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less

  4. Identification of rhenium donors and sulfur vacancy acceptors in layered MoS{sub 2} bulk samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandão, F. D., E-mail: fdbrand@fisica.ufmg.br; Ribeiro, G. M.; Vaz, P. H.

    2016-06-21

    MoS{sub 2} monolayers, a two-dimensional (2D) direct semiconductor material with an energy gap of 1.9 eV, offer many opportunities to be explored in different electronic devices. Defects often play dominant roles in the electronic and optical properties of semiconductor devices. However, little experimental information about intrinsic and extrinsic defects or impurities is available for this 2D system, and even for macroscopic 3D samples for which MoS{sub 2} shows an indirect bandgap of 1.3 eV. In this work, we evaluate the nature of impurities with unpaired spins using electron paramagnetic resonance (EPR) in different geological macroscopic samples. Regarding the fact that monolayers aremore » mostly obtained from natural crystals, we expect that the majority of impurities found in macroscopic samples are also randomly present in MoS{sub 2} monolayers. By EPR at low temperatures, rhenium donors and sulfur vacancy acceptors are identified as the main impurities in bulk MoS{sub 2} with a corresponding donor concentration of about 10{sup 8–12} defects/cm{sup 2} for MoS{sub 2} monolayer. Electrical transport experiments as a function of temperature are in good agreement with the EPR results, revealing a shallow donor state with an ionization energy of 89 meV and a concentration of 7 × 10{sup 15 }cm{sup −3}, which we attribute to rhenium, as well as a second deeper donor state with ionization energy of 241 meV with high concentration of 2 × 10{sup 19 }cm{sup −3} and net acceptor concentration of 5 × 10{sup 18 }cm{sup −3} related to sulfur vacancies.« less

  5. Modular Electron Donor Group Tuning Of Frontier Energy Levels In Diarylaminofluorenone Push-Pull Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homnick, Paul J.; Lahti, P. M.

    2012-01-01

    Push–pull organic molecules composed of electron donor diarylamines at the 2- and 2,7-positions of fluorenone exhibit intramolecular charge-transfer behaviour in static absorption and emission spectra. Electrochemical and spectral data combined in a modular electronic analysis model show how the donor HOMO and acceptor LUMO act as major determinants of the frontier molecular orbital energy levels.

  6. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    PubMed Central

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  7. Ultraviolet photoelectron spectroscopy reveals energy-band dispersion for π-stacked 7,8,15,16-tetraazaterrylene thin films in a donor-acceptor bulk heterojunction.

    PubMed

    Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen

    2018-05-11

    7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate-adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2':5',2″:5″,2″'-quaterthiophene (4T), a 4T:TAT donor-acceptor bulk heterojunction with a considerable HOMO-level offset at the donor-acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.

  8. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing

    PubMed Central

    Li, Ning; Perea, José Darío; Kassar, Thaer; Richter, Moses; Heumueller, Thomas; Matt, Gebhard J.; Hou, Yi; Güldal, Nusret S.; Chen, Haiwei; Chen, Shi; Langner, Stefan; Berlinghof, Marvin; Unruh, Tobias; Brabec, Christoph J.

    2017-01-01

    The performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark. A theoretical calculation of the molecular parameters and construction of the spinodal phase diagrams highlight molecular incompatibilities between the donor and acceptor as a dominant mechanism for burn-in degradation, which is to date the major short-time loss reducing the performance and stability of organic solar cells. PMID:28224984

  9. Making highly conductive ZnO: creating donors and destroying acceptors

    NASA Astrophysics Data System (ADS)

    Look, D. C.; Leedy, K. D.

    2012-02-01

    We obtain room-temperature resistivities as low as ρ =1.4 x 10-4 Ω-cm in transparent Ga-doped ZnO grown on Al2O3 by pulsed laser deposition (PLD) at 200 °C in 10 mTorr of pure Ar and then annealed in a Zn enfivironment. Donor ND and acceptor NA concentrations are calculated from a recently developed scattering theory that is valid for any degenerate semiconductor material and requires only two input parameters, mobility μ and carrier concentration n measured at any temperature in the range 5 - 300 K. By comparison with SIMS and positron annihilation measurements, it has been shown that the donors in these samples are mostly GaZn, as expected, but that the acceptors are point defects, Zn vacancies VZn. PLD growth in Ar at 200 °C produces a high concentration of donors [GaZn] = 1.4 x 1021 cm-3, but VZn acceptors are produced at the same time, due to self-compensation. Fortunately, a large fraction of the VZn can be eliminated by annealing in a Zn environment. The theory gives ND and NA, and thus [GaZn] and [VZn], at each step of the growth and annealing process. For convenience, the theory is presented graphically, as plots of μ vs n at various values of compensation ratio K = NA/ND. From the value of K corresponding to the experimental values of μ and n, it is possible to calculate ND = n/(1 - K) and NA = nK/(1 - K).

  10. Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors.

    PubMed

    Milanovsky, Georgy E; Petrova, Anastasia A; Cherepanov, Dmitry A; Semenov, Alexey Yu

    2017-09-01

    The reduction kinetics of the photo-oxidized primary electron donor P 700 in photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 were analyzed within the kinetic model, which considers electron transfer (ET) reactions between P 700 , secondary quinone acceptor A 1 , iron-sulfur clusters and external electron donor and acceptors - methylviologen (MV), 2,3-dichloro-naphthoquinone (Cl 2 NQ) and oxygen. PS I complexes containing various quinones in the A 1 -binding site (phylloquinone PhQ, plastoquinone-9 PQ and Cl 2 NQ) as well as F X -core complexes, depleted of terminal iron-sulfur F A /F B clusters, were studied. The acceleration of charge recombination in F X -core complexes by PhQ/PQ substitution indicates that backward ET from the iron-sulfur clusters involves quinone in the A 1 -binding site. The kinetic parameters of ET reactions were obtained by global fitting of the P 700 + reduction with the kinetic model. The free energy gap ΔG 0 between F X and F A /F B clusters was estimated as -130 meV. The driving force of ET from A 1 to F X was determined as -50 and -220 meV for PhQ in the A and B cofactor branches, respectively. For PQ in A 1A -site, this reaction was found to be endergonic (ΔG 0  = +75 meV). The interaction of PS I with external acceptors was quantitatively described in terms of Michaelis-Menten kinetics. The second-order rate constants of ET from F A /F B , F X and Cl 2 NQ in the A 1 -site of PS I to external acceptors were estimated. The side production of superoxide radical in the A 1 -site by oxygen reduction via the Mehler reaction might comprise ≥0.3% of the total electron flow in PS I.

  11. Generalized Mulliken-Hush analysis of electronic coupling interactions in compressed pi-stacked porphyrin-bridge-quinone systems.

    PubMed

    Zheng, Jieru; Kang, Youn K; Therien, Michael J; Beratan, David N

    2005-08-17

    Donor-acceptor interactions were investigated in a series of unusually rigid, cofacially compressed pi-stacked porphyrin-bridge-quinone systems. The two-state generalized Mulliken-Hush (GMH) approach was used to compute the coupling matrix elements. The theoretical coupling values evaluated with the GMH method were obtained from configuration interaction calculations using the INDO/S method. The results of this analysis are consistent with the comparatively soft distance dependences observed for both the charge separation and charge recombination reactions. Theoretical studies of model structures indicate that the phenyl units dominate the mediation of the donor-acceptor coupling and that the relatively weak exponential decay of rate with distance arises from the compression of this pi-electron stack.

  12. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  13. Electron-transfer and acid-base properties of a two-electron oxidized form of quaterpyrrole that acts as both an electron donor and an acceptor.

    PubMed

    Zhang, Min; E, Wenbo; Ohkubo, Kei; Sanchez-Garcia, David; Yoon, Dae-Wi; Sessler, Jonathan L; Fukuzumi, Shunichi; Kadish, Karl M

    2008-02-21

    Electron-transfer interconversion between the four-electron oxidized form of a quaterpyrrole (abbreviated as P4 for four pyrroles) and the two-electron oxidized form (P4H2) as well as between P4H2 and its fully reduced form (P4H4) bearing analogous substituents in the alpha- and beta-pyrrolic positions was studied by means of cyclic voltammetry and UV-visible spectroelectrochemistry combined with ESR and laser flash photolysis measurements. The two-electron oxidized form, P4H2, acts as both an electron donor and an electron acceptor. The radical cation (P4H2*+) and radical anion (P4H2*-) are both produced by photoinduced electron transfer from dimeric 1-benzyl-1,4-dihydronicotinamide to P4H2, whereas the cation radical form of the compound is also produced by electron-transfer oxidation of P4H2 with [Ru(bpy)3]3+. The ESR spectra of P4H2*+ and P4H2*- were recorded at low temperature and exhibit spin delocalization over all four pyrrole units. Thus, the two-electron oxidized form of the quaterpyrrole (P4H2) displays redox and electronic features analogous to those seen in the case of porphyrins and may be considered as a simple, open-chain model of this well-studied tetrapyrrolic macrocycle. The dynamics of deprotonation from P4H2*+ and disproportionation of P4H2 were examined by laser flash photolysis measurements of photoinduced electron-transfer oxidation and reduction of P4H2, respectively.

  14. On chirality transfer in electron donor-acceptor complexes. A prediction for the sulfinimine···BF3 system.

    PubMed

    Rode, Joanna E; Dobrowolski, Jan Cz

    2012-01-01

    Stabilization energies of the electron donor-acceptor sulfinimine···BF(3) complexes calculated at either the B3LYP/aug-cc-pVTZ or the MP2/aug-cc-pVTZ level do not allow to judge, whether the N- or O-atom in sulfinimine is stronger electron-donor to BF(3) . The problem seems to be solvable because chirality transfer phenomenon between chiral sulfinimine and achiral BF(3) is expected to be vibrational circular dichroism (VCD) active. Moreover, the bands associated with the achiral BF(3) molecule are predicted to be the most intense in the entire spectrum. However, the VCD band robustness analyses show that most of the chirality transfer modes of BF(3) are unreliable. Conversely, variation of VCD intensity with change of intermolecular distance, angle, and selected dihedrals between the complex partners shows that to establish the robustness of chirality transfer mode. It is also necessary to determine the influence of the potential energy surface (PES) shape on the VCD intensity. At the moment, there is still no universal criterion for the chirality transfer mode robustness and the conclusions formulated based on one system cannot be directly transferred even to a quite similar one. However, it is certain that more attention should be focused on relation of PES shape and the VCD mode robustness problem. Copyright © 2011 Wiley Periodicals, Inc.

  15. Reduction of electron accumulation at InN(0001) surfaces via saturation of surface states by potassium and oxygen as donor- or acceptor-type adsorbates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenhardt, A.; Reiß, S.; Krischok, S., E-mail: stefan.krischok@tu-ilmenau.de

    2014-01-28

    The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearancemore » of surface states, which initially pin the Fermi level and induce downward band bending.« less

  16. Investigation of energy transfer between semiconducting polymer dot donors and hydrophilic and hydrophobic Cy5 acceptors

    NASA Astrophysics Data System (ADS)

    Lix, Kelsi; Algar, W. Russ

    2016-09-01

    Semiconducting polymer dots (Pdots) are rapidly emerging fluorescent probes for bioanalysis. Pdots have extraordinarily strong absorption and bright emission compared to other commonly used fluorescent probes, making them very attractive for applications involving Förster resonance energy transfer (FRET). Here, we investigated two FRET systems with green-emitting poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) Pdots as donors and two different Cyanine 5 (Cy5) dyes as acceptors. A hydrophilic sulfo-Cy5 dye was directly conjugated to the Pdot surface using carbodiimide chemistry, and a hydrophobic Cy5 dye was observed to spontaneously partition into the core of the Pdot. FRET was observed to depend on the acceptor dye concentration with both systems, and was characterized using a combination of fluorescence emission spectra, excitation spectra, and lifetime measurements. Much stronger quenching of Pdot emission and FRET-sensitized acceptor dye emission were observed for the hydrophobic Cy5 system, and these trends were attributed to reduced donor-acceptor distances in comparison to the hydrophilic sulfo-Cy5 system. Current limitations in the experimental format are discussed. The results show that Pdots are effective FRET donors for acceptor dyes located both within and at the surface of Pdots.

  17. Distinguishing between Dexter and rapid sequential electron transfer in covalently linked donor-acceptor assemblies.

    PubMed

    Soler, Monica; McCusker, James K

    2008-04-09

    with the lack of enhanced emission at temperatures below the glass-to-fluid transition of the solvent and the absence of visible absorption features associated with the Mn(II)2 core allows for a definitive assignment of Dexter transfer as the dominant excited-state reaction pathway. A similar conclusion was reached for complex 3 based in part on the smaller driving force for electron transfer (DeltaG0(ET) = -0.1 eV), the increase in probability of Dexter transfer due to the closer proximity of the donor excited state to the dimanganese acceptor, and a lack of emission from the compound upon formation of an optical glass at 80 K. Electronic coupling constants for Dexter transfer were determined to be approximately 10 cm(-1) and approximately 0.15 cm(-1) in complexes 3 and 4, respectively, indicating that the change in spatial localization of the excited state from the bridge (complex 3) to the periphery of the chromophore (complex 4) results in a decrease in electronic coupling to the dimanganese core of nearly 2 orders of magnitude. In addition to providing insight into the influence of donor/acceptor proximity on exchange energy transfer, this study underscores the utility of variable-temperature measurements in cases where Dexter and electron-transfer mechanisms can lead to indistinguishable spectroscopic observables.

  18. Investigations on the charge transfer mechanism at donor/acceptor interfaces in the quest for descriptors of organic solar cell performance.

    PubMed

    Muraoka, Azusa; Fujii, Mikiya; Mishima, Kenji; Matsunaga, Hiroki; Benten, Hiroaki; Ohkita, Hideo; Ito, Shinzaburo; Yamashita, Koichi

    2018-05-07

    Herein, we theoretically and experimentally investigated the mechanisms of charge separation processes of organic thin-film solar cells. PTB7, PTB1, and PTBF2 have been chosen as donors and PC 71 BM has been chosen as an acceptor considering that effective charge generation depends on the difference between the material combinations. Experimental results of transient absorption spectroscopy show that the hot process is a key step for determining external quantum efficiency (EQE) in these systems. From the quantum chemistry calculations, it has been found that EQE tends to increase as the transferred charge, charge transfer distance, and variation of dipole moments between the ground and excited states of the donor/acceptor complexes increase; this indicates that these physical quantities are a good descriptor to assess the donor-acceptor charge transfer quality contributing to the solar cell performance. We propose that designing donor/acceptor interfaces with large values of charge transfer distance and variation of dipole moments of the donor/acceptor complexes is a prerequisite for developing high-efficiency polymer/PCBM solar cells.

  19. Effective Tuning of Ketocyanine Derivatives through Acceptor Substitution.

    PubMed

    Poe, Ambata; Della Pelle, Andrea; Byrnes, Sean; Thayumanavan, S

    2015-05-18

    A series of ketocyanine derivatives possessing bis(diarylamino)fluorenyl donors and variable acceptors installed at the bridging carbon atom were synthesized to investigate how the electronic structure of the dye can be systemically tuned through stabilization of the cyanine-like character of the donor by increasing the acceptor strength. Analysis of the (1) H NMR spectra indicates that the "charge-separated" species dominates in these dyes, given that carbons possessing a positive or negative charge in the resonance structures of this state purposefully shift downfield or upfield, respectively, depending on the strength of the acceptor moiety. In DAA-Fl-PI, the acceptor strength and the gain of acceptor aromaticity indicates a predisposition of the separated state, indicated by asymmetry in the (1) H NMR spectrum, as well as uneven distribution of the HOMO on the fluorenyl donor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. (3+3)-Annulation of Donor-Acceptor Cyclopropanes with Diaziridines.

    PubMed

    Trushkov, Igor V; Chagarovskiy, Alexey O; Vasin, Vladimir S; Kuznetsov, Vladimir V; Ivanova, Olga A; Rybakov, Victor B; Shumsky, Alexey N; Makhova, Nina N

    2018-06-23

    The first example of (3+3)-annulation of two different three-membered rings is reported herein. Donor-acceptor cyclopropanes in reaction with diaziridines were found to afford perhydropyridazine derivatives in high yields and diastereoselectivity under mild Lewis acid catalysis. The disclosed reaction is applicable for the broad substrate scope and exhibits an excellent functional group tolerance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Highly regioselective Lewis acid-catalyzed [3+2] cycloaddition of alkynes with donor-acceptor oxiranes by selective carbon-carbon bond cleavage of epoxides.

    PubMed

    Liu, Renrong; Zhang, Mei; Zhang, Junliang

    2011-12-28

    A novel, efficient, highly regioselective Sc(OTf)(3)-catalyzed [3+2] cycloaddition of electron-rich alkynes with donor-acceptor oxiranes via highly chemoselective C-C bond cleavage under mild conditions was developed. This journal is © The Royal Society of Chemistry 2011

  2. Giant first hyperpolarizabilities of donor-acceptor substituted graphyne: An ab initio study.

    PubMed

    Chakraborti, Himadri

    2016-01-15

    Graphyne (Gy), a theoretically proposed material, has been utilized, for the first time, in a phenomenal donor-Gy-acceptor (D-Gy-A) structure to plan a superior nonlinear optical material. Owing to the extraordinary character of graphyne, this conjugate framework shows strikingly extensive static first hyperpolarizability (β(tot)) up to 128×10(-30) esu which is an enormous improvement than that of the bare graphyne. The donor-acceptor separation plays a key role in the change of β(tot) value. The π-conjugation of graphyne backbone has spread throughout some of the D-A attached molecules and leads to a low band gap state. Finally, two level model clarifies that the molecule having low transition energy should have high first hyperpolarizability. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Charge carrier dynamics in organic semiconductors and their donor-acceptor composites: Numerical modeling of time-resolved photocurrent

    NASA Astrophysics Data System (ADS)

    Johnson, Brian; Kendrick, Mark J.; Ostroverkhova, Oksana

    2013-09-01

    reduced and trap densities and average trap depths were increased, as compared to a pristine ADT donor film. A considerably slower recombination of free holes with trapped electrons was found in the composite with the PCBM acceptor, which led to slower decays of the transient photocurrent and considerably higher charge retention, as compared to a pristine ADT donor film and the composite with the functionalized Pn acceptor.

  4. Photoinduced electron transfer across a molecular wall: coumarin dyes as donors and methyl viologen and TiO2 as acceptors.

    PubMed

    Porel, Mintu; Klimczak, Agnieszka; Freitag, Marina; Galoppini, Elena; Ramamurthy, V

    2012-02-21

    Coumarins C-153, C-480, and C-1 formed 1:2 (guest:host) complexes with a water-soluble cavitand having eight carboxylic acid groups (OA) in aqueous borate buffer solution. The complexes were photoexcited in the presence of electron acceptors (methyl viologen, MV(2+), or TiO(2)) to probe the possibility of electron transfer between a donor and an acceptor physically separated by a molecular wall. In solution at basic pH, the dication MV(2+) was associated to the exterior of the complex C-153@OA(2), as suggested by diffusion constants (~1.2 × 10(-6) cm(2)/s) determined by DOSY NMR. The fluorescence of C-153@OA(2) was quenched in the presence of increasing amounts of MV(2+) and Stern-Volmer plots of I(o)/I and τ(o)/τ vs [MV(2+)] indicated that the quenching was static. As per FT-IR-ATR spectra, the capsule C-153@OA(2) was bound to TiO(2) nanoparticle films. Selective excitation (λ(exc) = 420) of the above bound complex resulted in fluorescence quenching. When adsorbed on insulating ZrO(2) nanoparticle films, excitation of the complex resulted in a broad fluorescence spectrum centered at 500 nm and consistent with C-153 being within the lipophilic capsule interior. Consistent with the above results, colloidal TiO(2) quenched the emission while colloidal ZrO(2) did not.

  5. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers.

    PubMed

    Zhou, Nanjia; Dudnik, Alexander S; Li, Ting I N G; Manley, Eric F; Aldrich, Thomas J; Guo, Peijun; Liao, Hsueh-Chung; Chen, Zhihua; Chen, Lin X; Chang, Robert P H; Facchetti, Antonio; Olvera de la Cruz, Monica; Marks, Tobin J

    2016-02-03

    The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE "sweet spot" at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for both polymer

  6. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nanjia; Dudnik, Alexander S.; Li, Ting I. N. G.

    2015-12-31

    ABSTRACT: The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4- c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)- thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'- bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)- 2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The M n effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable M ns. Experimental and coarse-grain modeling results reveal that systematic M n variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing M n formore » both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (J sc). However, the greater disorder and intermixed feature proliferation accompanying increasing M n promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal M ns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer M ns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest M ns, the present two-dimensional M n optimization matrix strategy locates a PCE “sweet spot” at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired M n and highlights the importance of

  7. Two-Electron Transfer Pathways.

    PubMed

    Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N

    2015-06-18

    The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple

  8. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (<100 meV), and thus allows RISC at ambient temperature. We found that the EL emission in OLED based on the exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  9. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems

    PubMed Central

    Teuscher, Joël; Brauer, Jan C.; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E.

    2017-01-01

    Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research “Molecular Ultrafast Science and Technology,” a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here. PMID:29308415

  10. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems.

    PubMed

    Teuscher, Joël; Brauer, Jan C; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E

    2017-11-01

    Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  11. Tuning the electronic and optical properties of NDT-based conjugated polymers by adopting fused heterocycles as acceptor units: a theoretical study.

    PubMed

    Cheng, Na; Zhang, Changqiao; Liu, Yongjun

    2017-08-01

    Donor-acceptor conjugated polymers have been successfully applied in bulk heterojunction solar cell devices. Tuning their donor and acceptor units allows the design of new polymers with desired electronic and optical properties. Here, to screen new candidate polymers based on a newly synthesized donor unit, dithieo[2,3-d:2',3'-d']naphtho[1,2-b:3,4-b']dithiophene (NDT), a series of model polymers with different acceptor units were designed and denoted NDT-A 0 to NDT-A 12 , and the structures and optical properties of those polymers were investigated using DFT and TDDFT calculations. The results of the calculations revealed that the electronic and optical properties of these polymers depend on the acceptor unit present; specifically, their HOMO energies ranged from -4.89 to -5.38 eV, their HOMO-LUMO gaps ranged from 1.30 to 2.80 eV, and their wavelengths of maximum absorption ranged from 538 to 1212 nm. The absorption spectra of NDT-A 1 to NDT-A 6 , NDT-A 8 , NDT-A 9 , and NDT-A 12 occur within the visible region (<900 nm), indicating that these polymers are potential candidates for use in solar cells. On the other hand, the absorption spectra of NDT-A 7 , NDT-A 10 , and NDT-A 11 extend much further into the near-infrared region, implying that they absorb near-infrared light. These polymers could meet the requirements of donor units for use in tandem and ternary solar cells. Graphical abstract Theoretical calculations by TD-DFT reveal that the optical properties of NDT-based conjugated polymers can be well tuned by adopting different acceptor units, and these ploymers are potential donor materials for tandem and ternary solar cells.

  12. Coupling of phonons with excitons bound to different donors and acceptors in hexagonal GaN

    NASA Astrophysics Data System (ADS)

    Korona, K. P.; Wysmoek, A.; Kuhl, J.; Kamiska, M.; Baranowski, J. M.; Look, D. C.; Park, S. S.

    2006-06-01

    Time-resolved measurements of GaN with different donors (oxygen or silicon) and acceptors (zinc or magnesium) showed pronounced bound exciton lines and their phonon replicas. The analysis included three phonon modes characteristic for the wurtzite (hexagonal) phase: A1(LO), E1(TO) and E2H. It was shown that relative amplitudes of replicas depended upon the chemical nature of the defects that the bind excitons. The replicas were stronger for acceptor- than for donor-related features. Huang-Rhys factors S = 0.06 +/- 0.02 and S = 0.025 +/- 0.01, were found for the A0X and the D0X LO replicas, respectively. A significant difference in phonon coupling to silicon and oxygen donor bound excitons has been observed.

  13. Spectral, thermal, XRD and SEM studies of charge-transfer complexation of hexamethylenediamine and three types of acceptors: π-, σ- and vacant orbital acceptors that include quinol, picric acid, bromine, iodine, SnCl4 and ZnCl2 acceptors

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.

    2013-11-01

    In this work, structural, thermal, morphological and pharmacological characterization was performed on the interactions between a hexamethylenediamine (HMDA) donor and three types of acceptors to understand the complexation behavior of diamines. The three types of acceptors include π-acceptors (i.e., quinol (QL) and picric acid (PA)), σ-acceptors (i.e., bromine and iodine) and vacant orbital acceptors (i.e., tin(IV) tetrachloride (SnCl4) and zinc chloride (ZnCl2)). The characterization of the obtained CT complexes was performed using elemental analysis, infrared (IR), Raman, 1H NMR and electronic absorption spectroscopy, powder X-ray diffraction (XRD) and thermogravimetric (TG) analysis. Their morphologies were studied using scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). The biological activities of the obtained CT complexes were tested for their antibacterial activities. The complex containing the QL acceptor exhibited a remarkable electronic spectrum with a strong, broad absorption band, which had an observed λmax that was at a much longer wavelength than those of the free reactants. In addition, this complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared to standard drugs. The complexes containing the PA, iodine, Sn(IV) and Zn(II) acceptors exhibited good thermal stability up to 240, 330, 275 and 295 °C, respectively. The complexes containing bromine, Sn(IV) and Zn(II) acceptors exhibited good crystallinity. In addition to its good crystallinity properties, the complex containing the bromine acceptor exhibits a remarkable morphology feature.

  14. Can time-dependent density functional theory predict intersystem crossing in organic chromophores? A case study on benzo(bis)-X-diazole based donor-acceptor-donor type molecules.

    PubMed

    Tam, Teck Lip Dexter; Lin, Ting Ting; Chua, Ming Hui

    2017-06-21

    Here we utilized new diagnostic tools in time-dependent density functional theory to explain the trend of intersystem crossing in benzo(bis)-X-diazole based donor-acceptor-donor type molecules. These molecules display a wide range of fluorescence quantum yields and triplet yields, making them excellent candidates for testing the validity of these diagnostic tools. We believe that these tools are cost-effective and can be applied to structurally similar organic chromophores to predict/explain the trends of intersystem crossing, and thus fluorescence quantum yields and triplet yields without the use of complex and expensive multireference configuration interaction or multireference pertubation theory methods.

  15. Photoinduced electron transfer interaction of anthraquinones with aniline quenchers: Influence of methyl substitution in aniline donors

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.; Ponnamma, Deepalekshmi; Hussein, Yasser H. A.

    2017-02-01

    Photoinduced electron transfer between triplet state of 9,10-anthraquinone (AQ) and its two derivatives: 2-chloro-9,10-anthraquinone (CAQ) and sodium anthraquinone-2-sulfonate (AQS) and ground state aniline (AN) and its dimethyl substitutions: 2,3-dimethylaniline (2,3-DMA), 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and N,N-dimethylaniline (N,N-DMA) is studied using nanosecond laser flash photolysis at room temperature. Detection of radical bands of quinone anions and aniline cations along with their formation and/or decay kinetics are used to confirm the electron transfer (ET) process. In MeCN medium, AN quenches the triplet state of CAQ (CAQT) but not the triplets AQT or AQST. However in aqueous medium, AN quenches AQST and forms radical ion pair. All the DMAs can react through ET with all the triplet quinones at different degrees of efficiency in MeCN medium. Noticeably, the ring substituted DMAs are less efficient in electron donation to AQT or AQST while the N,N-DMA shows high efficiency in donating electron to all triplet quinones in MeCN medium. Charge distribution of donor molecules, in MeCN medium is calculated using density functional theory (DFT), and shows an enhancement of electron density of the ring of N,N-DMA, making it an ideal electron donor for ET studies compared to other DMAs. This systematic selection and usage of anilines with electrochemically tunable quinones can be viewed as a working model of donor-acceptor system that can be utilized in photoinduced ET applications.

  16. Light-induced noncentrosymmetry in acceptor-donor-substituted azobenzene solutions

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Si, Jinhai; Wang, Yougui; Ye, Peixian; Fu, Xingfa; Qiu, Ling; Shen, Yuquan

    1995-10-01

    Light-induced noncentrosymmetry was achieved experimentally in acceptor-donor-substituted azobenzene solutions and observed by phase-matched nondegenerate six-wave mixing. The microscopic origin of the induced noncentrosymmetry was found to be orientational hole burning, which was distinguished directly with net orientation of molecules by experimental observations. The decay time of the induced noncentrosymmetry depended on the rotational orientation time of the sample's molecule, which varied linearly with the viscosity of the solvent.

  17. Magneto-ionic phase control in a quasi-layered donor/acceptor metal-organic framework by means of a Li-ion battery system

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kouji; Narushima, Keisuke; Yamagishi, Kayo; Shito, Nanami; Kosaka, Wataru; Miyasaka, Hitoshi

    2017-06-01

    Electrical magnetism control is realized in a Li-ion battery system through a redox reaction involving ion migrations; “magneto-ionic control”. A quasi-layered metal-organic framework compound with a cross-linked π-conjugated/unconjugated one-dimensional chain motifs composed of electron-donor/acceptor units is developed as the cathode material. A change in magnetic phase from paramagnetic to ferrimagnetic is demonstrated by means of electron-filling control for the acceptor units via insertion of Li+-ions into pores in the material. The transition temperature is as high as that expected for highly π-conjugated layered systems, indicating an extension of π-conjugated exchange paths by rearranging coordination bonds in the first discharge process.

  18. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    NASA Technical Reports Server (NTRS)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  19. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.

    PubMed

    El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K

    2014-06-01

    Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

  20. A comprehensive study of the optoelectronic properties of donor-acceptor based derivatives of 1,3,4-oxadiazole

    NASA Astrophysics Data System (ADS)

    Joshi, Ankita; Ramachandran, C. N.

    2017-07-01

    A variety of 1,3,4-oxadiazole derivatives based on electron- donor pyrrole and -acceptor nitro groups are modelled. Various isomers of pyrole-oxadiazole-nitro unit and its dimer linked to substituted and unsubstituted phenyl group are studied using the dispersion corrected density functional theoretical method. The electron density distribution in frontier orbitals of the phenyl-spacer compounds bearing amino and phenylamino groups indicates the possibility of intramolecular charge transfer. The isomers of phenyl-spacer compounds absorb in visible region of electromagnetic spectrum. The compounds show high values of light harvesting efficiency, despite the weak anchoring nature of nitro groups.

  1. Analysis of fast chlorophyll fluorescence rise (O-K-J-I-P) curves in green fruits indicates electron flow limitations at the donor side of PSII and the acceptor sides of both photosystems.

    PubMed

    Kalachanis, Dimitrios; Manetas, Yiannis

    2010-07-01

    Limited evidence up to now indicates low linear photosynthetic electron flow and CO(2) assimilation rates in non-foliar chloroplasts. In this investigation, we used chlorophyll fluorescence techniques to locate possible limiting steps in photosystem function in exposed, non-stressed green fruits (both pericarps and seeds) of three species, while corresponding leaves served as controls. Compared with leaves, fruit photosynthesis was characterized by less photon trapping and less quantum yields of electron flow, while the non-photochemical quenching was higher and potentially linked to enhanced carotenoid/chlorophyll ratios. Analysis of fast chlorophyll fluorescence rise curves revealed possible limitations both in the donor (oxygen evolving complex) and the acceptor (Q(A)(-)--> intermediate carriers) sides of photosystem II (PSII) indicating innately low PSII photochemical activity. On the other hand, PSI was characterized by faster reduction of its final electron acceptors and their small pool sizes. We argue that the fast reductive saturation of final PSI electron acceptors may divert electrons back to intermediate carriers facilitating a cyclic flow around PSI, while the partial inactivation of linear flow precludes strong reduction of plastoquinone. As such, the photosynthetic attributes of fruit chloroplasts may act to replenish the ATP lost because of hypoxia usually encountered in sink organs with high diffusive resistance to gas exchange.

  2. Uniaxially oriented polycrystalline thin films and air-stable n-type transistors based on donor-acceptor semiconductor (diC8BTBT)(FnTCNQ) [n = 0, 2, 4

    NASA Astrophysics Data System (ADS)

    Shibata, Yosei; Tsutsumi, Jun'ya; Matsuoka, Satoshi; Matsubara, Koji; Yoshida, Yuji; Chikamatsu, Masayuki; Hasegawa, Tatsuo

    2015-04-01

    We report the fabrication of high quality thin films for semiconducting organic donor-acceptor charge-transfer (CT) compounds, (diC8BTBT)(FnTCNQ) (diC8BTBT = 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene and FnTCNQ [n = 0,2,4] = fluorinated derivatives of 7,7,8,8,-tetracyanoquinodimethane), which have a high degree of layered crystallinity. Single-phase and uniaxially oriented polycrystalline thin films of the compounds were obtained by co-evaporation of the component donor and acceptor molecules. Organic thin-film transistors (OTFTs) fabricated with the compound films exhibited n-type field-effect characteristics, showing a mobility of 6.9 × 10-2 cm2/V s, an on/off ratio of 106, a sub-threshold swing of 0.8 V/dec, and an excellent stability in air. We discuss the suitability of strong intermolecular donor-acceptor interaction and the narrow CT gap nature in compounds for stable n-type OTFT operation.

  3. Photoinduced electron transfer interaction of anthraquinones with aniline quenchers: Influence of methyl substitution in aniline donors.

    PubMed

    Sivakumar, V; Ponnamma, Deepalekshmi; Hussein, Yasser H A

    2017-02-15

    Photoinduced electron transfer between triplet state of 9,10-anthraquinone (AQ) and its two derivatives: 2-chloro-9,10-anthraquinone (CAQ) and sodium anthraquinone-2-sulfonate (AQS) and ground state aniline (AN) and its dimethyl substitutions: 2,3-dimethylaniline (2,3-DMA), 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and N,N-dimethylaniline (N,N-DMA) is studied using nanosecond laser flash photolysis at room temperature. Detection of radical bands of quinone anions and aniline cations along with their formation and/or decay kinetics are used to confirm the electron transfer (ET) process. In MeCN medium, AN quenches the triplet state of CAQ (CAQ T ) but not the triplets AQ T or AQS T . However in aqueous medium, AN quenches AQS T and forms radical ion pair. All the DMAs can react through ET with all the triplet quinones at different degrees of efficiency in MeCN medium. Noticeably, the ring substituted DMAs are less efficient in electron donation to AQ T or AQS T while the N,N-DMA shows high efficiency in donating electron to all triplet quinones in MeCN medium. Charge distribution of donor molecules, in MeCN medium is calculated using density functional theory (DFT), and shows an enhancement of electron density of the ring of N,N-DMA, making it an ideal electron donor for ET studies compared to other DMAs. This systematic selection and usage of anilines with electrochemically tunable quinones can be viewed as a working model of donor-acceptor system that can be utilized in photoinduced ET applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Sequence Effects in Conjugated Donor-Acceptor Trimers and Polymers.

    PubMed

    Zhang, Shaopeng; Hutchison, Geoffrey R; Meyer, Tara Y

    2016-06-01

    To investigate the sequence effect on donor-acceptor conjugated oligomers and polymers, the trimeric isomers PBP and BPP, comprising dialkoxy phenylene vinylene (P), benzothiadiazole vinylene (B), and alkyl endgroups with terminal olefins, are synthesized. Sequence effects are evident in the optical/electrochemical properties and thermal properties. Absorption maxima for PBP and BPP differ by 41 nm and the electrochemical band gaps by 0.1 V. The molar emission intensity is five times greater in PBP than BPP. Both trimers are crystalline and the melting points differ by 17 °C. The PBP and BPP trimers are used as macromonomers in an acyclic diene metathesis polymerization to give PolyPBP and PolyBPP. The optical and electrochemical properties are similar to those of their trimer precursors-sequence effects are still evident. These results suggest that sequence is a tunable variable for electronic materials and that the polymerization of oligomeric sequences is a useful approach to introducing sequence into polymers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic

    PubMed Central

    Luo, Chaosheng; Wang, Zhen; Huang, Yong

    2015-01-01

    Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194

  6. Donor-Acceptor Distance Sampling Enhances the Performance of "Better than Nature" Nicotinamide Coenzyme Biomimetics.

    PubMed

    Geddes, Alexander; Paul, Caroline E; Hay, Sam; Hollmann, Frank; Scrutton, Nigel S

    2016-09-07

    Understanding the mechanisms of enzymatic hydride transfer with nicotinamide coenzyme biomimetics (NCBs) is critical to enhancing the performance of nicotinamide coenzyme-dependent biocatalysts. Here the temperature dependence of kinetic isotope effects (KIEs) for hydride transfer between "better than nature" NCBs and several ene reductase biocatalysts is used to indicate transfer by quantum mechanical tunneling. A strong correlation between rate constants and temperature dependence of the KIE (ΔΔH(⧧)) for H/D transfer implies that faster reactions with NCBs are associated with enhanced donor-acceptor distance sampling. Our analysis provides the first mechanistic insight into how NCBs can outperform their natural counterparts and emphasizes the need to optimize donor-acceptor distance sampling to obtain high catalytic performance from H-transfer enzymes.

  7. Electronic and optical properties of novel carbazole-based donor-acceptor compounds for applications in blue-emitting organic light-emitting diodes

    DOE PAGES

    Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.; ...

    2015-08-20

    We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad.more » We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.« less

  8. Electronic and optical properties of novel carbazole-based donor-acceptor compounds for applications in blue-emitting organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.

    We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad.more » We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.« less

  9. Theoretical characterization of photoinduced electron transfer in rigidly linked donor-acceptor molecules: the fragment charge difference and the generalized Mulliken-Hush schemes

    NASA Astrophysics Data System (ADS)

    Lee, Sheng-Jui; Chen, Hung-Cheng; You, Zhi-Qiang; Liu, Kuan-Lin; Chow, Tahsin J.; Chen, I.-Chia; Hsu, Chao-Ping

    2010-10-01

    We calculate the electron transfer (ET) rates for a series of heptacyclo[6.6.0.02,6.03,13.014,11.05,9.010,14]-tetradecane (HCTD) linked donor-acceptor molecules. The electronic coupling factor was calculated by the fragment charge difference (FCD) [19] and the generalized Mulliken-Hush (GMH) schemes [20]. We found that the FCD is less prone to problems commonly seen in the GMH scheme, especially when the coupling values are small. For a 3-state case where the charge transfer (CT) state is coupled with two different locally excited (LE) states, we tested with the 3-state approach for the GMH scheme [30], and found that it works well with the FCD scheme. A simplified direct diagonalization based on Rust's 3-state scheme was also proposed and tested. This simplified scheme does not require a manual assignment of the states, and it yields coupling values that are largely similar to those from the full Rust's approach. The overall electron transfer (ET) coupling rates were also calculated.

  10. Pyrimidine-based twisted donor-acceptor delayed fluorescence molecules: a new universal platform for highly efficient blue electroluminescence.

    PubMed

    Park, In Seob; Komiyama, Hideaki; Yasuda, Takuma

    2017-02-01

    Deep-blue emitters that can harvest both singlet and triplet excited states to give high electron-to-photon conversion efficiencies are highly desired for applications in full-color displays and white lighting devices based on organic light-emitting diodes (OLEDs). Thermally activated delayed fluorescence (TADF) molecules based on highly twisted donor-acceptor (D-A) configurations are promising emitting dopants for the construction of efficient deep-blue OLEDs. In this study, a simple and versatile D-A system combining acridan-based donors and pyrimidine-based acceptors has been developed as a new platform for high-efficiency deep-blue TADF emitters. The designed pre-twisted acridan-pyrimidine D-A molecules exhibit small singlet-triplet energy splitting and high photoluminescence quantum yields, functioning as efficient deep-blue TADF emitters. The OLEDs utilizing these TADF emitters display bright blue electroluminescence with external quantum efficiencies of up to 20.4%, maximum current efficiencies of 41.7 cd A -1 , maximum power efficiencies of 37.2 lm W -1 , and color coordinates of (0.16, 0.23). The design strategy featuring such acridan-pyrimidine D-A motifs can offer great prospects for further developing high-performance deep-blue TADF emitters and TADF-OLEDs.

  11. Cocrystals of 6-methyl-2-thiouracil: presence of the acceptor-donor-acceptor/donor-acceptor-donor synthon.

    PubMed

    Hützler, Wilhelm Maximilian; Egert, Ernst

    2015-03-01

    The results of seven cocrystallization experiments of the antithyroid drug 6-methyl-2-thiouracil (MTU), C(5)H(6)N(2)OS, with 2,4-diaminopyrimidine, 2,4,6-triaminopyrimidine and 6-amino-3H-isocytosine (viz. 2,6-diamino-3H-pyrimidin-4-one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen-bonding site, while the three coformers show complementary DAD hydrogen-bonding sites and therefore should be capable of forming an ADA/DAD N-H...O/N-H...N/N-H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6-methyl-2-thiouracil-2,4-diaminopyrimidine-1-methylpyrrolidin-2-one (1/1/2), C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(5)H(9)NO, (I), 6-methyl-2-thiouracil-2,4-diaminopyrimidine (1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4), (II), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylacetamide (2/1/2), 2C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(4)H(9)NO, (III), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylformamide (2/1/2), C(5)H(6)N(2)OS·0.5C(4)H(6)N(4)·C(3)H(7)NO, (IV), 2,4,6-triaminopyrimidinium 6-methyl-2-thiouracilate-6-methyl-2-thiouracil-N,N-dimethylformamide (1/1/2), C(4)H(8)N(5)(+)·C(5)H(5)N(2)OS(-)·C(5)H(6)N(2)OS·2C(3)H(7)NO, (V), 6-methyl-2-thiouracil-6-amino-3H-isocytosine-N,N-dimethylformamide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(3)H(7)NO, (VI), and 6-methyl-2-thiouracil-6-amino-3H-isocytosine-dimethyl sulfoxide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(2)H(6)OS, (VII). Whereas in cocrystal (I) an R(2)(2)(8) interaction similar to the Watson-Crick adenine/uracil base pair is formed and a two-dimensional hydrogen-bonding network is observed, the cocrystals (II)-(VII) contain the triply hydrogen-bonded ADA/DAD N-H...O/N-H...N/N-H...S synthon and show a one-dimensional hydrogen-bonding network. Although 2,4-diaminopyrimidine possesses only one DAD hydrogen-bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).

  12. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nanjia; Dudnik, Alexander S.; Li, Ting I. N. G.

    2016-01-21

    The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhancesmore » donor–acceptor polymer–polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE “sweet spot” at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for

  13. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting

    PubMed Central

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G.; Duan, Xue

    2015-01-01

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm2 at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting. PMID:26174201

  14. Synthesis of an A-D-A type of molecule used as electron acceptor for improving charge transfer in organic solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chao-Zhi; Gu, Shu-Duo; Shen, Dan; Yuan, Yang; Zhang, Mingdao

    2016-08-01

    Electron-accepting molecules play an important role in developing organic solar cells. A new type of A-D-A molecule, 3,6-di([7-(5-bromothiophen-2-yl)-1,5,2,4,6,8-dithiotetrazocin-3-yl]thiophen-2-yl)-9-(2-ethylhexyl)carbazole, was synthesized. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels are -3.55 and -5.85 eV, respectively. Therefore, the A-D-A type of compound could be used as electron acceptor for fabricating organic solar cell with a high open circuit voltage. Gibbs free energy (-49.2 kJ/mol) reveals that the process of A-D-A acceptor accepting an electron from poly(3-hexylthiophene) at excited state is spontaneous. The value of entropy (118 J/mol) in the process of an electron transferring from P3HT to the A-D-A acceptor at organic interface suggests that electrons generated from separation of electron-hole pairs at donor/acceptor interface would be delocalized efficiently. Therefore, the A-D-A molecule would be a potential acceptor for efficient organic BHJ solar cells.

  15. A Coupling of Benzamides and Donor/Acceptor Diazo–Compounds to form γ-Lactams via Rh(III)–Catalyzed C–H Activation

    PubMed Central

    Hyster, Todd K.; Ruhl, Kyle E.; Rovis, Tomislav

    2013-01-01

    The coupling of O-pivaloyl benzhydroxamic acids with donor/acceptor diazo compounds provides iso-indolones in high yield. The reaction tolerates a broad range of benzhydroxamic acids and diazo compounds including substituted 2,2,2-trifluorodiazo ethanes. Mechanistic experiments suggest that C–H activation is turnover limiting and irreversible, while insertion of the diazo compound favors electron deficient substrates. PMID:23548055

  16. U(VI) bioreduction with emulsified vegetable oil as the electron donor--model application to a field test.

    PubMed

    Tang, Guoping; Watson, David B; Wu, Wei-Min; Schadt, Christopher W; Parker, Jack C; Brooks, Scott C

    2013-04-02

    We amended a shallow fast-flowing uranium (U) contaminated aquifer with emulsified vegetable oil (EVO) and subsequently monitored the biogeochemical responses for over a year. Using a biogeochemical model developed in a companion article (Tang et al., Environ. Sci. Technol.2013, doi: 10.1021/es304641b) based on microcosm tests, we simulated geochemical and microbial dynamics in the field test during and after the 2-h EVO injection. When the lab-determined parameters were applied in the field-scale simulation, the estimated rate coefficient for EVO hydrolysis in the field was about 1 order of magnitude greater than that in the microcosms. Model results suggested that precipitation of long-chain fatty acids, produced from EVO hydrolysis, with Ca in the aquifer created a secondary long-term electron donor source. The model predicted substantial accumulation of denitrifying and sulfate-reducing bacteria, and U(IV) precipitates. The accumulation was greatest near the injection wells and along the lateral boundaries of the treatment zone where electron donors mixed with electron acceptors in the groundwater. While electron acceptors such as sulfate were generally considered to compete with U(VI) for electrons, this work highlighted their role in providing electron acceptors for microorganisms to degrade complex substrates thereby enhancing U(VI) reduction and immobilization.

  17. Possibility to Use Hydrothermally Synthesized CuFeS2 Nanocomposite as an Acceptor in Hybrid Solar Cell

    NASA Astrophysics Data System (ADS)

    Sil, Sayantan; Dey, Arka; Halder, Soumi; Datta, Joydeep; Ray, Partha Pratim

    2018-01-01

    Here we have approached the plausible use of CuFeS2 nanocomposite as an acceptor in organic-inorganic hybrid solar cell. To produce CuFeS2 nanocomposite, hydrothermal strategy was employed. The room-temperature XRD pattern approves the synthesized material as CuFeS2 with no phase impurity (JCPDS Card no: 37-0471). The elemental composition of the material was analyzed from the TEM-EDX data. The obtained selected area electron diffraction (SAED) planes harmonized with the XRD pattern of the synthesized product. Optical band gap (4.14 eV) of the composite from UV-Vis analysis depicts that the synthesized material is belonging to wide band gap semiconductor family. The HOMO (- 6.97 eV) and LUMO (- 2.93 eV) positions from electrochemical study reveal that there is a possibility of electron transfer from MEH-PPV to CuFeS2. The optical absorption and photoluminescence spectra of MEH-PPV:CuFeS2 (donor:acceptor) composite were recorded sequentially by varying weight ratios. The monotonic blue shifting of the absorption peak position indicated the interaction between donor and acceptor materials. The possibility of electron transfer from donor (MEH-PPV) to acceptor (CuFeS2) was approved with photoluminescence analysis. Subsequently, we have fabricated a hybrid solar cell by incorporating CuFeS2 nanocomposite with MEH-PPV in open atmosphere and obtained 0.3% power conversion efficiency.

  18. Dissipative exciton transfer in donor-bridge-acceptor systems: numerical renormalization group calculation of equilibrium properties.

    PubMed

    Tornow, Sabine; Tong, Ning-Hua; Bulla, Ralf

    2006-07-05

    We present a detailed model study of exciton transfer processes in donor-bridge-acceptor (DBA) systems. Using a model which includes the intermolecular Coulomb interaction and the coupling to a dissipative environment we calculate the phase diagram, the absorption spectrum as well as dynamic equilibrium properties with the numerical renormalization group. This method is non-perturbative and therefore allows one to cover the full parameter space, especially the case when the intermolecular Coulomb interaction is of the same order as the coupling to the environment and perturbation theory cannot be applied. For DBA systems with up to six sites we found a transition to the localized phase (self-trapping) depending on the coupling to the dissipative environment. We discuss various criteria which favour delocalized exciton transfer.

  19. C–H arylation of unsubstituted furan and thiophene with acceptor bromides: access to donor–acceptor–donor-type building blocks for organic electronics.

    PubMed

    Matsidik, Rukiya; Martin, Johannes; Schmidt, Simon; Obermayer, Johannes; Lombeck, Florian; Nübling, Fritz; Komber, Hartmut; Fazzi, Daniele; Sommer, Michael

    2015-01-16

    Pd-catalyzed direct arylation (DA) reaction conditions have been established for unsubstituted furan (Fu) and thiophene (Th) with three popular acceptor building blocks to be used in materials for organic electronics, namely 4,7-dibromo-2,1,3-benzothiadiazole (BTBr2), N,N′-dialkylated 2,6-dibromonaphthalene-1,4,5,8-bis(dicarboximide) (NDIBr2), and 1,4-dibromotetrafluorobenzene (F4Br2). Reactions with BTBr2, F4Br2, and NDIBr2 require different solvents to obtain high yields. The use of dimethylacetamide (DMAc) is essential for the successful coupling of BTBr2 and F4Br2, but detrimental for NDIBr2, as the electron-deficient NDI core is prone to nucleophilic core substitution in DMAc as solvent but not in toluene. NDIFu2 is much more planar compared to NDITh2, resulting in an enhanced charge-transfer character, which makes it an interesting building block for conjugated systems designed for organic electronics. This study highlights direct arylation as a simple and inexpensive method to construct a series of important donor–acceptor–donor building blocks to be further used for the preparation of a variety of conjugated materials.

  20. Photo-switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    DTIC Science & Technology

    2015-11-05

    AFRL-AFOSR-VA-TR-2015-0396 (HBCU) Photo-switchable Donor-Acceptor for Organic Photovoltaic Cells Luis Echegoyen UNIVERSITY OF TEXAS AT EL PASO Final...Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-12-1-0053 5c...demonstrated using impedance spectroscopy for several triphenylamine-fullerene dyads, but their performance in photovoltaic devices was not remarkable, likely

  1. Benzothiadiazole Versus Thiophene: Influence of the Auxiliary Acceptor on the Photovoltaic Properties of Donor-Acceptor-Based Copolymers.

    PubMed

    Li, Zongbo; Weng, Kangkang; Chen, Aihua; Sun, Xiaobo; Wei, Donghui; Yu, Mingming; Huo, Lijun; Sun, Yanming

    2018-01-01

    Two donor-acceptor (D-A) type conjugated copolymers, P1 and P2, are designed and synthesized. A classical benzothiadiazole acceptor is used to replace a thiophene unit in the polymer chain of P1 to obtain P2 terpolymer. Compared with P1, P2 exhibits broader absorption spectra, higher absorption coefficient, deeper lowest unoccupied molecular orbital level, and a relatively lower band gap. As a result, the P2-based solar cell exhibits a high power conversion efficiency (PCE) of 6.60%, with a short-circuit current (J sc ) of 12.43 mA cm -2 , and a fill factor (FF) of 73.1%, which are higher than those of the P1-based device with a PCE of 4.70%, a J sc of 9.43 mA cm -2 , and an FF of 61.6%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Negative polarity of phenyl-C{sub 61} butyric acid methyl ester adjacent to donor macromolecule domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez

    2015-01-19

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V{sub oc}) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V{sub oc}, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor andmore » acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C{sub 61} butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V{sub oc}, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.« less

  3. Tunable Rh 2(II,II) Light Absorbers as Excited State Electron Donors and Acceptors Accessible with Red/Near-IR Irradiation

    DOE PAGES

    Whittemore, Tyler; Millet, Agustin; Sayre, Hannah; ...

    2018-04-04

    In this study, a series of dirhodium(II,II) paddlewheeel complexes of the type cis-[Rh 2(μ-DTolF) 2(μ-L) 2][BF 4] 2, where DTolF = N,N'-di(p-tolyl)formamidinate and L = 1,8-naphthyridine (np), 2-(pyridin-2-yl)-1,8-naphthyridine (pynp), 2-(quinolin-2-yl)-1,8-naphthyridine (qnnp), and 2-(1,8-naphthyridin-2-yl)quinoxaline (qxnp), were synthesized and characterized. These molecules feature new tridentate ligands that concomitantly bridge the dirhodium core and cap the axial positions. The complexes absorb light strongly throughout the ultraviolet/visible range and into the near-infrared region and exhibit relatively long-lived triplet excited-state lifetimes. Both the singlet and triplet excited states exhibit metal/ligand-to-ligand charge transfer (ML-LCT) in nature as determined by transient absorption spectroscopy and spectroelectrochemistry measurements. Whenmore » irradiated with low-energy light, these black dyes are capable of undergoing reversible bimolecular electron transfer both to the electron acceptor methyl viologen and from the electron donor p-phenylenediamine. Photoinduced charge transfer in the latter was inaccessible with previous Rh 2(II,II) complexes. Finally, these results underscore the fact that the excited state of this class of molecules can be readily tuned for electron-transfer reactions upon simple synthetic modification and highlight their potential as excellent candidates for p- and n-type semiconductor applications and for improved harvesting of low-energy light to drive useful photochemical reactions.« less

  4. Tunable Rh 2(II,II) Light Absorbers as Excited State Electron Donors and Acceptors Accessible with Red/Near-IR Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittemore, Tyler; Millet, Agustin; Sayre, Hannah

    In this study, a series of dirhodium(II,II) paddlewheeel complexes of the type cis-[Rh 2(μ-DTolF) 2(μ-L) 2][BF 4] 2, where DTolF = N,N'-di(p-tolyl)formamidinate and L = 1,8-naphthyridine (np), 2-(pyridin-2-yl)-1,8-naphthyridine (pynp), 2-(quinolin-2-yl)-1,8-naphthyridine (qnnp), and 2-(1,8-naphthyridin-2-yl)quinoxaline (qxnp), were synthesized and characterized. These molecules feature new tridentate ligands that concomitantly bridge the dirhodium core and cap the axial positions. The complexes absorb light strongly throughout the ultraviolet/visible range and into the near-infrared region and exhibit relatively long-lived triplet excited-state lifetimes. Both the singlet and triplet excited states exhibit metal/ligand-to-ligand charge transfer (ML-LCT) in nature as determined by transient absorption spectroscopy and spectroelectrochemistry measurements. Whenmore » irradiated with low-energy light, these black dyes are capable of undergoing reversible bimolecular electron transfer both to the electron acceptor methyl viologen and from the electron donor p-phenylenediamine. Photoinduced charge transfer in the latter was inaccessible with previous Rh 2(II,II) complexes. Finally, these results underscore the fact that the excited state of this class of molecules can be readily tuned for electron-transfer reactions upon simple synthetic modification and highlight their potential as excellent candidates for p- and n-type semiconductor applications and for improved harvesting of low-energy light to drive useful photochemical reactions.« less

  5. Donor-acceptor-pair emission in fluorescent 4H-SiC grown by PVT method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xi, E-mail: liuxi@mail.sic.ac.cn; Zhuo, Shi-Yi; Gao, Pan

    Fluorescent SiC, which contains donor and acceptor impurities with optimum concentrations, can work as a phosphor for visible light emission by donor-acceptor-pair (DAP) recombination. In this work, 3 inch N-B-Al co-doped fluorescent 4H-SiC crystals are prepared by PVT method. The p-type fluorescent 4H-SiC with low aluminum doping concentration can show intensive yellow-green fluorescence at room temperature. N-B DAP peak wavelength shifts from 578nm to 525nm and weak N-Al DAP emission occurred 403/420 nm quenches, when the temperature increases from 4K to 298K. The aluminum doping induces higher defect concentration in the fluorescent crystal and decreases optical transmissivity of the crystalmore » in the visible light range. It triggers more non-radiative recombination and light absorption losses in the crystal.« less

  6. Enhanced Visible Photovoltaic Response of TiO₂ Thin Film with an All-Inorganic Donor-Acceptor Type Polyoxometalate.

    PubMed

    Li, Jian-Sheng; Sang, Xiao-Jing; Chen, Wei-Lin; Zhang, Lan-Cui; Zhu, Zai-Ming; Ma, Teng-Ying; Su, Zhong-Min; Wang, En-Bo

    2015-06-24

    In the field of material chemistry, it is of great significance to develop abundant and sustainable materials for solar energy harvesting and management. Herein, after evaluating the energy band characteristics of 13 kinds of polyoxometalates (POMs), the trisubstituted POM compound K6H4[α-SiW9O37Co3(H2O)3]·17H2O (SiW9Co3) was first studied due to its relatively smaller band gap (2.23 eV) and higher lowest unoccupied molecular orbital (LUMO) level (-0.63 V vs NHE). Additionally, the preliminary computational modeling indicated that SiW9Co3 exhibited the donor-acceptor (D-A) structure, in which the cobalt oxygen clusters and tungsten skeletons act as the electron donor and electron acceptor, respectively. By employing SiW9Co3 to modify the TiO2 film, the visible photovoltaic and photocurrent response were both enhanced, and the light-induced photocurrent at 420 nm was improved by 7.1 times. Moreover, the highly dispersive and small sized SiW9Co3 nanoclusters loading on TiO2 were successfully achieved by fabricating the nanocomposite film of {TiO2/SiW9Co3}3 with the layer-by-layer method, which can result in the photovoltaic performance enhancement of dye-sensitized solar cells (DSSCs), of which the overall power conversion efficiency was improved by 25.6% from 6.79% to 8.53% through the synergistic effect of POMs and Ru-complex.

  7. Assessment of Ab Initio and Density Functional Theory Methods for the Excitations of Donor-Acceptor Complexes: The Case of the Benzene-Tetracyanoethylene Model.

    PubMed

    Xu, Peng; Zhang, Cai-Rong; Wang, Wei; Gong, Ji-Jun; Liu, Zi-Jiang; Chen, Hong-Shan

    2018-04-10

    The understanding of the excited-state properties of electron donors, acceptors and their interfaces in organic optoelectronic devices is a fundamental issue for their performance optimization. In order to obtain a balanced description of the different excitation types for electron-donor-acceptor systems, including the singlet charge transfer (CT), local excitations, and triplet excited states, several ab initio and density functional theory (DFT) methods for excited-state calculations were evaluated based upon the selected model system of benzene-tetracyanoethylene (B-TCNE) complexes. On the basis of benchmark calculations of the equation-of-motion coupled-cluster with single and double excitations method, the arithmetic mean of the absolute errors and standard errors of the electronic excitation energies for the different computational methods suggest that the M11 functional in DFT is superior to the other tested DFT functionals, and time-dependent DFT (TDDFT) with the Tamm-Dancoff approximation improves the accuracy of the calculated excitation energies relative to that of the full TDDFT. The performance of the M11 functional underlines the importance of kinetic energy density, spin-density gradient, and range separation in the development of novel DFT functionals. According to the TDDFT results, the performances of the different TDDFT methods on the CT properties of the B-TCNE complexes were also analyzed.

  8. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor–Bridge–Acceptor Molecules

    DOE PAGES

    Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-03-16

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less

  9. Synthesis and evaluation of NLO properties of π-conjugated donor-acceptor systems bearing pyrrole and thiophene heterocycles

    NASA Astrophysics Data System (ADS)

    Castro, M. Cidália R.; Fonseca, A. Maurício C.; Belsley, M.; Raposo, M. Manuela M.

    2011-05-01

    Two series of novel push-pull heterocyclic azo dyes have been synthesized and characterized. The two series of compounds were based on different combinations of π-conjugated bridges (bithiophene and thienylpyrrole) which also act simultaneously as donor groups, together with diazo(benzo)thiazolyl as acceptor moieties. Their thermal stability and electrochemical behavior were characterized, while hyper-Rayleigh scattering (HRS) was employed to evaluate their second-order nonlinear optical properties. The results of these studies have been critically analyzed together with several thienylpyrrole azo dyes reported earlier from our laboratories in which the thienylpyrrole system was used as the donor group functionalized with aryl and (benzo)thiazolyldiazene as acceptor moiety. The measured molecular first hyperpolarizabilities and the observed linear optical and redox behavior showed strong variations in function of the heterocyclic spacers used (bithiophene or thienylpyrrole) and were also sensitive to the acceptor strength of the diazenehetero(aryl) moiety.

  10. Highly Selective Coupling of Alkenes and Aldehydes Catalyzed by NHC–Ni–P(OPh)3: Synergy Between a Strong σ-Donor and a Strong π-Acceptor**

    PubMed Central

    Ho, Chun-Yu; Jamison, Timothy F.

    2011-01-01

    Both a strong electron donor (IPr) and a strong electron acceptor (P(OPh)3) are necessary for a highly selective, nickel-catalyzed coupling reaction between alkenes, aldehydes, and silyltriflates. Without the phosphite, catalysis is not observed and several side reactions are observed. The phosphite appears to suppress the formation of these byproducts and rescue the catalytic cycle by accelerating reductive elimination from an (IPr–Ni–H)(OTf) complex. PMID:17154217

  11. Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency.

    PubMed

    Zhao, Wenchao; Li, Sunsun; Zhang, Shaoqing; Liu, Xiaoyu; Hou, Jianhui

    2017-01-01

    Ternary polymer solar cells are fabricated based on one donor PBDB-T and two acceptors (a methyl-modified small-molecular acceptor (IT-M) and a bis-adduct of Bis[70]PCBM). A high power conversion efficiency of 12.2% can be achieved. The photovoltaic performance of the ternary polymer solar cells is not sensitive to the composition of the blend. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors.

    PubMed

    Guan, Xiaoqian; Chen, Shuai; Voon, Chia Pao; Wong, Kam-Bo; Tikkanen, Mikko; Lim, Boon L

    2018-01-01

    Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP + oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids.

  13. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors

    PubMed Central

    Guan, Xiaoqian; Chen, Shuai; Voon, Chia Pao; Wong, Kam-Bo; Tikkanen, Mikko; Lim, Boon L.

    2018-01-01

    Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP+ oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids. PMID:29670639

  14. Time-Dependent Solid State Polymorphism of a Series of Donor-Acceptor Dyads

    PubMed Central

    Peebles, Cameron; Alvey, Paul M.; Lynch, Vincent; Iverson, Brent L.

    2014-01-01

    In order to exploit the use of favorable electrostatic interactions between aromatic units in directing the assembly of donor-acceptor (D-A) dyads, the present work examines the ability of conjugated aromatic D-A dyads with symmetric side chains to exhibit solid-state polymorphism as a function of time during the solid formation process. Four such dyads were synthesized and their packing in the solid-state from either slower (10-20 days) or faster (1-2 days) evaporation from solvent was investigated using single crystal X-ray analysis and powder X-ray diffraction. Two of the dyads exhibited tail-to-tail (A-A) packing upon slower evaporation from solvent and head-to-tail (D-A) packing upon faster evaporation from solvent. A combination of single crystal analysis and XRD patterns were used to create models wherein a packing model for the other two dyads is proposed. Our findings suggest that while side chain interactions in asymmetric aromatic dyads can play an important role in enforcing segregated D-A dyad assembly, slowly evaporating symmetrically substituted aromatic dyads allows for favorable electrostatic interactions between the aromatic moieties to facilitate the organization of the dyads in the solid-state. PMID:24678269

  15. Surface State Density Determines the Energy Level Alignment at Hybrid Perovskite/Electron Acceptors Interfaces.

    PubMed

    Zu, Fengshuo; Amsalem, Patrick; Ralaiarisoa, Maryline; Schultz, Thorsten; Schlesinger, Raphael; Koch, Norbert

    2017-11-29

    Substantial variations in the electronic structure and thus possibly conflicting energetics at interfaces between hybrid perovskites and charge transport layers in solar cells have been reported by the research community. In an attempt to unravel the origin of these variations and enable reliable device design, we demonstrate that donor-like surface states stemming from reduced lead (Pb 0 ) directly impact the energy level alignment at perovskite (CH 3 NH 3 PbI 3-x Cl x ) and molecular electron acceptor layer interfaces using photoelectron spectroscopy. When forming the interfaces, it is found that electron transfer from surface states to acceptor molecules occurs, leading to a strong decrease in the density of ionized surface states. As a consequence, for perovskite samples with low surface state density, the initial band bending at the pristine perovskite surface can be flattened upon interface formation. In contrast, for perovskites with a high surface state density, the Fermi level is strongly pinned at the conduction band edge, and only minor changes in surface band bending are observed upon acceptor deposition. Consequently, depending on the initial perovskite surface state density, very different interface energy level alignment situations (variations over 0.5 eV) are demonstrated and rationalized. Our findings help explain the rather dissimilar reported energy levels at interfaces with perovskites, refining our understanding of the operating principles in devices comprising this material.

  16. Determination of Acceptor Concentration, Depletion Width, Donor Level Movement and Sensitivity Factor of ZnO on Diamond Heterojunction under UV Illumination

    PubMed Central

    Saw, Kim Guan; Tneh, Sau Siong; Yam, Fong Kwong; Ng, Sha Shiong; Hassan, Zainuriah

    2014-01-01

    The concentration of acceptor carriers, depletion width, magnitude of donor level movement as well as the sensitivity factor are determined from the UV response of a heterojunction consisting of ZnO on type IIb diamond. From the comparison of the I-V measurements in dark condition and under UV illumination we show that the acceptor concentration (∼1017 cm−3) can be estimated from p-n junction properties. The depletion width of the heterojunction is calculated and is shown to extend farther into the ZnO region in dark condition. Under UV illumination, the depletion width shrinks but penetrates both materials equally. The ultraviolet illumination causes the donor level to move closer to the conduction band by about 50 meV suggesting that band bending is reduced to allow more electrons to flow from the intrinsically n-type ZnO. The sensitivity factor of the device calculated from the change of threshold voltages, the ratio of dark and photocurrents and identity factor is consistent with experimental data. PMID:24586707

  17. Spectroscopic and physical measurements on charge-transfer complexes: Interactions between norfloxacin and ciprofloxacin drugs with picric acid and 3,5-dinitrobenzoic acid acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Elfalaky, A.; Elesh, Eman

    2011-03-01

    Charge-transfer complexes formed between norfloxacin (nor) or ciprofloxacin (cip) drugs as donors with picric acid (PA) and/or 3,5-dinitrobenzoic acid (DNB) as π-acceptors have been studied spectrophotometrically in methanol solvent at room temperature. The results indicated the formation of CT-complexes with molar ratio1:1 between donor and acceptor at maximum CT-bands. In the terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ Go), oscillator strength ( f), transition dipole moment (μ), resonance energy ( RN) and ionization potential ( ID) were estimated. IR, H NMR, UV-Vis techniques, elemental analyses (CHN) and TG-DTG investigations were used to characterize the structural of charge-transfer complexes. It indicates that the CT interaction was associated with a proton migration from each acceptor to nor or cip donors which followed by appearing intermolecular hydrogen bond. In addition, X-ray investigation was carried out to scrutinize the crystal structure of the resulted CT-complexes.

  18. Polymer/Polymer Blend Solar Cells Using Tetraazabenzodifluoranthene Diimide Conjugated Polymers as Electron Acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haiyan; Hwang, Ye-Jin; Earmme, Taeshik

    2015-03-02

    Two n-type semiconducting polymers with alternating arylene (thiophene or selenophene)–tetraazabenzodifluoranthene diimide (BFI) donor–acceptor architecture have been investigated as new electron acceptors in polymer/polymer blend solar cells. The new selenophene-linked polymer, PBFI-S, has a significantly smaller optical band gap (1.13 eV) than the thiophene-linked PBFI-T (1.38 eV); however, both polymers have similar HOMO/LUMO energy levels determined from cyclic voltammetry. Blends of PBFI-T with the thiazolothiazole–dithienylsilole donor polymer (PSEHTT) gave a 2.60% power conversion efficiency (PCE) with a 7.34 mA/cm2 short-circuit current. In contrast, PBFI-S:PSEHTT blends had a 0.75% PCE with similarly reduced photocurrent and external quantum efficiency. Reduced free energy formore » charge transfer and reduced bulk electron mobility in PBFI-S:PSEHTT blends compared to PBFI-T:PSEHTT blends as well as significant differences in bulk film morphology are among the reasons for the large loss in efficiency in PBFI-S:PSEHTT blend solar cells.« less

  19. Supramolecular networks with electron transfer in two dimensions

    DOEpatents

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alexander K.; Tayi, Alok S.; Sue, Chi-Hau; Narayanan, Ashwin

    2016-09-13

    Organic charge-transfer (CT) co-crystals in a crossed stack system are disclosed. The co-crystals exhibit bidirectional charge transfer interactions where one donor molecule shares electrons with two different acceptors, one acceptor face-to-face and the other edge-to-face. The assembly and charge transfer interaction results in a pleochroic material whereby the optical absorption continuously changes depending on the polarization angle of incident light.

  20. Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity

    NASA Astrophysics Data System (ADS)

    Zegeye, Asfaw; Huguet, Lucie; Abdelmoula, Mustapha; Carteret, Cédric; Mullet, Martine; Jorand, Frédéric

    2007-11-01

    Microbiological reduction of a biogenic sulfated green rust (GR2(SO42-)), was examined using a sulfate reducing bacterium ( Desulfovibrio alaskensis). Experiments investigated whether GR2(SO42-) could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic GR2(SO42-) as the electron acceptor, at circumneutral pH in unbuffered medium. GR2(SO42-) transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was GR1(CO32-) as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use GR2(SO42-) as an electron acceptor. GR1(CO32-), vivianite and an iron sulfur compound were formed as a result of GR2(SO42-) reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic GR2(SO42-) formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.

  1. Donor/acceptor nanoparticle pair-based singlet oxygen channeling homogenous chemiluminescence immunoassay for quantitative determination of bisphenol A.

    PubMed

    Hou, Changjiang; Zhao, Lixia; Geng, Fanglan; Wang, Dan; Guo, Liang-Hong

    2016-12-01

    Bisphenol A (BPA) is widely used in consumer products such as plastic bottles and food containers. It has become a ubiquitous environmental contaminant and poses a serious risk to human health. A rapid, sensitive, and high-throughput method for detecting BPA is therefore desirable. Herein, a donor/acceptor nanoparticle pair-based singlet oxygen channeling chemiluminescence homogenous immunoassay is developed for the determination of BPA. The donor nanoparticles were modified with phthalocyanine as a photosensitizer and were then coated with streptavidin. The acceptor nanoparticles were doped with thioxene derivatives and Eu(III) as a chemiluminescence emitter and then coated with anti-BPA antibody. Under light irradiation, oxygen near the donor surface transforms to singlet oxygen ( 1 O 2 ), which migrates to the acceptor and reacts with it, generating luminescence. Because 1 O 2 has a very short lifetime, luminescence is generated only when the donor and acceptor are in close proximity. This occurs when they are brought together by the antigen/antibody and streptavidin/biotin reaction. Based on this singlet oxygen channeling mechanism, a competitive homogenous chemiluminescence immunoassay for BPA was developed on 384 microplates. The assay exhibited linear detection over the range 10-1000 ng/mL and a limit of detection of 2.9 ng/mL. The intra- and inter-assay precisions were both below 5.1 %. The average recoveries of three spiked samples in tap and river water samples were in the range 95.5-121.0 %, in agreement with values obtained using high-performance liquid chromatography. The homogeneous assay is rapid, low cost, sensitive, and allows high-throughput, so is well suited for screening large numbers of environmental samples. Graphical abstract Principle of the singlet oxygen channeling homogenous chemiluminescence competitive immunoassay based on nanoparticle pairs for determination of BPA.

  2. Molecular dynamics study of the encapsulation capability of a PCL-PEO based block copolymer for hydrophobic drugs with different spatial distributions of hydrogen bond donors and acceptors.

    PubMed

    Patel, Sarthak K; Lavasanifar, Afsaneh; Choi, Phillip

    2010-03-01

    Molecular dynamics simulation was used to study the potential of using a block copolymer containing three poly(epsilon-caprolactone) (PCL) blocks of equal length connected to one end of a poly(ethylene oxide) (PEO) block, designated as PEO-b-3PCL, to encapsulate two classes of hydrophobic drugs with distinctively different molecular structures. In particular, the first class of drugs consisted of two cucurbitacin drugs (CuB and CuI) that contain multiple hydrogen bond donors and acceptors evenly distributed on their molecules while the other class of drugs (fenofibrate and nimodipine) contain essentially only clustered hydrogen bond acceptors. In the case of cucurbitacin drugs, the results showed that PEO-b-3PCL lowered the Flory-Huggins interaction parameters (chi) considerably (i.e., increased the drug solubility) compared to the linear di-block copolymer PEO-b-PCL with the same PCL/PEO (w/w) ratio of 1.0. However, the opposite effect was observed for fenofibrate and nimodipine. Analysis of the intermolecular interactions indicates that the number of hydrogen bonds formed between the three PCL blocks and cucurbitacin drugs is significantly higher than that of the linear di-block copolymer. On the other hand, owing to the absence of hydrogen bond donors and the clustering of the hydrogen bond acceptors on the fenofibrate and nimodipine molecules, this significantly reduces the number of hydrogen bonds formed in the multi-PCL block environment, leading to unfavourable chi values. The findings of the present work suggest that multi-hydrophobic block architecture could potentially increase the drug loading for hydrophobic drugs with structures containing evenly distributed multiple hydrogen bond donors and acceptors. (c) 2009 Elsevier Ltd. All rights reserved.

  3. Spatial structure of single and interacting Mn acceptors in GaAs

    NASA Astrophysics Data System (ADS)

    Koenraad, Paul

    2005-03-01

    Ferromagnetic semiconductors such as Ga1-xMnxAs are receiving a lot of attention at the moment because of their application in spintronic devices. However, despite intense study of deep acceptors in III-V semiconductors such as MnGa, little information has been obtained on their electronic properties at the atomic scale. Yet the spatial shape of the Mn acceptor state will influence the hole-mediated Mn-Mn coupling and thus all of the magnetic properties of ferromagnetic semiconductors such as Ga1-xMnxAs. This study presents an experimental and theoretical description of the spatial symmetry of the Mn acceptor wave-function in GaAs. We present measurements of the spatial mapping of the anisotropic wavefunction of a hole localized at a Mn acceptor. To achieve this, we have used the STM tip not only to image the Mn acceptor but also to manipulate its charge state A^0/A^- at room temperature. Within an envelope function effective mass model (EFM) the anisotropy in the acceptor wave-function can be traced to the influence of the cubic symmetry of the GaAs crystal which selects specific d-states that mix into the ground state due to the spin-orbit interaction in the valence band. Comparison with calculations based on a tight-binding model (TBM) for the Mn acceptor structure supports this conclusion. Using the same experimental and theoretical approach we furthermore explored the interaction between Mn acceptors directly by analyzing close Mn-Mn pairs, which were separated by less than 2 nm. We will discuss some implications of these results for Mn delta-doped layers grown on differently oriented growth surfaces.

  4. Charge transfer complex of some nervous and brain drugs - Part 1: Synthesis, spectroscopic, analytical and biological studies on the reaction between haloperidol antipsychotic drugs with π-acceptors

    NASA Astrophysics Data System (ADS)

    El-Habeeb, Abeer A.; Al-Saif, Foziah A.; Refat, Moamen S.

    2013-02-01

    Donor-acceptor interactions between the electron donor haloperidol (HPL) and π-acceptors like 7,7,8,8-tetracyanoquinodimethane (TCNQ) and picric acid (PA) have been studied spectrophotometrically in CH3OH solvent. The donor-acceptor (charge transfer complexes) were discussed in terms of formation constant (KCT), molar extinction coefficient (ɛCT), standard free energy (ΔGo), oscillator strength (ƒ), transition dipole moment (μ), resonance energy (RN) and ionization potential (ID). The stoichiometry of these complexes was found to be 1:1 M ratio and having the formulas [(HPL)(TCNQ)] and [(HPL)(PA)], respectively. The charge transfer interaction was successfully applied to determine of HPL drug using mentioned common π-acceptors also, the results obtained herein are satisfactory for estimation of HPL compound in the pharmaceutical form. The formed solid charge-transfer complexes were also isolated and characterized using elemental analysis, conductivity, (infrared, Raman, and 1H NMR) spectra and X-ray powder diffraction (XRD). The experimental data of elemental analyses are in agreement with calculated data. The infrared spectra of both HPL complexes are confirming the participation of sbnd OH of 4-hydroxy-1-piperidyl moiety in the donor-acceptor chelation. The morphological surface of the resulted charge transfer complexes were investigated using scanning electron microscopy (SEM). The thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC) techniques were performed to give knowledge about the thermal stability behavior of the synthesized charge transfer complexes. Thermodynamic parameters were computed from the thermal decomposition data. These complexes were also tested for their antimicrobial activity against six different microorganisms, and the results were compared with the parent drug.

  5. Two-electron states of a group-V donor in silicon from atomistic full configuration interactions

    NASA Astrophysics Data System (ADS)

    Tankasala, Archana; Salfi, Joseph; Bocquel, Juanita; Voisin, Benoit; Usman, Muhammad; Klimeck, Gerhard; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.; Rogge, Sven; Rahman, Rajib

    2018-05-01

    Two-electron states bound to donors in silicon are important for both two-qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multielectron exchange and correlation effects taking into account the full band structure of silicon and the atomic-scale granularity of a nanoscale device. Excited s -like states of A1 symmetry are found to strongly influence the charging energy of a negative donor center. We apply the technique on subsurface dopants subjected to gate electric fields and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.

  6. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  7. Enhancement in Organic Photovoltaic Efficiency through the Synergistic Interplay of Molecular Donor Hydrogen Bonding and -Stacking

    DOE PAGES

    Shewmon, Nathan; Watkins, Davita; Galindo, Johan; ...

    2015-07-20

    For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom-up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H-bonding) interactions between π-conjugated electron donor molecules encourage formation of vertically aligned donor π-stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groupsmore » that are either capable or incapable of self-complementary H-bonding. When applied to OPVs, the H-bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H-bond promoted assembly results in redshifted absorption (in neat films and donor:C 60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X-ray scattering reveals a synergistic interplay of lateral H-bonding interactions and vertical π-stacking for directing the favorable morphology of the BHJ.« less

  8. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.

    PubMed

    Algar, W Russ; Krull, Ulrich J

    2010-01-01

    A multiplexed solid-phase assay for the detection of nucleic acid hybridization was developed on the basis of a single color of immobilized CdSe/ZnS quantum dot (QD) as a donor in fluorescence resonance energy transfer (FRET). This work demonstrated that two channels of detection did not necessitate two different QD donors. Two probe oligonucleotides were coimmobilized on optical fibers modified with QDs, and a sandwich assay was used to associate the acceptor dyes with interfacial hybridization events without target labeling. FRET-sensitized acceptor emission provided an analytical signal that was concentration dependent down to 10 nM. Changes in the ratio of coimmobilized probe oligonucleotides were found to yield linear changes in the relative amounts of acceptor emission. These changes were compared to previous studies that used mixed films of two QD donors for two detection channels. The analysis indicated that probe dilution effects were primarily driven by changes in acceptor number density and that QD dilution effects or changes in mean donor-acceptor distance were secondary. Hybridization kinetics were found to be consistent between different ratios of coimmobilized probes, suggesting that hybridization in this type of system occurred via the accepted model for solid-phase hybridization, where adsorption and then diffusion at the solid interface drove hybridization.

  9. Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor-Acceptor Conjugated Polymers.

    PubMed

    Ayzner, Alexander L; Mei, Jianguo; Appleton, Anthony; DeLongchamp, Dean; Nardes, Alexandre; Benight, Stephanie; Kopidakis, Nikos; Toney, Michael F; Bao, Zhenan

    2015-12-30

    Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films.

  10. Organic electronic devices with multiple solution-processed layers

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2015-08-04

    A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.

  11. Time-dependent transition density matrix for visualizing charge-transfer excitations in photoexcited organic donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Li, Yonghui; Ullrich, Carsten

    2013-03-01

    The time-dependent transition density matrix (TDM) is a useful tool to visualize and interpret the induced charges and electron-hole coherences of excitonic processes in large molecules. Combined with time-dependent density functional theory on a real-space grid (as implemented in the octopus code), the TDM is a computationally viable visualization tool for optical excitation processes in molecules. It provides real-time maps of particles and holes which gives information on excitations, in particular those that have charge-transfer character, that cannot be obtained from the density alone. Some illustration of the TDM and comparison with standard density difference plots will be shown for photoexcited organic donor-acceptor molecules. This work is supported by NSF Grant DMR-1005651

  12. Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding

    PubMed Central

    Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076

  13. Threshold-like complexation of conjugated polymers with small molecule acceptors in solution within the neighbor-effect model.

    PubMed

    Sosorev, Andrey Yu; Parashchuk, Olga D; Zapunidi, Sergey A; Kashtanov, Grigoriy S; Golovnin, Ilya V; Kommanaboyina, Srikanth; Perepichka, Igor F; Paraschuk, Dmitry Yu

    2016-02-14

    In some donor-acceptor blends based on conjugated polymers, a pronounced charge-transfer complex (CTC) forms in the electronic ground state. In contrast to small-molecule donor-acceptor blends, the CTC concentration in polymer:acceptor solution can increase with the acceptor content in a threshold-like way. This threshold-like behavior was earlier attributed to the neighbor effect (NE) in the polymer complexation, i.e., next CTCs are preferentially formed near the existing ones; however, the NE origin is unknown. To address the factors affecting the NE, we record the optical absorption data for blends of the most studied conjugated polymers, poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and poly(3-hexylthiophene) (P3HT), with electron acceptors of fluorene series, 1,8-dinitro-9,10-antraquinone (), and 7,7,8,8-tetracyanoquinodimethane () in different solvents, and then analyze the data within the NE model. We have found that the NE depends on the polymer and acceptor molecular skeletons and solvent, while it does not depend on the acceptor electron affinity and polymer concentration. We conclude that the NE operates within a single macromolecule and stems from planarization of the polymer chain involved in the CTC with an acceptor molecule; as a result, the probability of further complexation with the next acceptor molecules at the adjacent repeat units increases. The steric and electronic microscopic mechanisms of NE are discussed.

  14. Organic solar cells based on non-fullerene acceptors

    NASA Astrophysics Data System (ADS)

    Hou, Jianhui; Inganäs, Olle; Friend, Richard H.; Gao, Feng

    2018-02-01

    Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.

  15. Spectroscopic and thermal investigations on the charge transfer interaction between risperidone as a schizophrenia drug with some traditional π-acceptors: Part 2

    NASA Astrophysics Data System (ADS)

    El-Habeeb, Abeer A.; Al-Saif, Foziah A.; Refat, Moamen S.

    2013-03-01

    The focus of present investigation was to assess the utility of non-expensive techniques in the evaluation of risperidone (Ris) in solid and solution states with different traditional π-acceptors and subsequent incorporation of the analytical determination into pharmaceutical formulation for a faster release of risperidone. Charge-transfer complexes (CTC) of risperidone with picric acid (PA), 2,3-dichloro-5,6-dicyano-p-benzoquinon (DDQ), tetracyanoquinodimethane (TCNQ), tetracyano ethylene (TCNE), tetrabromo-p-quinon (BL) and tetrachloro-p-quinon (CL) have been studied spectrophotometrically in absolute methanol at room temperature. The stoichiometries of the complexes were found to be 1:1 ratio by the photometric molar ratio between risperidone and the π-acceptors. The equilibrium constants, molar extinction coefficient (ɛCT) and spectroscopic-physical parameters (standard free energy (ΔGo), oscillator strength (f), transition dipole moment (μ), resonance energy (RN) and ionization potential (ID)) of the complexes were determined upon the modified Benesi-Hildebrand equation. Risperidone in pure form was applied in this study. The results indicate that the formation constants for the complexes depend on the nature of electron acceptors and donor, and also the spectral studies of the complexes were determined by (infrared, Raman, and 1H NMR) spectra and X-ray powder diffraction (XRD). The most stable mono-protonated form of Ris is characterized by the formation of +Nsbnd H (pyrimidine ring) intramolecular hydrogen bonded. In the high-wavenumber spectral region ˜3400 cm-1, the bands of the +Nsbnd H stretching vibrations and of the pyrimidine nitrogen atom could be potentially useful to discriminate the investigated forms of Ris. The infrared spectra of both Ris complexes are confirming the participation of +Nsbnd H pyrimidine ring in the donor-acceptor interaction.

  16. The Dependence of Donor:Acceptor Ratio on the Photovoltaic Performances of Blended poly (3-octylthiophene-2,5-diyl) and (6,6)-phenyl C{sub 71} butyric acid methyl ester Bulk Heterojunction Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauzia, Vivi; Institute of Microengineering and Nanoelectronics; Umar, Akrajas Ali

    2010-10-24

    Bulk heterojunction organic solar cells using blended poly (3-octylthiophene-2,5-diyl)(P3OT) and (6,6)-phenyl C{sub 71} butyric acid methyl ester (PC{sub 71}BM) have been fabricated. P3OT and PC{sub 71}BM were used as the electron donor (D) and acceptor (A), respectively. Both materials were mixed and dissolved in dichlorobenzene with three different D:A ratios i.e. 1:3, 1:1 and 3:1 (weight) while maintained at the concentration of 2 wt%(26 mg/ml). The blended thin films were sandwiched between the indium tin oxide (ITO) coated glass and the aluminum film. This paper reports the influence of donor:acceptor ratio on the performance of solar cell devices measured bymore » current-voltage measurement both in the dark and under 1.5 AM solar illumination. It was found that all devices showed the photovoltaic effect with poor diode behavior and the donor:acceptor ratio significantly influenced on the performance of bulk heterojunction organic solar cells.« less

  17. Using Time-Dependent Density Functional Theory to Probe the Nature of Donor-Acceptor Stenhouse Adduct Photochromes.

    PubMed

    Laurent, Adèle D; Medveď, Miroslav; Jacquemin, Denis

    2016-06-17

    We present the first theoretical investigation of a recently proposed class of photochromes, namely donor-acceptor Stenhouse adduct (DASA) switches [J. Am. Chem. Soc. 2014, 136, 8169-8172]. By using density functional theory and its time-dependent counterpart, we investigate the ground- and excited-state structures, electronic transition energies, and several properties of the two isomeric forms. In addition to demonstrating that the selected level of theory is able to reproduce the main experimental facts, we show that 1) the two forms of the DASA photochromes are close to isoenergetic; 2) the two isomers possess similar total dipole moments, in spite of their very different sizes; 3) both isomers have a zwitterionic nature; 4) the nature of the dipole-allowed electronic excited state is vastly different in the two forms; and 5) the specific band shape of the extended DASA can be reproduced by vibronic calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photochemical activity of a key donor-acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes.

    PubMed

    Arceo, Elena; Jurberg, Igor D; Alvarez-Fernández, Ana; Melchiorre, Paolo

    2013-09-01

    Asymmetric catalytic variants of sunlight-driven photochemical processes hold extraordinary potential for the sustainable preparation of chiral molecules. However, the involvement of short-lived electronically excited states inherent to any photochemical reaction makes it challenging for a chiral catalyst to dictate the stereochemistry of the products. Here, we report that readily available chiral organic catalysts, with well-known utility in thermal asymmetric processes, can also confer a high level of stereocontrol in synthetically relevant intermolecular carbon-carbon bond-forming reactions driven by visible light. A unique mechanism of catalysis is proposed, wherein the catalyst is involved actively in both the photochemical activation of the substrates (by inducing the transient formation of chiral electron donor-acceptor complexes) and the stereoselectivity-defining event. We use this approach to enable transformations that are extremely difficult under thermal conditions, such as the asymmetric α-alkylation of aldehydes with alkyl halides, the formation of all-carbon quaternary stereocentres and the control of remote stereochemistry.

  19. New Sm(III) complexes as electronic-excitation donors of the Seta-632 squaraine dye

    NASA Astrophysics Data System (ADS)

    Egorova, A. V.; Leonenko, I. I.; Aleksandrova, D. I.; Skripinets, Yu. V.; Antonovich, V. P.; Obukhova, E. N.; Patsenker, L. D.

    2015-07-01

    We have found optimal formation conditions of new Sm(III) chelate complexes with derivatives of oxoquinolinecarboxylic acid ( L 1 and L 2) and determined their spectral-luminescent characteristics (the luminescence and luminescence excitation wavelength maxima and the luminescence lifetimes). We have revealed that the Seta-632 squaraine dye (a fluorescent label of proteins and other biological molecules) quenches the luminescence of complexes Sm(III)- L 1 and Sm(III)- L 2. The quenching of chelate complexes is caused by the Förster resonant electronic-excitation energy transfer (FRET) from the donor (Sm(III)- L 1 or Sm(III)- L 2) to the acceptor (Seta-632). In this case, the luminescence intensity of the Seta-632 dye in the presence of Sm(III)- L 1 and Sm(III)- L 2 increases by factors of 64 and 27, respectively. The values of the Förster radii ( R 0(Sm- L1) = 38 Å, R 0(Sm- L2) = 35 Å) and the overlap integrals of the luminescence spectra of the two energy donors with the absorption spectrum of the acceptor ( J Sm- L1 = 1.22 × 1012 M-1 cm-1 nm4 and J Sm- L2 = 1.06 × 1012 M-1 cm-1 nm4), which have been calculated from the luminescence quantum intensity of the donors and from the absorption spectrum of the acceptor and its molar absorption coefficient, have made it possible to characterize the Seta-632 dye as an efficient quencher of the luminescence of Sm(III) ions. We are the first to propose Sm(III)- L 1 and Sm(III)- L 2 chelate complexes as FRET donors.

  20. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory.

    PubMed

    Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael

    2012-08-14

    Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

  1. A theoretical probe on the non-covalent interactions of sulfadoxine drug with pi-acceptors

    NASA Astrophysics Data System (ADS)

    Sandhiya, L.; Senthilkumar, K.

    2014-09-01

    A detailed analysis of the interaction between an antimalarial drug sulfadoxine and four pi-acceptors, tetrachloro-catechol, picric acid, chloranil, and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is presented in this study. The interaction of the amine, amide, methoxy, Csbnd H groups and π electron density of the drug molecule with the acceptors are studied using DFT method at M06-2X level of theory with 6-31G(d,p) basis set. The interaction energy of the complexes is calculated using M06-2X, M06-HF, B3LYP-D and MP2 methods with 6-31G(d,p) basis set. The role of weak interactions on the formation and stability of the complexes is discussed in detail. The two aromatic platforms of sulfadoxine play a major role in determining the stability of the complexes. The electron density difference maps have been plotted for the most stable drug interacting complexes to understand the changes in electron density delocalization upon the complex formation. The nature of the non-covalent interaction has been addressed from NCI plot. The infrared spectra calculated at M06-2X/6-31G(d,p) level of theory is used to characterize the most stable complexes. The SDOX-pi acceptor complexation leads to characteristic changes in the NMR spectra. The 13C, 1H, 17O and 15N NMR chemical shifts have been calculated using GIAO method at M06-2X/6-311+G(d,p)//M06-2X/6-31G(d,p) level of theory. The results obtained from this study confirm the role of non-covalent interactions on the function of the sulfadoxine drug.

  2. The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome

    NASA Astrophysics Data System (ADS)

    Beaujuge, P. M.; Ellinger, S.; Reynolds, J. R.

    2008-10-01

    In the context of the fast-growing demand for innovative high-performance display technologies, the perspective of manufacturing low-cost functional materials that can be easily processed over large areas or finely printed into individual pixels, while being mechanically deformable, has motivated the development of novel electronically active organic components fulfilling the requirements for flexible displays and portable applications. Among all technologies relying on a low-power stimulated optical change, non-emissive organic electrochromic devices (ECDs) offer the advantage of being operational under a wide range of viewing angles and lighting conditions spanning direct sunlight as desired for various applications including signage, information tags and electronic paper. Combining mechanical flexibility, high contrast ratios and fast response times, along with colour tunability through structural control, polymeric electrochromes constitute the most attractive organic electronics for tomorrow's reflective/transmissive ECDs and displays. Although red, blue and most recently green electrochromic polymers (ECPs) required for additive primary colour space were investigated, attempts to make saturated black ECPs have not been reported, probably owing to the complexity of designing materials absorbing effectively over the whole visible spectrum. Here, we report on the use of the donor-acceptor approach to make the first neutral-state black polymeric electrochrome. Processable black-to-transmissive ECPs promise to affect the development of both reflective and transmissive ECDs by providing lower fabrication and processing costs through printing, spraying and coating methods, along with good scalability when compared with their traditional inorganic counterparts.

  3. Fullerene-bisadduct acceptors for polymer solar cells.

    PubMed

    Li, Yongfang

    2013-10-01

    Polymer solar cells (PSCs) have drawn great attention in recent years for their simple device structure, light weight, and low-cost fabrication in comparison with inorganic semiconductor solar cells. However, the power-conversion efficiency (PCE) of PSCs needs to be increased for their future application. The key issue for improving the PCE of PSCs is the design and synthesis of high-efficiency conjugated polymer donors and fullerene acceptors for the photovoltaic materials. For the acceptor materials, several fullerene-bisadduct acceptors with high LUMO energy levels have demonstrated excellent photovoltaic performance in PSCs with P3HT as a donor. In this Focus Review, recent progress in high-efficiency fullerene-bisadduct acceptors is discussed, including the bisadduct of PCBM, indene-C60 bisadduct (ICBA), indene-C70 bisadduct (IC70BA), DMPCBA, NCBA, and bisTOQC. The LUMO levels and photovoltaic performance of these bisadduct acceptors with P3HT as a donor are summarized and compared. In addition, the applications of an ICBA acceptor in new device structures and with other conjugated polymer donors than P3HT are also introduced and discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2015-04-01

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, 1H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  5. A Donor-Acceptor Conjugated Polymer with Alternating Isoindigo Derivative and Bithiophene Units for Near-Infrared Modulated Cancer Thermo-Chemotherapy.

    PubMed

    Li, Dong-Dong; Wang, Jun-Xia; Ma, Yan; Qian, Hai-Sheng; Wang, Dong; Wang, Li; Zhang, Guobing; Qiu, Longzhen; Wang, Yu-Cai; Yang, Xian-Zhu

    2016-08-03

    Conjugated polymers containing alternating donor/acceptor units have strong and sharp absorbance peaks in near-infrared (NIR) region, which could be suitable for photothermal therapy. However, these polymers as photothermal transducers are rarely reported because of their water insolubility, which limits their applications for cancer therapy. Herein, we report the donor-acceptor conjugated polymer PBIBDF-BT with alternating isoindigo derivative (BIBDF) and bithiophene (BT) units as a novel photothermal transducer, which exhibited strong near-infrared (NIR) absorbance due to its low band gap (1.52 eV). To stabilize the conjugated polymer physiological environments, we utilized an amphiphilic copolymer, poly(ethylene glycol)-block-poly(hexyl ethylene phosphate) (mPEG-b-PHEP), to stabilize PBIBDF-BT-based nanoparticles (PBIBDF-BT@NPPPE) through a single emulsion method. The obtained nanoparticles PBIBDF-BT@NPPPE showed great stability in physiological environments and excellent photostability. Moreover, the PBIBDF-BT@NPPPE exhibited high photothermal conversion efficiency, reaching 46.7%, which is relatively high compared with those of commonly used materials for photothermal therapy. Accordingly, in vivo and in vitro experiments demonstrated that PBIBDF-BT@NPPPE exhibits efficient photothermal anticancer efficacy. More importantly, PBIBDF-BT@NPPPE could simultaneously encapsulate other types of therapeutic agents though hydrophobic interactions with the PHEP core and achieve NIR-triggered intracellular drug release and a synergistic combination therapy of thermo-chemotherapy for the treatment of cancer.

  6. Fate of microbial metabolites of hydrocarbons in a coastal plain aquifer: The role of electron acceptors

    USGS Publications Warehouse

    Cozzarelli, I.M.; Herman, J.S.; Baedecker, M. Jo

    1995-01-01

    A combined field and laboratory study was undertaken to understand the distribution and geochemical conditions that influence the prevalence of low molecular weight organic acids in groundwater of a shallow aquifer contaminated with gasoline. Aromatic hydrocarbons from gasoline were degraded by microbially mediated oxidation-reduction reactions, including reduction of nitrate, sulfate, and Fe(III). The biogeochemical reactions changed overtime in response to changes in the hydrogeochemical conditions in the aquifer. Aliphatic and aromatic organic acids were associated with hydrocarbon degradation in anoxic zones of the aquifer. Laboratory microcosms demonstrated that the biogeochemical fate of specific organic acids observed in groundwater varied with the structure of the acid and the availability of electron acceptors. Benzoic and phenylacetic acid were degraded by indigenous aquifer microorganisms when nitrate was supplied as an electron acceptor. Aromatic acids with two or more methyl substituants on the benzene ring persisted under nitrate-reducing conditions. Although iron reduction and sulfate reduction were important processes in situ and occurred in the microcosms, these reactions were not coupled to the biological oxidation of aromatic organic acids that were added to the microcosms as electron donors. ?? 1995 American Chemical Society.

  7. Part I. Synthesis and characterization of donor-pi-acceptor compounds with pentadienyl-bridged indoline and tetrahydroquinoline donors and aldehyde and thiobarbituric acid acceptors Part II. Longitudinal study comparing online versus face-to-face course delivery in introductory chemistry

    NASA Astrophysics Data System (ADS)

    Greco, Patrick F.

    Part I. The design and development of organic second-order nonlinear optical (NLO) materials have attracted much interest due to their applications in optoelectronic devices and modern communications technology. Donor-pi-acceptor compounds, D-(CH=CH)n-A, often exhibit hyperpolarizability that results in laser frequency doubling (second harmonic generation) and spectroscopic solvatochromism. To study the effect of donor amine geometry upon properties associated with second-order NLO behavior in simple donor-pi-acceptor compounds, equilibrium geometries and hyperpolarizabilities (beta) for donor-acceptor polyenes with amine donors were calculated at several levels of computational theory. Two new molecules with donors that only differ by one methylene group were chosen for comparison. Thus, 5-(N-methylindolin-5-yl)-2, 4-pentadienal (1a) and 5-(N-methyl-2, 3, 4-trihydroquinolin-6-yl)-2, 4-pentadienal (2a) were synthesized in two steps from starting materials described in the literature. These aldehydes were converted into stronger acceptors in one step to give diethylthiobarbituric acid derivatives 1c and 2c, as well as tricyanofuran derivatives 1d and 2d. Positive UV solvatochromism was observed in all three derivatives. NMR solvatochromism was most pronounced in 1c, and 2c vs. 1a and 2a as measured by changes in chemical shifts. Additionally, coupling constants showed more conjugation in 1c and 2c, where 1a and 2a showed less conjugation. Finally, differential scanning calorimetry and thermal gravimetric analysis were used to compare decomposition and melting temperatures of these compounds to determine their stability. Aldehydes, 1a and 2a had distinct melting points, while the 1c, 2c, 1d, and 2d derivatives decomposed at temperatures above 150 °C. Part II. This longitudinal study focused on an introductory chemistry course taught using two different modes of delivery: online and face-to-face (FtF). The sections of the course using the different delivery modes

  8. Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors

    PubMed Central

    Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.

    2016-01-01

    Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315

  9. Enhanced reduction of an azo dye using henna plant biomass as a solid-phase electron donor, carbon source, and redox mediator.

    PubMed

    Huang, Jingang; Chu, Shushan; Chen, Jianjun; Chen, Yi; Xie, Zhengmiao

    2014-06-01

    The multiple effects of henna plant biomass as a source of carbon, electron donor, and redox mediator (RM) on the enhanced bio-reduction of Orange II (AO7) were investigated. The results indicated that the maximum AO7 reduction rate in the culture with henna powder was ∼6-fold that in the sludge control culture lacking henna. On the one hand, AO7 reduction can be advantageously enhanced by the release of available electron donors; on the other hand, the associated lawsone can act as a fixed RM and play a potential role in shuttling electrons from the released electron donors to the final electron acceptor, AO7. The soluble chemical oxygen demand (SCOD) during each experiment and the FTIR spectra suggested that the weakened AO7 reduction along with the retention of henna powder might not be attributed to the lack of fixed lawsone but rather to the insufficiency of electron donors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    DOE PAGES

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less

  11. Dibenzothiophene-Substituted Fullerene Derivative as Electron Acceptor for Polymer Solar Cells.

    PubMed

    Kim, Hee Un; Park, Jong Baek; Hwang, Do-Hoon

    2016-05-01

    A new fullerene derivative, [6,6]-dibenzo[b,d]thiophene-C61-butyric acid methyl ester (DBTC61BM) was synthesized from C60 using tosylhydrazone, and used as an electron-acceptor material for poly(3-hexylthiophene) (P3HT)-based organic photovoltaic cells. The synthesized DBTC61BM was used to modify the basic structure of [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) by replacing the aromatic part with dibenzo[b,d]thiophene. The solubilities of DBTC61BM and PC61BM are similar; they have good solubilities in common organic solvents such as dichloromethane, chloroform, toluene, and 1,2-dichlorobenzene. The Stern-Volmer quenching constant (K(sv)) of DBTC61BM was 7.14 x 10(3) M(-1), and was correlated with the binding affinity between the fluorophore and a quencher. The lowest unoccupied molecular orbital energy level of DBTC61BM was -3.71 eV. The charge-carrier mobility of a P3HT:DBTC61BM blend film was determined using the space-charge-limited current method; the electron mobility value obtained for the P3HT:DBTC61BM blend film was 2.13 x 10(-4) cm2 V(-1) s(-1). Photovoltaic devices were fabricated using P3HT as the electron donor and DBTC61BM as the electron acceptor. Among the fabricated devices, photovoltaic cells with the structure ITO/PEDOT:PSS/P3HT:DBTC61BM/LiF/Al showed the highest power conversion efficiency, namely 3.23%, with an open-circuit voltage of 0.64 V, short-circuit-current density of 8.14 mA cm(-2), and fill factor of 0.59, under AM 1.5 G (100 mW cm(-2)) illumination.

  12. Part I. Synthesis and Characterization of Donor-Pi-Acceptor Compounds with Pentadienyl-Bridged Indoline and Tetrahydroquinoline Donors and Aldehyde and Thiobarbituric Acid Acceptors Part II. Longitudinal Study Comparing Online versus Face-to-Face Course Delivery in Introductory Chemistry

    ERIC Educational Resources Information Center

    Greco, Patrick F.

    2012-01-01

    Part I. The design and development of organic second-order nonlinear optical (NLO) materials have attracted much interest due to their applications in optoelectronic devices and modern communications technology. Donor-pi-acceptor compounds, D-(CH=CH)[subscript n]-A, often exhibit hyperpolarizability that results in laser frequency doubling (second…

  13. Charge-transfer complexes of sulfamethoxazole drug with different classes of acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Korashy, Sabry A.; El-Deen, Ibrahim M.; El-Sayed, Shaima M.

    2010-09-01

    The charge-transfer complexes of the donor sulfamethoxazole (SZ) with iodine (I 2), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), p-chloranil (CHL) and picric acid (PA) have been studied spectrophotometrically in chloroform or methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CT-complexes in case of four acceptors. The stoichiometry of the complexes was found to be 1:1 ratio by molar ratio method between donor and acceptor with maximum absorption bands (CT band). The data are discussed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G°), oscillator strength (ƒ), transition dipole moment ( μ), resonance energy ( RN) and ionization potential ( ID). The results indicate that the formation constant ( KCT) for the complexes were shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents which were used. IR, 1H NMR, mass spectra, UV-Vis techniques, elemental analyses (CHN) and TG-DTG investigation were used to characterize the four sulfamethoxazole charge-transfer complexes.

  14. Very low band gap thiadiazoloquinoxaline donor-acceptor polymers as multi-tool conjugated polymers.

    PubMed

    Steckler, Timothy T; Henriksson, Patrik; Mollinger, Sonya; Lundin, Angelica; Salleo, Alberto; Andersson, Mats R

    2014-01-29

    Here we report on the synthesis of two novel very low band gap (VLG) donor-acceptor polymers (Eg ≤ 1 eV) and an oligomer based on the thiadiazoloquinoxaline acceptor. Both polymers demonstrate decent ambipolar mobilities, with P1 showing the best performance of ∼10(-2) cm(2) V(-1) s(-1) for p- and n-type operation. These polymers are among the lowest band gap polymers (≲0.7 eV) reported, with a neutral λmax = 1476 nm (P2), which is the farthest red-shifted λmax reported to date for a soluble processable polymer. Very little has been done to characterize the electrochromic aspects of VLG polymers; interestingly, these polymers actually show a bleaching of their neutral absorptions in the near-infrared region and have an electrochromic contrast up to 30% at a switching speed of 3 s.

  15. Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals

    NASA Astrophysics Data System (ADS)

    Kananen, B. E.; Halliburton, L. E.; Scherrer, E. M.; Stevens, K. T.; Foundos, G. K.; Chang, K. B.; Giles, N. C.

    2017-08-01

    Electron paramagnetic resonance (EPR) is used to directly observe and characterize neutral Mg acceptors ( M gGa0 ) in a β-Ga2O3 crystal. These acceptors, best considered as small polarons, are produced when the Mg-doped crystal is irradiated at or near 77 K with x rays. During the irradiation, neutral acceptors are formed when holes are trapped at singly ionized Mg acceptors ( M gGa- ). Unintentionally present Fe3+ (3d5) and Cr3+ (3d3) transition-metal ions serve as the corresponding electron traps. The hole is localized in a nonbonding p orbital on a threefold-coordinated oxygen ion adjacent to an Mg ion at a sixfold-coordinated Ga site. These M gGa0 acceptors (S = 1/2) have a slightly anisotropic g matrix (principal values are 2.0038, 2.0153, and 2.0371). There is also partially resolved 69Ga and 71Ga hyperfine structure resulting from unequal interactions with the two Ga ions adjacent to the hole. With the magnetic field along the a direction, hyperfine parameters are 2.61 and 1.18 mT for the 69Ga nuclei at the two inequivalent neighboring Ga sites. The M gGa0 acceptors thermally convert back to their nonparamagnetic M gGa- charge state when the temperature of the crystal is raised above approximately 250 K.

  16. Hypochlorite-Mediated Modulation of Photoinduced Electron Transfer in a Phenothiazine-Boron dipyrromethene Electron Donor-Acceptor Dyad: A Highly Water Soluble "Turn-On" Fluorescent Probe for Hypochlorite.

    PubMed

    Soni, Disha; Duvva, Naresh; Badgurjar, Deepak; Roy, Tapta Kanchan; Nimesh, Surendra; Arya, Geeta; Giribabu, Lingamallu; Chitta, Raghu

    2018-04-16

    A highly water-soluble phenothiazine (PTZ)-boron dipyrromethene (BODIPY)-based electron donor-acceptor dyad (WS-Probe), which contains BODIPY as the signaling antennae and PTZ as the OCl - reactive group, was designed and used as a fluorescent chemosensor for the detection of OCl - . Upon addition of incremental amounts of NaOCl, the quenched fluorescence of WS-Probe was enhanced drastically, which indicated the inhibition of reductive photoinduced electron transfer (PET) from PTZ to 1 BODIPY*; the detection limit was calculated to be 26.7 nm. Selectivity studies with various reactive oxygen species, cations, and anions revealed that WS-Probe was able to detect OCl - selectively. Steady-state fluorescence studies performed at varied pH suggested that WS-Probe can detect NaOCl and exhibits maximum fluorescence in the pH range of 7 to 8, similar to physiological conditions. ESI-MS analysis and 1 H NMR spectroscopy titrations showed the formation of sulfoxide as the major oxidized product upon addition of hypochlorite. More interestingly, when WS-Probe was treated with real water samples, the fluorescence response was clearly visible with tap water and disinfectant, which indicated the presence of OCl - in these samples. The in vitro cell viability assay performed with human embryonic kidney 293 (HEK 293) cells suggested that WS-probe is non-toxic up to 10 μm and implicates the use of the probe for biological applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Interaction of Humic Acids with Organic Toxicants

    NASA Astrophysics Data System (ADS)

    Tchaikovskaya, O. N.; Yudina, N. V.; Maltseva, E. V.; Nechaev, L. V.; Svetlichnyi, V. A.

    2016-08-01

    Interaction of humic acids with polyaromatic hydrocarbons (PAH) (naphthalene and anthracene) and triazole series fungicides (cyproconazole (CC) and tebuconazole (TC)) is investigated by the method of fluorescence quenching depending on the concentration of substances in solutions and their structural features. Humic acids were modified by mechanochemical activation in a planetary mill. The complex character of intermolecular interactions between PAH and fungicides with humic acids, including donor-acceptor and hydrophobic binding, is established. Thermodynamically stable conformations of biocide molecules were estimated using ChemOffice CS Chem3D 8.0 by methods of molecular mechanics (MM2) and molecular dynamics. Biocide molecules with pH 7 are in energetically favorable position when the benzene and triazole rings are almost parallel to each other. After acidification of solutions to pH 4.5, the CC molecule retains the geometry for which donor-acceptor interactions are possible: the benzene ring in the molecule represents the electron donor, and triazole is the acceptor. In this case, the electron density in CC is redistributed easier, which is explained by a smaller number of carbon atoms between the triazole and benzene rings, unlike TC. As a result, the TC triazole ring is protonated to a greater degree, acquiring a positive charge, and enters into donoracceptor interactions with humic acid (HA) samples. The above-indicated bond types allow HA to participate actively in sorption processes and to provide their interaction with biocides and PAH and hence, to act as detoxifying agents for recultivation of the polluted environment.

  18. Coumarin-indole conjugate donor-acceptor system: Synthesis, photophysical properties, anion sensing ability, theoretical and biological activity studies of two coumarin-indole based push-pull dyes

    NASA Astrophysics Data System (ADS)

    Aksungur, Tuğçe; Aydıner, Burcu; Seferoğlu, Nurgül; Özkütük, Müjgan; Arslan, Leyla; Reis, Yasemin; Açık, Leyla; Seferoğlu, Zeynel

    2017-11-01

    Two coumarin-indole conjugate fluorescent dyes having donor-acceptor-donor (D-A-D) (CI-1 and CI-2) were synthesized, and characterized using IR, 1H/13C NMR and HRMS. The absorption and emission properties of the dyes were determined in different solvents. The anion sensitivity and selectivity of the dyes were studied with some anions (CN-, F-, AcO-, Cl-, Br-, I-, HSO4- and H2PO4-) in DMSO, and their interaction mechanisms were evaluated by spectrophotometric and 1H NMR titration techniques. In addition, the molecular and electronic structures of CI-1, as well as the molecular complexes of CI-1, formed with the anions (F- and AcO-), were obtained theoretically and confirmed by DFT and TD-DFT calculations. CI-1 behaves as a colorimetric chemosensor for selective and sensitive detection of CN- in DMSO/H2O (9:1) over other competing anions such as F- and AcO-. However, only CN- interacts with chromophore CI-2 via Michael addition and the main absorption maxima shifts hypsochromically with an observed distinctive color change from orange to yellow. For using as a optic dye, the thermal stability properties of the dyes was determined by TGA (Thermal Gravimetric Analysis). Antimicrobial, antifungal and DNA-ligand interaction studies of the dyes were also examined. The dyes cause conformational changes on DNA and selectively bind to nucleotides of A/A and G/G.

  19. High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tao; Meng, Dong; Cai, Yunhao

    2016-04-23

    A novel polymer donor (PBDTS-Se) is designed to match with a non-fullerene acceptor (SdiPBI-S). The corresponding solar cells show a high efficiency of 8.22%, which result from synergetic improvements of light harvesting, charge carrier transport and collection, and morphology. The results indicate that rational design of novel donor materials is important for non-fullerene organic solar cells.

  20. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials.

    PubMed

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-03

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9'-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9',9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  1. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials

    NASA Astrophysics Data System (ADS)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9‧-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9‧,9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  2. Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition.

    PubMed

    Boopathy, R

    2001-02-01

    The biodegradation of cyclotetramethylenetetranitramine, commonly known as 'high melting explosive' (HMX), under various electron-acceptor conditions was investigated using enrichment cultures developed from the anaerobic digester sludge of Thibodaux sewage treatment plant. The results indicated that the HMX was biodegraded under sulfate reducing, nitrate reducing, fermenting, methanogenic, and mixed electron accepting conditions. However, the rates of degradation varied among the various conditions studied. The fastest removal of HMX (from 22 ppm on day 0 to < 0.05 ppm on day 11) was observed under mixed electron-acceptor conditions, followed in order by sulfate reducing, fermenting, methanogenic, and nitrate reducing conditions. Under aerobic conditions, HMX was not biodegraded, which indicated that HMX degradation takes place under anaerobic conditions via reduction. HMX was converted to methanol and chloroform under mixed electron-acceptor conditions. This study showed evidence for HMX degradation under anaerobic conditions in a mixed microbial population system similar to any contaminated field sites, where a heterogeneous population exists.

  3. Molecular design and nanoscale engineering of organic nanofibril donor-acceptor heterojunctions

    NASA Astrophysics Data System (ADS)

    Huang, Helin

    Organic nanofibril heterojunction materials have gained increasing research interest due to their broad applications in organic semiconductor devices. In order to enhance the device performance, we have investigated the structure-property relationship of these nanostructures by designing and synthesizing functional building block molecules, selfassembling the molecules into well-defined nanofibers, fabricating the nanofibers into optical and electrical devices, and testing their photoconductivity and sensor properties. In Chapter 2, we present a simple approach to fabricate efficient nanofibril heterojunctions by interfacial engineering of electron donor (D) coating onto acceptor (A) nanofibers. The nanofibers both create a large D/A interface for increased charge separation and act as long-range transport pathways for photogenerated charge carriers towards the electrodes, and the alkyl groups modified at the A molecules not only enable effective surface adsorption of D molecules on the nanofibers for effective electron-transfer communication, but also spatially separate the photogenerated charge carriers to prevent their recombination. In Chapter 3, we further investigated the effect of D molecular structure and coating morphology on photoconductivity of organic nanofiber materials. A series of D molecules with varying side-chain modifications were synthesized and investigated for the different intermolecular arrangements caused by pi-pi stacking in balance with steric hindrance of side-chains. Different molecular assemblies of D resulted in distinctive phase segregation between D and A nanofiber, which significantly affects the interfacial charge separation. In Chapter 4, we developed an alternative nanofibril heterojunction structure that is composed of D as the nanofiber, onto which a monolayer of A molecule was coated. Due to the strong redox (charge transfer) interaction between D and A, the nanofibril junction demonstrated high conductivity even without

  4. The electronic properties of SWNTs intercalated by electron acceptors

    NASA Astrophysics Data System (ADS)

    Chernysheva, M. V.; Kiseleva, E. A.; Verbitskii, N. I.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu. D.; Savilov, S. V.; Kiselev, N. A.; Zhigalina, O. M.; Kumskov, A. S.; Krestinin, A. V.; Hutchison, J. L.

    2008-05-01

    Here we report synthesis of Chal@SWNT nanocomposites (where Chal=S, Se and Te) and the impact of the intercalated electron-acceptor compounds on the electronic properties of SWNTs. The chalcogens were introduced to the channels of single-walled carbon nanotubes by molten media technique via impregnation of pre-opened SWNTs with melted guest compounds in vacuum. HRTEM imaging confirms the filling of nanotube channels by continuous nanostructures of corresponding chalcogens. The strong influence of incorporated matter on the electronic properties of the SWNTs was detected by Raman spectroscopy.

  5. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    PubMed

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structural and spectroscopic characterizations on the charge-transfer interactions of the second generation poly(propylene amine) dendrimers with iodine and picric acid acceptors.

    PubMed

    El-Sayed, Mohamed Y; Refat, Moamen S

    2015-02-25

    Herein, this study was focused to get a knowledge about the intermolecular charge transfer complexes between the second generation of poly(propylene amine) dendrimer (PPD2) with picric acid (PA) and iodine (I2) as π and σ-acceptors. The charge-transfer interaction of the PPD2 electron donor and the PA acceptor has been studied in CHCl3. The resulted data refereed to the formation of the new CT-complex with the general formula [(PPD2)(PA)4]. The 1:4 stoichiometry of the reaction was discussed upon the on elemental analysis and photometric titration. On the other hand, the 1:3½ iodine-PPD2 heptaiodide (I7(-)) charge-transfer complex has been studied spectrophotometrically in chloroform at room temperature with general formula [(PPD2)](+)I7(-). The electronic absorption bands of 2I2·I3(-) (I7(-)) are observed at 358 and 294 nm. Raman laser spectrum of the brown solid heptaiodide complex has two clearly vibration bands at 155 and 110 cm(-1) due to symmetric stretching νs(II) outer and inner bonds, respectively. The (1)H NMR spectra and differential scanning calorimetry (DSC) data of PPD2 charge-transfer complexes were discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Structural and spectroscopic characterizations on the charge-transfer interactions of the second generation poly(propylene amine) dendrimers with iodine and picric acid acceptors

    NASA Astrophysics Data System (ADS)

    El-Sayed, Mohamed Y.; Refat, Moamen S.

    2015-02-01

    Herein, this study was focused to get a knowledge about the intermolecular charge transfer complexes between the second generation of poly(propylene amine) dendrimer (PPD2) with picric acid (PA) and iodine (I2) as π and σ-acceptors. The charge-transfer interaction of the PPD2 electron donor and the PA acceptor has been studied in CHCl3. The resulted data refereed to the formation of the new CT-complex with the general formula [(PPD2)(PA)4]. The 1:4 stoichiometry of the reaction was discussed upon the on elemental analysis and photometric titration. On the other hand, the 1:3½ iodine-PPD2 heptaiodide (I7-) charge-transfer complex has been studied spectrophotometrically in chloroform at room temperature with general formula [(PPD2)]+I7-. The electronic absorption bands of 2I2·I3- (I7-) are observed at 358 and 294 nm. Raman laser spectrum of the brown solid heptaiodide complex has two clearly vibration bands at 155 and 110 cm-1 due to symmetric stretching νs(Isbnd I) outer and inner bonds, respectively. The 1H NMR spectra and differential scanning calorimetry (DSC) data of PPD2 charge-transfer complexes were discussed.

  8. Fraction of Electrons Consumed in Electron Acceptor Reduction and Hydrogen Thresholds as Indicators of Halorespiratory Physiology

    PubMed Central

    Löffler, Frank E.; Tiedje, James M.; Sanford, Robert A.

    1999-01-01

    Measurements of the hydrogen consumption threshold and the tracking of electrons transferred to the chlorinated electron acceptor (fe) reliably detected chlororespiratory physiology in both mixed cultures and pure cultures capable of using tetrachloroethene, cis-1,2-dichloroethene, vinyl chloride, 2-chlorophenol, 3-chlorobenzoate, 3-chloro-4-hydroxybenzoate, or 1,2-dichloropropane as an electron acceptor. Hydrogen was consumed to significantly lower threshold concentrations of less than 0.4 ppmv compared with the values obtained for the same cultures without a chlorinated compound as an electron acceptor. The fe values ranged from 0.63 to 0.7, values which are in good agreement with theoretical calculations based on the thermodynamics of reductive dechlorination as the terminal electron-accepting process. In contrast, a mixed methanogenic culture that cometabolized 3-chlorophenol exhibited a significantly lower fe value, 0.012. PMID:10473415

  9. Effect of sulfate on anaerobic reduction of nitrobenzene with acetate or propionate as an electron donor.

    PubMed

    Huang, Jingang; Wen, Yue; Ding, Ning; Xu, Yue; Zhou, Qi

    2012-09-15

    Sulfate is frequently found in wastewaters that contain nitrobenzene. To reveal the effect of sulfate on the reductive transformation of nitrobenzene to aniline--with acetate or propionate as potential electron donors in anaerobic systems--an acetate series (R1-R5) and a propionate series (R6-R10) were set up. Each of these was comprised of five laboratory-scale sequence batch reactors. The two series were amended with the same amount of nitrobenzene and electron donor electron equivalents, whereas with increasing sulfate concentrations. Results indicated that the presence of sulfate could depress nitrobenzene reduction. Such depression is linked to the inhibition of nitroreductase activity and/or the shift of electron flow. In the acetate series, although sulfate did not strongly compete with nitrobenzene for electron donors, noncompetitive inhibition of specific nitrobenzene reduction rates by sulfate was observed, with an inhibition constant of 0.40 mM. Propionate, which can produce intermediate H₂ as preferred reducing equivalent, is a more effective primary electron donor for nitrobenzene reduction as compared to acetate. In the propionate series, sulfate was found to be a preferential electron acceptor as compared to nitrobenzene, resulting in a quick depletion of propionate and then a likely termination of H₂-releasing under higher sulfate concentrations (R9 and R10). In such a situation, nitrobenzene reduction slowed down, occurring two-stage zero-order kinetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Revealing electronic open quantum systems with subsystem TDDFT.

    PubMed

    Krishtal, Alisa; Pavanello, Michele

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  11. Revealing electronic open quantum systems with subsystem TDDFT

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-01

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  12. An Obvious Improvement in the Performance of Ternary Organic Solar Cells with "Guest" Donor Present at the "Host" Donor/Acceptor Interface.

    PubMed

    Bi, Peng-Qing; Wu, Bo; Zheng, Fei; Xu, Wei-Long; Yang, Xiao-Yu; Feng, Lin; Zhu, Furong; Hao, Xiao-Tao

    2016-09-07

    A small-molecule material, 7,7-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo-[c] [1,2,5]thiadiazole) (p-DTS(FBTTH2)2), was used to modify the morphology and electron-transport properties of the polymer blend of poly(3-hexythiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) bulk heterojunctions. As a result, a 24% increase in the power-conversion efficiency (PCE) of the p-DTS(FBTTH2)2:P3HT:PC71BM ternary organic solar cells (OSCs) is obtained. The improvement in the performance of OSCs is attributed to the constructive energy cascade path in the ternary system that benefits an efficient Förster resonance energy/charge transfer process between P3HT and p-DTS(FBTTH2)2, thereby improving photocurrent generation. It is shown that p-DTS(FBTTH2)2 molecules engage themselves at the P3HT/PC71BM interface. A combination of absorption enhancement, efficient energy transfer process, and ordered nanomorphology in the ternary system favors exciton dissociation and charge transportation in the polymer bulk heterojunction. The finding of this work reveals that distribution of the appropriate "guest" donor at the "host" donor/acceptor interface is an effective approach for attaining high-performance OSCs.

  13. Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells.

    PubMed

    Kan, Bin; Feng, Huanran; Wan, Xiangjian; Liu, Feng; Ke, Xin; Wang, Yanbo; Wang, Yunchuang; Zhang, Hongtao; Li, Chenxi; Hou, Jianhui; Chen, Yongsheng

    2017-04-05

    A new nonfullerene small molecule with acceptor-donor-acceptor (A-D-A) structure, namely, NFBDT, based on a heptacyclic benzodi(cyclopentadithiophene) (FBDT) unit using benzo[1,2-b:4,5-b']dithiophene as the core unit, was designed and synthesized. Its absorption ability, energy levels, thermal stability, as well as photovoltaic performances were fully investigated. NFBDT exhibits a low optical bandgap of 1.56 eV resulting in wide and efficient absorption that covered the range from 600 to 800 nm, and suitable energy levels as an electron acceptor. With the widely used and successful wide bandgap polymer PBDB-T selected as the electron donor material, an optimized PCE of 10.42% was obtained for the PBDB-T:NFBDT-based device with an outstanding short-circuit current density of 17.85 mA cm -2 under AM 1.5G irradiation (100 mW cm -2 ), which is so far among the highest performance of NF-OSC devices. These results demonstrate that the BDT unit could also be applied for designing NF-acceptors, and the fused-ring benzodi(cyclopentadithiophene) unit is a prospective block for designing new NF-acceptors with excellent performance.

  14. Spin-orbit coupling induced two-electron relaxation in silicon donor pairs

    NASA Astrophysics Data System (ADS)

    Song, Yang; Das Sarma, S.

    2017-09-01

    We unravel theoretically a key intrinsic relaxation mechanism among the low-lying singlet and triplet donor-pair states in silicon, an important element in the fast-developing field of spintronics and quantum computation. Despite the perceived weak spin-orbit coupling (SOC) in Si, we find that our discovered relaxation mechanism, combined with the electron-phonon and interdonor interactions, drives the transitions in the two-electron states over a large range of donor coupling regimes. The scaling of the relaxation rate with interdonor exchange interaction J goes from J5 to J4 at the low to high temperature limits. Our analytical study draws on the symmetry analysis over combined band, donor envelope, and valley configurations. It uncovers naturally the dependence on the donor-alignment direction and triplet spin orientation, and especially on the dominant SOC source from donor impurities. While a magnetic field is not necessary for this relaxation, unlike in the single-donor spin relaxation, we discuss the crossover behavior with increasing Zeeman energy in order to facilitate comparison with experiments.

  15. High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors.

    PubMed

    Yin, Yuli; Yang, Jing; Guo, Fengyun; Zhou, Erjun; Zhao, Liancheng; Zhang, Yong

    2018-05-09

    We report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.91 eV, showing good absorption compensation with the narrow bandgap polymer donor. The lowest unoccupied molecular orbital (LUMO) energy levels were located at around -4.11 eV, which are comparable with those of the fullerene derivatives and other small molecular electron acceptors. The conventional all-PSCs based on the three polymer acceptors and PTB7-Th as polymer donor gave remarkable power conversion efficiencies (PCEs) of >6%, and the PFPDI-Se-based all-PSC achieved the highest PCE of 6.58% with a short-circuit current density ( J sc ) of 13.96 mA/cm 2 , an open-circuit voltage ( V oc ) of 0.76 V, and a fill factor (FF) of 62.0%. More interestingly, our results indicate that the photovoltaic performances of the FPDI-based polymer acceptors are mainly determined by the FPDI unit with a small effect from the comonomers, which is quite different from the others reported rylenediimide-based polymer acceptors. This intriguing phenomenon is speculated as the huge geometry configuration of the FPDI unit, which minimizes the effect of the comonomer. These results highlight a promising future for the application of the FPDI-based polymer acceptors in the highly efficient all-PSCs.

  16. Mapping the Relationship between Glycosyl Acceptor Reactivity and Glycosylation Stereoselectivity.

    PubMed

    van der Vorm, Stefan; van Hengst, Jacob M A; Bakker, Marloes; Overkleeft, Herman S; van der Marel, Gijsbert A; Codée, Jeroen D C

    2018-03-30

    The reactivity of both coupling partners-the glycosyl donor and acceptor-is decisive for the outcome of a glycosylation reaction, in terms of both yield and stereoselectivity. Where the reactivity of glycosyl donors is well understood and can be controlled through manipulation of the functional/protecting-group pattern, the reactivity of glycosyl acceptor alcohols is poorly understood. We here present an operationally simple system to gauge glycosyl acceptor reactivity, which employs two conformationally locked donors with stereoselectivity that critically depends on the reactivity of the nucleophile. A wide array of acceptors was screened and their structure-reactivity/stereoselectivity relationships established. By systematically varying the protecting groups, the reactivity of glycosyl acceptors can be adjusted to attain stereoselective cis-glucosylations. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Mechanisms of electron acceptor utilization: Implications for simulating anaerobic biodegradation

    USGS Publications Warehouse

    Schreiber, M.E.; Carey, G.R.; Feinstein, D.T.; Bahr, J.M.

    2004-01-01

    Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum- contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and

  18. Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet-Triplet Energy Gap.

    PubMed

    Freeman, David M E; Musser, Andrew J; Frost, Jarvist M; Stern, Hannah L; Forster, Alexander K; Fallon, Kealan J; Rapidis, Alexandros G; Cacialli, Franco; McCulloch, Iain; Clarke, Tracey M; Friend, Richard H; Bronstein, Hugo

    2017-08-16

    The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and "bright" singlets, allowing thermal population exchange between them and eliminating a significant loss channel in devices. In conjugated polymers, this gap has proved resistant to modification. Here, we introduce a general approach to reduce the singlet-triplet energy gap in fully conjugated polymers, using a donor-orthogonal acceptor motif to spatially separate electron and hole wave functions. This new generation of conjugated polymers allows for a greatly reduced exchange energy, enhancing triplet formation and enabling thermally activated delayed fluorescence. We find that the mechanisms of both processes are driven by excited-state mixing between π-π*and charge-transfer states, affording new insight into reverse intersystem crossing.

  19. Correlative Förster Resonance Electron Transfer-Proximity Ligation Assay (FRET-PLA) Technique for Studying Interactions Involving Membrane Proteins.

    PubMed

    Ivanusic, Daniel; Denner, Joachim; Bannert, Norbert

    2016-08-01

    This unit provides a guide and detailed protocol for studying membrane protein-protein interactions (PPI) using the acceptor-sensitized Förster resonance electron transfer (FRET) method in combination with the proximity ligation assay (PLA). The protocol in this unit is focused on the preparation of FRET-PLA samples and the detection of correlative FRET/PLA signals as well as on the analysis of FRET-PLA data and interpretation of correlative results when using cyan fluorescent protein (CFP) as a FRET donor and yellow fluorescent protein (YFP) as a FRET acceptor. The correlative application of FRET and PLA combines two powerful tools for monitoring PPI, yielding results that are more reliable than with either technique alone. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  20. Time-resolved EPR study on the photoexcited triplet state of the electron-donor-acceptor complex formed in the system of fac-tris[2-(4-octyl-phenyl) pyridine] iridium(III) and tetracene.

    PubMed

    Zhebin, Fu; Shuhei, Yoshioka; Hisao, Murai

    2014-01-09

    The physical properties of the phosphorescent organic light-emitting diode material fac-tris(phenylpyridine) iridium(III), Ir(ppy)3, have been reported with experimental and theoretical studies. Here, the photochemical properties of the excited triplet state of partially modified fac-tris[2-(4-octyl-phenyl) pyridine] iridium(III), Ir(C8ppy)3, were investigated using time-resolved electron paramagnetic resonance (tr-EPR) and optical methods by adding tetracene in the toluene solution. The tr-EPR observation at 77 K revealed the following two species: the excited triplet state of tetracene and another triplet species with zero field splitting parameters of |D| = 0.088 cm(-1) and |E| = 0.018 cm(-1) with characteristic spin polarization. The latter species was assigned to the electron-donor-acceptor (EDA) complex formed between Ir(C8ppy)3 and tetracene. The mechanism of formation and the properties of this EDA complex, including the information on the principal axes of (3)Ir(C8ppy)3*, are discussed.

  1. Do Halogen–Hydrogen Bond Donor Interactions Dominate the Favorable Contribution of Halogens to Ligand–Protein Binding?

    PubMed Central

    2017-01-01

    Halogens are present in a significant number of drugs, contributing favorably to ligand–protein binding. Currently, the contribution of halogens, most notably chlorine and bromine, is largely attributed to halogen bonds involving favorable interactions with hydrogen bond acceptors. However, we show that halogens acting as hydrogen bond acceptors potentially make a more favorable contribution to ligand binding than halogen bonds based on quantum mechanical calculations. In addition, bioinformatics analysis of ligand–protein crystal structures shows the presence of significant numbers of such interactions. It is shown that interactions between halogens and hydrogen bond donors (HBDs) are dominated by perpendicular C–X···HBD orientations. Notably, the orientation dependence of the halogen–HBD (X–HBD) interactions is minimal over greater than 100° with favorable interaction energies ranging from −2 to −14 kcal/mol. This contrasts halogen bonds in that X–HBD interactions are substantially more favorable, being comparable to canonical hydrogen bonds, with a smaller orientation dependence, such that they make significant, favorable contributions to ligand–protein binding and, therefore, should be actively considered during rational ligand design. PMID:28657759

  2. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  3. Hydrogen donors and acceptors and basic amino acids jointly contribute to carcinogenesis.

    PubMed

    Tang, Man; Zhou, Yanchao; Li, Yiqi; Zou, Juntong; Yang, Beicheng; Cai, Li; Zhang, Xuelan; Liu, Qiuyun

    2017-01-01

    A hypothesis is postulated that high content of hydrogen donors and acceptors, and basic amino acids cause the intracellular trapping of the H + and Cl - ions, which increases cancer risks as local formation of HCl is mutagenic to DNA. Other cations such as Ca 2+ , and weak acids such as short-chain organic acids may attenuate the intracellular gathering of the H + and Cl - , two of the most abundant ions in the cells. Current data on increased cancer risks in diabetic and obese patients are consistent with the assumption that hydrogen bonding propensity on glucose, triglycerides and other molecules is among the causative factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Donor exciton of cobalt and its interaction with lattice vibrations in the semiconductor crystal ZnO:Co

    NASA Astrophysics Data System (ADS)

    Gruzdev, N. B.; Sokolov, V. I.; Yemelchenko, G. A.

    2009-01-01

    Vibrational states interacting with a donor exciton in the compound ZnO:Co are revealed by the sensitive method of field exciton-vibrational spectroscopy. The vibrational modes of the electroabsorption spectrum of the compound ZnO:Co in the region of the donor exciton are given an interpretation based on the existing data on the symmetrized local density of states of the compounds ZnO and ZnO :Ni3+. The results are compared with the known data for II-VI:Ni compounds in the case of an acceptor exciton. The position of the donor level of the Co2+ ion relative to the bottom of the conduction band in the given compound is determined and found to conform well to the universal trend for donor levels of 3d ions in II-VI compounds.

  5. Design and Synthesis of Novel Block Copolymers for Efficient Opto-Electronic Applications

    NASA Technical Reports Server (NTRS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin

    2002-01-01

    It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration in organic photovoltaic devices due to improved morphology in comparison to polymer blend system. This paper presents preliminary data describing the design and synthesis of a novel Donor-Bridge-Acceptor (D-B-A) block copolymer system for potential high efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (PPV), and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes and facilitates the transport of the holes, the acceptor block stabilizes and facilitates the transport of the electrons, the bridge block is designed to hinder the probability of electron-hole recombination. Thus, improved charge separation and stability are expected with this system. In addition, charge migration toward electrodes may also be facilitated due to the potential nano-phase separated and highly ordered block copolymer ultra-structure.

  6. Halogen bond: a long overlooked interaction.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2015-01-01

    Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

  7. Growth of strain SES-3 with arsenate and other diverse electron acceptors

    USGS Publications Warehouse

    Laverman, A.M.; Blum, J.S.; Schaefer, J.K.; Phillips, E.J.P.; Lovley, D.R.; Oremland, R.S.

    1995-01-01

    The selenate-respiring bacterial strain SES-3 was able to use a variety of inorganic electron acceptors to sustain growth. SES-3 grew with the reduction of arsenate to arsenite, Fe(III) to Fe(II), or thiosulfate to sulfide. It also grew in medium in which elemental sulfur, Mn(IV), nitrite, trimethylamine N-oxide, or fumarate was provided as an electron acceptor. Growth on oxygen was microaerophilic. There was no growth with arsenite or chromate. Washed suspensions of cells grown on selenate or nitrate had a constitutive ability to reduce arsenate but were unable to reduce arsenite. These results suggest that strain SES-3 may occupy a niche as an environmental opportunist by being able to take advantage of a diversity of electron acceptors.

  8. Reactions of vitamin A with acceptors of electrons. Interactions with iodine and the formation of iodide

    PubMed Central

    Lucy, J. A.; Lichti, F. Ulrike

    1969-01-01

    1. The reactions of retinol and retinoic acid with iodine were investigated since knowledge of the chemical reactions of vitamin A with acceptors of electrons may shed light on its biochemical mode of action. 2. Colloidal retinol, but not retinoic acid, reacts with iodine to yield a blue–green complex that rapidly decomposes, giving iodide and an unknown species with λmax. at 870mμ. 3. In addition, both retinol and retinoic acid reduce iodine to iodide by a reaction that does not involve an intermediate coloured complex; this reaction appears to yield unstable carbonium ion derivatives of the vitamin. 4. The presence of water greatly facilitates the production of iodide from vitamin A and iodine. 5. Possible chemical pathways involved in these reactions are discussed. 6. It is suggested that the chemical properties of retinol and retinoic acid that underlie their biochemical behaviour might be apparent only when the molecules are at a lipid–water interface, and that vitamin A might be expected to react with a number of different electron acceptors in vivo. PMID:5801297

  9. Spectroscopic studies of multiple charge transfer complexes of p-toluidine with π-acceptor picric acid in different polar solvents

    NASA Astrophysics Data System (ADS)

    Singh, Neeti; Ahmad, Afaq

    2010-04-01

    The charge transfer complexes of the donor p-toluidine with π-acceptor picric acid have been studied spectrophotometrically in various solvents such as acetone, ethanol, and methanol at room temperature using absorption spectrophotometer. The results indicate that formation of CTC in less polar solvent is high. The stoichiometry of the complex was found to be 1: 1 ratio by straight line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant ( K CT), molar extinction coefficient (ɛCT), standard free energy (Δ G°), oscillator strength ( f), transition dipole moment (μEN), resonance energy ( R N) and ionization potential ( I D). The results indicate that the formation constant ( K CT) for the complex were shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents which were used.

  10. Non-fullerene acceptors for organic solar cells

    NASA Astrophysics Data System (ADS)

    Yan, Cenqi; Barlow, Stephen; Wang, Zhaohui; Yan, He; Jen, Alex K.-Y.; Marder, Seth R.; Zhan, Xiaowei

    2018-03-01

    Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure-property relationships, donor-acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field.

  11. Halocarbons as hydrogen bond acceptors: a spectroscopic study of haloethylbenzenes (PhCH2CH2X, X = F, Cl, Br) and their hydrate clusters.

    PubMed

    Robertson, Patrick A; Villani, Luigi; Dissanayake, Uresha L M; Duncan, Luke F; Abbott, Belinda M; Wilson, David J D; Robertson, Evan G

    2018-03-28

    The electronic spectra of 2-bromoethylbenzene and its chloro and fluoro analogues have been recorded by resonant two-photon ionisation (R2PI) spectroscopy. Anti and gauche conformers have been assigned by rotational band contour analysis and IR-UV ion depletion spectroscopy in the CH region. Hydrate clusters of the anti conformers have also been observed, allowing the role of halocarbons as hydrogen bond acceptors to be examined in this context. The donor OH stretch of water bound to chlorine is red-shifted by 36 cm -1 , or 39 cm -1 in the case of bromine. Although classed as weak H-bond acceptors, halocarbons are favourable acceptor sites compared to π systems. Fluorine stands out as the weakest H-bond acceptor amongst the halogens. Chlorine and bromine are also weak H-bond acceptors, but allow for more geometric lability, facilitating complimentary secondary interactions within the host molecule. Ab initio and DFT quantum chemical calculations, both harmonic and anharmonic, aid the structural assignments and analysis.

  12. Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration

    PubMed Central

    Richter, Katrin; Schicklberger, Marcus

    2012-01-01

    An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions. PMID:22179232

  13. Electronic spectrum of non-tetrahedral acceptors in CdTe:Cl and CdTe:Bi,Cl single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivobok, V. S., E-mail: krivobok@lebedev.ru; Moscow Institute of Physics and Technology; Nikolaev, S. N.

    2016-02-07

    The electronic spectra of complex acceptors in compensated CdTe:Cl, CdTe:Ag,Cl, and CdTe:Bi,Cl single crystals are studied using low-temperature photoluminescence (PL) measurements under both nonresonant and resonant excitation of distant donor–acceptor pairs (DAP). The wavelength modulation of the excitation source combined with the analysis of the differential PL signal is used to enhance narrow spectral features obscured because of inhomogeneous line broadening and/or excitation transfer for selectively excited DAPs. For the well-known tetrahedral (T{sub D}) Ag{sub Cd} acceptor, the energies of four excited states are measured, and the values obtained are shown to be in perfect agreement with the previous data.more » Moreover, splitting between the 2P{sub 3/2} (Γ{sub 8}) and 2S{sub 3/2} (Γ{sub 8}) states is clearly observed for Ag{sub Cd} centers located at a short distance (5–7 nm) from a hydrogen-like donor (Cl{sub Te}). This splitting results from the reduction of the T{sub D} symmetry taking place when the acceptor is a member of a donor–acceptor pair. For the Cl-related complex acceptor with an activation energy of ∼121 meV (A-center), the energies of eight excited states are measured. It is shown that this defect produces low-symmetry central-cell correction responsible for the strong splitting of S-like T{sub D} shells. The energy spectrum of the Bi-related shallow acceptor with an activation energy of ∼36 meV is measured as well. The spectrum obtained differs drastically from the hydrogen-like set of levels, which indicates the existence of repulsive low-symmetry perturbation of the hydrogen-like Coulomb potential. It is also shown that the spectra of selectively excited PL recorded for a macroscopic ensemble of distant donor–acceptor pairs allow one to detect the low symmetry of acceptors of a given type caused by their complex nature or by the Jahn–Teller distortion. This method does not require any additional (external) field

  14. Revealing electronic open quantum systems with subsystem TDDFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishtal, Alisa, E-mail: alisa.krishtal@rutgers.edu; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustratemore » the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.« less

  15. New donor-acceptor conjugates based on a trifluorenylporphyrin linked to a redox-switchable ruthenium unit.

    PubMed

    Merhi, Areej; Zhang, Xu; Yao, Dandan; Drouet, Samuel; Mongin, Olivier; Paul, Frédéric; Williams, J A Gareth; Fox, Mark A; Paul-Roth, Christine O

    2015-05-28

    Reactions of the 16-electron ruthenium complex [Ru(dppe)2Cl][PF6] with metal-free and zinc ethynylphenyltrifluorenylporphyrins and respectively, gave the new dyads and with ethynylruthenium group as a potential electron donor and the porphyrin as a potential electron acceptor. The redox properties of the porphyrins were investigated by cyclic voltammetry and UV spectroelectrochemistry (SEC), which reveal that the monocation and monoanion of metal-free porphyrin are stable under these conditions whereas the formation of the corresponding radical cation or anion of the zinc porphyrin was accompanied by partial decomplexation of the zinc ion. Oxidations of the dyads and gave stable radical cations as probed using IR, NIR and UV SEC methods. These cations show similar NIR and IR bands to those reported for the known 17-electron [Ru(dppe)2(C[triple bond, length as m-dash]CPh)Cl](+) radical cation. Remarkably, the dyad has four stable redox states +2/+1/0/-1 where the second oxidation and first reduction processes take place at the porphyrin unit. Simulated absorption spectra on at optimised geometries obtained by TD-DFT computations with the CAM-B3LYP functional are shown to be in very good agreement with the observed UV absorption spectra of . The spectra of and their oxidised and reduced species were interpreted with the aid of the TD-DFT data. Fluorescence measurements reveal that the dyads and are only weakly emitting compared to and , indicative of quenching of the porphyrinic singlet excited state by the ruthenium centre.

  16. Optical studies of native defects in π-conjugated donor-acceptor copolymers

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Khanal, Dipak; Lafalce, Evan; You, Wei; Valy Vardeny, Z.

    2018-04-01

    We used multiple spectroscopies such as photoinduced absorption (PIA), magneto photoinduced absorption, and doping induced absorption for studying native defects in π-conjugated donor-acceptor copolymer chains of benzodithio-phene fluorinated benzotriazole. The PIA spectrum contains characteristic photoinduced absorption bands that are due to polarons and triplet exciton species, whose strengths have different dependencies on the modulation frequency, temperature, and laser excitation, as well as magnetic field response. We found that the native defects in the copolymer chains serve as efficient traps that ionize the photoexcited excitons, thereby generating charge carriers whose characteristic optical properties are similar, but not equal to those of intrachain polarons formed by doping. The native defects density is of the order of 1017 cm-3 indicating that most of the copolymer chains contain native defects upon synthesis; however, this does not preclude their used-for photovoltaic applications.

  17. Polyfluorophore Excimers and Exciplexes as FRET Donors in DNA

    PubMed Central

    Teo, Yin Nah; Kool, Eric T.

    2009-01-01

    We describe studies aimed at testing whether oligomeric exciplex- and excimer fluorophores conjugated to DNA have the potential to act as donors for energy transfer by the Förster mechanism. Oligodeoxyfluorosides (ODFs) are composed of stacked, electronically interacting fluorophores replacing the bases on a DNA scaffold. The monomer chromophores in the twenty tetramer-length ODFs studied here include pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and a nonfluorescent spacer (S); these are conjugated in varied combinations at the 3’ end of a 14mer DNA probe sequence. In the absence of an acceptor chromophore, many of the ODF-DNAs show broad, unstructured long-wavelength emission peaks characteristic of excimer and exciplex excited states, similar to what has been observed for unconjugated ODFs. Although such delocalized excited states have been widely studied, we know of no prior report of their use in FRET. We tested the ability of the twenty ODFs to donate energy to Cy5 and TAMRA dyes conjugated to a complementary strand of DNA, with these acceptors oriented either at the near or far end of the ODF-conjugated probes. Results showed that a number of the ODF fluorophores exhibited relatively efficient energy transfer characteristic of the Förster mechanism, as judged by drops in donor emission quantum yield and fluorescence lifetime, accompanied by increases in intensity of acceptor emission bands. Excimer/exciplex bands in the donors were selectively quenched while shorter-wavelength monomer emission stayed relatively constant, consistent with the notion that the delocalized excited states, rather than individual fluorophores, are the donors. Interestingly, only specific sequences of ODFs were able to act as donors, while others did not, even though their emission wavelengths were similar. The new FRET donors possess large Stokes shifts, which can be beneficial for multiple applications. In addition, all ODFs can be excited at a single

  18. Cyclopentadithiophene-Benzothiadiazole Donor-Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors.

    PubMed

    Li, Mengmeng; An, Cunbin; Pisula, Wojciech; Müllen, Klaus

    2018-05-15

    Donor-acceptor (D-A) conjugated polymers are of great interest as organic semiconductors, because they offer a rational tailoring of the electronic properties by modification of the donor and acceptor units. Nowadays, D-A polymers exhibit field-effect mobilities on the order of 10 -2 -10 0 cm 2 V -1 s -1 , while several examples showed a mobility over 10 cm 2 V -1 s -1 . The development of cyclopentadithiophene-benzothiadiazole (CDT-BTZ) copolymers one decade ago represents an important step toward high-performance organic semiconductors for field-effect transistors. The significant rise in field-effect mobility of CDT-BTZ in comparison to the existing D-A polymers at that time opened the door to a new research field with a large number of novel D-A systems. From this point, the device performance of CDT-BTZ was gradually improved by a systematic optimization of the synthesis and polymer structure as well as by an efficient solution processing into long-range ordered thin films. The key aspect was a comprehensive understanding of the relation between polymer structure and solid-state organization. Due to their fundamental role for the field of D-A polymers in general, this Account will for the first time explicitly focus on prototypical CDT-BTZ polymers, while other reviews provide an excellent general overview on D-A polymers. The first part of this Account discusses strategies for improving the charge carrier transport, focusing on chemical aspects. Improved synthesis as an essential stage toward high purity, and high molecular weight is a prerequisite for molecular order. The modification of substituents is a further crucial feature to tune the CDT-BTZ packing and self-assembly. Linear alkyl side chains facilitate intermolecular π-stacking interactions, while branched ones increase solubility and alter the polymer packing. Additional control over the supramolecular organization of CDT-BTZ polymers is introduced by alkenyl substituents via their cis

  19. Influence of Coherent Tunneling and Incoherent Hopping on the Charge Transfer Mechanism in Linear Donor-Bridge-Acceptor Systems.

    PubMed

    Li, Guangqi; Govind, Niranjan; Ratner, Mark A; Cramer, Christopher J; Gagliardi, Laura

    2015-12-17

    The mechanism of charge transfer has been observed to change from tunneling to hopping with increasing numbers of DNA base pairs in polynucleotides and with the length of molecular wires. The aim of this paper is to investigate this transition by examining the population dynamics using a tight-binding Hamiltonian with model parameters to describe a linear donor-bridge-acceptor (D-B-A) system. The model includes a primary vibration and an electron-vibration coupling at each site. A further coupling of the primary vibration with a secondary phonon bath allows the system to dissipate energy to the environment and reach a steady state. We apply the quantum master equation (QME) approach, based on second-order perturbation theory in a quantum dissipative system, to examine the dynamical processes involved in charge-transfer and follow the population transfer rate at the acceptor, ka, to shed light on the transition from tunneling to hopping. With a small tunneling parameter, V, the on-site population tends to localize and form polarons, and the hopping mechanism dominates the transfer process. With increasing V, the population tends to be delocalized and the tunneling mechanism dominates. The competition between incoherent hopping and coherent tunneling governs the mechanism of charge transfer. By varying V and the total number of sites, we also examine the onset of the transition from tunneling to hopping with increasing length.

  20. Tunable energy transfer from d 10 heterobimetallic dicyanide(I) donor ions to terbium(III) acceptor ions in luminescent Tb[Ag xAu 1- x(CN) 2] 3 ( x = 0 → 1)

    NASA Astrophysics Data System (ADS)

    Lu, Haiyan; Yson, Renante; Ford, James; Tracy, Henry J.; Carrier, Alora B.; Keller, Aaron; Mullin, Jerome L.; Poissan, Michelle J.; Sawan, Samuel; Patterson, Howard H.

    2007-07-01

    We report on the heterobimetallic system, Tb[Ag xAu 1- x(CN) 2] 3 ( x = 0 → 1), in which sensitization of terbium luminescence occurs by energy transfer from [Ag xAu 1- x(CN) 2] - donor excited states. The donor states have energies which are tunable and dependent on the Ag/Au stoichiometric ratio. We report on their use as donor systems with Tb(III) ions as acceptor ions in energy transfer studies. Luminescence results show that the mixed metal dicyanides with the higher silver loading have a better energy transfer efficiency than the pure Ag(CN)2- and Au(CN)2- donors. The better energy transfer efficiency is due to the greater overlap between the donor emission and acceptor excitation.

  1. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, R.; Calvin, M.

    1984-01-24

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  2. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, Roland; Calvin, Melvin

    1984-01-01

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  3. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    PubMed

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Diversity and Ubiquity of Bacteria Capable of Utilizing Humic Substances as Electron Donors for Anaerobic Respiration

    PubMed Central

    Coates, John D.; Cole, Kimberly A.; Chakraborty, Romy; O'Connor, Susan M.; Achenbach, Laurie A.

    2002-01-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 × 101 in aquifer sediments to a high of 9.33 × 106 in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N2. Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  5. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    PubMed

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  6. Poly(trifluoromethyl)azulenes: structures and acceptor properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clikeman, Tyler T.; Bukovsky, Eric V.; Kuvychko, Igor V.

    2014-07-10

    Azulene is a non-alternant, non-benzenoid aromatic hydrocarbon with an intense blue colour, a dipole moment of 1.0 D,1 positive electron affinity, and an “anomalous” emission from the second excited state in violation of Kasha’s rule.2,3 Azulene’s unique properties have potential uses in molecular switches,4,5 molecular diodes,6 organic photovoltaics,7 and charge transfer complexes.8-12 Introduction of electron-withdrawing groups to the azulenic core, such as CN,8,13,14 halogens,15-19 and CF3,20,21 can enhance certain electrical and photophysical properties. In this work, we report six new trifluoromethyl derivatives of azulene (AZUL), three isomers of AZUL(CF3)3 and three isomers of AZUL(CF3)4, and the first X-ray structure ofmore » a π-stacked donor-acceptor complex of a trifluoromethyl azulene with donor pyrene.« less

  7. In situ synthesis, photometric and spectroscopic studies of chelating system during the 1,4,7,10,13,16-hexaoxacyclooctadecane charge transfer reaction with different acceptors

    NASA Astrophysics Data System (ADS)

    Hossan, Aisha S. M.; Abou-Melha, Hanaa M.; Refat, Moamen S.

    2011-08-01

    Electron donor acceptor complexes (EDA) of the 1,4,7,10,13,16-hexaoxacyclooctadecane (18-crown-6) as a rich donor were spectrophotometrically discussed and synthesized in solid form according the interactions with different nine of usual π-acceptors like 2,3,5,6-tetrachlorocyclohexa-2,5-diene-1,4-dione (p-chloranil; p-CHL), tetrachloro-1,2-benzoquinone (o-chloranil; o-CHL), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetracyanoquinodimethane (TCNQ), 2,6-dichloroquinone-4-chloroimide (DCQ), 2,6-dibromoquinone-4-chloroimide (DBQ), 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid; CLA), N-bromosuccinimide (NBS), 2,4,6-trinitrophenol (picric acid; PA). Spectroscopic and physical data such as formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G°), oscillator strength ( f), transition dipole moment ( μ), resonance energy ( RN) and ionization potential ( Ip) were estimated in chloroform or methanol at 25 °C. Based on the elemental analysis and photometric titrations the CT-complexes were formed indicated the formation of 1:1 charge-transfer complexes for the o-CHL, TCNQ, DCQ, DBQ and NBS acceptors but 1:3 ratio for p-CHL, DDQ, CLA and PA, respectively. The charge-transfer interactions were interpretative according to the formation of dative ion pairs [18C6 rad +, A rad -], where A is acceptor. All of the resulting charge transfer complexes were isolated in amorphous form and the complexes formations on IR and 1H NMR spectra were discussed.

  8. Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor.

    PubMed

    Horke, Daniel A; Li, Quansong; Blancafort, Lluís; Verlet, Jan R R

    2013-08-01

    Quinones feature prominently as electron acceptors in nature. Their electron-transfer reactions are often highly exergonic, for which Marcus theory predicts reduced electron-transfer rates because of a free-energy barrier that occurs in the inverted region. However, the electron-transfer kinetics that involve quinones can appear barrierless. Here, we consider the intrinsic properties of the para-benzoquinone radical anion, which serves as the prototypical electron-transfer reaction product involving a quinone-based acceptor. Using time-resolved photoelectron spectroscopy and ab initio calculations, we show that excitation at 400 and 480 nm yields excited states that are unbound with respect to electron loss. These excited states are shown to decay on a sub-40 fs timescale through a series of conical intersections with lower-lying excited states, ultimately to form the ground anionic state and avoid autodetachment. From an isolated electron-acceptor perspective, this ultrafast stabilization mechanism accounts for the ability of para-benzoquinone to capture and retain electrons.

  9. Effects of donor doping and acceptor doping on rutile TiO2 particles for photocatalytic O2 evolution by water oxidation

    NASA Astrophysics Data System (ADS)

    Amano, Fumiaki; Tosaki, Ryosuke; Sato, Kyosuke; Higuchi, Yamato

    2018-02-01

    Crystalline defects of photocatalyst particles may be considered to be the recombination center of photoexcited electrons and holes. In this study, we investigated the photocatalytic activity of cation-doped rutile TiO2 photocatalysts for O2 evolution from an aqueous silver nitrate solution under ultraviolet light irradiation. The photocatalytic activity of rutile TiO2 was enhanced by donor doping of Ta5+ and Nb5+ with a valence higher than that of Ti4+, regardless of increased density of electrons and Ti3+ species (an electron trapped in Ti4+ sites). Conversely, acceptor doping of lower valence cations such as In3+ and Ga3+ decreased photocatalytic activity for O2 evolution by water oxidation. The doping of equal valence cations such as Sn4+ and Ge4+ hardly changed the activity of non-doped TiO2. This study demonstrates that Ti3+ species, which is a crystalline defect, enhanced the photocatalytic activity of semiconductor oxides, for example rutile TiO2 with large crystalline size.

  10. Natural organic matter as electron acceptor: experimental evidence for its important role in anaerobic respiration

    NASA Astrophysics Data System (ADS)

    Lau, Maximilian Peter; Sander, Michael; Gelbrecht, Jörg; Hupfer, Michael

    2014-05-01

    Microbial respiration is a key driver of element cycling in oxic and anoxic environments. Upon depletion of oxygen as terminal electron acceptor (TEA), a number of anaerobic bacteria can employ alternative TEA for intracellular energy generation. Redox active quinone moieties in dissolved organic matter (DOM) are well known electron acceptors for microbial respiration. However, it remains unclear whether quinones in adsorbed and particulate OM accept electrons in a same way. In our studies we aim to understand the importance of natural organic matter (NOM) as electron acceptors for microbial energy gain and its possible implications for methanogenesis. Using a novel electrochemical approach, mediated electrochemical reduction and -oxidation, we can directly quantify reduced hydroquinone and oxidized quionone moieties in dissolved and particulate NOM samples. In a mesocosm experiment, we rewetted sediment and peat soil and followed electron transfer to the inorganic and organic electron acceptors over time. We found that inorganic and organic electron acceptor pools were depleted over the same timescales. More importantly, we showed that organic, NOM-associated electron accepting moieties represent as much as 21 40% of total TEA inventories. These findings support earlier studies that propose that the reduction of quinone moieties in particulate organic matter competitively suppresses methanogenesis in wetland soils. Our results indicate that electron transfer to organic, particulate TEA in inundated ecosystems has to be accounted for when establishing carbon budgets in and projecting greenhouse gas emissions from these systems.

  11. The Impact of Acceptor-Acceptor Homocoupling on the Optoelectronic Properties and Photovoltaic Performance of PDTSQxff Low Bandgap Polymers.

    PubMed

    Pirotte, Geert; Kesters, Jurgen; Cardeynaels, Tom; Verstappen, Pieter; D'Haen, Jan; Lutsen, Laurence; Champagne, Benoît; Vanderzande, Dirk; Maes, Wouter

    2018-04-22

    Push-pull-type conjugated polymers applied in organic electronics do not always contain a perfect alternation of donor and acceptor building blocks. Misscouplings can occur, which have a noticeable effect on the device performance. In this work, the influence of homocoupling on the optoelectronic properties and photovoltaic performance of PDTSQx ff polymers is investigated, with a specific focus on the quinoxaline acceptor moieties. A homocoupled biquinoxaline segment is intentionally inserted in specific ratios during the polymerization. These homocoupled units cause a gradually blue-shifted absorption, while the highest occupied molecular orbital energy levels decrease only significantly upon the presence of 75-100% of homocouplings. Density functional theory calculations show that the homocoupled acceptor unit generates a twist in the polymer backbone, which leads to a decreased conjugation length and a reduced aggregation tendency. The virtually defect-free PDTSQx ff affords a solar cell efficiency of 5.4%, which only decreases substantially upon incorporating a homocoupling degree over 50%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spin and charge ordering in organic conductors investigated by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Tokumoto, Takahisa D.

    This dissertation presents systematic studies on ordered states of organic conductors investigated mainly by Electron Spin Resonance (ESR). First, we describe an introduction to organic conductors. Organic conductors are based on conducting layers of highly planar donor molecules, separated by insulating layers of acceptors. The donor arrangements in the conducting layers determine the three simple parameters, transfer integral t between the donor molecules, onsite Coulomb interaction U and next neighboring Coulomb interaction V. Depending on the values of the above three parameters, a variety of ground states is realized and hence the organic conductors has become a main stream of condensed matter physics. Among many ground states, the main focus is on magnetic orders in this dissertation. Therefore we have employed ESR to probe local magnetic structures. And we cover a basic theory of ESR in paramagnetic/antiferromagnetically ordered states and the experimental realizations. Next, after an introduction to a system with an exchange interaction between d magnetic moments embedded at acceptor sites and pi spins at donor molecules is given, we discuss the effectiveness of systematic studies on isostructural magnetic and non-magnetic acceptor based organic conductors. Then, we go over one of the "exchange coupled" materials, beta-(BDA-TTP)2MCl 4 (M=Fe3+,Ga3+). We examine the origins of the Metal-Insulator transition and the long range antiferromangetic order in the magnetic acceptor based material, where we found the critical importance of the quantum fluctuations of pi spins. Finally, we delineate the magnetic order of alternating easy axes of a class of an organic conductor, tau-(P-(S,S)-DMEDT)2(AuBr2) 1+y, at low temperature/field by ESR. We briefly discuss the origin of this unprecedented magnetic structure in terms of the unstoichiometric ratio of donors to acceptors and the tetragonal symmetry of the unit cell. Then, we report the results of the ultra high field

  13. Real-Space Bonding Indicator Analysis of the Donor-Acceptor Complexes X3BNY3, X3AlNY3, X3BPY3, and X3AlPY3 (X, Y = H, Me, Cl).

    PubMed

    Mebs, Stefan; Beckmann, Jens

    2017-10-12

    Calculations of real-space bonding indicators (RSBI) derived from Atoms-In-Molecules (AIM), Electron Localizability Indicator (ELI-D), Non-Covalent Interactions index (NCI), and Density Overlap Regions Indicator (DORI) toolkits for a set of 36 donor-acceptor complexes X 3 BNY 3 (1, 1a-1h), X 3 AlNY 3 (2, 2a-2h), X 3 BPY 3 (3, 3a-3h), and X 3 AlPY 3 (4, 4a-4h) reveal that the donor-acceptor bonds comprise covalent and ionic interactions in varying extents (X = Y = H for 1-4; X = H, Y = Me for 1a-4a; X = H, Y = Cl for 1b-4b; X = Me, Y = H for 1c-4c; X, Y = Me for 1d-4d; X = Me, Y = Cl for 1e-4e; X = Cl, Y = H for 1f-4f; X = Cl, Y = Me for 1g-4g; X, Y = Cl for 1h-4h). The phosphinoboranes X 3 BPY 3 (3, 3a-3h) in general and Cl 3 BPMe 3 (3f) in particular show the largest covalent contributions and the least ionic contributions. The aminoalanes X 3 AlNY 3 (2, 2a-2h) in general and Me 3 AlNCl 3 (2e) in particular show the least covalent contributions and the largest ionic contributions. The aminoboranes X 3 BNY 3 (1, 1a-1h) and the phosphinoalanes X 3 AlPY 3 (4, 4a-4h) are midway between phosphinoboranes and aminoalanes. The degree of covalency and ionicity correlates with the electronegativity difference BP (ΔEN = 0.15) < AlP (ΔEN = 0.58) < BN (ΔEN = 1.00) < AlN (ΔEN = 1.43) and a previously published energy decomposition analysis (EDA). To illustrate the importance of both contributions in Lewis formula representations, two resonance formulas should be given for all compounds, namely, the canonical form with formal charges denoting covalency and the arrow notation pointing from the donor to the acceptor atom to emphasis ionicity. If the Lewis formula mainly serves to show the atomic connectivity, the most significant should be shown. Thus, it is legitimate to present aminoalanes using arrows; however, for phosphinoboranes the canonical form with formal charges is more appropriate.

  14. Dipolar Second-Order Nonlinear Optical Chromophores Containing Ferrocene, Octamethylferrocene, and Ruthenocene Donors and Strong π-Acceptors: Crystal Structures and Comparison of π-Donor Strengths

    PubMed Central

    Kinnibrugh, Tiffany L.; Salman, Seyhan; Getmanenko, Yulia A.; Coropceanu, Veaceslav; Porter, William W.; Timofeeva, Tatiana V.; Matzger, Adam J.; Brédas, Jean-Luc; Marder, Seth R.; Barlow, Stephen

    2009-01-01

    Crystal structures have been determined for six dipolar polyene chromophores with metallocenyl – ferrocenyl (Fc), octamethylferrocenyl (Fc″), or ruthenocenyl (Rc) – donors and strong heterocyclic acceptors based on 1,3-diethyl-2-thiobarbituric acid or 3-dicyanomethylidene-2,3-dihydrobenzothiophene-1,1-dioxide. In each case, crystals were found to belong to centrosymmetric space groups. For one example, polymer-induced heteronucleation revealed the existence of two additional polymorphs, which were inactive in second-harmonic generation, suggesting that they were also centrosymmetric. The bond-length alternations between the formally double and single bonds of the polyene bridges are reduced compared to simple polyenes, indicating significant contribution from charge-separated resonance structures, although the metallocenes are not significantly distorted towards the [(η6-fulvene)(η5-cyclopentadienyl)metal(II)]+ extreme. DFT geometries are in excellent agreement with those determined crystallographically; while the π-donor strengths of the three metallocenyl groups are insufficiently different to result in detectable differences in the crystallographic bond-length alternations, the DFT geometries, as well as DFT-calculations of partial charges for atoms, suggest that π-donor strength decreases in the order Fc″ ≫ Fc > Rc. NMR, IR and electrochemical evidence also suggests that octamethylferrocenyl is the stronger π-donor, exhibiting similar π-donor strength to a p-(dialkylamino)phenyl group, while ferrocenyl and ruthenocenyl show very similar π-donor strengths to one another in chromophores of this type. PMID:20047010

  15. Molecular Engineering of UV/Vis Light-Emitting Diode (LED)-Sensitive Donor-π-Acceptor-Type Sulfonium Salt Photoacid Generators: Design, Synthesis, and Study of Photochemical and Photophysical Properties.

    PubMed

    Wu, Xingyu; Jin, Ming; Xie, Jianchao; Malval, Jean-Pierre; Wan, Decheng

    2017-11-07

    A series of donor-π-acceptor-type sulfonium salt photoacid generators (PAGs) were designed and synthesized by systematically changing electron-donating groups, π-conjugated systems, electron-withdrawing groups, and the number of branches through molecular engineering. These PAGs can effectively decompose under UV/Vis irradiation from a light-emitting diode (LED) light source because of the matching absorption and emitting spectra of the LEDs. The absorption and acid-generation properties of these sulfonium salts were elucidated by UV/Vis spectroscopy and so forth. Results indicated that the PAG performance benefited from the introduction of strong electron-donating groups, specific π-conjugated structures, certain electron-withdrawing groups, or two-branched structures. Most sulfonium salts showed potential as photoinitiators under irradiation by a wide variety of UV and visible LEDs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Determination of Molecular Quantities from Measurements on Macroscopic Systems.V. Existence and Properties of 1:1 and 2:1-Electron-Donor-Acceptor Complexes of Hexamethylbenzene with Tetracyanoethylene

    NASA Astrophysics Data System (ADS)

    Liptay, Wolfgang; Rehm, Torsten; Wehning, Detlev; Schanne, Lothar; Baumann, Wolfram; Lang, Werner

    1982-12-01

    The formation of electron-donor-acceptor complexes of hexamethylbenzene (HMB) with tetracyanoethylene (TCNE) was investigated by measurements of the optical absorptions, the densities, the permittivities and the electro-optical absorptions of solutions in CCl4. The careful evaluation of data based on some previously reported models, has shown that the assumption of the formation of the 1: 1 and the 2 : 1 complex agrees with all experimental data, but that the assumption of the formation of only the 1: 1 complex is contradictory to experimental facts even if the activity effects on the equilibrium constant and of the solvent dependences of observed molar quantities are taken into account. The evaluation leads to the molar optical absorption coefficients and the molar volumes of both complexes and to their electric dipole moments in the electronic ground state and the considered excited state. According to these results the complexes are of the sandwich type HMB-TCNE and HMB-TCNE-HMB. In spite of the fact that the 2: 1 complex owns a center of symmetry, at least approximately, there is a rather large electric dipole moment in its excited state. Furthermore, values for the equilibrium constants and for the standard reaction enthalpies of both complex formation reactions are estimated from experimental data.

  17. A Combined Theoretical and Experimental Study of Dissociation of Charge Transfer States at the Donor-Acceptor Interface of Organic Solar Cells.

    PubMed

    Tscheuschner, Steffen; Bässler, Heinz; Huber, Katja; Köhler, Anna

    2015-08-13

    The observation that in efficient organic solar cells almost all electron-hole pairs generated at the donor-acceptor interface escape from their mutual coulomb potential remains to be a conceptual challenge. It has been argued that it is the excess energy dissipated in the course of electron or hole transfer at the interface that assists this escape process. The current work demonstrates that this concept is unnecessary to explain the field dependence of electron-hole dissociation. It is based upon the formalism developed by Arkhipov and co-workers as well as Baranovskii and co-workers. The key idea is that the binding energy of the dissociating "cold" charge-transfer state is reduced by delocalization of the hole along the polymer chain, quantified in terms of an "effective mass", as well as the fractional strength of dipoles existent at the interface in the dark. By covering a broad parameter space, we determine the conditions for efficient electron-hole dissociation. Spectroscopy of the charge-transfer state on bilayer solar cells as well as measurements of the field dependence of the dissociation yield over a broad temperature range support the theoretical predictions.

  18. Template Dimerization Promotes an Acceptor Invasion-Induced Transfer Mechanism during Human Immunodeficiency Virus Type 1 Minus-Strand Synthesis

    PubMed Central

    Balakrishnan, Mini; Roques, Bernard P.; Fay, Philip J.; Bambara, Robert A.

    2003-01-01

    The biochemical mechanism of template switching by human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and the role of template dimerization were examined. Homologous donor-acceptor template pairs derived from the HIV-1 untranslated leader region and containing the wild-type and mutant dimerization initiation sequences (DIS) were used to examine the efficiency and distribution of transfers. Inhibiting donor-acceptor interaction was sufficient to reduce transfers in DIS-containing template pairs, indicating that template dimerization, and not the mere presence of the DIS, promotes efficient transfers. Additionally, we show evidence that the overall transfer process spans an extended region of the template and proceeds through a two-step mechanism. Transfer is initiated through an RNase H-facilitated acceptor invasion step, while synthesis continues on the donor template. The invasion then propagates towards the primer terminus by branch migration. Transfer is completed with the translocation of the primer terminus at a site distant from the invasion point. In our system, most invasions initiated before synthesis reached the DIS. However, transfer of the primer terminus predominantly occurred after synthesis through the DIS. The two steps were separated by 60 to 80 nucleotides. Sequence markers revealed the position of primer terminus switch, whereas DNA oligomers designed to block acceptor-cDNA interactions defined sites of invasion. Within the region of homology, certain positions on the template were inherently more favorable for invasion than others. In templates with DIS, the proximity of the acceptor facilitates invasion, thereby enhancing transfer efficiency. Nucleocapsid protein enhanced the overall efficiency of transfers but did not alter the mechanism. PMID:12663778

  19. Deep donor state of the copper acceptor as a source of green luminescence in ZnO

    NASA Astrophysics Data System (ADS)

    Lyons, J. L.; Alkauskas, A.; Janotti, A.; Van de Walle, C. G.

    2017-07-01

    Copper impurities have long been linked with green luminescence (GL) in ZnO. Copper is known to introduce an acceptor level close to the conduction band of ZnO, and the GL has conventionally been attributed to transitions involving an excited state which localizes holes on neighboring oxygen atoms. To date, a theoretical description of the optical properties of such deep centers has been difficult to achieve due to the limitations of functionals in the density functional theory. Here, we employ a screened hybrid density functional to calculate the properties of Cu in ZnO. In agreement with the experiment, we find that CuZn features an acceptor level near the conduction band of ZnO. However, we find that CuZn also gives rise to a deep donor level 0.46 eV above the valence band of ZnO; the calculated optical transitions involving this state agree well with the GL observed in ZnO:Cu.

  20. Novel Applications of Donor-Acceptor Cyclopropanes and Dearomatization towards the Expedient Synthesis of Highly Substituted Carbocycles

    NASA Astrophysics Data System (ADS)

    Mackay, William Daniel

    I. Lewis Acid Catalyzed (3+2)-Annulations of Donor-Acceptor Cyclopropanes and Ynamides. The Sc(OTf)3-catalyzed (3+2)-annulation of donor-acceptor cyclopropanes and ynamides is described, providing the corresponding cyclopentene sulfonamides in good to excellent yield. Deprotection and hydrolysis of the resulting cyclopentenesulfonamides delivers 2,3-substituted cyclopentanones with high diastereoselectivity. II. Kinetic Separation and Asymmetric Reactions of Norcaradiene Cycloadducts: Facilitated Access via H2O-Accelerated Cycloaddition. We exploit the Buchner reaction to access 1,2-disubstituted cyclohexadiene synthons (norcaradienes), which participate in H2O-accelerated cycloaddition with dienophiles to provide cyclopropyl-fused [2.2.2]-bicyclooctene derivatives in good yields. Regioisomeric mixtures can be kinetically separated exploiting different reaction rates in Diels-Alder reactions. meso -Diels-Alder products may be enantioselectively desymmetrized, providing highly substituted cyclohexanes with up to seven contiguous stereocenters. III. The Development of Regioisomerically Enriched Buchner Products for Use as Cyclohexadienyl Synthetic Intermediates. We have investigated two conceptual methods to generate highly regioisomerically enriched norcaradienyl intermediates through arene cyclopropanation. Intermolecular Buchner reaction of aryl diazoacetates under either thermolysis or silver(I) catalysis provide expedient routes to single regioisomeric norcaradienes, in some cases favoring the least sterically encumbered site of cyclopropanation. Intramolecular Buchner reaction of benzyl cyanodiazoacetates allow for the site-selective cyclopropanation of the tethered arene, and the installation of an activated cyclopropane for downstream functionalization. Both methods generate norcaradienes that are amenable to further transformations to generate highly stereochemically complex carbocyclic products.

  1. Spectroscopic studies on the interaction of cimetidine drug with biologically significant σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Pandeeswaran, M.; Elango, K. P.

    2010-05-01

    Spectroscopic studies revealed that the interaction of cimetidine drug with electron acceptors iodine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) resulted through the initial formation of ionic intermediate to charge transfer (CT) complex. The CT-complexes of the interactions have been characterized using UV-vis, 1H NMR, FT-IR and GC-MS techniques. The formation of triiodide ion, I 3-, is further confirmed by the observation of the characteristic bands in the far IR spectrum for non-linear I 3- ion with C s symmetry at 156 and 131 cm -1 assigned to νas(I-I) and νs(I-I) of the I-I bond and at 73 cm -1 due to bending δ(I 3-). The rate of formation of the CT-complexes has been measured and discussed as a function of relative permittivity of solvent and temperature. The influence of relative permittivity of the medium on the rate indicated that the intermediate is more polar than the reactants and this observation was further supported by spectral studies. Based on the spectroscopic results plausible mechanisms for the interaction of the drug with the chosen acceptors were proposed and discussed and the point of attachment of the multifunctional cimetidine drug with these acceptors during the formation of CT-complex has been established.

  2. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon

    NASA Astrophysics Data System (ADS)

    Guo, Bing; Qiu, Z. R.; Wong, K. S.

    2003-04-01

    We report room-temperature time-integrated and time-resolved photoluminescence (PL) measurements on a nominally undoped wurtzite ZnO thin film grown on (001) silicon. A linear and sublinear excitation intensity Iex dependence of the PL intensity were observed for the 379.48-nm exciton line and the weak broad green band (˜510 nm), respectively. The green luminescence was found to decay as hyperbolic t-1, and its peak energy was observed to increase nearly logarithmically with increased Iex. These results are in an excellent agreement with the tunnel-assisted donor-deep-acceptor pair (DAP) model so that its large blueshifts of about 25 meV per decade increase in Iex can be accounted for by the screening of the fluctuating impurity potential. Also, the 30-ps fast decay of the exciton emission was attributed to the rapid trapping of carriers at luminescent impurities, while the short lifetime of τ1/e=200 ps for the green luminescence may be due to an alternative trapping by deeper centers in the ZnO. Finally, singly ionized oxygen and zinc vacancies have been tentatively invoked to act as donor-deep-acceptor candidates for the DAP luminescence, respectively.

  3. Electron tunneling through covalent and noncovalent pathways in proteins

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose Nelson; Hopfield, J. J.

    1987-01-01

    A model is presented for electron tunneling in proteins which allows the donor-acceptor interaction to be mediated by the covalent bonds between amino acids and noncovalent contacts between amino acid chains. The important tunneling pathways are predicted to include mostly bonded groups with less favorable nonbonded interactions being important when the through bond pathway is prohibitively long. In some cases, vibrational motion of nonbonded groups along the tunneling pathway strongly influences the temperature dependence of the rate. Quantitative estimates for the sizes of these noncovalent interactions are made and their role in protein mediated electron transport is discussed.

  4. Donor-σ-Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion.

    PubMed

    Geng, Yan; D'Aleo, Anthony; Inada, Ko; Cui, Lin-Song; Kim, Jong Uk; Nakanotani, Hajime; Adachi, Chihaya

    2017-12-22

    A family of organic emitters with a donor-σ-acceptor (D-σ-A) motif is presented. Owing to the weakly coupled D-σ-A intramolecular charge-transfer state, a transition from the localized excited triplet state ( 3 LE) and charge-transfer triplet state ( 3 CT) to the charge-transfer singlet state ( 1 CT) occurred with a small activation energy and high photoluminescence quantum efficiency. Two thermally activated delayed fluorescence (TADF) components were identified, one of which has a very short lifetime of 200-400 ns and the other a longer TADF lifetime of the order of microseconds. In particular, the two D-σ-A materials presented strong blue emission with TADF properties in toluene. These results will shed light on the molecular design of new TADF emitters with short delayed lifetimes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hybrid super electron donors - preparation and reactivity.

    PubMed

    Garnier, Jean; Thomson, Douglas W; Zhou, Shengze; Jolly, Phillip I; Berlouis, Leonard E A; Murphy, John A

    2012-01-01

    Neutral organic electron donors, featuring pyridinylidene-imidazolylidene, pyridinylidene-benzimidazolylidene and imidazolylidene-benzimidazolylidene linkages are reported. The pyridinylidene-benzimidazolylidene and imidazolylidene-benzimidazolylidene hybrid systems were designed to be the first super electron donors to convert iodoarenes to aryl radicals at room temperature, and indeed both show evidence for significant aryl radical formation at room temperature. The stronger pyridinylidene-imidazolylidene donor converts iodoarenes to aryl anions efficiently under appropriate conditions (3 equiv of donor). The presence of excess sodium hydride base has a very important and selective effect on some of these electron-transfer reactions, and a rationale for this is proposed.

  6. NLOphoric rigid pyrazino-phenanthroline donor-π-acceptor compounds: Investigation of structural and solvent effects on non-linear optical properties using computational methods

    NASA Astrophysics Data System (ADS)

    Kothavale, Shantaram; Katariya, Santosh; Sekar, Nagaiyan

    2018-01-01

    Rigid pyrazino-phenanthroline based donor-π-acceptor-π-auxiliary acceptor type compounds have been studied for their linear and non-linear optical properties. The non-linear optical (NLO) behavior of these dyes was studied by calculating the values of static α , β and γ using solvatochromic as well as computational methods. The results obtained by solvatochromic method are correlated theoretically with Density Functional Theory (DFT) using B3LYP/6-31G (d), CAM B3LYP/6-31 G(d), B3LYP/6-31++ g(d,P) and CAM B3LYP/6-31++ g(d,P) methods. The results reveal that, among all four computational methods CAM-B3LYP/6-31++ g(d,P) performs well for the calculation of linear polarizability (α) and first order hyperpolarizability (β), while CAM-B3LYP/6-31 g(d,P) for the calculation of second order hyperpolarizability (ϒ). Overall TPA depends on the molecular structure variation with increase in complexity and molecular weight, which implies that both the number of branches and the size of π-framework are important factors for the molecular TPA in this chromophoric system. Generalized Mulliken-Hush (GMH) analysis is performed to study the effective charge transfer from donor to acceptor.

  7. Weak interactions and cooperativity effects on disiloxane: a look at the building block of silicones

    NASA Astrophysics Data System (ADS)

    Martín-Fernández, Carlos; Montero-Campillo, M. Merced; Alkorta, Ibon; Elguero, José

    2018-06-01

    The behaviour of disiloxane 1 towards a set of Lewis acids (LA) and Lewis bases (LB) forming complexes through its oxygen and silicon atoms, respectively, was studied at the MP2/aug‧-cc-pVTZ level of theory, exploring a wide variety of non-covalent interactions. Disiloxane is a moderate electron acceptor and a good electron donor, exhibiting in the latter case binding energies up to almost -100 kJ/mol with BeCl2. Cooperativity effects were also analysed by looking at ternary 1:LA:LB complexes. Shorter intermolecular distances than in the corresponding binary complexes and a negative contribution of the three-body term to the binding energy indicate that the non-covalent interactions allowed by disiloxane through its acid and basic centres cooperate between them to reinforce both donor-acceptor pairs. These effects are particularly strong in complexes involving beryllium and triel bonds, but are also relevant for complexes containing hydrogen bonds.

  8. Influence of the Terminal Electron Donor in D-D-π-A Organic Dye-Sensitized Solar Cells: Dithieno[3,2-b:2',3'-d]pyrrole versus Bis(amine).

    PubMed

    Dai, Panpan; Yang, Lin; Liang, Mao; Dong, Huanhuan; Wang, Peng; Zhang, Chunyao; Sun, Zhe; Xue, Song

    2015-10-14

    With respect to the electron-withdrawing acceptors of D-A-π-A organic dyes, reports on the second electron-donating donors for D-D-π-A organic dyes are very limited. Both of the dyes have attracted significant attention in the field of dye-sensitized solar cells (DSCs). In this work, four new D-D-π-A organic dyes with dithieno[3,2-b:2',3'-d]pyrrole (DTP) or bis(amine) donor have been designed and synthesized for a investigation of the influence of the terminal electron donor in D-D-π-A organic dye-sensitized solar cells. It is found that DTP is a promising building block as the terminal electron donor when introduced in the dithiophenepyrrole direction, but not just a good bridge, which exhibits several characteristics: (i) efficiently increasing the maximum molar absorption coefficient and extending the absorption bands; (ii) showing stronger charge transfer interaction as compared with the pyrrole direction; (iii) beneficial to photocurrent generation of DSCs employing cobalt electrolytes. DSCs based on M45 with the Co-phen electrolyte exhibit good light-to-electric energy conversion efficiencies as high as 9.02%, with a short circuit current density (JSC) of 15.3 mA cm(-2), open circuit voltage (VOC) of 867 mV and fill factor (FF) of 0.68 under AM 1.5 illumination (100 mW cm(-2)). The results demonstrate that N,S-heterocycles such as DTP unit could be promising candidates for application in highly efficient DSCs employing cobalt electrolyte.

  9. Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone

    NASA Astrophysics Data System (ADS)

    Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru

    2016-10-01

    Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.

  10. The protonated 2-halogenated imidazolium cation as the noncovalent interaction donor: the σ-hole and π-hole interactions.

    PubMed

    Wang, Jingjing; Mo, Lixin; Li, Xiaoyan; Geng, Zongke; Zeng, Yanli

    2016-12-01

    The σ-hole and π-hole of the protonated 2-halogenated imidazolium cation (XC 3 H 4 N 2 + ; X = F, Cl, Br, I) were investigated and analyzed. The monomers of (CH 3 ) 3 SiY(Y=F, Cl, Br, I), considered as the Lewis base, were combined with the σ-hole and π-hole of XC 3 H 4 N 2 + to form the σ-hole and π-hole interactions in the bimolecular complexes (CH 3 ) 3 SiY · · · XC 3 H 4 N 2 + and (CH 3 ) 3 SiY · · · C 3 (X)H 4 N 2 + (X/Y=F, Cl, Br, I), respectively. For both the σ-hole and π-hole interactions, the equilibrium geometries of complexes show regular changes according to the sequence of heavy sequence of the noncovalent interaction acceptors and donors. The electrostatic energy is the main contribution in the formation of both kinds of interactions, it has linear relations with the V S,max values of σ-hole and the V' S,max values of π-hole. Both the σ-hole and π-hole interactions belong to the closed-shell and noncovalent interactions. The π-hole interactions are stronger than the σ-hole interactions. For the π-hole interactions, the contribution percents of the dispersion energies are somewhat greater than those of the σ-hole interactions, while it is contrary for the polarization energy. Graphical Abstract The protonated 2-halogenated imidazolium cation as the noncovalent interaction donor: the σ-hole and π-hole interactionsᅟ.

  11. Effect of π-bridge units on properties of A-π-D-π-A-type nonfullerene acceptors for organic solar cells.

    PubMed

    Wang, Yan-Ling; Li, Quan-Song; Li, Ze-Sheng

    2018-05-15

    Acceptor-π-donor-π-acceptor (A-π-D-π-A)-types of small molecules are very promising nonfullerene acceptors to overcome the drawbacks of fullerene derivatives such as the weak absorption ability and electronic adjustability. However, only few attempts have been made to develop π-bridge units to construct highly efficient acceptors in OSCs. Herein, taking the reported acceptor P1 as a reference, five small-structured acceptors (P2, P3, P4, P5, and P6) have been designed via the replacement of the π-bridge unit. A combination of quantum chemistry and Marcus theory approaches is employed to investigate the effect of different π-bridge units on the optical, electronic, and charge transport properties of P1-P6. The calculation results show that the designed molecules P2 and P5 can become potential acceptor replacements of P1 due to their red-shifted absorption bands, appropriate energy levels, low exciton binding energy, and high electron affinity and electron mobility. Additionally, compared with P3HT/P1, P3HT/P2 and P3HT/P5 exhibit stronger and wider absorption peaks, larger electron transfer distances (DCT), greater transferred charge amounts (Δq), and smaller overlaps (Λ), which shows that P2 and P5 have more significant electron transfer characteristics and favorable exciton dissociation capabilities for enhancing the short-circuit current density (JSC) and thus, they are potential acceptors in OSCs.

  12. Investigation of Fluorination on Donor Moiety of Donor-Acceptor 4,7-Dithienylbenzothiadiazole-Based Conjugated Polymers toward Enhanced Photovoltaic Efficiency.

    PubMed

    Li, Yonghai; Wang, Junyi; Liu, Yan; Qiu, Meng; Wen, Shuguang; Bao, Xichang; Wang, Ning; Sun, Mingliang; Yang, Renqiang

    2016-10-05

    It is known that fluorination on π-conjugated donor-acceptor (D-A) polymers can significantly affect the optoelectronic properties and fluorination on A moiety has been well established for design of efficient photovoltaic materials. For example, polymers based on 4,7-dithienyl-5,6-difluorobenzothiadiazole (DTffBT) have been intensively investigated and exhibited excellent performance, but the corresponding DTBT-based polymers without fluorine often display an unfavorable efficiency. With the purpose of improving photovoltaic efficiency of DTBT-based D-A polymers, we design three polymers PDTBT-TxfBT (x = 0, 1, 2) with fluorination on D moiety (TxfBT) and systematically investigate fluorination on the photophysical/electrochemical and photovoltaic properties. The results show that polymer solar cells (PSCs) based on PDTBT-TBT exhibit moderate power conversion efficiency (PCE) of 5.84%. However, the bis-fluorination on TffBT moiety (PDTBT-TffBT) can greatly enhance the molecular planarity and intermolecular interaction, improve the charge transport and heterojunction morphology, and further suppress the charge recombination losses. PSCs based on PDTBT-TffBT demonstrate obviously improved photovoltaic efficiency with the best PCE up to 7.53% without any processing additives, which ranks among the top DTBT-based PSCs. However, it should be noted that unsymmetrical fluorination on TfBT moiety (PDTBT-TfBT) impairs the regularity of polymer backbone and intermolecular interaction, increases the recombination losses, and seriously reduces the short-circuit current density and efficiency (5.44%). The results exhibit that fluorination on D moiety is a helpful strategy for design high-performance photovoltaic materials and the regularity of fluorination is crucial to improving efficiencies.

  13. Low and High Molecular Mass Dithienopyrrole-Naphthalene Bisimide Donor-Acceptor Compounds: Synthesis, Electrochemical and Spectroelectrochemical Behaviour.

    PubMed

    Rybakiewicz, Renata; Glowacki, Eric D; Skorka, Lukasz; Pluczyk, Sandra; Zassowski, Pawel; Apaydin, Dogukan Hazar; Lapkowski, Mieczyslaw; Zagorska, Malgorzata; Pron, Adam

    2017-02-24

    Two low molecular weight electroactive donor-acceptor-donor (DAD)-type molecules are reported, namely naphthalene bisimide (NBI) symmetrically core-functionalized with dithienopyrrole (NBI-(DTP) 2 ) and an asymmetric core-functionalized naphthalene bisimide with dithienopyrrole (DTP) substituent on one side and 2-ethylhexylamine on the other side (NBI-DTP-NHEtHex). Both compounds are characterized by low optical bandgaps (1.52 and 1.65 eV, respectively). NBI-(DTP) 2 undergoes oxidative electropolymerization giving the electroactive polymer of ambipolar character. Its two-step reversible reduction and oxidation is corroborated by complementary EPR and UV/Vis-NIR spectroelectrochemical investigations. The polymer turned out to be electrochemically active not only in aprotic solvents but also in aqueous electrolytes, showing a distinct photocathodic current attributed to proton reduction. Additionally, poly(NBI-(DTP) 2 ) was successfully tested as a photodiode material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor.

    PubMed

    Kane, Aunica L; Brutinel, Evan D; Joo, Heena; Maysonet, Rebecca; VanDrisse, Chelsey M; Kotloski, Nicholas J; Gralnick, Jeffrey A

    2016-04-01

    Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms inS. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation inS. oneidensis. Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for

  15. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor

    PubMed Central

    Kane, Aunica L.; Brutinel, Evan D.; Joo, Heena; Maysonet, Rebecca; VanDrisse, Chelsey M.; Kotloski, Nicholas J.

    2016-01-01

    ABSTRACT Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in S. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in S. oneidensis. IMPORTANCE Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the

  16. Energy transfer within self-assembled cyclic multichromophoric arrays based on orthogonally arranged donor-acceptor building blocks.

    PubMed

    Karakostas, Nikolaos; Kaloudi-Chantzea, Antonia; Martinou, Elisabeth; Seintis, Kostas; Pitterl, Florian; Oberacher, Herbert; Fakis, Mihalis; Kallitsis, Joannis K; Pistolis, George

    2015-01-01

    We herein present the coordination-driven supramolecular synthesis and photophysics of a [4+4] and a [2+2] assembly, built up by alternately collocated donor-acceptor chromophoric building blocks based, respectively, on the boron dipyrromethane (Bodipy) and perylene bisimide dye (PBI). In these multichromophoric scaffolds, the intensely absorbing/emitting dipoles of the Bodipy subunit are, by construction, cyclically arranged at the corners and aligned perpendicular to the plane formed by the closed polygonal chain comprising the PBI units. Steady-state and fs time-resolved spectroscopy reveal the presence of efficient energy transfer from the vertices (Bodipys) to the edges (PBIs) of the polygons. Fast excitation energy hopping - leading to a rapid excited state equilibrium among the low energy perylene-bisimide chromophores - is revealed by fluorescence anisotropy decays. The dynamics of electronic excitation energy hopping between the PBI subunits was approximated on the basis of a theoretical model within the framework of Förster energy transfer theory. All energy-transfer processes are quantitatively describable with Förster theory. The influence of structural deformations and orientational fluctuations of the dipoles in certain kinetic schemes is discussed.

  17. Weak competing interactions control assembly of strongly bonded TCNQ ionic acceptor molecules on silver surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changwon; Rojas, Geoffrey A.; Jeon, Seokmin

    2014-09-19

    The energy scales of interactions that control molecular adsorption and assembly on surfaces can vary by several orders of magnitude, yet the importance of each contributing interaction is not apparent a priori. Tetracyanoquinodimethane (TCNQ) is an archetypal electron acceptor molecule and it is a key component of organic metals. On metal surfaces, this molecule also acts as an electron acceptor, producing negatively charged adsorbates. It is therefore rather intriguing to observe attractive molecular interactions in this system that were reported previously for copper and silver surfaces. In this paper, our experiments compared TCNQ adsorption on noble metal surfaces of Ag(100)more » and Ag(111). In both cases we found net attractive interactions down to the lowest coverage. However, the morphology of the assemblies was strikingly different, with two-dimensional islands on Ag(100) and one-dimensional chains on Ag(111) surfaces. This observation suggests that the registry effect governed by the molecular interaction with the underlying lattice potential is critical in determining the dimensionality of the molecular assembly. Using first-principles density functional calculations with a van der Waals correction scheme, we revealed that the strengths of major interactions (i.e., lattice potential corrugation, intermolecular attraction, and charge-transfer-induced repulsion) are all similar in energy. The van der Waals interactions, in particular, almost double the strength of attractive interactions, making the intermolecular potential comparable in strength to the diffusion potential and promoting self-assembly. However, it is the anisotropy of local intermolecular interactions that is primarily responsible for the difference in the topology of the molecular islands on Ag(100) and Ag(111) surfaces. Finally, we anticipate that the intermolecular potential will become more attractive and dominant over the diffusion potential with increasing molecular size

  18. TIO2 ADVANCED PHOTO-OXIDATION TECHNOLOGY: EFFECT OF ELECTRON ACCEPTORS

    EPA Science Inventory

    The effects of electron acceptors (additives) such as hydrogen peroxide, ammonium persulphate, potassium bromate and potassium peroxymonosulphate (ozone) on the TiO2 photocatalytic degradation of various organic pollutants were examined at various conditions. he individual and th...

  19. Temperature-Dependent Compensation and Optical Quenching by Thermal Oxygen Donors in Germanium

    NASA Technical Reports Server (NTRS)

    Watson, D.; Guptill, M.; Huffman, J.; Krabach, T.; Raines, S.

    1994-01-01

    Photothermal ionization spectroscopy of germanium, doped in the impurity-band conduction range with gallium acceptors and with thermal oxygen donors, reveals that the donors and acceptors compensate each other at temperatures higher than about 5K, but that the impurities coexist as neutral donors and acceptors at lower temperatures.

  20. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotopemore » effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists

  1. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  2. Cation Effects on the Electron-Acceptor Side of Photosystem II.

    PubMed

    Khan, Sahr; Sun, Jennifer S; Brudvig, Gary W

    2015-06-18

    The normal pathway of electron transfer on the electron-acceptor side of photosystem II (PSII) involves electron transfer from quinone A, QA, to quinone B, QB. It is possible to redirect electrons from QA(-) to water-soluble Co(III) complexes, which opens a new avenue for harvesting electrons from water oxidation by immobilization of PSII on electrode surfaces. Herein, the kinetics of electron transfer from QA(-) to [Co(III)(terpy)2](3+) (terpy = 2,2';6',2″-terpyridine) are investigated with a spectrophotometric assay revealing that the reaction follows Michaelis-Menten saturation kinetics, is inhibited by cations, and is not affected by variation of the QA reduction potential. A negatively charged site on the stromal surface of the PSII protein complex, composed of glutamic acid residues near QA, is hypothesized to bind cations, especially divalent cations. The cations are proposed to tune the redox properties of QA through electrostatic interactions. These observations may thus explain the molecular basis of the effect of divalent cations like Ca(2+), Sr(2+), Mg(2+), and Zn(2+) on the redox properties of the quinones in PSII, which has previously been attributed to long-range conformational changes propagated from divalent cations binding to the Ca(II)-binding site in the oxygen-evolving complex on the lumenal side of the PSII complex.

  3. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor

    PubMed Central

    Bin, Haijun; Gao, Liang; Zhang, Zhi-Guo; Yang, Yankang; Zhang, Yindong; Zhang, Chunfeng; Chen, Shanshan; Xue, Lingwei; Yang, Changduk; Xiao, Min; Li, Yongfang

    2016-01-01

    Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si–C bond interaction. The polymer solar cells obtained by pairing this polymer with a non-fullerene acceptor demonstrated a high power conversion efficiency of 11.41% with both high open circuit voltage of 0.94 V and high short circuit current density of 17.32 mA cm−2 benefitted from the complementary absorption of the donor and acceptor, and the high hole transfer efficiency from acceptor to donor although the highest occupied molecular orbital level difference between the donor and acceptor is only 0.11 eV. The results indicate that the alkylsilyl substitution is an effective way in designing high performance conjugated polymer photovoltaic materials. PMID:27905397

  4. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor.

    PubMed

    Bin, Haijun; Gao, Liang; Zhang, Zhi-Guo; Yang, Yankang; Zhang, Yindong; Zhang, Chunfeng; Chen, Shanshan; Xue, Lingwei; Yang, Changduk; Xiao, Min; Li, Yongfang

    2016-12-01

    Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si-C bond interaction. The polymer solar cells obtained by pairing this polymer with a non-fullerene acceptor demonstrated a high power conversion efficiency of 11.41% with both high open circuit voltage of 0.94 V and high short circuit current density of 17.32 mA cm -2 benefitted from the complementary absorption of the donor and acceptor, and the high hole transfer efficiency from acceptor to donor although the highest occupied molecular orbital level difference between the donor and acceptor is only 0.11 eV. The results indicate that the alkylsilyl substitution is an effective way in designing high performance conjugated polymer photovoltaic materials.

  5. Humin as an electron donor for enhancement of multiple microbial reduction reactions with different redox potentials in a consortium.

    PubMed

    Zhang, Dongdong; Zhang, Chunfang; Xiao, Zhixing; Suzuki, Daisuke; Katayama, Arata

    2015-02-01

    A solid-phase humin, acting as an electron donor, was able to enhance multiple reductive biotransformations, including dechlorination of pentachlorophenol (PCP), dissimilatory reduction of amorphous Fe (III) oxide (FeOOH), and reduction of nitrate, in a consortium. Humin that was chemically reduced by NaBH4 served as an electron donor for these microbial reducing reactions, with electron donating capacities of 0.013 mmol e(-)/g for PCP dechlorination, 0.15 mmol e(-)/g for iron reduction, and 0.30 mmol e(-)/g for nitrate reduction. Two pairs of oxidation and reduction peaks within the humin were detected by cyclic voltammetry analysis. 16S rRNA gene sequencing-based microbial community analysis of the consortium incubated with different terminal electron acceptors, suggested that Dehalobacter sp., Bacteroides sp., and Sulfurospirillum sp. were involved in the PCP dechlorination, dissimilatory iron reduction, and nitrate reduction, respectively. These findings suggested that humin functioned as a versatile redox mediator, donating electrons for multiple respiration reactions with different redox potentials. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Complete Monitoring of Coherent and Incoherent Spin Flip Domains in the Recombination of Charge-Separated States of Donor-Iridium Complex-Acceptor Triads.

    PubMed

    Klein, Johannes H; Schmidt, David; Steiner, Ulrich E; Lambert, Christoph

    2015-09-02

    The spin chemistry of photoinduced charge-separated (CS) states of three triads comprising one or two triarylamine donors, a cyclometalated iridium complex sensitizer and a naphthalene diimide (NDI) acceptor, was investigated by transient absorption spectroscopy in the ns-μs time regime. Strong magnetic-field effects (MFE) were observed for two triads with a phenylene bridge between iridium complex sensitizer and NDI acceptor. For these triads, the lifetimes of the CS states increased from 0.6 μs at zero field to 40 μs at about 2 T. Substituting the phenylene by a biphenyl bridge causes the lifetime of the CS state at zero field to increase by more than 2 orders of magnitude (τ = 79 μs) and the MFE to disappear almost completely. The kinetic MFE was analyzed in the framework of a generalized Hayashi-Nagakura scheme describing coherent (S, T0 ↔ T±) as well as incoherent (S, T0 ⇌ T±) processes by a single rate constant k±. The magnetic-field dependence of k± of the triads with phenylene bridge spans 2 orders of magnitude and exhibits a biphasic behavior characterized by a superposition of two Lorentzians. This biphasic MFE is observed for the first time and is clearly attributable to the coherent (B < 10 mT) and incoherent (10 mT < B < 2 T) domains of spin motion induced by isotropic and anisotropic hyperfine coupling. The parameters of both domains are well understood in terms of the structural properties of the two triads, including the effect of electron hopping in the triad with two donor moieties. The kinetic model also accounts for the reduction of the MFE on reducing the rate constant of charge recombination in the triad with the biphenyl bridge.

  7. TERMINAL ELECTRON ACCEPTOR MASS BALANCE: LIGHT NONAQUEOUS PHASE LIQUIDS AND NATURAL ATTENUATION

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLs) in subsurface systems contain a relatively large amount of biodegradable organic material. During the biochemical oxidation of the organic compounds in the NAPL, electrons are transferred to terminal electron acceptors (TEA) (i.e., O2, NO3-, Mn(I...

  8. Nuclear Hyperfine Structure in the DonorAcceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    EPA Science Inventory

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  9. Magnetic field effect on the Coulomb interaction of acceptors in semimagnetic quantum dot

    NASA Astrophysics Data System (ADS)

    Kalpana, P.; Merwyn, A.; Reuben, Jasper D.; Nithiananthi, P.; Jayakumar, K.

    2015-06-01

    The Coulomb interaction of holes in a Semimagnetic Cd1-xMnxTe / CdTe Spherical and Cubical Quantum Dot (SMQD) in a magnetic field is studied using variational approach in the effective mass approximation. Since these holes in QD show a pronounced collective behavior, while distinct single particle phenomena is suppressed, their interaction in confined potential becomes very significant. It has been observed that acceptor-acceptor interaction is more in cubical QD than in spherical QD which can be controlled by the magnetic field. The results are presented and discussed.

  10. Spectroscopic and thermal investigations of charge-transfer complexes formed between sulfadoxine drug and different types of acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2011-01-01

    Charge-transfer reactions between sulfadoxine (SDOX) as a donor with iodine (I 2), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), p-chloranil (CHL) and picric acid (PA) have been studied in solid and solution forms. The stoichiometry of all complexes was found to be 1:1 by molar ratio method between donor and acceptor at a CT-band absorption bands. The data are discussed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ Go), oscillator strength (ƒ), transition dipole moment ( μ), resonance energy ( RN) and ionization potential ( ID). The results indicate that the formation constant ( KCT) for the complexes were shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents which were used. IR, 1H NMR and UV-Vis spectroscopic techniques, Elemental analyses (CHN) and TG-DTG investigation were used to characterize the four sulfadoxine charge-transfer complexes.

  11. Development of Spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene]-Based A-π-D-π-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells.

    PubMed

    Wang, Wengong; Shen, Ping; Dong, Xinning; Weng, Chao; Wang, Guo; Bin, Haijun; Zhang, Jing; Zhang, Zhi-Guo; Li, Yongfang

    2017-02-08

    Three acceptor-π-donor-π-acceptor (A-π-D-π-A) small molecules (STFYT, STFRDN, and STFRCN) with spiro[cyclopenta[1,2-b:5,4-b']dithiophene-4,9'-fluorene] (STF) as the central donor unit, terthiophene as the π-conjugated bridge, indenedione, 3-ethylrhodanine, or 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit are designed, synthesized, and characterized as electron donor materials in solution-processing organic solar cells (OSCs). The effects of the spiro STF-based central core and different acceptors on the molecular configuration, absorption properties, electronic energy levels, carrier transport properties, the morphology of active layers, and photovoltaic properties are investigated in detail. The three molecules exhibit desirable physicochemical features: wide absorption bands (300-850 nm) and high molar absorption coefficients (4.82 × 10 4 to 7.56 × 10 4 M -1 cm -1 ) and relatively low HOMO levels (-5.15 to -5.38 eV). Density functional theory calculations reveal that the spiro STF central core benefits to reduce the steric hindrance effect between the central donor block and terthiophene bridge and suppress excessive intermolecular aggregations. The optimized OSCs based on these molecules deliver power conversion efficiencies (PCEs) of 6.68%, 3.30%, and 4.33% for STFYT, STFRDN, and STFRCN, respectively. The higher PCE of STFYT-based OSCs should be ascribed to its better absorption ability, higher and balanced hole and electron mobilities, and superior active layer morphology as compared to the other two compounds. So far, this is the first example of developing the A-π-D-π-A type small molecules with a spiro central donor core for high-performance OSC applications. Meanwhile, these results demonstrate that using spiro central block to construct A-π-D-π-A molecule is an alternative and effective strategy for achieving high-performance small molecule donor materials.

  12. Influence of acceptor on charge mobility in stacked π-conjugated polymers

    NASA Astrophysics Data System (ADS)

    Sun, Shih-Jye; Menšík, Miroslav; Toman, Petr; Gagliardi, Alessio; Král, Karel

    2018-02-01

    We present a quantum molecular model to calculate mobility of π-stacked P3HT polymer layers with electron acceptor dopants coupled next to side groups in random position with respect to the linear chain. The hole density, the acceptor LUMO energy and the hybridization transfer integral between the acceptor and polymer were found to be very critical factors to the final hole mobility. For a dopant LUMO energy close and high above the top of the polymer valence band we have found a significant mobility increase with the hole concentration and with the dopant LUMO energy approaching the top of the polymer valence band. Higher mobility was achieved for small values of hybridization transfer integral between polymer and the acceptor, corresponding to the case of weakly bound acceptor. Strong couplings between the polymer and the acceptor with Coulomb repulsion interactions induced from the electron localizations was found to suppress the hole mobility.

  13. The use of O-trifluoroacetyl protection and profound influence of the nature of glycosyl acceptor in benzyl-free arabinofuranosylation.

    PubMed

    Abronina, Polina I; Fedina, Ksenia G; Podvalnyy, Nikita M; Zinin, Alexander I; Chizhov, Alexander O; Kondakov, Nikolay N; Torgov, Vladimir I; Kononov, Leonid O

    2014-09-19

    The influence of O-trifluoroacetyl (TFA) groups at different positions of thioglycoside glycosyl donors on stereoselectivity of α-arabinofuranosylation leading to corresponding disaccharides was studied. It was shown that TFA group in thioglycoside glycosyl donors, when combined with 2-O-(triisopropylsilyl) (TIPS) non-participating group, may be regarded as an electron-withdrawing protecting group that may enhance 1,2-cis-selectivity in arabinofuranosylation, the results strongly depending on the nature of glycosyl acceptor. The reactivities of the glycosyl donors were compared with those of a similar thioglycoside with O-pentafluoropropionyl groups and the known phenyl 3,5-O-(di-tert-butylsilylene)-1-thio-α-d-arabinofuranosides with 2-O-TIPS and 2-O-benzyl groups. The 'matching' in the donor-acceptor combination was found to be critical for achieving both high reactivity of glycosyl donor and β-stereoselectivity of arabinofuranosylation. The use of glycosyl donors with TFA and silyl protection may be useful in the realization of the benzyl-free approach to oligoarabinofuranosides with azido group in aglycon-convenient building blocks for the preparation of neoglycoconjugates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.

    Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  15. Design of ortho-Substituted Donor-Acceptor Molecules as Highly Efficient Green Thermally Activated Delayed Fluorescent Emitters

    NASA Astrophysics Data System (ADS)

    Cha, Jae-Ryung; Gong, Myoung-Seon; Lee, Tak Jae; Ha, Tae Hoon; Lee, Chil Won

    2018-04-01

    The ortho-substituted donor-acceptor molecules 2-(4,6-diphenyl-1, 3, 5-triazin-2-yl)- N,Ndiphenylaniline (DPA- o-Trz) and 2-(4,6-diphenyl-1, 3, 5-triazine-2-yl)- N,N-di- p-tolylaniline (MPA- o-Trz) were designed, synthesized, and found to exhibit green fluorescence characteristics. Notably, the singlet-triplet energy gap was less than 0.1 eV, indicating that reverse intersystem crossing gave rise to thermally activated delayed fluorescence (TADF). The organic light-emitting device performance of MPA- o-Trz showed a high external quantum efficiency of 16.3% and good color stability from 0.1 cd/m2 to 5000 cd/m2.

  16. Synthesis, characterization, spectrophotometric, structural and antimicrobial studies of the newly charge transfer complex of p-phenylenediamine with π acceptor picric acid

    NASA Astrophysics Data System (ADS)

    Khan, Ishaat M.; Ahmad, Afaq; Oves, M.

    2010-12-01

    Charge transfer complex (CTC) of donor, p-phenylenediamine (PPD) and acceptor, 2,4,6-trinitrophenol (picric acid) has been studied in methanol at room temperature. The CT complex was synthesized and characterized by elemental analysis, FTIR spectra, 1H NMR spectroscopy and electronic absorption spectra which indicate the CT interaction associated with proton migration from the acceptor to the donor followed by hydrogen bonding via N +-H⋯O -. The thermal stability of CT complex was studied using TGA and DTA analyses techniques. The CT complex was screened for its antifungal activity against Aspergillus niger (Laboratory isolate), Candida albicans (IQA-109) and Penicillium sp. (Laboratory isolate) and antibacterial activity against two Gram-positive bacteria Staphylococcus aureus (MSSA 22) and Bacillus subtilis (ATCC 6051) and two Gram-negative bacteria Escherichia coli (K 12) and Pseudomonas aeruginosa (MTCC 2488). It gives good antimicrobial activity. The stoichiometry of the CT complex was found to be 1:1. The physical parameters of CT complex were evaluated by the Benesi-Hildebrand equation. On the basis of the studies, the structure of CT complex is [(PPDH) +(PA) -], and a general mechanism for its formation is proposed.

  17. Synthesis, characterization, spectrophotometric, structural and antimicrobial studies of the newly charge transfer complex of p-phenylenediamine with π acceptor picric acid.

    PubMed

    Khan, Ishaat M; Ahmad, Afaq; Oves, M

    2010-12-01

    Charge transfer complex (CTC) of donor, p-phenylenediamine (PPD) and acceptor, 2,4,6-trinitrophenol (picric acid) has been studied in methanol at room temperature. The CT complex was synthesized and characterized by elemental analysis, FTIR spectra, 1H NMR spectroscopy and electronic absorption spectra which indicate the CT interaction associated with proton migration from the acceptor to the donor followed by hydrogen bonding via N+-H⋯O-. The thermal stability of CT complex was studied using TGA and DTA analyses techniques. The CT complex was screened for its antifungal activity against Aspergillus niger (Laboratory isolate), Candida albicans (IQA-109) and Penicillium sp. (Laboratory isolate) and antibacterial activity against two Gram-positive bacteria Staphylococcus aureus (MSSA 22) and Bacillus subtilis (ATCC 6051) and two Gram-negative bacteria Escherichia coli (K 12) and Pseudomonas aeruginosa (MTCC 2488). It gives good antimicrobial activity. The stoichiometry of the CT complex was found to be 1:1. The physical parameters of CT complex were evaluated by the Benesi-Hildebrand equation. On the basis of the studies, the structure of CT complex is [(PPDH)+(PA)-], and a general mechanism for its formation is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Generation of a Multicomponent Library of Disulfide Donor-Acceptor Architectures Using Dynamic Combinatorial Chemistry

    PubMed Central

    Drożdż, Wojciech; Kołodziejski, Michał; Markiewicz, Grzegorz; Jenczak, Anna; Stefankiewicz, Artur R.

    2015-01-01

    We describe here the generation of new donor-acceptor disulfide architectures obtained in aqueous solution at physiological pH. The application of a dynamic combinatorial chemistry approach allowed us to generate a large number of new disulfide macrocyclic architectures together with a new type of [2]catenanes consisting of four distinct components. Up to fifteen types of structurally-distinct dynamic architectures have been generated through one-pot disulfide exchange reactions between four thiol-functionalized aqueous components. The distribution of disulfide products formed was found to be strongly dependent on the structural features of the thiol components employed. This work not only constitutes a success in the synthesis of topologically- and morphologically-complex targets, but it may also open new horizons for the use of this methodology in the construction of molecular machines. PMID:26193265

  19. Generation of a Multicomponent Library of Disulfide Donor-Acceptor Architectures Using Dynamic Combinatorial Chemistry.

    PubMed

    Drożdż, Wojciech; Kołodziejski, Michał; Markiewicz, Grzegorz; Jenczak, Anna; Stefankiewicz, Artur R

    2015-07-17

    We describe here the generation of new donor-acceptor disulfide architectures obtained in aqueous solution at physiological pH. The application of a dynamic combinatorial chemistry approach allowed us to generate a large number of new disulfide macrocyclic architectures together with a new type of [2]catenanes consisting of four distinct components. Up to fifteen types of structurally-distinct dynamic architectures have been generated through one-pot disulfide exchange reactions between four thiol-functionalized aqueous components. The distribution of disulfide products formed was found to be strongly dependent on the structural features of the thiol components employed. This work not only constitutes a success in the synthesis of topologically- and morphologically-complex targets, but it may also open new horizons for the use of this methodology in the construction of molecular machines.

  20. Synthesis of Donor/Acceptor-Substituted Diazo Compounds in Flow and Their Application in Enantioselective Dirhodium-Catalyzed Cyclopropanation and C-H Functionalization.

    PubMed

    Rackl, Daniel; Yoo, Chun-Jae; Jones, Christopher W; Davies, Huw M L

    2017-06-16

    A tandem reaction system has been developed for the preparation of donor/acceptor-substituted diazo compounds in continuous flow coupled to dirhodium-catalyzed C-H functionalization or cyclopropanation. Hydrazones were oxidized in flow by solid-supported N-iodo-p-toluenesulfonamide potassium salt (PS-SO 2 NIK) to generate the diazo compounds, which were then purified by passing through a column of molecular sieves/sodium thiosulfate.

  1. Chemical trends for acceptor impurities in GaN

    NASA Astrophysics Data System (ADS)

    Neugebauer, Jörg; Van de Walle, Chris G.

    1999-03-01

    We present a comprehensive investigation of acceptor impurities in GaN, based on first-principles total-energy calculations. Two main factors are identified that determine acceptor incorporation: the strength of chemical bonding between the acceptor and its neighbors (which can be assessed by comparison with existing compounds) and the atomic size match between the acceptor and the host atom for which it substitutes. None of the candidates (Li, Na, K, Be, Zn, and Ca) exhibits characteristics which surpass those of Mg in all respects. Only Be emerges as a potential alternative dopant, although it may suffer from compensation by Be interstitial donors.

  2. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharoff, Lori; Chan, Chi Ho; Bond, Daniel R.

    2015-09-05

    The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than - 0.1 V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poisedmore » at - 0.1 V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50 mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ΔcbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below - 0.1 V vs. SHE.« less

  3. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens.

    PubMed

    Zacharoff, Lori; Chan, Chi Ho; Bond, Daniel R

    2016-02-01

    The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than -0.1 V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poised at -0.1 V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50 mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ∆cbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below -0.1 V vs. SHE. Copyright © 2015. Published by Elsevier B.V.

  4. Energy bands and acceptor binding energies of GaN

    NASA Astrophysics Data System (ADS)

    Xia, Jian-Bai; Cheah, K. W.; Wang, Xiao-Liang; Sun, Dian-Zhao; Kong, Mei-Ying

    1999-04-01

    The energy bands of zinc-blende and wurtzite GaN are calculated with the empirical pseudopotential method, and the pseudopotential parameters for Ga and N atoms are given. The calculated energy bands are in agreement with those obtained by the ab initio method. The effective-mass theory for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN for both structures are given. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor are 24 and 142 meV for the zinc-blende structure, 20 and 131, and 97 meV for the wurtzite structure, respectively, which are consistent with recent experimental results. It is proposed that there are two kinds of acceptor in wurtzite GaN. One kind is the general acceptor such as C, which substitutes N, which satisfies the effective-mass theory. The other kind of acceptor includes Mg, Zn, Cd, etc., the binding energy of these acceptors is deviated from that given by the effective-mass theory. In this report, wurtzite GaN is grown by the molecular-beam epitaxy method, and the photoluminescence spectra were measured. Three main peaks are assigned to the donor-acceptor transitions from two kinds of acceptors. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material.

  5. Lewis acid catalyzed [3 + 2] annulation of ketenimines with donor-acceptor cyclopropanes: an approach to 2-alkylidenepyrrolidine derivatives.

    PubMed

    Alajarin, Mateo; Egea, Adrian; Orenes, Raul-Angel; Vidal, Angel

    2016-11-02

    The [3 + 2] annulation reaction of C,C,N-trisubstituted ketenimines with donor-acceptor cyclopropanes bearing aryl, styryl and vinyl substituents at the C2 position, triggered by the Lewis acid Sc(OTf) 3 , supplies highly substituted pyrrolidines. Activated cyclopropanes fused to naphthalene and [1]benzopyrane nuclei are also suitable substrates in similar transformations, yielding partially saturated benz[g]indoles and [1]benzopyran[4,3-b]pyrroles. An intramolecular version of this ketenimine/cyclopropane [3 + 2] annulation has also been developed leading to the pyrrolo[2,1-a]isoindole framework.

  6. Designing high efficiency organic photovoltaics by controlling the ordering at the donor-acceptor interface

    NASA Astrophysics Data System (ADS)

    Mohite, Aditya; Nie, Wanyi; Gupta, Gautam; Crone, Brian; Kuo, Chenyu; Tsai, Hsinhan; Smith, Darryl; Ruden, Paul; Liu, Feilong; Wang, Hsing-Lin; Tretiak, Sergei

    2014-03-01

    The overall power conversion efficiency in an organic solar cell depends on the balance between the rates of exciton dissociation, recombination and separation at the donor acceptor interface. Inability to design, control and engineer these interfaces remains a key bottleneck in their widespread use for the next generation organic electronic devices. Here, we show that we can control the ordering at the P3HT/C60 interface in bilayer device geometry by inserting a monolayer of oligothiophenes, which leads to a complete suppression in the exciplex (or charge transfer state) recombination. We observe that the photocurrent increases by 500%, which in turn results in an increase in the overall power conversion efficiency by an order of magnitude. Moreover, we find that the oligothiophene with an odd number of rings (ter and penta oligothiophene) exhibit a much higher increase in the photocurrent in comparison to the oligothiophene with an even number of rings (tetra oligothiphene). STM measurements reveal that the oligothiophene with odd and even number of rings differ in their ordering respectively, that has a big effect on the overall device performance. We also find that this ordering is highly dependent on the side functional groups in the oligothiophenes. The mechanism of photocurrent generation will be discussed and a simple transport model will be used to explain the change in the charge transfer and recombination rates and predict current-voltage curves.

  7. Self-Assembled Core-Shell CdTe/Poly(3-hexylthiophene) Nanoensembles as Novel Donor-Acceptor Light-Harvesting Systems.

    PubMed

    Istif, Emin; Kagkoura, Antonia; Hernandez-Ferrer, Javier; Stergiou, Anastasios; Skaltsas, Theodosis; Arenal, Raul; Benito, Ana M; Maser, Wolfgang K; Tagmatarchis, Nikos

    2017-12-27

    The self-assembly of novel core-shell nanoensembles consisting of regioregular poly(3-hexylthiophene) nanoparticles (P3HT NPs ) of 100 nm as core and semiconducting CdTe quantum dots (CdTe QDs ) as shell with a thickness of a few tens of nanometers was accomplished by employing a reprecipitation approach. The structure, morphology, and composition of CdTe QDs /P3HT NPs nanoensembles were confirmed by high-resolution scanning transmission microscopy and dynamic light-scattering studies. Intimate interface contact between the CdTe QDs shell and the P3HT NPs core leads to the stabilization of the CdTe QDs /P3HT NPs nanoensemble as probed by the steady-state absorption spectroscopy. Effective quenching of the characteristic photoluminescence of CdTe QDs at 555 nm, accompanied by simultaneous increase in emission of P3HT NPs at 660 and 720 nm, reveals photoinduced charge-transfer processes. Probing the redox properties of films of CdTe QDs /P3HT NPs further proves the formation of a stabilized core-shell system in the solid state. Photoelectrochemical assays on CdTe QDs /P3HT NPs films show a reversible on-off photoresponse at a bias voltage of +0.8 V with a 3 times increased photocurrent compared to CdTe QDs . The improved charge separation is directly related to the unique core-shell configuration, in which the outer CdTe QDs shell forces the P3HT NPs core to effectively act as electron acceptor. The creation of novel donor-acceptor core-shell hybrid materials via self-assembly is transferable to other types of conjugated polymers and semiconducting nanoparticles. This work, therefore, opens new pathways for the design of improved optoelectronic devices.

  8. Proton transfer complexes based on some π-acceptors having acidic protons with 3-amino-6-[2-(2-thienyl)vinyl]-1,2,4-triazin-5(4 H)-one donor: Synthesis and spectroscopic characterizations

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2011-05-01

    Charge transfer complexes based on 3-amino-6-[2-(2-thienyl)vinyl]-1,2,4-triazin-5(4 H)-one (ArNH 2) organic basic donor and pi-acceptors having acidic protons such as picric acid (PiA), hydroquinone (Q(OH) 2) and 3,5-dinitrobenzene (DNB) have been synthesized and spectroscopically studied. The sbnd NH3+ ammonium ion was formed under the acid-base theory through proton transfer from an acidic to basic centers in all charge transfer complexes resulted. The values of formation constant ( KCT) and molar extinction coefficient ( ɛCT) which were estimated from the spectrophotometric studies have a dramatic effect for the charge transfer complexes with differentiation of pi-acceptors. For further studies the vibrational spectroscopy of the [( ArNH3+)(PiA -)] (1), [( ArNH3+)(Q (OH)2-)] (2) and [( ArNH3+)(DNB -)] (3) of (1:1) charge transfer complexes of (donor: acceptor) were characterized by elemental analysis, infrared spectra, Raman spectra, 1H and 13CNMR spectra. The experimental data of elemental analyses of the charge transfer complexes (1), (2) and (3) were in agreement with calculated data. The IR and Raman spectra of (1), (2) and (3) are indicated to the presence of bands around 3100 and 1600 cm -1 distinguish to sbnd NH3+. The thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) techniques were performed to give knowledge about thermal stability behavior of the synthesized charge transfer complexes. The morphological features of start materials and charge transfer complexes were investigated using scanning electron microscopy (SEM) and optical microscopy.

  9. Mulliken Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    NASA Astrophysics Data System (ADS)

    Rosokha, S. V.; Newton, M. D.; Head-Gordon, M.; Kochi, J. K.

    2006-05-01

    The paramagnetic [1:1] encounter complex (TCNE)2-rad is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor ( TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE)2-rad by its intervalence absorption band at the solvent-dependent wavelength of λIV ˜ 1500 nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of HDA = 1000 cm -1. The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of HDA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy ( λ) and the electronic coupling element ( HDA) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes.

  10. Resonance Energy Transfer-Based Nucleic Acid Hybridization Assays on Paper-Based Platforms Using Emissive Nanoparticles as Donors.

    PubMed

    Doughan, Samer; Noor, M Omair; Han, Yi; Krull, Ulrich J

    2017-01-01

    Quantum dots (QDs) and upconverting nanoparticles (UCNPs) are luminescent nanoparticles (NPs) commonly used in bioassays and biosensors as resonance energy transfer (RET) donors. The narrow and tunable emissions of both QDs and UCNPs make them versatile RET donors that can be paired with a wide range of acceptors. Ratiometric signal processing that compares donor and acceptor emission in RET-based transduction offers improved precision, as it accounts for fluctuations in the absolute photoluminescence (PL) intensities of the donor and acceptor that can result from experimental and instrumental variations. Immobilizing NPs on a solid support avoids problems such as those that can arise with their aggregation in solution, and allows for facile layer-by-layer assembly of the interfacial chemistry. Paper is an attractive solid support for the development of point-of-care diagnostic assays given its ubiquity, low-cost, and intrinsic fluid transport by capillary action. Integration of nanomaterials with paper-based analytical devices (PADs) provides avenues to augment the analytical performance of PADs, given the unique optoelectronic properties of nanomaterials. Herein, we describe methodology for the development of PADs using QDs and UCNPs as RET donors for optical transduction of nucleic acid hybridization. Immobilization of green-emitting QDs (gQDs) on imidazole functionalized cellulose paper is described for use as RET donors with Cy3 molecular dye as acceptors for the detection of SMN1 gene fragment. We also describe the covalent immobilization of blue-emitting UCNPs on aldehyde modified cellulose paper for use as RET donors with orange-emitting QDs (oQDs) as acceptors for the detection of HPRT1 gene fragment. The data described herein is acquired using an epifluorescence microscope, and can also be collected using technology such as a typical electronic camera.

  11. Role of Crystallization in the Morphology of Polymer: Non-fullerene Acceptor Bulk Heterojunctions

    DOE PAGES

    O’Hara, Kathryn A.; Ostrowski, David P.; Koldemir, Unsal; ...

    2017-05-22

    Many high efficiency organic photovoltaics use fullerene-based acceptors despite their high production cost, weak optical absorption in the visible range, and limited synthetic variability of electronic and optical properties. To circumvent this deficiency, non-fullerene small-molecule acceptors have been developed that have good synthetic flexibility, allowing for precise tuning of optoelectronic properties, leading to enhanced absorption of the solar spectrum and increased open-circuit voltages ( V OC). We examined the detailed morphology of bulk heterojunctions of poly(3-hexylthiophene) and the small-molecule acceptor HPI-BT to reveal structural changes that lead to improvements in the fill factor of solar cells upon thermal annealing. Themore » kinetics of the phase transformation process of HPI-BT during thermal annealing were investigated through in situ grazing incidence wide-angle X-ray scattering studies, atomic force microscopy, and transmission electron microscopy. The HPI-BT acceptor crystallizes during film formation to form micron-sized domains embedded within the film center and a donor rich capping layer at the cathode interface reducing efficient charge extraction. Thermal annealing changes the surface composition and improves charge extraction. In conclusion, this study reveals the need for complementary methods to investigate the morphology of BHJs.« less

  12. Role of Crystallization in the Morphology of Polymer: Non-fullerene Acceptor Bulk Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Hara, Kathryn A.; Ostrowski, David P.; Koldemir, Unsal

    Many high efficiency organic photovoltaics use fullerene-based acceptors despite their high production cost, weak optical absorption in the visible range, and limited synthetic variability of electronic and optical properties. To circumvent this deficiency, non-fullerene small-molecule acceptors have been developed that have good synthetic flexibility, allowing for precise tuning of optoelectronic properties, leading to enhanced absorption of the solar spectrum and increased open-circuit voltages ( V OC). We examined the detailed morphology of bulk heterojunctions of poly(3-hexylthiophene) and the small-molecule acceptor HPI-BT to reveal structural changes that lead to improvements in the fill factor of solar cells upon thermal annealing. Themore » kinetics of the phase transformation process of HPI-BT during thermal annealing were investigated through in situ grazing incidence wide-angle X-ray scattering studies, atomic force microscopy, and transmission electron microscopy. The HPI-BT acceptor crystallizes during film formation to form micron-sized domains embedded within the film center and a donor rich capping layer at the cathode interface reducing efficient charge extraction. Thermal annealing changes the surface composition and improves charge extraction. In conclusion, this study reveals the need for complementary methods to investigate the morphology of BHJs.« less

  13. Amplitude-Mode Spectroscopy of Charge Excitations in PTB7 π -Conjugated Donor-Acceptor Copolymer for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Vardeny, Shai R.; Lafalce, Evan; Peygambarian, Nasser; Vardeny, Z. Valy

    2017-06-01

    We measure the spectra of resonant Raman scattering and doping-induced absorption of pristine films of the π -conjugated donor-acceptor (D -A ) copolymer, namely, thieno[3,4 b]thiophene-alt-benzodithiophene (PTB7), as well as photoinduced absorption spectrum in a blend of PTB7 with fullerene phenyl-C61-butyric acid methyl ester molecules used for organic photovoltaic (OPV) applications. We find that the D -A copolymer contains six strongly coupled vibrational modes having relatively strong Raman-scattering intensity, which are renormalized upon adding charge polarons onto the copolymer chains either by doping or photogeneration. Since the lower-energy charge-polaron absorption band overlaps with the renormalized vibrational modes, they appear as antiresonance lines superposed onto the induced polaron absorption band in the photoinduced absorption spectrum but less so in the doping-induced absorption spectrum. We show that the Raman-scattering, doping-, and photoinduced absorption spectra of PTB7 are well explained by the amplitude mode model, where a single vibrational propagator describes the renormalized modes and their related intensities in detail. From the relative strengths of the induced infrared activity of the polaron-related vibrations and electronic transitions, we obtain the polaron effective kinetic mass in PTB7 using the amplitude mode model to be approximately 3.8 m* , where m* is the electron effective mass. The enhanced polaronic mass in PTB7 may limit the charge mobility, which, in turn, reduces the OPV solar-cell efficiency based on the PTB7-fullerene blend.

  14. Hydroperoxides as Hydrogen Bond Donors

    NASA Astrophysics Data System (ADS)

    Møller, Kristian H.; Tram, Camilla M.; Hansen, Anne S.; Kjaergaard, Henrik G.

    2016-06-01

    Hydroperoxides are formed in the atmosphere following autooxidation of a wide variety of volatile organics emitted from both natural and anthropogenic sources. This raises the question of whether they can form hydrogen bonds that facilitate aerosol formation and growth. Using a combination of Fourier transform infrared spectroscopy, FT-IR, and ab initio calculations, we have compared the gas phase hydrogen bonding ability of tert-butylhydroperoxide (tBuOOH) to that of tert-butanol (tBuOH) for a series of bimolecular complexes with different acceptors. The hydrogen bond acceptor atoms studied are nitrogen, oxygen, phosphorus and sulphur. Both in terms of calculated redshifts and binding energies (BE), our results suggest that hydroperoxides are better hydrogen bond donors than the corresponding alcohols. In terms of hydrogen bond acceptor ability, we find that nitrogen is a significantly better acceptor than the other three atoms, which are of similar strength. We observe a similar trend in hydrogen bond acceptor ability with other hydrogen bond donors including methanol and dimethylamine.

  15. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes.

    PubMed

    Ren, Ge; Ma, Anzhou; Zhang, Yanfen; Deng, Ye; Zheng, Guodong; Zhuang, Xuliang; Zhuang, Guoqiang; Fortin, Danielle

    2018-04-06

    Mud volcanoes (MVs) emit globally significant quantities of methane into the atmosphere, however, methane cycling in such environments is not yet fully understood, as the roles of microbes and their associated biogeochemical processes have been largely overlooked. Here, we used data from high-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China to quantify patterns of diversity and characterize the community structure of archaea and bacteria. We found anaerobic methanotrophs and diverse sulfate- and iron-reducing microbes in all of the samples, and the diversity of both archaeal and bacterial communities was strongly linked to the concentrations of sulfate, iron and nitrate, which could act as electron acceptors in anaerobic oxidation of methane (AOM). The impacts of sulfate/iron/nitrate on AOM in the MVs were verified by microcosm experiments. Further, two representative MVs were selected to explore the microbial interactions based on phylogenetic molecular ecological networks. The sites showed distinct network structures, key species and microbial interactions, with more complex and numerous linkages between methane-cycling microbes and their partners being observed in the iron/sulfate-rich MV. These findings suggest that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments. © 2018 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. A study of the interaction of thioindigo dye, with several inorganic host materials

    NASA Astrophysics Data System (ADS)

    Ramirez, Alejandra

    Maya Blue has been the focus of numerous studies and is believed to be a mixture of palygorskite clay and indigo dye.1,2 Several derivatives of this pigment have been developed with intriguing properties. For instance, the dye thioindigo reacts with the palygorskite clay to exhibit a broad range of colors from red to blue under UV-Vis excitation. Based on FT-Raman and computer simulation, previous work performed in our group could relate indigo and thioindigo interaction to the aluminum sites in the framework. 3,4 The work performed with other inorganic host materials such as, layer structures and zeolites have displayed reversible acid indicator properties, similar to the ones observed in concentrated sulfuric acid. Spectroscopic analyses and computer modeling of the above mentioned interactions have been evaluated. Results obtained by these techniques showed that in dehydrated materials a disturbance of thioindigo C=O at 1655 cm-1 to lower frequencies occurs, due to the C=O---Lewis acid sites (LAS) interaction. In the presence of water, a smaller C=O shift due to C=O---HO(H)LAS was observed. Moreover, displacement of the 001 plane in some layer materials confirmed the effect of water on the color changes displayed by UV-Vis spectroscopy. Based on these premises, it was concluded that weak electron donor-acceptor interactions took place between thioindigo functional groups (electron donors) and LAS of the aluminum silicate framework (electron acceptor). LAS (extra-framework aluminum and exchangeable cations) high hydration enthalpy made them extremely susceptible to water molecules (electron donors); generating a hydrogen bond between the two sites. The reversibility of these chromatic hybrid materials could have potential applications as water sensors and charge transfer photosensitizers in nanocrystalline TiO2-based solar cells.

  17. Ternary Blend Composed of Two Organic Donors and One Acceptor for Active Layer of High-Performance Organic Solar Cells.

    PubMed

    Lee, Jong Won; Choi, Yoon Suk; Ahn, Hyungju; Jo, Won Ho

    2016-05-04

    Ternary blends composed of two donor absorbers with complementary absorptions provide an opportunity to enhance the short-circuit current and thus the power conversion efficiency (PCE) of organic solar cells. In addition to complementary absorption of two donors, ternary blends may exhibit favorable morphology for high-performance solar cells when one chooses properly the donor pair. For this purpose, we develop a ternary blend with two donors (diketopyrrolopyrrole-based polymer (PTDPP2T) and small molecule ((TDPP)2Ph)) and one acceptor (PC71BM). The solar cell made of a ternary blend with 10 wt % (TDPP)2Ph exhibits higher PCE of 7.49% as compared with the solar cells with binary blends, PTDPP2T:PC71BM (6.58%) and (TDPP)2Ph:PC71BM (3.21%). The higher PCE of the ternary blend solar cell is attributed mainly to complementary absorption of two donors. However, a further increase in (TDPP)2Ph content in the ternary blend (>10 wt %) decreases the PCE. The ternary blend with 10 wt % (TDPP)2Ph exhibits well-developed morphology with narrow-sized fibrils while the blend with 15 wt % (TDPP)2Ph shows phase separation with large-sized domains, demonstrating that the phase morphology and compatibility of ternary blend are important factors to achieve a high-performance solar cell made of ternary blends.

  18. Time-dependent efficiency measurements of donor-acceptor, dye-sensitized polymer solar cells

    NASA Astrophysics Data System (ADS)

    Bandaccari, Kyle; Chesmore, Grace; Tajalli-Tehrani Valverde, Parisa; Bugaj, Mitchel; McNelis, Brian; Barber, Richard, Jr.

    The fullerene/polymer active layer pairing of PCBM/P3HT has become the model system within the field of polymer solar cell research. A large body of work concerned with reporting improved efficiencies for this system exists, but truly quantitative studies of device lifetime and long-term degradation tendencies are much rarer. Here, we report the effects of two donor-acceptor diazo dye sensitizers on efficiency and lifetime upon addition into the PCBM/P3HT active layer at varied concentrations. The electrical and efficiency measurements were supplemented by time-dependent UV-visible spectroscopy studies and morphology investigations via atomic-force microscopy (AFM). This pairing with spectroscopy offers an internal check on the data as the rate of change in absorbance of the active layer correlates almost exactly to the rate of power conversion efficiency decrease. Additionally, AFM imaging reveals different morphology patterns when dye concentrations and functionalities change. Such observations suggest that such small-molecule sensitizers exert yet undetermined effects on the organization of components within the active layer at the molecular level.

  19. Attaching naphthalene derivatives onto BODIPY for generating excited triplet state and singlet oxygen: Tuning PET-based photosensitizer by electron donors

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Fu; Feng, Nan

    2018-01-01

    meso-Naphthalene substituted BODIPY compounds were prepared in a facile one pot reaction. The naphthalene functionalization of BODIPY leads up to a 5-fold increase in the formation efficiency of excited triplet state and singlet oxygen in polar solvents. Steady state and time resolved fluorescence, laser flash photolysis, and quantum chemistry methods were used to reveal the mechanism. All measured data and quantum chemical results suggest that these systems can be viewed as electron donor-acceptor (D-A) pair (BODIPY acts as the acceptor), photoinduced charge transfer (PCT) or photoinduced electron transfer (PET) occurs upon photo excitation (D-A + hν → Dδ +-Aδ -, 0 < δ ≤ 1), and the charge recombination induced the formation of triplet state (Dδ +-Aδ - → D-A (T1). These novel PCT- or PET-based photosensitizers (PSs) show different features from traditional PSs, such as the strong tunability by facile structural modification and good selectivity upon medium polarity. The new character for this type of PSs can lead to important applications in organic oxygenation reactions and photodynamic therapy of tumors.

  20. Density functional theory design D-D-A type small molecule with 1.03 eV narrow band gap: effect of electron donor unit for organic photovoltaic solar cell

    NASA Astrophysics Data System (ADS)

    Sıdır, İsa

    2017-10-01

    Six new low-band-gap copolymers of donor-donor-acceptor (D-D-A) architecture have been designed using density functional theory and time-dependent density functional theory methods in order to use them in organic photovoltaic cell (OPVC). Phenanthro[3,4-d:9,10-d‧]bis([1,2,3]thiadiazole)-10,12-dicarbonitrile moiety has been used as an acceptor for all compounds. We insert benzo[1,2-b:4,5-b‧]dithiophene and N,N-diphenylbenzo[1,2-b:4,5-b‧]dithiophen-2-amine units as donor to complete designing of copolymers. In order to tuning the optical and electronic properties, we have modified the donor unit by substituted with amine, methoxyamine, N-methylenethiophen-2-amine, methoxy, alkoxy moieties. The band gap (Eg), HOMO and LUMO values and plots, open circuit voltage (VOC) as well as optical properties have been analysed for designed copolymers. The optimised copolymers exhibit low-band-gap lying in the range of 1.03-2.24 eV. DPTD-6 copolymer presents the optimal properties to be used as an active layer due to its low Eg (1.03 eV) and a moderate VOC (0.56 eV). Thus, OPVC based on this copolymer in bulk-heterojunction composites with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor has been modelled. Eg and VOC values of composite material DPTD-6:PCBM are found as 1.32 and 0.65 eV, respectively. A model band diagram has been established for OPVC, simulating the energy transfer between active layers.

  1. The iron-sulfur cluster of electron transfer flavoprotein-ubiquinone oxidoreductase is the electron acceptor for electron transfer flavoprotein.

    PubMed

    Swanson, Michael A; Usselman, Robert J; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S

    2008-08-26

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone pool. It contains one [4Fe-4S] (2+,1+) and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S] (2+,1+) to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S] (+) at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 and -30 mV for wild type to -11 and -19 mV, respectively. The N338A mutation decreased the potentials to -37 and -49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF 1e (-) catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone but not in electron transfer from ETF to ETF-QO. Therefore, the iron-sulfur cluster is the immediate acceptor from ETF.

  2. The Iron-Sulfur Cluster of Electron Transfer Flavoprotein-Ubiquinone Oxidoreductase Is the Electron Acceptor for Electron Transfer Flavoprotein†

    PubMed Central

    Swanson, Michael A.; Usselman, Robert J.; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2009-01-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone pool. It contains one [4Fe-4S]2+,1+ and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S]2+,1+ to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S]+ at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 and -30 mV for wild type to -11 and -19 mV, respectively. The N338A mutation decreased the potentials to -37 and -49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF1e- catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone but not in electron transfer from ETF to ETF-QO. Therefore, the iron-sulfur cluster is the immediate acceptor from ETF. PMID:9585549

  3. Electronic structure and charge transfer excited states of endohedral fullerene containing electron donoracceptor complexes utilized in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Amerikheirabadi, Fatemeh

    Organic Donor-Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor-acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self-consistent field method recently developed in our group as the standard time dependent density functional approaches fail to accurately provide them. The model photovoltaics systems analyzed are as follows: Sc3N C 80--ZnTPP, Y3 N C80-- ZnTPP and Sc3 N C80-- ZnPc. In addition, a thorough analysis of the isolated donor and acceptor molecules is also provided. The studied acceptors are chosen from a class of fullerenes named trimetallic nitride endohedral fullerenes. These molecules have shown to possess advantages as acceptors such as long lifetimes of the charge-separated states.

  4. Beyond Donor-Acceptor (D-A) Approach: Structure-Optoelectronic Properties-Organic Photovoltaic Performance Correlation in New D-A1 -D-A2 Low-Bandgap Conjugated Polymers.

    PubMed

    Chochos, Christos L; Drakopoulou, Sofia; Katsouras, Athanasios; Squeo, Benedetta M; Sprau, Christian; Colsmann, Alexander; Gregoriou, Vasilis G; Cando, Alex-Palma; Allard, Sybille; Scherf, Ullrich; Gasparini, Nicola; Kazerouni, Negar; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-04-01

    Low-bandgap near-infrared polymers are usually synthesized using the common donor-acceptor (D-A) approach. However, recently polymer chemists are introducing more complex chemical concepts for better fine tuning of their optoelectronic properties. Usually these studies are limited to one or two polymer examples in each case study so far, though. In this study, the dependence of optoelectronic and macroscopic (device performance) properties in a series of six new D-A 1 -D-A 2 low bandgap semiconducting polymers is reported for the first time. Correlation between the chemical structure of single-component polymer films and their optoelectronic properties has been achieved in terms of absorption maxima, optical bandgap, ionization potential, and electron affinity. Preliminary organic photovoltaic results based on blends of the D-A 1 -D-A 2 polymers as the electron donor mixed with the fullerene derivative [6,6]-phenyl-C 71 -butyric acid methyl ester demonstrate power conversion efficiencies close to 4% with short-circuit current densities (J sc ) of around 11 mA cm -2 , high fill factors up to 0.70, and high open-circuit voltages (V oc s) of 0.70 V. All the devices are fabricated in an inverted architecture with the photoactive layer processed in air with doctor blade technique, showing the compatibility with roll-to-roll large-scale manufacturing processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mapping the Reactivity and Selectivity of 2-Azidofucosyl Donors for the Assembly of N-Acetylfucosamine-Containing Bacterial Oligosaccharides.

    PubMed

    Hagen, Bas; Ali, Sara; Overkleeft, Herman S; van der Marel, Gijsbert A; Codée, Jeroen D C

    2017-01-20

    The synthesis of complex oligosaccharides is often hindered by a lack of knowledge on the reactivity and selectivity of their constituent building blocks. We investigated the reactivity and selectivity of 2-azidofucosyl (FucN 3 ) donors, valuable synthons in the synthesis of 2-acetamido-2-deoxyfucose (FucNAc) containing oligosaccharides. Six FucN 3 donors, bearing benzyl, benzoyl, or tert-butyldimethylsilyl protecting groups at the C3-O and C4-O positions, were synthesized, and their reactivity was assessed in a series of glycosylations using acceptors of varying nucleophilicity and size. It was found that more reactive nucleophiles and electron-withdrawing benzoyl groups on the donor favor the formation of β-glycosides, while poorly reactive nucleophiles and electron-donating protecting groups on the donor favor α-glycosidic bond formation. Low-temperature NMR activation studies of Bn- and Bz-protected donors revealed the formation of covalent FucN 3 triflates and oxosulfonium triflates. From these results, a mechanistic explanation is offered in which more reactive acceptors preferentially react via an S N 2-like pathway, while less reactive acceptors react via an S N 1-like pathway. The knowledge obtained in this reactivity study was then applied in the construction of α-FucN 3 linkages relevant to bacterial saccharides. Finally, a modular synthesis of the Staphylococcus aureus type 5 capsular polysaccharide repeating unit, a trisaccharide consisting of two FucNAc units, is described.

  6. Two-electron spin correlations in precision placed donors in silicon.

    PubMed

    Broome, M A; Gorman, S K; House, M G; Hile, S J; Keizer, J G; Keith, D; Hill, C D; Watson, T F; Baker, W J; Hollenberg, L C L; Simmons, M Y

    2018-03-07

    Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.

  7. Electron Donors Supporting Growth and Electroactivity of Geobacter sulfurreducens Anode Biofilms

    PubMed Central

    Speers, Allison M.

    2012-01-01

    Geobacter bacteria efficiently oxidize acetate into electricity in bioelectrochemical systems, yet the range of fermentation products that support the growth of anode biofilms and electricity production has not been thoroughly investigated. Here, we show that Geobacter sulfurreducens oxidized formate and lactate with electrodes and Fe(III) as terminal electron acceptors, though with reduced efficiency compared to acetate. The structure of the formate and lactate biofilms increased in roughness, and the substratum coverage decreased, to alleviate the metabolic constraints derived from the assimilation of carbon from the substrates. Low levels of acetate promoted formate carbon assimilation and biofilm growth and increased the system's performance to levels comparable to those with acetate only. Lactate carbon assimilation also limited biofilm growth and led to the partial oxidization of lactate to acetate. However, lactate was fully oxidized in the presence of fumarate, which redirected carbon fluxes into the tricarboxylic acid (TCA) cycle, and by acetate-grown biofilms. These results expand the known ranges of electron donors for Geobacter-driven fuel cells and identify microbial constraints that can be targeted to develop better-performing strains and increase the performance of bioelectrochemical systems. PMID:22101036

  8. Acceptor Percolation Determines How Electron-Accepting Additives Modify Transport of Ambipolar Polymer Organic Field-Effect Transistors.

    PubMed

    Ford, Michael J; Wang, Ming; Bustillo, Karen C; Yuan, Jianyu; Nguyen, Thuc-Quyen; Bazan, Guillermo C

    2018-06-18

    Organic field-effect transistors (OFETs) that utilize ambipolar polymer semiconductors can benefit from the ability of both electron and hole conduction, which is necessary for complementary circuits. However, simultaneous hole and electron transport in organic field-effect transistors result in poor ON/OFF ratios, limiting potential applications. Solution processing methods have been developed to control charge transport properties and transform ambipolar conduction to hole-only conduction. The electron-acceptor phenyl-C61-butyric acid methyl ester (PC 61 BM), when mixed in solution with an ambipolar semiconducting polymer, can reduce electron conduction. Unipolar p-type OFETs with high, well-defined ON/OFF ratios and without detrimental effects on hole conduction are achieved for a wide range of blend compositions, from 95:5 to 5:95 wt % semiconductor polymer:PC 61 BM. When introducing the alternative acceptor N, N'-bis(1-ethylpropyl)-3,4:9,10-perylenediimide (PDI), high ON/OFF ratios are achieved for 95:5 wt % semiconductor polymer:PDI; however, electron conduction increases for 50:50 and 5:95 wt % semiconductor polymer:PDI. As described within, we show that electron conduction is practically eliminated when additive domains do not percolate across the OFET channel, that is, electrons are "morphologically trapped". Morphologies were characterized by optical, electron, and atomic force microscopy as well as X-ray scattering techniques. PC 61 BM was substituted with an endohedral Lu 3 N fullerene, which enhanced contrast in electron microscopy and allowed for more detailed insight into the blend morphologies. Blends with alternative, nonfullerene acceptors further emphasize the importance of morphology and acceptor percolation, providing insights for such blends that control ambipolar transport and ON/OFF ratios.

  9. Fullerene C{sub 70} as a p-type donor in organic photovoltaic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Taojun; Wang, Xiao-Feng, E-mail: charles1976110@hotmail.com, E-mail: zrhong@ucla.edu, E-mail: kid@yz.yamagata-u.ac.jp; Sano, Takeshi

    2014-09-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C{sub 70}, known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C{sub 70} layer even up to 100 nm thick in PHJ cells, suggesting the superior potentialmore » of fullerene C{sub 70} as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm{sup 2}, an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.« less

  10. Small molecule BODIPY dyes as non-fullerene acceptors in bulk heterojunction organic photovoltaics.

    PubMed

    Poe, Ambata M; Della Pelle, Andrea M; Subrahmanyam, Ayyagari V; White, William; Wantz, Guillaume; Thayumanavan, S

    2014-03-18

    A series of acceptor-donor-acceptor molecules containing terminal BODIPY moieties conjugated through the meso position were synthesized. Deep LUMO energy levels and good visible absorption led to their use as acceptors in bulk heterojunction solar cells. Inverted devices were fabricated, reaching efficiencies as high as 1.51%.

  11. The impact of long-range electron-hole interaction on the charge separation yield of molecular photocells

    NASA Astrophysics Data System (ADS)

    Nemati Aram, Tahereh; Ernzerhof, Matthias; Asgari, Asghar; Mayou, Didier

    2017-01-01

    We discuss the effects of charge carrier interaction and recombination on the operation of molecular photocells. Molecular photocells are devices where the energy conversion process takes place in a single molecular donor-acceptor complex attached to electrodes. Our investigation is based on the quantum scattering theory, in particular on the Lippmann-Schwinger equation; this minimizes the complexity of the problem while providing useful and non-trivial insight into the mechanism governing photocell operation. In this study, both exciton pair creation and dissociation are treated in the energy domain, and therefore there is access to detailed spectral information, which can be used as a framework to interpret the charge separation yield. We demonstrate that the charge carrier separation is a complex process that is affected by different parameters, such as the strength of the electron-hole interaction and the non-radiative recombination rate. Our analysis helps to optimize the charge separation process and the energy transfer in organic solar cells and in molecular photocells.

  12. Straightforward Entry toward Highly Substituted 2,3-Dihydrobenz[ b]oxepines by Ring Expansion of Benzopyryliums with Donor-Acceptor Diazo Compounds.

    PubMed

    Courant, Thibaut; Pasco, Morgane; Lecourt, Thomas

    2018-05-04

    Ylide-type reactivity of diazo compounds is exploited in a new way to prepare benzo[ b]oxepines thanks to the formation of three chemical bonds and two contiguous and highly substituted stereocenters in a single pot. This cationic reaction cascade first involves addition of a donor-acceptor-substituted diazo compound to a benzopyrylium. Selective 1,2 migration of the endocyclic C-C bond then results in a ring-expansion and generates a second oxocarbenium that is trapped by a nucleophile added sequentially.

  13. Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donor

    NASA Technical Reports Server (NTRS)

    Morre, D. James

    2002-01-01

    The cell-surface NADH oxidase (NOX) protein of plant and animal cells will utilize both NADH and NADPH as reduced electron donors for activity. The two activities are distinguished by a differential inhibition by the redox inhibitor diphenyleneiodonium chloride (DPI). Using both plasma membranes and cells, activity with NADPH as donor was markedly inhibited by DPI at submicromolar concentrations, whereas with NADH as donor, DPI was much less effective or had no effect on the activity. The possibility of the inhibition being the result of two different enzymes was eliminated by the use of a recombinant NOX protein. The findings support the concept that NOX proteins serve as terminal oxidases for plasma membrane electron transport involving cytosolic reduced pyridine nucleotides as the natural electron donors and with molecular oxygen as the electron acceptor.

  14. Donors, Acceptors, and Traps in AlGaN and AlGaN/GaN Epitaxial Layers

    DTIC Science & Technology

    2006-07-31

    the background. 3.3 Positron annihilation spectroscopy (PAS): acceptor-type defects Positrons injected into defect-free GaN are annihilated by electrons...electron concentration n, and the average Ga-vacancy VGa concentration deduced from positron annihilation spectroscopy . 0.09 3.47 3.46 - 3.45 •ŗ.47225...of this paper, are often investigated by deep level transient spectroscopy (DLTS), and the usual analysis of DLTS data is based on the assumption that

  15. Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor.

    PubMed

    Carvalho, Margarida; Matos, Mariana; Roca, Christophe; Reis, Maria A M

    2014-01-25

    Glycerol, a highly abundant byproduct of the biodiesel industry, constitutes today a cheap feedstock for biobased succinic acid (SA) production. Actinobacillus succinogenes is one of the best SA producers. However, glycerol consumption by this biocatalyst is limited because of a redox imbalance during cell growth. The use of an external electron acceptor may improve the metabolism of SA synthesis by A. succinogenes in glycerol. In this study, the effect of dimethylsulfoxide (DMSO), an electron acceptor, on glycerol consumption and SA production by A. succinogenes under controlled fermentation conditions was investigated. Concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by A. succinogenes. During fed-batch cultivation, SA concentration reached 49.62 g/L, with a product yield of 0.87 gSA/gGLR and a maximum production rate of 2.31 gSA/Lh, the highest values so far reported in the literature for A. succinogenes using glycerol as carbon source. These results show that using DMSO as external electron acceptor significantly promotes glycerol consumption and succinic acid production by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Quasiclassical description of the nearest-neighbor hopping dc conduction via hydrogen-like donors in intermediately compensated GaAs crystals

    NASA Astrophysics Data System (ADS)

    Poklonski, N. A.; Vyrko, S. A.; Zabrodskii, A. G.

    2010-08-01

    Expressions for the pre-exponential factor σ3 and the thermal activation energy ɛ3 of hopping electric conductivity of electrons via hydrogen-like donors in n-type gallium arsenide are obtained in the quasiclassical approximation. Crystals with the donor concentration N and the acceptor concentration KN at the intermediate compensation ratio K (approximately from 0.25 to 0.75) are considered. We assume that the donors in the charge states (0) and (+1) and the acceptors in the charge state (-1) form a joint nonstoichiometric simple cubic 'sublattice' within the crystalline matrix. In such sublattice the distance between nearest impurity atoms is Rh = [(1 + K)N]-1/3 which is also the length of an electron hop between donors. To take into account orientational disorder of hops we assume that the impurity sublattice randomly and smoothly changes orientation inside a macroscopic sample. Values of σ3(N) and ɛ3(N) calculated for the temperature of 2.5 K agree with known experimental data at the insulator side of the insulator-metal phase transition.

  17. Investigation of the donor and acceptor range for chiral carboligation catalyzed by the E1 component of the 2-oxoglutarate dehydrogenase complex

    PubMed Central

    Patel, Hetalben; Shim, Da Jeong; Farinas, Edgardo T.; Jordan, Frank

    2013-01-01

    The potential of thiamin diphosphate (ThDP)-dependent enzymes to catalyze C-C bond forming (carboligase) reactions with high enantiomeric excess has been recognized for many years. Here we report the application of the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase multienzyme complex in the synthesis of chiral compounds with multiple functional groups in good yield and high enantiomeric excess, by varying both the donor substrate (different 2-oxo acids) and the acceptor substrate (glyoxylate, ethyl glyoxylate and methyl glyoxal). Major findings include the demonstration that the enzyme can accept 2-oxovalerate and 2-oxoisovalerate in addition to its natural substrate 2-oxoglutarate, and that the tested acceptors are also acceptable in the carboligation reaction, thereby very much expanding the repertory of the enzyme in chiral synthesis. PMID:24277992

  18. Fascinating transformations of donor-acceptor complexes of group 13 metal (Al, Ga, In) derivatives with nitriles and isonitriles: from monomeric cyanides to rings and cages.

    PubMed

    Timoshkin, Alexey Y; Schaefer, Henry F

    2003-08-20

    Formation of the donor-acceptor complexes of group 13 metal derivatives with nitriles and isonitriles X(3)M-D (M = Al,Ga,In; X = H,Cl,CH(3); D = RCN, RNC; R = H,CH(3)) and their subsequent reactions have been theoretically studied at the B3LYP/pVDZ level of theory. Although complexation with MX(3) stabilizes the isocyanide due to the stronger M-C donor-acceptor bond, this stabilization (20 kJ mol(-1) at most) is not sufficient to make the isocyanide form more favorable. Relationships between the dissociation enthalpy DeltaH degrees (298)(diss), charge-transfer q(CT), donor-acceptor bond energy E(DA), and the shift of the vibrational stretching mode of the CN group upon coordination Deltaomega(CN) have been examined. For a given metal center, there is a good correlation between the energy of the donor-acceptor bond and the degree of a charge transfer. Prediction of the DeltaH degrees (298)(diss) on the basis of the shift of CN stretching mode is possible within limited series of cyanide complexes (for the fixed M,R); in contrast, complexes of the isocyanides exhibit very poor Deltaomega(CN) - DeltaH degrees (298)(diss) correlation. Subsequent X ligand transfer and RX elimination reactions yielding monomeric (including donor-acceptor stabilized) and variety of oligomeric cage and ring compounds with [MN]n, [MC]n, [MNC]n cores have been considered and corresponding to thermodynamic characteristics have been obtained for the first time. Monomeric aluminum isocyanides X(2)AlNC are more stable compared to Al-C bonded isomers; for gallium and indium situation is reversed, in qualitative agreement with Pearson's HSAB concept. Substitution of X by CN in MX(3) increases the dissociation enthalpy of the MX(2)CN-NH(3) complex compared to that for MX(3)-NH(3), irrespective of the substituent X. Mechanisms of the initial reaction of the X transfer have been studied for the case X = R = H. The process of hydrogen transfer from the metal to the carbon atom in H(3)M-CNH is

  19. Effect of proton transfer on the electronic coupling in DNA

    NASA Astrophysics Data System (ADS)

    Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.

    2006-06-01

    The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, Vda, in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate Vda for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the Vda matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the Vda matrix elements are also analyzed.

  20. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    PubMed Central

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential

  1. Acceptor Type Vacancy Complexes In As-Grown ZnO

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Tuomisto, F.; Zuñiga-Pérez, J.

    2010-11-01

    One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap (˜3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, LiZn and NaZn acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.

  2. Photoinduced Electron Transfer and Hole Migration in Nanosized Helical Aromatic Oligoamide Foldamers.

    PubMed

    Li, Xuesong; Markandeya, Nagula; Jonusauskas, Gediminas; McClenaghan, Nathan D; Maurizot, Victor; Denisov, Sergey A; Huc, Ivan

    2016-10-07

    A series of photoactive triads have been synthesized and investigated in order to elucidate photoinduced electron transfer and hole migration mechanism across nanosized, rigid helical foldamers. The triads are comprised of a central helical oligoamide foldamer bridge with 9, 14, 18, 19, or 34 8-amino-2-quinolinecarboxylic acid repeat units, and of two chromophores, an N-terminal oligo(para-phenylenevinylene) electron donor and a C-terminal perylene bis-imide electron acceptor. Time-resolved fluorescence and transient absorption spectroscopic studies showed that, following photoexcitation of the electron acceptor, fast electron transfer occurs initially from the oligoquinoline bridge to the acceptor chromophore on the picosecond time scale. The oligo(para-phenylenevinylene) electron donor is oxidized after a time delay during which the hole migrates across the foldamer from the acceptor to the donor. The charge separated state that is finally generated was found to be remarkably long-lived (>80 μs). While the initial charge injection rate is largely invariant for all foldamer lengths (ca. 60 ps), the subsequent hole transfer to the donor varies from 1 × 10 9 s -1 for the longest sequence to 17 × 10 9 s -1 for the shortest. In all cases, charge transfer is very fast considering the foldamer length. Detailed analysis of the process in different media and at varying temperatures is consistent with a hopping mechanism of hole transport through the foldamer helix, with individual hops occurring on the subpicosecond time scale (k ET = 2.5 × 10 12 s -1 in CH 2 Cl 2 ). This work demonstrates the possibility of fast long-range hole transfer over 300 Å (through bonds) across a synthetic modular bridge, an achievement that had been previously observed principally with DNA structures.

  3. Molecular design of novel fullerene-based acceptors for enhancing the open circuit voltage in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah

    2017-12-01

    Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.

  4. Theoretical and experimental study of electron-deficient core substitution effect of diketopyrrolopyrrole derivatives on optoelectrical and charge transport properties

    NASA Astrophysics Data System (ADS)

    Ding, Guodong; Mahmood, Asif; Tang, Ailing; Chen, Fan; Zhou, Erjun

    2018-01-01

    Three new diketopyrrolopyrrole based compounds with Acceptor-Donor-Acceptor-Donor-Acceptor (A-D-A-D-A) skeletons were designed and synthesized through varying the electron-deficient core from diphenylquinoxaline (DP-Qx), thieno[3,4-c]pyrrole-4,6-dione (DP-TPD) to 2-dodecyl-6,7-diphenyl-2H-[1,2,3]triazole[4,5-g]quinoxaline (DP-TQx). We have calculated and studied the effect of central acceptor units on electronic, optical and non-optical properties. As well as, we have predicted the charge transport properties. Results indicate that change of central acceptor unit remarkably affects the molecular electronic, optical and non-optical properties. And the molecular band gap and UV/vis adsorption spectra are significantly changed. It should be noted that Compound 3 with 2-dodecyl-6,7-diphenyl-2H-[1,2,3]triazole[4,5-g]quinoxaline as core show superior non-optical properties as compare to other compounds. Our study here indicate that inserting the strong electron-deficient moieties improves intramolecular charge transfer (ICT) and charge transport properties dramatically.

  5. An Efficient, "Burn in" Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor.

    PubMed

    Cha, Hyojung; Wu, Jiaying; Wadsworth, Andrew; Nagitta, Jade; Limbu, Saurav; Pont, Sebastian; Li, Zhe; Searle, Justin; Wyatt, Mark F; Baran, Derya; Kim, Ji-Seon; McCulloch, Iain; Durrant, James R

    2017-09-01

    A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'″-di(2-octyldodecyl)-2,2';5',2″;5″,2'″-quaterthiophen-5,5'″-diyl)] (PffBT4T-2OD) as a donor polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH-IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T-2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T-2OD:PC 71 BM solar cells show significant efficiency loss under simulated solar irradiation ("burn in" degradation) due to the trap-assisted recombination through increased photoinduced trap states, PffBT4T-2OD:EH-IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T-2OD:EH-IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T-2OD:PC 71 BM devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Extension of lattice cluster theory to strongly interacting, self-assembling polymeric systems.

    PubMed

    Freed, Karl F

    2009-02-14

    A new extension of the lattice cluster theory is developed to describe the influence of monomer structure and local correlations on the free energy of strongly interacting and self-assembling polymer systems. This extension combines a systematic high dimension (1/d) and high temperature expansion (that is appropriate for weakly interacting systems) with a direct treatment of strong interactions. The general theory is illustrated for a binary polymer blend whose two components contain "sticky" donor and acceptor groups, respectively. The free energy is determined as an explicit function of the donor-acceptor contact probabilities that depend, in turn, on the local structure and both the strong and weak interactions.

  7. Resonant electronic excitation energy transfer by exchange mechanism in the quantum dot system

    NASA Astrophysics Data System (ADS)

    Chikalova-Luzina, O. P.; Samosvat, D. M.; Vyatkin, V. M.; Zegrya, G. G.

    2017-11-01

    A microscopic theory of nonradiative resonance energy transfer between spherical A3B5 semiconductor quantum dots by the exchange mechanism is suggested. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same A3B5 compound and are embedded in the matrix of another material that produces potential barriers for electrons and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found in the frame of the Kane model that provides the most adequate description of the real spectra of A3B5 semiconductors. The analytical treatment is carried out with using the density matrix method, which enabled us to perform an energy transfer analysis both in the weak-interaction approximation and in the strong-interaction approximation. The numerical calculations showed the saturation of the energy transfer rate at the distances between the donor and the acceptor approaching the contact one. The contributions of the exchange and direct Coulomb intractions can be of the same order at the small distances and can have the same value in the saturation range.

  8. Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells.

    PubMed

    Duan, Yu-Ai; Geng, Yun; Li, Hai-Bin; Jin, Jun-Ling; Wu, Yong; Su, Zhong-Min

    2013-07-15

    To seek for high-performance small molecule donor materials used in heterojunction solar cell, six acceptor-donor-acceptor small molecules based on naphtho[2,3-b:6,7-b']dithiophene (NDT) units with different acceptor units were designed and characterized using density functional theory and time-dependent density functional theory. Their geometries, electronic structures, photophysical, and charge transport properties have been scrutinized comparing with the reported donor material NDT(TDPP)2 (TDPP  =  thiophene-capped diketopyrrolopyrrole). The open circuit voltage (V(oc)), energetic driving force(ΔE(L-L)), and exciton binding energy (E(b)) were also provided to give an elementary understanding on their cell performance. The results reveal that the frontier molecular orbitals of 3-7 match well with the acceptor material PC61 BM, and compounds 3-5 were found to exhibit the comparable performances to 1 and show promising potential in organic solar cells. In particular, comparing with 1, system 7 with naphthobisthiadiazole acceptor unit displays broader absorption spectrum, higher V(oc), lower E(b), and similar carrier mobility. An in-depth insight into the nature of the involved excited states based on transition density matrix and charge density difference indicates that all S1 states are mainly intramolecular charge transfer states with the charge transfer from central NDT unit to bilateral acceptor units, and also imply that the exciton of 7 can be dissociated easily due to its large extent of the charge transfer. In a word, 7 maybe superior to 1 and may act as a promising donor candidate for organic solar cell. Copyright © 2013 Wiley Periodicals, Inc.

  9. Highly Efficient Ternary-Blend Polymer Solar Cells Enabled by a Nonfullerene Acceptor and Two Polymer Donors with a Broad Composition Tolerance.

    PubMed

    Xu, Xiaopeng; Bi, Zhaozhao; Ma, Wei; Wang, Zishuai; Choy, Wallace C H; Wu, Wenlin; Zhang, Guangjun; Li, Ying; Peng, Qiang

    2017-12-01

    In this work, highly efficient ternary-blend organic solar cells (TB-OSCs) are reported based on a low-bandgap copolymer of PTB7-Th, a medium-bandgap copolymer of PBDB-T, and a wide-bandgap small molecule of SFBRCN. The ternary-blend layer exhibits a good complementary absorption in the range of 300-800 nm, in which PTB7-Th and PBDB-T have excellent miscibility with each other and a desirable phase separation with SFBRCN. In such devices, there exist multiple energy transfer pathways from PBDB-T to PTB7-Th, and from SFBRCN to the above two polymer donors. The hole-back transfer from PTB7-Th to PBDB-T and multiple electron transfers between the acceptor and the donor materials are also observed for elevating the whole device performance. After systematically optimizing the weight ratio of PBDB-T:PTB7-Th:SFBRCN, a champion power conversion efficiency (PCE) of 12.27% is finally achieved with an open-circuit voltage (V oc ) of 0.93 V, a short-circuit current density (J sc ) of 17.86 mA cm -2 , and a fill factor of 73.9%, which is the highest value for the ternary OSCs reported so far. Importantly, the TB-OSCs exhibit a broad composition tolerance with a high PCE over 10% throughout the whole blend ratios. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The adsorption properties of titanium dioxide

    NASA Astrophysics Data System (ADS)

    Lanin, S. N.; Vlasenko, E. V.; Kovaleva, N. V.; Zung, Fam Tien

    2008-12-01

    The adsorption properties of titanium dioxide were studied by gas chromatography. We used organic compounds from different classes, namely, n-alkanes, n-alkenes (C6-C8), and polar compounds (electron donors and acceptors) as test adsorbates. The differential heats of adsorption and the contributions of dispersion and specific intermolecular interaction energies were determined for the systems from the experimental retention data. The electron-donor and electron-acceptor characteristics of the ultimately hydroxylated surface of TiO2 were evaluated.

  11. The Iron-Sulfur Cluster of Electron Transfer Flavoprotein-ubiquinone Oxidoreductase (ETF-QO) is the Electron Acceptor for Electron Transfer Flavoprotein†

    PubMed Central

    Swanson, Michael A.; Usselman, Robert J.; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2011-01-01

    Electron-transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) accepts electrons from electron-transfer flavoprotein (ETF) and reduces ubiquinone from the ubiquinone-pool. It contains one [4Fe-4S]2+,1+ and one FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. The mutations did not alter the optical spectra, EPR g-values, spin-lattice relaxation rates, or the [4Fe-4S]2+,1+ to FAD point-dipole interspin distances. The mutations had no impact on the reduction potential for the iron-sulfur cluster, which was monitored by changes in the continuous wave EPR signals of the [4Fe-4S]+ at 15 K. For the FAD semiquinone, significantly different potentials were obtained by monitoring the titration at 100 or 293 K. Based on spectra at 293 K the N338T mutation shifted the first and second midpoint potentials for the FAD from +47 mV and −30 mV for wild type to −11 mV and −19 mV, respectively. The N338A mutation decreased the potentials to −37 mV and −49 mV. Lowering the midpoint potentials resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF1e− catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone, but not in electron transfer from ETF to ETF-QO. Therefore the iron-sulfur cluster is the immediate acceptor from ETF. PMID:18672901

  12. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to

  13. Spectrophotometric study of the charge-transfer and ion-pair complexation of methamphetamine with some acceptors

    NASA Astrophysics Data System (ADS)

    Shahdousti, Parvin; Aghamohammadi, Mohammad; Alizadeh, Naader

    2008-04-01

    The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 μg ml -1 for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.

  14. Electron donor preference of a reductive dechlorinating consortium

    USGS Publications Warehouse

    Lorah, M.M.; Majcher, E.; Jones, E.; Driedger, G.; Dworatzek, S.; Graves, D.

    2005-01-01

    A wetland sediment-derived microbial consortium was developed by the USGS and propagated in vitro to large quantities by SiREM Laboratory for use in bioaugmentation applications. The consortium had the capacity to completely dechlorinate 1,1,2,2-tetrachloroethene, tetrachloroethylene, trichloroethylene, 1,1,2-trichloroethane, cis- and trans-1,2-dichoroethylene, 1.1-dichloroethylene, 1,2-dichloroethane, vinyl chloride, carbon tetrachloride and chloroform. A suite of electron donors with characteristics useful for bioaugmentation applications was tested. The electron donors included lactate (the donor used during WBC-2 development), ethanol, chitin (Chitorem???), hydrogen releasing compound (HRC???), emulsified vegetable oil (Newman Zone???), and hydrogen gas. Ethanol, lactate, and chitin were particularly effective with respect to stimulating, supporting, and sustaining reductive dechlorination of the broad suite of chemicals that WBC-2 biodegraded. Chitorem??? was the most effective "slow release" electron donor tested. This is an abstract of a paper presented at the Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  15. Internal structure of acceptor-bound excitons in wide-band-gap wurtzite semiconductors

    NASA Astrophysics Data System (ADS)

    Gil, Bernard; Bigenwald, Pierre; Paskov, Plamen P.; Monemar, Bo

    2010-02-01

    We describe the internal structure of acceptor-bound excitons in wurtzite semiconductors. Our approach consists in first constructing, in the context of angular momentum algebra, the wave functions of the two-hole system that fulfill Pauli’s exclusion’s principle. Second, we construct the acceptor-bound exciton states by adding the electron states in a similar manner that two-hole states are constructed. We discuss the optical selection rules for the acceptor-bound exciton recombination. Finally, we compare our theory with experimental data for CdS and GaN. In the specific case of CdS for which much experimental information is available, we demonstrate that, compared with cubic semiconductors, the sign of the short-range hole-exchange interaction is reversed and more than one order of magnitude larger. The whole set of data is interpreted in the context of a large value of the short-range hole-exchange interaction Ξ0=3.4±0.2meV . This value dictates the splitting between the ground-state line I1 and the other transitions. The values we find for the electron-hole spin-exchange interaction and of the crystal-field splitting of the two-hole state are, respectively, -0.4±0.1 and 0.2±0.1meV . In the case of GaN, the experimental data for the acceptor-bound excitons in the case of Mg and Zn acceptors, show more than one bound-exciton line. We discuss a possible assignment of these states.

  16. Investigating charge generation in polymer:non-fullerene acceptor bulk heterojunction films

    DOE PAGES

    Stoltzfus, Dani M.; Larson, Bryon W.; Zarrabi, Nasim; ...

    2018-01-31

    Non-fullerene acceptors are now capable of being used in high efficiency bulk heterojunction (BHJ) donor-acceptor organic solar cells. Acceptors comprising single or multiple linked chromophores have been used. We have developed a new non-fullerene molecular acceptor as well as two non-polymeric macromolecular materials that contain four equivalents of a similar chromophore, but can adopt different spatial arrangements of the chromophores. We compare the effect of having single and multiple chromophores within a macromolecule on the charge generation processes in P3HT:non-fullerene acceptor BHJ films using Transient Absorption Spectroscopy (TAS) and Time Resolved Microwave Conductivity (TRMC) measurements. It was found from themore » TAS measurements that at low weight percent (5 wt%) the single chromophore formed more polarons than the acceptors in which chromophores were linked, due to it having a more even distribution within the film. At higher concentrations (50 wt%) the trend was reversed due to the single chromophore forming crystalline domains, which reduced the interface area with the P3HT donor. The TRMC measurements showed that more mobile carriers were formed in the macromolecular acceptors when used at low concentrations in the blend and, independent of concentration, mobile carriers had a longer lifetime when compared to films containing the molecular material, which we ascribe to the charges being able to sample more than one chromophore and thus reduce recombination events.« less

  17. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    PubMed

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively.

  18. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Yuly, Jonathon L.; Lubner, Carolyn E.

    How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that hasmore » only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation.« less

  19. Precise identification and manipulation of adsorption geometry of donor-π-acceptor dye on nanocrystalline TiO₂ films for improved photovoltaics.

    PubMed

    Zhang, Fan; Ma, Wei; Jiao, Yang; Wang, Jingchuan; Shan, Xinyan; Li, Hui; Lu, Xinghua; Meng, Sheng

    2014-12-24

    Adsorption geometry of dye molecules on nanocrystalline TiO2 plays a central role in dye-sensitized solar cells, enabling effective sunlight absorption, fast electron injection, optimized interface band offsets, and stable photovoltaic performance. However, precise determination of dye binding geometry and proportion has been challenging due to complexity and sensitivity at interfaces. Here employing combined vibrational spectrometry and density functional calculations, we identify typical adsorption configurations of widely adopted cyanoacrylic donor-π bridge-acceptor dyes on nanocrystalline TiO2. Binding mode switching from bidentate bridging to hydrogen-bonded monodentate configuration with Ti-N bonding has been observed when dye-sensitizing solution becomes more basic. Raman and infrared spectroscopy measurements confirm this configuration switch and determine quantitatively the proportion of competing binding geometries, with vibration peaks assigned using density functional theory calculations. We further found that the proportion of dye-binding configurations can be manipulated by adjusting pH value of dye-sensitizing solutions. Controlling molecular adsorption density and configurations led to enhanced energy conversion efficiency from 2.4% to 6.1% for the fabricated dye-sensitized solar cells, providing a simple method to improve photovoltaic performance by suppressing unfavorable binding configurations in solar cell applications.

  20. Energy transfer enhancement by oxygen perturbation of spin-forbidden electronic transitions in aromatic systems

    NASA Astrophysics Data System (ADS)

    Monguzzi, A.; Tubino, R.; Salamone, M. M.; Meinardi, F.

    2010-09-01

    Triplet-triplet energy transfer in multicomponent organic systems is usually entirely ascribed to a Dexter-type mechanism involving only short-range donor/acceptor interactions. We demonstrate that the presence of molecular oxygen introduces a perturbation to the electronic structure of one of the involved moieties which can induce a large increase in the spin-forbidden transition oscillator strength so that the otherwise negligible Förster contribution dominates the overall energy transfer rate.

  1. Flexible biological arsenite oxidation utilizing NOx and O2 as alternative electron acceptors.

    PubMed

    Wang, Jie; Wan, Junfeng; Wu, Zihao; Li, Hongli; Li, Haisong; Dagot, Christophe; Wang, Yan

    2017-07-01

    The feasibility of flexible microbial arsenite (As III ) oxidation coupled with the reduction of different electron acceptors was investigated. The results indicated the acclimated microorganisms could oxidize As III with oxygen, nitrate and nitrite as the alternative electron acceptors. A series of batch tests were conducted to measure the kinetic parameters of As III oxidation and to evaluate the effects of environmental conditions including pH and temperature on the activity of biological As III oxidation dependent on different electron acceptors. Kinetic results showed that oxygen-dependent As III oxidation had the highest oxidation rate (0.59 mg As g -1  VSS min -1 ), followed by nitrate- (0.40 mg As g -1  VSS min -1 ) and nitrite-dependent As III oxidation (0.32 mg As g -1  VSS min -1 ). The kinetic data of aerobic As III oxidation were fitted well with the Monod kinetic model, while the Haldane substrate inhibition model was better applicable to describe the inhibition of anoxic As III oxidation. Both aerobic and anoxic As III oxidation performed the optimal activity at the near neutral pH. Besides, the optimal temperature for oxygen-, nitrate- and nitrite-dependent As III oxidation was 30 ± 1 °C, 40 ± 1 °C and 20 ± 1 °C, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Tuning the light emission of novel donor-acceptor phenoxazine dye-based materials towards the red spectral range

    NASA Astrophysics Data System (ADS)

    Damaceanu, Mariana-Dana; Constantin, Catalin-Paul

    2018-04-01

    A novel red fluorescent push-pull system able to generate an intramolecular charge-transfer (ICT) complex was synthesized. The novel dye (R-POX) combines some structural features which are rarely encountered in the design of other push-pull systems: hexyl-substituted phenoxazine as donor moiety, divinylketone as π-linker, and p-fluorobenzene as electron acceptor group. The relationship between the structural motif, photo-physical and electrochemical properties by UV-Vis absorption, photoluminescence and cyclic voltammetry was thoroughly investigated both as red dopant in poly(methylmethacrylate) (PMMA) or polyimide (PI) matrix, and non-doped host emitter. The molecular rigid cores of the synthesized dye formed supramolecular rod-like structures in condensed phase with a strong impact on the emissive centers. The aggregation was totally suppressed when the dye was used as dopant in an amorphous polymeric matrix, such as PMMA or PI. Electrochemical measurements revealed the dye ability for both hole and electron injection and transport. The fluorescence emission was found to be highly sensitive to solvent polarity, rendering blue-green, yellow, orange and red light emission in different organic solvents. The absolute fluorescence quantum yield reached 39.57% in solution, and dropped to 1.2% in solid state and to 14.01% when the dye was used as dopant in PMMA matrix. According to the available CIE 1931 standard, R-POX emitted pure and saturated red light of single wavelength with chromaticity coordinates very close to those of National Television System Committee (NTSC) standard red colour. The R-POX photo-optical features were compared to those of the commercial red emitter 6, 13-diphenylpentacene.

  3. Edge-on and face-on functionalized Pc on enriched semiconducting SWCNT hybrids.

    PubMed

    Arellano, Luis M; Martín-Gomis, Luis; Gobeze, Habtom B; Molina, Desiré; Hermosa, Cristina; Gómez-Escalonilla, María J; Fierro, José Luis G; Sastre-Santos, Ángela; D'Souza, Francis; Langa, Fernando

    2018-03-15

    Enriched semiconducting single-walled carbon nanotubes (SWCNT (6,5) and SWCNT (7,6)) and HiPco nanotubes were covalently functionalized with either zinc phthalocyanine or silicon phthalocyanine as electron donors. The synthetic strategy resulted in edge-on and face-on geometries with respect to the phthalocyanine geometry, with both phthalocyanines held by an electronically conducting diphenylacetylene linker. The extent of functionalization in the MPc-SWCNT (M = Zn or Si) donor-acceptor nanohybrids was determined by systematic studies involving AFM, TGA, XPS, optical and Raman techniques. Intramolecular interactions in MPc-SWCNT nanohybrids were probed by studies involving optical absorbance, Raman, luminescence and electrochemical studies. Different degrees of interactions were observed depending on the type of MPc and mode of attachment. Substantial quenching of MPc fluorescence in these hybrids was observed from steady-state and three-dimensional fluorescence mapping, which suggests the occurrence of excited state events. Evidence for the occurrence of excited state charge transfer type interactions was subsequently secured from femtosecond transient absorption studies covering both the visible and near-infrared regions. Furthermore, electron-pooling experiments performed in the presence of a sacrificial electron donor and a second electron acceptor revealed accumulation of one-electron reduced product upon continuous irradiation of the nanohybrids. In such experiments, the ZnPc-SWCNT (6,5) nanohybrid outperformed other nanohybrids and this suggests that this is a superior donor-acceptor system for photocatalytic applications.

  4. Donor polymer design enables efficient non-fullerene organic solar cells

    PubMed Central

    Li, Zhengke; Jiang, Kui; Yang, Guofang; Lai, Joshua Yuk Lin; Ma, Tingxuan; Zhao, Jingbo; Ma, Wei; Yan, He

    2016-01-01

    To achieve efficient organic solar cells, the design of suitable donor–acceptor couples is crucially important. State-of-the-art donor polymers used in fullerene cells may not perform well when they are combined with non-fullerene acceptors, thus new donor polymers need to be developed. Here we report non-fullerene organic solar cells with efficiencies up to 10.9%, enabled by a novel donor polymer that exhibits strong temperature-dependent aggregation but with intentionally reduced polymer crystallinity due to the introduction of a less symmetric monomer unit. Our comparative study shows that an analogue polymer with a C2 symmetric monomer unit yields highly crystalline polymer films but less efficient non-fullerene cells. Based on a monomer with a mirror symmetry, our best donor polymer exhibits reduced crystallinity, yet such a polymer matches better with small molecular acceptors. This study provides important insights to the design of donor polymers for non-fullerene organic solar cells. PMID:27782112

  5. A detailed experimental and theoretical investigation of the role of cyano groups in the π-bridged acceptor of sensitizers for use in dye-sensitized solar cells (DSCs).

    PubMed

    Xu, Qinqin; Yang, Guang; Ren, Yu; Lu, Futai; Zhang, Nuonuo; Qamar, Muhammad; Yang, Manlin; Zhang, Bao; Feng, Yaqing

    2017-11-01

    Three donor-π conjugated unit-acceptor (D-π-A) type zinc porphyrin sensitizers LX1, LX2 and LX3 bearing meso acrylic acid, α-cyanoacrylic acid, and α-cyanopentadienoic acid, respectively, as the π-bridged acceptors were designed and synthesized for use in dye-sensitized solar cells (DSCs). The interesting role of the cyano group attached to the α position of the acrylic and pentadienoic acid acceptor was investigated. It was shown that even though the introduction of the cyano group and the elongation of the π-bridge can both increase the light-harvesting as indicated by the UV-vis absorption spectra, the relevant cell performance dropped significantly. The photo to power conversion efficiencies (PCEs) of the devices increase in the order of LX1 > LX2 > LX3, with the highest PCE of 6.04% achieved for the LX1-based cell, which bears acrylic acid as the π-bridged acceptor. To further explore the effect of -CN and -CH[double bond, length as m-dash]CH- on the interaction between the absorbed dye and TiO 2 substrates, their density of states (DOS) and partial density of states (PDOS), as well as electronic properties were investigated in detail using theoretical calculations. The results suggest that introducing the -CN group into the acceptor and extending the conjugation of the π-bridge have decreased the LUMO levels of the dyes, leading to weak interfacial coupling, low electron injection driving force, low J sc , and thus poor cell performance.

  6. Critical evaluation of dipolar, acid-base and charge interactions I. Electron displacement within and between molecules, liquids and semiconductors.

    PubMed

    Rosenholm, Jarl B

    2017-09-01

    Specific dipolar, acid-base and charge interactions involve electron displacements. For atoms, single bonds and molecules electron displacement is characterized by electronic potential, absolute hardness, electronegativity and electron gap. In addition, dissociation, bonding, atomization, formation, ionization, affinity and lattice enthalpies are required to quantify the electron displacement in solids. Semiconductors are characterized by valence and conduction band energies, electron gaps and average Fermi energies which in turn determine Galvani potentials of the bulk, space charge layer and surface states. Electron displacement due to interaction between (probe) molecules, liquids and solids are characterized by parameters such as Hamaker constant, solubility parameter, exchange energy density, surface tension, work of adhesion and immersion. They are determined from permittivity, refractive index, enthalpy of vaporization, molar volume, surface pressure and contact angle. Moreover, acidic and basic probes may form adducts which are adsorbed on target substrates in order to establish an indirect measure of polarity, acidity, basicity or hydrogen bonding. Acidic acceptor numbers (AN), basic donor numbers (DN), acidic and basic "electrostatic" (E) and "covalent" (C) parameters determined by enthalpy of adduct formation are considered as general acid-base scales. However, the formal grounds for assignments as dispersive, Lifshitz-van der Waals, polar, acid, base and hydrogen bond interactions are inconsistent. Although correlations are found no of the parameters are mutually fully compatible and moreover the enthalpies of acid-base interaction do not correspond to free energies. In this review the foundations of different acid-base parameters relating to electron displacement within and between (probe) molecules, liquids and (semiconducting) solids are thoroughly investigated and their mutual relationships are evaluated. Copyright © 2017 Elsevier B.V. All rights

  7. Structure and Electronic Spectra of Purine-Methyl Viologen Charge Transfer Complexes

    PubMed Central

    Jalilov, Almaz S.; Patwardhan, Sameer; Singh, Arunoday; Simeon, Tomekia; Sarjeant, Amy A.; Schatz, George C.; Lewis, Frederick D.

    2014-01-01

    The structure and properties of the electron donor-acceptor complexes formed between methyl viologen (MV) and purine nucleosides and nucleotides in water and the solid state have been investigated using a combination of experimental and theoretical methods. Solution studies were performed using UV-vis and 1H NMR spectroscopy. Theoretical calculations were performed within the framework of density functional theory (DFT). Energy decomposition analysis indicates that dispersion and induction (charge-transfer) interactions dominate the total binding energy, whereas electrostatic interactions are largely repulsive. The appearance of charge transfer bands in the absorption spectra of the complexes are well described by time-dependent (TD) DFT and are further explained in terms of the redox properties of purine monomers and solvation effects. Crystal structures are reported for complexes of methyl viologen with the purines 2′-deoxyguanosine 3′-monophosphate GMP (DAD′DAD′ type) and 7-deazaguanosine zG (DAD′ADAD′ type). Comparison of the structures determined in the solid state and by theoretical methods in solution provides valuable insights into the nature of charge-transfer interactions involving purine bases as electron donors. PMID:24294996

  8. Photoinduced Bimolecular Electron Transfer from Cyano Anions in Ionic Liquids

    DOE PAGES

    Wu, Boning; Liang, Min; Maroncelli, Mark; ...

    2015-10-26

    Ionic liquids with electron-donating anions are used to investigate rates and mechanisms of photoinduced bimolecular electron transfer to the photoexcited acceptor 9,10-dicyanoanthracene (9,10-DCNA). The set of five cyano anion ILs studied comprises the 1-ethyl-3-methylimidazolium cation paired with each of these five anions: selenocyanate, thiocyanate, dicyanamide, tricyanomethanide, and tetracyano-borate. Measurements with these anions dilute in acetonitrile and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-amide show that the selenocyanate and tricyanomethanide anions are strong quenchers of the 9,10-DCNA fluorescence, thiocyanate is a moderately strong quencher, dicyanamide is a weak quencher, and no quenching is observed for tetracyanoborate. Quenching rates are obtained from both time-resolved fluorescence transients andmore » time-integrated spectra. Finally, application of a Smoluchowski diffusion-and-reaction model showed that the complex kinetics observed can be fit using only two adjustable parameters, D and V 0, where D is the relative diffusion coefficient between donor and acceptor and V 0 is the value of the electronic coupling at donor-acceptor contact.« less

  9. Donor-acceptor pair recombination luminescence from monoclinic Cu{sub 2}SnS{sub 3} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aihara, Naoya; Tanaka, Kunihiko, E-mail: tanaka@vos.nagaokaut.ac.jp; Uchiki, Hisao

    2015-07-20

    The defect levels in Cu{sub 2}SnS{sub 3} (CTS) were investigated using photoluminescence (PL) spectroscopy. A CTS thin film was prepared on a soda-lime glass/molybdenum substrate by thermal co-evaporation and sulfurization. The crystal structure was determined to be monoclinic, and the compositional ratios of Cu/Sn and S/Metal were determined to be 1.8 and 1.2, respectively. The photon energy of the PL spectra observed from the CTS thin film was lower than that previously reported. All fitted PL peaks were associated with defect related luminescence. The PL peaks observed at 0.843 and 0.867 eV were assigned to donor-acceptor pair recombination luminescence, the thermalmore » activation energies of which were determined to be 22.9 and 24.8 meV, respectively.« less

  10. Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors

    PubMed Central

    Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Lu, Yue; Chen, Liang; Jiang, Yijian

    2016-01-01

    Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n+-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n+-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, <10 μA and >15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390–414 nm with temperature of 270–470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications. PMID:27263856

  11. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, T; Bain, TS; Barlett, MA

    2014-01-02

    Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electronmore » donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.« less

  12. `Giant' nanocrystal quantum dots (gNQDs) as FRET donors

    NASA Astrophysics Data System (ADS)

    Chern, Margaret; Nguyen, Thuy; Dennis, Allison

    2017-02-01

    High-quality core/shell CdSe/xCdS quantum dots (QDs) ranging from 3 to 20 nm in diameter were synthesized for use as Förster Resonance Energy Transfer (FRET) donors. gNQDs are carefully characterized for size, emission, absorption, QY, and brightness in both organic and aqueous solution. FRET has been verified in optimally designed systems that use short capping ligands and donor-acceptor pairs that have well-matched emission and absorption spectra. The interplay between shell thickness, donor-acceptor distance, and particle brightness is systematically analyzed to optimize our biosensor design.

  13. Electronic coupling between Watson-Crick pairs for hole transfer and transport in desoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Jortner, Joshua; Bixon, M.; Rösch, Notker

    2001-04-01

    Electronic matrix elements for hole transfer between Watson-Crick pairs in desoxyribonucleic acid (DNA) of regular structure, calculated at the Hartree-Fock level, are compared with the corresponding intrastrand and interstrand matrix elements estimated for models comprised of just two nucleobases. The hole transfer matrix element of the GAG trimer duplex is calculated to be larger than that of the GTG duplex. "Through-space" interaction between two guanines in the trimer duplexes is comparable with the coupling through an intervening Watson-Crick pair. The gross features of bridge specificity and directional asymmetry of the electronic matrix elements for hole transfer between purine nucleobases in superstructures of dimer and trimer duplexes have been discussed on the basis of the quantum chemical calculations. These results have also been analyzed with a semiempirical superexchange model for the electronic coupling in DNA duplexes of donor (nuclobases)-acceptor, which incorporates adjacent base-base electronic couplings and empirical energy gaps corrected for solvation effects; this perturbation-theory-based model interpretation allows a theoretical evaluation of experimental observables, i.e., the absolute values of donor-acceptor electronic couplings, their distance dependence, and the reduction factors for the intrastrand hole hopping or trapping rates upon increasing the size of the nucleobases bridge. The quantum chemical results point towards some limitations of the perturbation-theory-based modeling.

  14. Dynamical photo-induced electronic properties of molecular junctions

    NASA Astrophysics Data System (ADS)

    Beltako, K.; Michelini, F.; Cavassilas, N.; Raymond, L.

    2018-03-01

    Nanoscale molecular-electronic devices and machines are emerging as promising functional elements, naturally flexible and efficient, for next-generation technologies. A deeper understanding of carrier dynamics in molecular junctions is expected to benefit many fields of nanoelectronics and power devices. We determine time-resolved charge current flowing at the donor-acceptor interface in molecular junctions connected to metallic electrodes by means of quantum transport simulations. The current is induced by the interaction of the donor with a Gaussian-shape femtosecond laser pulse. Effects of the molecular internal coupling, metal-molecule tunneling, and light-donor coupling on photocurrent are discussed. We then define the time-resolved local density of states which is proposed as an efficient tool to describe the absorbing molecule in contact with metallic electrodes. Non-equilibrium reorganization of hybridized molecular orbitals through the light-donor interaction gives rise to two phenomena: the dynamical Rabi shift and the appearance of Floquet-like states. Such insights into the dynamical photoelectronic structure of molecules are of strong interest for ultrafast spectroscopy and open avenues toward the possibility of analyzing and controlling the internal properties of quantum nanodevices with pump-push photocurrent spectroscopy.

  15. Synthesis of charge transfer complex of chloranilic acid as acceptor with p-nitroaniline as donor: Crystallographic, UV-visible spectrophotometric and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Zulkarnain; Khan, Ishaat M.; Ahmad, Afaq; Miyan, Lal; Ahmad, Musheer; Azizc, Nafe

    2017-08-01

    The charge transfer interaction between p-nitroaniline (PNA) and chloranilic (CAA) acid was studied spectrophotometrically in methanol at different temperatures within the range 298-328 K. This experimental work explores the nature of charge-transfer interactions that play a significant role in chemistry and biology. Structure of synthesized charge transfer (CT) complex was investigated by different technique such as X-ray crystallography, FTIR, 1HNMR, UV-visible spectroscopy, XRD and TGA-DTA, which indicates the presence of N+sbnd Hrbd2bd O- bond between donor and acceptor moieties. Spectrophotometric studies of CT complexes were carried out in methanol at different temperatures to estimate thermodynamic parameters such as formation constant (KCT), molar absorptivity (εCT), free energy change (ΔG), enthalpy change (ΔH), resonance energy (RN), oscillator strength (f), transition dipole moment (μEN) and interaction energy (ECT) were also calculated. The effect of temperatures on all the parameters was studied in methanol. 1:1 stoichiometric of CT-complex was ascertained by Benesi-Hildebrand plots giving straight line, which are good agreement with other analysis. Synthesized CT complex was screened for its antimicrobial activity such as antibacterial activity against two gram-positive bacteria, Staphylococcus aureus and bacillus subtilis and two gram negative bacteria Escherichia coli and pseudomonas aeruginosa, and antifungal activity against fungi Fusarium oxysporum, and Aspergillus flavus.

  16. Dissimilatory arsenate reduction with sulfide as electron donor: Experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer

    USGS Publications Warehouse

    Hoeft, S.E.; Kulp, T.R.; Stolz, J.F.; Hollibaugh, J.T.; Oremland, R.S.

    2004-01-01

    Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H14CO3- into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the ??-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor.

  17. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    NASA Astrophysics Data System (ADS)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (<2.7 A/m3) or no current. Furthermore, we have measured that A6 biomass increased from 5E4 cells/ml to 9.77E5 cells/ml in 2 weeks of operation, indicating the feasibility of growing A6 in MECs. Results from the electrodes in the field show higher percentage of electrogenic bacteria, including Acidimicrobiaceae-bacterium, on the more reducing electrode, compared to the more oxidized one. Our initial results also suggest that electrodes contained more Actinobacteria when compared to bulk soil. Electrodes as TEAs enhance electrogenic bacteria recovery and culturing. The use of MECs for the productions of Feammox-bacteria eliminates the dependence of Fe, a finite electron acceptor, therefore, allowing for continuous NH4+ removal. Finally, Fe-free Feammox-bacteria can be applied to reduce other metals of environmental concern; therefore

  18. Autotrophic antimonate bio-reduction using hydrogen as the electron donor.

    PubMed

    Lai, Chun-Yu; Wen, Li-Lian; Zhang, Yin; Luo, Shan-Shan; Wang, Qing-Ying; Luo, Yi-Hao; Chen, Ran; Yang, Xiaoe; Rittmann, Bruce E; Zhao, He-Ping

    2016-01-01

    Antimony (Sb), a toxic metalloid, is soluble as antimonate (Sb(V)). While bio-reduction of Sb(V) is an effective Sb-removal approach, its bio-reduction has been coupled to oxidation of only organic electron donors. In this study, we demonstrate, for the first time, the feasibility of autotrophic microbial Sb(V) reduction using hydrogen gas (H2) as the electron donor without extra organic carbon source. SEM and EDS analysis confirmed the production of the mineral precipitate Sb2O3. When H2 was utilized as the electron donor, the consortium was able to fully reduce 650 μM of Sb(V) to Sb(III) in 10 days, a rate comparable to the culture using lactate as the electron donor. The H2-fed culture directed a much larger fraction of it donor electrons to Sb(V) reduction than did the lactate-fed culture. While 98% of the electrons from H2 were used to reduce Sb(V) by the H2-fed culture, only 12% of the electrons from lactate was used to reduce Sb(V) by the lactate-fed culture. The rest of the electrons from lactate went to acetate and propionate through fermentation, to methane through methanogenesis, and to biomass synthesis. High-throughput sequencing confirmed that the microbial community for the lactate-fed culture was much more diverse than that for the H2-fed culture, which was dominated by a short rod-shaped phylotype of Rhizobium (α-Protobacteria) that may have been active in Sb(V) reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    NASA Astrophysics Data System (ADS)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  20. Hydrogen Donor-Acceptor Fluctuations from Kinetic Isotope Effects: A Phenomenological Model

    PubMed Central

    Roston, Daniel; Cheatum, Christopher M.; Kohen, Amnon

    2012-01-01

    Kinetic isotope effects (KIEs) and their temperature dependence can probe the structural and dynamic nature of enzyme-catalyzed proton or hydride transfers. The molecular interpretation of their temperature dependence requires expensive and specialized QM/MM calculations to provide a quantitative molecular understanding. Currently available phenomenological models use a non-adiabatic assumption that is not appropriate for most hydride and proton-transfer reactions, while others require more parameters than the experimental data justify. Here we propose a phenomenological interpretation of KIEs based on a simple method to quantitatively link the size and temperature dependence of KIEs to a conformational distribution of the catalyzed reaction. The present model assumes adiabatic hydrogen tunneling, and by fitting experimental KIE data, the model yields a population distribution for fluctuations of the distance between donor and acceptor atoms. Fits to data from a variety of proton and hydride transfers catalyzed by enzymes and their mutants, as well as non-enzymatic reactions, reveal that steeply temperature-dependent KIEs indicate the presence of at least two distinct conformational populations, each with different kinetic behaviors. We present the results of these calculations for several published cases and discuss how the predictions of the calculations might be experimentally tested. The current analysis does not replace molecular quantum mechanics/molecular mechanics (QM/MM) investigations, but it provides a fast and accessible way to quantitatively interpret KIEs in the context of a Marcus-like model. PMID:22857146

  1. Photoinduced Electron Transfer from Various Aniline Derivatives to Graphene Quantum Dots.

    PubMed

    Ghosh, Tufan; Chatterjee, Swarupa; Prasad, Edamana

    2015-12-10

    The present study utilizes the luminescence nature of the graphene quantum dots (GQDs) to analyze the mechanistic aspects of the photoinduced electron transfer (PET) processes between GQDs and aniline derivatives. A systematic investigation of PET from various aniline derivatives to GQDs has been presented. Solution-processable GQDs have been synthesized from graphene oxide (GO) at 200 °C. The as-synthesized GQDs exhibit a strong green luminescence at 510 nm, upon photoexcitation at 440 nm. Various aniline derivatives (aniline, N-methylaniline, N,N'-dimethylaniline, N-ethylaniline, N,N'-diethylaniline, and N,N'-diphenylaniline) have been utilized as electron donors to probe the PET process. Results from UV-visible absorption and steady-state and time-resolve luminescence spectroscopy suggest that the GQDs interact with the aniline derivatives in the excited state, which results in a significant luminescence quenching of the GQDs. The bimolecular rate constants of the dynamic quenching have been deduced for various donor-acceptor systems, and the values are in the range of (1.06-2.68) × 10(9) M(-1) s(-1). The negative values of the free energy change of the electron transfer process suggest that PET from aniline derivatives to GQDs is feasible and could be responsible for the luminescence quenching. The PET has been confirmed by detecting radical cations for certain aniline derivatives, using a nanosecond laser flash photolysis setup. The present study shows that among the various types of graphene systems, GQDs are better candidates for understanding the mechanism of PET in graphene-based donor-acceptor systems.

  2. Exploring the relevance of thiophene rings as bridge unit in acceptor-bridge-donor dyes on self-aggregation and performance in DSSCs.

    PubMed

    Zarate, Ximena; Saavedra-Torres, Mario; Rodriguez-Serrano, Angela; Gomez, Tatiana; Schott, Eduardo

    2018-04-30

    The possibility of dye charge recombination in DSSCs remains a challenge for the field. This consists of: (a) back-transfer from the TiO 2 to the oxidized dye and (b) intermolecular electron transfer between dyes. The latter is attributed to dye aggregation due to dimeric conformations. This leads to poor electron injection which decreases the photocurrent conversion efficiency. Most organic sensitizers are characterized by an Acceptor-Bridge-Donor (A-Bridge-D) arrangement that is commonly employed to provide charge separation and, therefore, lowering the unwanted back-transfer. Here, we address the intermolecular electron transfer by studying the dimerization and photovoltaic performance of a group of A-Bridge-D structured dyes. Specifically, eight famous sulfur containing π-bridges were analyzed (A and D remained fixed). Through quantum mechanical and molecular dynamics approaches, it was found that the formation of weakly stabilized dimers is allowed. The dyes with covalently bonded and fused thiophene rings as Bridges, 6d and 7d as well as 8d with a fluorene, would present high aggregation and, therefore, high probability of recombination processes. Conversely, using TiO 2 cluster and surface models, delineated the shortest bridges to improve the adsorption energy and the stability of the system. Finally, the elongation of the bridge up to 2 and 3 units and their photovoltaic parameters were studied. These results showed that all the sensitizers are able to provide similar photocurrent outcomes, regardless of whether the bridge is elongated. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Preparation, spectroscopic and thermal characterization of new charge-transfer complexes of ethidium bromide with π-acceptors. In vitro biological activity studies

    NASA Astrophysics Data System (ADS)

    Eldaroti, Hala H.; Gadir, Suad A.; Refat, Moamen S.; Adam, Abdel Majid A.

    2013-05-01

    Ethidium bromide (EtBr) is a strong DNA binder and has been widely used to probe DNA structure in drug-DNA and protein-DNA interaction. Four new charge-transfer (CT) complexes consisting of EtBr as donor and quinol (QL), picric acid (PA), tetracyanoquinodimethane (TCNQ) or dichlorodicyanobenzoquinone (DDQ) as acceptors, were synthesized and characterized by elemental analysis, electronic absorption, spectrophotometric titration, IR, Raman, 1H NMR and X-ray powder diffraction (XRD) techniques. The stoichiometry of these complexes was found to be 1:2 ratio and having the formula [(EtBr)(acceptor)]. The thermal stability of the synthesized CT complexes was investigated using thermogravimetric (TG) analyses, and the morphology and particle size of these complexes were obtained from scanning electron microscopy (SEM). The CT complexes were also tested for its antibacterial activity against two Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis and two Gram-negative bacteria; Escherichia coli and Pseudomonas aeuroginosa strains by using Tetracycline as standard and antifungal property against Aspergillus flavus and Candida albicans by using amphotericin B as standard. The results were compared with the standard drugs and significant conclusions were obtained. The results indicated that the [(EtBr)(QL)2] complex had exerted excellent inhibitory activity against the growth of the tested bacterial strains.

  4. Pressure-Photoluminescence Study of the Zn Vacancy and Donor Zn-Vacancy Complexes in ZnSe

    NASA Astrophysics Data System (ADS)

    Iota, V.; Weinstein, B. A.

    1997-03-01

    We report photoluminescence (PL) results to 65kbar (at 8K) on n-type electron irradiated ZnSe containing high densities of isolated Zn vacancies (V_Zn) and donor-V_Zn complexes (A-centers).^1 Isotropic pressure is applied using a diamond-anvil cell with He medium, and laser excitations above and below the ZnSe bandgap (2.82eV) are employed. The 1 atm. spectra exhibit excitonic lines, shallow donor-acceptor pair (DAP) peaks, and two broad bands due to DAP transitions between shallow donors and deep acceptor states at A-centers (2.07eV) or V_Zn (1.72eV). At all pressures, these broad bands are prominent only for sub-gap excitation, which results in: i) A-center PL at energies above the laser line, and ii) strong enhancement of the first LO-replica in the shallow DAP series compared to 3.41eV UV excitation. This suggests that sub-gap excitation produces long-lived metastable acceptor states. The broad PL bands shift to higher energy with pressure faster than the ZnSe direct gap, indicating that compression causes the A-center and V_Zn deep acceptor levels to approach the hole continuum. This behavior is similar to that found by our group for P and As deep acceptor levels in ZnSe, supporting the view that deep substitutional defects often resemble the limiting case of a vacancy. ^1D. Y. Jeon, H. P. Gislason, G. D. Watkins Phys. Rev. B 48, 7872 (1993); we thank G. D. Watkins for providing the samples. (figures)

  5. Dissimilatory arsenate reduction with sulfide as the electron donor--Experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate-respirer

    USGS Publications Warehouse

    Hoeft, Shelley E.; Kulp, Thomas R.; Stolz, John F.; Hollibaugh, James T.; Oremland, Ronald S.

    2004-01-01

    Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H14CO3− into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the δ-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor.

  6. Bi-diketopyrrolopyrrole (Bi-DPP) as a novel electron accepting compound in low band gap π-conjugated donor–acceptor copolymers/oligomers

    PubMed Central

    Ahner, Johannes; Nowotny, Jürgen; Schubert, Ulrich S.; Hager, Martin D.

    2017-01-01

    Abstract The synthesis and characterization of a novel 2,5-diketopyrrolo[3,4-c]pyrrole(DPP)-based accepting building block with the scheme DPP-neutral small linker-DPP (Bi-DPP) is presented, which was utilized as electron accepting moiety for low band gap π-conjugated donor–acceptor copolymers as well as for a donor–acceptor small molecule. The electron accepting moiety Bi-DPP was prepared via a novel synthetic pathway by building up two DPP moieties step by step simultaneously starting from a neutral phenyl core unit. Characterization of the synthesized oligomeric and polymeric materials via cyclic voltammetry afford LUMO energy levels from −3.49 to −3.59 eV as well as HOMO energy levels from −5.07 to −5.34 eV resulting in low energy band gaps from 1.52 to 1.81 eV. Spin coating of the prepared donor–acceptor oligomers/polymers resulted in well-defined films. Moreover, UV–vis measurements of the investigated donor–acceptor systems showed a broad absorption over the whole visible region. It is demonstrated that Bi-DPP as an electron accepting moiety in donor–acceptor systems offer potential properties for organic solar cell devices. PMID:29491794

  7. Chemostat Studies of TCE-Dehalogenating Anaerobic Consortia under Excess and Limited Electron Donor Addition

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Azizian, M.; Green, J.; Mayer-Blackwell, K.; Spormann, A. M.

    2015-12-01

    Two cultures - the Victoria Strain (VS) and the Evanite Strain (EV), enriched with the organohalide respiring bacteria Dehalococcoides mccartyi - were grown in chemostats for more than 4 years at a mean cell residence time of 50 days. The slow doubling rate represents growth likely experienced in the subsurface. The chemostats were fed formate as an electron donor and trichloroethene (TCE) as the terminal electron acceptor. Under excess formate conditions, stable operation was observed with respect to TCE transformation, steady-state hydrogen (H2) concentrations (40 nM), and the structure of the dehalogenating community. Both cultures completely transformed TCE to ethene, with minor amounts of vinyl chloride (VC) observed, along with acetate formation. When formate was limited, TCE was transformed incompletely to ethene (40-60%) and VC (60- 40%), and H2 concentrations ranged from 1 to 3 nM. The acetate concentration dropped below detection. Batch kinetic studies of TCE transformation with chemostat harvested cells found transformation rates of c-DCE and VC were greatly reduced when the cells were grown with limited formate. Upon increasing formate addition to the chemostats, from limited to excess, essentially complete transformation of TCE to ethene was achieved. The increase in formate was associated with an increase in H2 concentration and the production of acetate. Results of batch kinetic tests showed increases in transformation rates for TCE and c-DCE by factors of 3.5 and 2.5, respectively, while VC rates increased by factors of 33 to 500, over a six month period. Molecular analysis of chemostat samples is being performed to quantify the changes in copy numbers of reductase genes and to determine whether shifts in the strains of Dehalococcoides mccartyi where responsible for the observed rate increases. The results demonstrate the importance of electron donor supply for successful in-situ remediation.

  8. Rational Design of High-Performance Wide-Bandgap (≈2 eV) Polymer Semiconductors as Electron Donors in Organic Photovoltaics Exhibiting High Open Circuit Voltages (≈1 V).

    PubMed

    Chochos, Christos L; Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Ameri, Tayebeh; Brabec, Christoph J; Avgeropoulos, Apostolos

    2017-01-01

    Systematic optimization of the chemical structure of wide-bandgap (≈2.0 eV) "donor-acceptor" copolymers consisting of indacenodithiophene or indacenodithieno[3,2-b]thiophene as the electron-rich unit and thieno[3,4-c]pyrrole-4,6-dione as the electron-deficient moiety in terms of alkyl side chain engineering and distance of the electron-rich and electron-deficient monomers within the repeat unit of the polymer chain results in high-performance electron donor materials for organic photovoltaics. Specifically, preliminary results demonstrate extremely high open circuit voltages (V oc s) of ≈1.0 V, reasonable short circuit current density (J sc ) of around 11 mA cm -2 , and moderate fill factors resulting in efficiencies close to 6%. All the devices are fabricated in an inverted architecture with the photoactive layer processed by doctor blade equipment, showing the compatibility with roll-to-roll large-scale manufacturing processes. From the correlation of the chemical structure-optoelectronic properties-photovoltaic performance, a rational guide toward further optimization of the chemical structure in this family of copolymers, has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electronic coupling in long-range electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, M.D.

    1996-12-31

    One of the quantities crucial in controlling electron transfer (et) kinetics is the donor/acceptor electronic coupling integral (HDA). Recent theoretical models for HDA will be presented, and the results of ab initio computational implementation will be reported and analyzed for several metal-to-metal ligand charge transfer processes in complex molecular aggregates. New procedures for defining diabatic states, including a generalization of the Mulliken-Hush model, allow applications to optical and excited state as well as ground state et in a many-state framework.

  10. Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review.

    PubMed

    He, Chuan-Shu; Mu, Zhe-Xuan; Yang, Hou-Yun; Wang, Ya-Zhou; Mu, Yang; Yu, Han-Qing

    2015-12-01

    Microbial fuel cells (MFCs) have gained tremendous global interest over the last decades as a device that uses bacteria to oxidize organic and inorganic matters in the anode with bioelectricity generation and even for purpose of bioremediation. However, this prospective technology has not yet been carried out in field in particular because of its low power yields and target compounds removal which can be largely influenced by electron acceptors contributing to overcome the potential losses existing on the cathode. This mini review summarizes various electron acceptors used in recent years in the categories of inorganic and organic compounds, identifies their merits and drawbacks, and compares their influences on performance of MFCs, as well as briefly discusses possible future research directions particularly from cathode aspect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeggblom, M.M.; Rivera, M.D.; Young, L.Y.

    1993-04-01

    Methanogeneic conditions can promote the biodegradation of a number of halogenated aromatic compounds. This study, using sediments from freshwater and estuarine sites, is an evaluation of the anaerobic biodegradability of monochlorinated phenols and benzoic acids coupled to denitrification, sulfidogenesis, and methanogenesis. The results indicate that chlorinated phenols and benzoic acids are biodegradable under at least one set of anaerobic conditions. Metabolism depends both on the electron acceptor available and on the position of the chlorine substituent. Presence of alternative electron acceptors, nitrate, sulfate, and carbonate, can affect degradation rates and substrate specificities. Since contaminated sites usually have mixtures of wastes,more » bioremediation efforts may need to consider the activities of diverse anaerobic communities to carry out effective treatment of all components. 37 refs., 4 figs., 4 tabs.« less

  12. Utilization of charge-transfer complexation for the detection of carcinogenic substances in foods: Spectroscopic characterization of ethyl carbamate with some traditional π-acceptors

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.

    2013-04-01

    The study of toxic and carcinogenic substances in foods represents one of the most demanding areas in food safety, due to their repercussions for public health. One potentially toxic compound for humans is ethyl carbamate (EC). EC is a multi-site genotoxic carcinogen of widespread occurrence in fermented foods and alcoholic beverages. Structural and thermal stability of charge-transfer complexes formed between EC as a donor with quinol (QL), picric acid (PA), chloranilic acid (CLA), p-chloranil (p-CHL) and 1,3-dinitrobenzene (DNB) as acceptors were reported. Elemental analysis (CHN), electronic absorption spectra, photometric titration, IR, and 1H NMR spectra show that the interaction between EC and acceptors was stabilized by hydrogen bonding, via a 1:1 stoichiometry. Thermogravimetric (TG) analysis indicates that the formation of molecular CT complexes was stable, exothermic and spontaneous. Finally, the CT complexes were screened for their antibacterial and antifungal activities. The results indicated that the [(EC)(QL)] complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared with standard drugs.

  13. Highly Soluble Benzo[ghi]perylenetriimide Derivatives: Stable and Air-Insensitive Electron Acceptors for Artificial Photosynthesis.

    PubMed

    Chen, Hung-Cheng; Hsu, Chao-Ping; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2015-11-01

    A series of new benzo[ghi]perylenetriimide (BPTI) derivatives has been synthesized and characterized. These remarkably soluble BPTI derivatives show strong optical absorption in the range of λ=300-500 nm and have a high triplet-state energy of 1.67 eV. A cyanophenyl substituent renders BPTI such a strong electron acceptor (Ered =-0.11 V vs. the normal hydrogen electrode) that electron-trapping reactions with O2 and H2 O do not occur. The BPTI radical anion on a fluorine-doped tin oxide|TiO2 electrode is persistent up to tens of seconds (t1/2 =39 s) in air-saturated buffer solution. As a result of favorable packing, theoretical electron mobilities (10(-2) ∼10(-1) cm(2) V(-1) s(-1)) are high and similar to the experimental values observed for perylene diimide and C60 derivatives. Our studies show the potential of the cyanophenyl-modified BPTI compounds as electron acceptors in devices for artificial photosynthesis in water splitting that are also very promising nonfullerene electron-transport materials for organic solar cells. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Simulation of solution phase electron transfer in a compact donor-acceptor dyad.

    PubMed

    Kowalczyk, Tim; Wang, Lee-Ping; Van Voorhis, Troy

    2011-10-27

    Charge separation (CS) and charge recombination (CR) rates in photosynthetic architectures are difficult to control, yet their ratio can make or break photon-to-current conversion efficiencies. A rational design approach to the enhancement of CS over CR requires a mechanistic understanding of the underlying electron-transfer (ET) process, including the role of the environment. Toward this goal, we introduce a QM/MM protocol for ET simulations and use it to characterize CR in the formanilide-anthraquinone dyad (FAAQ). Our simulations predict fast recombination of the charge-transfer excited state, in agreement with recent experiments. The computed electronic couplings show an electronic state dependence and are weaker in solution than in the gas phase. We explore the role of cis-trans isomerization on the CR kinetics, and we find strong correlation between the vertical energy gaps of the full simulations and a collective solvent polarization coordinate. Our approach relies on constrained density functional theory to obtain accurate diabatic electronic states on the fly for molecular dynamics simulations, while orientational and electronic polarization of the solvent is captured by a polarizable force field based on a Drude oscillator model. The method offers a unified approach to the characterization of driving forces, reorganization energies, electronic couplings, and nonlinear solvent effects in light-harvesting systems.

  15. Accelerating Quinoline Biodegradation and Oxidation with Endogenous Electron Donors.

    PubMed

    Bai, Qi; Yang, Lihui; Li, Rongjie; Chen, Bin; Zhang, Lili; Zhang, Yongming; Rittmann, Bruce E

    2015-10-06

    Quinoline, a recalcitrant heterocyclic compound, is biodegraded by a series of reactions that begin with mono-oxygenations, which require an intracellular electron donor. Photolysis of quinoline can generate readily biodegradable products, such as oxalate, whose bio-oxidation can generate endogenous electron donors that ought to accelerate quinoline biodegradation and, ultimately, mineralization. To test this hypothesis, we compared three protocols for the biodegradation of quinoline: direct biodegradation (B), biodegradation after photolysis of 1 h (P1h+B) or 2 h (P2h+B), and biodegradation by adding oxalate commensurate to the amount generated from photolysis of 1 h (O1+B) or 2 h (O2+B). The experimental results show that P1h+B and P2h+B accelerated quinoline biodegradation by 19% and 50%, respectively, compared to B. Protocols O1+B and O2+B also gave 19% and 50% increases, respectively. During quinoline biodegradation, its first intermediate, 2-hydroxyquinoline, accumulated gradually in parallel to quinoline loss but declined once quinoline was depleted. Mono-oxygenation of 2-hydroxyquinoline competed with mono-oxygenation of quinoline, but the inhibition was relieved when extra electrons donors were added from oxalate, whether formed by UV photolysis or added exogenously. Rapid oxalate oxidation stimulated both mono-oxygenations, which accelerated the overall quinoline oxidation that provided the bulk of the electron donor.

  16. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander; Hammes-Schiffer, Sharon

    2015-11-17

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of

  17. Nitrate is a preferred electron acceptor for growth of freshwater selenate-respiring bacteria

    USGS Publications Warehouse

    Steinberg, Nisan A.; Blum, Jodi Switzer; Hochstein , Lawrence; Oremland, Ronald S.

    1992-01-01

    An anaerobic, freshwater enrichment grew with either nitrate or selenate as an electron acceptor. With both ions present, nitrate reduction preceded selenate reduction. An isolate from the enrichment grew on either ion, but the presence of nitrate precluded the reduction of selenate. Stock cultures of denitrifiers grew anaerobically on nitrate but not on selenate.

  18. Coherent coupling between a quantum dot and a donor in silicon

    DOE PAGES

    Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin; ...

    2017-10-18

    Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less

  19. Covalent Linking Greatly Enhances Photoinduced Electron Transfer in Fullerene-Quantum Dot Nanocomposites: Time-Domain Ab Initio Study.

    PubMed

    Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V

    2013-01-03

    Nonadiabatic molecular dynamics combined with time-domain density functional theory are used to study electron transfer (ET) from a CdSe quantum dot (QD) to the C60 fullerene, occurring in several types of hybrid organic/inorganic nanocomposites. By unveiling the time dependence of the ET process, we show that covalent bonding between the QD and C60 is particularly important to ensure ultrafast transmission of the excited electron from the QD photon-harvester to the C60 electron acceptor. Despite the close proximity of the donor and acceptor species provided by direct van der Waals contact, it leads to a notably weaker QD-C60 interaction than a lengthy molecular bridge. We show that the ET rate in a nonbonded mixture of QDs and C60 can be enhanced by doping. The photoinduced ET is promoted primarily by mid- and low-frequency vibrations. The study establishes the basic design principles for enhancing photoinduced charge separation in nanoscale light harvesting materials.

  20. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    NASA Astrophysics Data System (ADS)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical

  1. Nonlinear optical chromophores based on Dewar's rules: enhancement of electro-optic activity by introducing heteroatoms into the donor or bridge.

    PubMed

    Xu, Huajun; Yang, Dan; Liu, Fenggang; Fu, Mingkai; Bo, Shuhui; Liu, Xinhou; Cao, Yuan

    2015-11-28

    In this work, we investigated the enhancement of the electro-optic response by introducing electron-rich heteroatoms as additional donors into the donor or bridge of a conventional second-order nonlinear optical chromophore. A series of chromophores C2-C4 based on the same tricyanofuran acceptor (TCF) but with different heteroatoms in the alkylamino phenyl donor (C2 or C3) or thiophene bridge (C4) have been synthesized and systematically investigated. Density functional theory calculations suggested that chromophores C2-C4 had a smaller energy gap and larger first-order hyperpolarizability (β) than traditional chromophore C1 due to the additional heteroatoms. Single crystal structure analyses and optimized configurations indicate that the rationally introduced heteroatom group would bring larger β and weaker intermolecular interactions which were beneficial for translating molecular β into macro-electro-optic activity in electric field poled films. The electro-optic coefficient of poled films containing 25 wt% of these new chromophores doped in amorphous poly-carbonate afforded values of 83 and 91 pm V(-1) at 1310 nm for chromophores C3 and C4, respectively, which are two times higher than that of the traditional chromophore C1 (39 pm V(-1)). High r33 values indicated that introducing heteroatoms to the donor and bridge of a conventional molecular structure can efficiently improve the electron-donating ability, which improves the β. The long-chain on the donor or bridge part, acting as the isolation group, may reduce inter-molecular electrostatic interactions, thus enhancing the macroscopic EO activity. These results, together with good solubility and compatibility with the polymer, show the new chromophore's potential application in electro-optic devices.

  2. Model of multistep electron transfer in a single-mode polar medium

    NASA Astrophysics Data System (ADS)

    Feskov, S. V.; Yudanov, V. V.

    2017-09-01

    A mathematical model of multistep photoinduced electron transfer (PET) in a polar medium with a single relaxation time (Debye solvent) is developed. The model includes the polarization nonequilibrity formed in the vicinity of the donor-acceptor molecular system at the initial steps of photoreaction and its influence on the subsequent steps of PET. It is established that the results from numerical simulation of transient luminescence spectra of photoexcited donor-acceptor complexes (DAC) conform to calculated data obtained on the basis of the familiar experimental technique used to measure the relaxation function of solvent polarization in the vicinity of DAC in the picosecond and subpicosecond ranges.

  3. Experimental insights on the electron transfer and energy transfer processes between Ce{sup 3+}-Yb{sup 3+} and Ce{sup 3+}-Tb{sup 3+} in borate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontakke, Atul D., E-mail: sontakke.atul.55a@st.kyoto-u.ac.jp; Katayama, Yumiko; Tanabe, Setsuhisa

    2015-03-30

    A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce{sup 3+}-Yb{sup 3+} exhibits a steady rise with temperature, whereas the Ce{sup 3+}-Tb{sup 3+} energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host.more » The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.« less

  4. High-Level Ab Initio Calculations of Intermolecular Interactions: Heavy Main-Group Element π-Interactions.

    PubMed

    Krasowska, Małgorzata; Schneider, Wolfgang B; Mehring, Michael; Auer, Alexander A

    2018-05-02

    This work reports high-level ab initio calculations and a detailed analysis on the nature of intermolecular interactions of heavy main-group element compounds and π systems. For this purpose we have chosen a set of benchmark molecules of the form MR 3 , in which M=As, Sb, or Bi, and R=CH 3 , OCH 3 , or Cl. Several methods for the description of weak intermolecular interactions are benchmarked including DFT-D, DFT-SAPT, MP2, and high-level coupled cluster methods in the DLPNO-CCSD(T) approximation. Using local energy decomposition (LED) and an analysis of the electron density, details of the nature of this interaction are unraveled. The results yield insight into the nature of dispersion and donor-acceptor interactions in this type of system, including systematic trends in the periodic table, and also provide a benchmark for dispersion interactions in heavy main-group element compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Deviation from the Forster theory for time-dependent donor decays for randomly distributed molecules in solution

    NASA Astrophysics Data System (ADS)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Johnson, Michael L.

    1990-05-01

    We examined the time -dependent donor decays of 2 - amino purine (2 -APU) , in the presence of increasing amounts of acceptor 2-aminobenzophenine (2-ABP). As the concentration of 2-ABP increases, the frequency-responses diverge from that predicted by Forster. The data were found to be consistent with modified Forster equations, but at this time we do not state that these modified expressions provide a correct molecular description of this donor-acceptor system. To the best of our knowledge this is the first paper which reports a failure of the Forster theory for randomly distributed donors and acceptors.

  6. Balance the Carrier Mobility To Achieve High Performance Exciplex OLED Using a Triazine-Based Acceptor.

    PubMed

    Hung, Wen-Yi; Chiang, Pin-Yi; Lin, Shih-Wei; Tang, Wei-Chieh; Chen, Yi-Ting; Liu, Shih-Hung; Chou, Pi-Tai; Hung, Yi-Tzu; Wong, Ken-Tsung

    2016-02-01

    A star-shaped 1,3,5-triazine/cyano hybrid molecule CN-T2T was designed and synthesized as a new electron acceptor for efficient exciplex-based OLED emitter by mixing with a suitable electron donor (Tris-PCz). The CN-T2T/Tris-PCz exciplex emission shows a high ΦPL of 0.53 and a small ΔET-S = -0.59 kcal/mol, affording intrinsically efficient fluorescence and highly efficient exciton up-conversion. The large energy level offsets between Tris-PCz and CN-T2T and the balanced hole and electron mobility of Tris-PCz and CN-T2T, respectively, ensuring sufficient carrier density accumulated in the interface for efficient generation of exciplex excitons. Employing a facile device structure composed as ITO/4% ReO3:Tris-PCz (60 nm)/Tris-PCz (15 nm)/Tris-PCz:CN-T2T(1:1) (25 nm)/CN-T2T (50 nm)/Liq (0.5 nm)/Al (100 nm), in which the electron-hole capture is efficient without additional carrier injection barrier from donor (or acceptor) molecule and carriers mobilities are balanced in the emitting layer, leads to a highly efficient green exciplex OLED with external quantum efficiency (EQE) of 11.9%. The obtained EQE is 18% higher than that of a comparison device using an exciplex exhibiting a comparable ΦPL (0.50), in which TCTA shows similar energy levels but higher hole mobility as compared with Tris-PCz. Our results clearly indicate the significance of mobility balance in governing the efficiency of exciplex-based OLED. Exploiting the Tris-PCz:CN-T2T exciplex as the host, we further demonstrated highly efficient yellow and red fluorescent OLEDs by doping 1 wt % Rubrene and DCJTB as emitter, achieving high EQE of 6.9 and 9.7%, respectively.

  7. Electron shuttling in phosphorus donor qubit systems

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Gamble, John King; Nielsen, Erik; Muller, Richard P.; Witzel, Wayne M.; Montano, Ines; Carroll, Malcolm S.

    2014-03-01

    Phosphorus donors in silicon are a promising qubit architecture, due in large part to their long nuclear coherence times and the recent development of atomically precise fabrication methods. Here, we investigate issues related to implementing qubits with phosphorus donors in silicon, employing an effective mass theory that non-phenomenologically takes into account inter-valley coupling. We estimate the significant sources of decoherence and control errors in this system to compute the fidelity of primitive gates and gate timescales. We include the effects of valley repopulation during the process of shuttling an electron between a donor and nearby interface or between neighboring donors, evaluating the control requirements for ensuring adiabaticity with respect to the valley sector. This work was supported in part by the LDRD program at Sandia National Labs, a multi-program laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. DOE NNSA under contract DE-AC04-94AL85000.

  8. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor

    USDA-ARS?s Scientific Manuscript database

    Bioelectrochemical systems (BESs) employing mixed microbial communities as biocatalysts are gaining importance as potential renewable energy, bioremediation, or biosensing devices. While we are beginning to understand how individual microbial species interact with an electrode as electron donor, li...

  9. Utilizing Benzotriazole and Indacenodithiophene Units to Construct both Polymeric Donor and Small Molecular Acceptors to Realize Organic Solar Cells with High Open-Circuit Voltages beyond 1.2 V

    NASA Astrophysics Data System (ADS)

    Tang, Ailing; Chen, Fan; Xiao, Bo; Yang, Jing; Li, Jianfeng; Wang, Xiaochen; Zhou, Erjun

    2018-05-01

    Devolopment of organic solar cells with high open-circuit voltage (VOC) and power conversion efficiency (PCE) simutaniously plays a significant role, but there is no guideline how to choose the suitable photovoltaic material combinations. In this study, we adopted a simple and feasible strategy by utilizing the same electron-donating unit and electron-accepting segment to construct both polymeric donor and small molecular acceptors. The p-type polymer of PIDT-DTffBTA is designed by inserting conjugated bridge between indacenodithiophene (IDT) and fluorinated benzotriazole (BTA), while the n-type small molecules of BTAx (x = 1, 2, 3) are obtained by introducing different end-capped groups to BTA-IDT-BTA backbone. PIDT-DTffBTA: BTAx (x = 1-3) based photovolatic devices can realize high VOC of 1.21-1.37 V with the very small voltage loss (0.55-0.60 V), while only the PIDT-DTffBTA: BTA3 based device possesses the enough driving force for efficient hole and electron transfer and yields the optimal PCE of 5.67%, which is among the highest value for organic solar cells with a VOC beyond 1.20 V reported so far. Our results provide a simple and effective method to obtain fullerene-free organic solar cells with a high VOC and PCE.

  10. On the origin of red and blue shifts of X-H and C-H stretching vibrations in formic acid (formate ion) and proton donor complexes.

    PubMed

    Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel

    2007-01-08

    Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.

  11. An overview of molecular acceptors for organic solar cells

    NASA Astrophysics Data System (ADS)

    Hudhomme, Piétrick

    2013-07-01

    Organic solar cells (OSCs) have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  12. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

    PubMed

    Li, Yongfang

    2012-05-15

    Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole

  13. Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastham, Nicholas D.; Dudnik, Alexander S.; Aldrich, Thomas J.

    Perylenediimide (PDI) small molecule acceptor (SMA) crystallinity and donor polymer aggregation and crystallinity effects on bulk-heterojunction microstructure and polymer solar cell (PSC) performance are systematically investigated. Two highperformance polymers, semicrystalline poly[5-(2-hexyldodecyl)-4Hthieno[3,4-c]pyrrole-4,6(5H)-dione-1,3-yl-alt-4,4''dodecyl-2,2':5',2''- terthiophene-5,5''-diyl] (PTPD3T or D1) and amorphous poly{4,8- bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene- 2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-2-carboxylate-2,6-diyl) (PBDTT-FTTE or D2), are paired with three PDI-based SMAs (A1-A3) of differing crystallinity (A1 is the most, A3 is the least crystalline). The resulting PSC performance trends are strikingly different from those of typical fullerene-based PSCs and are highly material-dependent. The present trends reflect synergistic aggregation propensities between the SMA and polymer components. Importantly, the active layer morphology is templatedmore » by the PDI in some blends and by the polymer in others, with the latter largely governed by the polymer aggregation. Thus, PTPD3T templating capacity increases as self-aggregation increases (greater Mn), optimizing PSC performance with A2, while A3-based cells exhibit an inverse relationship between polymer aggregation and performance, which is dramatically different from fullerene-based PSCs. For PBDTT-FTTE, A2-based cells again deliver the highest PCEs of ~5%, but here both A2 and PBDTT-FTTE (medium Mn) template the morphology. Overall, the present results underscore the importance of nonfullerene acceptor aggregation for optimizing PSC performance and offer guidelines for pairing SMAs with acceptable donor polymers.« less

  14. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors

    EPA Science Inventory

    Lab- and pilot-scale simultaneous nitrification, denitrification and phosphorus removal-sequencing batch reactors were operated under cyclic anaerobic and micro-aerobic conditions. The use of oxygen, nitrite, and nitrate as electron acceptors by Candidatus Accumulibacter phosphat...

  15. Widely different luminescence lifetimes of the [Delta]RRR, [Lambda]SSS and the [Delta]RRS, [Lambda]SSR diastereomers of fac-tris[(8-quinolyl)phenylmethylsily] iridium(III): Exciplex formation with solvents by distinct [sigma]-donor and [pi]-acceptor binding mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djurovich, P.I.; Cook, W.; Joshi, R.

    1994-01-13

    Luminescence lifetimes ([tau][sub m]) of the [sigma]-bond-to-ligand charge-transfer (SBLCT) excited states of two diastereomers of fac-tris[(8-quinolyl)phenylmethylsilyl]iridium(III) differ by about a factor of 2 and are strongly solvent dependent. The [tau][sub m] values of the more symmetric [Delta]RRR, [Lambda]SSS diastereomer (A) are generally longer than those of the less symmetric [Delta]RRS, [Lambda]SSR diastereomer (B); [tau][sub m]'s of both diastereomers are substantially shortened relative to their values in aliphatic hydrocarbons by exciplex formation with a variety of weakly coordinating solvents including aromatic hydrocarbons, olefins, ethers, ketones, alcohols, and nitriles. Quenching constants (k[sub q]) due to exciplex formation are found to be muchmore » larger for B than they are for A in the [sigma]-donor solvents (cyclic ethers, ketones, alcohols, and nitriles); however, k[sub q] values of B are slightly smaller than those of A in [pi]-acceptor solvents (aromatic hydrocarbons, olefins). The results suggest that [sigma]-donor solvents form exciplexes by binding at the metal center, whereas [pi]-acceptor solvents bind at a quinolyl radical anion ligand site. A and B may prove useful as luminescent environmental probes which can distinguish between [sigma]-donor and [pi]-acceptor binding sites. 19 refs., 1 fig., 1 tab.« less

  16. An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors

    PubMed Central

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.

    2014-01-01

    ABSTRACT Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found. PMID:25425235

  17. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE PAGES

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; ...

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  18. Chemical and quantum simulation of electron transfer through a polypeptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ungar, L.W.; Voth, G.A.; Newton, M.D.

    1999-08-26

    Quantum rate theory, molecular dynamics simulations, and semiempirical electronic structure calculations are used to fully investigate electron transfer mediated by a solvated polypeptide for the first time. Using a stationary-phase approximation, the nonadiabatic electron-transfer rate constant is calculated from the nuclear free energies and the electronic coupling between the initial and final states. The former are obtained from quantum path integral and classical molecular dynamics simulations; the latter are calculated using semiempirical electronic structure calculations and the generalized Mulliken-Hush method. Importantly, no parameters are fit to kinetic data. The simulated system consists of a solvated four-proline polypeptide with a tris(bipyridine)rutheniummore » donor group and an oxypentamminecobalt acceptor group. From the simulation data entropy and energy contributions to the free energies are distinguished. Quantum suppression of the barrier, including important solvent contributions, is demonstrated. Although free energy profiles along the reaction coordinate are nearly parabolic, pronounced departures from harmonic behavior are found for the separate energy and entropy functions. Harmonic models of the system are compared to simulation results in order to quantify anharmonic effects. Electronic structure calculations show that electronic coupling elements vary considerably with system conformation, even when the effective donor-acceptor separation remains roughly constant. The calculations indicate that electron transfer in a significant range of conformations linking the polypeptide to the acceptor may contribute to the overall rate constant. After correction for limitations of the solvent model, the simulations and calculations agree well with the experimental activation energy and Arrhenius prefactor.« less

  19. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov.

    PubMed

    Kashefi, Kazem; Holmes, Dawn E; Reysenbach, Anna-Louise; Lovley, Derek R

    2002-04-01

    It has recently been recognized that the ability to use Fe(III) as a terminal electron acceptor is a highly conserved characteristic in hyperthermophilic microorganisms. This suggests that it may be possible to recover as-yet-uncultured hyperthermophiles in pure culture if Fe(III) is used as an electron acceptor. As part of a study of the microbial diversity of the Obsidian Pool area in Yellowstone National Park, Wyo., hot sediment samples were used as the inoculum for enrichment cultures in media containing hydrogen as the sole electron donor and poorly crystalline Fe(III) oxide as the electron acceptor. A pure culture was recovered on solidified, Fe(III) oxide medium. The isolate, designated FW-1a, is a hyperthermophilic anaerobe that grows exclusively by coupling hydrogen oxidation to the reduction of poorly crystalline Fe(III) oxide. Organic carbon is not required for growth. Magnetite is the end product of Fe(III) oxide reduction under the culture conditions evaluated. The cells are rod shaped, about 0.5 microm by 1.0 to 1.2 microm, and motile and have a single flagellum. Strain FW-1a grows at circumneutral pH, at freshwater salinities, and at temperatures of between 65 and 100 degrees C with an optimum of 85 to 90 degrees C. To our knowledge this is the highest temperature optimum of any organism in the Bacteria. Analysis of the 16S ribosomal DNA (rDNA) sequence of strain FW-1a places it within the Bacteria, most closely related to abundant but uncultured microorganisms whose 16S rDNA sequences have been previously recovered from Obsidian Pool and a terrestrial hot spring in Iceland. While previous studies inferred that the uncultured microorganisms with these 16S rDNA sequences were sulfate-reducing organisms, the physiology of the strain FW-1a, which does not reduce sulfate, indicates that these organisms are just as likely to be Fe(III) reducers. These results further demonstrate that Fe(III) may be helpful for recovering as-yet-uncultured microorganisms

  20. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    DOEpatents

    Liu, Yi; He, Bo; Pun, Andrew

    2015-11-24

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  1. Bay-annulated indigo (BAI) as an excellent electron accepting building block for high performance organic semiconductors

    DOEpatents

    Liu, Yi; He, Bo; Pun, Andrew

    2016-04-19

    A novel electron acceptor based on bay-annulated indigo (BAI) was synthesized and used for the preparation of a series of high performance donor-acceptor small molecules and polymers. The resulting materials possess low-lying LUMO energy level and small HOMO-LUMO gaps, while their films exhibited high crystallinity upon thermal treatment, commensurate with high field effect mobilities and ambipolar transfer characteristics.

  2. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions

    DOE PAGES

    Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.; ...

    2016-01-22

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of

  3. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of

  4. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions.

    PubMed

    Kwon, Man Jae; O'Loughlin, Edward J; Boyanov, Maxim I; Brulc, Jennifer M; Johnston, Eric R; Kemner, Kenneth M; Antonopoulos, Dionysios A

    2016-01-01

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.

  5. Effect of two intermediate electron donors, NADPH and FADH(2), on Spirulina Delta (6)-desaturase co-expressed with two different immediate electron donors, cytochrome b (5) and ferredoxin, in Escherichia coli.

    PubMed

    Kurdrid, Pavinee; Subudhi, Sanjukta; Cheevadhanarak, Supapon; Tanticharoen, Morakot; Hongsthong, Apiradee

    2007-12-01

    When the gene desD encoding Spirulina Delta(6)-desaturase was heterologously expressed in E. coli, the enzyme was expressed without the ability to function. However, when this enzyme was co-expressed with an immediate electron donor, i.e. the cytochrome b (5) domain from Mucor rouxii, the results showed the production of GLA (gamma-linolenic acid), the product of the reaction catalyzed by Delta(6)-desaturase. The results revealed that in E. coli cells, where cytochrome b (5) is absent and ferredoxin, a natural electron donor of Delta(6)-desaturase, is present at a very low level, the cytochrome b (5) domain can complement for the function of ferredoxin in the host cells. In the present study, the Spirulina-ferredoxin gene was cloned and co-expressed with the Delta(6)-desaturase in E. coli. In comparison to the co-expression of cytochrome b ( 5 ) with the Delta(6)-desaturase, the co-expression with ferredoxin did not cause any differences in the GLA level. Moreover, the cultures containing the Delta(6)-desaturase co-expressed with cytochrome b (5) and ferredoxin were exogenously supplied with the intermediate electron donors, NADPH (nicotinamide adenine dinucleotide phosphate, reduced form) and FADH(2) (flavin adenine dinucleotide, reduced form), respectively. The GLA level in these host cells increased drastically, by approximately 50%, compared to the cells without the intermediate electron donors. The data indicated that besides the level of immediate electron donors, the level of intermediate electron donors is also critical for GLA production. Therefore, if the pools of the immediate and intermediate electron donors in the cells are manipulated, the GLA production in the heterologous host will be affected.

  6. Acceptors in ZnO

    DOE PAGES

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; ...

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peakmore » in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.« less

  7. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column

    NASA Astrophysics Data System (ADS)

    Azizian, Mohammad F.; Marshall, Ian P. G.; Behrens, Sebastian; Spormann, Alfred M.; Semprini, Lewis

    2010-04-01

    A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to " Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support

  8. Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, D.-B.; Goan, H.-S.

    2008-11-07

    In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10{sup -6} that ismore » below the error threshold of 10{sup -4} required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.« less

  9. Molecular Design of Efficient Organic D-A-π -A Dye Featuring Triphenylamine as Donor Fragment for Application in Dye-Sensitized Solar Cells.

    PubMed

    Ferdowsi, Parnian; Saygili, Yasemin; Zhang, Weiwei; Edvinson, Tomas; Kavan, Ladislav; Mokhtari, Javad; Zakeeruddin, Shaik M; Grätzel, Michael; Hagfeldt, Anders

    2018-01-23

    A metal-free organic sensitizer, suitable for the application in dye-sensitized solar cells (DSSCs), has been designed, synthesized and characterized both experimentally and theoretically. The structure of the novel donor-acceptor-π-bridge-acceptor (D-A-π-A) dye incorporates a triphenylamine (TPA) segment and 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid (BTEBA). The triphenylamine unit is widely used as an electron donor for photosensitizers, owing to its nonplanar molecular configuration and excellent electron-donating capability, whereas 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid is used as an electron acceptor unit. The influences of I 3 - /I - , [Co(bpy) 3 ] 3+/2+ and [Cu(tmby) 2 ] 2+/+ (tmby=4,4',6,6'-tetramethyl-2,2'-bipyridine) as redox electrolytes on the DSSC device performance were also investigated. The maximal monochromatic incident photon-to-current conversion efficiency (IPCE) reached 81 % and the solar light to electrical energy conversion efficiency of devices with [Cu(tmby) 2 ] 2+/+ reached 7.15 %. The devices with [Co(bpy) 3 ] 3+/2+ and I 3 - /I - electrolytes gave efficiencies of 5.22 % and 6.14 %, respectively. The lowest device performance with a [Co(bpy) 3 ] 3+/2+ -based electrolyte is attributed to increased charge recombination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bi-anchoring organic sensitizers of type D-(π-A)2 comprising thiophene-2-acetonitrile as π-spacer and malonic acid as electron acceptor for dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Reddy, Gachumale Saritha; Ramkumar, Sekar; Asiri, Abdullah M.; Anandan, Sambandam

    2015-06-01

    Two new bi-anchoring organic sensitizers of type D-(π-A)2 comprising the identical π-spacer (thiophene-2-acetonitrile) and electron acceptor (malonic acid) but different aryl amine as electron donors (diphenylamine and carbazole) were synthesized, characterized and fabricated metal free dye-sensitized solar cell devices. The intra molecular charge transfer property and electrochemical property of these dyes were investigated by molecular absorption, emission, cyclic voltammetric experiments and in addition, quantum chemical calculation studies were performed to provide sufficient driving force for the electron injection into the conduction band of TiO2 which leads to efficient charge collection. Among the fabricated devices, carbazole based device exhibits high current conversion efficiency (η = 4.7%) with a short circuit current density (JSC) 15.3 mA/cm2, an open circuit photo voltage (VOC) of 0.59 V and a fill factor of 0.44 under AM 1.5 illumination (85 mW/cm2) compared to diphenylamine based device.

  11. Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits.

    PubMed

    Cui, Mengchao; Ono, Masahiro; Watanabe, Hiroyuki; Kimura, Hiroyuki; Liu, Boli; Saji, Hideo

    2014-03-05

    The deposition of β-amyloid (Aβ) plaques in the parenchymal and cortical brain is accepted as the main pathological hallmark of Alzheimer's disease (AD); however, early detection of AD still presents a challenge. With the assistance of molecular imaging techniques, imaging agents specifically targeting Aβ plaques in the brain may lead to the early diagnosis of AD. Herein, we report the design, synthesis, and evaluation of a series of smart near-infrared fluorescence (NIRF) imaging probes with donor-acceptor architecture bridged by a conjugated π-electron chain for Aβ plaques. The chemical structure of these NIRF probes is completely different from Congo Red and Thioflavin-T. Probes with a longer conjugated π system (carbon-carbon double bond) displayed maximum emission in PBS (>650 nm), which falls in the best range for NIRF probes. These probes were proved to have affinity to Aβ plaques in fluorescent staining of brain sections from an AD patient and double transgenic mice, as well as in an in vitro binding assay using Aβ(1-42) aggregates. One probe with high affinity (K(i) = 37 nM, K(d) = 27 nM) was selected for in vivo imaging. It can penetrate the blood-brain barrier of nude mice efficiently and is quickly washed out of the normal brain. Moreover, after intravenous injection of this probe, 22-month-old APPswe/PSEN1 mice exhibited a higher relative signal than control mice over the same period of time, and ex vivo fluorescent observations confirmed the existence of Aβ plaques. In summary, this probe meets most of the requirements for a NIRF contrast agent for the detection of Aβ plaques both in vitro and in vivo.

  12. Uranium reduction and microbial community development in response to stimulation with different electron donors.

    PubMed

    Barlett, Melissa; Moon, Hee Sun; Peacock, Aaron A; Hedrick, David B; Williams, Kenneth H; Long, Philip E; Lovley, Derek; Jaffe, Peter R

    2012-07-01

    Stimulating microbial reduction of soluble U(VI) to less soluble U(IV) shows promise as an in situ bioremediation strategy for uranium contaminated groundwater, but the optimal electron donors for promoting this process have yet to be identified. The purpose of this study was to better understand how the addition of various electron donors to uranium-contaminated subsurface sediments affected U(VI) reduction and the composition of the microbial community. The simple electron donors, acetate or lactate, or the more complex donors, hydrogen-release compound (HRC) or vegetable oil, were added to the sediments incubated in flow-through columns. The composition of the microbial communities was evaluated with quantitative PCR probing specific 16S rRNA genes and functional genes, phospholipid fatty acid analysis, and clone libraries. All the electron donors promoted U(VI) removal, even though the composition of the microbial communities was different with each donor. In general, the overall biomass, rather than the specific bacterial species, was the factor most related to U(VI) removal. Vegetable oil and HRC were more effective in stimulating U(VI) removal than acetate. These results suggest that the addition of more complex organic electron donors could be an excellent option for in situ bioremediation of uranium-contaminated groundwater.

  13. Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation

    NASA Astrophysics Data System (ADS)

    Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.

    2017-11-01

    Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.

  14. Contorted Organic Semiconductors for Molecular Electronics

    NASA Astrophysics Data System (ADS)

    Zhong, Yu

    This thesis focuses on the synthesis, properties and applications of two types of contorted organic molecules: contorted molecular ribbons and conjugated corrals. We utilized the power of reaction chemistry to writing information into conjugated molecules with contorted structures and studied "structure-property" relationships. The unique properties of the molecules were expressed in electronic and optoelectronic devices such as field-effect transistors, solar cells, photodetectors, etc. In Chapter 2, I describe the design and synthesis of a new graphene ribbon architecture that consists of perylenediimide (PDI) subunits fused together by ethylene bridges. We created a prototype series of oligomers consisting of the dimer, trimer, and tetramer. The steric congestion at the fusion point between the PDI units creates helical junctions, and longer oligomers form helical ribbons. Thin films of these oligomers form the active layer in n-type field effect transistors. UV-vis spectroscopy reveals the emergence of an intense long-wavelength transition in the tetramer. From DFT calculations, we find that the HOMO-2 to LUMO transition is isoenergetic with the HOMO to LUMO transition in the tetramer. We probe these transitions directly using femtosecond transient absorption spectroscopy. The HOMO-2 to LUMO transition electronically connects the PDI subunits with the ethylene bridges, and its energy depends on the length of the oligomer. In Chapter 3, I describe an efficiency of 6.1% for a solution processed non-fullerene solar cell using a helical PDI dimer as the electron acceptor. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces, indicating that charge carriers are created from photogenerated excitons in both the electron donor and acceptor phases. Light-intensity-dependent current?voltage measurements suggested different recombination rates under short-circuit and open-circuit conditions. In

  15. Symmetry-breaking charge transfer in a zinc chlorodipyrrin acceptor for high open circuit voltage organic photovoltaics.

    PubMed

    Bartynski, Andrew N; Gruber, Mark; Das, Saptaparna; Rangan, Sylvie; Mollinger, Sonya; Trinh, Cong; Bradforth, Stephen E; Vandewal, Koen; Salleo, Alberto; Bartynski, Robert A; Bruetting, Wolfgang; Thompson, Mark E

    2015-04-29

    Low open-circuit voltages significantly limit the power conversion efficiency of organic photovoltaic devices. Typical strategies to enhance the open-circuit voltage involve tuning the HOMO and LUMO positions of the donor (D) and acceptor (A), respectively, to increase the interfacial energy gap or to tailor the donor or acceptor structure at the D/A interface. Here, we present an alternative approach to improve the open-circuit voltage through the use of a zinc chlorodipyrrin, ZCl [bis(dodecachloro-5-mesityldipyrrinato)zinc], as an acceptor, which undergoes symmetry-breaking charge transfer (CT) at the donor/acceptor interface. DBP/ZCl cells exhibit open-circuit voltages of 1.33 V compared to 0.88 V for analogous tetraphenyldibenzoperyflanthrene (DBP)/C60-based devices. Charge transfer state energies measured by Fourier-transform photocurrent spectroscopy and electroluminescence show that C60 forms a CT state of 1.45 ± 0.05 eV in a DBP/C60-based organic photovoltaic device, while ZCl as acceptor gives a CT state energy of 1.70 ± 0.05 eV in the corresponding device structure. In the ZCl device this results in an energetic loss between E(CT) and qV(OC) of 0.37 eV, substantially less than the 0.6 eV typically observed for organic systems and equal to the recombination losses seen in high-efficiency Si and GaAs devices. The substantial increase in open-circuit voltage and reduction in recombination losses for devices utilizing ZCl demonstrate the great promise of symmetry-breaking charge transfer in organic photovoltaic devices.

  16. Computational study of the RGD-peptide interactions with perovskite-type BFO-(1 1 1) membranes under aqueous conditions

    NASA Astrophysics Data System (ADS)

    Li, Hai-long; Bian, Liang; Hou, Wen-ping; Dong, Fa-Qin; Song, Mian-Xin; Zhang, Xiao-yan; Wang, Li-sheng

    2016-07-01

    We elucidated a number of facets regarding arginine-glycine-aspartate (RGD)-bismuth ferrite (BFO)-(1 1 1) membrane interactions and reactivity that have previously remained unexplored on a molecular level. Results demonstrate the intra-molecular interaction facilitates a ;horseshoe; structure of RGD adsorbed onto the BFO-(1 1 1) membrane, through the electrostatic (Asp-cation-Fe) and water-bridge (Osbnd H2O and H2Osbnd NH2) interactions. The effect of structural and electron-transfer interactions is attributed to the cation-valences, indicating that the divalent cations are electron-acceptors and the monovalent cations as electron-donors. Notably, the strongly bound Ca2+ ion exerts a ;gluing; effect on the Asp-side-chain, indicating a tightly packed RGD-BFO configuration. Thus, modulating the biological response of BFO-(1 1 1) membrane will allow us to design more appropriate interfaces for implantable diagnostic and therapeutic perovskite-type micro-devices.

  17. Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors.

    PubMed

    Freeborn, Ryan A; West, Kimberlee A; Bhupathiraju, Vishvesh K; Chauhan, Sadhana; Rahm, Brian G; Richardson, Ruth E; Alvarez-Cohen, Lisa

    2005-11-01

    Two rapidly fermented electron donors, lactate and methanol, and two slowly fermented electron donors, propionate and butyrate, were selected for enrichment studies to evaluate the characteristics of anaerobic microbial consortia that reductively dechlorinate TCE to ethene. Each electron donor enrichment subculture demonstrated the ability to dechlorinate TCE to ethene through several serial transfers. Microbial community analyses based upon 16S rDNA, including terminal restriction fragment length polymorphism (T-RFLP) and clone library/sequencing, were performed to assess major changes in microbial community structure associated with electron donors capable of stimulating reductive dechlorination. Results demonstrated that five phylogenic subgroups or genera of bacteria were present in all consortia, including Dehalococcoides sp., low G+C Gram-positives (mostly Clostridium and Eubacterium sp.), Bacteroides sp., Citrobacter sp., and delta Proteobacteria (mostly Desulfovibrio sp.). Phylogenetic association indicates that only minor shifts in the microbial community structure occurred between the four alternate electron donor enrichments and the parent consortium. Inconsistent detection of Dehalococcoides spp. in clone libraries and T-RFLP of enrichment subcultures was resolved using quantitative polymerase chain reaction (Q-PCR). Q-PCR with primers specific to Dehalococcoides 16S rDNA resulted in positive detection of this species in all enrichments. Our results suggest that TCE-dechlorinating consortia can be stably maintained on a variety of electron donors and that quantities of Dehalococcoides cells detected with Dehalococcoides specific 16S rDNA primer/probe sets do not necessarily correlate well with solvent degradation rates.

  18. Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence

    NASA Astrophysics Data System (ADS)

    Wong, Michael L.; Charnay, Benjamin D.; Gao, Peter; Yung, Yuk L.; Russell, Michael J.

    2017-10-01

    We quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning. Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO, HNO2, HNO3, and HO2NO2 that rain into the ocean. There, they dissociate into or react to form nitrate and nitrite. We present new calculations based on a novel combination of early-Earth global climate model and photochemical modeling, and we predict the flux of NOx to the Hadean ocean. In our 0.1-, 1-, and 10-bar pCO2 models, we calculate the NOx delivery to be 2.4 × 105, 6.5 × 108, and 1.9 × 108 molecules cm-2 s-1. After only tens of thousands to tens of millions of years, these NOx fluxes are expected to produce sufficient (micromolar) ocean concentrations of high-potential electron acceptors for the emergence of life.

  19. Fragment-based Quantum Mechanical/Molecular Mechanical Simulations of Thermodynamic and Kinetic Process of the Ru2+-Ru3+ Self-Exchange Electron Transfer.

    PubMed

    Zeng, Xiancheng; Hu, Xiangqian; Yang, Weitao

    2012-12-11

    A fragment-based fractional number of electron (FNE) approach, is developed to study entire electron transfer (ET) processes from the electron donor region to the acceptor region in condensed phase. Both regions are described by the density-fragment interaction (DFI) method while FNE as an efficient ET order parameter is applied to simulate the electron transfer process. In association with the QM/MM energy expression, the DFI-FNE method is demonstrated to describe ET processes robustly with the Ru 2+ -Ru 3+ self-exchange ET as a proof-of-concept example. This method allows for systematic calculations of redox free energies, reorganization energies, and electronic couplings, and the absolute ET rate constants within the Marcus regime.

  20. Carbon nanotubes--electronic/electrochemical properties and application for nanoelectronics and photonics.

    PubMed

    Sgobba, Vito; Guldi, Dirk M

    2009-01-01

    The fundamental chemical, redox, electrochemical, photoelectrochemical, optical and optoelectronic features of carbon nanotubes are surveyed with particular emphasis on the most relevant applications as electron donor/electron acceptor or as electron conductor/hole conductor materials, in solutions and in the solid state. Methods that aim at p- and n-doping as a means to favor hole or electron injection/transport are covered as well (critical review, 208 references).