Sample records for electron dose calculation

  1. Dose computation for therapeutic electron beams

    NASA Astrophysics Data System (ADS)

    Glegg, Martin Mackenzie

    The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).

  2. Thermoluminescent dosimetry in electron beams: energy dependence.

    PubMed

    Robar, V; Zankowski, C; Olivares Pla, M; Podgorsak, E B

    1996-05-01

    The response of thermoluminescent dosimeters to electron irradiations depends on the radiation dose, mean electron energy at the position of the dosimeter in phantom, and the size of the dosimeter. In this paper the semi-empirical expression proposed by Holt et al. [Phys. Med. Biol. 20, 559-570 (1975)] is combined with the calculated electron dose fraction to determine the thermoluminescent dosimetry (TLD) response as a function of the mean electron energy and the dosimeter size. The electron and photon dose fractions, defined as the relative contributions of electrons and bremsstrahlung photons to the total dose for a clinical electron beam, are calculated with Monte Carlo techniques using EGS4. Agreement between the calculated and measured TLD response is very good. We show that the considerable reduction in TLD response per unit dose at low electron energies, i.e., at large depths in phantom, is offset by an ever-increasing relative contribution of bremsstrahlung photons to the total dose of clinical electron beams. This renders the TLD sufficiently reliable for dose measurements over the entire electron depth dose distribution despite the dependence of the TLD response on electron beam energy.

  3. Evaluation of the Eclipse eMC algorithm for bolus electron conformal therapy using a standard verification dataset.

    PubMed

    Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A

    2016-05-08

    The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and < 0.2% statistical uncertainties. The accuracy of the dose calculations using moderate smoothing and no smooth-ing were evaluated. Dose differences (eMC-calculated less measured dose) were evaluated in terms of absolute dose difference, where 100% equals the given dose, as well as distance to agreement (DTA). Dose calculations were also evaluated for calculation speed. Results from the eMC for the retromolar trigone phantom using 1% statistical uncertainty without smoothing showed calculated dose at 89% (41/46) of the measured TLD-dose points was within 3% dose difference or 3 mm DTA of the measured value. The average dose difference was -0.21%, and the net standard deviation was 2.32%. Differences as large as 3.7% occurred immediately distal to the mandible bone. Results for the nose phantom, using 1% statistical uncertainty without smoothing, showed calculated dose at 93% (53/57) of the measured TLD-dose points within 3% dose difference or 3 mm DTA. The average dose difference was 1.08%, and the net standard deviation was 3.17%. Differences as large as 10% occurred lateral to the nasal air cavities. Including smoothing had insignificant effects on the accuracy of the retromolar trigone phantom calculations, but reduced the accuracy of the nose phantom calculations in the high-gradient dose areas. Dose calculation times with 1% statistical uncertainty for the retromolar trigone and nose treatment plans were 30 s and 24 s, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.

  4. Electron fluence correction factors for various materials in clinical electron beams.

    PubMed

    Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P

    2001-08-01

    Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.

  5. Monte Carlo based electron treatment planning and cutout output factor calculations

    NASA Astrophysics Data System (ADS)

    Mitrou, Ellis

    Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.

  6. Dose specification for radiation therapy: dose to water or dose to medium?

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Li, Jinsheng

    2011-05-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  7. Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections.

    PubMed

    Wiklund, Kristin; Olivera, Gustavo H; Brahme, Anders; Lind, Bengt K

    2008-07-01

    To speed up dose calculation, an analytical pencil-beam method has been developed to calculate the mean radial dose distributions due to secondary electrons that are set in motion by light ions in water. For comparison, radial dose profiles calculated using a Monte Carlo technique have also been determined. An accurate comparison of the resulting radial dose profiles of the Bragg peak for (1)H(+), (4)He(2+) and (6)Li(3+) ions has been performed. The double differential cross sections for secondary electron production were calculated using the continuous distorted wave-eikonal initial state method (CDW-EIS). For the secondary electrons that are generated, the radial dose distribution for the analytical case is based on the generalized Gaussian pencil-beam method and the central axis depth-dose distributions are calculated using the Monte Carlo code PENELOPE. In the Monte Carlo case, the PENELOPE code was used to calculate the whole radial dose profile based on CDW data. The present pencil-beam and Monte Carlo calculations agree well at all radii. A radial dose profile that is shallower at small radii and steeper at large radii than the conventional 1/r(2) is clearly seen with both the Monte Carlo and pencil-beam methods. As expected, since the projectile velocities are the same, the dose profiles of Bragg-peak ions of 0.5 MeV (1)H(+), 2 MeV (4)He(2+) and 3 MeV (6)Li(3+) are almost the same, with about 30% more delta electrons in the sub keV range from (4)He(2+)and (6)Li(3+) compared to (1)H(+). A similar behavior is also seen for 1 MeV (1)H(+), 4 MeV (4)He(2+) and 6 MeV (6)Li(3+), all classically expected to have the same secondary electron cross sections. The results are promising and indicate a fast and accurate way of calculating the mean radial dose profile.

  8. Radiation leakage dose from Elekta electron collimation system

    PubMed Central

    Hogstrom, Kenneth R.; Carver, Robert L.

    2016-01-01

    This study provided baseline data required for a greater project, whose objective was to design a new Elekta electron collimation system having significantly lighter electron applicators with equally low out‐of field leakage dose. Specifically, off‐axis dose profiles for the electron collimation system of our uniquely configured Elekta Infinity accelerator with the MLCi2 treatment head were measured and calculated for two primary purposes: 1) to evaluate and document the out‐of‐field leakage dose in the patient plane and 2) to validate the dose distributions calculated using a BEAMnrc Monte Carlo (MC) model for out‐of‐field dose profiles. Off‐axis dose profiles were measured in a water phantom at 100 cm SSD for 1 and 2 cm depths along the in‐plane, cross‐plane, and both diagonal axes using a cylindrical ionization chamber with the 10×10 and 20×20 cm2 applicators and 7, 13, and 20 MeV beams. Dose distributions were calculated using a previously developed BEAMnrc MC model of the Elekta Infinity accelerator for the same beam energies and applicator sizes and compared with measurements. Measured results showed that the in‐field beam flatness met our acceptance criteria (±3% on major and ±4% on diagonal axes) and that out‐of‐field mean and maximum percent leakage doses in the patient plane met acceptance criteria as specified by the International Electrotechnical Commission (IEC). Cross‐plane out‐of‐field dose profiles showed greater leakage dose than in‐plane profiles, attributed to the curved edges of the upper X‐ray jaws and multileaf collimator. Mean leakage doses increased with beam energy, being 0.93% and 0.85% of maximum central axis dose for the 10×10 and 20×20 cm2 applicators, respectively, at 20 MeV. MC calculations predicted the measured dose to within 0.1% in most profiles outside the radiation field; however, excluding modeling of nontrimmer applicator components led to calculations exceeding measured data by as much as 0.2% for some regions along the in‐plane axis. Using EGSnrc LATCH bit filtering to separately calculate out‐of‐field leakage dose components (photon dose, primary electron dose, and electron dose arising from interactions in various collimating components), MC calculations revealed that the primary electron dose in the out‐of‐field leakage region was small and decreased as beam energy increased. Also, both the photon dose component and electron dose component resulting from collimator scatter dominated the leakage dose, increasing with increasing beam energy. We concluded that our custom Elekta Infinity with the MLCi2 treatment head met IEC leakage dose criteria in the patient plane. Also, accuracy of our MC model should be sufficient for our use in the design of a new, improved electron collimation system. PACS number(s): 87.56.nk, 87.10.Rt, 87.56.J PMID:27685101

  9. SU-E-T-645: Dose Enhancement to Cell Nucleus Due to Hard Collisions of Protons with Electrons in Gold Nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, J; Krishnan, S

    2014-06-15

    Purpose: The purpose of this study was to investigate the theoretical dose enhancement to a cell nucleus due to increased fluence of secondary electrons when gold nanospheres are present in the cytoplasm during proton therapy. Methods: We modeled the irradiation of prostate cancer cells using protons of variable energies when 10,000 gold nanoparticles, each with radius of 10 nm, were randomly distributed in the cytoplasm. Using simple analytical equations, we calculated the increased mean dose to the cell nucleus due to secondary electrons produced by hard collisions of 0.1, 1, 10, and 100 MeV protons with orbital electrons in gold.more » We only counted electrons with kinetic energy higher than 1 keV. In addition to calculating the increase in the mean dose to the cell nucleus, we also calculated the increase in local dose in the “shadow,” i.e., the umbra, of individual gold nanospheres due to forward scattered electrons. Results: For proton energies of 0.1, 1, 10, and 100 MeV, we calculated increases to the mean nuclear dose of 0.15, 0.09, 0.05, and 0.04%, respectively. When we considered local dose increases in the shadows of individual gold spheres, we calculated local dose increases of 5.5, 3.2, 1.9, and 1.3%, respectively. Conclusion: We found negligible, less than 0.2%, increases in the mean dose to the cell nucleus due to electrons produced by hard collisions of protons with electrons in gold nanospheres. However, we observed increases up to 5.5% in the local dose in the shadow of gold nanospheres. Considering the shadow radius of 10 nm, these local dose enhancements may have implications for slightly increased probability of clustered DNA damage when gold nanoparticles are close to the nuclear membrane.« less

  10. A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector.

    PubMed

    Asuni, G; Jensen, J M; McCurdy, B M C

    2011-02-21

    A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle(3) dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the contaminant electron source model of the Eclipse AAA dose algorithm. The off-axis coefficient in the Pinnacle(3) dose calculation algorithm decreases in the presence of TRD compared to without the device. The electron model parameters were modified to reflect the increase in electron contamination with the TRD, a necessary step for accurate beam modeling when using the device.

  11. Paediatric electronic infusion calculator: An intervention to eliminate infusion errors in paediatric critical care.

    PubMed

    Venkataraman, Aishwarya; Siu, Emily; Sadasivam, Kalaimaran

    2016-11-01

    Medication errors, including infusion prescription errors are a major public health concern, especially in paediatric patients. There is some evidence that electronic or web-based calculators could minimise these errors. To evaluate the impact of an electronic infusion calculator on the frequency of infusion errors in the Paediatric Critical Care Unit of The Royal London Hospital, London, United Kingdom. We devised an electronic infusion calculator that calculates the appropriate concentration, rate and dose for the selected medication based on the recorded weight and age of the child and then prints into a valid prescription chart. Electronic infusion calculator was implemented from April 2015 in Paediatric Critical Care Unit. A prospective study, five months before and five months after implementation of electronic infusion calculator, was conducted. Data on the following variables were collected onto a proforma: medication dose, infusion rate, volume, concentration, diluent, legibility, and missing or incorrect patient details. A total of 132 handwritten prescriptions were reviewed prior to electronic infusion calculator implementation and 119 electronic infusion calculator prescriptions were reviewed after electronic infusion calculator implementation. Handwritten prescriptions had higher error rate (32.6%) as compared to electronic infusion calculator prescriptions (<1%) with a p  < 0.001. Electronic infusion calculator prescriptions had no errors on dose, volume and rate calculation as compared to handwritten prescriptions, hence warranting very few pharmacy interventions. Use of electronic infusion calculator for infusion prescription significantly reduced the total number of infusion prescribing errors in Paediatric Critical Care Unit and has enabled more efficient use of medical and pharmacy time resources.

  12. Effect of age-dependent bone electron density on the calculated dose distribution from kilovoltage and megavoltage photon and electron radiotherapy in paediatric MRI-only treatment planning.

    PubMed

    Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Saeedi-Moghadam, M; Jalli, R; Sina, S

    2018-01-01

    MRI-only treatment planning (TP) can be advantageous in paediatric radiotherapy. However, electron density extraction is necessary for dose calculation. Normally, after bone segmentation, a bulk density is assigned. However, the variation of bone bulk density in patients makes the creation of pseudo CTs challenging. This study aims to assess the effects of bone density variations in children on radiation attenuation and dose calculation for MRI-only TP. Bone contents of <15-year-old children were calculated, and substituted in the Oak Ridge National Laboratory paediatric phantoms. The percentage depth dose and beam profile of 150 kVp and 6 MV photon and 6 MeV electron beams were then calculated using Xcom, MCNPX (Monte Carlo N-particle version X) and ORLN phantoms. Using 150 kVp X-rays, the difference in attenuation coefficient was almost 5% between an 11-year-old child and a newborn, and ~8% between an adult and a newborn. With megavoltage radiation, the differences were smaller but still important. For an 18 MV photon beam, the difference of radiation attenuation between an 11-year-old child and a newborn was 4% and ~7.4% between an adult and a newborn. For 6 MeV electrons, dose differences were observed up to the 2 cm depth. The percentage depth dose difference between 1 and 10-year-olds was 18.5%, and between 10 and 15-year-olds was 24%. The results suggest that for MRI-only TP of photon- or electron-beam radiotherapy, the bone densities of each age group should be defined separately for accurate dose calculation. Advances in knowledge: This study highlights the need for more age-specific determination of bone electron density for accurate dose calculations in paediatric MRI-only radiotherapy TP.

  13. Construction of new skin models and calculation of skin dose coefficients for electron exposures

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Kim, Chan Hyeong; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Jeong, Jong Hwi

    2016-08-01

    The voxel-type reference phantoms of the International Commission on Radiological Protection (ICRP), due to their limited voxel resolutions, cannot represent the 50- μm-thick radiosensitive target layer of the skin necessary for skin dose calculations. Alternatively, in ICRP Publication 116, the dose coefficients (DCs) for the skin were calculated approximately, averaging absorbed dose over the entire skin depth of the ICRP phantoms. This approximation is valid for highly-penetrating radiations such as photons and neutrons, but not for weakly penetrating radiations like electrons due to the high gradient in the dose distribution in the skin. To address the limitation, the present study introduces skin polygon-mesh (PM) models, which have been produced by converting the skin models of the ICRP voxel phantoms to a high-quality PM format and adding a 50- μm-thick radiosensitive target layer into the skin models. Then, the constructed skin PM models were implemented in the Geant4 Monte Carlo code to calculate the skin DCs for external exposures of electrons. The calculated values were then compared with the skin DCs of the ICRP Publication 116. The results of the present study show that for high-energy electrons (≥ 1 MeV), the ICRP-116 skin DCs are, indeed, in good agreement with the skin DCs calculated in the present study. For low-energy electrons (< 1 MeV), however, significant discrepancies were observed, and the ICRP-116 skin DCs underestimated the skin dose as much as 15 times for some energies. Besides, regardless of the small tissue weighting factor of the skin ( w T = 0.01), the discrepancies in the skin dose were found to result in significant discrepancies in the effective dose, demonstarting that the effective DCs in ICRP-116 are not reliable for external exposure to electrons.

  14. Monte Carlo dose calculations of beta-emitting sources for intravascular brachytherapy: a comparison between EGS4, EGSnrc, and MCNP.

    PubMed

    Wang, R; Li, X A

    2001-02-01

    The dose parameters for the beta-particle emitting 90Sr/90Y source for intravascular brachytherapy (IVBT) have been calculated by different investigators. At a distant distance from the source, noticeable differences are seen in these parameters calculated using different Monte Carlo codes. The purpose of this work is to quantify as well as to understand these differences. We have compared a series of calculations using an EGS4, an EGSnrc, and the MCNP Monte Carlo codes. Data calculated and compared include the depth dose curve for a broad parallel beam of electrons, and radial dose distributions for point electron sources (monoenergetic or polyenergetic) and for a real 90Sr/90Y source. For the 90Sr/90Y source, the doses at the reference position (2 mm radial distance) calculated by the three code agree within 2%. However, the differences between the dose calculated by the three codes can be over 20% in the radial distance range interested in IVBT. The difference increases with radial distance from source, and reaches 30% at the tail of dose curve. These differences may be partially attributed to the different multiple scattering theories and Monte Carlo models for electron transport adopted in these three codes. Doses calculated by the EGSnrc code are more accurate than those by the EGS4. The two calculations agree within 5% for radial distance <6 mm.

  15. Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.

    PubMed

    Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W

    1998-05-01

    The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.

  16. WE-E-18A-05: Bremsstrahlung of Laser-Plasma Interaction at KeV Temperature: Forward Dose and Attenuation Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez-Beltran, M; Fernandez Gonzalez, F

    2014-06-15

    Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less

  17. SU-E-T-357: Electronic Compensation Technique to Deliver Total Body Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakeman, T; Wang, I; Podgorsak, M

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient’s immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has conventionally been used to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Methods: Treatment plans utilizing electronic compensation to deliver a total body dose were created retrospectively for patients for whom CTmore » data had been previously acquired. Each treatment plan includes two, specifically weighted, pair of opposed fields. One pair of open, large fields (collimator=45°), to encompass the patient’s entire anatomy, and one pair of smaller fields (collimator=0°) focused only on the thicker midsection of the patient. The optimal fluence for each one of the smaller fields was calculated at a patient specific penetration depth. Irregular surface compensators provide a more uniform dose distribution within the smaller opposed fields. Results: Dose-volume histograms (DVH) were calculated for the evaluating the electronic compensation technique. In one case, the maximum body doses calculated from the DVH were reduced from the non-compensated 195.8% to 165.3% in the electronically compensated plans, indicating a more uniform dose with the region of electronic compensation. The mean body doses calculated from the DVH were also reduced from the non-compensated 120.6% to 112.7% in the electronically compensated plans, indicating a more accurate delivery of the prescription dose. All calculated monitor units were well within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not substantially increase the beam on time while it can significantly reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, R; Popple, R; Benhabib, S

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10{sup 9}),more » resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT.« less

  19. Comparison of Calculations and Measurements of the Off-Axis Radiation Dose (SI) in Liquid Nitrogen as a Function of Radiation Length.

    DTIC Science & Technology

    1984-12-01

    radiation lengths. The off-axis dose in Silicon was calculated using the electron/photon transport code CYLTRAN and measured using thermal luminescent...various path lengths out to 2 radiation lengths. The cff-axis dose in Silicon was calculated using the electron/photon transport code CYLTRAN and measured... using thermal luminescent dosimeters (TLD’s). Calculations were performed on a CDC-7600 computer at Los Alamos National Laboratory and measurements

  20. SU-E-T-632: Preliminary Study On Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L; Eldib, A; Li, J

    Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reducemore » the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin.« less

  1. WE-E-18A-06: To Remove Or Not to Remove: Comfort Pads From Beneath Neonates for Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, X; Baad, M; Reiser, I

    2014-06-15

    Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less

  2. Coupled particle-in-cell and Monte Carlo transport modeling of intense radiographic sources

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Welch, D. R.; Oliver, B. V.; Clark, R. E.; Johnson, D. L.; Maenchen, J. E.; Menge, P. R.; Olson, C. L.; Rovang, D. C.

    2002-03-01

    Dose-rate calculations for intense electron-beam diodes using particle-in-cell (PIC) simulations along with Monte Carlo electron/photon transport calculations are presented. The electromagnetic PIC simulations are used to model the dynamic operation of the rod-pinch and immersed-B diodes. These simulations include algorithms for tracking electron scattering and energy loss in dense materials. The positions and momenta of photons created in these materials are recorded and separate Monte Carlo calculations are used to transport the photons to determine the dose in far-field detectors. These combined calculations are used to determine radiographer equations (dose scaling as a function of diode current and voltage) that are compared directly with measured dose rates obtained on the SABRE generator at Sandia National Laboratories.

  3. Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Li, J. S.; Deng, J.; Fan, J.

    2008-02-01

    Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife® SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head & neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations.

  4. CT image electron density quantification in regions with metal implants: implications for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Jechel, Christopher Alexander

    In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebe, M; Pacaci, P; Mabhouti, H

    Purpose: In this study, the two available calculation algorithms of the Varian Eclipse treatment planning system(TPS), the electron Monte Carlo(eMC) and General Gaussian Pencil Beam(GGPB) algorithms were used to compare measured and calculated peripheral dose distribution of electron beams. Methods: Peripheral dose measurements were carried out for 6, 9, 12, 15, 18 and 22 MeV electron beams of Varian Triology machine using parallel plate ionization chamber and EBT3 films in the slab phantom. Measurements were performed for 6×6, 10×10 and 25×25cm{sup 2} cone sizes at dmax of each energy up to 20cm beyond the field edges. Using the same filmmore » batch, the net OD to dose calibration curve was obtained for each energy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution measured using parallel plate ionization chamber and EBT3 film and calculated by eMC and GGPB algorithms were compared. The measured and calculated data were then compared to find which algorithm calculates peripheral dose distribution more accurately. Results: The agreement between measurement and eMC was better than GGPB. The TPS underestimated the out of field doses. The difference between measured and calculated doses increase with the cone size. The largest deviation between calculated and parallel plate ionization chamber measured dose is less than 4.93% for eMC, but it can increase up to 7.51% for GGPB. For film measurement, the minimum gamma analysis passing rates between measured and calculated dose distributions were 98.2% and 92.7% for eMC and GGPB respectively for all field sizes and energies. Conclusion: Our results show that the Monte Carlo algorithm for electron planning in Eclipse is more accurate than previous algorithms for peripheral dose distributions. It must be emphasized that the use of GGPB for planning large field treatments with 6 MeV could lead to inaccuracies of clinical significance.« less

  6. Latent uncertainties of the precalculated track Monte Carlo method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, Marc-André; Seuntjens, Jan; Roberge, David

    Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited numbermore » of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D{sub max}. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. Conclusions: The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.« less

  7. Latent uncertainties of the precalculated track Monte Carlo method.

    PubMed

    Renaud, Marc-André; Roberge, David; Seuntjens, Jan

    2015-01-01

    While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Particle tracks were pregenerated for electrons and protons using EGSnrc and geant4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (cuda) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a "ground truth" benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of Dmax. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤ 1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.

  8. TU-F-CAMPUS-T-05: A Cloud-Based Monte Carlo Dose Calculation for Electron Cutout Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, T; Bush, K

    Purpose: For electron cutouts of smaller sizes, it is necessary to verify electron cutout factors due to perturbations in electron scattering. Often, this requires a physical measurement using a small ion chamber, diode, or film. The purpose of this study is to develop a fast Monte Carlo based dose calculation framework that requires only a smart phone photograph of the cutout and specification of the SSD and energy to determine the electron cutout factor, with the ultimate goal of making this cloud-based calculation widely available to the medical physics community. Methods: The algorithm uses a pattern recognition technique to identifymore » the corners of the cutout in the photograph as shown in Figure 1. It then corrects for variations in perspective, scaling, and translation of the photograph introduced by the user’s positioning of the camera. Blob detection is used to identify the portions of the cutout which comprise the aperture and the portions which are cutout material. This information is then used define physical densities of the voxels used in the Monte Carlo dose calculation algorithm as shown in Figure 2, and select a particle source from a pre-computed library of phase-spaces scored above the cutout. The electron cutout factor is obtained by taking a ratio of the maximum dose delivered with the cutout in place to the dose delivered under calibration/reference conditions. Results: The algorithm has been shown to successfully identify all necessary features of the electron cutout to perform the calculation. Subsequent testing will be performed to compare the Monte Carlo results with a physical measurement. Conclusion: A simple, cloud-based method of calculating electron cutout factors could eliminate the need for physical measurements and substantially reduce the time required to properly assure accurate dose delivery.« less

  9. Electronic compensation technique to deliver a total body dose

    NASA Astrophysics Data System (ADS)

    Lakeman, Tara E.

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been conventionally used to compensate for the varying thickness throughout the body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two pair of parallel opposed fields. One pair of large fields is used to encompass the majority of the patient's anatomy. The other pair are very small open fields focused only on the thin bottom portion of the patient's anatomy, which requires much less radiation than the rest of the body to reach 100% of the prescribed dose. A desirable fluence pattern was manually painted within each of the larger fields for each patient to provide a more uniform distribution. Results: Dose-volume histograms (DVH) were calculated for evaluating the electronic compensation technique. In the electronically compensated plans, the maximum body doses calculated from the DVH were reduced from the conventionally-compensated plans by an average of 15%, indicating a more uniform dose. The mean body doses calculated from the electronically compensated DVH remained comparable to that of the conventionally-compensated plans, indicating an accurate delivery of the prescription dose using electronic compensation. All calculated monitor units were within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not increase the beam on time beyond clinically acceptable limits while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.

  10. Evaluation of lens dose from anterior electron beams: comparison of Pinnacle and Gafchromic EBT3 film.

    PubMed

    Sonier, Marcus; Wronski, Matt; Yeboah, Collins

    2015-03-08

    Lens dose is a concern during the treatment of facial lesions with anterior electron beams. Lead shielding is routinely employed to reduce lens dose and minimize late complications. The purpose of this work is twofold: 1) to measure dose pro-files under large-area lead shielding at the lens depth for clinical electron energies via film dosimetry; and 2) to assess the accuracy of the Pinnacle treatment planning system in calculating doses under lead shields. First, to simulate the clinical geometry, EBT3 film and 4 cm wide lead shields were incorporated into a Solid Water phantom. With the lead shield inside the phantom, the film was positioned at a depth of 0.7 cm below the lead, while a variable thickness of solid water, simulating bolus, was placed on top. This geometry was reproduced in Pinnacle to calculate dose profiles using the pencil beam electron algorithm. The measured and calculated dose profiles were normalized to the central-axis dose maximum in a homogeneous phantom with no lead shielding. The resulting measured profiles, functions of bolus thickness and incident electron energy, can be used to estimate the lens dose under various clinical scenarios. These profiles showed a minimum lead margin of 0.5 cm beyond the lens boundary is required to shield the lens to ≤ 10% of the dose maximum. Comparisons with Pinnacle showed a consistent overestimation of dose under the lead shield with discrepancies of ~ 25% occur-ring near the shield edge. This discrepancy was found to increase with electron energy and bolus thickness and decrease with distance from the lead edge. Thus, the Pinnacle electron algorithm is not recommended for estimating lens dose in this situation. The film measurements, however, allow for a reasonable estimate of lens dose from electron beams and for clinicians to assess the lead margin required to reduce the lens dose to an acceptable level.

  11. SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varadhan; Way, S; Arentsen, L

    2016-06-15

    Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R{sub 80–20} electron distal falloff distancemore » and number of particle histories was set at 500,000 per cm{sup 2}. Percent depth dose scans and beam profiles at dmax, d{sub 90} and d{sub 80} depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom{sup 2} scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d{sub 90} and d{sub 80} depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.« less

  12. Monte Carlo study of si diode response in electron beams.

    PubMed

    Wang, Lilie L W; Rogers, David W O

    2007-05-01

    Silicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc. The results indicate that, for this particular diode model, the diode response per unit water dose (or water/diode dose ratio) in both 6 and 18 MeV electron beams is flat within 2% versus depth, from near the phantom surface to the depth of R50 (with calculation uncertainty <0.3%). This suggests that there must be some other correction factors for ion chambers that counter-balance the large wall correction factor at depth in electron beams. In addition, the beam quality and field-size dependence of the diode model are also calculated. The results show that the water/diode dose ratio remains constant within 2% over the electron energy range from 6 to 18 MeV. The water/diode dose ratio does not depend on field size as long as the incident electron beam is broad and the electron energy is high. However, for a very small beam size (1 X 1 cm(2)) and low electron energy (6 MeV), the water/diode dose ratio may decrease by more than 2% compared to that of a broad beam.

  13. Three-Dimensional Electron Beam Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Shiu, Almon Sowchee

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry. A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional, fluence-based, pencil-beam algorithm, especially in predicting the dose distribution downstream of a local inhomogeneity. The accuracy of this algorithm appears sufficient for clinical use, and the algorithm is structured for future expansion of the physical model if required for site specific treatment planning problems.

  14. Study the sensitivity of dose calculation in prism treatment planning system using Monte Carlo simulation of 6 MeV electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardiansyah, D.; Haryanto, F.; Male, S.

    2014-09-30

    Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file ismore » used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.« less

  15. Heavy ion track-structure calculations for radial dose in arbitrary materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Dubey, Rajendra R.

    1995-01-01

    The delta-ray theory of track structure is compared with experimental data for the radial dose from heavy ion irradiation. The effects of electron transmission and the angular dependence of secondary electron ejection are included in the calculations. Several empirical formulas for electron range and energy are compared in a wide variety of materials in order to extend the application of the track-structure theory. The model of Rudd for the secondary electron-spectrum in proton collisions, which is based on a modified classical kinematics binary encounter model at high energies and a molecular promotion model at low energies, is employed. For heavier projectiles, the secondary electron spectrum is found by scaling the effective charge. Radial dose calculations for carbon, water, silicon, and gold are discussed. The theoretical data agreed well with the experimental data.

  16. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawad, M Abdel; Elgohary, M; Hassaan, M

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less

  17. Accelerator shield design of KIPT neutron source facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Z.; Gohar, Y.

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generatedmore » by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)« less

  18. Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies

    NASA Astrophysics Data System (ADS)

    Wei, Jikun; Sandison, George A.; Hsi, Wen-Chien; Ringor, Michael; Lu, Xiaoyi

    2006-10-01

    Accurate dose calculation is essential to precision radiation treatment planning and this accuracy depends upon anatomic and tissue electron density information. Modern treatment planning inhomogeneity corrections use x-ray CT images and calibrated scales of tissue CT number to electron density to provide this information. The presence of metal in the volume scanned by an x-ray CT scanner causes metal induced image artefacts that influence CT numbers and thereby introduce errors in the radiation dose distribution calculated. This paper investigates the dosimetric improvement achieved by a previously proposed x-ray CT metal artefact suppression technique when the suppressed images of a patient with bilateral hip prostheses are used in commercial treatment planning systems for proton, electron or photon therapies. For all these beam types, this clinical image and treatment planning study reveals that the target may be severely underdosed if a metal artefact-contaminated image is used for dose calculations instead of the artefact suppressed one. Of the three beam types studied, the metal artefact suppression is most important for proton therapy dose calculations, intermediate for electron therapy and least important for x-ray therapy but still significant. The study of a water phantom having a metal rod simulating a hip prosthesis indicates that CT numbers generated after image processing for metal artefact suppression are accurate and thus dose calculations based on the metal artefact suppressed images will be of high fidelity.

  19. SU-E-T-599: The Variation of Hounsfield Unit and Relative Electron Density Determination as a Function of KVp and Its Effect On Dose Calculation Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohl, A; Boer, S De

    Purpose: To investigate the differences in relative electron density for different energy (kVp) settings and the effect that these differences have on dose calculations. Methods: A Nuclear Associates 76-430 Mini CT QC Phantom with materials of known relative electron densities was imaged by one multi-slice (16) and one single-slice computed tomography (CT) scanner. The Hounsfield unit (HU) was recorded for each material with energies ranging from 80 to 140 kVp and a representative relative electron density (RED) curve was created. A 5 cm thick inhomogeneity was created in the treatment planning system (TPS) image at a depth of 5 cm.more » The inhomogeneity was assigned HU for various materials for each kVp calibration curve. The dose was then calculated with the analytical anisotropic algorithm (AAA) at points within and below the inhomogeneity and compared using the 80 kVp beam as a baseline. Results: The differences in RED values as a function of kVp showed the largest variations of 580 and 547 HU for the Aluminum and Bone materials; the smallest differences of 0.6 and 3.0 HU were observed for the air and lung inhomogeneities. The corresponding dose calculations for the different RED values assigned to the 5 cm thick slab revealed the largest differences inside the aluminum and bone inhomogeneities of 2.2 to 6.4% and 4.3 to 7.0% respectively. The dose differences beyond these two inhomogeneities were between 0.4 to 1.6% for aluminum and 1.9 to 2.2 % for bone. For materials with lower HU the calculated dose differences were less than 1.0%. Conclusion: For high CT number materials the dose differences in the phantom calculation as high as 7.0% are significant. This result may indicate that implementing energy specific RED curves can increase dose calculation accuracy.« less

  20. Evaluation of lens dose from anterior electron beams: comparison of Pinnacle and Gafchromic EBT3 film

    PubMed Central

    Wronski, Matt; Yeboah, Collins

    2015-01-01

    Lens dose is a concern during the treatment of facial lesions with anterior electron beams. Lead shielding is routinely employed to reduce lens dose and minimize late complications. The purpose of this work is twofold: 1) to measure dose profiles under large‐area lead shielding at the lens depth for clinical electron energies via film dosimetry; and 2) to assess the accuracy of the Pinnacle treatment planning system in calculating doses under lead shields. First, to simulate the clinical geometry, EBT3 film and 4 cm wide lead shields were incorporated into a Solid Water phantom. With the lead shield inside the phantom, the film was positioned at a depth of 0.7 cm below the lead, while a variable thickness of solid water, simulating bolus, was placed on top. This geometry was reproduced in Pinnacle to calculate dose profiles using the pencil beam electron algorithm. The measured and calculated dose profiles were normalized to the central‐axis dose maximum in a homogeneous phantom with no lead shielding. The resulting measured profiles, functions of bolus thickness and incident electron energy, can be used to estimate the lens dose under various clinical scenarios. These profiles showed a minimum lead margin of 0.5 cm beyond the lens boundary is required to shield the lens to ≤10% of the dose maximum. Comparisons with Pinnacle showed a consistent overestimation of dose under the lead shield with discrepancies of ∼25% occurring near the shield edge. This discrepancy was found to increase with electron energy and bolus thickness and decrease with distance from the lead edge. Thus, the Pinnacle electron algorithm is not recommended for estimating lens dose in this situation. The film measurements, however, allow for a reasonable estimate of lens dose from electron beams and for clinicians to assess the lead margin required to reduce the lens dose to an acceptable level. PACS number(s): 87.53.Bn, 87.53.Kn, 87.55.‐x, 87.55.D‐ PMID:27074448

  1. TH-A-19A-04: Latent Uncertainties and Performance of a GPU-Implemented Pre-Calculated Track Monte Carlo Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, M; Seuntjens, J; Roberge, D

    Purpose: Assessing the performance and uncertainty of a pre-calculated Monte Carlo (PMC) algorithm for proton and electron transport running on graphics processing units (GPU). While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from recycling a limited number of tracks in the pre-generated track bank is missing from the literature. With a proper uncertainty analysis, an optimal pre-generated track bank size can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pre-generated for electrons and protons using EGSnrc and GEANT4, respectively. The PMC algorithm for track transport was implementedmore » on the CUDA programming framework. GPU-PMC dose distributions were compared to benchmark dose distributions simulated using general-purpose MC codes in the same conditions. A latent uncertainty analysis was performed by comparing GPUPMC dose values to a “ground truth” benchmark while varying the track bank size and primary particle histories. Results: GPU-PMC dose distributions and benchmark doses were within 1% of each other in voxels with dose greater than 50% of Dmax. In proton calculations, a submillimeter distance-to-agreement error was observed at the Bragg Peak. Latent uncertainty followed a Poisson distribution with the number of tracks per energy (TPE) and a track bank of 20,000 TPE produced a latent uncertainty of approximately 1%. Efficiency analysis showed a 937× and 508× gain over a single processor core running DOSXYZnrc for 16 MeV electrons in water and bone, respectively. Conclusion: The GPU-PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty below 1%. The track bank size necessary to achieve an optimal efficiency can be tuned based on the desired uncertainty. Coupled with a model to calculate dose contributions from uncharged particles, GPU-PMC is a candidate for inverse planning of modulated electron radiotherapy and scanned proton beams. This work was supported in part by FRSQ-MSSS (Grant No. 22090), NSERC RG (Grant No. 432290) and CIHR MOP (Grant No. MOP-211360)« less

  2. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Zhaopeng; Gohar, Yousry

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biologicalmore » dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, similar to 0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper. Copyright (C) 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.« less

  3. Evaluation of the new electron-transport algorithm in MCNP6.1 for the simulation of dose point kernel in water

    NASA Astrophysics Data System (ADS)

    Antoni, Rodolphe; Bourgois, Laurent

    2017-12-01

    In this work, the calculation of specific dose distribution in water is evaluated in MCNP6.1 with the regular condensed history algorithm the "detailed electron energy-loss straggling logic" and the new electrons transport algorithm proposed the "single event algorithm". Dose Point Kernel (DPK) is calculated with monoenergetic electrons of 50, 100, 500, 1000 and 3000 keV for different scoring cells dimensions. A comparison between MCNP6 results and well-validated codes for electron-dosimetry, i.e., EGSnrc or Penelope, is performed. When the detailed electron energy-loss straggling logic is used with default setting (down to the cut-off energy 1 keV), we infer that the depth of the dose peak increases with decreasing thickness of the scoring cell, largely due to combined step-size and boundary crossing artifacts. This finding is less prominent for 500 keV, 1 MeV and 3 MeV dose profile. With an appropriate number of sub-steps (ESTEP value in MCNP6), the dose-peak shift is almost complete absent to 50 keV and 100 keV electrons. However, the dose-peak is more prominent compared to EGSnrc and the absorbed dose tends to be underestimated at greater depths, meaning that boundaries crossing artifact are still occurring while step-size artifacts are greatly reduced. When the single-event mode is used for the whole transport, we observe the good agreement of reference and calculated profile for 50 and 100 keV electrons. Remaining artifacts are fully vanished, showing a possible transport treatment for energies less than a hundred of keV and accordance with reference for whatever scoring cell dimension, even if the single event method initially intended to support electron transport at energies below 1 keV. Conversely, results for 500 keV, 1 MeV and 3 MeV undergo a dramatic discrepancy with reference curves. These poor results and so the current unreliability of the method is for a part due to inappropriate elastic cross section treatment from the ENDF/B-VI.8 library in those energy ranges. Accordingly, special care has to be taken in setting choice for calculating electron dose distribution with MCNP6, in particular with regards to dosimetry or nuclear medicine applications.

  4. An investigation of nonuniform dose deposition from an electron beam

    NASA Astrophysics Data System (ADS)

    Lilley, William; Luu, Kieu X.

    1994-08-01

    In a search for an explanation of nonuniform electron-beam dose deposition, the integrated tiger series (ITS) of coupled electron/photon Monte Carlo transport codes was used to calculate energy deposition in the package materials of an application-specific integrated circuit (ASIC) while the thicknesses of some of the materials were varied. The thicknesses of three materials that were in the path of an electron-beam pulse were varied independently so that analysis could determine how the radiation dose measurements using thermoluminescent dosimeters (TLD's) would be affected. The three materials were chosen because they could vary during insertion of the die into the package or during the process of taking dose measurements. The materials were aluminum, HIPEC (a plastic), and silver epoxy. The calculations showed that with very small variations in thickness, the silver epoxy had a large effect on the dose uniformity over the area of the die.

  5. Poster — Thur Eve — 26: Evaluation of lens dose from anterior electron beams: comparison of Pinnacle and Gafchromic EBT3 film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanier, M; Wronski, M; Yeboah, C

    The purpose of this work is twofold: 1) to measure dose profiles under lead shielding at the level of the lens for a range of clinical electron energies via film dosimetry; and, 2) to assess the validity of the Pinnacle treatment planning system (TPS) in calculating the penumbral doses under lead shielding with the heterogeneous electron algorithm. First, a film calibration curve that spanned the electron energies of interest, 6–18MeV, was created. Next, EBT3 film and lead shielding were incorporated into a solid water phantom with the film positioned 7mm below the lead and a variable thickness of bolus onmore » top. This geometry was reproduced in the Pinnacle TPS and used to calculate dose profiles using the heterogeneous electron algorithm. The measured vs. calculated dose profiles were normalized to d{sub max} in a homogeneous phantom with no lead shielding and compared. Pinnacle consistently overestimated the dose distal to the lead shielding with significant discrepancies occurring near the edge of the lead shield reaching 25% at the edge and 35% in the open field region. The film measurements showed that a minimum lead margin of 5mm extending beyond the diameter of the lens is required to adequately shield the lens to ≤10% of the dose at d{sub max}. These measurements allow for a reasonable estimate of the dose to the lens from anterior electron beams. They also allow for clinicians to assess the extent of the lead margin required to reduce the lens dose to an acceptable amount prior to radiotherapy treatment.« less

  6. Calculation of dose contributions of electron and charged heavy particles inside phantoms irradiated by monoenergetic neutron.

    PubMed

    Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Yasushi; Miyahara, Nobuyuki

    2008-09-01

    The radiation-transport code PHITS with an event generator mode has been applied to analyze energy depositions of electrons and charged heavy particles in two spherical phantoms and a voxel-based mouse phantom upon neutron irradiation. The calculations using the spherical phantoms quantitatively clarified the type and energy of charged particles which are released through interactions of neutrons with the phantom elements and contribute to the radiation dose. The relative contribution of electrons increased with an increase in the size of the phantom and with a decrease in the energy of the incident neutrons. Calculations with the voxel-based mouse phantom for 2.0-MeV neutron irradiation revealed that the doses to different locations inside the body are uniform, and that the energy is mainly deposited by recoil protons. The present study has demonstrated that analysis using PHITS can yield dose distributions that are accurate enough for RBE evaluation.

  7. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.

    1999-01-01

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.

  8. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.

    1999-02-09

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.

  9. SU-F-T-81: Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L; Fan, J; Eldib, A

    Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-housemore » developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.« less

  10. Effective dose rate coefficients for exposure to contaminated soil

    DOE PAGES

    Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.; ...

    2017-05-10

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less

  11. Effective dose rate coefficients for exposure to contaminated soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less

  12. SU-E-T-219: Comprehensive Validation of the Electron Monte Carlo Dose Calculation Algorithm in RayStation Treatment Planning System for An Elekta Linear Accelerator with AgilityTM Treatment Head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Park, Yang-Kyun; Doppke, Karen P.

    2015-06-15

    Purpose: This study evaluated the performance of the electron Monte Carlo dose calculation algorithm in RayStation v4.0 for an Elekta machine with Agility™ treatment head. Methods: The machine has five electron energies (6–8 MeV) and five applicators (6×6 to 25×25 cm {sup 2}). The dose (cGy/MU at d{sub max}), depth dose and profiles were measured in water using an electron diode at 100 cm SSD for nine square fields ≥2×2 cm{sup 2} and four complex fields at normal incidence, and a 14×14 cm{sup 2} field at 15° and 30° incidence. The dose was also measured for three square fields ≥4×4more » cm{sup 2} at 98, 105 and 110 cm SSD. Using selected energies, the EBT3 radiochromic film was used for dose measurements in slab-shaped inhomogeneous phantoms and a breast phantom with surface curvature. The measured and calculated doses were analyzed using a gamma criterion of 3%/3 mm. Results: The calculated and measured doses varied by <3% for 116 of the 120 points, and <5% for the 4×4 cm{sup 2} field at 110 cm SSD at 9–18 MeV. The gamma analysis comparing the 105 pairs of in-water isodoses passed by >98.1%. The planar doses measured from films placed at 0.5 cm below a lung/tissue layer (12 MeV) and 1.0 cm below a bone/air layer (15 MeV) showed excellent agreement with calculations, with gamma passing by 99.9% and 98.5%, respectively. At the breast-tissue interface, the gamma passing rate is >98.8% at 12–18 MeV. The film results directly validated the accuracy of MU calculation and spatial dose distribution in presence of tissue inhomogeneity and surface curvature - situations challenging for simpler pencil-beam algorithms. Conclusion: The electron Monte Carlo algorithm in RayStation v4.0 is fully validated for clinical use for the Elekta Agility™ machine. The comprehensive validation included small fields, complex fields, oblique beams, extended distance, tissue inhomogeneity and surface curvature.« less

  13. A systematic study of posterior cervical lymph node irradiation with electrons: Conventional versus customized planning.

    PubMed

    Jankowska, Petra J; Kong, Christine; Burke, Kevin; Harrington, Kevin J; Nutting, Christopher

    2007-10-01

    High dose irradiation of the posterior cervical lymph nodes usually employs applied electron fields to treat the target volume and maintain the spinal cord dose within tolerance. In the light of recent advances in elective lymph node localisation we investigated optimization of field shape and electron energy to treat this target volume. In this study, three sequential hypotheses were tested. Firstly, that customization of the electron fields based on the nodal PTV outlined gives better PTV coverage than conventional field delineation. Using the consensus guidelines, customization of the electron field shape was compared to conventional fields based on bony landmarks. Secondly, that selection of electron energy using DVHs for spinal cord and PTV improves the minimum dose to PTV. Electron dose-volume histograms (DVHs) for the PTV, spinal cord and para-vertebral muscles, were generated using the Monte Carlo electron algorithm. These DVHs were used to compare standard vs optimized electron energy calculations. Finally, that combination of field customization and electron energy optimization improves both the minimum and mean doses to PTV compared with current standard practice. Customized electron beam shaping based on the consensus guidelines led to fewer geographical misses than standard field shaping. Customized electron energy calculation led to higher minimum doses to the PTV. Overall, the customization of field shape and energy resulted in an improved mean dose to the PTV (92% vs 83% p=0.02) and a 27% improvement in the minimum dose delivered to the PTV (45% vs 18% p=0.0009). Optimization of electron field shape and beam energy based on current consensus guidelines led to significant improvement in PTV coverage and may reduce recurrence rates.

  14. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.

    PubMed

    Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V

    2011-02-07

    The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.

  15. Optimization of Monte Carlo dose calculations: The interface problem

    NASA Astrophysics Data System (ADS)

    Soudentas, Edward

    1998-05-01

    High energy photon beams are widely used for radiation treatment of deep-seated tumors. The human body contains many types of interfaces between dissimilar materials that affect dose distribution in radiation therapy. Experimentally, significant radiation dose perturbations has been observed at such interfaces. The EGS4 Monte Carlo code was used to calculate dose perturbations at boundaries between dissimilar materials (such as bone/water) for 60Co and 6 MeV linear accelerator beams using a UNIX workstation. A simple test of the reliability of a random number generator was also developed. A systematic study of the adjustable parameters in EGS4 was performed in order to minimize calculational artifacts at boundaries. Calculations of dose perturbations at boundaries between different materials showed that there is a 12% increase in dose at water/bone interface, and a 44% increase in dose at water/copper interface. with the increase mainly due to electrons produced in water and backscattered from the high atomic number material. The dependence of the dose increase on the atomic number was also investigated. The clinically important case of using two parallel opposed beams for radiation therapy was investigated where increased doses at boundaries has been observed. The Monte Carlo calculations can provide accurate dosimetry data under conditions of electronic non-equilibrium at tissue interfaces.

  16. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun

    2015-09-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.

  17. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    PubMed

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-07

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.

  18. Dose properties of a laser accelerated electron beam and prospects for clinical application.

    PubMed

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D; Chiu, C; Fomytskyi, M; Raischel, F; Downer, M; Tajima, T

    2004-07-01

    Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25 x 25 cm2 field. An energy window (deltaE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to deltaE. However, since the falloff of the depth-dose curve (R10-R90) and the dose rate both increase with deltaE, a tradeoff between minimizing (R10-R90) and maximizing dose rate is implied. If deltaE is constrained so that R10-R90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min(-1) for a 9 MeV beam and 0.03 Gy min(-1) for a 15 MeV beam. It was concluded that current LWFA technology should allow a table-top terawatt (T3) laser to produce therapeutic electron beams that have acceptable flatness, penetration, and falloff of depth dose; however, the dose rate is still 1%-3% of that which would be acceptable, especially for higher-energy electron beams. Further progress in laser technology, e.g., increasing the pulse repetition rate or number of high energy electrons generated per pulse, is necessary to give dose rates acceptable for electron beams. Future measurements confirming dosimetric calculations are required to substantiate our results. In addition to achieving adequate dose rate, significant engineering developments are needed for this technology to compete with current electron acceleration technology. Also, the functional benefits of LWFA electron beams require further study and evaluation.

  19. Pencil-beam redefinition algorithm dose calculations for electron therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Boyd, Robert Arthur

    2001-08-01

    The electron pencil-beam redefinition algorithm (PBRA) of Shiu and Hogstrom has been developed for use in radiotherapy treatment planning (RTP). Earlier studies of Boyd and Hogstrom showed that the PBRA lacked an adequate incident beam model, that PBRA might require improved electron physics, and that no data existed which allowed adequate assessment of the PBRA-calculated dose accuracy in a heterogeneous medium such as one presented by patient anatomy. The hypothesis of this research was that by addressing the above issues the PBRA-calculated dose would be accurate to within 4% or 2 mm in regions of high dose gradients. A secondary electron source was added to the PBRA to account for collimation-scattered electrons in the incident beam. Parameters of the dual-source model were determined from a minimal data set to allow ease of beam commissioning. Comparisons with measured data showed 3% or better dose accuracy in water within the field for cases where 4% accuracy was not previously achievable. A measured data set was developed that allowed an evaluation of PBRA in regions distal to localized heterogeneities. Geometries in the data set included irregular surfaces and high- and low-density internal heterogeneities. The data was estimated to have 1% precision and 2% agreement with accurate, benchmarked Monte Carlo (MC) code. PBRA electron transport was enhanced by modeling local pencil beam divergence. This required fundamental changes to the mathematics of electron transport (divPBRA). Evaluation of divPBRA with the measured data set showed marginal improvement in dose accuracy when compared to PBRA; however, 4% or 2mm accuracy was not achieved by either PBRA version for all data points. Finally, PBRA was evaluated clinically by comparing PBRA- and MC-calculated dose distributions using site-specific patient RTP data. Results show PBRA did not agree with MC to within 4% or 2mm in a small fraction (<3%) of the irradiated volume. Although the hypothesis of the research was shown to be false, the minor dose inaccuracies should have little or no impact on RTP decisions or patient outcome. Therefore, given ease of beam commissioning, documentation of accuracy, and calculational speed, the PBRA should be considered a practical tool for clinical use.

  20. Output calculation of electron therapy at extended SSD using an improved LBR method.

    PubMed

    Alkhatib, Hassaan A; Gebreamlak, Wondesen T; Tedeschi, David J; Mihailidis, Dimitris; Wright, Ben W; Neglia, William J; Sobash, Philip T; Fontenot, Jonas D

    2015-02-01

    To calculate the output factor (OPF) of any irregularly shaped electron beam at extended SSD. Circular cutouts were prepared from 2.0 cm diameter to the maximum possible size for 15 × 15 applicator cone. In addition, two irregular cutouts were prepared. For each cutout, percentage depth dose (PDD) at the standard SSD and doses at different SSD values were measured using 6, 9, 12, and 16 MeV electron beam energies on a Varian 2100C LINAC and the distance at which the central axis electron fluence becomes independent of cutout size was determined. The measurements were repeated with an ELEKTA Synergy LINAC using 14 × 14 applicator cone and electron beam energies of 6, 9, 12, and 15 MeV. The PDD measurements were performed using a scanning system and two diodes-one for the signal and the other a stationary reference outside the tank. The doses of the circular cutouts at different SSDs were measured using PTW 0.125 cm(3) Semiflex ion-chamber and EDR2 films. The electron fluence was measured using EDR2 films. For each circular cutout, the lateral buildup ratio (LBR) was calculated from the measured PDD curve using the open applicator cone as the reference field. The effective SSD (SSDeff) of each circular cutout was calculated from the measured doses at different SSD values. Using the LBR value and the radius of the circular cutout, the corresponding lateral spread parameter [σR(z)] was calculated. Taking the cutout size dependence of σR(z) into account, the PDD curves of the irregularly shaped cutouts at the standard SSD were calculated. Using the calculated PDD curve of the irregularly shaped cutout along with the LBR and SSDeff values of the circular cutouts, the output factor of the irregularly shaped cutout at extended SSD was calculated. Finally, both the calculated PDD curves and output factor values were compared with the measured values. The improved LBR method has been generalized to calculate the output factor of electron therapy at extended SSD. The percentage difference between the calculated and the measured output factors of irregularly shaped cutouts in a clinical useful SSD region was within 2%. Similar results were obtained for all available electron energies of both Varian 2100C and ELEKTA Synergy machines.

  1. The energy-dependent electron loss model: backscattering and application to heterogeneous slab media.

    PubMed

    Lee, Tae Kyu; Sandison, George A

    2003-01-21

    Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, chi, in the algorithm to be determined in advance of calculation.

  2. The energy-dependent electron loss model: backscattering and application to heterogeneous slab media

    NASA Astrophysics Data System (ADS)

    Lee, Tae Kyu; Sandison, George A.

    2003-01-01

    Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, χ, in the algorithm to be determined in advance of calculation.

  3. Real-time measurement and monitoring of absorbed dose for electron beams

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon

    2004-09-01

    The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.

  4. Comparison of doses calculated by the Monte Carlo method and measured by LiF TLD in the buildup region for a 60Co photon beam.

    PubMed

    Budanec, M; Knezević, Z; Bokulić, T; Mrcela, I; Vrtar, M; Vekić, B; Kusić, Z

    2008-12-01

    This work studied the percent depth doses of (60)Co photon beams in the buildup region of a plastic phantom by LiF TLD measurements and by Monte Carlo calculations. An agreement within +/-1.5% was found between PDDs measured by TLD and calculated by the Monte Carlo method with the TLD in a plastic phantom. The dose in the plastic phantom was scored in voxels, with thickness scaled by physical and electron density. PDDs calculated by electron density scaling showed a better match with PDD(TLD)(MC); the difference is within +/-1.5% in the buildup region for square and rectangular field sizes.

  5. Monte Carlo calculations of energy deposition distributions of electrons below 20 keV in protein.

    PubMed

    Tan, Zhenyu; Liu, Wei

    2014-05-01

    The distributions of energy depositions of electrons in semi-infinite bulk protein and the radial dose distributions of point-isotropic mono-energetic electron sources [i.e., the so-called dose point kernel (DPK)] in protein have been systematically calculated in the energy range below 20 keV, based on Monte Carlo methods. The ranges of electrons have been evaluated by extrapolating two calculated distributions, respectively, and the evaluated ranges of electrons are compared with the electron mean path length in protein which has been calculated by using electron inelastic cross sections described in this work in the continuous-slowing-down approximation. It has been found that for a given energy, the electron mean path length is smaller than the electron range evaluated from DPK, but it is large compared to the electron range obtained from the energy deposition distributions of electrons in semi-infinite bulk protein. The energy dependences of the extrapolated electron ranges based on the two investigated distributions are given, respectively, in a power-law form. In addition, the DPK in protein has also been compared with that in liquid water. An evident difference between the two DPKs is observed. The calculations presented in this work may be useful in studies of radiation effects on proteins.

  6. Radiation Dose from Reentrant Electrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G.D.; Cleghorn, T. E.; Watts, J.

    2003-01-01

    In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.

  7. Comparison of calculations and measurements of the off-axis radiation dose (SI) in liquid nitrogen as a function of radiation length

    NASA Astrophysics Data System (ADS)

    Cromar, P. F.

    1984-12-01

    In this thesis results are presented from a study of the off-axis X and Gamma radiation field caused by a highly relativistic electron beam in liquid Nitrogen at various path lengths out to 2 radiation lengths. The off-axis dose in Silicon was calculated using electron/photon transport code CYLTRAN and measured using thermal luminescent dosimeters (TLD's). Calculations were performed on a CDC-7600 computer ar Los Alamos National Laboratory and measurements were made using the Naval Postgraduate School 100 Mev Linac. Comparison of the results is made and CYLTRAN is found to be in agreement with experimentally measured values. The CYLTRAN results are extended to the off-axis dose caused by a 100 Mev electron beam in air at Standard Temperature and Pressure (STP).

  8. Dose calculation for electron therapy using an improved LBR method.

    PubMed

    Gebreamlak, Wondesen T; Tedeschi, David J; Alkhatib, Hassaan A

    2013-07-01

    To calculate the percentage depth dose (PDD) of any irregularly shaped electron beam using a modified lateral build-up ratio (LBR) method. Percentage depth dose curves were measured using 6, 9, 12, and 15 MeV electron beam energies for applicator cone sizes of 6 × 6, 10 × 10, 14 × 14, and 20 × 20 cm(2). Circular cutouts for each cone were prepared from 2.0 cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. The LBR for each circular cutout was calculated from the measured PDD curve using the open field of the 14 × 14 cm(2) cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter [σR(z)] of the electron shower was calculated. Unlike the commonly accepted assumption that σR(z) is independent of cutout size, it is shown that its value increases linearly with circular cutout size (R). Using this characteristic of the lateral spread parameter, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. In this research, it is shown that the lateral spread parameter σR(z) increases with cutout size. For radii of circular cutout sizes up to the equilibrium range of the electron beam, the increase of σR(z) with the cutout size is linear. The percentage difference of the calculated PDD curve from the measured PDD data for irregularly shaped cutouts was under 1.0% in the region between the surface and therapeutic range of the electron beam. Similar results were obtained for four electron beam energies (6, 9, 12, and 15 MeV).

  9. Monte Carlo method for calculating the radiation skyshine produced by electron accelerators

    NASA Astrophysics Data System (ADS)

    Kong, Chaocheng; Li, Quanfeng; Chen, Huaibi; Du, Taibin; Cheng, Cheng; Tang, Chuanxiang; Zhu, Li; Zhang, Hui; Pei, Zhigang; Ming, Shenjin

    2005-06-01

    Using the MCNP4C Monte Carlo code, the X-ray skyshine produced by 9 MeV, 15 MeV and 21 MeV electron linear accelerators were calculated respectively with a new two-step method combined with the split and roulette variance reduction technique. Results of the Monte Carlo simulation, the empirical formulas used for skyshine calculation and the dose measurements were analyzed and compared. In conclusion, the skyshine dose measurements agreed reasonably with the results computed by the Monte Carlo method, but deviated from computational results given by empirical formulas. The effect on skyshine dose caused by different structures of accelerator head is also discussed in this paper.

  10. Fast 3D dosimetric verifications based on an electronic portal imaging device using a GPU calculation engine.

    PubMed

    Zhu, Jinhan; Chen, Lixin; Chen, Along; Luo, Guangwen; Deng, Xiaowu; Liu, Xiaowei

    2015-04-11

    To use a graphic processing unit (GPU) calculation engine to implement a fast 3D pre-treatment dosimetric verification procedure based on an electronic portal imaging device (EPID). The GPU algorithm includes the deconvolution and convolution method for the fluence-map calculations, the collapsed-cone convolution/superposition (CCCS) algorithm for the 3D dose calculations and the 3D gamma evaluation calculations. The results of the GPU-based CCCS algorithm were compared to those of Monte Carlo simulations. The planned and EPID-based reconstructed dose distributions in overridden-to-water phantoms and the original patients were compared for 6 MV and 10 MV photon beams in intensity-modulated radiation therapy (IMRT) treatment plans based on dose differences and gamma analysis. The total single-field dose computation time was less than 8 s, and the gamma evaluation for a 0.1-cm grid resolution was completed in approximately 1 s. The results of the GPU-based CCCS algorithm exhibited good agreement with those of the Monte Carlo simulations. The gamma analysis indicated good agreement between the planned and reconstructed dose distributions for the treatment plans. For the target volume, the differences in the mean dose were less than 1.8%, and the differences in the maximum dose were less than 2.5%. For the critical organs, minor differences were observed between the reconstructed and planned doses. The GPU calculation engine was used to boost the speed of 3D dose and gamma evaluation calculations, thus offering the possibility of true real-time 3D dosimetric verification.

  11. SU-F-BRCD-03: Dose Calculation of Electron Therapy Using Improved Lateral Buildup Ratio Method.

    PubMed

    Gebreamlak, W; Tedeschi, D; Alkhatib, H

    2012-06-01

    To calculate the percentage depth dose of any irregular shape electron beam using modified lateral build-up-ratio method. Percentage depth dose (PDD) curves were measured using 6, 9, 12, and 15MeV electron beam energies for applicator cone sizes of 6×6, 10×10, 14×14, and 14×14cm 2 . Circular cutouts for each cone were prepared from 2.0cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. The scanning was done using a water tank and two diodes - one for the signal and the other a stationary reference outside the tank. The water surface was determined by scanning the signal diode slowly from water to air and by noting the sharp change of the percentage depth dose curve at the water/air interface. The lateral build-up-ratio (LBR) for each circular cutout was calculated from the measured PDD curve using the open field of the 14×14 cm 2 cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter (sigma) of the electron shower was calculated. Unlike the commonly accepted assumption that sigma is independent of cutout size, it is shown that the sigma value increases linearly with circular cutout size. Using this characteristic of sigma, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. In this research, it is shown that sigma increases with cutout size. For radius of circular cutout sizes up to the equilibrium range of the electron beam, the increase of sigma with the cutout size is linear. The percentage difference of the calculated PDD from the measured PDD for irregularly shaped cutouts was under 1.0%. Similar Result was obtained for four electron beam energies (6, 9, 12, and 15MeV). © 2012 American Association of Physicists in Medicine.

  12. Comparisons between MCNP, EGS4 and experiment for clinical electron beams.

    PubMed

    Jeraj, R; Keall, P J; Ostwald, P M

    1999-03-01

    Understanding the limitations of Monte Carlo codes is essential in order to avoid systematic errors in simulations, and to suggest further improvement of the codes. MCNP and EGS4, Monte Carlo codes commonly used in medical physics, were compared and evaluated against electron depth dose data and experimental backscatter results obtained using clinical radiotherapy beams. Different physical models and algorithms used in the codes give significantly different depth dose curves and electron backscattering factors. The default version of MCNP calculates electron depth dose curves which are too penetrating. The MCNP results agree better with experiment if the ITS-style energy-indexing algorithm is used. EGS4 underpredicts electron backscattering for high-Z materials. The results slightly improve if optimal PRESTA-I parameters are used. MCNP simulates backscattering well even for high-Z materials. To conclude the comparison, a timing study was performed. EGS4 is generally faster than MCNP and use of a large number of scoring voxels dramatically slows down the MCNP calculation. However, use of a large number of geometry voxels in MCNP only slightly affects the speed of the calculation.

  13. Radiation dose from reentrant electrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Watts, J.; Cleghorn, T. E.

    2001-01-01

    In estimating the crew exposures during an extra vehicular activity (EVA), the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more that 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO. Published by Elsevier Science Ltd.

  14. SU-E-T-424: Dosimetric Verification of Modulated Electron Radiation Therapy Delivered Using An Electron Specific Multileaf Collimator for Treatment of Scalp Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, A; Al-Azhar University Cairo; Jin, L

    2014-06-01

    Purpose: Modulated electron radiotherapy (MERT) has the potential to achieve better treatment outcome for shallow tumors such as those of breast and scalp. In a separate study with scalp lesions, MERT was compared to volumetric modulated arc therapy. Our results showed a reduction in the dose reaching the brain with MERT. However dose calculation accuracy and delivery efficiency challenges remain. Thus in the current study we proceed to add more cases to demonstrate MERT beneficial outcome and its delivery accuracy using an electron specific multileaf collimator (eMLC). Methods: We have used the MCBEAM code for treatment head simulation and formore » generating phase space files to be used as radiation source input for our Monte Carlo based treatment planning system (MC TPS). MCPLAN code is used for calculation of patient specific dose deposition coefficient and for final MERT plan dose calculation. An in-house developed optimization code is used for the optimization process. MERT plans were generated for real patients and head and neck phantom. Film was used for dosimetric verification. The film was cut following the contour of the curved phantom surface and then sealed with black masking tape. In the measurement, the sealed film packet was sandwiched between two adjacent slabs of the head and neck phantom. The measured 2D dose distribution was then compared with calculations. Results: The eMLC allows effective treatment of scalps with multi-lesions spreading around the patient head, which was usually difficult to plan or very time consuming with conventional applicators. MERT continues to show better reduction in the brain dose. The dosimetric measurements showed slight discrepancy, which was attributed to the film setup. Conclusion: MERT can improve treatment plan quality for patients with scalp cancers. Our in-house MC TPS is capable of performing treatment planning and accurate dose calculation for MERT using the eMLC.« less

  15. Simulation of angular and energy distributions of the PTB beta secondary standard.

    PubMed

    Faw, R E; Simons, G G; Gianakon, T A; Bayouth, J E

    1990-09-01

    Calculations and measurements have been performed to assess radiation doses delivered by the PTB Secondary Standard that employs 147Pm, 204Tl, and 90Sr:90Y sources in prescribed geometries, and features "beam-flattening" filters to assure uniformity of delivered doses within a 5-cm radius of the axis from source to detector plane. Three-dimensional, coupled, electron-photon Monte Carlo calculations, accounting for transmission through the source encapsulation and backscattering from the source mounting, led to energy spectra and angular distributions of electrons penetrating the source encapsulation that were used in the representation of pseudo sources of electrons for subsequent transport through the atmosphere, filters, and detectors. Calculations were supplemented by measurements made using bare LiF TLD chips on a thick polymethyl methacrylate phantom. Measurements using the 204Tl and 90Sr:90Y sources revealed that, even in the absence of the beam-flattening filters, delivered dose rates were very uniform radially. Dosimeter response functions (TLD:skin dose ratios) were calculated and confirmed experimentally for all three beta-particle sources and for bare LiF TLDs ranging in mass thickness from 10 to 235 mg cm-2.

  16. Some computer graphical user interfaces in radiation therapy.

    PubMed

    Chow, James C L

    2016-03-28

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations.

  17. SU-E-T-556: Monte Carlo Generated Dose Distributions for Orbital Irradiation Using a Single Anterior-Posterior Electron Beam and a Hanging Lens Shield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duwel, D; Lamba, M; Elson, H

    Purpose: Various cancers of the eye are successfully treated with radiotherapy utilizing one anterior-posterior (A/P) beam that encompasses the entire content of the orbit. In such cases, a hanging lens shield can be used to spare dose to the radiosensitive lens of the eye to prevent cataracts. Methods: This research focused on Monte Carlo characterization of dose distributions resulting from a single A-P field to the orbit with a hanging shield in place. Monte Carlo codes were developed which calculated dose distributions for various electron radiation energies, hanging lens shield radii, shield heights above the eye, and beam spoiler configurations.more » Film dosimetry was used to benchmark the coding to ensure it was calculating relative dose accurately. Results: The Monte Carlo dose calculations indicated that lateral and depth dose profiles are insensitive to changes in shield height and electron beam energy. Dose deposition was sensitive to shield radius and beam spoiler composition and height above the eye. Conclusion: The use of a single A/P electron beam to treat cancers of the eye while maintaining adequate lens sparing is feasible. Shield radius should be customized to have the same radius as the patient’s lens. A beam spoiler should be used if it is desired to substantially dose the eye tissues lying posterior to the lens in the shadow of the lens shield. The compromise between lens sparing and dose to diseased tissues surrounding the lens can be modulated by varying the beam spoiler thickness, spoiler material composition, and spoiler height above the eye. The sparing ratio is a metric that can be used to evaluate the compromise between lens sparing and dose to surrounding tissues. The higher the ratio, the more dose received by the tissues immediately posterior to the lens relative to the dose received by the lens.« less

  18. The calculation of radial dose from heavy ions: predictions of biological action cross sections

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Zhang, C. X.; Wilson, J. W. (Principal Investigator)

    1996-01-01

    The track structure model of heavy ion cross sections was developed by Katz and co-workers in the 1960s. In this model the action cross section is evaluated by mapping the dose-response of a detector to gamma rays (modeled from biological target theory) onto the radial dose distribution from delta rays about the path of the ion. This is taken to yield the radial distribution of probability for a "hit" (an interaction leading to an observable end-point). Radial integration of the probability yields the cross section. When different response from ions of different Z having the same stopping power is observed this model may be indicated. Since the 1960s there have been several developments in the computation of the radial dose distribution, in the measurement of these distributions, and in new radiobiological data against which to test the model. The earliest model, by Butts and Katz made use of simplified delta ray distribution functions, of simplified electron range-energy relations, and neglected angular distributions. Nevertheless it made possible the calculation of cross sections for the inactivation of enzymes and viruses, and allowed extension to tracks in nuclear emulsions and other detectors and to biological cells. It set the pattern for models of observable effects in the matter through which the ion passed. Here we outline subsequent calculations of radial dose which make use of improved knowledge of the electron emission spectrum, the electron range-energy relation, the angular distribution, and some considerations of molecular excitation, of particular interest both close to the path of the ion and the outer limits of electron penetration. These are applied to the modeling of action cross sections for the inactivation of several strains of E-coli and B. subtilis spores where extensive measurements in the "thin-down" region have been made with heavy ion beams. Such calculations serve to test the radial dose calculations at the outer limit of electron penetration. We lack data from which to test these calculations in regions close to the path of the ion aside from our earliest work on latent tracks in plastics, though it appears that the criterion then suggested for the threshold of track formation, of a minimal dose at a minimal distance (of about 20 angstroms, in plastics), remains valid.

  19. Real-time simulator for designing electron dual scattering foil systems.

    PubMed

    Carver, Robert L; Hogstrom, Kenneth R; Price, Michael J; LeBlanc, Justin D; Pitcher, Garrett M

    2014-11-08

    The purpose of this work was to develop a user friendly, accurate, real-time com- puter simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator allows for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator also is a powerful educational tool. The simulator consists of an analytical algorithm for calculating electron fluence and X-ray dose and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with the reduced Gaussian formalism for scattering powers. The simulator also estimates central-axis and off-axis X-ray dose arising from the dual foil system. Once the geometry of the accelerator is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scat- tering foil material and Gaussian shape (thickness and sigma), and beam energy. The off-axis electron relative fluence or total dose profile and central-axis X-ray dose contamination are computed and displayed in real time. The simulator was validated by comparison of off-axis electron relative fluence and X-ray percent dose profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV, using present foils on an Elekta radiotherapy accelerator, the simulator was able to reproduce MC profiles to within 2% out to 20 cm from the central axis. The central-axis X-ray percent dose predictions matched measured data to within 0.5%. The calculation time was approximately 100 ms using a single Intel 2.93 GHz processor, which allows for real-time variation of foil geometrical parameters using slider bars. This work demonstrates how the user-friendly GUI and real-time nature of the simulator make it an effective educational tool for gaining a better understanding of the effects that various system parameters have on a relative dose profile. This work also demonstrates a method for using the simulator as a design tool for creating custom dual scattering foil systems in the clinical range of beam energies (6-20 MeV). 

  20. An MCNP-based model for the evaluation of the photoneutron dose in high energy medical electron accelerators.

    PubMed

    Carinou, Eleutheria; Stamatelatos, Ion Evangelos; Kamenopoulou, Vassiliki; Georgolopoulou, Paraskevi; Sandilos, Panayotis

    The development of a computational model for the treatment head of a medical electron accelerator (Elekta/Philips SL-18) by the Monte Carlo code mcnp-4C2 is discussed. The model includes the major components of the accelerator head and a pmma phantom representing the patient body. Calculations were performed for a 14 MeV electron beam impinging on the accelerator target and a 10 cmx10 cm beam area at the isocentre. The model was used in order to predict the neutron ambient dose equivalent at the isocentre level and moreover the neutron absorbed dose distribution within the phantom. Calculations were validated against experimental measurements performed by gold foil activation detectors. The results of this study indicated that the equivalent dose at tissues or organs adjacent to the treatment field due to photoneutrons could be up to 10% of the total peripheral dose, for the specific accelerator characteristics examined. Therefore, photoneutrons should be taken into account when accurate dose calculations are required to sensitive tissues that are adjacent to the therapeutic X-ray beam. The method described can be extended to other accelerators and collimation configurations as well, upon specification of treatment head component dimensions, composition and nominal accelerating potential.

  1. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms.

    PubMed

    Lacornerie, Thomas; Lisbona, Albert; Mirabel, Xavier; Lartigau, Eric; Reynaert, Nick

    2014-10-16

    The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the median GTV dose provides a very robust method for treating lung lesions.

  2. Angular distributions of absorbed dose of Bremsstrahlung and secondary electrons induced by 18-, 28- and 38-MeV electron beams in thick targets.

    PubMed

    Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki

    2013-03-01

    Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.

  3. Comparison of the secondary electrons produced by proton and electron beams in water

    NASA Astrophysics Data System (ADS)

    Kia, Mohammad Reza; Noshad, Houshyar

    2016-05-01

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.

  4. Comparison of the secondary electrons produced by proton and electron beams in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, andmore » secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.« less

  5. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE PAGES

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.; ...

    2016-12-01

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  6. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  7. Testing of the analytical anisotropic algorithm for photon dose calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esch, Ann van; Tillikainen, Laura; Pyykkonen, Jukka

    2006-11-15

    The analytical anisotropic algorithm (AAA) was implemented in the Eclipse (Varian Medical Systems) treatment planning system to replace the single pencil beam (SPB) algorithm for the calculation of dose distributions for photon beams. AAA was developed to improve the dose calculation accuracy, especially in heterogeneous media. The total dose deposition is calculated as the superposition of the dose deposited by two photon sources (primary and secondary) and by an electron contamination source. The photon dose is calculated as a three-dimensional convolution of Monte-Carlo precalculated scatter kernels, scaled according to the electron density matrix. For the configuration of AAA, an optimizationmore » algorithm determines the parameters characterizing the multiple source model by optimizing the agreement between the calculated and measured depth dose curves and profiles for the basic beam data. We have combined the acceptance tests obtained in three different departments for 6, 15, and 18 MV photon beams. The accuracy of AAA was tested for different field sizes (symmetric and asymmetric) for open fields, wedged fields, and static and dynamic multileaf collimation fields. Depth dose behavior at different source-to-phantom distances was investigated. Measurements were performed on homogeneous, water equivalent phantoms, on simple phantoms containing cork inhomogeneities, and on the thorax of an anthropomorphic phantom. Comparisons were made among measurements, AAA, and SPB calculations. The optimization procedure for the configuration of the algorithm was successful in reproducing the basic beam data with an overall accuracy of 3%, 1 mm in the build-up region, and 1%, 1 mm elsewhere. Testing of the algorithm in more clinical setups showed comparable results for depth dose curves, profiles, and monitor units of symmetric open and wedged beams below d{sub max}. The electron contamination model was found to be suboptimal to model the dose around d{sub max}, especially for physical wedges at smaller source to phantom distances. For the asymmetric field verification, absolute dose difference of up to 4% were observed for the most extreme asymmetries. Compared to the SPB, the penumbra modeling is considerably improved (1%, 1 mm). At the interface between solid water and cork, profiles show a better agreement with AAA. Depth dose curves in the cork are substantially better with AAA than with SPB. Improvements are more pronounced for 18 MV than for 6 MV. Point dose measurements in the thoracic phantom are mostly within 5%. In general, we can conclude that, compared to SPB, AAA improves the accuracy of dose calculations. Particular progress was made with respect to the penumbra and low dose regions. In heterogeneous materials, improvements are substantial and more pronounced for high (18 MV) than for low (6 MV) energies.« less

  8. A deterministic partial differential equation model for dose calculation in electron radiotherapy.

    PubMed

    Duclous, R; Dubroca, B; Frank, M

    2010-07-07

    High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g.Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung, Compton scattering and the production of delta electrons are added to our model, the computation time will only slightly increase. Its margin of error, on the other hand, will decrease and should be within a few per cent of the actual dose. Therefore, the new model has the potential to become useful for dose calculations in clinical practice.

  9. A deterministic partial differential equation model for dose calculation in electron radiotherapy

    NASA Astrophysics Data System (ADS)

    Duclous, R.; Dubroca, B.; Frank, M.

    2010-07-01

    High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g. Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung, Compton scattering and the production of δ electrons are added to our model, the computation time will only slightly increase. Its margin of error, on the other hand, will decrease and should be within a few per cent of the actual dose. Therefore, the new model has the potential to become useful for dose calculations in clinical practice.

  10. Validation of total skin electron irradiation (TSEI) technique dosimetry data by Monte Carlo simulation

    PubMed Central

    Borzov, Egor; Daniel, Shahar; Bar‐Deroma, Raquel

    2016-01-01

    Total skin electron irradiation (TSEI) is a complex technique which requires many nonstandard measurements and dosimetric procedures. The purpose of this work was to validate measured dosimetry data by Monte Carlo (MC) simulations using EGSnrc‐based codes (BEAMnrc and DOSXYZnrc). Our MC simulations consisted of two major steps. In the first step, the incident electron beam parameters (energy spectrum, FWHM, mean angular spread) were adjusted to match the measured data (PDD and profile) at SSD=100 cm for an open field. In the second step, these parameters were used to calculate dose distributions at the treatment distance of 400 cm. MC simulations of dose distributions from single and dual fields at the treatment distance were performed in a water phantom. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. MC calculations were compared to the available set of measurements used in clinical practice. For one direct field, MC calculated PDDs agreed within 3%/1 mm with the measurements, and lateral profiles agreed within 3% with the measured data. For the OF, the measured and calculated results were within 2% agreement. The optimal angle of 17° was confirmed for the dual field setup. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. The MC‐calculated multiplication factor (B12‐factor), which relates the skin dose for the whole treatment to the dose from one calibration field, for setups with and without degrader was 2.9 and 2.8, respectively. The measured B12‐factor was 2.8 for both setups. The difference between calculated and measured values was within 3.5%. It was found that a degrader provides more homogeneous dose distribution. The measured X‐ray contamination for the full treatment was 0.4%; this is compared to the 0.5% X‐ray contamination obtained with the MC calculation. Feasibility of MC simulation in an anthropomorphic phantom for a full TSEI treatment was proved and is reported for the first time in the literature. The results of our MC calculations were found to be in general agreement with the measurements, providing a promising tool for further studies of dose distribution calculations in TSEI. PACS number(s): 87.10. Rt, 87.55.K, 87.55.ne PMID:27455502

  11. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.

    2003-08-01

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  12. Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams.

    PubMed

    Doucet, R; Olivares, M; DeBlois, F; Podgorsak, E B; Kawrakow, I; Seuntjens, J

    2003-08-07

    Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 x 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid Water (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.

  13. Room scatter effects in Total Skin Electron Irradiation: Monte Carlo simulation study.

    PubMed

    Nevelsky, Alexander; Borzov, Egor; Daniel, Shahar; Bar-Deroma, Raquel

    2017-01-01

    Total Skin Electron Irradiation (TSEI) is a complex technique which usually involves the use of large electron fields and the dual-field approach. In this situation, many electrons scattered from the treatment room floor are produced. However, no investigations of the effect of scattered electrons in TSEI treatments have been reported. The purpose of this work was to study the contribution of floor scattered electrons to skin dose during TSEI treatment using Monte Carlo (MC) simulations. All MC simulations were performed with the EGSnrc code. Influence of beam energy, dual-field angle, and floor material on the contribution of floor scatter was investigated. Spectrum of the scattered electrons was calculated. Measurements of dose profile were performed in order to verify MC calculations. Floor scatter dependency on the floor material was observed (at 20 cm from the floor, scatter contribution was about 21%, 18%, 15%, and 12% for iron, concrete, PVC, and water, respectively). Although total dose profiles exhibited slight variation as functions of beam energy and dual-field angle, no dependence of the floor scatter contribution on the beam energy or dual-field angle was found. The spectrum of the scattered electrons was almost uniform between a few hundred KeV to 4 MeV, and then decreased linearly to 6 MeV. For the TSEI technique, dose contribution due to the electrons scattered from the room floor may be clinically significant and should be taken into account during design and commissioning phases. MC calculations can be used for this task. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  14. Optimization of combined electron and photon beams for breast cancer

    NASA Astrophysics Data System (ADS)

    Xiong, W.; Li, J.; Chen, L.; Price, R. A.; Freedman, G.; Ding, M.; Qin, L.; Yang, J.; Ma, C.-M.

    2004-05-01

    Recently, intensity-modulated radiation therapy and modulated electron radiotherapy have gathered a growing interest for the treatment of breast and head and neck tumours. In this work, we carried out a study to combine electron and photon beams to achieve differential dose distributions for multiple target volumes simultaneously. A Monte Carlo based treatment planning system was investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We compared breast treatment plans generated using this home-grown optimization and dose calculation software for different treatment techniques. Five different planning techniques have been developed for this study based on a standard photon beam whole breast treatment and an electron beam tumour bed cone down. Technique 1 includes two 6 MV tangential wedged photon beams followed by an anterior boost electron field. Technique 2 includes two 6 MV tangential intensity-modulated photon beams and the same boost electron field. Technique 3 optimizes two intensity-modulated photon beams based on a boost electron field. Technique 4 optimizes two intensity-modulated photon beams and the weight of the boost electron field. Technique 5 combines two intensity-modulated photon beams with an intensity-modulated electron field. Our results show that technique 2 can reduce hot spots both in the breast and the tumour bed compared to technique 1 (dose inhomogeneity is reduced from 34% to 28% for the target). Techniques 3, 4 and 5 can deliver a more homogeneous dose distribution to the target (with dose inhomogeneities for the target of 22%, 20% and 9%, respectively). In many cases techniques 3, 4 and 5 can reduce the dose to the lung and heart. It is concluded that combined photon and electron beam therapy may be advantageous for treating breast cancer compared to conventional treatment techniques using tangential wedged photon beams followed by a boost electron field.

  15. Electron beam collimation with a photon MLC for standard electron treatments

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Fix, M. K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M. F. M.; Manser, P.

    2018-01-01

    Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.

  16. Skin dose from radionuclide contamination on clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.

    1997-06-01

    Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by propermore » weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.« less

  17. Some computer graphical user interfaces in radiation therapy

    PubMed Central

    Chow, James C L

    2016-01-01

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations. PMID:27027225

  18. Modification and validation of an analytical source model for external beam radiotherapy Monte Carlo dose calculations.

    PubMed

    Davidson, Scott E; Cui, Jing; Kry, Stephen; Deasy, Joseph O; Ibbott, Geoffrey S; Vicic, Milos; White, R Allen; Followill, David S

    2016-08-01

    A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today's modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data points tested. The model was capable of predicting the depth of the maximum dose within 1 mm. Anthropomorphic phantom benchmark testing of modulated and patterned MLCs treatment plans showed agreement to measurement within 3% in target regions using thermoluminescent dosimeters (TLD). Using radiochromic film normalized to TLD, a gamma criteria of 3% of maximum dose and 2 mm DTA was applied with a pass rate of least 85% in the high dose, high gradient, and low dose regions. Finally, recalculations of patient plans using DPM showed good agreement relative to a commercial TPS when comparing dose volume histograms and 2D dose distributions. A unique analytical source model coupled to the dose planning method Monte Carlo dose calculation code has been modified and validated using basic beam data and anthropomorphic phantom measurement. While this tool can be applied in general use for a particular linac model, specifically it was developed to provide a singular methodology to independently assess treatment plan dose distributions from those clinical institutions participating in National Cancer Institute trials.

  19. Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirgayussa, I Gde Eka, E-mail: ekadirgayussa@gmail.com; Yani, Sitti; Haryanto, Freddy, E-mail: freddy@fi.itb.ac.id

    2015-09-30

    Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDPmore » and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good criteria of dose difference in PDD and dose profiles were achieve using incident electron energy 6.4 MeV.« less

  20. Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms

    PubMed Central

    Nedaie, H. A.; Mosleh-Shirazi, M. A.; Allahverdi, M.

    2013-01-01

    Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions. PMID:23533162

  1. [Shielding design and detection of neutrons from medical and industrial electron accelerators--simple method of design calculation for neutron shielding].

    PubMed

    Nakamura, T; Uwamino, Y

    1986-02-01

    The neutron leakage from medical and industrial electron accelerators has become an important problem and its detection and shielding is being performed in their facilities. This study provides a new simple method of design calculation for neutron shielding of those electron accelerator facilities by dividing into the following five categories; neutron dose distribution in the accelerator room, neutron attenuation through the wall and the door in the accelerator room, neutron and secondary photon dose distributions in the maze, neutron and secondary photon attenuation through the door at the end of the maze, neutron leakage outside the facility-skyshine.

  2. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faddegon, B.A.; Villarreal-Barajas, J.E.; Mt. Diablo Regional Cancer Center, 2450 East Street, Concord, California

    2005-11-15

    The Final Aperture Superposition Technique (FAST) is described and applied to accurate, near instantaneous calculation of the relative output factor (ROF) and central axis percentage depth dose curve (PDD) for clinical electron beams used in radiotherapy. FAST is based on precalculation of dose at select points for the two extreme situations of a fully open final aperture and a final aperture with no opening (fully shielded). This technique is different than conventional superposition of dose deposition kernels: The precalculated dose is differential in position of the electron or photon at the downstream surface of the insert. The calculation for amore » particular aperture (x-ray jaws or MLC, insert in electron applicator) is done with superposition of the precalculated dose data, using the open field data over the open part of the aperture and the fully shielded data over the remainder. The calculation takes explicit account of all interactions in the shielded region of the aperture except the collimator effect: Particles that pass from the open part into the shielded part, or visa versa. For the clinical demonstration, FAST was compared to full Monte Carlo simulation of 10x10,2.5x2.5, and 2x8 cm{sup 2} inserts. Dose was calculated to 0.5% precision in 0.4x0.4x0.2 cm{sup 3} voxels, spaced at 0.2 cm depth intervals along the central axis, using detailed Monte Carlo simulation of the treatment head of a commercial linear accelerator for six different electron beams with energies of 6-21 MeV. Each simulation took several hours on a personal computer with a 1.7 Mhz processor. The calculation for the individual inserts, done with superposition, was completed in under a second on the same PC. Since simulations for the pre calculation are only performed once, higher precision and resolution can be obtained without increasing the calculation time for individual inserts. Fully shielded contributions were largest for small fields and high beam energy, at the surface, reaching a maximum of 5.6% at 21 MeV. Contributions from the collimator effect were largest for the large field size, high beam energy, and shallow depths, reaching a maximum of 4.7% at 21 MeV. Both shielding contributions and the collimator effect need to be taken into account to achieve an accuracy of 2%. FAST takes explicit account of the shielding contributions. With the collimator effect set to that of the largest field in the FAST calculation, the difference in dose on the central axis (product of ROF and PDD) between FAST and full simulation was generally under 2%. The maximum difference of 2.5% exceeded the statistical precision of the calculation by four standard deviations. This occurred at 18 MeV for the 2.5x2.5 cm{sup 2} field. The differences are due to the method used to account for the collimator effect.« less

  3. MO-H-19A-02: Investigation of Modulated Electron Arc (MeArc) Therapy for the Treatment of Scalp Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, A; Al-Azhar University, Cairo; Jin, L

    2014-06-15

    Purpose: Electron arc therapy has long been proposed as the most suitable technique for the treatment of superficial tumors that follow circularly curved surfaces. However it was challenged by unsuitability of the conventional applicators and the lack of adequate 3-D dose calculation tools for arc electron beams in the treatment planning systems (TPS). Now with the availability of an electron specific multi-leaf collimator (eMLC) and an in-house Monte Carlo (MC) based TPS, we were motivated to investigate more advanced modulated electron arc (MeARC) therapy and its beneficial outcome. Methods: We initiated the study by a film measurement conducted in amore » head and neck phantom, where we delivered electron arcs in a step and shoot manner using the light field as a guide to avoid fields abutments. This step was done to insure enough clearance for the arcs with eMLC. MCBEAM and MCPLAN MC codes were used for the treatment head simulation and phantom dose calculation, respectively. Treatment plans were generated for targets drawn in real patient CTs and head and neck phantom. We utilized beams eye view available from a commercial planning system to create beamlets having same isocenter and adjoined at the scalp surface. Then dose-deposition coefficients from those beamlets were calculated for all electron energies using MCPLAN. An in-house optimization code was then used to find the optimum weights needed from individual beamlets. Results: MeARC showed a nicely tailored dose distribution around the circular curved target on the scalp. Some hot spots were noticed and could be attributed to fields abutment problem owing to the bulging nature of electron profiles. Brain dose was shown to be at lower levels compared to photon treatment. Conclusion: MeARC was shown to be a promising modality for treating scalp cases and could be beneficial to all superficial tumors with a circular curvature.« less

  4. ORANGE: a Monte Carlo dose engine for radiotherapy.

    PubMed

    van der Zee, W; Hogenbirk, A; van der Marck, S C

    2005-02-21

    This study presents data for the verification of ORANGE, a fast MCNP-based dose engine for radiotherapy treatment planning. In order to verify the new algorithm, it has been benchmarked against DOSXYZ and against measurements. For the benchmarking, first calculations have been done using the ICCR-XIII benchmark. Next, calculations have been done with DOSXYZ and ORANGE in five different phantoms (one homogeneous, two with bone equivalent inserts and two with lung equivalent inserts). The calculations have been done with two mono-energetic photon beams (2 MeV and 6 MeV) and two mono-energetic electron beams (10 MeV and 20 MeV). Comparison of the calculated data (from DOSXYZ and ORANGE) against measurements was possible for a realistic 10 MV photon beam and a realistic 15 MeV electron beam in a homogeneous phantom only. For the comparison of the calculated dose distributions and dose distributions against measurements, the concept of the confidence limit (CL) has been used. This concept reduces the difference between two data sets to a single number, which gives the deviation for 90% of the dose distributions. Using this concept, it was found that ORANGE was always within the statistical bandwidth with DOSXYZ and the measurements. The ICCR-XIII benchmark showed that ORANGE is seven times faster than DOSXYZ, a result comparable with other accelerated Monte Carlo dose systems when no variance reduction is used. As shown for XVMC, using variance reduction techniques has the potential for further acceleration. Using modern computer hardware, this brings the total calculation time for a dose distribution with 1.5% (statistical) accuracy within the clinical range (less then 10 min). This means that ORANGE can be a candidate for a dose engine in radiotherapy treatment planning.

  5. Quantification of confounding factors in MRI-based dose calculations as applied to prostate IMRT

    NASA Astrophysics Data System (ADS)

    Maspero, Matteo; Seevinck, Peter R.; Schubert, Gerald; Hoesl, Michaela A. U.; van Asselen, Bram; Viergever, Max A.; Lagendijk, Jan J. W.; Meijer, Gert J.; van den Berg, Cornelis A. T.

    2017-02-01

    Magnetic resonance (MR)-only radiotherapy treatment planning requires pseudo-CT (pCT) images to enable MR-based dose calculations. To verify the accuracy of MR-based dose calculations, institutions interested in introducing MR-only planning will have to compare pCT-based and computer tomography (CT)-based dose calculations. However, interpreting such comparison studies may be challenging, since potential differences arise from a range of confounding factors which are not necessarily specific to MR-only planning. Therefore, the aim of this study is to identify and quantify the contribution of factors confounding dosimetric accuracy estimation in comparison studies between CT and pCT. The following factors were distinguished: set-up and positioning differences between imaging sessions, MR-related geometric inaccuracy, pCT generation, use of specific calibration curves to convert pCT into electron density information, and registration errors. The study comprised fourteen prostate cancer patients who underwent CT/MRI-based treatment planning. To enable pCT generation, a commercial solution (MRCAT, Philips Healthcare, Vantaa, Finland) was adopted. IMRT plans were calculated on CT (gold standard) and pCTs. Dose difference maps in a high dose region (CTV) and in the body volume were evaluated, and the contribution to dose errors of possible confounding factors was individually quantified. We found that the largest confounding factor leading to dose difference was the use of different calibration curves to convert pCT and CT into electron density (0.7%). The second largest factor was the pCT generation which resulted in pCT stratified into a fixed number of tissue classes (0.16%). Inter-scan differences due to patient repositioning, MR-related geometric inaccuracy, and registration errors did not significantly contribute to dose differences (0.01%). The proposed approach successfully identified and quantified the factors confounding accurate MRI-based dose calculation in the prostate. This study will be valuable for institutions interested in introducing MR-only dose planning in their clinical practice.

  6. SU-F-T-370: A Fast Monte Carlo Dose Engine for Gamma Knife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, T; Zhou, L; Li, Y

    2016-06-15

    Purpose: To develop a fast Monte Carlo dose calculation algorithm for Gamma Knife. Methods: To make the simulation more efficient, we implemented the track repeating technique on GPU. We first use EGSnrc to pre-calculate the photon and secondary electron tracks in water from two mono-energy photons of 60Co. The total photon mean free paths for different materials and energies are obtained from NIST. During simulation, each entire photon track was first loaded to shared memory for each block, the incident original photon was then splitted to Nthread sub-photons, each thread transport one sub-photon, the Russian roulette technique was applied formore » scattered and bremsstrahlung photons. The resultant electrons from photon interactions are simulated by repeating the recorded electron tracks. The electron step length is stretched/shrunk proportionally based on the local density and stopping power ratios of the local material. Energy deposition in a voxel is proportional to the fraction of the equivalent step length in that voxel. To evaluate its accuracy, dose deposition in a 300mm*300mm*300mm water phantom is calculated, and compared to EGSnrc results. Results: Both PDD and OAR showed great agreements (within 0.5%) between our dose engine result and the EGSnrc result. It only takes less than 1 min for every simulation, being reduced up to ∼40 times compared to EGSnrc simulations. Conclusion: We have successfully developed a fast Monte Carlo dose engine for Gamma Knife.« less

  7. Quantitative Analysis of Electron Beam Damage in Organic Thin Films

    PubMed Central

    2017-01-01

    In transmission electron microscopy (TEM) the interaction of an electron beam with polymers such as P3HT:PCBM photovoltaic nanocomposites results in electron beam damage, which is the most important factor limiting acquisition of structural or chemical data at high spatial resolution. Beam effects can vary depending on parameters such as electron dose rate, temperature during imaging, and the presence of water and oxygen in the sample. Furthermore, beam damage will occur at different length scales. To assess beam damage at the angstrom scale, we followed the intensity of P3HT and PCBM diffraction rings as a function of accumulated electron dose by acquiring dose series and varying the electron dose rate, sample preparation, and the temperature during acquisition. From this, we calculated a critical dose for diffraction experiments. In imaging mode, thin film deformation was assessed using the normalized cross-correlation coefficient, while mass loss was determined via changes in average intensity and standard deviation, also varying electron dose rate, sample preparation, and temperature during acquisition. The understanding of beam damage and the determination of critical electron doses provides a framework for future experiments to maximize the information content during the acquisition of images and diffraction patterns with (cryogenic) transmission electron microscopy. PMID:28553431

  8. Variations in energy spectra and water-to-material stopping-power ratios in three-dimensional conformal and intensity-modulated photon fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Si Young; Liu, H. Helen; Mohan, Radhe

    Because of complex dose distributions and dose gradients that are created in three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), photon- and electron-energy spectra might change significantly with spatial locations and doses. This study examined variations in photon- and electron-energy spectra in 3D-CRT and IMRT photon fields. The effects of spectral variations on water-to-material stopping-power ratios used in Monte Carlo treatment planning systems and the responses of energy-dependent dosimeters, such as thermoluminescent dosimeters (TLDs) and radiographic films were further studied. The EGSnrc Monte Carlo code was used to simulate megavoltage 3D-CRT and IMRT photon fields. The photon- and electron-energymore » spectra were calculated in 3D water phantoms and anthropomorphic phantoms based on the fluence scored in voxel grids. We then obtained the water-to-material stopping-power ratios in the local voxels using the Spencer-Attix cavity theory. Changes in the responses of films and TLDs were estimated based on the calculated local energy spectra and published data on the dosimeter energy dependency. Results showed that the photon-energy spectra strongly depended on spatial positions and doses in both the 3D-CRT and IMRT fields. The relative fraction of low-energy photons (<100 keV) increased inversely with the photon dose in low-dose regions of the fields. A similar but smaller effect was observed for electrons in the phantoms. The maximum variation of the water-to-material stopping-power ratio over the range of calculated dose for both 3D-CRT and IMRT was negligible (<1.0%) for ICRU tissue, cortical bone, and soft bone and less than 3.6% for dry air and lung. Because of spectral softening at low doses, radiographic films in the phantoms could over-respond to dose by more than 30%, whereas the over-response of TLDs was less than 10%. Thus, spatial variations of the photon- and electron-energy spectra should be considered as important factors in 3D-CRT and IMRT dosimetry.« less

  9. SU-F-T-67: Correction Factors for Monitor Unit Verification of Clinical Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haywood, J

    Purpose: Monitor units calculated by electron Monte Carlo treatment planning systems are often higher than TG-71 hand calculations for a majority of patients. Here I’ve calculated tables of geometry and heterogeneity correction factors for correcting electron hand calculations. Method: A flat water phantom with spherical volumes having radii ranging from 3 to 15 cm was created. The spheres were centered with respect to the flat water phantom, and all shapes shared a surface at 100 cm SSD. D{sub max} dose at 100 cm SSD was calculated for each cone and energy on the flat phantom and for the spherical volumesmore » in the absence of the flat phantom. The ratio of dose in the sphere to dose in the flat phantom defined the geometrical correction factor. The heterogeneity factors were then calculated from the unrestricted collisional stopping power for tissues encountered in electron beam treatments. These factors were then used in patient second check calculations. Patient curvature was estimated by the largest sphere that aligns to the patient contour, and appropriate tissue density was read from the physical properties provided by the CT. The resulting MU were compared to those calculated by the treatment planning system and TG-71 hand calculations. Results: The geometry and heterogeneity correction factors range from ∼(0.8–1.0) and ∼(0.9–1.01) respectively for the energies and cones presented. Percent differences for TG-71 hand calculations drop from ∼(3–14)% to ∼(0–2)%. Conclusion: Monitor units calculated with the correction factors typically decrease the percent difference to under actionable levels, < 5%. While these correction factors work for a majority of patients, there are some patient anatomies that do not fit the assumptions made. Using these factors in hand calculations is a first step in bringing the verification monitor units into agreement with the treatment planning system MU.« less

  10. Portal scatter to primary dose ratio of 4 to 18 MV photon spectra incident on heterogeneous phantoms

    NASA Astrophysics Data System (ADS)

    Ozard, Siobhan R.

    Electronic portal imagers designed and used to verify the positioning of a cancer patient undergoing radiation treatment can also be employed to measure the in vivo dose received by the patient. This thesis investigates the ratio of the dose from patient-scattered particles to the dose from primary (unscattered) photons at the imaging plane, called the scatter to primary dose ratio (SPR). The composition of the SPR according to the origin of scatter is analyzed more thoroughly than in previous studies. A new analytical method for calculating the SPR is developed and experimentally verified for heterogeneous phantoms. A novel technique that applies the analytical SPR method for in vivo dosimetry with a portal imager is evaluated. Monte Carlo simulation was used to determine the imager dose from patient-generated electrons and photons that scatter one or more times within the object. The database of SPRs reported from this investigation is new since the contribution from patient-generated electrons was neglected by previous Monte Carlo studies. The SPR from patient-generated electrons was found here to be as large as 0.03. The analytical SPR method relies on the established result that the scatter dose is uniform for an air gap between the patient and the imager that is greater than 50 cm. This method also applies the hypothesis that first-order Compton scatter only, is sufficient for scatter estimation. A comparison of analytical and measured SPRs for neck, thorax, and pelvis phantoms showed that the maximum difference was within +/-0.03, and the mean difference was less than +/-0.01 for most cases. This accuracy was comparable to similar analytical approaches that are limited to homogeneous phantoms. The analytical SPR method could replace lookup tables of measured scatter doses that can require significant time to measure. In vivo doses were calculated by combining our analytical SPR method and the convolution/superposition algorithm. Our calculated in vivo doses agreed within +/-3% with the doses measured in the phantom. The present in vivo method was faster compared to other techniques that use convolution/superposition. Our method is a feasible and satisfactory approach that contributes to on-line patient dose monitoring.

  11. Handling Density Conversion in TPS.

    PubMed

    Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji

    2016-01-01

    Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.

  12. A comparison of TPS and different measurement techniques in small-field electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donmez Kesen, Nazmiye, E-mail: nazo94@gmail.com; Cakir, Aydin; Okutan, Murat

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with datamore » that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.« less

  13. Calculations of skyshine from an intense portable electron linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estes, G.P.; Hughes, H.G.; Fry, D.A.

    1994-12-31

    The MCNP Monte carlo code has been used at Los Alamos to calculate skyshine and terrain albedo efects from an intense portable electron linear accelerator that is to be used by the Russian Federation to radiograph nuclear weapons that may have been damaged by accidents. Relative dose rate profiles have been calculated. The design of the accelerator, along with a diagram, is presented.

  14. Modification and validation of an analytical source model for external beam radiotherapy Monte Carlo dose calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Scott E., E-mail: sedavids@utmb.edu

    Purpose: A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who usesmore » these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today’s modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. Methods: The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Results: Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data points tested. The model was capable of predicting the depth of the maximum dose within 1 mm. Anthropomorphic phantom benchmark testing of modulated and patterned MLCs treatment plans showed agreement to measurement within 3% in target regions using thermoluminescent dosimeters (TLD). Using radiochromic film normalized to TLD, a gamma criteria of 3% of maximum dose and 2 mm DTA was applied with a pass rate of least 85% in the high dose, high gradient, and low dose regions. Finally, recalculations of patient plans using DPM showed good agreement relative to a commercial TPS when comparing dose volume histograms and 2D dose distributions. Conclusions: A unique analytical source model coupled to the dose planning method Monte Carlo dose calculation code has been modified and validated using basic beam data and anthropomorphic phantom measurement. While this tool can be applied in general use for a particular linac model, specifically it was developed to provide a singular methodology to independently assess treatment plan dose distributions from those clinical institutions participating in National Cancer Institute trials.« less

  15. Evaluation of the accuracy of mono-energetic electron and beta-emitting isotope dose-point kernels using particle and heavy ion transport code system: PHITS.

    PubMed

    Shiiba, Takuro; Kuga, Naoya; Kuroiwa, Yasuyoshi; Sato, Tatsuhiko

    2017-10-01

    We assessed the accuracy of mono-energetic electron and beta-emitting isotope dose-point kernels (DPKs) calculated using the particle and heavy ion transport code system (PHITS) for patient-specific dosimetry in targeted radionuclide treatment (TRT) and compared our data with published data. All mono-energetic and beta-emitting isotope DPKs calculated using PHITS, both in water and compact bone, were in good agreement with those in literature using other MC codes. PHITS provided reliable mono-energetic electron and beta-emitting isotope scaled DPKs for patient-specific dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    PubMed

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection.

  17. Poster - Thur Eve - 45: Commissioning of the Varian ECLIPSE eMC algorithm for clinical electron treatment planning.

    PubMed

    Serban, M; Ruo, R; Sarfehnia, A; Parker, W; Evans, M

    2012-07-01

    Fast electron Monte Carlo systems have been developed commercially, and implemented for clinical practice in radiation therapy clinics. In this work the Varian eMC (electron Monte Carlo) algorithm was commissioned for clinical electron beams of energies between 6 MeV and 20 MeV. Beam outputs, PDDs and profiles were measured for 29 regular and irregular cutouts using the IC-10 (Wellhöfer) ionization chamber. Detailed percentage depth dose comparisons showed that the agreement between measurement and eMC for different characteristic points on the PDD are generally less than 1 mm and always less than 2 mm, with the eMC calculated values being lower than the measured values. Of the 145 measured output factors, 19 cases fail a ±2% agreement but only 8 cases fail a ±3% agreement between calculation and measurement. Comparison of central axis dose distributions for two electron energies (9, and 20 MeV) for a 10 × 10 cm 2 field, centrally shielded with Pb of width 0 cm (open), 1, 2 and 3 cm, shows agreement to within 3% except near the surface. Comparison of central axis dose distributions for 9 MeV in heterogeneous phantoms including bone and lung inserts showed agreement of 1 mm and 3 mm respectively with measured TLD data. The overall agreement between measurement and eMC calculation has enabled us to begin implementing this calculation model for clinical use. © 2012 American Association of Physicists in Medicine.

  18. Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code

    NASA Astrophysics Data System (ADS)

    Peri, Eyal; Orion, Itzhak

    2017-09-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwai, P; Lins, L Nadler

    Purpose: There is a lack of studies with significant cohort data about patients using pacemaker (PM), implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT) device undergoing radiotherapy. There is no literature comparing the cumulative doses delivered to those cardiac implanted electronic devices (CIED) calculated by different algorithms neither studies comparing doses with heterogeneity correction or not. The aim of this study was to evaluate the influence of the algorithms Pencil Beam Convolution (PBC), Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) as well as heterogeneity correction on risk categorization of patients. Methods: A retrospective analysis of 19 3DCRT ormore » IMRT plans of 17 patients was conducted, calculating the dose delivered to CIED using three different calculation algorithms. Doses were evaluated with and without heterogeneity correction for comparison. Risk categorization of the patients was based on their CIED dependency and cumulative dose in the devices. Results: Total estimated doses at CIED calculated by AAA or AXB were higher than those calculated by PBC in 56% of the cases. In average, the doses at CIED calculated by AAA and AXB were higher than those calculated by PBC (29% and 4% higher, respectively). The maximum difference of doses calculated by each algorithm was about 1 Gy, either using heterogeneity correction or not. Values of maximum dose calculated with heterogeneity correction showed that dose at CIED was at least equal or higher in 84% of the cases with PBC, 77% with AAA and 67% with AXB than dose obtained with no heterogeneity correction. Conclusion: The dose calculation algorithm and heterogeneity correction did not change the risk categorization. Since higher estimated doses delivered to CIED do not compromise treatment precautions to be taken, it’s recommend that the most sophisticated algorithm available should be used to predict dose at the CIED using heterogeneity correction.« less

  20. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    PubMed

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel.

  1. Response functions for computing absorbed dose to skeletal tissues from photon irradiation—an update

    NASA Astrophysics Data System (ADS)

    Johnson, Perry B.; Bahadori, Amir A.; Eckerman, Keith F.; Lee, Choonsik; Bolch, Wesley E.

    2011-04-01

    A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues—active and total shallow marrow—within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R2 = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.

  2. Response functions for computing absorbed dose to skeletal tissues from photon irradiation--an update.

    PubMed

    Johnson, Perry B; Bahadori, Amir A; Eckerman, Keith F; Lee, Choonsik; Bolch, Wesley E

    2011-04-21

    A comprehensive set of photon fluence-to-dose response functions (DRFs) is presented for two radiosensitive skeletal tissues-active and total shallow marrow-within 15 and 32 bone sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron-absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon micro-CT images of trabecular spongiosa taken from a 40 year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, and a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In this study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma coefficients for active marrow, inactive marrow, trabecular bone and spongiosa at higher energies are calculated using the DRF algorithm setting the electron-absorbed fraction for self-irradiation to unity. By comparing kerma coefficients and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985 Br. J. Radiol. 58 345-56) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R(2) = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites representing the first such derivation for this target tissue.

  3. RESPONSE FUNCTIONS FOR COMPUTING ABSORBED DOSE TO SKELETAL TISSUES FROM PHOTON IRRADIATION – AN UPDATE

    PubMed Central

    Johnson, Perry; Bahadori, Amir; Eckerman, Keith; Lee, Choonsik; Bolch, Wesley E.

    2014-01-01

    A comprehensive set of photon fluence-to-dose response functions (DRFs) are presented for two radiosensitive skeletal tissues – active and total shallow marrow – within 15 and 32 bones sites, respectively, of the ICRP reference adult male. The functions were developed using fractional skeletal masses and associated electron absorbed fractions as reported for the UF hybrid adult male phantom, which in turn is based upon microCT images of trabecular spongiosa taken from a 40-year male cadaver. The new DRFs expand upon both the original set of seven functions produced in 1985, as well as a 2007 update calculated under the assumption of secondary electron escape from spongiosa. In the present study, it is assumed that photon irradiation of the skeleton will yield charged particle equilibrium across all spongiosa regions at energies exceeding 200 keV. Kerma factors for active marrow, inactive marrow, trabecular bone, and spongiosa at higher energies are calculated using the DRF algorithm setting the electron absorbed fraction for self-irradiation to unity. By comparing kerma factors and DRF functions, dose enhancement factors and mass energy-absorption coefficient (MEAC) ratios for active marrow to spongiosa were derived. These MEAC ratios compared well with those provided by the NIST Physical Reference Data Library (mean difference of 0.8%), and the dose enhancement factors for active marrow compared favorably with values calculated in the well-known study published by King and Spiers (1985) (mean absolute difference of 1.9 percentage points). Additionally, dose enhancement factors for active marrow were shown to correlate well with the shallow marrow volume fraction (R2 = 0.91). Dose enhancement factors for the total shallow marrow were also calculated for 32 bone sites PMID:21427484

  4. Simulation of irradiation exposure of electronic devices due to heavy ion therapy with Monte Carlo Code MCNP6

    NASA Astrophysics Data System (ADS)

    Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang; Buck, Arnulf

    2017-09-01

    During heavy ion irradiation therapy the patient has to be located exactly at the right position to make sure that the Bragg peak occurs in the tumour. The patient has to be moved in the range of millimetres to scan the ill tissue. For that reason a special table was developed which allows exact positioning. The electronic control can be located outside the surgery. But that has some disadvantage for the construction. To keep the system compact it would be much more comfortable to put the electronic control inside the surgery. As a lot of high energetic secondary particles are produced during the therapy causing a high dose in the room it is important to find positions with low dose rates. Therefore, investigations are needed where the electronic devices should be located to obtain a minimum of radiation, help to prevent the failure of sensitive devices. The dose rate was calculated for carbon ions with different initial energy and protons over the entire therapy room with Monte Carlo particle tracking using MCNP6. The types of secondary particles were identified and the dose rate for a thin silicon layer and an electronic mixture material was determined. In addition, the shielding effect of several selected material layers was calculated using MCNP6.

  5. SU-E-T-373: Evaluation and Reduction of Contralateral Skin /subcutaneous Dose for Tangential Breast Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butson, M; Carroll, S; Whitaker, M

    2015-06-15

    Purpose: Tangential breast irradiation is a standard treatment technique for breast cancer therapy. One aspect of dose delivery includes dose delivered to the skin caused by electron contamination. This effect is especially important for highly oblique beams used on the medical tangent where the electron contamination deposits dose on the contralateral breast side. This work aims to investigate and predict as well as define a method to reduce this dose during tangential breast radiotherapy. Methods: Analysis and calculation of breast skin and subcutaneous dose is performed using a Varian Eclipse planning system, AAA algorithm for 6MV x-ray treatments. Measurements weremore » made using EBT3 Gafchromic film to verify the accuracy of planning data. Various materials were tested to assess their ability to remove electron contamination on the contralateral breast. Results: Results showed that the Varian Eclipse AAA algorithm could accurately estimate contralateral breast dose in the build-up region at depths of 2mm or deeper. Surface dose was underestimated by the AAA algorithm. Doses up to 12% of applied dose were seen on the contralateral breast surface and up to 9 % at 2mm depth. Due to the nature of this radiation, being mainly low energy electron contamination, a bolus material could be used to reduce this dose to less than 3%. This is accomplished by 10 mm of superflab bolus or by 1 mm of lead. Conclusion: Contralateral breast skin and subcutaneous dose is present for tangential breast treatment and has been measured to be up to 12% of applied dose from the medial tangent beam. This dose is deposited at shallow depths and is accurately calculated by the Eclipse AAA algorithm at depths of 2mm or greater. Bolus material placed over the contralateral can be used to effectively reduce this skin dose.« less

  6. [Cooperation with the electronic medical record and accounting system of an actual dose of drug given by a radiology information system].

    PubMed

    Yamamoto, Hideo; Yoneda, Tarou; Satou, Shuji; Ishikawa, Toru; Hara, Misako

    2009-12-20

    By input of the actual dose of a drug given into a radiology information system, the system converting with an accounting system into a cost of the drug from the actual dose in the electronic medical record was built. In the drug master, the first unit was set as the cost of the drug, and we set the second unit as the actual dose. The second unit in the radiology information system was received by the accounting system through electronic medical record. In the accounting system, the actual dose was changed into the cost of the drug using the dose of conversion to the first unit. The actual dose was recorded on a radiology information system and electronic medical record. The actual dose was indicated on the accounting system, and the cost for the drug was calculated. About the actual dose of drug, cooperation of the information in a radiology information system and electronic medical record were completed. It was possible to decide the volume of drug from the correct dose of drug at the previous inspection. If it is necessary for the patient to have another treatment of medicine, it is important to know the actual dose of drug given. Moreover, authenticity of electronic medical record based on a statute has also improved.

  7. WE-AB-204-12: Dosimetry at the Sub-Cellular Scale of Auger-Electron Emitter 99m-Tc in a Mouse Single Thyroid Follicle Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taborda, A; Benabdallah, N; Desbree, A

    2015-06-15

    Purpose: To perform a dosimetry study at the sub-cellular scale of Auger-electron emitter 99m-Tc using a mouse single thyroid cellular model to investigate the contribution of the 99m-Tc Auger-electrons to the absorbed dose and possible link to the thyroid stunning in in vivo experiments in mice, recently reported in literature. Methods: The simulation of S-values for Auger-electron emitting radionuclides was performed using both the recent MCNP6 software and the Geant4-DNA extension of the Geant4 toolkit. The dosimetric calculations were validated through comparison with results from literature, using a simple model of a single cell consisting of two concentric spheres ofmore » unit density water and for six Auger-electron emitting radionuclides. Furthermore, the S-values were calculated using a single thyroid follicle model for uniformly distributed 123-I and 125-I radionuclides and compared with published S-values. After validation, the simulation of the S-values was performed for the 99m-Tc radionuclide within the several mouse thyroid follicle cellular compartments, considering the radiative and non-radiative transitions of the 99m-Tc radiation spectrum. Results: The calculated S-values using MCNP6 are in good agreement with the results from literature, validating its use for the 99m-Tc S-values calculations. The most significant absorbed dose corresponds to the case where the radionuclide is uniformly distributed in the follicular cell’s nucleus, with a S-value of 7.8 mGy/disintegration, due mainly to the absorbed Auger-electrons. The results show that, at a sub-cellular scale, the emitted X-rays and gamma particles do not contribute significantly to the absorbed dose. Conclusion: In this work, MCNP6 was validated for dosimetric studies at the sub-cellular scale. It was shown that the contribution of the Auger-electrons to the absorbed dose is important at this scale compared to the emitted photons’ contribution and can’t be neglected. The obtained S-values of Auger-electron emitting 99m-Tc radionuclide will be presented and discussed.« less

  8. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shieldmore » was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.« less

  9. Organ and effective dose rate coefficients for submersion exposure in occupational settings

    DOE PAGES

    Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.; ...

    2017-08-24

    External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less

  10. Organ and effective dose rate coefficients for submersion exposure in occupational settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.

    External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less

  11. Design and dosimetry of a few leaf electron collimator for energy modulated electron therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Yahya, Khalid; Verhaegen, Frank; Seuntjens, Jan

    2007-12-15

    Despite the capability of energy modulated electron therapy (EMET) to achieve highly conformal dose distributions in superficial targets it has not been widely implemented due to problems inherent in electron beam radiotherapy such as planning dosimetry accuracy, and verification as well as a lack of systems for automated delivery. In previous work we proposed a novel technique to deliver EMET using an automated 'few leaf electron collimator' (FLEC) that consists of four motor-driven leaves fit in a standard clinical electron beam applicator. Integrated with a Monte Carlo based optimization algorithm that utilizes patient-specific dose kernels, a treatment delivery was incorporatedmore » within the linear accelerator operation. The FLEC was envisioned to work as an accessory tool added to the clinical accelerator. In this article the design and construction of the FLEC prototype that match our compact design goals are presented. It is controlled using an in-house developed EMET controller. The structure of the software and the hardware characteristics of the EMET controller are demonstrated. Using a parallel plate ionization chamber, output measurements were obtained to validate the Monte Carlo calculations for a range of fields with different energies and sizes. Further verifications were also performed for comparing 1-D and 2-D dose distributions using energy independent radiochromic films. Comparisons between Monte Carlo calculations and measurements of complex intensity map deliveries show an overall agreement to within {+-}3%. This work confirms our design objectives of the FLEC that allow for automated delivery of EMET. Furthermore, the Monte Carlo dose calculation engine required for EMET planning was validated. The result supports the potential of the prototype FLEC for the planning and delivery of EMET.« less

  12. A STUDY OF PREDICTED BONE MARROW DISTRIBUTION ON CALCULATED MARROW DOSE FROM EXTERNAL RADIATION EXPOSURES USING TWO SETS OF IMAGE DATA FOR THE SAME INDIVIDUAL

    PubMed Central

    Caracappa, Peter F.; Chao, T. C. Ephraim; Xu, X. George

    2010-01-01

    Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body. PMID:19430219

  13. A study of predicted bone marrow distribution on calculated marrow dose from external radiation exposures using two sets of image data for the same individual.

    PubMed

    Caracappa, Peter F; Chao, T C Ephraim; Xu, X George

    2009-06-01

    Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body.

  14. A small-scale anatomical dosimetry model of the liver

    NASA Astrophysics Data System (ADS)

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-01

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  15. Individualized adjustments to reference phantom internal organ dosimetry—scaling factors given knowledge of patient external anatomy

    NASA Astrophysics Data System (ADS)

    Wayson, Michael B.; Bolch, Wesley E.

    2018-04-01

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.

  16. Individualized adjustments to reference phantom internal organ dosimetry-scaling factors given knowledge of patient external anatomy.

    PubMed

    Wayson, Michael B; Bolch, Wesley E

    2018-04-13

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.

  17. Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors

    NASA Astrophysics Data System (ADS)

    Salguero, Francisco Javier; Arráns, Rafael; Atriana Palma, Bianey; Leal, Antonio

    2010-03-01

    The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.

  18. A point kernel algorithm for microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Debus, Charlotte; Oelfke, Uwe; Bartzsch, Stefan

    2017-11-01

    Microbeam radiation therapy (MRT) is a treatment approach in radiation therapy where the treatment field is spatially fractionated into arrays of a few tens of micrometre wide planar beams of unusually high peak doses separated by low dose regions of several hundred micrometre width. In preclinical studies, this treatment approach has proven to spare normal tissue more effectively than conventional radiation therapy, while being equally efficient in tumour control. So far dose calculations in MRT, a prerequisite for future clinical applications are based on Monte Carlo simulations. However, they are computationally expensive, since scoring volumes have to be small. In this article a kernel based dose calculation algorithm is presented that splits the calculation into photon and electron mediated energy transport, and performs the calculation of peak and valley doses in typical MRT treatment fields within a few minutes. Kernels are analytically calculated depending on the energy spectrum and material composition. In various homogeneous materials peak, valley doses and microbeam profiles are calculated and compared to Monte Carlo simulations. For a microbeam exposure of an anthropomorphic head phantom calculated dose values are compared to measurements and Monte Carlo calculations. Except for regions close to material interfaces calculated peak dose values match Monte Carlo results within 4% and valley dose values within 8% deviation. No significant differences are observed between profiles calculated by the kernel algorithm and Monte Carlo simulations. Measurements in the head phantom agree within 4% in the peak and within 10% in the valley region. The presented algorithm is attached to the treatment planning platform VIRTUOS. It was and is used for dose calculations in preclinical and pet-clinical trials at the biomedical beamline ID17 of the European synchrotron radiation facility in Grenoble, France.

  19. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types.

    PubMed

    Muir, B R; Rogers, D W O

    2014-11-01

    To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers' effective point of measurement (EPOM) and beam quality conversion factors. The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R50 converted from I50 (calculated using ion chamber simulations in phantom) to R50 calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, kQ, as a function of R50. The optimal shift of cylindrical chambers is found to be less than the 0.5 rcav recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 rcav. Values of kecal are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R50 = 7.5 cm (kQ (')) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.

  20. Calculation of Dose Deposition in 3D Voxels by Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2010-01-01

    The biological response to high-LET radiation is very different from low-LET radiation, and can be partly attributed to the energy deposition by the radiation. Several experiments, notably detection of gamma-H2AX foci by immunofluorescence, has revealed important differences in the nature and in the spatial distribution of double-strand breaks (DSB) induced by low- and high-LET radiations. Many calculations, most of which are based on amorphous track models with radial dose, have been combined with chromosome models to calculate the number and distribution of DSB within nuclei and chromosome aberrations. In this work, the Monte-Carlo track structure simulation code RITRACKS have been used to calculate directly the energy deposition in voxels (3D pixels). A cubic volume of 5 micrometers of side was irradiated by 1) 450 (1)H+ ions of 300 MeV (LET is approximately 0.3 keV/micrometer) and 2) by 1 (56)Fe26+ ion of 1 GeV/amu (LET is approximately 150 keV/micrometer). In both cases, the dose deposited in the volume is approximately 1 Gy. All energy deposition events are recorded and dose is calculated in voxels of 20 micrometers of side. The voxels are then visualized in 3D by using a color scale to represent the intensity of the dose in a voxel. This simple approach has revealed several important points which may help understand experimental observations. In both simulations, voxels which receive low dose are the most numerous, and those corresponding to electron track ends received a dose which is in the higher range. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. The distribution of the voxels shows major differences for the (56)Fe26+ ion. The track structure can still be seen, and voxels with much higher dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and may be responsible for DSB that are more difficult to repair. By applying a threshold on the dose visualization, voxels corresponding to electron track ends are evidenced and the spatial distribution of voxels is very similar to the distribution of DSB observed in gamma H2AX experiments, even if no chromosomes have been included in the simulation. Furthermore, this work has shown that a significant dose is deposited in voxels corresponding to electron track ends. Since some delta-rays from iron ion can travel several millimeters, they may also be of radiobiological importance.

  1. SU-C-BRC-07: Parametrized GPU Accelerated Electron Monte Carlo Second Check

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haywood, J

    Purpose: I am presenting a parameterized 3D GPU accelerated electron Monte Carlo second check program. Method: I wrote the 3D grid dose calculation algorithm in CUDA and utilized an NVIDIA GeForce GTX 780 Ti to run all of the calculations. The electron path beyond the distal end of the cone is governed by four parameters: the amplitude of scattering (AMP), the mean and width of a Gaussian energy distribution (E and α), and the percentage of photons. In my code, I adjusted all parameters until the calculated PDD and profile fit the measured 10×10 open beam data within 1%/1mm. Imore » then wrote a user interface for reading the DICOM treatment plan and images in Python. In order to verify the algorithm, I calculated 3D dose distributions on a variety of phantoms and geometries, and compared them with the Eclipse eMC calculations. I also calculated several patient specific dose distributions, including a nose and an ear. Finally, I compared my algorithm’s computation times to Eclipse’s. Results: The calculated MU for all of the investigated geometries agree with the TPS within the TG-114 action level of 5%. The MU for the nose was < 0.5 % different while the MU for the ear at 105 SSD was ∼2 %. Calculation times for a 12MeV 10×10 open beam ranged from 1 second for a 2.5 mm grid resolution with ∼15 million particles to 33 seconds on a 1 mm grid with ∼460 million particles. Eclipse calculation runtimes distributed over 10 FAS workers were 9 seconds to 15 minutes respectively. Conclusion: The GPU accelerated second check allows quick MU verification while accounting for patient specific geometry and heterogeneity.« less

  2. Monte Carlo calculation of the sensitivity of a commercial dose calibrator to gamma and beta radiation.

    PubMed

    Laedermann, Jean-Pascal; Valley, Jean-François; Bulling, Shelley; Bochud, François O

    2004-06-01

    The detection process used in a commercial dose calibrator was modeled using the GEANT 3 Monte Carlo code. Dose calibrator efficiency for gamma and beta emitters, and the response to monoenergetic photons and electrons was calculated. The model shows that beta emitters below 2.5 MeV deposit energy indirectly in the detector through bremsstrahlung produced in the chamber wall or in the source itself. Higher energy beta emitters (E > 2.5 MeV) deposit energy directly in the chamber sensitive volume, and dose calibrator sensitivity increases abruptly for these radionuclides. The Monte Carlo calculations were compared with gamma and beta emitter measurements. The calculations show that the variation in dose calibrator efficiency with measuring conditions (source volume, container diameter, container wall thickness and material, position of the source within the calibrator) is relatively small and can be considered insignificant for routine measurement applications. However, dose calibrator efficiency depends strongly on the inner-wall thickness of the detector.

  3. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation

    PubMed Central

    Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    Purpose To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. Materials and methods A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. Results The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. Conclusion A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm. PMID:28886048

  4. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    PubMed

    Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  5. Dose calculation accuracy of the Monte Carlo algorithm for CyberKnife compared with other commercially available dose calculation algorithms.

    PubMed

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  6. A dose optimization method for electron radiotherapy using randomized aperture beams

    NASA Astrophysics Data System (ADS)

    Engel, Konrad; Gauer, Tobias

    2009-09-01

    The present paper describes the entire optimization process of creating a radiotherapy treatment plan for advanced electron irradiation. Special emphasis is devoted to the selection of beam incidence angles and beam energies as well as to the choice of appropriate subfields generated by a refined version of intensity segmentation and a novel random aperture approach. The algorithms have been implemented in a stand-alone programme using dose calculations from a commercial treatment planning system. For this study, the treatment planning system Pinnacle from Philips has been used and connected to the optimization programme using an ASCII interface. Dose calculations in Pinnacle were performed by Monte Carlo simulations for a remote-controlled electron multileaf collimator (MLC) from Euromechanics. As a result, treatment plans for breast cancer patients could be significantly improved when using randomly generated aperture beams. The combination of beams generated through segmentation and randomization achieved the best results in terms of target coverage and sparing of critical organs. The treatment plans could be further improved by use of a field reduction algorithm. Without a relevant loss in dose distribution, the total number of MLC fields and monitor units could be reduced by up to 20%. In conclusion, using randomized aperture beams is a promising new approach in radiotherapy and exhibits potential for further improvements in dose optimization through a combination of randomized electron and photon aperture beams.

  7. WE-D-BRA-03: Four-Dimensional Dose Reconstruction Through Retrospective Phase Determination Using Cine Images of Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, J; Jung, J; Yi, B

    2015-06-15

    Purpose: To test a method to reconstruct a four-dimensional (4D) dose distribution using the correlation of pre-calculated 4D electronic portal imaging device (EPID) images and measured cine-EPID images. Methods: 1. A phantom designed to simulate a tumor in lung (a polystyrene block with 3.0 cm diameter embedded in cork) was placed on a sinusoidally moving platform with 2 cm amplitude and 4 sec/cycle. Ten-phase 4D CT images were acquired for treatment planning and dose reconstruction. A 6MV photon beam was irradiated on the phantom with static (field size=5×8.5 cm{sup 2}) and dynamic fields (sliding windows, 10×10 cm{sup 2}, X1 MLCmore » closing in parallel with the tumor movement). 2. 4D and 3D doses were calculated forwardly on PTV (1 cm margin). 3. Dose images on EPID under the fields were calculated for 10 phases. 4. Cine EPID images were acquired during irradiation. 5. Their acquisition times were correlated to the phases of the phantom at which irradiation occurred by inter-comparing calculated “reference” EPID images with measured images (2D gamma comparison). For the dynamic beam, the tumor was hidden under MLCs during a portion of irradiation time; the correlation performed when the tumor was visible was extrapolated. 6. Dose for each phase was reconstructed on the 4D CT images and summed over all phases. The summation was compared with forwardly calculated 4D and 3D dose distributions. Monte Carlo methods were used for all calculations. Results: For the open and dynamic beams, the 4D reconstructed doses showed the pass rates of 92.7 % and 100 %, respectively, at the isocenter plane given 3% / 3 mm criteria. The better agreement of the dynamic beam was from its dose gradient which blurred the otherwise sharp difference between forward and reconstructed doses. This also contributed slightly better agreement in DVH of PTV. Conclusion: The feasibility of 4D reconstruction was demonstrated.« less

  8. Modeling radiation loads in the ILC main linac and a novel approach to treat dark current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokhov, Nilolai V.; Rakhno, Igor L.; Tropin, Igor S.

    Electromagnetic and hadron showers generated by electrons of dark current (DC) can represent a significant radiation threat to the ILC linac equipment and personnel. In this study, a commissioning scenario is analysed which is considered as the worst-case scenario for the main linac regarding the DC contribution to the radiation environment in the tunnel. A normal operation scenario is analysed as well. An emphasis is made on radiation load to sensitive electronic equipment—cryogenic thermometers inside the cryomodules. Prompt and residual dose rates in the ILC main linac tunnels were also calculated in these new high-statistics runs. A novel approach wasmore » developed—as a part of general purpose Monte Carlo code MARS15—to model generation, acceleration and transport of DC electrons in electromagnetic fields inside SRF cavities. Comparisons were made with a standard approach when a set of pre-calculated DC electron trajectories is used, with a proper normalization, as a source for Monte Carlo modelling. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the peak absorbed dose in the cryogenic thermometers in the main tunnel for 20 years of operation is about 0.8 MGy. The calculated contact residual dose on cryomodules and tunnel walls in the main tunnel for typical irradiation and cooling conditions is 0.1 and 0.01 mSv/hr, respectively.« less

  9. Characterisation of mega-voltage electron pencil beam dose distributions: viability of a measurement-based approach.

    PubMed

    Barnes, M P; Ebert, M A

    2008-03-01

    The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.

  10. A comparison of TPS and different measurement techniques in small-field electron beams.

    PubMed

    Donmez Kesen, Nazmiye; Cakir, Aydin; Okutan, Murat; Bilge, Hatice

    2015-01-01

    In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5cm and smaller, for nominal energies of 6, 9, and 15MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15MeV and 32% for 9MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  11. Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Weinberg, Rebecca

    The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity.

  12. SU-E-J-43: Deformed Planning CT as An Electron Density Substitute for Cone-Beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, K; Godley, A

    2014-06-01

    Purpose: To confirm that deforming the planning CT to the daily Cone-Beam CTs (CBCT) can provide suitable electron density for adaptive planning. We quantify the dosimetric difference between plans calculated on deformed planning CTs (DPCT) and daily CT-on-rails images (CTOR). CTOR is used as a test of the method as CTOR already contains accurate electron density to compare against. Methods: Five prostate only IMRT patients, each with five CTOR images, were selected and re-planned on Panther (Prowess Inc.) with a uniform 5 mm PTV expansion, prescribed 78 Gy. The planning CT was deformed to match each CTOR using ABAS (Elektamore » Inc.). Contours were drawn on the CTOR, and copied to the DPCT. The original treatment plan was copied to both the CTOR and DPCT, keeping the center of the prostate as the isocenter. The plans were then calculated using the collapsed cone heterogeneous dose engine of Prowess and typical DVH planning parameters used to compare them. Results: Each DPCT was visually compared to its CTOR with no differences observed. The agreement of the copied CTOR contours with the DPCT anatomy further demonstrated the deformation accuracy. The plans calculated using CTOR and DPCT were compared. Over the 25 plan pairs, the average difference between them for prostate D100, D98 and D95 were 0.5%, 0.2%, and 0.2%; PTV D98, D95 and mean dose: 0.3%, 0.2% and 0.3%; bladder V70, V60 and mean dose: 1.1%, 0.7%, and 0.2%; and rectum mean dose: 0.3%. (D100 is the dose covering 100% of the target; V70 is the volume of the organ receiving 70 Gy). Conclusion: We observe negligible difference between the dose calculated on the DPCT and the CTOR, implying that deformed planning CTs are a suitable substitute for electron density. The method can now be applied to CBCTs. Research version of Panther provided by Prowess Inc. Research version of ABAS provided by Elekta Inc.« less

  13. Performance of two commercial electron beam algorithms over regions close to the lung-mediastinum interface, against Monte Carlo simulation and point dosimetry in virtual and anthropomorphic phantoms.

    PubMed

    Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R

    2014-03-01

    Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Effects of High Energy Electron Irradiation on a Yttrium Barium(2) Copper(3) Oxygen(7-delta) High Temperature Superconductor

    DTIC Science & Technology

    1991-09-01

    2 2. Dosimetry ............................................. 4 C. OVERVIEW OF EXPERIMENT............................... 5 11. ELECTRON BEAM...From these measurements, the dose was calculated and then compared to a measured dose obtained from TLD dosimetry . Technical 5 problems with the...LINAC precluded TLD dosimetry from being accomplished during the first run and, therefore, was performed on the second run only. After irradiation, a NaI

  15. Characterisation of a MOSFET-based detector for dose measurement under megavoltage electron beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Jong, W. L.; Ung, N. M.; Tiong, A. H. L.; Rosenfeld, A. B.; Wong, J. H. D.

    2018-03-01

    The aim of this study is to investigate the fundamental dosimetric characteristics of the MOSkin detector for megavoltage electron beam dosimetry. The reproducibility, linearity, energy dependence, dose rate dependence, depth dose measurement, output factor measurement, and surface dose measurement under megavoltage electron beam were tested. The MOSkin detector showed excellent reproducibility (>98%) and linearity (R2= 1.00) up to 2000 cGy for 4-20 MeV electron beams. The MOSkin detector also showed minimal dose rate dependence (within ±3%) and energy dependence (within ±2%) over the clinical range of electron beams, except for an energy dependence at 4 MeV electron beam. An energy dependence correction factor of 1.075 is needed when the MOSkin detector is used for 4 MeV electron beam. The output factors measured by the MOSkin detector were within ±2% compared to those measured with the EBT3 film and CC13 chamber. The measured depth doses using the MOSkin detector agreed with those measured using the CC13 chamber, except at the build-up region due to the dose volume averaging effect of the CC13 chamber. For surface dose measurements, MOSkin measurements were in agreement within ±3% to those measured using EBT3 film. Measurements using the MOSkin detector were also compared to electron dose calculation algorithms namely the GGPB and eMC algorithms. Both algorithms were in agreement with measurements to within ±2% and ±4% for output factor (except for the 4 × 4 cm2 field size) and surface dose, respectively. With the uncertainties taken into account, the MOSkin detector was found to be a suitable detector for dose measurement under megavoltage electron beam. This has been demonstrated in the in vivo skin dose measurement on patients during electron boost to the breast tumour bed.

  16. Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in agreement with the measured TLD values.

  17. Electron penetration of spacecraft thermal insulation

    NASA Technical Reports Server (NTRS)

    Powers, W. L.; Adams, B. F.; Inouye, G. T.

    1981-01-01

    The external thermal blanket with 13 mils of polyethylene which has the known range and stopping power as a function of electron energy is investiated. The most recent omnidirectional peak Jovian electron flux at 5 Jupiter radii is applied, the electron current penetrating the thermal blanket is calculated and allowed to impinge on a typical 20 mil polyethylene insulator surrounding a wire. The radiation dose rate to the insulator is then calculated and the electrical conductivity found. The results demonstrate that the increased electronic mobility is sufficient to keep the maximum induced electric field two orders of magnitude below the critical breakdown strength.

  18. IMRT head and neck treatment planning with a commercially available Monte Carlo based planning system

    NASA Astrophysics Data System (ADS)

    Boudreau, C.; Heath, E.; Seuntjens, J.; Ballivy, O.; Parker, W.

    2005-03-01

    The PEREGRINE Monte Carlo dose-calculation system (North American Scientific, Cranberry Township, PA) is the first commercially available Monte Carlo dose-calculation code intended specifically for intensity modulated radiotherapy (IMRT) treatment planning and quality assurance. In order to assess the impact of Monte Carlo based dose calculations for IMRT clinical cases, dose distributions for 11 head and neck patients were evaluated using both PEREGRINE and the CORVUS (North American Scientific, Cranberry Township, PA) finite size pencil beam (FSPB) algorithm with equivalent path-length (EPL) inhomogeneity correction. For the target volumes, PEREGRINE calculations predict, on average, a less than 2% difference in the calculated mean and maximum doses to the gross tumour volume (GTV) and clinical target volume (CTV). An average 16% ± 4% and 12% ± 2% reduction in the volume covered by the prescription isodose line was observed for the GTV and CTV, respectively. Overall, no significant differences were noted in the doses to the mandible and spinal cord. For the parotid glands, PEREGRINE predicted a 6% ± 1% increase in the volume of tissue receiving a dose greater than 25 Gy and an increase of 4% ± 1% in the mean dose. Similar results were noted for the brainstem where PEREGRINE predicted a 6% ± 2% increase in the mean dose. The observed differences between the PEREGRINE and CORVUS calculated dose distributions are attributed to secondary electron fluence perturbations, which are not modelled by the EPL correction, issues of organ outlining, particularly in the vicinity of air cavities, and differences in dose reporting (dose to water versus dose to tissue type).

  19. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, S. A. M.; Ansbacher, W.; Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6

    2013-01-15

    Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are usedmore » to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements support the dose perturbations demonstrated by Monte Carlo and Acuros XB data. Conclusions: Acuros XB is shown to perform as well as Monte Carlo methods and better than existing clinical algorithms for dose calculations involving high-density volumes.« less

  20. Materials Degradation in the Jovian Radiation Environment

    NASA Technical Reports Server (NTRS)

    Miloshevsky, Gennady; Caffrey, Jarvis A.; Jones, Jonathan E.; Zoladz, Thomas F.

    2017-01-01

    The radiation environment of Jupiter represents a significant hazard for Europa Lander deorbit stage components, and presents a significant potential mission risk. The radiolytic degradation of ammonium perchlorate (AP) oxidizer in solid propellants may affect its properties and performance. The Monte Carlo code MONSOL was used for modeling of laboratory experiments on the electron irradiation of propellant samples. An approach for flattening dose profiles along the depth of irradiated samples is proposed. Depth-dose distributions produced by Jovian electrons in multi-layer slabs of materials are calculated. It is found that the absorbed dose in a particular slab is significantly affected by backscattered electrons and photons from neighboring slabs. The dose and radiolytic decomposition of AP crystals are investigated and radiation-induced chemical yields and weight percent of radical products are reported.

  1. Defining Action Levels for In Vivo Dosimetry in Intraoperative Electron Radiotherapy.

    PubMed

    López-Tarjuelo, Juan; Morillo-Macías, Virginia; Bouché-Babiloni, Ana; Ferrer-Albiach, Carlos; Santos-Serra, Agustín

    2016-06-01

    In vivo dosimetry is recommended in intraoperative electron radiotherapy (IOERT). To perform real-time treatment monitoring, action levels (ALs) have to be calculated. Empirical approaches based on observation of samples have been reported previously, however, our aim is to present a predictive model for calculating ALs and to verify their validity with our experimental data. We considered the range of absorbed doses delivered to our detector by means of the percentage depth dose for the electron beams used. Then, we calculated the absorbed dose histograms and convoluted them with detector responses to obtain probability density functions in order to find ALs as certain probability levels. Our in vivo dosimeters were reinforced TN-502RDM-H mobile metal-oxide-semiconductor field-effect transistors (MOSFETs). Our experimental data came from 30 measurements carried out in patients undergoing IOERT for rectal, breast, sarcoma, and pancreas cancers, among others. The prescribed dose to the tumor bed was 90%, and the maximum absorbed dose was 100%. The theoretical mean absorbed dose was 90.3% and the measured mean was 93.9%. Associated confidence intervals at P = .05 were 89.2% and 91.4% and 91.6% and 96.4%, respectively. With regard to individual comparisons between the model and the experiment, 37% of MOSFET measurements lay outside particular ranges defined by the derived ALs. Calculated confidence intervals at P = .05 ranged from 8.6% to 14.7%. The model can describe global results successfully but cannot match all the experimental data reported. In terms of accuracy, this suggests an eventual underestimation of tumor bed bleeding or detector alignment. In terms of precision, it will be necessary to reduce positioning uncertainties for a wide set of location and treatment postures, and more precise detectors will be required. Planning and imaging tools currently under development will play a fundamental role. © The Author(s) 2015.

  2. Prediction of LDEF ionizing radiation environment

    NASA Astrophysics Data System (ADS)

    Watts, John W.; Parnell, T. A.; Derrickson, James H.; Armstrong, T. W.; Benton, E. V.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements.

  3. SU-E-T-795: Validations of Dose Calculation Accuracy of Acuros BV in High-Dose-Rate (HDR) Brachytherapy with a Shielded Cylinder Applicator Using Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Department of Engineering Physics, Tsinghua University, Beijing; Tian, Z

    Purpose: Acuros BV has become available to perform accurate dose calculations in high-dose-rate (HDR) brachytherapy with phantom heterogeneity considered by solving the Boltzmann transport equation. In this work, we performed validation studies regarding the dose calculation accuracy of Acuros BV in cases with a shielded cylinder applicator using Monte Carlo (MC) simulations. Methods: Fifteen cases were considered in our studies, covering five different diameters of the applicator and three different shielding degrees. For each case, a digital phantom was created in Varian BrachyVision with the cylinder applicator inserted in the middle of a large water phantom. A treatment plan withmore » eight dwell positions was generated for these fifteen cases. Dose calculations were performed with Acuros BV. We then generated a voxelized phantom of the same geometry, and the materials were modeled according to the vendor’s specifications. MC dose calculations were then performed using our in-house developed fast MC dose engine for HDR brachytherapy (gBMC) on a GPU platform, which is able to simulate both photon transport and electron transport in a voxelized geometry. A phase-space file for the Ir-192 HDR source was used as a source model for MC simulations. Results: Satisfactory agreements between the dose distributions calculated by Acuros BV and those calculated by gBMC were observed in all cases. Quantitatively, we computed point-wise dose difference within the region that receives a dose higher than 10% of the reference dose, defined to be the dose at 5mm outward away from the applicator surface. The mean dose difference was ∼0.45%–0.51% and the 95-percentile maximum difference was ∼1.24%–1.47%. Conclusion: Acuros BV is able to accurately perform dose calculations in HDR brachytherapy with a shielded cylinder applicator.« less

  4. Patient-specific CT dosimetry calculation: a feasibility study.

    PubMed

    Fearon, Thomas; Xie, Huchen; Cheng, Jason Y; Ning, Holly; Zhuge, Ying; Miller, Robert W

    2011-11-15

    Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of "standard man". Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient-specific CT dosimetry. A radiation treatment planning system was modified to calculate patient-specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose-volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi-empirical, measured correction-based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point-by-point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%-20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient-specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation.

  5. SU-E-T-274: Radiation Therapy with Very High-Energy Electron (VHEE) Beams in the Presence of Metal Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, C; Palma, B; Qu, B

    2014-06-01

    Purpose: To evaluate the effect of metal implants on treatment plans for radiation therapy with very high-energy electron (VHEE) beams. Methods: The DOSXYZnrc/BEAMnrc Monte Carlo (MC) codes were used to simulate 50–150MeV VHEE beam dose deposition and its effects on steel and titanium (Ti) heterogeneities in a water phantom. Heterogeneities of thicknesses ranging from 0.5cm to 2cm were placed at 10cm depth. MC was also used to calculate electron and photon spectra generated by the VHEE beams' interaction with metal heterogeneities. The original VMAT patient dose calculation was planned in Eclipse. Patient dose calculations with MC-generated beamlets were planned usingmore » a Matlab GUI and research version of RayStation. VHEE MC treatment planning was performed on water-only geometry and water with segmented prostheses (steel and Ti) geometries with 100MeV and 150MeV beams. Results: 100MeV PDD 5cm behind steel/Ti heterogeneity was 51% less than in the water-only phantom. For some cases, dose enhancement lateral to the borders of the phantom increased the dose by up to 22% in steel and 18% in Ti heterogeneities. The dose immediately behind steel heterogeneity decreased by an average of 6%, although for 150MeV, the steel heterogeneity created a 23% increase in dose directly behind it. The average dose immediately behind Ti heterogeneities increased 10%. The prostate VHEE plans resulted in mean dose decrease to the bowel (20%), bladder (7%), and the urethra (5%) compared to the 15MV VMAT plan. The average dose to the body with prosthetic implants was 5% higher than to the body without implants. Conclusion: Based on MC simulations, metallic implants introduce dose perturbations to VHEE beams from lateral scatter and backscatter. However, when performing clinical planning on a prostate case, the use of multiple beams and inverse planning still produces VHEE plans that are dosimetrically superior to photon VMAT plans. BW Loo and P Maxim received research support from RaySearch laboratories; B Hardemark and E Hynning are employees of RaySearch.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H; Guerrero, M; Chen, S

    Purpose: The TG-71 report was published in 2014 to present standardized methodologies for MU calculations and determination of dosimetric quantities. This work explores the clinical implementation of a TG71-based electron MU calculation algorithm and compares it with a recently released commercial secondary calculation program–Mobius3D (Mobius Medical System, LP). Methods: TG-71 electron dosimetry data were acquired, and MU calculations were performed based on the recently published TG-71 report. The formalism in the report for extended SSD using air-gap corrections was used. The dosimetric quantities, such PDD, output factor, and f-air factors were incorporated into an organized databook that facilitates data accessmore » and subsequent computation. The Mobius3D program utilizes a pencil beam redefinition algorithm. To verify the accuracy of calculations, five customized rectangular cutouts of different sizes–6×12, 4×12, 6×8, 4×8, 3×6 cm{sup 2}–were made. Calculations were compared to each other and to point dose measurements for electron beams of energy 6, 9, 12, 16, 20 MeV. Each calculation / measurement point was at the depth of maximum dose for each cutout in a 10×10 cm{sup 2} or 15×15cm{sup 2} applicator with SSDs 100cm and 110cm. Validation measurements were made with a CC04 ion chamber in a solid water phantom for electron beams of energy 9 and 16 MeV. Results: Differences between the TG-71 and the commercial system relative to measurements were within 3% for most combinations of electron energy, cutout size, and SSD. A 5.6% difference between the two calculation methods was found only for the 6MeV electron beam with 3×6 cm{sup 2}cutout in the 10×10{sup 2}cm applicator at 110cm SSD. Both the TG-71 and the commercial calculations show good consistency with chamber measurements: for 5 cutouts, <1% difference for 100cm SSD, and 0.5–2.7% for 110cm SSD. Conclusions: Based on comparisons with measurements, a TG71-based computation method and a Mobius3D program produce reasonably accurate MU calculations for electron-beam therapy.« less

  7. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE PAGES

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  8. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  9. Measurement of absorbed dose with a bone-equivalent extrapolation chamber.

    PubMed

    DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B

    2002-03-01

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.

  10. Monte Carlo and analytical calculations for characterization of gas bremsstrahlung in ILSF insertion devices

    NASA Astrophysics Data System (ADS)

    Salimi, E.; Rahighi, J.; Sardari, D.; Mahdavi, S. R.; Lamehi Rachti, M.

    2014-12-01

    Gas bremsstrahlung is generated in high energy electron storage rings through interaction of the electron beam with the residual gas molecules in vacuum chamber. In this paper, Monte Carlo calculation has been performed to evaluate radiation hazard due to gas bremsstrahlung in the Iranian Light Source Facility (ILSF) insertion devices. Shutter/stopper dimensions is determined and dose rate from the photoneutrons via the giant resonance photonuclear reaction which takes place inside the shutter/stopper is also obtained. Some other characteristics of gas bremsstrahlung such as photon fluence, energy spectrum, angular distribution and equivalent dose in tissue equivalent phantom have also been investigated by FLUKA Monte Carlo code.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stathakis, S; Defoor, D; Saenz, D

    Purpose: Stereotactic radiosurgery (SRS) outcomes are related to the delivered dose to the target and to surrounding tissue. We have commissioned a Monte Carlo based dose calculation algorithm to recalculated the delivered dose planned using pencil beam calculation dose engine. Methods: Twenty consecutive previously treated patients have been selected for this study. All plans were generated using the iPlan treatment planning system (TPS) and calculated using the pencil beam algorithm. Each patient plan consisted of 1 to 3 targets and treated using dynamically conformal arcs or intensity modulated beams. Multi-target treatments were delivered using multiple isocenters, one for each target.more » These plans were recalculated for the purpose of this study using a single isocenter. The CT image sets along with the plan, doses and structures were DICOM exported to Monaco TPS and the dose was recalculated using the same voxel resolution and monitor units. Benchmark data was also generated prior to patient calculations to assess the accuracy of the two TPS against measurements using a micro ionization chamber in solid water. Results: Good agreement, within −0.4% for Monaco and +2.2% for iPlan were observed for measurements in water phantom. Doses in patient geometry revealed up to 9.6% differences for single target plans and 9.3% for multiple-target-multiple-isocenter plans. The average dose differences for multi-target-single-isocenter plans were approximately 1.4%. Similar differences were observed for the OARs and integral dose. Conclusion: Accuracy of the beam is crucial for the dose calculation especially in the case of small fields such as those used in SRS treatments. A superior dose calculation algorithm such as Monte Carlo, with properly commissioned beam models, which is unaffected by the lack of electronic equilibrium should be preferred for the calculation of small fields to improve accuracy.« less

  12. Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator.

    PubMed

    Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V

    2012-06-01

    To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.

  13. Calculation of electron Dose Point Kernel in water with GEANT4 for medical application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guimaraes, C. C.; Sene, F. F.; Martinelli, J. R.

    2009-06-03

    The rapid insertion of new technologies in medical physics in the last years, especially in nuclear medicine, has been followed by a great development of faster Monte Carlo algorithms. GEANT4 is a Monte Carlo toolkit that contains the tools to simulate the problems of particle transport through matter. In this work, GEANT4 was used to calculate the dose-point-kernel (DPK) for monoenergetic electrons in water, which is an important reference medium for nuclear medicine. The three different physical models of electromagnetic interactions provided by GEANT4 - Low Energy, Penelope and Standard - were employed. To verify the adequacy of these models,more » the results were compared with references from the literature. For all energies and physical models, the agreement between calculated DPKs and reported values is satisfactory.« less

  14. The effects of the geosynchronous energetic particle radiation environment on spacecraft charging phenomena

    NASA Technical Reports Server (NTRS)

    Reagan, J. B.; Imhof, W. L.; Gaines, E. E.

    1977-01-01

    The energetic electron environment at the geosynchronous orbit is responsible for a variety of adverse charging effects on spacecraft components. The most serious of these is the degradation and failure of a complementary-metal-oxide-semiconductor (CMOS) electronic components as a result of internal charge-buildup induced by the energetic electrons. Efforts to accurately determine the expected lifetime of these components in this orbit are hampered by the lack of detailed knowledge of the electron spectrum and intensity, particularly of the more penetrating energies greater than 1.5 MeV. This problem is illustrated through the calculation of the dose received by a CMOS device from the energetic electrons and associated bremsstrahlung as a function of aluminum shielding thickness using the NASA AE-6 and the Aerospace measured electron environments. Two computational codes which were found to be in good agreement were used to perform the calculations. For a given shielding thickness the dose received with the two radiation environments differ by as much as a factor of seven with a corresponding variation in lifetime of the CMOS.

  15. Comparison of Chest Wall and Lymphatic Radiotherapy Techniques in Patients with Left Breast Carcinoma.

    PubMed

    Gültekin, Melis; Karabuğa, Mehmet; Yıldız, Ferah; Özyiğit, Gökhan; Cengiz, Mustafa; Zorlu, Faruk; Akyol, Fadıl; Gürkaynak, Murat

    2014-04-01

    The aim of this study was to find the most appropriate technique for postmastectomy chest wall (CW) and lymphatic irradiation. Partially wide tangent, 30/70 photon/electron mix, 20/80 photon/electron mix and CW and internal mammary en face electron field, were studied on computerized tomography (CT) scans of 10 left breast carcinoma patients and dosimetric calculations have been studied. Dose volume histograms (DVH) obtained from treatment planning system (TPS) were used for minimal, maximal and mean doses received by the clinical target volumes and critical structures. Partially wide tangent field resulted in the most homogeneous dose distribution for the CW and a significantly lower lung and heart doses compared with all other techniques. However, right breast dose was significantly higher for partially wide tangent technique than that each of the other techniques. Approximately 0.6-7.9% differences were found between thermoluminescent dosimeter (TLD) and treatment planning system (TPS). The daily surface doses calculating using Gafchromic® external beam therapy (EBT) dosimetry films were 161.8±2.7 cGy for the naked, 241.0±1.5 cGy when 0.5 cm bolus was used and 255.3±2.7 cGy when 1 cm bolus was used. As a result of this study, partially wide tangent field was found to be the most appropriate technique in terms of the dose distribution, treatment planning and set-up procedure. The main disadvantage of this technique was the higher dose to the contralateral breast comparing the other techniques.

  16. Monte-Carlo Simulation of Radiation Track Structure and Calculation of Dose Deposition in Nanovolumes

    NASA Technical Reports Server (NTRS)

    Plante, I.; Cucinotta, F. A.

    2010-01-01

    INTRODUCTION: The radiation track structure is of crucial importance to understand radiation damage to molecules and subsequent biological effects. Of a particular importance in radiobiology is the induction of double-strand breaks (DSBs) by ionizing radiation, which are caused by clusters of lesions in DNA, and oxidative damage to cellular constituents leading to aberrant signaling cascades. DSB can be visualized within cell nuclei with gamma-H2AX experiments. MATERIAL AND METHODS: In DSB induction models, the DSB probability is usually calculated by the local dose obtained from a radial dose profile of HZE tracks. In this work, the local dose imparted by HZE ions is calculated directly from the 3D Monte-Carlo simulation code RITRACKS. A cubic volume of 5 micron edge (Figure 1) is irradiated by a (Fe26+)-56 ion of 1 GeV/amu (LET approx.150 keV/micron) and by a fluence of 450 H+ ions, 300 MeV/amu (LET approx. 0.3 keV/micron). In both cases, the dose deposited in the volume is approx.1 Gy. The dose is then calculated into each 3D pixels (voxels) of 20 nm edge and visualized in 3D. RESULTS AND DISCUSSION: The dose is deposited uniformly in the volume by the H+ ions. The voxels which receive a high dose (orange) corresponds to electron track ends. The dose is deposited differently by the 56Fe26+ ion. Very high dose (red) is deposited in voxels with direct ion traversal. Voxels with electron track ends (orange) are also found distributed around the path of the track. In both cases, the appearance of the dose distribution looks very similar to DSBs seen in gammaH2AX experiments, particularly when the visualization threshold is applied. CONCLUSION: The refinement of the dose calculation to the nanometer scale has revealed important differences in the energy deposition between high- and low-LET ions. Voxels of very high dose are only found in the path of high-LET ions. Interestingly, experiments have shown that DSB induced by high-LET radiation are more difficult to repair. Therefore, this new approach may be useful to understand the nature of DSB and oxidative damage induced by ionizing radiation.

  17. Absorbed dose determination using experimental and analytical predictions of x-ray spectra

    NASA Astrophysics Data System (ADS)

    Edwards, David Lee

    1999-10-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate radiation shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) to measure the radiation dose. The TLD's were exposed to x- ray radiation generated by operation of the ISWE in- vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the measured TLD values.

  18. Dose conversion coefficients for photon exposure of the human eye lens.

    PubMed

    Behrens, R; Dietze, G

    2011-01-21

    In recent years, several papers dealing with the eye lens dose have been published, because epidemiological studies implied that the induction of cataracts occurs even at eye lens doses of less than 500 mGy. Different questions were addressed: Which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens? Is a new definition of the dose quantity H(p)(3) based on a cylinder phantom to represent the human head necessary? Are current conversion coefficients from fluence to equivalent dose to the lens sufficiently accurate? To investigate the latter question, a realistic model of the eye including the inner structure of the lens was developed. Using this eye model, conversion coefficients for electrons have already been presented. In this paper, the same eye model-with the addition of the whole body-was used to calculate conversion coefficients from fluence (and air kerma) to equivalent dose to the lens for photon radiation from 5 keV to 10 MeV. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are similar between 40 keV and 1 MeV and lower by up to a factor of 5 and 7 for photon energies at about 10 keV and 10 MeV, respectively. Above 1 MeV, the new values (calculated without kerma approximation) should be applied in pure photon radiation fields, while the values adopted by the ICRP in 1996 (calculated with kerma approximation) should be applied in case a significant contribution from secondary electrons originating outside the body is present.

  19. Dose conversion coefficients for photon exposure of the human eye lens

    NASA Astrophysics Data System (ADS)

    Behrens, R.; Dietze, G.

    2011-01-01

    In recent years, several papers dealing with the eye lens dose have been published, because epidemiological studies implied that the induction of cataracts occurs even at eye lens doses of less than 500 mGy. Different questions were addressed: Which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens? Is a new definition of the dose quantity Hp(3) based on a cylinder phantom to represent the human head necessary? Are current conversion coefficients from fluence to equivalent dose to the lens sufficiently accurate? To investigate the latter question, a realistic model of the eye including the inner structure of the lens was developed. Using this eye model, conversion coefficients for electrons have already been presented. In this paper, the same eye model—with the addition of the whole body—was used to calculate conversion coefficients from fluence (and air kerma) to equivalent dose to the lens for photon radiation from 5 keV to 10 MeV. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are similar between 40 keV and 1 MeV and lower by up to a factor of 5 and 7 for photon energies at about 10 keV and 10 MeV, respectively. Above 1 MeV, the new values (calculated without kerma approximation) should be applied in pure photon radiation fields, while the values adopted by the ICRP in 1996 (calculated with kerma approximation) should be applied in case a significant contribution from secondary electrons originating outside the body is present.

  20. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu

    2015-05-15

    Purpose: To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. Methods: In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimatedmore » field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm{sup 2} were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R{sub 100}, R{sub 50}, R{sub p}, and R{sub p+} for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Results: Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R{sub 100}, R{sub 50}, and R{sub p} were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. Conclusions: We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated field sizes from 3 × 3 to 25 × 25 cm{sup 2} were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.« less

  1. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.

    PubMed

    Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen

    2015-05-01

    To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm(2) were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R100, R50, Rp, and Rp+ for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R100, R50, and Rp were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated field sizes from 3 × 3 to 25 × 25 cm(2) were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.

  2. Uncertainty analysis of absorbed dose calculations from thermoluminescence dosimeters.

    PubMed

    Kirby, T H; Hanson, W F; Johnston, D A

    1992-01-01

    Thermoluminescence dosimeters (TLD) are widely used to verify absorbed doses delivered from radiation therapy beams. Specifically, they are used by the Radiological Physics Center for mailed dosimetry for verification of therapy machine output. The effects of the random experimental uncertainties of various factors on dose calculations from TLD signals are examined, including: fading, dose response nonlinearity, and energy response corrections; reproducibility of TL signal measurements and TLD reader calibration. Individual uncertainties are combined to estimate the total uncertainty due to random fluctuations. The Radiological Physics Center's (RPC) mail out TLD system, utilizing throwaway LiF powder to monitor high-energy photon and electron beam outputs, is analyzed in detail. The technique may also be applicable to other TLD systems. It is shown that statements of +/- 2% dose uncertainty and +/- 5% action criterion for TLD dosimetry are reasonable when related to uncertainties in the dose calculations, provided the standard deviation (s.d.) of TL readings is 1.5% or better.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Y; Chang, A; Liu, Y

    Purpose: Electron beams are commonly used for boost radiation following whole breast irradiation (WBI) to improve the in-breast local control. Proton beams have a finite range and a sharper distal dose falloff compared to electron beams, thus potentially sparing more heart and lung in breast treatment. The purpose of the study is to compare protons with electrons for boost breast treatment in terms of target coverage and normal tissue sparing. Methods: Six breast cancer patients were included in this study. All women received WBI to 45–50 Gy, followed by a 10–16.2 Gy boost with standard fractionation. If proton beams weremore » used for the boost treatment, an electron plan was retrospectively generated for comparison using the same CT set and structures, and vice versa if electron beams were used for treatment. Proton plans were generated using the treatment planning system (TPS) with two to three uniform scanning proton beams. Electron plans were generated using the Pinnacle TPS with one single en face beam. Dose-volume histograms (DVH) were calculated and compared between proton and electron boost plans. Results: Proton plans show a similar boost target coverage, similar skin dose, and much better heart and lung sparing. For an example patient, V95% for PTV was 99.98% and skin (5 mm shell) received a max dose close to the prescription dose for both protons and electrons; however, V2 and V5 for the ipsilateral lung and heart were 37.5%, 17.9% and 19.9%, 4.9% respectively for electrons, but were essentially 0 for protons. Conclusions: This dosimetric comparison demonstrates that while both proton therapy and electron therapy provided similar coverage and skin dose, proton therapy could largely reduce the dose to lung and heart, thus leading to potential less side effects.« less

  4. Dose Calculation on KV Cone Beam CT Images: An Investigation of the Hu-Density Conversion Stability and Dose Accuracy Using the Site-Specific Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rong Yi, E-mail: rong@humonc.wisc.ed; Smilowitz, Jennifer; Tewatia, Dinesh

    2010-10-01

    Precise calibration of Hounsfield units (HU) to electron density (HU-density) is essential to dose calculation. On-board kV cone beam computed tomography (CBCT) imaging is used predominantly for patients' positioning, but will potentially be used for dose calculation. The impacts of varying 3 imaging parameters (mAs, source-imager distance [SID], and cone angle) and phantom size on the HU number accuracy and HU-density calibrations for CBCT imaging were studied. We proposed a site-specific calibration method to achieve higher accuracy in CBCT image-based dose calculation. Three configurations of the Computerized Imaging Reference Systems (CIRS) water equivalent electron density phantom were used to simulatemore » sites including head, lungs, and lower body (abdomen/pelvis). The planning computed tomography (CT) scan was used as the baseline for comparisons. CBCT scans of these phantom configurations were performed using Varian Trilogy{sup TM} system in a precalibrated mode with fixed tube voltage (125 kVp), but varied mAs, SID, and cone angle. An HU-density curve was generated and evaluated for each set of scan parameters. Three HU-density tables generated using different phantom configurations with the same imaging parameter settings were selected for dose calculation on CBCT images for an accuracy comparison. Changing mAs or SID had small impact on HU numbers. For adipose tissue, the HU discrepancy from the baseline was 20 HU in a small phantom, but 5 times lager in a large phantom. Yet, reducing the cone angle significantly decreases the HU discrepancy. The HU-density table was also affected accordingly. By performing dose comparison between CT and CBCT image-based plans, results showed that using the site-specific HU-density tables to calibrate CBCT images of different sites improves the dose accuracy to {approx}2%. Our phantom study showed that CBCT imaging can be a feasible option for dose computation in adaptive radiotherapy approach if the site-specific calibration is applied.« less

  5. Interference experiment with asymmetric double slit by using 1.2-MV field emission transmission electron microscope.

    PubMed

    Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo

    2018-01-17

    Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.

  6. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Tianwu; Han Dao; Liu Yang

    2010-05-15

    Purpose: The skeleton makes a significant contribution to the whole body absorbed dose evaluation of rats, since the bone marrow and bone surface in the skeleton express high radiosensitivity and are considered to be important dose-limiting tissues. The bone marrow can be categorized as red bone marrow (RBM) and yellow bone marrow (YBM). It is important to investigate the bone marrow in skeletal dosimetry. Methods: Cryosectional color images of the skeleton of a 156 g rat were segmented into mineral bone (including cortical bone and trabecular bone), RBM, and YBM. These three tissue types were identified at 40 different bonemore » sites and integrated into a previously developed voxel-based rat computational phantom. Photon and electron skeletal absorbed fractions were then calculated using the MCNPX Monte Carlo code. Results: Absorbed fraction (AF) and specific absorbed fraction (SAF) for mineral bone, RBM, and YBM at the 40 different bone sites were established for monoenergetic photon and electron sources placed in 18 organs and seven bone sites. Discrete photon energy was varied from 0.01 to 5.0 MeV in 21 discrete steps, while 21 discrete electron energies were studied, from 0.1 to 10.0 MeV. The trends and values found were consistent with the results of other researchers [M. G. Stabin, T. E. Peterson, G. E. Holburn, and M. A. Emmons, ''Voxel-based mouse and rat models for internal dose calculations,'' J. Nucl. Med. 47, 655-659 (2006)]. S-factors for the radionuclides {sup 169}Er, {sup 143}Pr, {sup 89}Sr, {sup 32}P, and {sup 90}Y, located in 18 organs and seven bone sites for the skeleton, were calculated and are provided in detail. Conclusions: For internal dose calculations, the AF data reveal that the mineral bone in the rat skeletal system is responsible for significant attenuation of gamma rays, especially at low energies. The photon SAF curves of RBM show that, for photon energies greater than 0.6 MeV, there is an increase in secondary photons emitted from the mineral bone as photon energy increases. The SAF values calculated in this study can also be used to determine the absorbed dose to the skeletal system of rats. The S-factors generated here will be useful in preclinical targeted radiotherapy experiments.« less

  7. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.

    PubMed

    Chibani, Omar; Li, X Allen

    2002-05-01

    Three Monte Carlo photon/electron transport codes (GEPTS, EGSnrc, and MCNP) are bench-marked against dose measurements in homogeneous (both low- and high-Z) media as well as at interfaces. A brief overview on physical models used by each code for photon and electron (positron) transport is given. Absolute calorimetric dose measurements for 0.5 and 1 MeV electron beams incident on homogeneous and multilayer media are compared with the predictions of the three codes. Comparison with dose measurements in two-layer media exposed to a 60Co gamma source is also performed. In addition, comparisons between the codes (including the EGS4 code) are done for (a) 0.05 to 10 MeV electron beams and positron point sources in lead, (b) high-energy photons (10 and 20 MeV) irradiating a multilayer phantom (water/steel/air), and (c) simulation of a 90Sr/90Y brachytherapy source. A good agreement is observed between the calorimetric electron dose measurements and predictions of GEPTS and EGSnrc in both homogeneous and multilayer media. MCNP outputs are found to be dependent on the energy-indexing method (Default/ITS style). This dependence is significant in homogeneous media as well as at interfaces. MCNP(ITS) fits more closely the experimental data than MCNP(DEF), except for the case of Be. At low energy (0.05 and 0.1 MeV), MCNP(ITS) dose distributions in lead show higher maximums in comparison with GEPTS and EGSnrc. EGS4 produces too penetrating electron-dose distributions in high-Z media, especially at low energy (<0.1 MeV). For positrons, differences between GEPTS and EGSnrc are observed in lead because GEPTS distinguishes positrons from electrons for both elastic multiple scattering and bremsstrahlung emission models. For the 60Co source, a quite good agreement between calculations and measurements is observed with regards to the experimental uncertainty. For the other cases (10 and 20 MeV photon sources and the 90Sr/90Y beta source), a good agreement is found between the three codes. In conclusion, differences between GEPTS and EGSnrc results are found to be very small for almost all media and energies studied. MCNP results depend significantly on the electron energy-indexing method.

  8. Effective doses and organ doses in the MIRD-5 phantom exposed to monoenergetic 0.1 MeV to 200 MeV electrons in the LAT direction.

    PubMed

    Katagiri, M; Hikoji, M; Kitaichi, M; Aoki, Y; Sawamura, S

    2001-01-01

    Organ doses and effective doses were calculated using the EGS-4 Monte Carlo simulation code and a MIRD-5 mathematical human phantom placed in a vacuum. For broad right and left lateral beams of monoenergetic (0.1-200 MeV) electrons, conversion coefficients from the incident fluence to organ dose, to effective dose, and to effective dose equivalent were obtained. There were no clear differences between the conversion coefficients in the case of left-lateral (LLAT) and right-lateral (RLAT) irradiation. Therefore, when investigating lateral geometries for electron exposure, it is not necessary to evaluate both directions independently. In general, conversion coefficients for lateral irradiation (LAT) were smaller than those for AP and PA. The difference between the AP and PA conversion coefficients and LAT became smaller with increasing incident energy; at 200 MeV the conversion coefficients were almost independent of the irradiation geometry. The agreement between the results of the present study and those of other studies was acceptable within the statistical uncertainties.

  9. SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, B; Rogers, D

    2013-06-15

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber inmore » high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.« less

  10. The COOLER Code: A Novel Analytical Approach to Calculate Subcellular Energy Deposition by Internal Electron Emitters.

    PubMed

    Siragusa, Mattia; Baiocco, Giorgio; Fredericia, Pil M; Friedland, Werner; Groesser, Torsten; Ottolenghi, Andrea; Jensen, Mikael

    2017-08-01

    COmputation Of Local Electron Release (COOLER), a software program has been designed for dosimetry assessment at the cellular/subcellular scale, with a given distribution of administered low-energy electron-emitting radionuclides in cellular compartments, which remains a critical step in risk/benefit analysis for advancements in internal radiotherapy. The software is intended to overcome the main limitations of the medical internal radiation dose (MIRD) formalism for calculations of cellular S-values (i.e., dose to a target region in the cell per decay in a given source region), namely, the use of the continuous slowing down approximation (CSDA) and the assumption of a spherical cell geometry. To this aim, we developed an analytical approach, entrusted to a MATLAB-based program, using as input simulated data for electron spatial energy deposition directly derived from full Monte Carlo track structure calculations with PARTRAC. Results from PARTRAC calculations on electron range, stopping power and residual energy versus traveled distance curves are presented and, when useful for implementation in COOLER, analytical fit functions are given. Example configurations for cells in different culture conditions (V79 cells in suspension or adherent culture) with realistic geometrical parameters are implemented for use in the tool. Finally, cellular S-value predictions by the newly developed code are presented for different cellular geometries and activity distributions (uniform activity in the nucleus, in the entire cell or on the cell surface), validated against full Monte Carlo calculations with PARTRAC, and compared to MIRD standards, as well as results based on different track structure calculations (Geant4-DNA). The largest discrepancies between COOLER and MIRD predictions were generally found for electrons between 25 and 30 keV, where the magnitude of disagreement in S-values can vary from 50 to 100%, depending on the activity distribution. In calculations for activity distribution on the cell surface, MIRD predictions appeared to fail the most. The proposed method is suitable for Auger-cascade electrons, but can be extended to any energy of interest and to beta spectra; as an example, the 3 H case is also discussed. COOLER is intended to be accessible to everyone (preclinical and clinical researchers included), and may provide important information for the selection of radionuclides, the interpretation of radiobiological or preclinical results, and the general establishment of doses in any scenario, e.g., with cultured cells in the laboratory or with therapeutic or diagnostic applications. The software will be made available for download from the DTU-Nutech website: http://www.nutech.dtu.dk/ .

  11. An optimized computational method for determining the beta dose distribution using a multiple-element thermoluminescent dosimeter system.

    PubMed

    Shen, L; Levine, S H; Catchen, G L

    1987-07-01

    This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.

  12. Specific absorbed fractions of electrons and photons for Rad-HUMAN phantom using Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Cheng, Meng-Yun; Long, Peng-Cheng; Hu, Li-Qin

    2015-07-01

    The specific absorbed fractions (SAF) for self- and cross-irradiation are effective tools for the internal dose estimation of inhalation and ingestion intakes of radionuclides. A set of SAFs of photons and electrons were calculated using the Rad-HUMAN phantom, which is a computational voxel phantom of a Chinese adult female that was created using the color photographic image of the Chinese Visible Human (CVH) data set by the FDS Team. The model can represent most Chinese adult female anatomical characteristics and can be taken as an individual phantom to investigate the difference of internal dose with Caucasians. In this study, the emission of mono-energetic photons and electrons of 10 keV to 4 MeV energy were calculated using the Monte Carlo particle transport calculation code MCNP. Results were compared with the values from ICRP reference and ORNL models. The results showed that SAF from the Rad-HUMAN have similar trends but are larger than those from the other two models. The differences were due to the racial and anatomical differences in organ mass and inter-organ distance. The SAFs based on the Rad-HUMAN phantom provide an accurate and reliable data for internal radiation dose calculations for Chinese females. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03040000), National Natural Science Foundation of China (910266004, 11305205, 11305203) and National Special Program for ITER (2014GB112001)

  13. Generalized Fokker-Planck theory for electron and photon transport in biological tissues: application to radiotherapy.

    PubMed

    Olbrant, Edgar; Frank, Martin

    2010-12-01

    In this paper, we study a deterministic method for particle transport in biological tissues. The method is specifically developed for dose calculations in cancer therapy and for radiological imaging. Generalized Fokker-Planck (GFP) theory [Leakeas and Larsen, Nucl. Sci. Eng. 137 (2001), pp. 236-250] has been developed to improve the Fokker-Planck (FP) equation in cases where scattering is forward-peaked and where there is a sufficient amount of large-angle scattering. We compare grid-based numerical solutions to FP and GFP in realistic medical applications. First, electron dose calculations in heterogeneous parts of the human body are performed. Therefore, accurate electron scattering cross sections are included and their incorporation into our model is extensively described. Second, we solve GFP approximations of the radiative transport equation to investigate reflectance and transmittance of light in biological tissues. All results are compared with either Monte Carlo or discrete-ordinates transport solutions.

  14. Validation of a commercial TPS based on the VMC(++) Monte Carlo code for electron beams: commissioning and dosimetric comparison with EGSnrc in homogeneous and heterogeneous phantoms.

    PubMed

    Ferretti, A; Martignano, A; Simonato, F; Paiusco, M

    2014-02-01

    The aim of the present work was the validation of the VMC(++) Monte Carlo (MC) engine implemented in the Oncentra Masterplan (OMTPS) and used to calculate the dose distribution produced by the electron beams (energy 5-12 MeV) generated by the linear accelerator (linac) Primus (Siemens), shaped by a digital variable applicator (DEVA). The BEAMnrc/DOSXYZnrc (EGSnrc package) MC model of the linac head was used as a benchmark. Commissioning results for both MC codes were evaluated by means of 1D Gamma Analysis (2%, 2 mm), calculated with a home-made Matlab (The MathWorks) program, comparing the calculations with the measured profiles. The results of the commissioning of OMTPS were good [average gamma index (γ) > 97%]; some mismatches were found with large beams (size ≥ 15 cm). The optimization of the BEAMnrc model required to increase the beam exit window to match the calculated and measured profiles (final average γ > 98%). Then OMTPS dose distribution maps were compared with DOSXYZnrc with a 2D Gamma Analysis (3%, 3 mm), in 3 virtual water phantoms: (a) with an air step, (b) with an air insert, and (c) with a bone insert. The OMTPD and EGSnrc dose distributions with the air-water step phantom were in very high agreement (γ ∼ 99%), while for heterogeneous phantoms there were differences of about 9% in the air insert and of about 10-15% in the bone region. This is due to the Masterplan implementation of VMC(++) which reports the dose as "dose to water", instead of "dose to medium". Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Prediction and Measurement of X-Ray Spectral and Intensity Distributions from Low Energy Electron Impact Sources

    NASA Technical Reports Server (NTRS)

    Edwards, David L.

    1999-01-01

    In-vacuum electron beam welding is a technology that NASA considered as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. The radiation exposure to astronauts performing the in-vacuum electron beam welding must be characterized and minimized to insure safe operating conditions. This investigation characterized the x-ray environment due to operation of an in-vacuum electron beam welding tool. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests consisted of Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) and exposed to x-ray radiation generated by operation of an in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 KeV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by electron impact with metal. These x-ray spectra were used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the TLD values.

  16. Patient‐specific CT dosimetry calculation: a feasibility study

    PubMed Central

    Xie, Huchen; Cheng, Jason Y.; Ning, Holly; Zhuge, Ying; Miller, Robert W.

    2011-01-01

    Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of “standard man”. Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient‐specific CT dosimetry. A radiation treatment planning system was modified to calculate patient‐specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose‐volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi‐empirical, measured correction‐based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point‐by‐point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%–20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient‐specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation. PACS numbers: 87.55.D‐, 87.57.Q‐, 87.53.Bn, 87.55.K‐ PMID:22089016

  17. MO-E-18C-04: Advanced Computer Simulation and Visualization Tools for Enhanced Understanding of Core Medical Physics Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naqvi, S

    2014-06-15

    Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physicalmore » principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as virtual experiments that give deeper and long lasting understanding of core principles. The student can then make sound judgements in novel situations encountered beyond routine clinical activities.« less

  18. Electron beam therapy with coil-generated magnetic fields.

    PubMed

    Nardi, Eran; Barnea, Gideon; Ma, Chang-Ming

    2004-06-01

    This paper presents an initial study on the issues involved in the practical implementation of the use of transverse magnetic fields in electron beam therapy. By using such magnetic fields the dose delivered to the tumor region can increase significantly relative to that deposited to the healthy tissue. Initially we calculated the magnetic fields produced by the Helmholtz coil and modified Helmholtz coil configurations. These configurations, which can readily be used to generate high intensity magnetic fields, approximate the idealized magnetic fields studied in our previous publications. It was therefore of interest to perform a detailed study of the fields produced by these configurations. Electron beam dose distributions for 15 MeV electrons were calculated using the ACCEPTM code for a 3T transverse magnetic field produced by the modified Helmholtz configuration. The dose distribution was compared to those obtained with no magnetic field. The results were similar to those obtained in our previous work, where an idealized step function magnetic field was used and a 3T field was shown to be the optimal field strength. A simpler configuration was also studied in which a single external coil was used to generate the field. Electron dose distributions are also presented for a given geometry and given magnetic field strength using this configuration. The results indicate that this method is more difficult to apply to radiotherapy due to its lack of symmetry and its irregularity. For the various configurations dealt with here, a major problem is the need to shield the magnetic field in the beam propagation volume, a topic that must be studied in detail.

  19. Monte Carlo dose calculation in dental amalgam phantom

    PubMed Central

    Aziz, Mohd. Zahri Abdul; Yusoff, A. L.; Osman, N. D.; Abdullah, R.; Rabaie, N. A.; Salikin, M. S.

    2015-01-01

    It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation. PMID:26500401

  20. SU-F-T-46: The Effect of Inter-Seed Attenuation and Tissue Composition in Prostate 125I Brachytherapy Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, K; Araki, F; Ohno, T

    Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photonmore » and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.« less

  1. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning.

    PubMed

    Chetty, Indrin J; Curran, Bruce; Cygler, Joanna E; DeMarco, John J; Ezzell, Gary; Faddegon, Bruce A; Kawrakow, Iwan; Keall, Paul J; Liu, Helen; Ma, C M Charlie; Rogers, D W O; Seuntjens, Jan; Sheikh-Bagheri, Daryoush; Siebers, Jeffrey V

    2007-12-01

    The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for improved dose distributions to influence treatment outcomes, the long calculation times previously associated with MC simulation rendered this method impractical for routine clinical treatment planning. However, the development of faster codes optimized for radiotherapy calculations and improvements in computer processor technology have substantially reduced calculation times to, in some instances, within minutes on a single processor. These advances have motivated several major treatment planning system vendors to embark upon the path of MC techniques. Several commercial vendors have already released or are currently in the process of releasing MC algorithms for photon and/or electron beam treatment planning. Consequently, the accessibility and use of MC treatment planning algorithms may well become widespread in the radiotherapy community. With MC simulation, dose is computed stochastically using first principles; this method is therefore quite different from conventional dose algorithms. Issues such as statistical uncertainties, the use of variance reduction techniques, the ability to account for geometric details in the accelerator treatment head simulation, and other features, are all unique components of a MC treatment planning algorithm. Successful implementation by the clinical physicist of such a system will require an understanding of the basic principles of MC techniques. The purpose of this report, while providing education and review on the use of MC simulation in radiotherapy planning, is to set out, for both users and developers, the salient issues associated with clinical implementation and experimental verification of MC dose algorithms. As the MC method is an emerging technology, this report is not meant to be prescriptive. Rather, it is intended as a preliminary report to review the tenets of the MC method and to provide the framework upon which to build a comprehensive program for commissioning and routine quality assurance of MC-based treatment planning systems.

  2. Measurement and Monte Carlo simulation for energy- and intensity-modulated electron radiotherapy delivered by a computer-controlled electron multileaf collimator.

    PubMed

    Jin, Lihui; Eldib, Ahmed; Li, Jinsheng; Emam, Ismail; Fan, Jiajin; Wang, Lu; Ma, C-M

    2014-01-06

    The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer-controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC-shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10 × 10 cm2, 3.4 × 3.4 cm2, and 2 × 2 cm2) with respect to a water phantom at source-to-surface distance (SSD) = 94 cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in-phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement within 1%/1 mm based on percentage depth doses (PDDs) and off-axis dose profiles for a range of field sizes for each of the electron energies. Our current work has demonstrated that the eMLC and other relevant components in the linac were correctly modeled and simulated via our in-house MC codes, and the eMLC is capable of accurately delivering electron beams for various eMLC-shaped field sizes with appropriate jaw settings. In the next stage, patient-specific verification with a full MERT plan should be performed.

  3. Measurement and Monte Carlo simulation for energy‐ and intensity‐modulated electron radiotherapy delivered by a computer‐controlled electron multileaf collimator

    PubMed Central

    Eldib, Ahmed; Li, Jinsheng; Emam, Ismail; Fan, Jiajin; Wang, Lu; Ma, C‐M

    2014-01-01

    The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer‐controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC‐shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10×10 cm2, 3.4×3.4 cm2, and 2×2 cm2) with respect to a water phantom at source‐to‐surface distance (SSD)=94cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in‐phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement within 1%/1mm based on percentage depth doses (PDDs) and off‐axis dose profiles for a range of field sizes for each of the electron energies. Our current work has demonstrated that the eMLC and other relevant components in the linac were correctly modeled and simulated via our in‐house MC codes, and the eMLC is capable of accurately delivering electron beams for various eMLC‐shaped field sizes with appropriate jaw settings. In the next stage, patient‐specific verification with a full MERT plan should be performed. PACS number: 87.55.ne PMID:24423848

  4. Energy modulated electron therapy using a few leaf electron collimator in combination with IMRT and 3D-CRT: Monte Carlo-based planning and dosimetric evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Yahya, Khalid; Schwartz, Matthew; Shenouda, George

    2005-09-15

    Energy modulated electron therapy (EMET) based on Monte Carlo dose calculation is a promising technique that enhances the treatment planning and delivery of superficially located tumors. This study investigated the application of EMET using a novel few-leaf electron collimator (FLEC) in head and neck and breast sites in comparison with three-dimensional conventional radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) techniques. Treatment planning was performed for two parotid cases and one breast case. Four plans were compared for each case: 3D-CRT, IMRT, 3D-CRT in conjunction with EMET (EMET-CRT), and IMRT in conjunction with EMET (EMET-IMRT), all of which weremore » performed and calculated with Monte Carlo techniques. For all patients, dose volume histograms (DVHs) were obtained for all organs of interest and the DVHs were used as a means of comparing the plans. Homogeneity and conformity of dose distributions were calculated, as well as a sparing index that compares the effect of the low isodose lines. In addition, the whole-body dose equivalent (WBDE) was estimated for each plan. Adding EMET delivered with the FLEC to 3D-CRT improves sparing of normal tissues. For the two head and neck cases, the mean dose to the contralateral parotid and brain stem was reduced relative to IMRT by 43% and 84%, and by 57% and 71%, respectively. Improved normal tissue sparing was quantified as an increase in sparing index of 47% and 30% for the head and neck and the breast cases, respectively. Adding EMET to either 3D-CRT or IMRT results in preservation of target conformity and dose homogeneity. When adding EMET to the treatment plan, the WBDE was reduced by between 6% and 19% for 3D-CRT and by between 21% and 33% for IMRT, while WBDE for EMET-CRT was reduced by up to 72% when compared with IMRT. FLEC offers a practical means of delivering modulated electron therapy. Although adding EMET delivered using the FLEC results in perturbation of target conformity when compared to IMRT, it significantly improves normal tissue sparing while offering enhanced target conformity to the 3D-CRT planning. The addition of EMET systematically leads to a reduction in WBDE especially when compared with IMRT.« less

  5. Agreement between gamma passing rates using computed tomography in radiotherapy and secondary cancer risk prediction from more advanced dose calculated models

    PubMed Central

    Balosso, Jacques

    2017-01-01

    Background During the past decades, in radiotherapy, the dose distributions were calculated using density correction methods with pencil beam as type ‘a’ algorithm. The objectives of this study are to assess and evaluate the impact of dose distribution shift on the predicted secondary cancer risk (SCR), using modern advanced dose calculation algorithms, point kernel, as type ‘b’, which consider change in lateral electrons transport. Methods Clinical examples of pediatric cranio-spinal irradiation patients were evaluated. For each case, two radiotherapy treatment plans with were generated using the same prescribed dose to the target resulting in different number of monitor units (MUs) per field. The dose distributions were calculated, respectively, using both algorithms types. A gamma index (γ) analysis was used to compare dose distribution in the lung. The organ equivalent dose (OED) has been calculated with three different models, the linear, the linear-exponential and the plateau dose response curves. The excess absolute risk ratio (EAR) was also evaluated as (EAR = OED type ‘b’ / OED type ‘a’). Results The γ analysis results indicated an acceptable dose distribution agreement of 95% with 3%/3 mm. Although, the γ-maps displayed dose displacement >1 mm around the healthy lungs. Compared to type ‘a’, the OED values from type ‘b’ dose distributions’ were about 8% to 16% higher, leading to an EAR ratio >1, ranged from 1.08 to 1.13 depending on SCR models. Conclusions The shift of dose calculation in radiotherapy, according to the algorithm, can significantly influence the SCR prediction and the plan optimization, since OEDs are calculated from DVH for a specific treatment. The agreement between dose distribution and SCR prediction depends on dose response models and epidemiological data. In addition, the γ passing rates of 3%/3 mm does not translate the difference, up to 15%, in the predictions of SCR resulting from alternative algorithms. Considering that modern algorithms are more accurate, showing more precisely the dose distributions, but that the prediction of absolute SCR is still very imprecise, only the EAR ratio could be used to rank radiotherapy plans. PMID:28811995

  6. TU-H-BRC-06: Temperature Simulation of Tungsten and W25Re Targets to Deliver High Dose Rate 10 MV Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Trovati, S; Loo, B

    Purpose: To study the impact of electron beam size, target thickness, and target temperature on the ability of the flattening filter-free mode (FFF) treatment head to deliver high-dose-rate irradiations. Methods: The dose distribution and transient temperature of the X-ray target under 10 MeV electron beam with pulse length of 5 microseconds, and repetition rate of 1000 Hz was studied. A MCNP model was built to calculate the percentage depth dose (PPD) distribution in a water phantom at a distance of 100 cm. ANSYS software was used to run heat transfer simulations. The PPD and temperature for both tungsten and W25Remore » targets for different electron beam sizes (FHWM 0.2, 0.5, 1 and 2 mm) and target thickness (0.2 to 2 mm) were studied. Results: Decreasing the target thickness from 1 mm to 0.5 mm, caused a surface dose increase about 10 percent. For both target materials, the peak temperature was about 1.6 times higher for 0.5 mm electron beam compared to the 1 mm beam after reaching their equilibrium. For increasing target thicknesses, the temperature rise caused by the first pulse is similar for all thicknesses, however the temperature difference for subsequent pulses becomes larger until a constant ratio is reached. The target peak temperature after reaching equilibrium can be calculated by adding the steady state temperature and the amplitude of the temperature oscillation. Conclusion: This work indicates the potential to obtain high dose rate irradiation by selecting target material, geometry and electron beam parameters. W25Re may not outperformed tungsten when the target is thick due to its relatively low thermal conductivity. The electron beam size only affects the target temperature but not the PPD. Thin target is preferred to obtain high dose rate and low target temperature, however, the resulting high surface dose is a major concern. NIH funding:R21 EB015957-01; DOD funding:W81XWH-13-1-0165 BL, PM, PB, and RF are founders of TibaRay, Inc. BL is also a borad member. BL and PM have received research grants from Varian Medical System, Inc. and RaySearch Laboratory. RF is an employee of Siemens Healthcare GmbH.« less

  7. Average stopping powers for electron and photon sources for radiobiological modeling and microdosimetric applications

    NASA Astrophysics Data System (ADS)

    Vassiliev, Oleg N.; Kry, Stephen F.; Grosshans, David R.; Mohan, Radhe

    2018-03-01

    This study concerns calculation of the average electronic stopping power for photon and electron sources. It addresses two problems that have not yet been fully resolved. The first is defining the electron spectrum used for averaging in a way that is most suitable for radiobiological modeling. We define it as the spectrum of electrons entering the sensitive to radiation volume (SV) within the cell nucleus, at the moment they enter the SV. For this spectrum we derive a formula that combines linearly the fluence spectrum and the source spectrum. The latter is the distribution of initial energies of electrons produced by a source. Previous studies used either the fluence or source spectra, but not both, thereby neglecting a part of the complete spectrum. Our derived formula reduces to these two prior methods in the case of high and low energy sources, respectively. The second problem is extending electron spectra to low energies. Previous studies used an energy cut-off on the order of 1 keV. However, as we show, even for high energy sources, such as 60Co, electrons with energies below 1 keV contribute about 30% to the dose. In this study all the spectra were calculated with Geant4-DNA code and a cut-off energy of only 11 eV. We present formulas for calculating frequency- and dose-average stopping powers, numerical results for several important electron and photon sources, and tables with all the data needed to use our formulas for arbitrary electron and photon sources producing electrons with initial energies up to  ∼1 MeV.

  8. Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source.

    PubMed

    Rivard, Mark J; Davis, Stephen D; DeWerd, Larry A; Rusch, Thomas W; Axelrod, Steve

    2006-11-01

    A new x-ray source, the model S700 Axxent X-Ray Source (Source), has been developed by Xoft Inc. for electronic brachytherapy. Unlike brachytherapy sources containing radionuclides, this Source may be turned on and off at will and may be operated at variable currents and voltages to change the dose rate and penetration properties. The in-water dosimetry parameters for this electronic brachytherapy source have been determined from measurements and calculations at 40, 45, and 50 kV settings. Monte Carlo simulations of radiation transport utilized the MCNP5 code and the EPDL97-based mcplib04 cross-section library. Inter-tube consistency was assessed for 20 different Sources, measured with a PTW 34013 ionization chamber. As the Source is intended to be used for a maximum of ten treatment fractions, tube stability was also assessed. Photon spectra were measured using a high-purity germanium (HPGe) detector, and calculated using MCNP. Parameters used in the two-dimensional (2D) brachytherapy dosimetry formalism were determined. While the Source was characterized as a point due to the small anode size, < 1 mm, use of the one-dimensional (1D) brachytherapy dosimetry formalism is not recommended due to polar anisotropy. Consequently, 1D brachytherapy dosimetry parameters were not sought. Calculated point-source model radial dose functions at gP(5) were 0.20, 0.24, and 0.29 for the 40, 45, and 50 kV voltage settings, respectively. For 1

  9. SU-E-T-635: Quantitative Study On Beam Flatness Variation with Beam Energy Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J S; Eldib, A; Ma, C

    2014-06-15

    Purpose: Beam flatness check has been proposed for beam energy check for photon beams with flattering filters. In this work, beam flatness change with beam energy was investigated quantitatively using the Monte Carlo method and its significance was compared with depth dose curve change. Methods: Monte Carlo simulations for a linear accelerator with flattering filter were performed with different initial electron energies for photon beams of 6MV and 10MV. Dose calculations in a water phantom were then perform with the phase space files obtained from the simulations. The beam flatness was calculated based on the dose profile at 10 cmmore » depth for all the beams with different initial electron energies. The percentage depth dose (PDD) curves were also analyzed. The dose at 10cm depth (D10) and the ratio of the dose at 10cm and 20cm depth (D10/D20) and their change with the beam energy were calculated and compared with the beam flatness variation. Results: It was found that the beam flatness variation with beam energy change was more significant than the change of D10 and the ratio between D10 and D20 for both 6MV and 10MV beams. Half MeV difference on the initial electron beam energy brought in at least 20% variation on the beam flatness but only half percent change on the ratio of D10 and D20. The change of D10 or D20 alone is even less significant. Conclusion: The beam energy impact on PDD is less significant than that on the beam flatness. If the PDD is used for checking the beam energy, uncertainties of the measurement could possibly disguise its change. Beam flatness changes more significantly with beam energy and therefore it can be used for monitoring the energy change for photon beams with flattering filters. However, other factors which may affect the beam flatness should be watched as well.« less

  10. Comparative dosimetry of diode and diamond detectors in electron beams for intraoperative radiation therapy.

    PubMed

    Björk, P; Knöös, T; Nilsson, P

    2000-11-01

    The aim of the present study is to examine the validity of using silicon semiconductor detectors in degraded electron beams with a broad energy spectrum and a wide angular distribution. A comparison is made with diamond detector measurements, which is the dosimeter considered to give the best results provided that dose rate effects are corrected for. Two-dimensional relative absorbed dose distributions in electron beams (6-20 MeV) for intraoperative radiation therapy (IORT) are measured in a water phantom. To quantify deviations between the detectors, a dose comparison tool that simultaneously examines the dose difference and distance to agreement (DTA) is used to evaluate the results in low- and high-dose gradient regions, respectively. Uncertainties of the experimental measurement setup (+/- 1% and +/- 0.5 mm) are taken into account by calculating a composite distribution that fails this dose-difference and DTA acceptance limit. Thus, the resulting area of disagreement should be related to differences in detector performance. The dose distributions obtained with the diode are generally in very good agreement with diamond detector measurements. The buildup region and the dose falloff region show good agreement with increasing electron energy, while the region outside the radiation field close to the water surface shows an increased difference with energy. The small discrepancies in the composite distributions are due to several factors: (a) variation of the silicon-to-water collision stopping-power ratio with electron energy, (b) a more pronounced directional dependence for diodes than for diamonds, and (c) variation of the electron fluence perturbation correction factor with depth. For all investigated treatment cones and energies, the deviation is within dose-difference and DTA acceptance criteria of +/- 3% and +/- 1 mm, respectively. Therefore, p-type silicon diodes are well suited, in the sense that they give results in close agreement with diamond detectors, for practical measurements of relative absorbed dose distributions in degraded electron beams used for IORT.

  11. SU-F-T-58: Dosimetric Evaluation of Breast Tissue Composition for Electronic Brachytherapy (BET) Source In High Dose Rate Accelerated Partial Breast (APBI) Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, W; Johnson, D; Ahmad, S

    Purpose: To quantitatively evaluate the dosimetric impact of differing breast tissue compositions for electronic brachytherapy source for high dose rate accelerated partial breast irradiation. Methods: A series of Monte Carlo Simulation were created using the GEANT4 toolkit (version 10.0). The breast phantom was modeled as a semi-circle with a radius of 5.0 cm. A water balloon with a radius of 1.5 cm was located in the phantom with the Xoft AxxentTM EBT source placed at center as a point source. A mixed of two tissue types (adipose and glandular tissue) was assigned as the materials for the breast phantom withmore » different weight ratios. The proportionality of glandular and adipose tissue was simulated in four different fashions, 80/20, 70/30, 50/50 and 30/70 respectively. The custom energy spectrum for the 50 kVp XOFT source was provided via the manufacturer and used to generate incident photons. The dose distributions were recorded using a parallel three dimensional mesh with a size of 30 × 30 × 30 cm3 with 1 × 1 × 1 mm3 voxels. The simulated doses absorbed along the transverse axis were normalized at the distance of 1 cm and then compared with the calculations using standard TG-43 formalism. Results: All simulations showed underestimation of dose beyond balloon surface compared to standard TG-43 calculations. The maximum percentage differences within 2 cm distance from balloon surface were found to be 18%, 11%, 10% and 8% for the fat breast (30/70), standard breast (50/50), dense breast (70/30 and 80/20), respectively. Conclusion: The accuracy of dose calculations for low energy EBT source was limited when considering tissue heterogeneous composition. The impact of atomic number on photo-electric effect for lower energy Brachytherapy source is not accounted for and resulting in significant errors in dose calculation.« less

  12. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model.

    PubMed

    Douglass, Michael; Bezak, Eva; Penfold, Scott

    2013-07-01

    Investigation of increased radiation dose deposition due to gold nanoparticles (GNPs) using a 3D computational cell model during x-ray radiotherapy. Two GNP simulation scenarios were set up in Geant4; a single 400 nm diameter gold cluster randomly positioned in the cytoplasm and a 300 nm gold layer around the nucleus of the cell. Using an 80 kVp photon beam, the effect of GNP on the dose deposition in five modeled regions of the cell including cytoplasm, membrane, and nucleus was simulated. Two Geant4 physics lists were tested: the default Livermore and custom built Livermore/DNA hybrid physics list. 10(6) particles were simulated at 840 cells in the simulation. Each cell was randomly placed with random orientation and a diameter varying between 9 and 13 μm. A mathematical algorithm was used to ensure that none of the 840 cells overlapped. The energy dependence of the GNP physical dose enhancement effect was calculated by simulating the dose deposition in the cells with two energy spectra of 80 kVp and 6 MV. The contribution from Auger electrons was investigated by comparing the two GNP simulation scenarios while activating and deactivating atomic de-excitation processes in Geant4. The physical dose enhancement ratio (DER) of GNP was calculated using the Monte Carlo model. The model has demonstrated that the DER depends on the amount of gold and the position of the gold cluster within the cell. Individual cell regions experienced statistically significant (p < 0.05) change in absorbed dose (DER between 1 and 10) depending on the type of gold geometry used. The DER resulting from gold clusters attached to the cell nucleus had the more significant effect of the two cases (DER ≈ 55). The DER value calculated at 6 MV was shown to be at least an order of magnitude smaller than the DER values calculated for the 80 kVp spectrum. Based on simulations, when 80 kVp photons are used, Auger electrons have a statistically insignificant (p < 0.05) effect on the overall dose increase in the cell. The low energy of the Auger electrons produced prevents them from propagating more than 250-500 nm from the gold cluster and, therefore, has a negligible effect on the overall dose increase due to GNP. The results presented in the current work show that the primary dose enhancement is due to the production of additional photoelectrons.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de; Zaragoza, Francisco J.; Sempau, Josep

    Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Montemore » Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.« less

  14. A SPACE TRAJECTORY RADIATION EXPOSURE PROCEDURE FOR CISLUNAR MISSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranford, W.; Falkenbury, R.F.; Miller, R.A.

    1962-07-31

    The Space Trajectory Radiation Exposure Procedure (STREP) is designed for use in computing the timeintegrated spectra for any specified trajectory in cislunar space for any combination of the several components of space radiations. These components include Van Allen protons and electrons; solar-flare protons, electrons, heavy particles, and gamma radiation; cosmic protons and heavy particles; albedo neutrons, and aurora borealis gamma radiation. The program can also be used to calculate the accumulated dose behind a thin vehicle skin at any time after the start of the mission. The technique of interpolation for intermediate points along the prescribed space trajectory is describedmore » in detail. The method of representation of the space radiation data as input for the calculation of the dose and time-integrated spectra is discussed. (auth)« less

  15. Monte Carlo calculation of the neutron dose to a fetus at commercial flight altitudes

    NASA Astrophysics Data System (ADS)

    Alves, M. C.; Galeano, D. C.; Santos, W. S.; Hunt, John G.; d'Errico, Francesco; Souza, S. O.; de Carvalho Júnior, A. B.

    2017-11-01

    Aircrew members are exposed to primary cosmic rays as well as to secondary radiations from the interaction of cosmic rays with the atmosphere and with the aircraft. The radiation field at flight altitudes comprises neutrons, protons, electrons, positrons, photons, muons and pions. Generally, 50% of the effective dose to airplane passengers is due to neutrons. Care must be taken especially with pregnant aircrew members and frequent fliers so that the equivalent dose to the fetus will not exceed prescribed limits during pregnancy (1 mSv according to ICRP, and 5 mSv according to NCRP). Therefore, it is necessary to evaluate the equivalent dose to a fetus in the maternal womb. Up to now, the equivalent dose rate to a fetus at commercial flight altitudes was obtained using stylized pregnant-female phantom models. The aim of this study was calculating neutron fluence to dose conversion coefficients for a fetus of six months of gestation age using a new, realistic pregnant-female mesh-phantom. The equivalent dose rate to a fetus during an intercontinental flight was also calculated by folding our conversion coefficients with published spectral neutron flux data. The calculated equivalent dose rate to the fetus was 2.35 μSv.h-1, that is 1.5 times higher than equivalent dose rates reported in the literature. The neutron fluence to dose conversion coefficients for the fetus calculated in this study were 2.7, 3.1 and 3.9 times higher than those from previous studies using fetus models of 3, 6 and 9 months of gestation age, respectively. The differences between our study and data from the literature highlight the importance of using more realistic anthropomorphic phantoms to estimate doses to a fetus in pregnant aircrew members.

  16. PARMA: PHITS-based Analytical Radiation Model in the Atmosphere--Verification of Its Accuracy in Estimating Cosmic Radiation Doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira

    Estimation of cosmic-ray spectra in the atmosphere has been an essential issue in the evaluation of the aircrew doses. We therefore developed an analytical model that can predict the terrestrial neutron, proton, He nucleus, muon, electron, positron and photon spectra at altitudes below 20 km, based on the Monte Carlo simulation results of cosmic-ray propagation in the atmosphere performed by the PHITS code. The model was designated PARMA. In order to examine the accuracy of PARMA in terms of the neutron dose estimation, we measured the neutron dose rates at the altitudes between 20 to 10400 m, using our developedmore » dose monitor DARWIN mounted on an aircraft. Excellent agreement was observed between the measured dose rates and the corresponding data calculated by PARMA coupled with the fluence-to-dose conversion coefficients, indicating the applicability of the model to be utilized in the route-dose calculation.« less

  17. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower energy sources. Such ablative magnitude dose enhancement in a relatively small endothelial volume may rapidly disrupt or cause severe biological damage to tumor endothelial cells, without increased toxicity to healthy tissues not containing AuNPs. The findings provide significant impetus for considering the application of AuNPs as VDAs during brachytherapy.

  18. SU-E-T-405: Evaluation of the Raystation Electron Monte Carlo Algorithm for Varian Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sansourekidou, P; Allen, C

    2015-06-15

    Purpose: To evaluate the Raystation v4.51 Electron Monte Carlo algorithm for Varian Trilogy, IX and 2100 series linear accelerators and commission for clinical use. Methods: Seventy two water and forty air scans were acquired with a water tank in the form of profiles and depth doses, as requested by vendor. Data was imported into Rayphysics beam modeling module. Energy spectrum was modeled using seven parameters. Contamination photons were modeled using five parameters. Source phase space was modeled using six parameters. Calculations were performed in clinical version 4.51 and percent depth dose curves and profiles were extracted to be compared tomore » water tank measurements. Sensitivity tests were performed for all parameters. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Results: Model accuracy for air profiles is poor in the shoulder and penumbra region. However, model accuracy for water scans is acceptable. All energies and cones are within 2%/2mm for 90% of the points evaluated. Source phase space parameters have a cumulative effect. To achieve distributions with satisfactory smoothness level a 0.1cm grid and 3,000,000 particle histories were used for commissioning calculations. Calculation time was approximately 3 hours per energy. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use for the Varian accelerators listed. Results are inferior to Elekta Electron Monte Carlo modeling. Known issues were reported to Raysearch and will be resolved in upcoming releases. Auto-modeling is limited to open cone depth dose curves and needs expansion.« less

  19. SU-E-P-05: Is Routine Treatment Planning System Quality Assurance Necessary?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaei, P

    Purpose: To evaluate the variation of dose calculations using a treatment planning system (TPS) over a two year period and assessment of the need for TPS QA on regular intervals. Methods: Two phantoms containing solid water and lung- and bone-equivalent heterogeneities were constructed in two different institutions for the same brand treatment planning system. Multiple plans, consisting of photons and electron beams, including IMRT and VMAT ones, were created and calculated on the phantoms. The accuracy of dose computation in the phantoms was evaluated at the onset by dose measurements within the phantoms. The dose values at up to 24more » points of interest (POI) within the solid water, lung, and bone slabs, as well as mean doses to several regions of interest (ROI), were re-calculated over a two-year period which included two software upgrades. The variations in POI and ROI dose values were analyzed and evaluated. Results: The computed doses vary slightly month-over-month. There are noticeable variations at the times of software upgrade, if the upgrade involves remodeling and/or re-commissioning of the beams. The variations are larger in certain points within the phantom, usually in the buildup region or near interfaces, and are almost non-existent for electron beams. Conclusion: Routine TPS QA is recommended by AAPM and other professional societies, and is often required by accreditation organizations. The frequency and type of QA, though, is subject to debate. The results presented here demonstrate that the frequency of these tests could be at longer intervals than monthly. However, it is essential to perform TPS QA at the time of commissioning and after each software upgrade.« less

  20. Skeletal dosimetry based on µCT images of trabecular bone: update and comparisons

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; de Oliveira Lira, C. A. B.; Robson Brown, K.

    2012-06-01

    Two skeletal dosimetry methods using µCT images of human bone have recently been developed: the paired-image radiation transport (PIRT) model introduced by researchers at the University of Florida (UF) in the US and the systematic-periodic cluster (SPC) method developed by researchers at the Federal University of Pernambuco in Brazil. Both methods use µCT images of trabecular bone (TB) to model spongiosa regions of human bones containing marrow cavities segmented into soft tissue volumes of active marrow (AM), trabecular inactive marrow and the bone endosteum (BE), which is a 50 µm thick layer of marrow on all TB surfaces and on cortical bone surfaces next to TB as well as inside the medullary cavities. With respect to the radiation absorbed dose, the AM and the BE are sensitive soft tissues for the induction of leukaemia and bone cancer, respectively. The two methods differ mainly with respect to the number of bone sites and the size of the µCT images used in Monte Carlo calculations and they apply different methods to simulate exposure from radiation sources located outside the skeleton. The PIRT method calculates dosimetric quantities in isolated human bones while the SPC method uses human bones embedded in the body of a phantom which contains all relevant organs and soft tissues. Consequently, the SPC method calculates absorbed dose to the AM and to the BE from particles emitted by radionuclides concentrated in organs or from radiation sources located outside the human body in one calculation step. In order to allow for similar calculations of AM and BE absorbed doses using the PIRT method, the so-called dose response functions (DRFs) have been developed based on absorbed fractions (AFs) of energy for electrons isotropically emitted in skeletal tissues. The DRFs can be used to transform the photon fluence in homogeneous spongiosa regions into absorbed dose to AM and BE. This paper will compare AM and BE AFs of energy from electrons emitted in skeletal tissues calculated with the SPC and the PIRT method and AM and BE absorbed doses and AFs calculated with PIRT-based DRFs and with the SPC method. The results calculated with the two skeletal dosimetry methods agree well if one takes the differences between the two models properly into account. Additionally, the SPC method will be updated with larger µCT images of TB.

  1. SU-F-T-430: Validation of IBEAM Evo Couch Top for Different Relative Electron Density (RED) Combination During Photon Beam Dose Calculation in Monaco− Treatment Planning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manigandan, D; Kumar, M; Mohandas, P

    Purpose: Validation of iBEAM™ evo couch-top for different relative electron density (RED) combination during photon beam dose calculation in Monaco− TPS. Methods: The iBEAM™ evo couch-top has two layers:outer carbon fiber (CF) and inner foam core (FC). To study the beam intensity attenuation of couch-top, measured doses were compared with doses calculated for different REDs. Measurements were performed in solid water phantom with PTW-0.125cc ion-chamber positioned at center of the phantom with 5.3cm thickness slabs placed above and below the chamber. Similarly, in TPS, iBEAM™ evo couch-top was simulated and doses were calculated for different RED combinations (0.2CF-0.2FC, 0.4CF-0.2FC, 0.6CF-0.2FC,more » 0.8CF-0.2FC, and 1.0CF-0.2FC) by using Monte Carlo dose calculation algorithm in Monaco TPS (V5.1). Doses were measured for every 10 degree gantry angle separation, 10×10cm{sup 2} field size and 6MV photons. Then, attenuation is defined as the ratio of output at posterior gantry angle to output of its opposed anterior gantry angle (e.g.225°/45°). output fluctuation with different gantry angle was within ±0.21%. To confirm above results, dose-planes were measured for five pelvic VMAT plans (360°arc) in PTW two-dimensional array and compared with different calculated dose-planes of above-mentioned couch REDs. Gamma pass rates<1.00) were analyzed for 3%/2mm criteria. Results: Measured and calculated attenuation was in good agreement for the RED combination of 0.2CF-0.2FC and difference was within ±0.515%. However, other density combination showed difference of ±0.9841%, ±1.667%, ±2.9241% and ±2.8832% for 0.4CF-0.2FC, 0.6CF-0.2FC, 0.8CF-0.2FC, and 1.0CF-0.2FC, respectively. Maximum couch-top attenuation was observed at 110°–120° and 240°–250° and decreases linearly as the gantry angle approaches 180°. Moreover, gamma pass rate confirmed the above results and showed maximum pass rate of 96.23% for 0.2CF-0.2FC, whereas others were 95.72%, 95.12%, 94.31% and 93.24%. Conclusion: RED value of 0.2CF-0.2FC was found to be suitable for accurate couch-top modeling for 6MV photon beam Monte Carlo calculations in Monaco TPS.« less

  2. Photoneutron radiation field of ducts in barrier of 15 MV medical electron accelerators

    NASA Astrophysics Data System (ADS)

    Deng, Lei; Zhou, Ning; Chen, Yi-shui; Tu, Yu

    2017-11-01

    Shielding body of the high-energy medical electron accelerators is always penetrated by ducts, which would influence the shielding capability of local barrier. In order to quantitatively analyze the duct's impact on shielding of the photoneutron from 15 MV accelerators, the ambient dose equivalent rate and energy spectrum at the center of a typical duct and the external mouth of duct were calculated based on MCNP program for the first time. The results demonstrate that leakage neutrons at the external mouth of duct are mainly thermal neutron, and its dose rate is decreased with the increase of the intersection angle between duct and wall as well as the reduction of duct diameter. When a duct in a diameter no more than 30 cm penetrates the wall unidirectionally and the inclined Angle (θ) is 60°, neutron dose rate at the external mouth of duct could meet the requirements of protection. At last, according to the calculation results, some suggestions are proposed for the shielding design of ducts in walls.

  3. Calculated effects of backscattering on skin dosimetry for nuclear fuel fragments.

    PubMed

    Aydarous, A Sh

    2008-01-01

    The size of hot particles contained in nuclear fallout ranges from 10 nm to 20 microm for the worldwide weapons fallout. Hot particles from nuclear power reactors can be significantly bigger (100 microm to several millimetres). Electron backscattering from such particles is a prominent secondary effect in beta dosimetry for radiological protection purposes, such as skin dosimetry. In this study, the effect of electron backscattering due to hot particles contamination on skin dose is investigated. These include parameters such as detector area, source radius, source energy, scattering material and source density. The Monte-Carlo Neutron Particle code (MCNP4C) was used to calculate the depth dose distribution for 10 different beta sources and various materials. The backscattering dose factors (BSDF) were then calculated. A significant dependence is shown for the BSDF magnitude upon detector area, source radius and scatterers. It is clearly shown that the BSDF increases with increasing detector area. For high Z scatterers, the BSDF can reach as high as 40 and 100% for sources with radii 0.1 and 0.0001 cm, respectively. The variation of BSDF with source radius, source energy and source density is discussed.

  4. Effectiveness of high energy electron beam against spore forming bacteria and viruses in slurry

    NASA Astrophysics Data System (ADS)

    Skowron, Krzysztof; Paluszak, Zbigniew; Olszewska, Halina; Wieczorek, Magdalena; Zimek, Zbigniew; Śrutek, Mścisław

    2014-08-01

    The aim of this study was to evaluate the efficacy of high energy electron beam effect against the most resistant indicators - spore forming bacteria (Clostridium sporogenes) and viruses (BPV) - which may occur in slurry. The applied doses of electron beam were 0, 1, 2, 3, 5, 7, 10 and 12 kGy. The theoretic inactivating dose of high energy electron beam for Clostridium sporogenes spores calculated based on the polynomial curve equation was 11.62 kGy, and determined on the basis of regression line equation for BPV virus was equal 23.49 kGy. The obtained results showed a quite good effectiveness of irradiation in bacterial spores inactivation, whereas relatively poor against viruses.

  5. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device.

    PubMed

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-21

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  6. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-01

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  7. [Space radiation doses in the anthropomorphous phantom in space experiment "Matryeshka-R" and spacesuit "Orlan-M" during extravehicular activity].

    PubMed

    Kartashov, D A; Petrov, V M; Kolomenskiĭ, A V; Akatov, Iu A; Shurshakov, V A

    2010-01-01

    Russian space experiment "Matryeshka-R" was conducted in 2004-2005 to study dose distribution in the body of anthropomorphous phantom inserted in a spacesuit imitating container mounted on outer surface of the ISS Service module (experiment "Matryeshka"). The objective was to compare doses inside the phantom in the container to human body donned in spacesuit "Orlan-M" during extravehicular activity (EVA). The shielding function was calculated using the geometric model, specification of the phantom shielded by the container, "Orlan-M" description, and results of ground-based estimation of shielding effectiveness by gamma-raying. Doses were calculated from the dose attenuation curves obtained for galactic cosmic rays, and the AE-8/AP-8 models of electron and proton flows in Earth's radiation belt. Calculated ratios of equivalent doses in representative points of the body critical organs to analogous doses in phantom "Matryeshka" H(ORLAN-M)/H(Matryeshka) for identical radiation conditions vary with organs and solar activity in the range from 0.1 to 1.8 with organs and solar activity. These observations should be taken into account when applying Matryeshka data to the EVA conditions.

  8. TH-AB-201-09 [Medical Physics, Jun 2016, v. 43(6)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzakhanian, L; Benmakhlouf, H; Seuntjens, J

    2016-06-15

    Purpose: To determine the k-(Q-msr,Q)^(f-msr,f-ref ) factor, introduced in the small field formalism for five common type chambers used in the calibration of Leksell Gamma-Knife Perfexion model over a range of different phantom electron densities. Methods: Five chamber types including Exradin-A16, A14SL, A14, A1SL and IBA-CC04 are modeled in EGSnrc and PENELOPE Monte Carlo codes using the blueprints provided by the manufacturers. The chambers are placed in a previously proposed water-filled phantom and four 16-cm diameter spherical phantoms made of liquid water, Solid Water, ABS and polystyrene. Dose to the cavity of the chambers and a small water volume aremore » calculated using EGSnrc/PENELOPE codes. The calculations are performed over a range of phantom electron densities for two chamber orientations. Using the calculated dose-ratio in reference and machine specific reference field, the k-(Q-msr,Q)^(f-msr,f-ref ) factor can be determined. Results: When chambers are placed along the symmetry axis of the collimator block (z-axis), the CC04 requires the smallest correction followed by A1SL and A16. However, when detectors are placed perpendicular to z-axis, A14SL needs the smallest and A16 the largest correction. Moreover, an increase in the phantom electron density results in a linear increase in the k-(Q-msr,Q)^(f-msr,f-ref ). Depending on the chambers, the agreement between this study and a previous study performed varies between 0.05–0.70% for liquid water, 0.07–0.85% for Solid Water and 0.00–0.60% for ABS phantoms. After applying the EGSnrc-calculated k-(Q-msr,Q)^(f-msr,f-ref ) factors for A16 to the previously measured dose-rates in liquid water, Solid Water and ABS normalized to the dose-rate measured with TG-21 protocol and ABS phantom, the dose-rate ratios are found to be 1.004±0.002, 0.996±0.002 and 0.998±0.002 (3σ) respectively. Conclusion: Knowing the electron density of the phantoms, the calculated k-(Q-msr,Q)^(f-msr,f-ref ) values in this work will enable users to apply the appropriate correction for their own specific phantom material. LM acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)« less

  9. Dosimetric characteristics of electron beams produced by a mobile accelerator for IORT.

    PubMed

    Pimpinella, M; Mihailescu, D; Guerra, A S; Laitano, R F

    2007-10-21

    Energy and angular distributions of electron beams with different energies were simulated by Monte Carlo calculations. These beams were generated by the NOVAC7 system (Hitesys, Italy), a mobile electron accelerator specifically dedicated to intra-operative radiation therapy (IORT). The electron beam simulations were verified by comparing the measured dose distributions with the corresponding calculated distributions. As expected, a considerable difference was observed in the energy and angular distributions between the IORT beams studied in the present work and the electron beams produced by conventional accelerators for non-IORT applications. It was also found that significant differences exist between the IORT beams used in this work and other IORT beams with different collimation systems. For example, the contribution from the scattered electrons to the total dose was found to be up to 15% higher in the NOVAC7 beams. The water-to-air stopping power ratios of the IORT beams used in this work were calculated on the basis of the beam energy distributions obtained by the Monte Carlo simulations. These calculated stopping power ratios, s(w,air), were compared with the corresponding s(w,air) values recommended by the TRS-381 and TRS-398 IAEA dosimetry protocols in order to estimate the deviations between a dosimetry based on generic parameters and a dosimetry based on parameters specifically obtained for the actual IORT beams. The deviations in the s(w,air) values were found to be as large as up to about 1%. Therefore, we recommend that a preliminary analysis should always be made when dealing with IORT beams in order to assess to what extent the possible differences in the s(w,air) values have to be accounted for or may be neglected on the basis of the specific accuracy needed in clinical dosimetry.

  10. Alanine/EPR dosimetry applied to the verification of a total body irradiation protocol and treatment planning dose calculation using a humanoid phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeken, B.; Lelie, S.; Meijnders, P.

    2010-12-15

    Purpose: To avoid complications in total body irradiation (TBI), it is important to achieve a homogeneous dose distribution throughout the body and to deliver a correct dose to the lung which is an organ at risk. The purpose of this work was to validate the TBI dose protocol and to check the accuracy of the 3D dose calculations of the treatment planning system. Methods: Dosimetry based on alanine/electron paramagnetic resonance (EPR) was used to measure dose at numerous locations within an anthropomorphic phantom (Alderson) that was irradiated in a clinical TBI beam setup. The alanine EPR dosimetry system was calibratedmore » against water calorimetry in a Co-60 beam and the absorbed dose was determined by the use of ''dose-normalized amplitudes'' A{sub D}. The dose rate of the TBI beam was checked against a Farmer ionization chamber. The phantom measurements were compared to 3D dose calculations from a treatment planning system (Pinnacle) modeled for standard dose calculations. Results: Alanine dosimetry allowed accurate measurements which were in accordance with ionization chamber measurements. The combined relative standard measurement uncertainty in the Alderson phantom was U{sub r}(A{sub D})=0.6%. The humanoid phantom was irradiated to a reference dose of 10 Gy, limiting the lung dose to 7.5 Gy. The ratio of the average measured dose midplane in the craniocaudal direction to the reference dose was 1.001 with a spread of {+-}4.7% (1 sd). Dose to the lung was measured in 26 locations and found, in average, 1.8% lower than expected. Lung dose was homogeneous in the ventral-dorsal direction but a dose gradient of 0.10 Gy cm{sup -1} was observed in the craniocaudal direction midline within the lung lobe. 3D dose calculations (Pinnacle) were found, in average, 2% lower compared to dose measurements on the body axis and 3% lower for the lungs. Conclusions: The alanine/EPR dosimetry system allowed accurate dose measurements which enabled the authors to validate their TBI dose protocol. Dose calculations based on a collapsed cone convolution dose algorithm modeled for regular treatments are accurate within 3% and can further be improved when the algorithm is modeled for TBI.« less

  11. Practical use of a plastic scintillator for quality assurance of electron beam therapy.

    PubMed

    Yogo, Katsunori; Tatsuno, Yuya; Tsuneda, Masato; Aono, Yuki; Mochizuki, Daiki; Fujisawa, Yoshiki; Matsushita, Akihiro; Ishigami, Minoru; Ishiyama, Hiromichi; Hayakawa, Kazushige

    2017-06-07

    Quality assurance (QA) of clinical electron beams is essential for performing accurate and safe radiation therapy. However, with advances in radiation therapy, QA has become increasingly labor-intensive and time-consuming. In this paper, we propose a tissue-equivalent plastic scintillator for quick and easy QA of clinical electron beams. The proposed tool comprises a plastic scintillator plate and a charge-coupled device camera that enable the scintillation light by electron beams to be recorded with high sensitivity and high spatial resolution. Further, the Cerenkov image is directly subtracted from the scintillation image to discriminate Cerenkov emissions and accurately measure the dose profiles of electron beams with high spatial resolution. Compared with conventional methods, discrepancies in the depth profile improved from 7% to 2% in the buildup region via subtractive corrections. Further, the output brightness showed good linearity with dose, good reproducibility (deviations below 1%), and dose rate independence (within 0.5%). The depth of 50% dose measured with the tool, an index of electron beam quality, was within  ±0.5 mm of that obtained with an ionization chamber. Lateral brightness profiles agreed with the lateral dose profiles to within 4% and no significant improvement was obtained using Cerenkov corrections. Field size agreed to within 0.5 mm with those obtained with ionization chamber. For clinical QA of electron boost treatment, a disk scintillator that mimics the shape of a patient's breast is applied. The brightness distribution and dose, calculated using a treatment planning system, was generally acceptable for clinical use, except in limited zones. Overall, the proposed plastic scintillator plate tool efficiently performs QA for electron beam therapy and enables simultaneous verification of output constancy, beam quality, depth, and lateral dose profiles during monthly QAs at lower doses of irradiation (small monitor units, MUs).

  12. Limitations of current dosimetry for intracavitary accelerated partial breast irradiation with high dose rate iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Raffi, Julie A.

    Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to illustrate the limitations of TG-43 dosimetry for intracavitary APBI. TG-43 dose calculations overestimate the dose for regions approaching the lung and breast surface and underestimate the dose for regions in and beyond less-attenuating media such as lung tissue, and for lower energies, breast tissue as well.

  13. Sci-Thur PM: YIS - 07: Monte Carlo simulations to obtain several parameters required for electron beam dosimetry.

    PubMed

    Muir, B; Rogers, D; McEwen, M

    2012-07-01

    When current dosimetry protocols were written, electron beam data were limited and had uncertainties that were unacceptable for reference dosimetry. Protocols for high-energy reference dosimetry are currently being updated leading to considerable interest in accurate electron beam data. To this end, Monte Carlo simulations using the EGSnrc user-code egs_chamber are performed to extract relevant data for reference beam dosimetry. Calculations of the absorbed dose to water and the absorbed dose to the gas in realistic ion chamber models are performed as a function of depth in water for cobalt-60 and high-energy electron beams between 4 and 22 MeV. These calculations are used to extract several of the parameters required for electron beam dosimetry - the beam quality specifier, R 50 , beam quality conversion factors, k Q and k R50 , the electron quality conversion factor, k' R50 , the photon-electron conversion factor, k ecal , and ion chamber perturbation factors, P Q . The method used has the advantage that many important parameters can be extracted as a function of depth instead of determination at only the reference depth as has typically been done. Results obtained here are in good agreement with measured and other calculated results. The photon-electron conversion factors obtained for a Farmer-type NE2571 and plane-parallel PTW Roos, IBA NACP-02 and Exradin A11 chambers are 0.903, 0.896, 0.894 and 0.906, respectively. These typically differ by less than 0.7% from the contentious TG-51 values but have much smaller systematic uncertainties. These results are valuable for reference dosimetry of high-energy electron beams. © 2012 American Association of Physicists in Medicine.

  14. Sci—Thur PM: Planning and Delivery — 03: Automated delivery and quality assurance of a modulated electron radiation therapy plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connell, T; Papaconstadopoulos, P; Alexander, A

    2014-08-15

    Modulated electron radiation therapy (MERT) offers the potential to improve healthy tissue sparing through increased dose conformity. Challenges remain, however, in accurate beamlet dose calculation, plan optimization, collimation method and delivery accuracy. In this work, we investigate the accuracy and efficiency of an end-to-end MERT plan and automated-delivery workflow for the electron boost portion of a previously treated whole breast irradiation case. Dose calculations were performed using Monte Carlo methods and beam weights were determined using a research-based treatment planning system capable of inverse optimization. The plan was delivered to radiochromic film placed in a water equivalent phantom for verification,more » using an automated motorized tertiary collimator. The automated delivery, which covered 4 electron energies, 196 subfields and 6183 total MU was completed in 25.8 minutes, including 6.2 minutes of beam-on time with the remainder of the delivery time spent on collimator leaf motion and the automated interfacing with the accelerator in service mode. The delivery time could be reduced by 5.3 minutes with minor electron collimator modifications and the beam-on time could be reduced by and estimated factor of 2–3 through redesign of the scattering foils. Comparison of the planned and delivered film dose gave 3%/3 mm gamma pass rates of 62.1, 99.8, 97.8, 98.3, and 98.7 percent for the 9, 12, 16, 20 MeV, and combined energy deliveries respectively. Good results were also seen in the delivery verification performed with a MapCHECK 2 device. The results showed that accurate and efficient MERT delivery is possible with current technologies.« less

  15. SU-E-T-344: Validation and Clinical Experience of Eclipse Electron Monte Carlo Algorithm (EMC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokharel, S; Rana, S

    2014-06-01

    Purpose: The purpose of this study is to validate Eclipse Electron Monte Carlo (Algorithm for routine clinical uses. Methods: The PTW inhomogeneity phantom (T40037) with different combination of heterogeneous slabs has been CT-scanned with Philips Brilliance 16 slice scanner. The phantom contains blocks of Rando Alderson materials mimicking lung, Polystyrene (Tissue), PTFE (Bone) and PMAA. The phantom has 30×30×2.5 cm base plate with 2cm recesses to insert inhomogeneity. The detector systems used in this study are diode, tlds and Gafchromic EBT2 films. The diode and tlds were included in CT scans. The CT sets are transferred to Eclipse treatment planningmore » system. Several plans have been created with Eclipse Monte Carlo (EMC) algorithm 11.0.21. Measurements have been carried out in Varian TrueBeam machine for energy from 6–22mev. Results: The measured and calculated doses agreed very well for tissue like media. The agreement was reasonably okay for the presence of lung inhomogeneity. The point dose agreement was within 3.5% and Gamma passing rate at 3%/3mm was greater than 93% except for 6Mev(85%). The disagreement can reach as high as 10% in the presence of bone inhomogeneity. This is due to eclipse reporting dose to the medium as opposed to the dose to the water as in conventional calculation engines. Conclusion: Care must be taken when using Varian Eclipse EMC algorithm for dose calculation for routine clinical uses. The algorithm dose not report dose to water in which most of the clinical experiences are based on rather it just reports dose to medium directly. In the presence of inhomogeneity such as bone, the dose discrepancy can be as high as 10% or even more depending on the location of normalization point or volume. As Radiation oncology as an empirical science, care must be taken before using EMC reported monitor units for clinical uses.« less

  16. Dose to 'water-like' media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate.

    PubMed

    Andreo, Pedro

    2015-01-07

    The difference between Monte Carlo Treatment Planning (MCTP) based on the assumption of 'water-like' tissues with densities obtained from CT procedures, or on tissue compositions derived from CT-determined densities, have been investigated. Stopping powers and electron fluences have been calculated for a range of media and body tissues for 6 MV photon beams, including changes in their physical data (density and stopping powers). These quantities have been used to determine absorbed doses using cavity theory. It is emphasized that tissue compositions given in ICRU or ICRP reports should not be given the standing of physical constants as they correspond to average values obtained for a limited number of human-body samples. It has been shown that mass stopping-power ratios to water are more dependent on patient-to-patient composition differences, and therefore on their mean excitation energies (I-values), than on mass density. Electron fluence in different media are also more dependent on media composition (and their I-values) than on density. However, as a consequence of the balance between fluence and stopping powers, doses calculated from their product are more constant than what the independent stopping powers and fluence variations suggest. Additionally, cancelations in dose ratios minimize the differences between the 'water-like' and 'tissue' approaches, yielding practically identical results except for bone, and to a lesser extent for adipose tissue. A priori, changing from one approach to another does not seem to be justified considering the large number of approximations and uncertainties involved throughout the treatment planning tissue segmentation and dose calculation procedures. The key issue continues to be the composition of tissues and their I-values, and as these cannot be obtained for individual patients, whatever approach is selected does not lead to significant differences from a water reference dose, the maximum of these being of the order of 5% for bone tissues. Considering, however, current developments in advanced dose calculation methods, planning in terms of dose-to-tissue should be the preferred choice, under the expectancy that progress in the field will gradually improve some of the crude approximations included in MCTP and numerical transport methods. The small differences obtained also show that a retrospective conversion from dose-to-tissue to dose-to-water, based on a widely used approach, would mostly increase the final uncertainty of the treatment planning process. It is demonstrated that, due to the difference between electron fluence distributions in water and in body tissues, the conversion requires an additional fluence correction that has so far been neglected. An improved expression for the conversion and data for the fluence correction factor are provided. These will be necessary even in a dose-to-tissue environment, for the normalization of the treatment plan to the reference dosimetry of the treatment unit, always calibrated in terms of absorbed dose to water.

  17. Dose to ‘water-like’ media or dose to tissue in MV photons radiotherapy treatment planning: still a matter of debate

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro

    2015-01-01

    The difference between Monte Carlo Treatment Planning (MCTP) based on the assumption of ‘water-like’ tissues with densities obtained from CT procedures, or on tissue compositions derived from CT-determined densities, have been investigated. Stopping powers and electron fluences have been calculated for a range of media and body tissues for 6 MV photon beams, including changes in their physical data (density and stopping powers). These quantities have been used to determine absorbed doses using cavity theory. It is emphasized that tissue compositions given in ICRU or ICRP reports should not be given the standing of physical constants as they correspond to average values obtained for a limited number of human-body samples. It has been shown that mass stopping-power ratios to water are more dependent on patient-to-patient composition differences, and therefore on their mean excitation energies (I-values), than on mass density. Electron fluence in different media are also more dependent on media composition (and their I-values) than on density. However, as a consequence of the balance between fluence and stopping powers, doses calculated from their product are more constant than what the independent stopping powers and fluence variations suggest. Additionally, cancelations in dose ratios minimize the differences between the ‘water-like’ and ‘tissue’ approaches, yielding practically identical results except for bone, and to a lesser extent for adipose tissue. A priori, changing from one approach to another does not seem to be justified considering the large number of approximations and uncertainties involved throughout the treatment planning tissue segmentation and dose calculation procedures. The key issue continues to be the composition of tissues and their I-values, and as these cannot be obtained for individual patients, whatever approach is selected does not lead to significant differences from a water reference dose, the maximum of these being of the order of 5% for bone tissues. Considering, however, current developments in advanced dose calculation methods, planning in terms of dose-to-tissue should be the preferred choice, under the expectancy that progress in the field will gradually improve some of the crude approximations included in MCTP and numerical transport methods. The small differences obtained also show that a retrospective conversion from dose-to-tissue to dose-to-water, based on a widely used approach, would mostly increase the final uncertainty of the treatment planning process. It is demonstrated that, due to the difference between electron fluence distributions in water and in body tissues, the conversion requires an additional fluence correction that has so far been neglected. An improved expression for the conversion and data for the fluence correction factor are provided. These will be necessary even in a dose-to-tissue environment, for the normalization of the treatment plan to the reference dosimetry of the treatment unit, always calibrated in terms of absorbed dose to water.

  18. Theoretical studies of radiation effects in composite materials for space use. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Chang, C. K.; Kamaratos, E.

    1982-01-01

    Tetraglycidyl 4,4'-diamino diphenyl methane epoxy cured with diamino diphenyl sulfone was used as a model compound. Computer programs were developed to calculate (1) energy deposition coefficients of protons and electrons of various energies at different depths of the material; (2) ranges of protons and electrons of various energies in the material; and (3) cumulative doses received by the composite in different geometric shapes placed in orbits of various altitudes and inclination. A preliminary study on accelerated testing was conducted and it was found that an elliptical equitorial orbit of 300 km perigee by 2750 km apogee can accumulate, in 2 years or less, enough radiation dose comparable to geosynchronous environment for 30 years. The local plasma model calculated the mean excitation energies for covalent and ionic compounds. Longitudinal and lateral distributions of excited species by electron and proton impact as well as the probability of overlapping of two tracks due to two charged particles within various time intervals were studied.

  19. Effective atomic numbers and electron densities of bioactive glasses for photon interaction

    NASA Astrophysics Data System (ADS)

    Shantappa, Anil; Hanagodimath, S. M.

    2015-08-01

    This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO2-Na2O, SiO2-Na2O-CaO and SiO2-Na2O-P2O5 in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (ZPI, eff) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.

  20. Alpha particle and proton relative thermoluminescence efficiencies in LiF:Mg,Cu,P:is track structure theory up to the task?

    PubMed

    Horowitz, Y S; Siboni, D; Oster, L; Livingstone, J; Guatelli, S; Rosenfeld, A; Emfietzoglou, D; Bilski, P; Obryk, B

    2012-07-01

    Low-energy alpha particle and proton heavy charged particle (HCP) relative thermoluminescence (TL) efficiencies are calculated for the major dosimetric glow peak in LiF:Mg,Cu,P (MCP-N) in the framework of track structure theory (TST). The calculations employ previously published TRIPOS-E Monte Carlo track segment values of the radial dose in condensed phase LiF calculated at the Instituto National de Investigaciones Nucleares (Mexico) and experimentally measured normalised (60)Co gamma-induced TL dose-response functions, f(D), carried out at the Institute of Nuclear Physics (Poland). The motivation for the calculations is to test the validity of TST in a TL system in which f(D) is not supralinear (f(D) >1) and is not significantly dependent on photon energy contrary to the behaviour of the dose-response of composite peak 5 in the glow curve of LiF:Mg,Ti (TLD-100). The calculated HCP relative efficiencies in LiF:MCP-N are 23-87% lower than the experimentally measured values, indicating a weakness in the major premise of TST which exclusively relates HCP effects to the radiation action of the secondary electrons liberated by the HCP slowing down. However, an analysis of the uncertainties involved in the TST calculations and experiments (i.e. experimental measurement of f(D) at high levels of dose, sample light self-absorption and accuracy in the estimation of D(r), especially towards the end of the HCP track) indicate that these may be too large to enable a definite conclusion. More accurate estimation of sample light self-absorption, improved measurements of f(D) and full-track Monte Carlo calculations of D(r) incorporating improvements of the low-energy electron transport are indicated in order to reduce uncertainties and enable a final conclusion.

  1. Study of the effective point of measurement for ion chambers in electron beams by Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. L. W.; Rogers, D. W. O.

    In current dosimetry protocols for electron beams, for plane-parallel chambers, the effective point of measurement is at the front face of the cavity, and, for cylindrical chambers, it is at a point shifted 0.5r upstream from the cavity center. In this study, Monte Carlo simulations are employed to study the issue of effective point of measurement for both plane-parallel chambers and cylindrical thimble chambers in electron beams. It is found that there are two ways of determining the position of the effective point of measurement: One is to match the calculated depth-ionization curve obtained from a modeled chamber to amore » calculated depth-dose curve; the other is to match the electron fluence spectrum in the chamber cavity to that in the phantom. For plane-parallel chambers, the effective point of measurement determined by the first method is generally not at the front face of the chamber cavity, which is obtained by the second method, but shifted downstream toward the cavity center by an amount that could be larger than one-half a millimeter. This should not be ignored when measuring depth-dose curves in electron beams. For cylindrical chambers, these two methods also give different positions of the effective point of measurement: The first gives a shift of 0.5r, which is in agreement with measurements for high-energy beams and is the same as the value currently used in major dosimetry protocols; the latter gives a shift of 0.8r, which is closer to the value predicted by a theoretical calculation assuming no-scatter conditions. The results also show that the shift of 0.8r is more appropriate if the cylindrical chamber is to be considered as a Spencer-Attix cavity. In electron beams, since the water/air stopping-power ratio changes with depth in a water phantom, the difference of the two shifts (0.3r) will lead to an incorrect evaluation of the water/air stopping-power ratio at the point of measurement, thus resulting in a systematic error in determining the absorbed dose by cylindrical chambers. It is suggested that a shift of 0.8r be used for electron beam calibrations with cylindrical chambers and a shift of 0.4r-0.5r be used for depth-dose measurements.« less

  2. Study of the effective point of measurement for ion chambers in electron beams by Monte Carlo simulation.

    PubMed

    Wang, L L W; Rogers, D W O

    2009-06-01

    In current dosimetry protocols for electron beams, for plane-parallel chambers, the effective point of measurement is at the front face of the cavity, and, for cylindrical chambers, it is at a point shifted 0.5r upstream from the cavity center. In this study, Monte Carlo simulations are employed to study the issue of effective point of measurement for both plane-parallel chambers and cylindrical thimble chambers in electron beams. It is found that there are two ways of determining the position of the effective point of measurement: One is to match the calculated depth-ionization curve obtained from a modeled chamber to a calculated depth-dose curve; the other is to match the electron fluence spectrum in the chamber cavity to that in the phantom. For plane-parallel chambers, the effective point of measurement determined by the first method is generally not at the front face of the chamber cavity, which is obtained by the second method, but shifted downstream toward the cavity center by an amount that could be larger than one-half a millimeter. This should not be ignored when measuring depth-dose curves in electron beams. For cylindrical chambers, these two methods also give different positions of the effective point of measurement: The first gives a shift of 0.5r, which is in agreement with measurements for high-energy beams and is the same as the value currently used in major dosimetry protocols; the latter gives a shift of 0.8r, which is closer to the value predicted by a theoretical calculation assuming no-scatter conditions. The results also show that the shift of 0.8r is more appropriate if the cylindrical chamber is to be considered as a Spencer-Attix cavity. In electron beams, since the water/air stopping-power ratio changes with depth in a water phantom, the difference of the two shifts (0.3r) will lead to an incorrect evaluation of the water/air stopping-power ratio at the point of measurement, thus resulting in a systematic error in determining the absorbed dose by cylindrical chambers. It is suggested that a shift of 0.8r be used for electron beam calibrations with cylindrical chambers and a shift of 0.4r-0.5r be used for depth-dose measurements.

  3. Methodology comparison for gamma-heating calculations in material-testing reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A.

    2015-07-01

    The Jules Horowitz Reactor (JHR) is a Material-Testing Reactor (MTR) under construction in the south of France at CEA Cadarache (French Alternative Energies and Atomic Energy Commission). It will typically host about 20 simultaneous irradiation experiments in the core and in the beryllium reflector. These experiments will help us better understand the complex phenomena occurring during the accelerated ageing of materials and the irradiation of nuclear fuels. Gamma heating, i.e. photon energy deposition, is mainly responsible for temperature rise in non-fuelled zones of nuclear reactors, including JHR internal structures and irradiation devices. As temperature is a key parameter for physicalmore » models describing the behavior of material, accurate control of temperature, and hence gamma heating, is required in irradiation devices and samples in order to perform an advanced suitable analysis of future experimental results. From a broader point of view, JHR global attractiveness as a MTR depends on its ability to monitor experimental parameters with high accuracy, including gamma heating. Strict control of temperature levels is also necessary in terms of safety. As JHR structures are warmed up by gamma heating, they must be appropriately cooled down to prevent creep deformation or melting. Cooling-power sizing is based on calculated levels of gamma heating in the JHR. Due to these safety concerns, accurate calculation of gamma heating with well-controlled bias and associated uncertainty as low as possible is all the more important. There are two main kinds of calculation bias: bias coming from nuclear data on the one hand and bias coming from physical approximations assumed by computer codes and by general calculation route on the other hand. The former must be determined by comparison between calculation and experimental data; the latter by calculation comparisons between codes and between methodologies. In this presentation, we focus on this latter kind of bias. Nuclear heating is represented by the physical quantity called absorbed dose (energy deposition induced by particle-matter interactions, divided by mass). Its calculation with Monte Carlo codes is possible but computationally expensive as it requires transport simulation of charged particles, along with neutrons and photons. For that reason, the calculation of another physical quantity, called KERMA, is often preferred, as KERMA calculation with Monte Carlo codes only requires transport of neutral particles. However, KERMA is only an estimator of the absorbed dose and many conditions must be fulfilled for KERMA to be equal to absorbed dose, including so-called condition of electronic equilibrium. Also, Monte Carlo computations of absorbed dose still present some physical approximations, even though there is only a limited number of them. Some of these approximations are linked to the way how Monte Carlo codes apprehend the transport simulation of charged particles and the productive and destructive interactions between photons, electrons and positrons. There exists a huge variety of electromagnetic shower models which tackle this topic. Differences in the implementation of these models can lead to discrepancies in calculated values of absorbed dose between different Monte Carlo codes. The magnitude of order of such potential discrepancies should be quantified for JHR gamma-heating calculations. We consequently present a two-pronged plan. In a first phase, we intend to perform compared absorbed dose / KERMA Monte Carlo calculations in the JHR. This way, we will study the presence or absence of electronic equilibrium in the different JHR structures and experimental devices and we will give recommendations for the choice of KERMA or absorbed dose when calculating gamma heating in the JHR. In a second phase, we intend to perform compared TRIPOLI4 / MCNP absorbed dose calculations in a simplified JHR-representative geometry. For this comparison, we will use the same nuclear data library for both codes (the European library JEFF3.1.1 and photon library EPDL97) so as to isolate the effects from electromagnetic shower models on absorbed dose calculation. This way, we hope to get insightful feedback on these models and their implementation in Monte Carlo codes. (authors)« less

  4. SU-E-T-470: Importance of HU-Mass Density Calibration Technique in Proton Pencil Beam Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penfold, S; Miller, A

    2015-06-15

    Purpose: Stoichiometric calibration of Hounsfield Units (HUs) for conversion to proton relative stopping powers (RStPs) is vital for accurate dose calculation in proton therapy. However proton dose distributions are not only dependent on RStP, but also on relative scattering power (RScP) of patient tissues. RScP is approximated from material density but a stoichiometric calibration of HU-density tables is commonly neglected. The purpose of this work was to quantify the difference in calculated dose of a commercial TPS when using HU-density tables based on tissue substitute materials and stoichiometric calibrated ICRU tissues. Methods: Two HU-density calibration tables were generated based onmore » scans of the CIRS electron density phantom. The first table was based directly on measured HU and manufacturer quoted density of tissue substitute materials. The second was based on the same CT scan of the CIRS phantom followed by a stoichiometric calibration of ICRU44 tissue materials. The research version of Pinnacle{sup 3} proton therapy was used to compute dose in a patient CT data set utilizing both HU-density tables. Results: The two HU-density tables showed significant differences for bone tissues; the difference increasing with increasing HU. Differences in density calibration table translated to a difference in calculated RScP of −2.5% for ICRU skeletal muscle and 9.2% for ICRU femur. Dose-volume histogram analysis of a parallel opposed proton therapy prostate plan showed that the difference in calculated dose was negligible when using the two different HU-density calibration tables. Conclusion: The impact of HU-density calibration technique on proton therapy dose calculation was assessed. While differences were found in the calculated RScP of bony tissues, the difference in dose distribution for realistic treatment scenarios was found to be insignificant.« less

  5. Implementation of the validation testing in MPPG 5.a "Commissioning and QA of treatment planning dose calculations-megavoltage photon and electron beams".

    PubMed

    Jacqmin, Dustin J; Bredfeldt, Jeremy S; Frigo, Sean P; Smilowitz, Jennifer B

    2017-01-01

    The AAPM Medical Physics Practice Guideline (MPPG) 5.a provides concise guidance on the commissioning and QA of beam modeling and dose calculation in radiotherapy treatment planning systems. This work discusses the implementation of the validation testing recommended in MPPG 5.a at two institutions. The two institutions worked collaboratively to create a common set of treatment fields and analysis tools to deliver and analyze the validation tests. This included the development of a novel, open-source software tool to compare scanning water tank measurements to 3D DICOM-RT Dose distributions. Dose calculation algorithms in both Pinnacle and Eclipse were tested with MPPG 5.a to validate the modeling of Varian TrueBeam linear accelerators. The validation process resulted in more than 200 water tank scans and more than 50 point measurements per institution, each of which was compared to a dose calculation from the institution's treatment planning system (TPS). Overall, the validation testing recommended in MPPG 5.a took approximately 79 person-hours for a machine with four photon and five electron energies for a single TPS. Of the 79 person-hours, 26 person-hours required time on the machine, and the remainder involved preparation and analysis. The basic photon, electron, and heterogeneity correction tests were evaluated with the tolerances in MPPG 5.a, and the tolerances were met for all tests. The MPPG 5.a evaluation criteria were used to assess the small field and IMRT/VMAT validation tests. Both institutions found the use of MPPG 5.a to be a valuable resource during the commissioning process. The validation testing in MPPG 5.a showed the strengths and limitations of the TPS models. In addition, the data collected during the validation testing is useful for routine QA of the TPS, validation of software upgrades, and commissioning of new algorithms. © 2016 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. Simultaneous optimization of photons and electrons for mixed beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Fix, M. K.; Joosten, A.; Henzen, D.; Frei, D.; Volken, W.; Kueng, R.; Aebersold, D. M.; Stampanoni, M. F. M.; Manser, P.

    2017-07-01

    The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.

  7. Simultaneous optimization of photons and electrons for mixed beam radiotherapy.

    PubMed

    Mueller, S; Fix, M K; Joosten, A; Henzen, D; Frei, D; Volken, W; Kueng, R; Aebersold, D M; Stampanoni, M F M; Manser, P

    2017-06-26

    The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.

  8. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.

    PubMed

    Yoriyaz, H; Stabin, M G; dos Santos, A

    2001-04-01

    This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)

  9. [Characterization of a diode system for in vivo dosimetry with electron beams].

    PubMed

    Ragona, R; Rossetti, V; Lucio, F; Anglesio, S; Giglioli, F R

    2001-10-01

    Current quality assurance regulation stresses the basic role of in vivo dosimetry. Our study evaluates the usefulness and reliability of semiconductor diodes in determining the electron absorbed dose. P-type EDE semiconductor detectors were irradiated with electron beams of different energies produced by a CGR Saturn Therac 20. The diode and ionization chamber response were compared, and effect of energy value, collimator opening, source skin distance and gantry angle on diode response was studied. Measurements show a maximum increment of about 20% in diode response increasing the beam energy (6-20 MeV). The response also increases with: collimator opening, reaching 5% with field sizes larger than 10x10 cm2 (with the exception of 20 MeV energy); SSD increase (with a maximum of 8% for 20 MeV); transversal gantry incidence, compared with the diode longitudinal axis; it does not affect the response in the interval of +/- 45 degrees. Absorbed dose attenuation at dmax, due to the presence of diode on the axis of the beam as a function of electron energy was also determined : the maximum attenuation value is 15% in 6 MeV electron beams. A dose calculation algorithm, taking into account diode response dependence was outlined. In vivo dosimetry was performed in 92 fields for 80 patients, with an agreement of +/-4 % (1 SD) between prescribed and measured dose. It is possible to use the EDE semiconductor detectors on a quality control program of dose delivery for electron beam therapy, but particular attention should be paid to the beam incidence angle and diode dose attenuation.

  10. Results of space environment measurement carried out by the Roscosmos monitoring system elements and their correlation with different space weather characteristics

    NASA Astrophysics Data System (ADS)

    Protopopov, Grigory; Anashin, Vasily; Elushov, Ilya; Kozyukova, Olga

    The Monitoring System of space radiation exposure on electronic components is developed by the Institute of Space Device Engineering by order Roscosmos. The key targets of the Monitoring System are space environment measurements, space model correction, space weather characteristics forecast, improvement of radiation hardness technical requirements and etc. The Monitoring System includes two parts: the ground-based and the space-born segments. The ground-based segment includes the forecast station, the analytic complex and the data output system. The space-born segment base elements are TID sensors operating by MNOSFET dosimetry principle. Sensor temperature stabilization is achieved by choosing of operational point according to the minimal change of sensor current-voltage curve. The set of 38 TID sensors is placed on 19 spacecrafts currently. The spacecrafts operate in Medium Earth Orbit (MEO) (approximately 20 000 km with inclination of 65(°) ). The flight data obtained perfectly correlate with total dose flight data registered using MOSFET placed on Van Allen Probe spacecraft functioning in high elliptical orbit (apogee is 37 000 km, perigee is 650 km, inclination is 10(°) ). Also coincidence with the dose data from GIOVE-B spacecraft (circular orbit 23200 km, inclination of 56(°) ) of Galileo system is observed. We have observed several abrupt dose rate increases from April, 2010. The flight data are compared with other monitoring system data and ground measurements. The comparison results show that high energy electrons (> 1 MeV) give general contribution in accumulated dose and anomalous dose rate increases. These results are in agreement with shielding stopping power calculation results. The high electron fluxes rise significantly in MEO as a result of Van Allen belts shifting during geomagnetic storms. The flight data were compared with calculation results obtained using different space models. The comparison shows that for some long-term interval the distinction between experimental and calculated results can be 7 times less or more.

  11. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations

    NASA Astrophysics Data System (ADS)

    Nogueira, P.; Zankl, M.; Schlattl, H.; Vaz, P.

    2011-11-01

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation—the germinative cells—absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  12. Dose conversion coefficients for monoenergetic electrons incident on a realistic human eye model with different lens cell populations.

    PubMed

    Nogueira, P; Zankl, M; Schlattl, H; Vaz, P

    2011-11-07

    The radiation-induced posterior subcapsular cataract has long been generally accepted to be a deterministic effect that does not occur at doses below a threshold of at least 2 Gy. Recent epidemiological studies indicate that the threshold for cataract induction may be much lower or that there may be no threshold at all. A thorough study of this subject requires more accurate dose estimates for the eye lens than those available in ICRP Publication 74. Eye lens absorbed dose per unit fluence conversion coefficients for electron irradiation were calculated using a geometrical model of the eye that takes into account different cell populations of the lens epithelium, together with the MCNPX Monte Carlo radiation transport code package. For the cell population most sensitive to ionizing radiation-the germinative cells-absorbed dose per unit fluence conversion coefficients were determined that are up to a factor of 4.8 higher than the mean eye lens absorbed dose conversion coefficients for electron energies below 2 MeV. Comparison of the results with previously published values for a slightly different eye model showed generally good agreement for all electron energies. Finally, the influence of individual anatomical variability was quantified by positioning the lens at various depths below the cornea. A depth difference of 2 mm between the shallowest and the deepest location of the germinative zone can lead to a difference between the resulting absorbed doses of up to nearly a factor of 5000 for electron energy of 0.7 MeV.

  13. Matching Electron Beams Without Secondary Collimation for Treatment of Extensive Recurrent Chest-Wall Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feygelman, Vladimir; Department of Physics, University of Manitoba, Winnipeg, MB; Mandelzweig, Yuri

    2015-01-15

    Matching electron beams without secondary collimators (applicators) were used for treatment of extensive, recurrent chest-wall carcinoma. Due to the wide penumbra of such beams, the homogeneity of the dose distribution at and around the junction point is clinically acceptable and relatively insensitive to positional errors. Specifically, dose around the junction point is homogeneous to within ±4% as calculated from beam profiles, while the positional error of 1 cm leaves this number essentially unchanged. The experimental isodose distribution in an anthropomorphic phantom supports this conclusion. Two electron beams with wide penumbra were used to cover the desired treatment area with satisfactorymore » dose homogeneity. The technique is relatively simple yet clinically useful and can be considered a viable alternative for treatment of extensive chest-wall disease. The steps are suggested to make this technique more universal.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R; Bai, W

    Purpose: Because of statistical noise in Monte Carlo dose calculations, effective point doses may not be accurate. Volume spheres are useful for evaluating dose in Monte Carlo plans, which have an inherent statistical uncertainty.We use a user-defined sphere volume instead of a point, take sphere sampling around effective point make the dose statistics to decrease the stochastic errors. Methods: Direct dose measurements were made using a 0.125cc Semiflex ion chamber (IC) 31010 isocentrically placed in the center of a homogeneous Cylindric sliced RW3 phantom (PTW, Germany).In the scanned CT phantom series the sensitive volume length of the IC (6.5mm) weremore » delineated and defined the isocenter as the simulation effective points. All beams were simulated in Monaco in accordance to the measured model. In our simulation using 2mm voxels calculation grid spacing and choose calculate dose to medium and request the relative standard deviation ≤0.5%. Taking three different assigned IC over densities (air electron density(ED) as 0.01g/cm3 default CT scanned ED and Esophageal lumen ED 0.21g/cm3) were tested at different sampling sphere radius (2.5, 2, 1.5 and 1 mm) statistics dose were compared with the measured does. Results: The results show that in the Monaco TPS for the IC using Esophageal lumen ED 0.21g/cm3 and sampling sphere radius 1.5mm the statistical value is the best accordance with the measured value, the absolute average percentage deviation is 0.49%. And when the IC using air electron density(ED) as 0.01g/cm3 and default CT scanned EDthe recommented statistical sampling sphere radius is 2.5mm, the percentage deviation are 0.61% and 0.70%, respectivly. Conclusion: In Monaco treatment planning system for the ionization chamber 31010 recommend air cavity using ED 0.21g/cm3 and sampling 1.5mm sphere volume instead of a point dose to decrease the stochastic errors. Funding Support No.C201505006.« less

  15. A virtual photon energy fluence model for Monte Carlo dose calculation.

    PubMed

    Fippel, Matthias; Haryanto, Freddy; Dohm, Oliver; Nüsslin, Fridtjof; Kriesen, Stephan

    2003-03-01

    The presented virtual energy fluence (VEF) model of the patient-independent part of the medical linear accelerator heads, consists of two Gaussian-shaped photon sources and one uniform electron source. The planar photon sources are located close to the bremsstrahlung target (primary source) and to the flattening filter (secondary source), respectively. The electron contamination source is located in the plane defining the lower end of the filter. The standard deviations or widths and the relative weights of each source are free parameters. Five other parameters correct for fluence variations, i.e., the horn or central depression effect. If these parameters and the field widths in the X and Y directions are given, the corresponding energy fluence distribution can be calculated analytically and compared to measured dose distributions in air. This provides a method of fitting the free parameters using the measurements for various square and rectangular fields and a fixed number of monitor units. The next step in generating the whole set of base data is to calculate monoenergetic central axis depth dose distributions in water which are used to derive the energy spectrum by deconvolving the measured depth dose curves. This spectrum is also corrected to take the off-axis softening into account. The VEF model is implemented together with geometry modules for the patient specific part of the treatment head (jaws, multileaf collimator) into the XVMC dose calculation engine. The implementation into other Monte Carlo codes is possible based on the information in this paper. Experiments are performed to verify the model by comparing measured and calculated dose distributions and output factors in water. It is demonstrated that open photon beams of linear accelerators from two different vendors are accurately simulated using the VEF model. The commissioning procedure of the VEF model is clinically feasible because it is based on standard measurements in air and water. It is also useful for IMRT applications because a full Monte Carlo simulation of the treatment head would be too time-consuming for many small fields.

  16. X-Band Rapid-Scan Electron Paramagnetic Resonance of Radiation-Induced Defects in Tooth Enamel

    PubMed Central

    Yu, Zhelin; Romanyukha, Alexander; Eaton, Sandra S.; Eaton, Gareth R.

    2015-01-01

    X-band rapid-scan electron paramagnetic resonance (EPR) spectra from tooth enamel samples irradiated with doses of 0.5, 1 and 10 Gy had substantially improved signal-to-noise relative to conventional continuous wave EPR. The radiation-induced signal in 60 mg of a tooth enamel sample irradiated with a 0.5 Gy dose was readily characterized in spectra recorded with 34 min data acquisition times. The coefficient of variance of the calculated dose for a 1 Gy irradiated sample, based on simulation of the first-derivative spectra for three replicates as the sum of native and radiation-induced signals, was 3.9% for continuous wave and 0.4% for rapid scan. PMID:26207683

  17. Dose conversion coefficients for electron exposure of the human eye lens

    NASA Astrophysics Data System (ADS)

    Behrens, R.; Dietze, G.; Zankl, M.

    2009-07-01

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity Hp(0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity Hp(3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0° and 45° are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.

  18. Dose conversion coefficients for electron exposure of the human eye lens.

    PubMed

    Behrens, R; Dietze, G; Zankl, M

    2009-07-07

    Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity H(p)(0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity H(p)(3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0 degrees and 45 degrees are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.

  19. An in-depth Monte Carlo study of lateral electron disequilibrium for small fields in ultra-low density lung: implications for modern radiation therapy

    NASA Astrophysics Data System (ADS)

    Disher, Brandon; Hajdok, George; Gaede, Stewart; Battista, Jerry J.

    2012-03-01

    Modern radiation therapy techniques such as intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) use tightly conformed megavoltage x-ray fields to irradiate a tumour within lung tissue. For these conditions, lateral electron disequilibrium (LED) may occur, which systematically perturbs the dose distribution within tumour and nearby lung tissues. The goal of this work is to determine the combination of beam and lung density parameters that cause significant LED within and near the tumour. The Monte Carlo code DOSXYZnrc (National Research Council of Canada, Ottawa, ON) was used to simulate four 20 × 20 × 25 cm3 water-lung-water slab phantoms, which contained lung tissue only, or one of three different centrally located small tumours (sizes: 1 × 1 × 1, 3 × 3 × 3, 5 × 5 × 5 cm3). Dose calculations were performed using combinations of six beam energies (Co-60 up to 18 MV), five field sizes (1 × 1 cm2 up to 15 × 15 cm2), and 12 lung densities (0.001 g cm-3 up to 1 g cm-3) for a total of 1440 simulations. We developed the relative depth-dose factor (RDDF), which can be used to characterize the extent of LED (RDDF <1.0). For RDDF <0.7 severe LED occurred, and both lung and tumour dose were drastically reduced. For example, a 6 MV (3 × 3 cm2) field was used to irradiate a 1 cm3 tumour embedded in lung with ultra-low density of 0.001 g cm-3 (RDDF = 0.2). Dose in up-stream lung and tumour centre were reduced by as much as 80% with respect to the water density calculation. These reductions were worse for smaller tumours irradiated with high energy beams, small field sizes, and low lung density. In conclusion, SBRT trials based on dose calculations in homogeneous tissue are misleading as they do not reflect the actual dosimetric effects due to LED. Future clinical trials should only use dose calculation engines that can account for electron scatter, with special attention given to patients with low lung density (i.e. emphysema). In cases where tissue inhomogeneity corrections are applied, the nature of the correction used may be inadequate in predicting the correct level of LED. In either case, the dose to the tumour is not the prescribed dose and clinical response data are uncertain. The new information from this study can be used by radiation oncologists who wish to perform advanced radiation therapy techniques while avoiding the deleterious predictable dosimetric effects of LED.

  20. A flexible Monte Carlo tool for patient or phantom specific calculations: comparison with preliminary validation measurements

    NASA Astrophysics Data System (ADS)

    Davidson, S.; Cui, J.; Followill, D.; Ibbott, G.; Deasy, J.

    2008-02-01

    The Dose Planning Method (DPM) is one of several 'fast' Monte Carlo (MC) computer codes designed to produce an accurate dose calculation for advanced clinical applications. We have developed a flexible machine modeling process and validation tests for open-field and IMRT calculations. To complement the DPM code, a practical and versatile source model has been developed, whose parameters are derived from a standard set of planning system commissioning measurements. The primary photon spectrum and the spectrum resulting from the flattening filter are modeled by a Fatigue function, cut-off by a multiplying Fermi function, which effectively regularizes the difficult energy spectrum determination process. Commonly-used functions are applied to represent the off-axis softening, increasing primary fluence with increasing angle ('the horn effect'), and electron contamination. The patient dependent aspect of the MC dose calculation utilizes the multi-leaf collimator (MLC) leaf sequence file exported from the treatment planning system DICOM output, coupled with the source model, to derive the particle transport. This model has been commissioned for Varian 2100C 6 MV and 18 MV photon beams using percent depth dose, dose profiles, and output factors. A 3-D conformal plan and an IMRT plan delivered to an anthropomorphic thorax phantom were used to benchmark the model. The calculated results were compared to Pinnacle v7.6c results and measurements made using radiochromic film and thermoluminescent detectors (TLD).

  1. Gamma-ray and neutron dosimetry by EPR and AMS, using tooth enamel from atomic-bomb survivors: a mini review.

    PubMed

    Nakamura, Nori; Hirai, Yuko; Kodama, Yoshiaki

    2012-03-01

    The electron paramagnetic resonance (EPR, or electron spin resonance) method was used to measure CO₂⁻· radicals recorded in tooth enamel by exposure to atomic-bomb gamma rays. The EPR-estimated doses (i.e. ⁶⁰Co gamma-ray equivalent dose) were generally in good correlation with cytogenetic data of the same survivors, whereas plots of EPR-estimated dose or cytogenetically estimated dose against DS02 doses turned out to scatter more widely. Because those survivors whose EPR doses were higher (or lower) than DS02 doses tended to show also higher (or lower) responses for cytogenetic responses, the apparent variation appears primarily due to problems in individual DS02 doses rather than the measurement errors associated with the EPR or cytogenetic technique. A part of the enamel samples were also used for evaluation of neutron doses by measuring ⁴¹Ca/⁴⁰Ca ratios using the accelerator mass spectrometry technique. The results for the measured ratios were on average ~85 % of the calculated ratios by DS02 (but within the 95 % confidence bounds of the simulated results), which lends support to DS02-derived neutron doses to the survivors.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Zhang, W; Lu, J

    Purpose: To investigate the accuracy and feasibility of dose calculations using kilovoltage cone beam computed tomography in cervical cancer radiotherapy using a correction algorithm. Methods: The Hounsfield units (HU) and electron density (HU-density) curve was obtained for both planning CT (pCT) and kilovoltage cone beam CT (CBCT) using a CIRS-062 calibration phantom. The pCT and kV-CBCT images have different HU values, and if the HU-density curve of CBCT was directly used to calculate dose in CBCT images may have a deviation on dose distribution. It is necessary to normalize the different HU values between pCT and CBCT. A HU correctionmore » algorithm was used for CBCT images (cCBCT). Fifteen intensity-modulated radiation therapy (IMRT) plans of cervical cancer were chosen, and the plans were transferred to the pCT and cCBCT data sets without any changes for dose calculations. Phantom and patient studies were carried out. The dose differences and dose distributions were compared between cCBCT plan and pCT plan. Results: The HU number of CBCT was measured by several times, and the maximum change was less than 2%. To compare with pCT, the CBCT and cCBCT has a discrepancy, the dose differences in CBCT and cCBCT images were 2.48%±0.65% (range: 1.3%∼3.8%) and 0.48%±0.21% (range: 0.1%∼0.82%) for phantom study, respectively. For dose calculation in patient images, the dose differences were 2.25%±0.43% (range: 1.4%∼3.4%) and 0.63%±0.35% (range: 0.13%∼0.97%), respectively. And for the dose distributions, the passing rate of cCBCT was higher than the CBCTs. Conclusion: The CBCT image for dose calculation is feasible in cervical cancer radiotherapy, and the correction algorithm offers acceptable accuracy. It will become a useful tool for adaptive radiation therapy.« less

  3. Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Chytyk-Praznik, Krista Joy

    Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The method was then applied to five prostate and six head-and-neck IMRT treatment courses (˜1900 clinical images). Deviations between the predicted and measured images were quantified. The portal dose image prediction model developed in this thesis work has been shown to be accurate, and it was demonstrated to be able to verify patients' delivered radiation treatments.

  4. Effective and absolute cross sections for low-energy (1-30 eV) electron interactions with condensed biomolecules

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Sanche, Léon

    2018-06-01

    Ionizing radiation is intensively used for therapeutic [e.g., radiotherapy, brachytherapy, and targeted radionuclide therapy (TRT)], as well as for diagnostic medical imaging purposes. In these applications, the radiation dose given to the patient should be known and controlled. In conventional cancer treatments, absorbed dose calculations rely essentially on scattering cross sections (CSs) of the primary high-energy radiation. In more sophisticated treatments, such as combined radio- and chemo-therapy, a description of the details of energy deposits at the micro- and nano-scopic level is preferred to relate dose to radiobiological effectiveness or to evaluate doses at the biomolecular level, when radiopharmaceuticals emitting short-range radiation are delivered to critical molecular components of cancer cells (e.g., TRT). These highly radiotoxic compounds emit large densities of low-energy electrons (LEEs). More generally, LEE (0-30 eV) are emitted in large numbers by any type of high-energy radiation; i.e., about 30 000 per MeV of deposited primary energy. Thus, to optimize the effectiveness of several types of radiation treatments, the energy deposited by LEEs must be known at the level of the cell, nucleus, chromosome, or DNA. Such local doses can be evaluated by Monte Carlo (MC) calculations, which account event-by-event, for the slowing down of all generations of particles. In particular, these codes require as input parameters absolute LEE CSs for elastic scattering, energy losses, and direct damage to vital cellular molecules, particularly DNA, the main target of radiation therapy. In the last decade, such CSs have emerged in the literature. Furthermore, a method was developed to transform relative yields of damages into absolute CSs by measuring specific parameters in the experiments. In this review article, we first present a general description of dose calculations in biological media via MC simulation and give an overview of the CSs available from theoretical calculations and gas-phase experiments. The properties of LEE scattering in the gas-phase are then compared to those in the condensed phase. The remaining portion of the article is devoted to condensed-phase CSs. We provide absolute LEE scattering CSs for electronic, vibrational, and phonon excitation of biomolecules as well as for dissociative electron attachment, electron intra- and inter-molecular stabilization, and bond dissociation, including strand breaks and degradation product formation. The biomolecules are O2, CO2, H2O, DNA bases, sugar and phosphate unit analogs, oligonucleotides, plasmid DNA, and the amino acid tryptophan. CSs for strand breaks in radiosensitizing and chemotherapeutic molecules bond or not to a short DNA strand are also listed. The principle of each experimental technique and mathematical methods utilized to generate all condensed-phase CSs are briefly explained. The mechanisms responsible for the magnitudes of the CSs are discussed.

  5. Theory of the spatial resolution of (scanning) transmission electron microscopy in liquid water or ice layers.

    PubMed

    de Jonge, Niels

    2018-04-01

    The sample dependent spatial resolution was calculated for transmission electron microscopy (TEM) and scanning TEM (STEM) of objects (e.g., nanoparticles, proteins) embedded in a layer of liquid water or amorphous ice. The theoretical model includes elastic- and inelastic scattering, beam broadening, and chromatic aberration. Different contrast mechanisms were evaluated as function of the electron dose, the detection angle, and the sample configuration. It was found that the spatial resolution scales with the electron dose to the -1/4th power. Gold- and carbon nanoparticles were examined in the middle of water layers ranging from 0.01--10 µm thickness representing relevant classes of experiments in both materials science and biology. The optimal microscope settings differ between experimental configurations. STEM performs the best for gold nanoparticles for all layer thicknesses, while carbon is best imaged with phase-contrast TEM for thin layers but bright field STEM is preferred for thicker layers. The resolution was also calculated for a water layer enclosed between thin membranes. The influence of chromatic aberration correction for TEM was examined as well. The theory is broadly applicable to other types of materials and sample configurations. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Nanoscale-Barrier Formation Induced by Low-Dose Electron-Beam Exposure in Ultrathin MoS2 Transistors.

    PubMed

    Matsunaga, Masahiro; Higuchi, Ayaka; He, Guanchen; Yamada, Tetsushi; Krüger, Peter; Ochiai, Yuichi; Gong, Yongji; Vajtai, Robert; Ajayan, Pulickel M; Bird, Jonathan P; Aoki, Nobuyuki

    2016-10-05

    Utilizing an innovative combination of scanning-probe and spectroscopic techniques, supported by first-principles calculations, we demonstrate how electron-beam exposure of field-effect transistors, implemented from ultrathin molybdenum disulfide (MoS 2 ), may cause nanoscale structural modifications that in turn significantly modify the electrical operation of these devices. Quite surprisingly, these modifications are induced by even the relatively low electron doses used in conventional electron-beam lithography, which are found to induce compressive strain in the atomically thin MoS 2 . Likely arising from sulfur-vacancy formation in the exposed regions, the strain gives rise to a local widening of the MoS 2 bandgap, an idea that is supported both by our experiment and by the results of first-principles calculations. A nanoscale potential barrier develops at the boundary between exposed and unexposed regions and may cause extrinsic variations in the resulting electrical characteristics exhibited by the transistor. The widespread use of electron-beam lithography in nanofabrication implies that the presence of such strain must be carefully considered when seeking to harness the potential of atomically thin transistors. At the same time, this work also promises the possibility of exploiting the strain as a means to achieve "bandstructure engineering" in such devices.

  7. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator

    PubMed Central

    Lemos-Pinto, M.M.P.; Cadena, M.; Santos, N.; Fernandes, T.S.; Borges, E.; Amaral, A.

    2015-01-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. PMID:26445334

  8. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  9. A Dosimetry Study of Deuterium-Deuterium Neutron Generator-based In Vivo Neutron Activation Analysis.

    PubMed

    Sowers, Daniel; Liu, Yingzi; Mostafaei, Farshad; Blake, Scott; Nie, Linda H

    2015-12-01

    A neutron irradiation cavity for in vivo neutron activation analysis (IVNAA) to detect manganese, aluminum, and other potentially toxic elements in human hand bone has been designed and its dosimetric specifications measured. The neutron source is a customized deuterium-deuterium neutron generator that produces neutrons at 2.45 MeV by the fusion reaction 2H(d, n)3He at a calculated flux of 7 × 10(8) ± 30% s(-1). A moderator/reflector/shielding [5 cm high density polyethylene (HDPE), 5.3 cm graphite and 5.7 cm borated (HDPE)] assembly has been designed and built to maximize the thermal neutron flux inside the hand irradiation cavity and to reduce the extremity dose and effective dose to the human subject. Lead sheets are used to attenuate bremsstrahlung x rays and activation gammas. A Monte Carlo simulation (MCNP6) was used to model the system and calculate extremity dose. The extremity dose was measured with neutron and photon sensitive film badges and Fuji electronic pocket dosimeters (EPD). The neutron ambient dose outside the shielding was measured by Fuji NSN3, and the photon dose was measured by a Bicron MicroREM scintillator. Neutron extremity dose was calculated to be 32.3 mSv using MCNP6 simulations given a 10-min IVNAA measurement of manganese. Measurements by EPD and film badge indicate hand dose to be 31.7 ± 0.8 mSv for neutrons and 4.2 ± 0.2 mSv for photons for 10 min; whole body effective dose was calculated conservatively to be 0.052 mSv. Experimental values closely match values obtained from MCNP6 simulations. These are acceptable doses to apply the technology for a manganese toxicity study in a human population.

  10. Dual-energy imaging method to improve the image quality and the accuracy of dose calculation for cone-beam computed tomography.

    PubMed

    Men, Kuo; Dai, Jianrong; Chen, Xinyuan; Li, Minghui; Zhang, Ke; Huang, Peng

    2017-04-01

    To improve the image quality and accuracy of dose calculation for cone-beam computed tomography (CT) images through implementation of a dual-energy cone-beam computed tomography method (DE-CBCT), and evaluate the improvement quantitatively. Two sets of CBCT projections were acquired using the X-ray volumetric imaging (XVI) system on a Synergy (Elekta, Stockholm, Sweden) system with 120kV (high) and 70kV (low) X-rays, respectively. Then, the electron density relative to water (relative electron density (RED)) of each voxel was calculated using a projection-based dual-energy decomposition method. As a comparison, single-energy cone-beam computed tomography (SE-CBCT) was used to calculate RED with the Hounsfield unit-RED calibration curve generated by a CIRS phantom scan with identical imaging parameters. The imaging dose was measured with a dosimetry phantom. The image quality was evaluated quantitatively using a Catphan 503 phantom with the evaluation indices of the reproducibility of the RED values, high-contrast resolution (MTF 50% ), uniformity, and signal-to-noise ratio (SNR). Dose calculation of two simulated volumetric-modulated arc therapy plans using an Eclipse treatment-planning system (Varian Medical Systems, Palo Alto, CA, USA) was performed on an Alderson Rando Head and Neck (H&N) phantom and a Pelvis phantom. Fan-beam planning CT images for the H&N and Pelvis phantom were set as the reference. A global three-dimensional gamma analysis was used to compare dose distributions with the reference. The average gamma values for targets and OAR were analyzed with paired t-tests between DE-CBCT and SE-CBCT. In two scans (H&N scan and body scan), the imaging dose of DE-CBCT increased by 1.0% and decreased by 1.3%. It had a better reproducibility of the RED values (mean bias: 0.03 and 0.07) compared with SE-CBCT (mean bias: 0.13 and 0.16). It also improved the image uniformity (57.5% and 30.1%) and SNR (9.7% and 2.3%), but did not affect the MTF 50% . Gamma analyses of the 3D dose distribution with criteria of 1%/1mm showed a pass rate of 99.0-100% and 85.3-97.6% for DE-CBCT and 73.5-99.1% and 80.4-92.7% for SE-CBCT. The average gamma values were reduced significantly by DE-CBCT (p< 0.05). Gamma index maps showed that matching of the dose distribution between CBCT-based and reference was improved by DE-CBCT. DE-CBCT can achieve both better image quality and higher accuracy of dose calculation, and could be applied to adaptive radiotherapy. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y; Kumar, P; Mitchell, M

    Purpose: Breast cancer patients who undergo a mastectomy often require post-mastectomy radiation therapy (PMRT) due to high risk disease characteristics. PMRT usually accompanies scar boost irradiation (10–16Gy in 5–8 fractions) using en face electrons, which often results in increased dose to the underlying lungs, thereby potentially increasing the risk of radiation pneumonitis. Hence, this study evaluated water-equivalent phantoms as energy degraders and as an alternative to a bolus to reduce radiation dose to the underlying lungs for electron scar boost irradiation. Methods: Percent depth dose (PDD) profiles of 6 MeV (the lowest electron energy available in most clinics) were obtainedmore » without and with commercial solid water phantoms (1 to 5mm by 1mm increments) placed on top of electron cones. Phantom attenuation was measured by taking a ratio of outputs with to without the phantoms in 10×10cm2 cone size for monitor unit (MU) calculation. In addition, scatter dose to contralateral breast was measured on a human-like phantom using two selected scar (short and long) boost patient setups. Results: The PDD plots showed that the solid water phantoms and the bolus had similar dosimetric effects for the same thickness. Lower skin dose (up to 3%) to ipsilateral breast was observed with a 5mm phantom compared with a 5mm bolus (up to 10%) for all electron cones. Phantom attenuation was increased by 50% with about a 4.5mm phantom. Also, the energy degraders caused scatter dose to contralateral breast by a factor of 3 with a 5mm phantom. Conclusion: Our results demonstrate the feasibility of using water-equivalent phantoms to reduce lung dose using en face electrons in patients with a thin chest wall undergoing PMRT. The disadvantages of this treatment approach (i.e., the increase in MUs and treatment time, and clinically insignificant scatter dose to the contralateral breast given usually 10Gy) are outweighed by its above clinical benefits.« less

  12. Microdosimetry of low-energy electrons.

    PubMed

    Liamsuwan, Thiansin; Emfietzoglou, Dimitris; Uehara, Shuzo; Nikjoo, Hooshang

    2012-12-01

    To investigate differences in energy depositions and microdosimetric parameters of low-energy electrons in liquid and gaseous water using Monte Carlo track structure simulations. KURBUC-liq (Kyushu University and Radiobiology Unit Code for liquid water) was used for simulating electron tracks in liquid water. The inelastic scattering cross sections of liquid water were obtained from the dielectric response model of Emfietzoglou et al. (Radiation Research 2005;164:202-211). Frequencies of energy deposited in nanometre-size cylindrical targets per unit absorbed dose and associated lineal energies were calculated for 100-5000 eV monoenergetic electrons and the electron spectrum of carbon K edge X-rays. The results for liquid water were compared with those for water vapour. Regardless of electron energy, there is a limit how much energy electron tracks can deposit in a target. Phase effects on the frequencies of energy depositions are largely visible for the targets with diameters and heights smaller than 30 nm. For the target of 2.3 nm by 2.3 nm (similar to dimension of DNA segments), the calculated frequency- and dose-mean lineal energies for liquid water are up to 40% smaller than those for water vapour. The corresponding difference is less than 12% for the targets with diameters ≥ 30 nm. Condensed-phase effects are non-negligible for microdosimetry of low-energy electrons for targets with sizes smaller than a few tens of nanometres, similar to dimensions of DNA molecular structures and nucleosomes.

  13. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 03: Energy dependence of a clinical probe-format calorimeter and its pertinence to absolute photon and electron beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, James; Seuntjens, Jan; Sarfehnia, Arman

    Purpose: To evaluate the intrinsic and absorbed-dose energy dependence of a small-scale graphite calorimeter probe (GPC) developed for use as a routine clinical dosimeter. The influence of charge deposition on the response of the GPC was also assessed by performing absolute dosimetry in clinical linac-based electron beams. Methods: Intrinsic energy dependence was determined by performing constant-temperature calorimetry dose measurements in a water-equivalent solid phantom, under otherwise reference conditions, in five high-energy photon (63.5 < %dd(10){sub X} < 76.3), and five electron (2.3 cm < R{sub 50} < 8.3 cm) beams. Reference dosimetry was performed for all beams in question usingmore » an Exradin A19 ion chamber with a calibration traceable to national standards. The absorbed-dose component of the overall energy dependence was calculated using the EGSnrc egs-chamber user code. Results: A total of 72 measurements were performed with the GPC, resulting in a standard error on the mean absorbed dose of better than 0.3 % for all ten beams. For both the photon and electron beams, no statistically-significant energy dependence was observed experimentally. Peak-to-peak, variations in the relative response of the GPC across all beam qualities of a given radiation type were on the order of 1 %. No effects, either transient or permanent, were attributable to the charge deposited by the electron beams. Conclusions: The GPC’s apparent energy-independence, combined with its well-established linearity and dose rate independence, make it a potentially useful dosimetry system capable measuring photon and electron doses in absolute terms at the clinical level.« less

  14. Calculation of local skin doses with ICRP adult mesh-type reference computational phantoms

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Han, Haegin; Choi, Chansoo; Nguyen, Thang Tat; Lee, Hanjin; Shin, Bangho; Kim, Chan Hyeong; Han, Min Cheol

    2018-01-01

    Recently, Task Group 103 of the International Commission on Radiological Protection (ICRP) developed new mesh-type reference computational phantoms (MRCPs) for adult males and females in order to address the limitations of the current voxel-type reference phantoms described in ICRP Publication 110 due to their limited voxel resolutions and the nature of the voxel geometry. One of the substantial advantages of the MRCPs over the ICRP-110 reference phantoms is the inclusion of a 50-μm-thick radiosensitive skin basal-cell layer; however, a methodology for calculating the local skin dose (LSD), i.e., the maximum dose to the basal layer averaged over a 1-cm2 area, has yet to be developed. In the present study, a dedicated program for the LSD calculation with the MRCPs was developed based on the mean shift algorithm and the Geant4 Monte Carlo code. The developed program was used to calculate local skin dose coefficients (LSDCs) for electrons and alpha particles, which were then compared with the values given in ICRP Publication 116 that were produced with a simple tissue-equivalent cube model. The results of the present study show that the LSDCs of the MRCPs are generally in good agreement with the ICRP-116 values for alpha particles, but for electrons, significant differences are found at energies higher than 0.15 MeV. The LSDCs of the MRCPs are greater than the ICRP-116 values by as much as 2.7 times at 10 MeV, which is due mainly to the different curvature between realistic MRCPs ( i.e., curved) and the simple cube model ( i.e., flat).

  15. Dose conversion coefficients for electron exposure of the human eye lens: calculations including a whole body phantom.

    PubMed

    Behrens, R

    2013-07-01

    In this work, conversion coefficients from electron fluence to absorbed dose to the eye lens were calculated using Monte Carlo simulations based on a detailed stylised eye model and a very simple but whole body phantom. These data supersede and complement data published earlier based on the simulation of only a single stylised eye. The new data differ from the old ones by not more than 3, 4, 7 and 16 % for angles of radiation incidence of α=0°, 15°, 30° and 45°, respectively, due to the inclusion of the whole body phantom. The data presented in the present work also complement those of a recent report of the International Commission on Radiological Protection (ICRP) (ICRP Publication 116), where conversion coefficients from electron fluence to absorbed dose to the lens of the eye are shown for solely 0°, 180° and isotropic radiation incidence (but for a much broader range of energies). In this article, values are provided for angles of incidence of 0° up to 180° in steps of 15° and for rotational geometry; no systematic deviation was observed from the values given in ICRP Publication 116 for 0° (based on the application of a bare eye) and 180° (based on the application of a voxel whole body phantom). Data are given for monoenergetic electrons from 0.1 up to 10 MeV and for a broad parallel beam geometry in vacuum.

  16. Differential pencil beam dose computation model for photons.

    PubMed

    Mohan, R; Chui, C; Lidofsky, L

    1986-01-01

    Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.

  17. Effective atomic numbers and electron densities of bioactive glasses for photon interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shantappa, Anil, E-mail: anilmalipatil@yahoo.co.in; Hanagodimath, S. M., E-mail: smhmath@rediffmail.com

    2015-08-28

    This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO{sub 2}-Na{sub 2}O, SiO{sub 2}-Na{sub 2}O-CaO and SiO{sub 2}-Na{sub 2}O-P{sub 2}O{sub 5} in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (Z{submore » PI,} {sub eff}) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.« less

  18. Monte Carlo evaluation of Acuros XB dose calculation Algorithm for intensity modulated radiation therapy of nasopharyngeal carcinoma

    NASA Astrophysics Data System (ADS)

    Yeh, Peter C. Y.; Lee, C. C.; Chao, T. C.; Tung, C. J.

    2017-11-01

    Intensity-modulated radiation therapy is an effective treatment modality for the nasopharyngeal carcinoma. One important aspect of this cancer treatment is the need to have an accurate dose algorithm dealing with the complex air/bone/tissue interface in the head-neck region to achieve the cure without radiation-induced toxicities. The Acuros XB algorithm explicitly solves the linear Boltzmann transport equation in voxelized volumes to account for the tissue heterogeneities such as lungs, bone, air, and soft tissues in the treatment field receiving radiotherapy. With the single beam setup in phantoms, this algorithm has already been demonstrated to achieve the comparable accuracy with Monte Carlo simulations. In the present study, five nasopharyngeal carcinoma patients treated with the intensity-modulated radiation therapy were examined for their dose distributions calculated using the Acuros XB in the planning target volume and the organ-at-risk. Corresponding results of Monte Carlo simulations were computed from the electronic portal image data and the BEAMnrc/DOSXYZnrc code. Analysis of dose distributions in terms of the clinical indices indicated that the Acuros XB was in comparable accuracy with Monte Carlo simulations and better than the anisotropic analytical algorithm for dose calculations in real patients.

  19. The radiation environment on the Moon from galactic cosmic rays in a lunar habitat.

    PubMed

    Jia, Y; Lin, Z W

    2010-02-01

    We calculated how the radiation environment in a habitat on the surface of the Moon would have depended on the thickness of the habitat in the 1977 galactic cosmic-ray environment. The Geant4 Monte Carlo transport code was used, and a hemispherical dome made of lunar regolith was used to simulate the lunar habitat. We investigated the effective dose from primary and secondary particles including nuclei from protons up to nickel, neutrons, charged pions, photons, electrons and positrons. The total effective dose showed a strong decrease with the thickness of the habitat dome. However, the effective dose values from secondary neutrons, charged pions, photons, electrons and positrons all showed a strong increase followed by a gradual decrease with the habitat thickness. The fraction of the summed effective dose from these secondary particles in the total effective dose increased with the habitat thickness, from approximately 5% for the no-habitat case to about 47% for the habitat with an areal thickness of 100 g/cm(2).

  20. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  1. Accurate condensed history Monte Carlo simulation of electron transport. II. Application to ion chamber response simulations.

    PubMed

    Kawrakow, I

    2000-03-01

    In this report the condensed history Monte Carlo simulation of electron transport and its application to the calculation of ion chamber response is discussed. It is shown that the strong step-size dependencies and lack of convergence to the correct answer previously observed are the combined effect of the following artifacts caused by the EGS4/PRESTA implementation of the condensed history technique: dose underprediction due to PRESTA'S pathlength correction and lateral correlation algorithm; dose overprediction due to the boundary crossing algorithm; dose overprediction due to the breakdown of the fictitious cross section method for sampling distances between discrete interaction and the inaccurate evaluation of energy-dependent quantities. These artifacts are now understood quantitatively and analytical expressions for their effect are given.

  2. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  3. Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models.

    PubMed

    Keyvanloo, A; Burke, B; Warkentin, B; Tadic, T; Rathee, S; Kirkby, C; Santos, D M; Fallone, B G

    2012-10-01

    The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient skin dose. To accurately quantify the magnitude of changes in skin dose, the authors use Monte Carlo calculations that incorporate realistic 3D magnetic field models of longitudinal and transverse linac-MR systems. Finite element method (FEM) is used to generate complete 3D magnetic field maps for 0.56 T longitudinal and transverse linac-MR magnet assemblies, as well as for representative 0.5 and 1.0 T Helmholtz MRI systems. EGSnrc simulations implementing these 3D magnetic fields are performed. The geometry for the BEAMnrc simulations incorporates the Varian 600C 6 MV linac, magnet poles, the yoke, and the magnetic shields of the linac-MRIs. Resulting phase-space files are used to calculate the central axis percent depth-doses in a water phantom and 2D skin dose distributions for 70 μm entrance and exit layers using DOSXYZnrc. For comparison, skin doses are also calculated in the absence of magnetic field, and using a 1D magnetic field with an unrealistically large fringe field. The effects of photon field size, air gap (longitudinal configuration), and angle of obliquity (transverse configuration) are also investigated. Realistic modeling of the 3D magnetic fields shows that fringe fields decay rapidly and have a very small magnitude at the linac head. As a result, longitudinal linac-MR systems mostly confine contaminant electrons that are generated in the air gap and have an insignificant effect on electrons produced further upstream. The increase in the skin dose for the longitudinal configuration compared to the zero B-field case varies from ∼1% to ∼14% for air gaps of 5-31 cm, respectively. (All dose changes are reported as a % of D(max).) The increase is also field-size dependent, ranging from ∼3% at 20 × 20 cm(2) to ∼11% at 5 × 5 cm(2). The small changes in skin dose are in contrast to significant increases that are calculated for the unrealistic 1D magnetic field. For the transverse configuration, the entrance skin dose is equal or smaller than that of the zero B-field case for perpendicular beams. For a 10 × 10 cm(2) oblique beam the transverse magnetic field decreases the entry skin dose for oblique angles less than ±20° and increases it by no more than 10% for larger angles up to ±45°. The exit skin dose is increased by 42% for a 10 × 10 cm(2) perpendicular beam, but appreciably drops and approaches the zero B-field case for large oblique angles of incidence. For longitudinal linac-MR systems only a small increase in the entrance skin dose is predicted, due to the rapid decay of the realistic magnetic fringe fields. For transverse linac-MR systems, changes to the entrance skin dose are small for most scenarios. For the same geometry, on the exit side a fairly large increase is observed for perpendicular beams, but significantly drops for large oblique angles of incidence. The observed effects on skin dose are not expected to limit the application of linac-MR systems in either the longitudinal or transverse configuration.

  4. In vivo dose verification of IMRT treated head and neck cancer patients.

    PubMed

    Engström, Per E; Haraldsson, Pia; Landberg, Torsten; Sand Hansen, Hanne; Aage Engelholm, Svend; Nyström, Håkan

    2005-01-01

    An independent in vivo dose verification procedure for IMRT treatments of head and neck cancers was developed. Results of 177 intracavitary TLD measurements from 10 patients are presented. The study includes data from 10 patients with cancer of the rhinopharynx or the thyroid treated with dynamic IMRT. Dose verification was performed by insertion of a flexible naso-oesophageal tube containing TLD rods and markers for EPID and simulator image detection. Part of the study focussed on investigating the accuracy of the TPS calculations in the presence of inhomogeneities. Phantom measurements and Monte Carlo simulations were performed for a number of geometries involving lateral electronic disequilibrium and steep density shifts. The in vivo TLD measurements correlated well with the predictions of the treatment planning system with a measured/calculated dose ratio of 1.002+/-0.051 (1 SD, N=177). The measurements were easily performed and well tolerated by the patients. We conclude that in vivo intracavitary dosimetry with TLD is suitable and accurate for dose determination in intensity-modulated beams.

  5. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Rovira, I., E-mail: immamartinez@gmail.com; Prezado, Y.

    Purpose: The outcome of radiotherapy can be further improved by combining irradiation with dose enhancers such as high-Z nanoparticles. Since 2004, spectacular results have been obtained when low-energy x-ray irradiations have been combined with nanoparticles. Recently, the same combination has been explored in hadron therapy. In vitro studies have shown a significant amplification of the biological damage in tumor cells charged with nanoparticles and irradiated with fast ions. This has been attributed to the increase in the ionizations and electron emissions induced by the incident ions or the electrons in the secondary tracks on the high-Z atoms, resulting in amore » local energy deposition enhancement. However, this subject is still a matter of controversy. Within this context, the main goal of the authors’ work was to provide new insights into the dose enhancement effects of nanoparticles in proton therapy. Methods: For this purpose, Monte Carlo calculations (GATE/GEANT4 code) were performed. In particular, the GEANT4-DNA toolkit, which allows the modeling of early biological damages induced by ionizing radiation at the DNA scale, was used. The nanometric radial energy distributions around the nanoparticle were studied, and the processes (such as Auger deexcitation or dissociative electron attachment) participating in the dose deposition of proton therapy treatments in the presence of nanoparticles were evaluated. It has been reported that the architecture of Monte Carlo calculations plays a crucial role in the assessment of nanoparticle dose enhancement and that it may introduce a bias in the results or amplify the possible final dose enhancement. Thus, a dosimetric study of different cases was performed, considering Au and Gd nanoparticles, several nanoparticle sizes (from 4 to 50 nm), and several beam configurations (source-nanoparticle distances and source sizes). Results: This Monte Carlo study shows the influence of the simulations’ parameters on the local dose enhancement and how more realistic configurations lead to a negligible increase of local energy deposition. The obtained dose enhancement factor was up to 1.7 when the source was located at the nanoparticle surface. This dose enhancement was reduced when the source was located at further distances (i.e., in more realistic situations). Additionally, no significant increase in the dissociative electron attachment processes was observed. Conclusions: The authors’ results indicate that physical effects play a minor role in the amplification of damage, as a very low dose enhancement or increase of dissociative electron attachment processes is observed when the authors get closer to more realistic simulations. Thus, other effects, such as biological or chemical processes, may be mainly responsible for the enhanced radiosensibilization observed in biological studies. However, more biological studies are needed to verify this hypothesis.« less

  6. Technical Note: Dose gradients and prescription isodose in orthovoltage stereotactic radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagerstrom, Jessica M., E-mail: fagerstrom@wisc.edu; Bender, Edward T.; Culberson, Wesley S.

    Purpose: The purpose of this work is to examine the trade-off between prescription isodose and dose gradients in orthovoltage stereotactic radiosurgery. Methods: Point energy deposition kernels (EDKs) describing photon and electron transport were calculated using Monte Carlo methods. EDKs were generated from 10  to 250 keV, in 10 keV increments. The EDKs were converted to pencil beam kernels and used to calculate dose profiles through isocenter from a 4π isotropic delivery from all angles of circularly collimated beams. Monoenergetic beams and an orthovoltage polyenergetic spectrum were analyzed. The dose gradient index (DGI) is the ratio of the 50% prescription isodosemore » volume to the 100% prescription isodose volume and represents a metric by which dose gradients in stereotactic radiosurgery (SRS) may be evaluated. Results: Using the 4π dose profiles calculated using pencil beam kernels, the relationship between DGI and prescription isodose was examined for circular cones ranging from 4 to 18 mm in diameter and monoenergetic photon beams with energies ranging from 20 to 250 keV. Values were found to exist for prescription isodose that optimize DGI. Conclusions: The relationship between DGI and prescription isodose was found to be dependent on both field size and energy. Examining this trade-off is an important consideration for designing optimal SRS systems.« less

  7. Determination of absorbed dose to water from a miniature kilovoltage x-ray source using a parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan

    2018-01-01

    Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.

  8. Fine-resolution voxel S values for constructing absorbed dose distributions at variable voxel size.

    PubMed

    Dieudonné, Arnaud; Hobbs, Robert F; Bolch, Wesley E; Sgouros, George; Gardin, Isabelle

    2010-10-01

    This article presents a revised voxel S values (VSVs) approach for dosimetry in targeted radiotherapy, allowing dose calculation for any voxel size and shape of a given SPECT or PET dataset. This approach represents an update to the methodology presented in MIRD pamphlet no. 17. VSVs were generated in soft tissue with a fine spatial sampling using the Monte Carlo (MC) code MCNPX for particle emissions of 9 radionuclides: (18)F, (90)Y, (99m)Tc, (111)In, (123)I, (131)I, (177)Lu, (186)Re, and (201)Tl. A specific resampling algorithm was developed to compute VSVs for desired voxel dimensions. The dose calculation was performed by convolution via a fast Hartley transform. The fine VSVs were calculated for cubic voxels of 0.5 mm for electrons and 1.0 mm for photons. Validation studies were done for (90)Y and (131)I VSV sets by comparing the revised VSV approach to direct MC simulations. The first comparison included 20 spheres with different voxel sizes (3.8-7.7 mm) and radii (4-64 voxels) and the second comparison a hepatic tumor with cubic voxels of 3.8 mm. MC simulations were done with MCNPX for both. The third comparison was performed on 2 clinical patients with the 3D-RD (3-Dimensional Radiobiologic Dosimetry) software using the EGSnrc (Electron Gamma Shower National Research Council Canada)-based MC implementation, assuming a homogeneous tissue-density distribution. For the sphere model study, the mean relative difference in the average absorbed dose was 0.20% ± 0.41% for (90)Y and -0.36% ± 0.51% for (131)I (n = 20). For the hepatic tumor, the difference in the average absorbed dose to tumor was 0.33% for (90)Y and -0.61% for (131)I and the difference in average absorbed dose to the liver was 0.25% for (90)Y and -1.35% for (131)I. The comparison with the 3D-RD software showed an average voxel-to-voxel dose ratio between 0.991 and 0.996. The calculation time was below 10 s with the VSV approach and 50 and 15 h with 3D-RD for the 2 clinical patients. This new VSV approach enables the calculation of absorbed dose based on a SPECT or PET cumulated activity map, with good agreement with direct MC methods, in a faster and more clinically compatible manner.

  9. SU-E-J-113: The Influence of Optimizing Pediatric CT Simulator Protocols On the Treatment Dose Calculation in Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y; Zhang, J; Hu, Q

    2014-06-01

    Purpose: To investigate the possibility of applying optimized scanning protocols for pediatric CT simulation by quantifying the dosimetric inaccuracy introduced by using a fixed HU to density conversion. Methods: The images of a CIRS electron density reference phantom (Model 062) were acquired by a Siemens CT simulator (Sensation Open) using the following settings of tube voltage and beam current: 120 kV/190mA (the reference protocol used to calibrate CT for our treatment planning system (TPS)); Fixed 190mA combined with all available kV: 80, 100, and 140; fixed 120 kV and various current from 37 to 444 mA (scanner extremes) with intervalmore » of 30 mA. To avoid the HU uncertainty of point sampling in the various inserts of known electron densities, the mean CT numbers of the central cylindrical volume were calculated using DICOMan software. The doses per 100 MU to the reference point (SAD=100cm, Depth=10cm, Field=10X10cm, 6MV photon beam) in a virtual cubic phantom (30X30X30cm) were calculated using Eclipse TPS (calculation model: AcurosXB-11031) by assigning the CT numbers to HU of typical materials acquired by various protocols. Results: For the inserts of densities less than muscle, CT number fluctuations of all protocols were within the tolerance of 10 HU as accepted by AAPM-TG66. For more condensed materials, fixed kV yielded stable HU with any mA combination where largest disparities were found in 1750mg/cc insert: HU{sub reference}=1801(106.6cGy), HU{sub minimum}=1799 (106.6cGy, error{sub dose}=0.00%), HU{sub maximum}=1815 (106.8cGy, error{sub dose}=0.19%). Yet greater disagreements were observed with increasing density when kV was modified: HU{sub minimum}=1646 (104.5cGy, error{sub dose}=- 1.97%), HU{sub maximum}=2487 (116.4cGy, error{sub dose}=9.19%) in 1750mg/cc insert. Conclusion: Without affecting treatment dose calculation, personalized mA optimization of CT simulator can be conducted by fixing kV for a better cost-effectiveness of imaging dose and quality especially for children. Unless recalibrated, kV should be constant for all anatomical sites if diagnostic CT scanner is used as a simulator. This work was partially supported by Capital Medical Development Scientific Research Fund of China.« less

  10. Calculation of electron and isotopes dose point kernels with fluka Monte Carlo code for dosimetry in nuclear medicine therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botta, F; Di Dia, A; Pedroli, G

    The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, fluka Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, fluka has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK),more » quantifying the energy deposition all around a point isotropic source, is often the one.Methods: fluka DPKs have been calculated in both water and compact bone for monoenergetic electrons (10–3 MeV) and for beta emitting isotopes commonly used for therapy (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, and 188Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. fluka outcomes have been compared to penelope v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (etran, geant4, mcnpx) has been done. Maximum percentage differences within 0.8·RCSDA and 0.9·RCSDA for monoenergetic electrons (RCSDA being the continuous slowing down approximation range) and within 0.8·X90 and 0.9·X90 for isotopes (X90 being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9·RCSDA and 0.9·X90 for electrons and isotopes, respectively.Results: Concerning monoenergetic electrons, within 0.8·RCSDA (where 90%–97% of the particle energy is deposed), fluka and penelope agree mostly within 7%, except for 10 and 20 keV electrons (12% in water, 8.3% in bone). The discrepancies between fluka and the other codes are of the same order of magnitude than those observed when comparing the other codes among them, which can be referred to the different simulation algorithms. When considering the beta spectra, discrepancies notably reduce: within 0.9·X90, fluka and penelope differ for less than 1% in water and less than 2% in bone with any of the isotopes here considered. Complete data of fluka DPKs are given as Supplementary Material as a tool to perform dosimetry by analytical point kernel convolution.Conclusions: fluka provides reliable results when transporting electrons in the low energy range, proving to be an adequate tool for nuclear medicine dosimetry.« less

  11. Comparison of TG-43 and TG-186 in breast irradiation using a low energy electronic brachytherapy source.

    PubMed

    White, Shane A; Landry, Guillaume; Fonseca, Gabriel Paiva; Holt, Randy; Rusch, Thomas; Beaulieu, Luc; Verhaegen, Frank; Reniers, Brigitte

    2014-06-01

    The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy (<50 kV) brachytherapy system used in accelerated partial breast irradiation (APBI). Breast tissue is a heterogeneous tissue in terms of density and composition. Dosimetric calculations of seven APBI patients treated with Axxent were made using a model-based Monte Carlo platform for a number of tissue models and dose reporting methods and compared to TG-43 based plans. A model of the Axxent source, the S700, was created and validated against experimental data. CT scans of the patients were used to create realistic multi-tissue/heterogeneous models with breast tissue segmented using a published technique. Alternative water models were used to isolate the influence of tissue heterogeneity and backscatter on the dose distribution. Dose calculations were performed using Geant4 according to the original treatment parameters. The effect of the Axxent balloon applicator used in APBI which could not be modeled in the CT-based model, was modeled using a novel technique that utilizes CAD-based geometries. These techniques were validated experimentally. Results were calculated using two dose reporting methods, dose to water (Dw,m) and dose to medium (Dm,m), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D90 to PTV was reduced by between ~4% and ~40%, depending on the scoring method, compared to the TG-43 result. Peak skin dose is also reduced by 10%-15% due to the absence of backscatter not accounted for in TG-43. The balloon applicator also contributed to the reduced dose. Other ROIs showed a difference depending on the method of dose reporting. TG-186-based calculations produce results that are different from TG-43 for the Axxent source. The differences depend strongly on the method of dose reporting. This study highlights the importance of backscatter to peak skin dose. Tissue heterogeneities, applicator, and patient geometries demonstrate the need for a more robust dose calculation method for low energy brachytherapy sources.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan; Sarfehnia, Arman

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials wasmore » also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol. General agreement between the relative electron energy dependence of the PTW Roos data measured in this work and a recent MC-based study are also shown. Conclusions: This is the first time that water calorimetry has been successfully used to measure electron beam quality conversion factors for energies as low as 6 MeV (R{sub 50} = 2.25 cm)« less

  13. Monte Carlo Interpretation of the Photon Heating Measurements in the Integral AMMON/REF Experiment in the EOLE Facility

    NASA Astrophysics Data System (ADS)

    Vaglio-Gaudard, C.; Stoll, K.; Ravaux, S.; Lemaire, M.; Colombier, A. C.; Hudelot, J. P.; Bernard, D.; Amharrak, H.; Di Salvo, J.; Gruel, A.

    2014-02-01

    An experiment named AMMON is dedicated to the analysis of the neutron and photon physics of the Jules Horowitz Reactor (JHR). AMMON, performed in the EOLE zero-power experimental reactor at CEA Cadarache, is finished since April 2013. Photon heating measurements were performed with both Thermoluminescent Dosimeters (TLD-400s) and Optically-Stimulated Dosimeters (OSLDs) in three AMMON configurations. The objective is to provide data for the experimental validation of the JHR photon calculation tool. The first analysis of the photon heating measurements of the reference configuration (AMMON/REF) is presented in this paper. The reference configuration consists of an experimental zone of 7 JHR assemblies with U3Si2 - Al 27% 235U enriched fuel curved plates surrounded by a driver zone with 623 standard PWR UOx fuel pins. The photon heating has been measured in the aluminum follower of the central and peripheral assemblies, and in aluminum fillers in the rack between assemblies. The measurement analysis is based on Monte Carlo TRIPOLI-4 ® version 8.1 calculations modeling the core exact three-dimensional geometry. The JEFF nuclear data library is used for the calculation of the neutron transport and the photon emission in the AMMON/REF experiment. The photon transport is made on the basis of the EPDL97 photo-atomic library. The prompt and delayed doses deposited in dosimeters have been estimated separately. The transport of 4 (neutrons, photons, electrons and positrons) or 3 particles (photons, electrons and positrons) is simulated in the calculations for the AMMON/REF analysis, depending whether the prompt or delayed dose is calculated. The TRIPOLI-4.8.1 ® calculations makes it possible the modeling of the electromagnetic cascade shower with both electrons and positrons. The delayed dose represents about 25% of the total photon energy deposition in the dosimeters. The comparison between Calculation and Experiment brings into relief a slight systematic underestimation of the calculated global photon energy deposition: (C - E)/E = - 8% ±4.5% (1σ). A special care has been directed towards the determination of the uncertainty associated with the (C-E)/E values. The slight underestimation could be probably explained by an underestimation in the photon emission with the JEFF library.

  14. Update on the Code Intercomparison and Benchmark for Muon Fluence and Absorbed Dose Induced by an 18 GeV Electron Beam After Massive Iron Shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasso, A.; Ferrari, A.; Ferrari, A.

    In 1974, Nelson, Kase and Svensson published an experimental investigation on muon shielding around SLAC high-energy electron accelerators [1]. They measured muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting a copper/water beamdump and attenuated in a thick steel shielding. In their paper, they compared the results with the theoretical models available at that time. In order to compare their experimental results with present model calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011 and GEANT4 to model the experimental setup and run simulations. The results are then compared between the codes, andmore » with the SLAC data.« less

  15. Ethylene-vinyl acetate foam as a new lung substitute in radiotherapy.

    PubMed

    Marqués, Enrique; Mancha, Pedro J

    2018-04-01

    The purpose of this study was to evaluate ethylene-vinyl acetate (EVA) foam as a new lung substitute in radiotherapy and to study its physical and dosimetric characteristics. We calculated the ideal vinyl acetate (VA) content of EVA foam sheets to mimic the physical and dosimetric characteristics of the ICRU lung tissue. We also computed the water-to-medium mass collision stopping power ratios, mass attenuation coefficients, CT numbers, effective atomic numbers and electron densities for: ICRU lung tissue, the RANDO commercial phantom, scaled WATER and EVA foam sheets with varying VA contents in a range between the minimum and maximum values supplied by the manufacturer. For all these substitutes, we simulated percent depth-dose curves with EGSnrc Monte Carlo (MC PDDs) in a water-lung substitute-water slab phantom expressed as dose-to-medium and dose-to-water for 3 × 3- and 10 × 10-cm 2 field sizes. PDD for the 10 × 10-cm 2 field size was also calculated with the MultiGrid Superposition algorithm (MGS PDD) for a relative electron density to water ratio of 0.26. The latter was compared with the MC PDDs in dose-to-water for scaled WATER and EVA foam sheets with the VA content that was most similar to the calculated ideal content that is physically achievable in practice. We calculated an ideal VA content of 55%; however, the maximum physically achievable content with current manufacturing techniques is 40%. The physical characteristics of the EVA foam sheets with a VA content of 40% (EVA40) are very close to those of the ICRU lung reference. The physical densities of the EVA40 foam sheets ranged from 0.030 to 0.965 g/cm 3 , almost covering the entire physical density range of the inflated/deflated lung (0.260-1.050 g/cm 3 ). Its mass attenuation coefficient at the effective energy of a 6-MV photon beam agrees within 0.8% of the ICRU reference value, and its CT number agrees within 6 HU. The effective atomic number for EVA40 varies by less than 0.42 of the ICRU value, and its effective electron density is within 0.9%. PDDs expressed in dose-to-medium and dose-to-water agree with the ICRU curve within 2% in all regions. PDDs calculated with both MC and MGS were within 1.5%. The EVA40 is an excellent cork-like lung substitute for radiotherapy applications. From a sole material used in footwear, it is possible to obtain a lung substitute that mimics the physical and dosimetric characteristics of ICRU lung tissue even better than the RANDO commercial phantom. © 2018 American Association of Physicists in Medicine.

  16. Monte Carlo simulation of electron beams from an accelerator head using PENELOPE.

    PubMed

    Sempau, J; Sánchez-Reyes, A; Salvat, F; ben Tahar, H O; Jiang, S B; Fernández-Varea, J M

    2001-04-01

    The Monte Carlo code PENELOPE has been used to simulate electron beams from a Siemens Mevatron KDS linac with nominal energies of 6, 12 and 18 MeV. Owing to its accuracy, which stems from that of the underlying physical interaction models, PENELOPE is suitable for simulating problems of interest to the medical physics community. It includes a geometry package that allows the definition of complex quadric geometries, such as those of irradiation instruments, in a straightforward manner. Dose distributions in water simulated with PENELOPE agree well with experimental measurements using a silicon detector and a monitoring ionization chamber. Insertion of a lead slab in the incident beam at the surface of the water phantom produces sharp variations in the dose distributions, which are correctly reproduced by the simulation code. Results from PENELOPE are also compared with those of equivalent simulations with the EGS4-based user codes BEAM and DOSXYZ. Angular and energy distributions of electrons and photons in the phase-space plane (at the downstream end of the applicator) obtained from both simulation codes are similar, although significant differences do appear in some cases. These differences, however, are shown to have a negligible effect on the calculated dose distributions. Various practical aspects of the simulations, such as the calculation of statistical uncertainties and the effect of the 'latent' variance in the phase-space file, are discussed in detail.

  17. DNA Damage Dependence on the Subcellular Distribution of Low-Energy Beta Emitters

    NASA Astrophysics Data System (ADS)

    Cutaia, Claudia; Alloni, Daniele; Mariotti, Luca; Friedland, Werner; Ottolenghi, Andrea

    One of the main issues of low-energy internal emitters is related to the short ranges of beta particles, compared to the dimensions of the biological targets (e.g. the cell nucleus). Also depending on the chemical form, the radionuclide may be more concentrated in the cytoplasm of the target cell (in our calculations a human fibroblast in interphase) and consequently the conventional dosimetry may overestimate the dose to the nucleus; whereas if the radionuclide is more concentrated in the nuclei of the cells there is a risk of underestimating the nucleus dose. The computer code PARTRAC was modified to calculate the energy depositions in the nucleus and the DNA damage for different relative concentrations of the radionuclide in the nucleus and in the cytoplasm. The nuclides considered in the simulations were Tritium (the electrons emitted due to the β - decay have an average energy of 5.7 keV, corresponding to an average range of 0.42 µm) and Nickel-63 (the electrons emitted have an average energy of 17 keV corresponding to an average range of 5 µm). In the case of Tritium, the dose in the nucleus due the tracks generated outside this region is 15% of the average dose in the cell, whereas in the case of Nickel-63 the dose in the nucleus resulted to be 64% of the average dose in the cell. The distributions of DNA fragments as a function of the relative concentration of the nuclides in the nucleus and in the cytoplasm, were also calculated. In the same conditions, the number of complex lesions (which have a high probability of inducing lethal damage to the cells) per Gy (circa 0.5-1) and the total number of double strand breaks (DSBs) per Gy (circa 40) were also calculated. To complete the characterization of the effects of internal emitters inside the cell the distributions of DSBs per chromosome were studied for different radionuclide distributions in the cell. The results obtained from these simulations show the possible overestimation or underestimation of the risk, (particularly for Tritium intake), due to the distribution of the low energy emitters at subcellular levels.

  18. Gas bremsstrahlung shielding calculation for first optic enclosure of ILSF medical beamline

    NASA Astrophysics Data System (ADS)

    Beigzadeh Jalali, H.; Salimi, E.; Rahighi, J.

    2016-10-01

    Gas bremsstrahlung is generated in high energy electron storage ring accompanies the synchrotron radiation into the beamlines and strike the various components of the beamline. In this paper, radiation shielding calculation for secondary gas bremsstrahlung is performed for the first optics enclosure (FOE) of medical beamline of the Iranian Light Source Facility (ILSF). Dose equivalent rate (DER) calculation is accomplished using FLUKA Monte Carlo code. A comprehensive study of DER distribution at the back wall, sides and roof is given.

  19. Experimental verification of bremsstrahlung production and dosimetry predictions for 15.5 MeV electrons

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Beutler, D. E.; Halbleib, J. A.; Knott, D. P.

    1991-12-01

    The radiation produced by a 15.5-MeV monoenergetic electron beam incident on optimized and nonoptimized bremsstrahlung targets is characterized using the ITS Monte Carlo code and measurements with equilibrated and nonequilibrated TLD dosimetry. Comparisons between calculations and measurements verify the calculations and demonstrate that the code can be used to predict both bremsstrahlung production and TLD response for radiation fields that are characteristic of those produced by pulsed simulators of gamma rays. The comparisons provide independent confirmation of the validity of the TLD calibration for photon fields characteristic of gamma-ray simulators. The empirical Martin equation, which is often used to calculate radiation dose from optimized bremsstrahlung targets, is examined, and its range of validity is established.

  20. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chibani, O; Price, R; Ma, C

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows thatmore » the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.« less

  1. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.

    PubMed

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2012-01-01

    Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. A tumor vascular endothelial cell (EC) is modeled as a slab of 2 μm (thickness) × 10 μm (length) × 10 μm (width). The EC contains a nucleus of 5 μm diameter and thickness of 0.5-1 μm, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting extensive tumor cell death.

  2. Modeling the truebeam linac using a CAD to Geant4 geometry implementation: dose and IAEA-compliant phase space calculations.

    PubMed

    Constantin, Magdalena; Perl, Joseph; LoSasso, Tom; Salop, Arthur; Whittum, David; Narula, Anisha; Svatos, Michelle; Keall, Paul J

    2011-07-01

    To create an accurate 6 MV Monte Carlo simulation phase space for the Varian TrueBeam treatment head geometry imported from CAD (computer aided design) without adjusting the input electron phase space parameters. GEANT4 v4.9.2.p01 was employed to simulate the 6 MV beam treatment head geometry of the Varian TrueBeam linac. The electron tracks in the linear accelerator were simulated with Parmela, and the obtained electron phase space was used as an input to the Monte Carlo beam transport and dose calculations. The geometry components are tessellated solids included in GEANT4 as GDML (generalized dynamic markup language) files obtained via STEP (standard for the exchange of product) export from Pro/Engineering, followed by STEP import in Fastrad, a STEP-GDML converter. The linac has a compact treatment head and the small space between the shielding collimator and the divergent are of the upper jaws forbids the implementation of a plane for storing the phase space. Instead, an IAEA (International Atomic Energy Agency) compliant phase space writer was implemented on a cylindrical surface. The simulation was run in parallel on a 1200 node Linux cluster. The 6 MV dose calculations were performed for field sizes varying from 4 x 4 to 40 x 40 cm2. The voxel size for the 60 x 60 x 40 cm3 water phantom was 4 x 4 x 4 mm3. For the 10 x 10 cm2 field, surface buildup calculations were performed using 4 x 4 x 2 mm3 voxels within 20 mm of the surface. For the depth dose curves, 98% of the calculated data points agree within 2% with the experimental measurements for depths between 2 and 40 cm. For depths between 5 and 30 cm, agreement within 1% is obtained for 99% (4 x 4), 95% (10 x 10), 94% (20 x 20 and 30 x 30), and 89% (40 x 40) of the data points, respectively. In the buildup region, the agreement is within 2%, except at 1 mm depth where the deviation is 5% for the 10 x 10 cm2 open field. For the lateral dose profiles, within the field size for fields up to 30 x 30 cm2, the agreement is within 2% for depths up to 10 cm. At 20 cm depth, the in-field maximum dose difference for the 30 x 30 cm2 open field is within 4%, while the smaller field sizes agree within 2%. Outside the field size, agreement within 1% of the maximum dose difference is obtained for all fields. The calculated output factors varied from 0.938 +/- 0.015 for the 4 x 4 cm2 field to 1.088 +/- 0.024 for the 40 x 40 cm2 field. Their agreement with the experimental output factors is within 1%. The authors have validated a GEANT4 simulated IAEA-compliant phase space of the TrueBeam linac for the 6 MV beam obtained using a high accuracy geometry implementation from CAD. These files are publicly available and can be used for further research.

  3. SU-C-BRC-05: Monte Carlo Calculations to Establish a Simple Relation of Backscatter Dose Enhancement Around High-Z Dental Alloy to Its Atomic Number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsunomiya, S; Kushima, N; Katsura, K

    Purpose: To establish a simple relation of backscatter dose enhancement around a high-Z dental alloy in head and neck radiation therapy to its average atomic number based on Monte Carlo calculations. Methods: The PHITS Monte Carlo code was used to calculate dose enhancement, which is quantified by the backscatter dose factor (BSDF). The accuracy of the beam modeling with PHITS was verified by comparing with basic measured data namely PDDs and dose profiles. In the simulation, a high-Z alloy of 1 cm cube was embedded into a tough water phantom irradiated by a 6-MV (nominal) X-ray beam of 10 cmmore » × 10 cm field size of Novalis TX (Brainlab). The ten different materials of high-Z alloys (Al, Ti, Cu, Ag, Au-Pd-Ag, I, Ba, W, Au, Pb) were considered. The accuracy of calculated BSDF was verified by comparing with measured data by Gafchromic EBT3 films placed at from 0 to 10 mm away from a high-Z alloy (Au-Pd-Ag). We derived an approximate equation to determine the relation of BSDF and range of backscatter to average atomic number of high-Z alloy. Results: The calculated BSDF showed excellent agreement with measured one by Gafchromic EBT3 films at from 0 to 10 mm away from the high-Z alloy. We found the simple linear relation of BSDF and range of backscatter to average atomic number of dental alloys. The latter relation was proven by the fact that energy spectrum of backscatter electrons strongly depend on average atomic number. Conclusion: We found a simple relation of backscatter dose enhancement around high-Z alloys to its average atomic number based on Monte Carlo calculations. This work provides a simple and useful method to estimate backscatter dose enhancement from dental alloys and corresponding optimal thickness of dental spacer to prevent mucositis effectively.« less

  4. SU-F-T-300: Impact of Electron Density Modeling of ArcCHECK Cylindricaldiode Array On 3DVH Patient Specific QA Software Tool Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwe, P; Mhatre, V; Dandekar, P

    Purpose: 3DVH software is a patient specific quality assurance tool which estimates the 3D dose to the patient specific geometry with the help of Planned Dose Perturbation algorithm. The purpose of this study is to evaluate the impact of HU value of ArcCHECK phantom entered in Eclipse TPS on 3D dose & DVH QA analysis. Methods: Manufacturer of ArcCHECK phantom provides CT data set of phantom & recommends considering it as a homogeneous phantom with electron density (1.19 gm/cc or 282 HU) close to PMMA. We performed this study on Eclipse TPS (V13, VMS) & trueBEAM STx VMS Linac &more » ArcCHECK phantom (SNC). Plans were generated for 6MV photon beam, 20cm×20cm field size at isocentre & SPD (Source to phantom distance) of 86.7 cm to deliver 100cGy at isocentre. 3DVH software requires patients DICOM data generated by TPS & plan delivered on ArcCHECK phantom. Plans were generated in TPS by assigning different HU values to phantom. We analyzed gamma index & the dose profile for all plans along vertical down direction of beam’s central axis for Entry, Exit & Isocentre dose. Results: The global gamma passing rate (2% & 2mm) for manufacturer recommended HU value 282 was 96.3%. Detector entry, Isocentre & detector exit Doses were 1.9048 (1.9270), 1.00(1.0199) & 0.5078(0.527) Gy for TPS (Measured) respectively.The global gamma passing rate for electron density 1.1302 gm/cc was 98.6%. Detector entry, Isocentre & detector exit Doses were 1.8714 (1.8873), 1.00(0.9988) & 0.5211(0.516) Gy for TPS (Measured) respectively. Conclusion: Electron density value assigned by manufacturer does not hold true for every user. Proper modeling of electron density of ArcCHECK in TPS is essential to avoid systematic error in dose calculation of patient specific QA.« less

  5. SU-E-T-523: On the Radiobiological Impact of Lateral Scatter in Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuvel, F Van den; Deruysscher, D

    2014-06-01

    Introduction: In proton therapy, justified concern has been voiced with respect to an increased efficiency in cell kill at the distal end of the Bragg peak. This coupled with range uncertainty is a counter indication to use the Bragg peak to define the border of a treated volume with a critical organ. An alternative is to use the lateral edge of the proton beam, obtaining more robust plans. We investigate the spectral and biological effects of the lateral scatter . Methods: A general purpose Monte Carlo simulation engine (MCNPX 2.7c) installed on a Scientific Linux cluster, calculated the dose depositionmore » spectrum of protons, knock on electrons and generated neutrons for a proton beam with maximal kinetic energy of 200MeV. Around the beam at different positions in the beam direction the spectrum is calculated in concentric rings of thickness 1cm. The deposited dose is converted to a double strand break map using an analytical expression.based on micro dosimetric calculations using a phenomenological Monte Carlo code (MCDS). A strict version of RBE is defined as the ratio of generation of double strand breaks in the different modalities. To generate the reference a Varian linac was modelled in MCNPX and the generated electron dose deposition spectrum was used . Results: On a pristine point source 200MeV beam the RBE before the Bragg peak was of the order of 1.1, increasing to 1.7 right behind the Bragg peak. When using a physically more realistic beam of 10cm diameter the effect was smaller. Both the lateral dose and RBE increased with increasing beam depth, generating a dose deposition with mixed biological effect. Conclusions: The dose deposition in proton beams need to be carefully examined because the biological effect will be different depending on the treatment geometry. Deeply penetrating proton beams generate more biologically effective lateral scatter.« less

  6. SU-E-T-541: Measurement of CT Density Model Variations and the Impact On the Accuracy of Monte Carlo (MC) Dose Calculation in Stereotactic Body Radiation Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, H; Li, B; Behrman, R

    2015-06-15

    Purpose: To measure the CT density model variations between different CT scanners used for treatment planning and impact on the accuracy of MC dose calculation in lung SBRT. Methods: A Gammex electron density phantom (RMI 465) was scanned on two 64-slice CT scanners (GE LightSpeed VCT64) and a 16-slice CT (Philips Brilliance Big Bore CT). All three scanners had been used to acquire CT for CyberKnife lung SBRT treatment planning. To minimize the influences of beam hardening and scatter for improving reproducibility, three scans were acquired with the phantom rotated 120° between scans. The mean CT HU of each densitymore » insert, averaged over the three scans, was used to build the CT density models. For 14 patient plans, repeat MC dose calculations were performed by using the scanner-specific CT density models and compared to a baseline CT density model in the base plans. All dose re-calculations were done using the same plan beam configurations and MUs. Comparisons of dosimetric parameters included PTV volume covered by prescription dose, mean PTV dose, V5 and V20 for lungs, and the maximum dose to the closest critical organ. Results: Up to 50.7 HU variations in CT density models were observed over the baseline CT density model. For 14 patient plans examined, maximum differences in MC dose re-calculations were less than 2% in 71.4% of the cases, less than 5% in 85.7% of the cases, and 5–10% for 14.3% of the cases. As all the base plans well exceeded the clinical objectives of target coverage and OAR sparing, none of the observed differences led to clinically significant concerns. Conclusion: Marked variations of CT density models were observed for three different CT scanners. Though the differences can cause up to 5–10% differences in MC dose calculations, it was found that they caused no clinically significant concerns.« less

  7. Reconstruction of organ dose for external radiotherapy patients in retrospective epidemiologic studies

    NASA Astrophysics Data System (ADS)

    Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jong Oh; Lee, Choonsik

    2015-03-01

    Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1 and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the TPS directly to a Monte Carlo transport code, x-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10 year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the TPS and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to support retrospective epidemiological studies of late effects in radiotherapy patients.

  8. SU-E-T-279: A Novel Electron-Beam Combined with Magnetic Field Application for Radiotherapy.

    PubMed

    Alezra, D; Nardi, E; Koren, S; Bragilovski, D; Orion, I

    2012-06-01

    The new beam and delivery system consists of an electron accelerator and a system of magnets (one or more). Introducing a transverse magnetic field in and near the tumor, causes the electrons to spiral in this region, thereby producing an effective peak in the depth dose distribution, within the tumor volume. Although the basic idea is not new, we suggest here for the first time, a viable as well as a workable, magnetic field configuration, which in addition to focusing the beam does not interfere with its propagation to the target. The electron accelerator: can be a linear accelerator or any other type electron accelerator, capable of producing different electron energies for different depths and dose absorption accumulation. The Field size can be as small as a pencil beam and as big as any of the other standard field sizes that are used in radiotherapy. The scatter filter can be used or removed. The dose rate accumulation can be as higher as possible.The magnets are able to produce magnetic fields. The order, direction, width, place, shape and number of the magnetic fields define the shape and the Percentage Depth Dose (PDD) curve of the electron beam. Prototypes were successfully tested by means of computer simulation, using:COMSOL-Multiphsics for magnetic fields calculations. FLUKA package, for electron beam MC simulation. Our results suggest that by using an electron beam at different energies, combined with magnetic fields, we could modify the delivered dose. This is caused by manipulating the electron motion via the Lorentz force. The applied magnetic field, will focus the electron beam at a given depth and deposit the energy in a given volume and depth, where otherwise the electron energy will have spread deeper. The direction and magnitude of the magnetic fields will prevent the scattering of the electron beam and its absorption in remote volumes. In practice, we get a pseudo Bragg peak depth dose distribution, applying a relatively low cost system. The therapeutic efficiency induced by the system is of similar efficiency as the ion beam therapy techniques. Our novel concept demonstrates treatment that is almost similar to proton therapy and in some parameters even better performance.Unlike the current high-energy electron therapy, our system's beam deposit almost all of its energy on its target, with a low amount of radiation deposited in tissues from the surface of the skin to the front of tumor, and almost no "exit dose" beyond the tumor. This property will enables to hit tumors with higher, potentially more effective radiation doses, while being considerably less expensive. © 2012 American Association of Physicists in Medicine.

  9. [Occlusion treatment for amblyopia. Age dependence and dose-response relationship].

    PubMed

    Fronius, M

    2016-04-01

    Based on clinical experience and studies on animal models the age of 6-7 years was regarded as the limit for treatment of amblyopia, although functional improvement was also occasionally reported in older patients. New technical developments as well as insights from clinical studies and the neurosciences have attracted considerable attention to this topic. Various aspects of the age dependence of amblyopia treatment are discussed in this article, e. g. prescription, electronic monitoring of occlusion dosage, calculation of indicators for age-dependent plasticity of the visual system, and novel, alternative treatment approaches. Besides a discussion of the recent literature, results of studies by our "Child Vision Research Unit" in Frankfurt are presented: results of a questionnaire about prescription habits concerning age limits of patching, electronic recording of occlusion in patients beyond the conventional treatment age, calculation of dose-response function and efficiency of patching and their age dependence. The results of the questionnaire illustrate the uncertainty about age limits of prescription with significant deviations from the guideline of the German Ophthalmological Society (DOG). Electronic recording of occlusion allowed the quantification of declining dose-response function and treatment efficiency between 5 and 16 years of age. Reports about successful treatment with conventional and novel methods in adults are at variance with the notion of a rigid adult visual system lacking plasticity. Electronic recording of patching allowed new insights into the age-dependent susceptibility of the visual system and contributes to a more evidence-based treatment of amblyopia. Alternative approaches for adults challenge established notions about age limits of amblyopia therapy. Further studies comparing different treatment options are urgently needed.

  10. SU-F-T-413: Calculation Accuracy of AAA and Acuros Using Cerrobend Blocks for TBI at 400cm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamichhane, N; Studenski, M

    2016-06-15

    Purpose: It is essential to assess the lung dose during TBI to reduce toxicity. Here we characterize the accuracy of the AAA and Acuros algorithms when using cerrobend lung shielding blocks at an extended distance for TBI. Methods: We positioned a 30×30×30 cm3 solid water slab phantom at 400 cm SSD and measured PDDs (Exradin A12 and PTW parallel plate ion chambers). A 2 cm thick, 10×10 cm2 cerrobend block was hung 2 cm in front of the phantom. This geometry was reproduced in the planning system for both AAA and Acuros. In AAA, the mass density of the cerrobendmore » block was forced to 9.38 g/cm3 and in Acuros it was forced to 8.0 g/cm3 (limited to selecting stainless steel). Three different relative electron densities (RED) were tested for each algorithm; 4.97, 6.97, and 8.97. Results: PDDs from both Acuros and AAA underestimated the delivered dose. AAA calculated that depth dose was higher for RED of 4.97 as compared to 6.97 and 8.97 but still lower than measured. There was no change in the percent depth dose with changing relative electron densities for Acuros. Conclusion: Care should be taken before using AAA or Acuros with cerrobend blocks as the planning system underestimates dose. Acuros limits the ability to modify RED when compared to AAA.« less

  11. Verification measurements and clinical evaluation of the iPlan RT Monte Carlo dose algorithm for 6 MV photon energy

    NASA Astrophysics Data System (ADS)

    Petoukhova, A. L.; van Wingerden, K.; Wiggenraad, R. G. J.; van de Vaart, P. J. M.; van Egmond, J.; Franken, E. M.; van Santvoort, J. P. C.

    2010-08-01

    This study presents data for verification of the iPlan RT Monte Carlo (MC) dose algorithm (BrainLAB, Feldkirchen, Germany). MC calculations were compared with pencil beam (PB) calculations and verification measurements in phantoms with lung-equivalent material, air cavities or bone-equivalent material to mimic head and neck and thorax and in an Alderson anthropomorphic phantom. Dosimetric accuracy of MC for the micro-multileaf collimator (MLC) simulation was tested in a homogeneous phantom. All measurements were performed using an ionization chamber and Kodak EDR2 films with Novalis 6 MV photon beams. Dose distributions measured with film and calculated with MC in the homogeneous phantom are in excellent agreement for oval, C and squiggle-shaped fields and for a clinical IMRT plan. For a field with completely closed MLC, MC is much closer to the experimental result than the PB calculations. For fields larger than the dimensions of the inhomogeneities the MC calculations show excellent agreement (within 3%/1 mm) with the experimental data. MC calculations in the anthropomorphic phantom show good agreement with measurements for conformal beam plans and reasonable agreement for dynamic conformal arc and IMRT plans. For 6 head and neck and 15 lung patients a comparison of the MC plan with the PB plan was performed. Our results demonstrate that MC is able to accurately predict the dose in the presence of inhomogeneities typical for head and neck and thorax regions with reasonable calculation times (5-20 min). Lateral electron transport was well reproduced in MC calculations. We are planning to implement MC calculations for head and neck and lung cancer patients.

  12. SU-F-T-111: Investigation of the Attila Deterministic Solver as a Supplement to Monte Carlo for Calculating Out-Of-Field Radiotherapy Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mille, M; Lee, C; Failla, G

    Purpose: To use the Attila deterministic solver as a supplement to Monte Carlo for calculating out-of-field organ dose in support of epidemiological studies looking at the risks of second cancers. Supplemental dosimetry tools are needed to speed up dose calculations for studies involving large-scale patient cohorts. Methods: Attila is a multi-group discrete ordinates code which can solve the 3D photon-electron coupled linear Boltzmann radiation transport equation on a finite-element mesh. Dose is computed by multiplying the calculated particle flux in each mesh element by a medium-specific energy deposition cross-section. The out-of-field dosimetry capability of Attila is investigated by comparing averagemore » organ dose to that which is calculated by Monte Carlo simulation. The test scenario consists of a 6 MV external beam treatment of a female patient with a tumor in the left breast. The patient is simulated by a whole-body adult reference female computational phantom. Monte Carlo simulations were performed using MCNP6 and XVMC. Attila can export a tetrahedral mesh for MCNP6, allowing for a direct comparison between the two codes. The Attila and Monte Carlo methods were also compared in terms of calculation speed and complexity of simulation setup. A key perquisite for this work was the modeling of a Varian Clinac 2100 linear accelerator. Results: The solid mesh of the torso part of the adult female phantom for the Attila calculation was prepared using the CAD software SpaceClaim. Preliminary calculations suggest that Attila is a user-friendly software which shows great promise for our intended application. Computational performance is related to the number of tetrahedral elements included in the Attila calculation. Conclusion: Attila is being explored as a supplement to the conventional Monte Carlo radiation transport approach for performing retrospective patient dosimetry. The goal is for the dosimetry to be sufficiently accurate for use in retrospective epidemiological investigations.« less

  13. A Deterministic Electron, Photon, Proton and Heavy Ion Radiation Transport Suite for the Study of the Jovian System

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Badavi, Francis F.; Blattnig, Steve R.; Atwell, William

    2011-01-01

    A deterministic suite of radiation transport codes, developed at NASA Langley Research Center (LaRC), which describe the transport of electrons, photons, protons, and heavy ions in condensed media is used to simulate exposures from spectral distributions typical of electrons, protons and carbon-oxygen-sulfur (C-O-S) trapped heavy ions in the Jovian radiation environment. The particle transport suite consists of a coupled electron and photon deterministic transport algorithm (CEPTRN) and a coupled light particle and heavy ion deterministic transport algorithm (HZETRN). The primary purpose for the development of the transport suite is to provide a means for the spacecraft design community to rapidly perform numerous repetitive calculations essential for electron, proton and heavy ion radiation exposure assessments in complex space structures. In this paper, the radiation environment of the Galilean satellite Europa is used as a representative boundary condition to show the capabilities of the transport suite. While the transport suite can directly access the output electron spectra of the Jovian environment as generated by the Jet Propulsion Laboratory (JPL) Galileo Interim Radiation Electron (GIRE) model of 2003; for the sake of relevance to the upcoming Europa Jupiter System Mission (EJSM), the 105 days at Europa mission fluence energy spectra provided by JPL is used to produce the corresponding dose-depth curve in silicon behind an aluminum shield of 100 mils ( 0.7 g/sq cm). The transport suite can also accept ray-traced thickness files from a computer-aided design (CAD) package and calculate the total ionizing dose (TID) at a specific target point. In that regard, using a low-fidelity CAD model of the Galileo probe, the transport suite was verified by comparing with Monte Carlo (MC) simulations for orbits JOI--J35 of the Galileo extended mission (1996-2001). For the upcoming EJSM mission with a potential launch date of 2020, the transport suite is used to compute the traditional aluminum-silicon dose-depth calculation as a standard shield-target combination output, as well as the shielding response of high charge (Z) shields such as tantalum (Ta). Finally, a shield optimization algorithm is used to guide the instrument designer with the choice of graded-Z shield analysis.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serin, E.; Codel, G.; Mabhouti, H.

    Purpose: In small field geometries, the electronic equilibrium can be lost, making it challenging for the dose-calculation algorithm to accurately predict the dose, especially in the presence of tissue heterogeneities. In this study, dosimetric accuracy of Monte Carlo (MC) advanced dose calculation and sequential algorithms of Multiplan treatment planning system were investigated for small radiation fields incident on homogeneous and heterogeneous geometries. Methods: Small open fields of fixed cones of Cyberknife M6 unit 100 to 500 mm2 were used for this study. The fields were incident on in house phantom containing lung, air, and bone inhomogeneities and also homogeneous phantom.more » Using the same film batch, the net OD to dose calibration curve was obtained using CK with the 60 mm fixed cone by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. The dosimetric accuracy of MC and sequential algorithms in the presence of the inhomogeneities was compared against EBT3 film dosimetry Results: Open field tests in a homogeneous phantom showed good agreement between two algorithms and film measurement For MC algorithm, the minimum gamma analysis passing rates between measured and calculated dose distributions were 99.7% and 98.3% for homogeneous and inhomogeneous fields in the case of lung and bone respectively. For sequential algorithm, the minimum gamma analysis passing rates were 98.9% and 92.5% for for homogeneous and inhomogeneous fields respectively for used all cone sizes. In the case of the air heterogeneity, the differences were larger for both calculation algorithms. Overall, when compared to measurement, the MC had better agreement than sequential algorithm. Conclusion: The Monte Carlo calculation algorithm in the Multiplan treatment planning system is an improvement over the existing sequential algorithm. Dose discrepancies were observed for in the presence of air inhomogeneities.« less

  15. Entrance and exit dose measurements with semiconductors and thermoluminescent dosemeters: a comparison of methods and in vivo results.

    PubMed

    Loncol, T; Greffe, J L; Vynckier, S; Scalliet, P

    1996-11-01

    In order to compare diodes and TLD for in vivo dosimetry, systematic measurements of entrance and exit doses were performed with semiconductor detectors and thermoluminescent dosemeters for brain and head and neck patients treated isocentrically with external photon beam therapy. Scanditronix EDP-20 diodes and 7LiF thermoluminescent chips, irradiated in a 8 MV linac, were studied with similar build-up cap geometries and materials in order to assure an equivalent electronic equilibrium. Identical calibration methodology was applied to both detectors for the dose determination in clinical conditions. For the entrance dose evaluation over 249 field measurements, the ratio of the measured dose to the expected dose, calculated from tabulated tissue maximum ratios, was equal to 1.010 +/- 0.028 (1 s.d.) from diodes and 1.013 +/- 0.041 from thermoluminescent crystals. For the exit dose measurements, these ratios were equal to 0.998 +/- 0.049 and 1.016 +/- 0.070 for diodes and TLDs, respectively, after application of a simple inhomogeneity correction to the calculation of the expected exit dose. Thermoluminescence and semiconductors led to identical results for entrance and exit dose evaluation but TLDs were characterised by a lower reproducibility inherent to the TL process itself and to the acquisition and annihilation procedures.

  16. Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Potapov, Y. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Watts, J. W. Jr; Parnell, T. A.; Schopper, E.; Baican, B.; hide

    1992-01-01

    Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the LET spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm-2 shielding) and outside (1 g cm-2) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d-1, respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d-1. The effects of the flight parameters on the total fluence of, and on the dose from, the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.

  17. Beam line shielding calculations for an Electron Accelerator Mo-99 production facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2016-05-03

    The purpose of this study is to evaluate the photon and neutron fields in and around the latest beam line design for the Mo-99 production facility. The radiation dose to the beam line components (quadrupoles, dipoles, beam stops and the linear accelerator) are calculated in the present report. The beam line design assumes placement of two cameras: infra red (IR) and optical transition radiation (OTR) for continuous monitoring of the beam spot on target during irradiation. The cameras will be placed off the beam axis offset in vertical direction. We explored typical shielding arrangements for the cameras and report themore » resulting neutron and photon dose fields.« less

  18. Neutron H*(10) estimation and measurements around 18MV linac.

    PubMed

    Cerón Ramírez, Pablo Víctor; Díaz Góngora, José Antonio Irán; Paredes Gutiérrez, Lydia Concepción; Rivera Montalvo, Teodoro; Vega Carrillo, Héctor René

    2016-11-01

    Thermoluminescent dosimetry, analytical techniques and Monte Carlo calculations were used to estimate the dose of neutron radiation in a treatment room with a linear electron accelerator of 18MV. Measurements were carried out through neutron ambient dose monitors which include pairs of thermoluminescent dosimeters TLD 600 ( 6 LiF: Mg, Ti) and TLD 700 ( 7 LiF: Mg, Ti), which were placed inside a paraffin spheres. The measurements has allowed to use NCRP 151 equations, these expressions are useful to find relevant dosimetric quantities. In addition, photoneutrons produced by linac head were calculated through MCNPX code taking into account the geometry and composition of the linac head principal parts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey

    2015-05-15

    Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphicalmore » user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric plan, OAR doses were up to 70% lower and the integral dose was 33% lower for VHEE compared to 6 MV VMAT. Additionally, VHEE conformity indices (CI{sub 100} = 1.09 and CI{sub 50} = 4.07) were better than VMAT conformity indices (CI{sub 100} = 1.30 and CI{sub 50} = 6.81). The 100 MeV VHEE lung plan resulted in mean dose decrease to all OARs by up to 27% for the same target coverage compared to the clinical 6 MV flattening filter-free (FFF) VMAT plan. The 100 MeV prostate plan resulted in 3% mean dose increase to the penile bulb and the urethra, but all other OAR mean doses were lower compared to the 15 MV VMAT plan. The lung case CI{sub 100} and CI{sub 50} conformity indices were 3% and 8% lower, respectively, in the VHEE plan compared to the VMAT plan. The prostate case CI{sub 100} and CI{sub 50} conformity indices were 1% higher and 8% lower, respectively, in the VHEE plan compared to the VMAT plan. Conclusions: The authors have developed a treatment planning workflow for MC dose calculation of pencil beams and optimization for treatment planning of VHEE radiotherapy. The authors have demonstrated that VHEE plans resulted in similar or superior dose distributions for pediatric, lung, and prostate cases compared to clinical VMAT plans.« less

  20. Evaluation of film and thermoluminescent dosimetry of high-energy electron beams in heterogeneous phantoms.

    PubMed

    el-Khatib, E; Antolak, J; Scrimger, J

    1992-01-01

    Film and thermoluminescent dosimetry (TLD) are investigated in heterogeneous phantoms irradiated by high-energy electron beams. Both film and TLD are practical dosimeters for multiple and moving beam radiotherapy. The accuracy and precision of these dosimeters for radiation dose measurements in homogeneous water-equivalent phantoms has been discussed in the literature. However, film and TLD are often used for dose measurements in heterogeneous phantoms. In those situations perturbations are produced which are related to the density and atomic number of the phantom material and the physical size and orientation of the dosimeter. In our experiments the relative dose measurements in homogeneous phantoms were the same regardless of dosimeter or dosimeter orientation. However, significant differences were observed between the dose measurements within the inhomogeneity. These differences were influenced by the type and orientation of the dosimeter in addition to the properties of the heterogeneity. These differences could be reproduced with Monte Carlo calculations and modeling of the experimental conditions.

  1. Development, validation, and implementation of a patient-specific Monte Carlo 3D internal dosimetry platform

    NASA Astrophysics Data System (ADS)

    Besemer, Abigail E.

    Targeted radionuclide therapy is emerging as an attractive treatment option for a broad spectrum of tumor types because it has the potential to simultaneously eradicate both the primary tumor site as well as the metastatic disease throughout the body. Patient-specific absorbed dose calculations for radionuclide therapies are important for reducing the risk of normal tissue complications and optimizing tumor response. However, the only FDA approved software for internal dosimetry calculates doses based on the MIRD methodology which estimates mean organ doses using activity-to-dose scaling factors tabulated from standard phantom geometries. Despite the improved dosimetric accuracy afforded by direct Monte Carlo dosimetry methods these methods are not widely used in routine clinical practice because of the complexity of implementation, lack of relevant standard protocols, and longer dose calculation times. The main goal of this work was to develop a Monte Carlo internal dosimetry platform in order to (1) calculate patient-specific voxelized dose distributions in a clinically feasible time frame, (2) examine and quantify the dosimetric impact of various parameters and methodologies used in 3D internal dosimetry methods, and (3) develop a multi-criteria treatment planning optimization framework for multi-radiopharmaceutical combination therapies. This platform utilizes serial PET/CT or SPECT/CT images to calculate voxelized 3D internal dose distributions with the Monte Carlo code Geant4. Dosimetry can be computed for any diagnostic or therapeutic radiopharmaceutical and for both pre-clinical and clinical applications. In this work, the platform's dosimetry calculations were successfully validated against previously published reference doses values calculated in standard phantoms for a variety of radionuclides, over a wide range of photon and electron energies, and for many different organs and tumor sizes. Retrospective dosimetry was also calculated for various pre-clinical and clinical patients and large dosimetric differences resulted when using conventional organ-level methods and the patient-specific voxelized methods described in this work. The dosimetric impact of various steps in the 3D voxelized dosimetry process were evaluated including quantitative imaging acquisition, image coregistration, voxel resampling, ROI contouring, CT-based material segmentation, and pharmacokinetic fitting. Finally, a multi-objective treatment planning optimization framework was developed for multi-radiopharmaceutical combination therapies.

  2. Dosimetry of high-energy electron linac produced photoneutrons and the bremsstrahlung gamma-rays using TLD-500 and TLD-700 dosimeter pairs

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bhaskar; Makowski, Dariusz; Simrock, Stefan

    2005-06-01

    The neutron and gamma doses are crucial to interpreting the radiation effects in microelectronic devices operating in a high-energy accelerator environment. This report highlights a method for an accurate estimation of photoneutron and the accompanying bremsstrahlung (gamma) doses produced by a 450 MeV electron linear accelerator (linac) operating in pulsed mode. The principle is based on the analysis of thermoluminescence glow-curves of TLD-500 (Aluminium Oxide) and TLD-700 (Lithium Fluoride) dosimeter pairs. The gamma and fast neutron response of the TLD-500 and TLD-700 dosimeter pairs were calibrated with a 60Co (gamma) and a 241Am-Be (α, n) neutron standard-source, respectively. The Kinetic Energy Released in Materials (kerma) conversion factor for photoneutrons was evaluated by folding the neutron kerma (dose) distribution in 7LiF (the main component of the TLD-700 dosimeter) with the energy spectra of the 241Am-Be (α, n) neutrons and electron accelerator produced photoneutrons. The neutron kerma conversion factors for 241Am-Be neutrons and photoneutrons were calculated to be 2.52×10 -3 and 1.37×10 -3 μGy/a.u. respectively. The bremsstrahlung (gamma) dose conversion factor was evaluated to be 7.32×10 -4 μGy/a.u. The above method has been successfully utilised to assess the photoneutron and bremsstrahlung doses from a 450 MeV electron linac operating at DESY Research Centre in Hamburg, Germany.

  3. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    PubMed Central

    Men, Kuo; Dai, Jian-Rong; Li, Ming-Hui; Chen, Xin-Yuan; Zhang, Ke; Tian, Yuan; Huang, Peng; Xu, Ying-Jie

    2015-01-01

    Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT) device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation. PMID:26346510

  4. Dose in bone and tissue near bone-tissue interface from electron beam.

    PubMed

    Shiu, A S; Hogstrom, K R

    1991-08-01

    This work has quantitatively studied the variation of dose both within bone and in unit density tissue near bone-tissue interfaces. Dose upstream of a bone-tissue interface is increased because of an increase in the backscattered electrons from the bone. The magnitude of this effect was measured using a thin parallel-plate ionization chamber upstream of a polymethyl methacrylate (PMMA)-hard bone interface. The electron backscatter factor (EBF) increased rapidly with bone thickness until a full EBF was achieved. This occurred at approximately 3.5 mm at 2 MeV and 6 mm at 13.1 MeV. The full EBF at the interface ranged from approximately 1.018 at 13.1 MeV to 1.05 at 2 MeV. It was also observed that the EBF had a dependence on the energy spectrum at the interface. The penetration of the backscattered electrons in the upstream direction of PMMA was also measured. The dose penetration fell off rapidly in the upstream direction of the interface. Dose enhancement to unit density tissue in bone was measured for an electron beam by placing thermoluminescent dosimeters (TLDs) in a PMMA-bone-PMMA phantom. The maximum dose enhancement in bone was approximately 7% of the maximum dose in water. However, the pencil-beam algorithm of Hogstrom et al. predicted an increase of only 1%, primarily owing to the inverse-square correction. Film was also used to measure the dose enhancement in bone. The film plane was aligned either perpendicular or parallel to the central axis of the beam. The film data indicated that the maximum dose enhancement in bone was approximately 8% for the former film alignment (which was similarly predicted by the TLD measurements) and 13% for the latter film alignment. These results confirm that the X ray film is not suitable to be irritated "edge on" in an inhomogeneous phantom without making perturbation corrections resulting from the film acting as a long narrow inhomogeneous cavity within the bone. In addition, the results give the radiotherapist a basis for clinical judgment when electron beams are used to treat lesions behind bone or near bony structures. We feel these data enhance the ability to recognize the shortcomings of the current dose calculation algorithm used clinically.

  5. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Akatov, Yu. A.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.

    1995-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day(exp -1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD's) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  6. Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite

    NASA Technical Reports Server (NTRS)

    Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.; Watts, J. W. Jr; Parnell, T. A.

    1990-01-01

    Significant absorbed dose levels exceeding 1.0 Gy day-1 have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLDs) of U.S.S.R. and U.S.A. manufacture. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.

  7. Out-of-field doses from pediatric craniospinal irradiations using 3D-CRT, IMRT, helical tomotherapy and electron-based therapy

    NASA Astrophysics Data System (ADS)

    De Saint-Hubert, Marijke; Verellen, Dirk; Poels, Kenneth; Crijns, Wouter; Magliona, Federica; Depuydt, Tom; Vanhavere, Filip; Struelens, Lara

    2017-07-01

    Medulloblastoma treatment involves irradiation of the entire central nervous system, i.e. craniospinal irradiation (CSI). This is associated with the significant exposure of large volumes of healthy tissue and there is growing concern regarding treatment-associated side effects. The current study compares out-of-field organ doses in children receiving CSI through 3D-conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), helical tomotherapy (HT) and an electron-based technique, and includes radiation doses resulting from imaging performed during treatment. An extensive phantom study is performed, using an anthropomorphic phantom corresponding to a five year old child, in which organ absorbed doses are measured using thermoluminescent detectors. Additionally, the study evaluates and explores tools for calculating out-of-field patient doses using the treatment planning system (TPS) and analytical models. In our study, 3D-CRT resulted in very high doses to a limited number of organs, while it was able to spare organs such as the lungs and breast when compared to IMRT and HT. Both IMRT and HT spread the dose over more organs and were able to spare the heart, thyroid, bladder, uterus and testes when compared to 3D-CRT. The electron-based technique considerably decreased the out-of-field doses in deep-seated organs but could not avoid nearby out-of-field organs such as the lungs, ribs, adrenals, kidneys and uterus. The daily imaging dose is small compared to the treatment dose burden. The TPS error for out-of-field doses was most pronounced for organs further away from the target; nevertheless, no systematic underestimation was observed for any of the studied TPS systems. Finally, analytical modeling was most optimal for 3D-CRT although the number of organs that could be modeled was limited. To conclude, none of the techniques studied was capable of sparing all organs from out-of-field doses. Nevertheless, the electron-based technique showed the most promise for out-of-field organ dose reduction during CSI when compared to photon techniques.

  8. Monte Carlo determination of the conversion coefficients Hp(3)/Ka in a right cylinder phantom with 'PENELOPE' code. Comparison with 'MCNP' simulations.

    PubMed

    Daures, J; Gouriou, J; Bordy, J M

    2011-03-01

    This work has been performed within the frame of the European Union ORAMED project (Optimisation of RAdiation protection for MEDical staff). The main goal of the project is to improve standards of protection for medical staff for procedures resulting in potentially high exposures and to develop methodologies for better assessing and for reducing, exposures to medical staff. The Work Package WP2 is involved in the development of practical eye-lens dosimetry in interventional radiology. This study is complementary of the part of the ENEA report concerning the calculations with the MCNP-4C code of the conversion factors related to the operational quantity H(p)(3). In this study, a set of energy- and angular-dependent conversion coefficients (H(p)(3)/K(a)), in the newly proposed square cylindrical phantom made of ICRU tissue, have been calculated with the Monte-Carlo code PENELOPE and MCNP5. The H(p)(3) values have been determined in terms of absorbed dose, according to the definition of this quantity, and also with the kerma approximation as formerly reported in ICRU reports. At a low-photon energy (up to 1 MeV), the two results obtained with the two methods are consistent. Nevertheless, large differences are showed at a higher energy. This is mainly due to the lack of electronic equilibrium, especially for small angle incidences. The values of the conversion coefficients obtained with the MCNP-4C code published by ENEA quite agree with the kerma approximation calculations obtained with PENELOPE. We also performed the same calculations with the code MCNP5 with two types of tallies: F6 for kerma approximation and *F8 for estimating the absorbed dose that is, as known, due to secondary electrons. PENELOPE and MCNP5 results agree for the kerma approximation and for the absorbed dose calculation of H(p)(3) and prove that, for photon energies larger than 1 MeV, the transport of the secondary electrons has to be taken into account.

  9. Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values

    NASA Astrophysics Data System (ADS)

    Falzone, Nadia; Lee, Boon Q.; Fernández-Varea, José M.; Kartsonaki, Christiana; Stuchbery, Andrew E.; Kibédi, Tibor; Vallis, Katherine A.

    2017-03-01

    The aim of this study was to investigate the impact of decay data provided by the newly developed stochastic atomic relaxation model BrIccEmis on dose point kernels (DPKs - radial dose distribution around a unit point source) and S-values (absorbed dose per unit cumulated activity) of 14 Auger electron (AE) emitting radionuclides, namely 67Ga, 80mBr, 89Zr, 90Nb, 99mTc, 111In, 117mSn, 119Sb, 123I, 124I, 125I, 135La, 195mPt and 201Tl. Radiation spectra were based on the nuclear decay data from the medical internal radiation dose (MIRD) RADTABS program and the BrIccEmis code, assuming both an isolated-atom and condensed-phase approach. DPKs were simulated with the PENELOPE Monte Carlo (MC) code using event-by-event electron and photon transport. S-values for concentric spherical cells of various sizes were derived from these DPKs using appropriate geometric reduction factors. The number of Auger and Coster-Kronig (CK) electrons and x-ray photons released per nuclear decay (yield) from MIRD-RADTABS were consistently higher than those calculated using BrIccEmis. DPKs for the electron spectra from BrIccEmis were considerably different from MIRD-RADTABS in the first few hundred nanometres from a point source where most of the Auger electrons are stopped. S-values were, however, not significantly impacted as the differences in DPKs in the sub-micrometre dimension were quickly diminished in larger dimensions. Overestimation in the total AE energy output by MIRD-RADTABS leads to higher predicted energy deposition by AE emitting radionuclides, especially in the immediate vicinity of the decaying radionuclides. This should be taken into account when MIRD-RADTABS data are used to simulate biological damage at nanoscale dimensions.

  10. Split exponential track length estimator for Monte-Carlo simulations of small-animal radiation therapy

    NASA Astrophysics Data System (ADS)

    Smekens, F.; Létang, J. M.; Noblet, C.; Chiavassa, S.; Delpon, G.; Freud, N.; Rit, S.; Sarrut, D.

    2014-12-01

    We propose the split exponential track length estimator (seTLE), a new kerma-based method combining the exponential variant of the TLE and a splitting strategy to speed up Monte Carlo (MC) dose computation for low energy photon beams. The splitting strategy is applied to both the primary and the secondary emitted photons, triggered by either the MC events generator for primaries or the photon interactions generator for secondaries. Split photons are replaced by virtual particles for fast dose calculation using the exponential TLE. Virtual particles are propagated by ray-tracing in voxelized volumes and by conventional MC navigation elsewhere. Hence, the contribution of volumes such as collimators, treatment couch and holding devices can be taken into account in the dose calculation. We evaluated and analysed the seTLE method for two realistic small animal radiotherapy treatment plans. The effect of the kerma approximation, i.e. the complete deactivation of electron transport, was investigated. The efficiency of seTLE against splitting multiplicities was also studied. A benchmark with analog MC and TLE was carried out in terms of dose convergence and efficiency. The results showed that the deactivation of electrons impacts the dose at the water/bone interface in high dose regions. The maximum and mean dose differences normalized to the dose at the isocenter were, respectively of 14% and 2% . Optimal splitting multiplicities were found to be around 300. In all situations, discrepancies in integral dose were below 0.5% and 99.8% of the voxels fulfilled a 1%/0.3 mm gamma index criterion. Efficiency gains of seTLE varied from 3.2 × 105 to 7.7 × 105 compared to analog MC and from 13 to 15 compared to conventional TLE. In conclusion, seTLE provides results similar to the TLE while increasing the efficiency by a factor between 13 and 15, which makes it particularly well-suited to typical small animal radiation therapy applications.

  11. Radiation dose enhancement in skin therapy with nanoparticle addition: A Monte Carlo study on kilovoltage photon and megavoltage electron beams

    PubMed Central

    Zheng, Xiao J; Chow, James C L

    2017-01-01

    AIM To investigated the dose enhancement due to the incorporation of nanoparticles in skin therapy using the kilovoltage (kV) photon and megavoltage (MV) electron beams. Monte Carlo simulations were used to predict the dose enhancement when different types and concentrations of nanoparticles were added to skin target layers of varying thickness. METHODS Clinical kV photon beams (105 and 220 kVp) and MV electron beams (4 and 6 MeV), produced by a Gulmay D3225 orthovoltage unit and a Varian 21 EX linear accelerator, were simulated using the EGSnrc Monte Carlo code. Doses at skin target layers with thicknesses ranging from 0.5 to 5 mm for the photon beams and 0.5 to 10 mm for the electron beams were determined. The skin target layer was added with the Au, Pt, I, Ag and Fe2O3 nanoparticles with concentrations ranging from 3 to 40 mg/mL. The dose enhancement ratio (DER), defined as the dose at the target layer with nanoparticle addition divided by the dose at the layer without nanoparticle addition, was calculated for each nanoparticle type, nanoparticle concentration and target layer thickness. RESULTS It was found that among all nanoparticles, Au had the highest DER (5.2-6.3) when irradiated with kV photon beams. Dependence of the DER on the target layer thickness was not significant for the 220 kVp photon beam but it was for 105 kVp beam for Au nanoparticle concentrations higher than 18 mg/mL. For other nanoparticles, the DER was dependent on the atomic number of the nanoparticle and energy spectrum of the photon beams. All nanoparticles showed an increase of DER with nanoparticle concentration during the photon beam irradiations regardless of thickness. For electron beams, the Au nanoparticles were found to have the highest DER (1.01-1.08) when the beam energy was equal to 4 MeV, but this was drastically lower than the DER values found using photon beams. The DER was also found affected by the depth of maximum dose of the electron beam and target thickness. For other nanoparticles with lower atomic number, DERs in the range of 0.99-1.02 were found using the 4 and 6 MeV electron beams. CONCLUSION In nanoparticle-enhanced skin therapy, Au nanoparticle addition can achieve the highest dose enhancement with 105 kVp photon beams. Electron beams, while popular for skin therapy, did not produce as high dose enhancements as kV photon beams. Additionally, the DER is dependent on nanoparticle type, nanoparticle concentration, skin target thickness and energies of the photon and electron beams. PMID:28298966

  12. Calculation of electron and isotopes dose point kernels with fluka Monte Carlo code for dosimetry in nuclear medicine therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botta, F.; Mairani, A.; Battistoni, G.

    Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, fluka Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, fluka has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernelmore » (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: fluka DPKs have been calculated in both water and compact bone for monoenergetic electrons (10{sup -3} MeV) and for beta emitting isotopes commonly used for therapy ({sup 89}Sr, {sup 90}Y, {sup 131}I, {sup 153}Sm, {sup 177}Lu, {sup 186}Re, and {sup 188}Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. fluka outcomes have been compared to penelope v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (etran, geant4, mcnpx) has been done. Maximum percentage differences within 0.8{center_dot}R{sub CSDA} and 0.9{center_dot}R{sub CSDA} for monoenergetic electrons (R{sub CSDA} being the continuous slowing down approximation range) and within 0.8{center_dot}X{sub 90} and 0.9{center_dot}X{sub 90} for isotopes (X{sub 90} being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9{center_dot}R{sub CSDA} and 0.9{center_dot}X{sub 90} for electrons and isotopes, respectively. Results: Concerning monoenergetic electrons, within 0.8{center_dot}R{sub CSDA} (where 90%-97% of the particle energy is deposed), fluka and penelope agree mostly within 7%, except for 10 and 20 keV electrons (12% in water, 8.3% in bone). The discrepancies between fluka and the other codes are of the same order of magnitude than those observed when comparing the other codes among them, which can be referred to the different simulation algorithms. When considering the beta spectra, discrepancies notably reduce: within 0.9{center_dot}X{sub 90}, fluka and penelope differ for less than 1% in water and less than 2% in bone with any of the isotopes here considered. Complete data of fluka DPKs are given as Supplementary Material as a tool to perform dosimetry by analytical point kernel convolution. Conclusions: fluka provides reliable results when transporting electrons in the low energy range, proving to be an adequate tool for nuclear medicine dosimetry.« less

  13. Effect of secondary electron generation on dose enhancement in Lipiodol with and without a flattening filter.

    PubMed

    Kawahara, Daisuke; Ozawa, Shuichi; Saito, Akito; Kimura, Tomoki; Suzuki, Tatsuhiko; Tsuneda, Masato; Tanaka, Sodai; Nakashima, Takeo; Ohno, Yoshimi; Murakami, Yuji; Nagata, Yasushi

    2018-03-01

    Lipiodol, which was used in transcatheter arterial chemoembolization before liver stereotactic body radiation therapy (SBRT), remains in SBRT. Previous we reported the dose enhancement in Lipiodol using 10 MV (10×) FFF beam. In this study, we compared the dose enhancement in Lipiodol and evaluated the probability of electron generation (PEG) for the dose enhancement using flattening filter (FF) and flattening filter free (FFF) beams. FF and FFF for 6 MV (6×) and 10× beams were delivered by TrueBeam. The dose enhancement factor (DEF), energy spectrum, and PEG was calculated using Monte Carlo (MC) code BEAMnrc and heavy ion transport code system (PHITS). DEFs for FF and FFF 6× beams were 7.0% and 17.0% at the center of Lipiodol (depth, 6.5 cm). DEFs for FF and FFF 10× beams were 8.2% and 10.5% at the center of Lipiodol. Spectral analysis revealed that the FFF beams contained more low-energy (0-0.3 MeV) electrons than the FF beams, and the FF beams contained more high-energy (>0.3 MeV) electrons than the FFF beams in Lipiodol. The difference between FFF and FF beam DEFs was larger for 6× than for 10×. This occurred because the 10× beams contained more high-energy electrons. The PEGs for photoelectric absorption and Compton scattering for the FFF beams were higher than those for the FF beams. The PEG for the photoelectric absorption was higher than that for Compton scattering. FFF beam contained more low-energy photons and it contributed to the dose enhancement. Energy spectra and PEGs are useful for analyzing the mechanisms of dose enhancement. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  14. Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.

    PubMed

    Hocine, Nora; Farlay, Delphine; Boivin, Georges; Franck, Didier; Agarande, Michelle

    2014-11-01

    To improve risk assessments associated with chronic exposure to Strontium-90 (Sr-90), for both the environment and human health, it is necessary to know the energy distribution in specific cells or tissue. Monte Carlo (MC) simulation codes are extremely useful tools for calculating deposition energy. The present work was focused on the validation of the MC code PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and the assessment of dose distribution to bone marrow cells from punctual Sr-90 source localized within the cortical bone part. S-values (absorbed dose per unit cumulated activity) calculations using Monte Carlo simulations were performed by using PENELOPE and Monte Carlo N-Particle eXtended (MCNPX). Cytoplasm, nucleus, cell surface, mouse femur bone and Sr-90 radiation source were simulated. Cells are assumed to be spherical with the radii of the cell and cell nucleus ranging from 2-10 μm. The Sr-90 source is assumed to be uniformly distributed in cell nucleus, cytoplasm and cell surface. The comparison of S-values calculated with PENELOPE to MCNPX results and the Medical Internal Radiation Dose (MIRD) values agreed very well since the relative deviations were less than 4.5%. The dose distribution to mouse bone marrow cells showed that the cells localized near the cortical part received the maximum dose. The MC code PENELOPE may prove useful for cellular dosimetry involving radiation transport through materials other than water, or for complex distributions of radionuclides and geometries.

  15. Production, PET performance and dosimetric considerations of 134Ce/134La, an Auger electron and positron-emitting generator for radionuclide therapy.

    PubMed

    Lubberink, Mark; Lundqvist, Hans; Tolmachev, Vladimir

    2002-02-21

    We propose the use of the Auger electron and positron-emitting generator 134Ce/134La (half-lives 3.16 d and 6.45 min) for radionuclide therapy. It combines emission of high-energy beta particles with Auger electrons. The high-energy beta particles have similar energies as those emitted by 90Y. Many cancer patients receiving radionuclide therapy have both bulk tumours, which are best treated with high-energy beta particles, and single spread cells or micrometastasis, which are preferably treated with low-energy electrons such as Auger and conversion electrons. Furthermore, the positron-emitting 134La can be used to study kinetics and dosimetry using PET. Production and PET performance were investigated and theoretical dosimetry calculations were made. PET resolution, recovery and quantitative accuracy were slightly degraded for 134La compared to 18F. 134Ce/134La absorbed doses to single cells were higher than absorbed doses from 90Y and 111In. Absorbed doses to spheres representing bulk tumours were almost as high as for 90Y, and a factor 10 higher than for 111In. Whole-body absorbed doses, based on kinetics of the somatostatin analogue octreotide, were higher for 134Ce/134La than for 90Y because of the 134La annihilation photons. This initial study of the therapeutic possibilities of 134Ce/134La is encouraging and justifies further investigations.

  16. MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, W; Swann, B; Siderits, R

    2014-06-15

    Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carriedmore » out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice.« less

  17. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.ed

    Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume ofmore » the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). Results: For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. Conclusions: The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.« less

  18. Four-dimensional dose reconstruction through in vivo phase matching of cine images of electronic portal imaging device.

    PubMed

    Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan

    2016-07-01

    A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.

  19. Radiological properties of MAGIC normoxic polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Aljamal, M.; Zakaria, A.; Shamsuddin, S.

    2013-04-01

    For a polymer gel dosimeter to be of use in radiation dosimetry, it should display water-equivalent radiological properties. In this study, the radiological properties of the MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) normoxic polymer gels were investigated. The mass density (ρ) was determined based on Archimedes' principle. The weight fraction of elemental composition and the effective atomic number (Zeff) were calculated. The electron density was also measured with 90° scattering angle at room temperature. The linear attenuation coefficient (μ) of unirradiated gel, irradiated gel, and water were determined using Am-241 based on narrow beam geometry. Monte Carlo simulation was used to calculate the depth doses response of MAGIC gel and water for 6MV photon beam. The weight fractions of elements composition of MAGIC gel were close to that for water. The mass density was found to be 1027 ± 2 kg m-3, which is also very close to mass density of muscle tissue (1030 kg m-3) and 2.7% higher than that of water. The electron density (ρe) and atomic number (Zeff) were found to be 3.43 × 1029 e m-3 and 7.105, respectively. The electron density measured was 2.6% greater than that for water. The atomic number was very close to that for water. The prepared MAGIC gel was found to be water equivalent based on the study of element composition, mass density, electron density and atomic number. The linear attenuation coefficient of unirradiated gel was very close to that of water. The μ of irradiated gel was found to be linear with dose 2-40 Gy. The depth dose response for MAGIC gel from a 6 MV photon beam had a percentage dose difference to water of less than 1%. Therefore it satisfies the criteria to be a good polymer gel dosimeter for radiotherapy.

  20. COMPILATION OF CONVERSION COEFFICIENTS FOR THE DOSE TO THE LENS OF THE EYE

    PubMed Central

    2017-01-01

    Abstract A compilation of fluence-to-absorbed dose conversion coefficients for the dose to the lens of the eye is presented. The compilation consists of both previously published data and newly calculated values: photon data (5 keV–50 MeV for both kerma approximation and full electron transport), electron data (10 keV–50 MeV), and positron data (1 keV–50 MeV) – neutron data will be published separately. Values are given for angles of incidence from 0° up to 90° in steps of 15° and for rotational irradiation. The data presented can be downloaded from this article's website and they are ready for use by Report Committee (RC) 26. This committee has been set up by the International Commission on Radiation Units and Measurements (ICRU) and is working on a ‘proposal for a redefinition of the operational quantities for external radiation exposure’. PMID:27542816

  1. Dosimetric characterization and output verification for conical brachytherapy surface applicators. Part I. Electronic brachytherapy source

    PubMed Central

    Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.

    2014-01-01

    Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care. PMID:24506635

  2. Cumulative dose 60Co gamma irradiation effects on AlGaN/GaN Schottky diodes and its area dependence

    NASA Astrophysics Data System (ADS)

    Sharma, Chandan; Laishram, Robert; Rawal, Dipendra Singh; Vinayak, Seema; Singh, Rajendra

    2018-04-01

    Cumulative dose gamma radiation effects on current-voltage characteristics of GaN Schottky diodes have been investigated. The different area diodes have been fabricated on AlGaN/GaN high electron mobility transistor (HEMT) epi-layer structure grown over SiC substrate and irradiated with a dose up to the order of 104 Gray (Gy). Post irradiation characterization shows a shift in the turn-on voltage and improvement in reverse leakage current. Other calculated parameters include Schottky barrier height, ideality factor and reverse saturation current. Schottky barrier height has been decreased whereas reverse saturation current shows an increase in the value post irradiation with improvement in the ideality factor. Transfer length measurement (TLM) characterization shows an improvement in the contact resistance. Finally, diodes with larger area have more variation in the calculated parameters due to the induced local heating effect.

  3. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations

    NASA Astrophysics Data System (ADS)

    Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.

    2000-08-01

    A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.

  4. SU-F-T-02: Estimation of Radiobiological Doses (BED and EQD2) of Single Fraction Electronic Brachytherapy That Equivalent to I-125 Eye Plaque: By Using Linear-Quadratic and Universal Survival Curve Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y; Waldron, T; Pennington, E

    Purpose: To test the radiobiological impact of hypofractionated choroidal melanoma brachytherapy, we calculated single fraction equivalent doses (SFED) of the tumor that equivalent to 85 Gy of I125-BT for 20 patients. Corresponding organs-at-risks (OARs) doses were estimated. Methods: Twenty patients treated with I125-BT were retrospectively examined. The tumor SFED values were calculated from tumor BED using a conventional linear-quadratic (L-Q) model and an universal survival curve (USC). The opposite retina (α/β = 2.58), macula (2.58), optic disc (1.75), and lens (1.2) were examined. The % doses of OARs over tumor doses were assumed to be the same as for amore » single fraction delivery. The OAR SFED values were converted into BED and equivalent dose in 2 Gy fraction (EQD2) by using both L-Q and USC models, then compared to I125-BT. Results: The USC-based BED and EQD2 doses of the macula, optic disc, and the lens were on average 118 ± 46% (p < 0.0527), 126 ± 43% (p < 0.0354), and 112 ± 32% (p < 0.0265) higher than those of I125-BT, respectively. The BED and EQD2 doses of the opposite retina were 52 ± 9% lower than I125-BT. The tumor SFED values were 25.2 ± 3.3 Gy and 29.1 ± 2.5 Gy when using USC and LQ models which can be delivered within 1 hour. All BED and EQD2 values using L-Q model were significantly larger when compared to the USC model (p < 0.0274) due to its large single fraction size (> 14 Gy). Conclusion: The estimated single fraction doses were feasible to be delivered within 1 hour using a high dose rate source such as electronic brachytherapy (eBT). However, the estimated OAR doses using eBT were 112 ∼ 118% higher than when using the I125-BT technique. Continued exploration of alternative dose rate or fractionation schedules should be followed.« less

  5. Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment

    NASA Astrophysics Data System (ADS)

    Asuni, Ganiyu Adeniyi

    Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.

  6. Optimization of tomotherapy treatment planning for patients with bilateral hip prostheses.

    PubMed

    Chapman, David; Smith, Shaun; Barnett, Rob; Bauman, Glenn; Yartsev, Slav

    2014-02-04

    To determine the effect of different imaging options and the most efficient imaging strategy for treatment planning of patients with hip prostheses. The planning kilovoltage CT (kVCT) and daily megavoltage CT (MVCT) studies for three prostate cancer patients with bilateral hip prostheses were used for creating hybrid kVCT/MVCT image sets. Treatment plans were created for kVCT images alone, hybrid kVCT/MVCT images, and MVCT images alone using the same dose prescription and planning parameters. The resulting dose volume histograms were compared. The orthopedic metal artifact reduction (O-MAR) reconstruction tool for kVCT images and different MVCT options were investigated with a water tank fit with double hip prostheses. Treatment plans were created for all imaging options and calculated dose was compared with the one measured by a pin-point ion chamber. On average for three patients, the D35% for the bladder was 8% higher in plans based on MVCT images and 7% higher in plans based on hybrid images, compared to the plans based on kVCT images alone. Likewise, the D35% for the rectum was 3% higher than the kVCT based plan for both hybrid and MVCT plans. The average difference in planned D99% in the PTV compared to kVCT plans was 0.9% and 0.1% for MVCT and hybrid plans, respectively. For the water tank with hip prostheses phantom, the kVCT plan with O-MAR correction applied showed better agreement between the measured and calculated dose than the original image set, with a difference of -1.9% compared to 3.3%. The measured doses for the MVCT plans were lower than the calculated dose due to image size limitations. The best agreement was for the kVCT/MVCT hybrid plans with the difference between calculated and measured dose around 1%. MVCT image provides better visualization of patient anatomy and hybrid kVCT/MVCT study enables more accurate calculations using updated MVCT relative electron density calibration.

  7. Conversion of ICRP male reference phantom to polygon-surface phantom

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (<2 man-months), we were able to construct the polygon-surface phantom with the organ masses perfectly matching the ICRP reference values. The analysis of the calculated dose values also implies that the dose values are indeed not very sensitive to the detailed morphology of the organ models in the phantom for highly penetrating radiations such as photons and neutrons. The results of the electron beams, on the other hand, show that the dose values of the polygon-surface phantom are higher by a factor of 2-5 times than those of the ICRP reference phantom for the skin and wall organs which have large holes due to low voxel resolution. The results demonstrate that the ICRP reference phantom could provide significantly unreasonable dose values to thin or wall organs especially for weakly penetrating radiations. Therefore, when compared to the original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating radiations such as electrons and other charged particles.

  8. A Method for 3D-Reconstruction of a Muscle Thick Filament Using the Tilt Series Images of a Single Filament Electron Tomogram

    PubMed Central

    Márquez, G.; Pinto, A.; Alamo, L.; Baumann, B.; Ye, F.; Winkler, H.; Taylor, K.; Padrón, R.

    2014-01-01

    Summary Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament –calculated without any image averaging and/or imposition of helical symmetry- only reveals MIH motifs infrequently. This is –to our knowledge- the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. PMID:24727133

  9. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram.

    PubMed

    Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R

    2014-05-01

    Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Modeling the TrueBeam linac using a CAD to Geant4 geometry implementation: Dose and IAEA-compliant phase space calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Magdalena; Perl, Joseph; LoSasso, Tom

    2011-07-15

    Purpose: To create an accurate 6 MV Monte Carlo simulation phase space for the Varian TrueBeam treatment head geometry imported from cad (computer aided design) without adjusting the input electron phase space parameters. Methods: geant4 v4.9.2.p01 was employed to simulate the 6 MV beam treatment head geometry of the Varian TrueBeam linac. The electron tracks in the linear accelerator were simulated with Parmela, and the obtained electron phase space was used as an input to the Monte Carlo beam transport and dose calculations. The geometry components are tessellated solids included in geant4 as gdml (generalized dynamic markup language) files obtainedmore » via STEP (standard for the exchange of product) export from Pro/Engineering, followed by STEP import in Fastrad, a STEP-gdml converter. The linac has a compact treatment head and the small space between the shielding collimator and the divergent arc of the upper jaws forbids the implementation of a plane for storing the phase space. Instead, an IAEA (International Atomic Energy Agency) compliant phase space writer was implemented on a cylindrical surface. The simulation was run in parallel on a 1200 node Linux cluster. The 6 MV dose calculations were performed for field sizes varying from 4 x 4 to 40 x 40 cm{sup 2}. The voxel size for the 60x60x40 cm{sup 3} water phantom was 4x4x4 mm{sup 3}. For the 10x10 cm{sup 2} field, surface buildup calculations were performed using 4x4x2 mm{sup 3} voxels within 20 mm of the surface. Results: For the depth dose curves, 98% of the calculated data points agree within 2% with the experimental measurements for depths between 2 and 40 cm. For depths between 5 and 30 cm, agreement within 1% is obtained for 99% (4x4), 95% (10x10), 94% (20x20 and 30x30), and 89% (40x40) of the data points, respectively. In the buildup region, the agreement is within 2%, except at 1 mm depth where the deviation is 5% for the 10x10 cm{sup 2} open field. For the lateral dose profiles, within the field size for fields up to 30x30 cm{sup 2}, the agreement is within 2% for depths up to 10 cm. At 20 cm depth, the in-field maximum dose difference for the 30x30 cm{sup 2} open field is within 4%, while the smaller field sizes agree within 2%. Outside the field size, agreement within 1% of the maximum dose difference is obtained for all fields. The calculated output factors varied from 0.938{+-}0.015 for the 4x4 cm{sup 2} field to 1.088{+-}0.024 for the 40x40 cm{sup 2} field. Their agreement with the experimental output factors is within 1%. Conclusions: The authors have validated a geant4 simulated IAEA-compliant phase space of the TrueBeam linac for the 6 MV beam obtained using a high accuracy geometry implementation from cad. These files are publicly available and can be used for further research.« less

  11. Radiation treatment of molasses

    NASA Astrophysics Data System (ADS)

    Rodríguez, A. S.; Serrano G., J.; Lara R., O.; Reyes L., J.

    Molasses are a by-product of the sugar industry. Their annual production in México in around 1 million tons and are mainly used as a complement for animal feeding and for the production of alcohols. Their value is relatively low compared with another chemicals. When molasses are irradiated with gamma radiation or accelerated electrons, in presence of nitric acid and oxygen, it is obtained oxalic acid and several polymeric compounds. In both cases, the same products are obtained, but the yield is greater with electrons. It has been studied the effect of dose and dose rate in the yields. As example, when mixtures of molasses-nitric acid, with an initial concentration of 26% of total sugar reductors, are irradiated with 1.0 MeV electrons, in a continuous flow reactor, at 0.11 {Gy}/{sec} to a total dose of 30 KGy, the oxalic acid yield is around 44% of the total chemical reductors used. The separations of the radiolytic products was made by successive decantations and concentrations, and purified by recristallizations. From the analytical information, the minimal formula were calculated for the acid product and the polymeric compounds.

  12. U.S. EPA Superfund Program's Policy for Risk and Dose Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Stuart

    2008-01-15

    The Environmental Protection Agency (EPA) Office of Superfund Remediation and Technology Innovation (OSRTI) has primary responsibility for implementing the long-term (non-emergency) portion of a key U.S. law regulating cleanup: the Comprehensive Environmental Response, Compensation and Liability Act, CERCLA, nicknamed 'Superfund'. The purpose of the Superfund program is to protect human health and the environment over the long term from releases or potential releases of hazardous substances from abandoned or uncontrolled hazardous waste sites. The focus of this paper is on risk and dose assessment policies and tools for addressing radioactively contaminated sites by the Superfund program. EPA has almost completedmore » two risk assessment tools that are particularly relevant to decommissioning activities conducted under CERCLA authority. These are the: 1. Building Preliminary Remediation Goals for Radionuclides (BPRG) electronic calculator, and 2. Radionuclide Outdoor Surfaces Preliminary Remediation Goals (SPRG) electronic calculator. EPA developed the BPRG calculator to help standardize the evaluation and cleanup of radiologically contaminated buildings at which risk is being assessed for occupancy. BPRGs are radionuclide concentrations in dust, air and building materials that correspond to a specified level of human cancer risk. The intent of SPRG calculator is to address hard outside surfaces such as building slabs, outside building walls, sidewalks and roads. SPRGs are radionuclide concentrations in dust and hard outside surface materials. EPA is also developing the 'Radionuclide Ecological Benchmark' calculator. This calculator provides biota concentration guides (BCGs), also known as ecological screening benchmarks, for use in ecological risk assessments at CERCLA sites. This calculator is intended to develop ecological benchmarks as part of the EPA guidance 'Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments'. The calculator develops ecological benchmarks for ionizing radiation based on cell death only.« less

  13. NOTE: MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning

    NASA Astrophysics Data System (ADS)

    Alexander, A.; DeBlois, F.; Stroian, G.; Al-Yahya, K.; Heath, E.; Seuntjens, J.

    2007-07-01

    Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM_RT, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform-independent, large-scale MC treatment planning for different treatment sites. Patient recalculations were performed to validate the software and ensure proper functionality.

  14. Novel Approaches for Visualizing and Analyzing Dose-Timing Data from Electronic Drug Monitors, or "How the 'Broken Window' Theory Pertains to ART Adherence".

    PubMed

    Gill, Christopher J; DeSilva, Mary Bachman; Hamer, Davidson H; Keyi, Xu; Wilson, Ira B; Sabin, Lora

    2015-11-01

    Adherence to antiretroviral medications is usually expressed in terms of the proportion of doses taken. However, the timing of doses taken may also be an important dimension to overall adherence. Little is known about whether patients who mistime doses are also more likely to skip doses. Using data from the completed Adherence for Life randomized controlled trial, we created visual and statistical models to capture and analyze dose timing data collected longitudinally with electronic drug monitors (EDM). From scatter plots depicting dose time versus calendar date, we identified dominant patterns of dose taking and calculated key features [slope of line over calendar date; residual mean standard error (RMSE)]. Each was assessed for its ability to categorize subjects with 'sub-optimal' (<95 % of doses taken) using area under the receiver operating characteristic (AROC) curve analysis. Sixty eight subjects contributed EDM data, with ~300 to 400 observations/subject. While regression line slopes did not predict 'sub-optimal' adherence (AROC 0.51, 95 % CI 0.26-0.75), the variability in dose timing (RMSE) was strongly predictive (AROC 0.79, 95 % CI 0.62-0.97). Compared with the lowest quartile of RMSE (minimal dose time variability), each successive quartile roughly doubled the odds of 'sub-optimal' adherence (OR 2.1, 95 % CI 1.3-3.4). Patterns of dose timing and mistiming are strongly related to overall adherence behavior. Notably, individuals who skip doses are more likely to mistime doses, with the degree of risk positively correlated with the extent of dose timing variability.

  15. Low-energy electron dose-point kernel simulations using new physics models implemented in Geant4-DNA

    NASA Astrophysics Data System (ADS)

    Bordes, Julien; Incerti, Sébastien; Lampe, Nathanael; Bardiès, Manuel; Bordage, Marie-Claude

    2017-05-01

    When low-energy electrons, such as Auger electrons, interact with liquid water, they induce highly localized ionizing energy depositions over ranges comparable to cell diameters. Monte Carlo track structure (MCTS) codes are suitable tools for performing dosimetry at this level. One of the main MCTS codes, Geant4-DNA, is equipped with only two sets of cross section models for low-energy electron interactions in liquid water (;option 2; and its improved version, ;option 4;). To provide Geant4-DNA users with new alternative physics models, a set of cross sections, extracted from CPA100 MCTS code, have been added to Geant4-DNA. This new version is hereafter referred to as ;Geant4-DNA-CPA100;. In this study, ;Geant4-DNA-CPA100; was used to calculate low-energy electron dose-point kernels (DPKs) between 1 keV and 200 keV. Such kernels represent the radial energy deposited by an isotropic point source, a parameter that is useful for dosimetry calculations in nuclear medicine. In order to assess the influence of different physics models on DPK calculations, DPKs were calculated using the existing Geant4-DNA models (;option 2; and ;option 4;), newly integrated CPA100 models, and the PENELOPE Monte Carlo code used in step-by-step mode for monoenergetic electrons. Additionally, a comparison was performed of two sets of DPKs that were simulated with ;Geant4-DNA-CPA100; - the first set using Geant4‧s default settings, and the second using CPA100‧s original code default settings. A maximum difference of 9.4% was found between the Geant4-DNA-CPA100 and PENELOPE DPKs. Between the two Geant4-DNA existing models, slight differences, between 1 keV and 10 keV were observed. It was highlighted that the DPKs simulated with the two Geant4-DNA's existing models were always broader than those generated with ;Geant4-DNA-CPA100;. The discrepancies observed between the DPKs generated using Geant4-DNA's existing models and ;Geant4-DNA-CPA100; were caused solely by their different cross sections. The different scoring and interpolation methods used in CPA100 and Geant4 to calculate DPKs showed differences close to 3.0% near the source.

  16. Monte Carlo dose distribution calculation at nuclear level for Auger-emitting radionuclide energies.

    PubMed

    Di Maria, S; Belchior, A; Romanets, Y; Paulo, A; Vaz, P

    2018-05-01

    The distribution of radiopharmaceuticals in tumor cells represents a fundamental aspect for a successful molecular targeted radiotherapy. It was largely demonstrated at microscopic level that only a fraction of cells in tumoral tissues incorporate the radiolabel. In addition, the distribution of the radionuclides at sub-cellular level, namely inside each nucleus, should also be investigated for accurate dosimetry estimation. The most used method to perform cellular dosimetry is the MIRD one, where S-values are able to estimate cellular absorbed doses for several electron energies, nucleus diameters, and considering homogeneous source distributions. However the radionuclide distribution inside nuclei can be also highly non-homogeneous. The aim of this study is to show in what extent a non-accurate cellular dosimetry could lead to misinterpretations of surviving cell fraction vs dose relationship; in this context, a dosimetric case study with 99m Tc is also presented. The state-of-art MCNP6 Monte Carlo simulation was used in order to model cell structures both in MIRD geometry (MG) and MIRD modified geometries (MMG), where also entire mitotic chromosome volumes were considered (each structure was modeled as liquid water material). In order to simulate a wide energy range of Auger emitting radionuclides, four mono energetic electron emissions were considered, namely 213eV, 6keV, 11keV and 20keV. A dosimetric calculation for 99m Tc undergoing inhomogeneous nuclear internalization was also performed. After a successful validation step between MIRD and our computed S-values for three Auger-emitting radionuclides ( 99m Tc, 125 I and 64 Cu), absorbed dose results showed that the standard MG could differ from the MMG from one to three orders of magnitude. These results were also confirmed by considering the 99m Tc spectrum emission (Auger and internal conversion electrons). Moreover, considering an inhomogeneous radionuclide distribution, the average electron energy that maximizes the absorbed dose was found to be different for MG and MMG. The modeling of realistic radionuclide localization inside cells, including a inhomogeneous nuclear distribution, revealed that i) a strong bias in surviving cell fraction vs dose relationships (taking to different radiobiological models) can arise; ii) the alternative models might contribute to a more accurate prediction of the radiobiological effects inherent to more specific molecular targeted radiotherapy strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. [Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy].

    PubMed

    Renner, Franziska

    2016-09-01

    Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide. Copyright © 2015. Published by Elsevier GmbH.

  18. Poster — Thur Eve — 25: Sensitivity to inhomogeneities for an in-vivo EPID dosimetry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peca, Stefano; Brown, Derek; Department of Physics and Astronomy, University of Calgary, Calgary, AB

    2014-08-15

    Introduction: The electronic portal imaging device (EPID) has the potential to be used for in vivo dosimetry during radiotherapy as an additional dose delivery check. We recently proposed a simple method of using the EPID for 2D-IVD based on correlation ratios. In this work we have investigated the sensitivity of our EPID-IVD to inhomogeneities. Methods: We used slab phantoms that simulate water, bone, and lung, arranged in various geometries. To simulate body contours non-orthogonal to the field, we used a water wedge. CT data of these phantoms was imported into MATLAB, in conjunction with EPID images acquired during irradiation, tomore » calculate dose inside the phantom in isocenter plane. Each phantom was irradiated using a linear accelerator while images were acquired with the EPID (cine mode). Comparisons between EPID-calculated and TPS dose maps were: pixel-by-pixel dose difference, and 3%,3mm gamma evaluation. Results: In the homogeneous case, CAX dose difference was <1%, and 3%,3mm gamma analysis yielded 99% of points with gamma<1. For the inhomogeneous phantoms, agreement decreased with increasing inhomogeneity reaching up to 10% CAX dose difference with 10cm of lung. Results from the water wedge phantom suggest that the EPID-calculated dose can account for surface irregularities of approximately ±3cm. Conclusions: The EPID-based IVD investigated has limitations in the presence of large inhomogeneities. Nonetheless, CAX doses never differed by >15% from the TPS. This suggests that this EPID-IVD is capable of detecting gross dose delivery errors even in the presence of inhomogeneities, supporting its utility as an additional patient safety device.« less

  19. Neutron skyshine from end stations of the Continuous Electron Beam Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Rai-Ko S.

    1991-12-01

    The MORSE{_}CG code from Oak Ridge National Laboratory was applied to the estimation of the neutron skyshine from three end stations of the Continuous Electron Beam Accelerator Facility (CEBAF), Newport News, VA. Calculations with other methods and an experiment had been directed at assessing the annual neutron dose equivalent at the site boundary. A comparison of results obtained with different methods is given, and the effect of different temperatures and humidities will be discussed.

  20. Neutron skyshine from end stations of the Continuous Electron Beam Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Rai-Ko S.

    1991-12-01

    The MORSE{ }CG code from Oak Ridge National Laboratory was applied to the estimation of the neutron skyshine from three end stations of the Continuous Electron Beam Accelerator Facility (CEBAF), Newport News, VA. Calculations with other methods and an experiment had been directed at assessing the annual neutron dose equivalent at the site boundary. A comparison of results obtained with different methods is given, and the effect of different temperatures and humidities will be discussed.

  1. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    NASA Astrophysics Data System (ADS)

    Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  2. ESR dosimetry for atomic bomb survivors and radiologic technologists

    NASA Astrophysics Data System (ADS)

    Tatsumi-Miyajima, Junko

    1987-06-01

    An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.

  3. Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Parnell, T. A.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Beaujean, R.; Heilmann, C.

    1995-01-01

    Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the Linear Energy Transfer (LET) spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm (exp -2) shielding) and outside (1 g cm(exp -2) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d (exp -1), respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d(exp -1). The effects of the flight parameters on the total fluence of, and on the dose from the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.

  4. Thermally-assisted optically stimulated luminescence from deep electron traps in α-Al2O3:C,Mg

    NASA Astrophysics Data System (ADS)

    Kalita, J. M.; Chithambo, M. L.; Polymeris, G. S.

    2017-07-01

    We report thermally-assisted optically stimulated luminescence (TA-OSL) in α-Al2O3:C,Mg. The OSL was measured at elevated temperatures between 50 and 240 °C from a sample preheated to 500 °C after irradiation to 100 Gy. That OSL could be measured even after the preheating is direct evidence of the existence of deep electron traps in α-Al2O3:C,Mg. The TA-OSL intensity goes through a peak with measurement temperature. The initial increase is ascribed to thermal assistance to optical stimulation whereas the subsequent decrease in intensity is deduced to reflect increasing incidences of non-radiative recombination, that is, thermal quenching. The activation energy for thermal assistance corresponding to a deep electron trap was estimated as 0.667 ± 0.006 eV whereas the activation energy for thermal quenching was calculated as 0.90 ± 0.04 eV. The intensity of the TA-OSL was also found to increase with irradiation dose. The dose response is sublinear from 25 to 150 Gy but saturates with further increase of dose. The TA-OSL dose response has been discussed by considering the competition for charges at the deep traps. This study incidentally shows that TA-OSL can be effectively used in dosimetry involving large doses.

  5. The influence of Monte Carlo source parameters on detector design and dose perturbation in small field dosimetry

    NASA Astrophysics Data System (ADS)

    Charles, P. H.; Crowe, S. B.; Kairn, T.; Knight, R.; Hill, B.; Kenny, J.; Langton, C. M.; Trapp, J. V.

    2014-03-01

    To obtain accurate Monte Carlo simulations of small radiation fields, it is important model the initial source parameters (electron energy and spot size) accurately. However recent studies have shown that small field dosimetry correction factors are insensitive to these parameters. The aim of this work is to extend this concept to test if these parameters affect dose perturbations in general, which is important for detector design and calculating perturbation correction factors. The EGSnrc C++ user code cavity was used for all simulations. Varying amounts of air between 0 and 2 mm were deliberately introduced upstream to a diode and the dose perturbation caused by the air was quantified. These simulations were then repeated using a range of initial electron energies (5.5 to 7.0 MeV) and electron spot sizes (0.7 to 2.2 FWHM). The resultant dose perturbations were large. For example 2 mm of air caused a dose reduction of up to 31% when simulated with a 6 mm field size. However these values did not vary by more than 2 % when simulated across the full range of source parameters tested. If a detector is modified by the introduction of air, one can be confident that the response of the detector will be the same across all similar linear accelerators and the Monte Carlo modelling of each machine is not required.

  6. Electron beam initiated modification of acrylic elastomer in presence of polyfunctional monomers

    NASA Astrophysics Data System (ADS)

    Vijayabaskar, V.; Bhattacharya, S.; Tikku, V. K.; Bhowmick, Anil K.

    2004-12-01

    The structural changes of an acrylic rubber (ACM) in presence and absence of polyfunctional monomers like trimethylolpropane triacrylate, tripropyleneglycol diacrylate, trimethylolmethane tetraacrylate and trimethylolpropane trimethacrylate at different doses of electron beam (EB) irradiations were investigated with the help of FTIR spectroscopy (in the attenuated total reflectance mode) and sol-gel analysis. As the radiation dose increases, the concentration of carbonyl group increases in the ACM rubber due to aerial oxidation. This is corroborated from the increase in the absorbance values at 1734 and 1160 cm -1, which are due to carbonyl and C-O-C stretching frequencies, respectively. The increase in crosslinking is revealed by the increase in percentage gel content with radiation dose. The lifetime of spurs formed and the critical dose, an important criterion for overlapping of spurs have been determined for both grafted and ungrafted ACM rubber using a mathematical model. The predominance of crosslinking by electronic stopping with energetic EB projectile and the increase in effective radius of crosslinking have also been verified by this model. The doses at which the synergistic occurrence of both dislinking and endlinking steps originate have been calculated using linear energy transfer of EB. The ratio of scissioning to crosslinking for ACM rubber has been determined by using Charlesby-Pinner equation. The mechanical properties have been studied for different modified and unmodified systems and the tensile strength is found to increase with grafting of polyfunctional monomers.

  7. Evaluation of the timing and coordination of prandial insulin administration in the hospital.

    PubMed

    Alwan, Dhuha; Chipps, Esther; Yen, Po-Yin; Dungan, Kathleen

    2017-09-01

    The objective of this study was to examine the relationship between measures of coordinated insulin delivery and capillary blood glucose (CBG) levels among hospitalized patients and to assess nurse perceptions of insulin administration. Hospitalized patients (n=451) receiving rapid acting insulin analog (RAIA) using carbohydrate counting were retrospectively analyzed. Nurses (n=35) were asked to complete an 18-item anonymous survey assessing perception of RAIA dosing. The median time from breakfast CBG to RAIA dose was 93 (IQR 57-138) min. There was no association between timeliness measures and mean CBG at lunch or dinner. Hypoglycemia was rare (N=2). More than half (54%) of nurses were confident all of the time in determining the correct dose of RAIA, though none were confident in administering it on time. The majority of nurses perceived an electronic dosing calculator and a patient reminder to notify the nurse at the end of the meal favorably. The data demonstrate suboptimal coordination of CBG monitoring and insulin doses using a flexible meal insulin dosing strategy, though there was minimal impact on glycemic control. Nurses reported high confidence in the ability to calculate the correct insulin dose but not in the ability to administer it on time. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Application of the MCNP5 code to the Modeling of vaginal and intra-uterine applicators used in intracavitary brachytherapy: a first approach

    NASA Astrophysics Data System (ADS)

    Gerardy, I.; Rodenas, J.; Van Dycke, M.; Gallardo, S.; Tondeur, F.

    2008-02-01

    Brachytherapy is a radiotherapy treatment where encapsulated radioactive sources are introduced within a patient. Depending on the technique used, such sources can produce high, medium or low local dose rates. The Monte Carlo method is a powerful tool to simulate sources and devices in order to help physicists in treatment planning. In multiple types of gynaecological cancer, intracavitary brachytherapy (HDR Ir-192 source) is used combined with other therapy treatment to give an additional local dose to the tumour. Different types of applicators are used in order to increase the dose imparted to the tumour and to limit the effect on healthy surrounding tissues. The aim of this work is to model both applicator and HDR source in order to evaluate the dose at a reference point as well as the effect of the materials constituting the applicators on the near field dose. The MCNP5 code based on the Monte Carlo method has been used for the simulation. Dose calculations have been performed with *F8 energy deposition tally, taking into account photons and electrons. Results from simulation have been compared with experimental in-phantom dose measurements. Differences between calculations and measurements are lower than 5%.The importance of the source position has been underlined.

  9. Multiple scattering of 13 and 20 MeV electrons by thin foils: a Monte Carlo study with GEANT, Geant4, and PENELOPE.

    PubMed

    Vilches, M; García-Pareja, S; Guerrero, R; Anguiano, M; Lallena, A M

    2009-09-01

    In this work, recent results from experiments and simulations (with EGSnrc) performed by Ross et al. [Med. Phys. 35, 4121-4131 (2008)] on electron scattering by foils of different materials and thicknesses are compared to those obtained using several Monte Carlo codes. Three codes have been used: GEANT (version 3.21), Geant4 (version 9.1, patch03), and PENELOPE (version 2006). In the case of PENELOPE, mixed and fully detailed simulations have been carried out. Transverse dose distributions in air have been obtained in order to compare with measurements. The detailed PENELOPE simulations show excellent agreement with experiment. The calculations performed with GEANT and PENELOPE (mixed) agree with experiment within 3% except for the Be foil. In the case of Geant4, the distributions are 5% narrower compared to the experimental ones, though the agreement is very good for the Be foil. Transverse dose distribution in water obtained with PENELOPE (mixed) is 4% wider than those calculated by Ross et al. using EGSnrc and is 1% narrower than the transverse dose distributions in air, as considered in the experiment. All the codes give a reasonable agreement (within 5%) with the experimental results for all the material and thicknesses studied.

  10. Dose measurement in heterogeneous phantoms with an extrapolation chamber

    NASA Astrophysics Data System (ADS)

    Deblois, Francois

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water(TM) and bone-equivalent material was used for determining absolute dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x-rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The air gaps used were between 2 and 3 mm and the sensitive air volume of the extrapolation chamber was remotely controlled through the motion of the motorized piston with a precision of +/-0.0025 mm. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain dose data for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC from 0.7 to ˜2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water(TM) PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). The collecting electrode material in comparison with the polarizing electrode material has a larger effect on the electrode correction factor; the thickness of thin electrodes, on the other hand, has a negligible effect on dose determination. The uncalibrated hybrid PEEC is an accurate and absolute device for measuring the dose directly in bone material in conjunction with appropriate correction factors determined with Monte Carlo techniques.

  11. Poster - Thurs Eve-23: Effect of lung density and geometry variation on inhomogeneity correction algorithms: A Monte Carlo dosimetry evaluation.

    PubMed

    Chow, J; Leung, M; Van Dyk, J

    2008-07-01

    This study provides new information on the evaluation of the lung dose calculation algorithms as a function of the relative electron density of lung, ρ e,lung . Doses calculated using the collapsed cone convolution (CCC) and adaptive convolution (AC) algorithm in lung with the Pinnacle 3 system were compared to those calculated using the Monte Carlo (MC) simulation (EGSnrc-based code). Three groups of lung phantoms, namely, "Slab", "Column" and "Cube" with different ρ e,lung (0.05-0.7), positions, volumes and shapes of lung in water were used. 6 and 18MV photon beams with 4×4 and 10×10cm 2 field sizes produced by a Varian 21EX Linac were used in the MC dose calculations. Results show that the CCC algorithm agrees well with AC to within ±1% for doses calculated in the lung phantoms, indicating that the AC, with 3-4 times less computing time required than CCC, is a good substitute for the CCC method. Comparing the CCC and AC with MC, dose deviations are found when ρ e,lung are ⩽0.1-0.3. The degree of deviation depends on the photon beam energy and field size, and is relatively large when high-energy photon beams with small field are used. For the penumbra widths (20%-80%), the CCC and AC agree well with MC for the "Slab" and "Cube" phantoms with the lung volumes at the central beam axis (CAX). However, deviations >2mm occur in the "Column" phantoms, with two lung volumes separated by a water column along the CAX, using the 18MV (4×4cm 2 ) photon beams with ρ e,lung ⩽0.1. © 2008 American Association of Physicists in Medicine.

  12. On the use of a novel Ferrous Xylenol-orange gelatin dosimeter for HDR brachytherapy commissioning and quality assurance testing.

    PubMed

    Pappas, Eleftherios P; Peppa, Vasiliki; Hourdakis, Costas J; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2018-01-01

    To evaluate a commercially available Ferrous-Xylenol Orange-Gel (FXG) dosimeter (TrueView™) coupled with Optical-Computed Tomography (OCT) read out, for 3D dose verification in an Ir-192 superficial brachytherapy application. Two identical polyethylene containers filled with gel from the same batch were used. One was irradiated with an 18 MeV electron field to examine the dose-response linearity and obtain a calibration curve. A flap surface applicator was attached to the other to simulate treatment of a skin lesion. The dose distribution in the experimental set up was calculated with the TG-43 and the model based dose calculation (MBCA) algorithms of a commercial treatment planning system (TPS), as well as Monte Carlo (MC) simulation using the MCNP code. Measured and calculated dose distributions were spatially registered and compared. Apart from a region close to the container's neck, where gel measurements exhibited an over-response relative to MC calculations (probably due to stray light perturbation), an excellent agreement was observed between measurements and simulations. More than 97% of points within the 10% isodose line (80 cGy) met the gamma index criteria established from uncertainty analysis (5%/2 mm). The corresponding passing rates for the comparison of experiment to calculations using the TG-43 and MBDCA options of the TPS were 57% and 92%, respectively. TrueView™ is suitable for the quality assurance of demanding radiotherapy applications. Experimental results of this work confirm the advantage of the studied MBDCA over TG-43, expected from the improved account of scatter radiation in the treatment geometry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Radiobiological Effectiveness of Ultrashort Laser-Driven Electron Bunches: Micronucleus Frequency, Telomere Shortening and Cell Viability.

    PubMed

    Andreassi, Maria Grazia; Borghini, Andrea; Pulignani, Silvia; Baffigi, Federica; Fulgentini, Lorenzo; Koester, Petra; Cresci, Monica; Vecoli, Cecilia; Lamia, Debora; Russo, Giorgio; Panetta, Daniele; Tripodi, Maria; Gizzi, Leonida A; Labate, Luca

    2016-09-01

    Laser-driven electron accelerators are capable of producing high-energy electron bunches in shorter distances than conventional radiofrequency accelerators. To date, our knowledge of the radiobiological effects in cells exposed to electrons using a laser-plasma accelerator is still very limited. In this study, we compared the dose-response curves for micronucleus (MN) frequency and telomere length in peripheral blood lymphocytes exposed to laser-driven electron pulse and X-ray radiations. Additionally, we evaluated the effects on cell survival of in vitro tumor cells after exposure to laser-driven electron pulse compared to electron beams produced by a conventional radiofrequency accelerator used for intraoperative radiation therapy. Blood samples from two different donors were exposed to six radiation doses ranging from 0 to 2 Gy. Relative biological effectiveness (RBE) for micronucleus induction was calculated from the alpha coefficients for electrons compared to X rays (RBE = alpha laser/alpha X rays). Cell viability was monitored in the OVCAR-3 ovarian cancer cell line using trypan blue exclusion assay at day 3, 5 and 7 postirradiation (2, 4, 6, 8 and 10 Gy). The RBE values obtained by comparing the alpha values were 1.3 and 1.2 for the two donors. Mean telomere length was also found to be reduced in a significant dose-dependent manner after irradiation with both electrons and X rays in both donors studied. Our findings showed a radiobiological response as mirrored by the induction of micronuclei and shortening of telomere as well as by the reduction of cell survival in blood samples and cancer cells exposed in vitro to laser-generated electron bunches. Additional studies are needed to improve preclinical validation of the radiobiological characteristics and efficacy of laser-driven electron accelerators in the future.

  14. SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Syh, J; Patel, B

    Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists ofmore » multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.« less

  15. Simulated response of a multi-element thick gas electron multiplier-based microdosimeter to high energy neutrons.

    PubMed

    Moslehi, Amir; Raisali, Gholamreza

    2018-07-01

    The response of a microdosimeter for neutrons above 14 MeV is investigated. The mean quality factors and dose-equivalents are determined using lineal energy distributions calculated by Monte Carlo simulations (Geant4 toolkit). From 14 MeV to 5 GeV, the mean quality factors were found to vary between 6.00 and 9.30 and the dose-equivalents were in agreement with the true ambient dose-equivalent at the depth of 10 mm inside the ICRU sphere, H * (10). An energy-independent dose-equivalent response around a median value of 0.86 within 22% uncertainty was obtained. Therefore, the microdosimeter is appropriate for dose-equivalent measurement of high-energy neutrons. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Calculation of Dose for Skyshine Radiation From a 45 MeV Electron LINAC

    NASA Astrophysics Data System (ADS)

    Hori, M.; Hikoji, M.; Takahashi, H.; Takahashi, K.; Kitaichi, M.; Sawamura, S.; Nojiri, I.

    1996-11-01

    Dose estimation for skyshine plays an important role in the evaluation of the environment around nuclear facilities. We performed calculations for the skyshine radiation from a Hokkaido University 45 MeV linear accelerator using a general purpose user's version of the EGS4 Monte Carlo Code. To verify accuracy of the code, the simulation results have been compared with our experimental results, in which a gated counting method was used to measure low-level pulsed leakage radiation. In experiment, measurements were carried out up to 600 m away from the LINAC. The simulation results are consistent with the experimental values at the distance between 100 and 400 m from the LINAC. However, agreements of both results up to 100 m from the LINAC are not as good because of the simplification of geometrical modeling in the simulation. It could be said that it is useful to apply this version to the calculation for skyshine.

  17. Environmental Impact From Accelerator Operation at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, James C

    1999-03-22

    Environmental impacts from electron accelerator operations at the Stanford Linear Accelerator Center, which is located near populated areas, are illustrated by using examples of three different accelerator facilities: the low power (a few watts) SSRL, the high power (a few kilowatts) PEP-II, and the 50-kW SLC. Three types of major impacts are discussed: (1) off-site doses from skyshine radiation, mainly neutrons, (2) off-site doses from radioactive air emission, mainly {sup 13}N, and (3) radioactivities, mainly {sup 3}H, produced in the groundwater. It was found that, from SSRL operation, the skyshine radiation result in a MEI (Maximum Exposed Individual) of 0.3more » {mu}Sv/y while a conservative calculation using CAP88 showed a MEI of 0.36 {mu}Sv/y from radioactive air releases. The calculated MEI doses due to future PEP-II operation are 30 {mu}Sv/y from skyshine radiation and 2 {mu}Sv/y from air releases. The population doses due to radioactive air emission are 0.5 person-mSv from SSRL and 12 person-mSv from PEP-II. Because of the stronger decrease of skyshine dose as the distance increases, the population dose from skyshine radiation are smaller than that from air release. The third environmental impact, tritium activity produced in the groundwater, was also demonstrated to be acceptable from both the well water measurements and the FLUKA calculations for the worst case of the SLC high-power dump.« less

  18. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm.

    PubMed

    Famulari, Gabriel; Pater, Piotr; Enger, Shirin A

    2017-07-07

    The aim of this study was to calculate microdosimetric distributions for low energy electrons simulated using the Monte Carlo track structure code Geant4-DNA. Tracks for monoenergetic electrons with kinetic energies ranging from 100 eV to 1 MeV were simulated in an infinite spherical water phantom using the Geant4-DNA extension included in Geant4 toolkit version 10.2 (patch 02). The microdosimetric distributions were obtained through random sampling of transfer points and overlaying scoring volumes within the associated volume of the tracks. Relative frequency distributions of energy deposition f(>E)/f(>0) and dose mean lineal energy ([Formula: see text]) values were calculated in nanometer-sized spherical and cylindrical targets. The effects of scoring volume and scoring techniques were examined. The results were compared with published data generated using MOCA8B and KURBUC. Geant4-DNA produces a lower frequency of higher energy deposits than MOCA8B. The [Formula: see text] values calculated with Geant4-DNA are smaller than those calculated using MOCA8B and KURBUC. The differences are mainly due to the lower ionization and excitation cross sections of Geant4-DNA for low energy electrons. To a lesser extent, discrepancies can also be attributed to the implementation in this study of a new and fast scoring technique that differs from that used in previous studies. For the same mean chord length ([Formula: see text]), the [Formula: see text] calculated in cylindrical volumes are larger than those calculated in spherical volumes. The discrepancies due to cross sections and scoring geometries increase with decreasing scoring site dimensions. A new set of [Formula: see text] values has been presented for monoenergetic electrons using a fast track sampling algorithm and the most recent physics models implemented in Geant4-DNA. This dataset can be combined with primary electron spectra to predict the radiation quality of photon and electron beams.

  19. SU-F-T-12: Monte Carlo Dosimetry of the 60Co Bebig High Dose Rate Source for Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, L T; Almeida, C E V de

    Purpose: The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. Methods: The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, whichmore » is a part of EGS++ that allows calculating the radial dose function around the source. The XCOM photon cross-section library was used. Variance reduction techniques were used to speed up the calculation and to considerably reduce the computer time. To obtain the dose rate distributions of the source in an unbounded liquid water phantom, the source was immersed at the center of a cube phantom of 100 cm3. Results: The obtained dose rate constant for the BEBIG 60Co source was 1.108±0.001 cGyh-1U-1, which is consistent with the values in the literature. The radial dose functions were compared with the values of the consensus data set in the literature, and they are consistent with the published data for this energy range. Conclusion: The dose rate constant is consistent with the results of Granero et al. and Selvam and Bhola within 1%. Dose rate data are compared to GEANT4 and DORZnrc Monte Carlo code. However, the radial dose function is different by up to 10% for the points that are notably near the source on the transversal axis because of the high-energy photons from 60Co, which causes an electronic disequilibrium at the interface between the source capsule and the liquid water for distances up to 1 cm.« less

  20. The alanine detector in BNCT dosimetry: Dose response in thermal and epithermal neutron fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, T., E-mail: schmito@uni-mainz.de; Bassler, N.; Blaickner, M.

    Purpose: The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Methods: Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particlemore » spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a {sup 60}Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes FLUKA and MCNP. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen and Olsen alanine response model. Results: The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. Conclusions: The alanine detector can be used without difficulty in neutron fields. The response has been understood with the model used which includes the relative effectiveness. Results and the corresponding discussion lead to the conclusion that application in neutron fields for medical purpose is limited by its sensitivity but that it is a useful tool as supplement to other detectors and verification of neutron source descriptions.« less

  1. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180.

    PubMed

    Ding, George X; Alaei, Parham; Curran, Bruce; Flynn, Ryan; Gossman, Michael; Mackie, T Rock; Miften, Moyed; Morin, Richard; Xu, X George; Zhu, Timothy C

    2018-05-01

    With radiotherapy having entered the era of image guidance, or image-guided radiation therapy (IGRT), imaging procedures are routinely performed for patient positioning and target localization. The imaging dose delivered may result in excessive dose to sensitive organs and potentially increase the chance of secondary cancers and, therefore, needs to be managed. This task group was charged with: a) providing an overview on imaging dose, including megavoltage electronic portal imaging (MV EPI), kilovoltage digital radiography (kV DR), Tomotherapy MV-CT, megavoltage cone-beam CT (MV-CBCT) and kilovoltage cone-beam CT (kV-CBCT), and b) providing general guidelines for commissioning dose calculation methods and managing imaging dose to patients. We briefly review the dose to radiotherapy (RT) patients resulting from different image guidance procedures and list typical organ doses resulting from MV and kV image acquisition procedures. We provide recommendations for managing the imaging dose, including different methods for its calculation, and techniques for reducing it. The recommended threshold beyond which imaging dose should be considered in the treatment planning process is 5% of the therapeutic target dose. Although the imaging dose resulting from current kV acquisition procedures is generally below this threshold, the ALARA principle should always be applied in practice. Medical physicists should make radiation oncologists aware of the imaging doses delivered to patients under their care. Balancing ALARA with the requirement for effective target localization requires that imaging dose be managed based on the consideration of weighing risks and benefits to the patient. © 2018 American Association of Physicists in Medicine.

  2. Radiation model predictions and validation using LDEF satellite data

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    Predictions and comparisons with the radiation dose measurements on Long Duration Exposure Facility (LDEF) by thermoluminescent dosimeters were made to evaluate the accuracy of models currently used in defining the ionizing radiation environment for low Earth orbit missions. The calculations include a detailed simulation of the radiation exposure (altitude and solar cycle variations, directional dependence) and shielding effects (three-dimensional LDEF geometry model) so that differences in the predicted and observed doses can be attributed to environment model uncertainties. The LDEF dose data are utilized to assess the accuracy of models describing the trapped proton flux, the trapped proton directionality, and the trapped electron flux.

  3. Investigation of photon beam models in heterogeneous media of modern radiotherapy.

    PubMed

    Ding, W; Johnston, P N; Wong, T P Y; Bubb, I F

    2004-06-01

    This study investigates the performance of photon beam models in dose calculations involving heterogeneous media in modern radiotherapy. Three dose calculation algorithms implemented in the CMS FOCUS treatment planning system have been assessed and validated using ionization chambers, thermoluminescent dosimeters (TLDs) and film. The algorithms include the multigrid superposition (MGS) algorithm, fast Fourier Transform Convolution (FFTC) algorithm and Clarkson algorithm. Heterogeneous phantoms used in the study consist of air cavities, lung analogue and an anthropomorphic phantom. Depth dose distributions along the central beam axis for 6 MV and 10 MV photon beams with field sizes of 5 cm x 5 cm and 10 cm x 10 cm were measured in the air cavity phantoms and lung analogue phantom. Point dose measurements were performed in the anthropomorphic phantom. Calculated results with three dose calculation algorithms were compared with measured results. In the air cavity phantoms, the maximum dose differences between the algorithms and the measurements were found at the distal surface of the air cavity with a 10 MV photon beam and a 5 cm x 5 cm field size. The differences were 3.8%. 24.9% and 27.7% for the MGS. FFTC and Clarkson algorithms. respectively. Experimental measurements of secondary electron build-up range beyond the air cavity showed an increase with decreasing field size, increasing energy and increasing air cavity thickness. The maximum dose differences in the lung analogue with 5 cm x 5 cm field size were found to be 0.3%. 4.9% and 6.9% for the MGS. FFTC and Clarkson algorithms with a 6 MV photon beam and 0.4%. 6.3% and 9.1% with a 10 MV photon beam, respectively. In the anthropomorphic phantom, the dose differences between calculations using the MGS algorithm and measurements with TLD rods were less than +/-4.5% for 6 MV and 10 MV photon beams with 10 cm x 10 cm field size and 6 MV photon beam with 5 cm x 5 cm field size, and within +/-7.5% for 10 MV with 5 cm x 5 cm field size, respectively. The FFTC and Clarkson algorithms overestimate doses at all dose points in the lung of the anthropomorphic phantom. In conclusion, the MGS is the most accurate dose calculation algorithm of investigated photon beam models. It is strongly recommended for implementation in modern radiotherapy with multiple small fields when heterogeneous media are in the treatment fields.

  4. Examination of the suitability of an implementation of the Jette localized heterogeneities fluence term L(1)(x,y,z) in an electron beam treatment planning algorithm

    NASA Astrophysics Data System (ADS)

    Rodebaugh, Raymond Francis, Jr.

    2000-11-01

    In this project we applied modifications of the Fermi- Eyges multiple scattering theory to attempt to achieve the goals of a fast, accurate electron dose calculation algorithm. The dose was first calculated for an ``average configuration'' based on the patient's anatomy using a modification of the Hogstrom algorithm. It was split into a measured central axis depth dose component based on the material between the source and the dose calculation point, and an off-axis component based on the physics of multiple coulomb scattering for the average configuration. The former provided the general depth dose characteristics along the beam fan lines, while the latter provided the effects of collimation. The Gaussian localized heterogeneities theory of Jette provided the lateral redistribution of the electron fluence by heterogeneities. Here we terminated Jette's infinite series of fluence redistribution terms after the second term. Experimental comparison data were collected for 1 cm thick x 1 cm diameter air and aluminum pillboxes using the Varian 2100C linear accelerator at Rush-Presbyterian- St. Luke's Medical Center. For an air pillbox, the algorithm results were in reasonable agreement with measured data at both 9 and 20 MeV. For the Aluminum pill box, there were significant discrepancies between the results of this algorithm and experiment. This was particularly apparent for the 9 MeV beam. Of course a one cm thick Aluminum heterogeneity is unlikely to be encountered in a clinical situation; the thickness, linear stopping power, and linear scattering power of Aluminum are all well above what would normally be encountered. We found that the algorithm is highly sensitive to the choice of the average configuration. This is an indication that the series of fluence redistribution terms does not converge fast enough to terminate after the second term. It also makes it difficult to apply the algorithm to cases where there are no a priori means of choosing the best average configuration or where there is a complex geometry containing both lowly and highly scattering heterogeneities. There is some hope of decreasing the sensitivity to the average configuration by including portions of the next term of the localized heterogeneities series.

  5. Energetic properties' investigation of removing flattening filter at phantom surface: Monte Carlo study using BEAMnrc code, DOSXYZnrc code and BEAMDP code

    NASA Astrophysics Data System (ADS)

    Bencheikh, Mohamed; Maghnouj, Abdelmajid; Tajmouati, Jaouad

    2017-11-01

    The Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy and beam characterization investigation, in this study, the Varian Clinac 2100 medical linear accelerator with and without flattening filter (FF) was modelled. The objective of this study was to determine flattening filter impact on particles' energy properties at phantom surface in terms of energy fluence, mean energy, and energy fluence distribution. The Monte Carlo codes used in this study were BEAMnrc code for simulating linac head, DOSXYZnrc code for simulating the absorbed dose in a water phantom, and BEAMDP for extracting energy properties. Field size was 10 × 10 cm2, simulated photon beam energy was 6 MV and SSD was 100 cm. The Monte Carlo geometry was validated by a gamma index acceptance rate of 99% in PDD and 98% in dose profiles, gamma criteria was 3% for dose difference and 3mm for distance to agreement. In without-FF, the energetic properties was as following: electron contribution was increased by more than 300% in energy fluence, almost 14% in mean energy and 1900% in energy fluence distribution, however, photon contribution was increased 50% in energy fluence, and almost 18% in mean energy and almost 35% in energy fluence distribution. The removing flattening filter promotes the increasing of electron contamination energy versus photon energy; our study can contribute in the evolution of removing flattening filter configuration in future linac.

  6. Utilization of thermoluminescent dosimetry in total skin electron beam radiotherapy of mycosis fungoides.

    PubMed

    Antolak, J A; Cundiff, J H; Ha, C S

    1998-01-01

    The purpose of this report is to discuss the utilization of thermoluminescent dosimetry (TLD) in total skin electron beam (TSEB) radiotherapy to: (a) compare patient dose distributions for similar techniques on different machines, (b) confirm beam calibration and monitor unit calculations, (c) provide data for making clinical decisions, and (d) study reasons for variations in individual dose readings. We report dosimetric results for 72 cases of mycosis fungoides, using similar irradiation techniques on two different linear accelerators. All patients were treated using a modified Stanford 6-field technique. In vivo TLD was done on all patients, and the data for all patients treated on both machines was collected into a database for analysis. Means and standard deviations (SDs) were computed for all locations. Scatter plots of doses vs. height, weight, and obesity index were generated, and correlation coefficients with these variables were computed. The TLD results show that our current TSEB implementation is dosimetrically equivalent to the previous implementation, and that our beam calibration technique and monitor unit calculation is accurate. Correlations with obesity index were significant at several sites. Individual TLD results allow us to customize the boost treatment for each patient, in addition to revealing patient positioning problems and/or systematic variations in dose caused by patient variability. The data agree well with previously published TLD results for similar TSEB techniques. TLD is an important part of the treatment planning and quality assurance programs for TSEB, and routine use of TLD measurements for TSEB is recommended.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuong, A; Chow, J

    Purpose: This study investigated the surface dose variation in preclinical irradiation using small animal, when monoenergetic photon beams with energy range from 50 keV to 1.25 MeV were used. Methods: Inhomogeneous, homogeneous and bone-tissue homogeneous mouse phantom based on the same CT image set were used. The homogeneous and bone-tissue homogeneous phantom were created with the relative electron density of all and only bone voxels of the mouse overridden to one, respectively. Monte Carlo simulation based on the EGSnrc-based code was used to calculate the surface dose, when the phantoms were irradiated by a 360° photon arc with energies rangingmore » from 50 keV to 1.25 MeV. The mean surface doses of the three phantoms were calculated. In addition, the surface doses from partial arcs, 45°–315°, 125°–225°, 45°–125° and 225°–315° covering the anterior, posterior, right lateral and left lateral region of the mouse were determined using different photon beam energies. Results: When the prescribed dose at the isocenter of the mouse was 2 Gy, the maximum mean surface doses, found at the 50-keV photon beams, were 0.358 Gy, 0.363 Gy and 0.350 Gy for the inhomogeneous, homogeneous and bone-tissue homogeneous mouse phantom, respectively. The mean surface dose of the mouse was found decreasing with an increase of the photon beam energy. For surface dose in different orientations, the lateral regions of the mouse were receiving lower dose than the anterior and posterior regions. This may be due to the increase of beam attenuation along the horizontal (left-right) axis than the vertical (anterior-posterior) in the mouse. Conclusion: It is concluded that consideration of phantom inhomogeneity in the dose calculation resulted in a lower mean surface dose of the mouse. The mean surface dose also decreased with an increase of photon beam energy in the kilovoltage range.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arentsen, L; Lopater, Z; Dusenbery, K

    Purpose: Duputren’s contracture (DC) is a benign disease characterized by abnormal thickening of the fascial surfaces of the hands or feet causing curling of the surface, functional impairment, weakness, and pain. The purpose of the investigation is to describe the radiation treatment approaches, compare these techniques, and discuss the potential side effects and complications of these techniques. Methods: Early stage DC has been treated with 120 kVp X rays but also with high-energy electrons or photons. High-energy electrons have been the radiation of choice but severe contracture of the hand makes it difficult to produce a plan with acceptable dosemore » uniformity. High-energy photons can overcome this difficulty either by directing a beam onto the palmer or back of the surface of the hand, including bolus to maximize the surface dose. We calculated the dose to the bone for the 120 kVp treatment using published %DD data and mass energy absorption coefficients for bone and muscle. Results: The dose to underlying bone from megavoltage photons and electrons is essentially the same, but dose to the bone for using 120 kVp can be 4–5 times greater due to the photoelectric effect. For the 30 Gy dose deliver using this technique, the dose to the bone could be 84–105 Gy after taking the penetration of the beam into account. After radiotherapy, there is often decreased osteoblastic activity and vascular fibrosis that leads to osteitis, atrophy, and decreased metabolic bone activity. Incidence of fractures occurs routinely above 60 Gy with higher doses potentially leading to higher incidences of bone complications. Conclusion: Radiation therapy for DC using low-energy X rays can deliver a prohibitively high dose to the underlying bone potentially leading to severe bone complications.« less

  9. Technical Note: Out‐of‐field dose measurement at near surface with plastic scintillator detector

    PubMed Central

    Bourgouin, Alexandra; Varfalvy, Nicolas

    2016-01-01

    Out‐of‐field dose depends on multiple factors, making peripheral dosimetry complex. Only a few dosimeters have the required features for measuring peripheral dose. Plastic scintillator dosimeters (PSDs) offer numerous dosimetric advantages as required for out‐of‐field dosimetry. The purpose of this study is to determine the potential of using PSD as a surface peripheral dosimeter. Measurements were performed with a parallel‐plate ion chamber, a small volume ion chamber, and with a PSD. Lateral‐dose measurements (LDM) at 0.5 cm depth and depth‐dose curve (PDD) were made and compared to the dose calculation provided by a treatment planning system (TPS). This study shows that a PSD can measure a dose as low as 0.51±0.17cGy for photon beam and 0.58±0.20cGy for electron beam with a difference of 0.2 and 0.1 cGy compared to a parallel‐plate ion chamber. This study demonstrates the potential of using PSD as an out‐of‐field dosimeter since measurements with PSD avoid averaging over a too‐large depth, at 1 mm diameter, and can make precise measurement at very low dose. Also, electronic equilibrium is easier to reach with PSD due to its small sensitive volume and its water equivalence. PACS number(s): 87.55.N, 87.55.km PMID:27685131

  10. Comparison between TG-51 and TG-21: Calibration of photon and electron beams in water using cylindrical chambers.

    PubMed

    Cho, S H; Lowenstein, J R; Balter, P A; Wells, N H; Hanson, W F

    2000-01-01

    A new calibration protocol, developed by the AAPM Task Group 51 (TG-51) to replace the TG-21 protocol, is based on an absorbed-dose to water standard and calibration factor (N(D,w)), while the TG-21 protocol is based on an exposure (or air-kerma) standard and calibration factor (N(x)). Because of differences between these standards and the two protocols, the results of clinical reference dosimetry based on TG-51 may be somewhat different from those based on TG-21. The Radiological Physics Center has conducted a systematic comparison between the two protocols, in which photon and electron beam outputs following both protocols were compared under identical conditions. Cylindrical chambers used in this study were selected from the list given in the TG-51 report, covering the majority of current manufacturers. Measured ratios between absorbed-dose and air-kerma calibration factors, derived from the standards traceable to the NIST, were compared with calculated values using the TG-21 protocol. The comparison suggests that there is roughly a 1% discrepancy between measured and calculated ratios. This discrepancy may provide a reasonable measure of possible changes between the absorbed-dose to water determined by TG-51 and that determined by TG-21 for photon beam calibrations. The typical change in a 6 MV photon beam calibration following the implementation of the TG-51 protocol was about 1%, regardless of the chamber used, and the change was somewhat smaller for an 18 MV photon beam. On the other hand, the results for 9 and 16 MeV electron beams show larger changes up to 2%, perhaps because of the updated electron stopping power data used for the TG-51 protocol, in addition to the inherent 1% discrepancy presented in the calibration factors. The results also indicate that the changes may be dependent on the electron energy.

  11. SU-F-J-152: Accuracy of Charge Particle Transport in Magnetic Fields Using EGSnrc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainegra-Hing, E; Bouchard, H; Tessier, F

    Purpose: Determine accuracy of the current implementation of electron transport under magnetic fields in EGSnrc by means of single scattering (SS) and Fano convergence tests, and establish quantitatively the electron step size restriction required to achieve a desired level of accuracy for ionization chamber dosimetry. Methods: Condensed history (CH) dose calculations are compared to SS results for a PTW30013 ionization chamber irradiated in air by a 60Co photon beam. CH dose results for this chamber irradiated in a water phantom by a source of mono-energetic electrons are compared to the prediction of Fano’s theorem for step size restrictions EM ESTEPEmore » from 0.01 to 0.1 and strengths of 0.5 T, 1.0 T, and 1.5 T. Results: CH calculations in air for 60Co photons using an EM ESTEPE of 0.25 overestimate SS values by 6% for a 1.5 T field and by 1.5% for a 0.5 T field. Agreement improves with decreasing EM ESTEPE reducing this difference at 0.02 to 0.13% and 0.04% for 1.5 T and 0.5 T respectively. CH results converge with decreasing EM ESTEPE reaching an agreement of 0.2% at a value of EM ESTEPE of 0.01 for 100 keV electrons. SS results at 100 keV for 1.5 T show the same EM ESTEPE dependency as the CH results. Conclusion: Accurate transport of charged particles in magnetic fields is only possible if the step size is significantly restricted. An EM ESTEPE value of 0.02 is required to reproduce SS results at the 0.1% level for a calculation in air. The EM ESTEPE dependency of the SS results suggests SS is bypassed when simulating the transport of charged particles in magnetic fields. Fano test results for in water calculation suggest that only a 0.2% accuracy can be achieved with the current implementation.« less

  12. A Monte Carlo calculation model of electronic portal imaging device for transit dosimetry through heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu; Kim, Jong Oh

    2016-05-15

    Purpose: To develop and evaluate a fast Monte Carlo (MC) dose calculation model of electronic portal imaging device (EPID) based on its effective atomic number modeling in the XVMC code. Methods: A previously developed EPID model, based on the XVMC code by density scaling of EPID structures, was modified by additionally considering effective atomic number (Z{sub eff}) of each structure and adopting a phase space file from the EGSnrc code. The model was tested under various homogeneous and heterogeneous phantoms and field sizes by comparing the calculations in the model with measurements in EPID. In order to better evaluate themore » model, the performance of the XVMC code was separately tested by comparing calculated dose to water with ion chamber (IC) array measurement in the plane of EPID. Results: In the EPID plane, calculated dose to water by the code showed agreement with IC measurements within 1.8%. The difference was averaged across the in-field regions of the acquired profiles for all field sizes and phantoms. The maximum point difference was 2.8%, affected by proximity of the maximum points to penumbra and MC noise. The EPID model showed agreement with measured EPID images within 1.3%. The maximum point difference was 1.9%. The difference dropped from the higher value of the code by employing the calibration that is dependent on field sizes and thicknesses for the conversion of calculated images to measured images. Thanks to the Z{sub eff} correction, the EPID model showed a linear trend of the calibration factors unlike those of the density-only-scaled model. The phase space file from the EGSnrc code sharpened penumbra profiles significantly, improving agreement of calculated profiles with measured profiles. Conclusions: Demonstrating high accuracy, the EPID model with the associated calibration system may be used for in vivo dosimetry of radiation therapy. Through this study, a MC model of EPID has been developed, and their performance has been rigorously investigated for transit dosimetry.« less

  13. Internal photon and electron dosimetry of the newborn patient—a hybrid computational phantom study

    NASA Astrophysics Data System (ADS)

    Wayson, Michael; Lee, Choonsik; Sgouros, George; Treves, S. Ted; Frey, Eric; Bolch, Wesley E.

    2012-03-01

    Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values—absorbed dose to a target tissue per nuclear transformation in a source tissue—are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida (UF) patient model series. Values of photon specific absorbed fraction (SAF) were assembled for both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron SAF were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose--for both self- and cross-dose terms—were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Values of photon and electron SAFs were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA/EXM software. A comprehensive model of internal dosimetry is presented in this study for the newborn nuclear medicine patient based upon the UF hybrid computational phantom. Photon dose response functions, photon and electron SAFs, and tables of radionuclide S values for the newborn child--both male and female--are given in a series of four electronic annexes available at stacks.iop.org/pmb/57/1433/mmedia. These values can be applied to optimization studies of image quality and stochastic risk for this most vulnerable class of pediatric patients.

  14. Feasibility study of entrance and exit dose measurements at the contra lateral breast with alanine/electron spin resonance dosimetry in volumetric modulated radiotherapy of breast cancer

    NASA Astrophysics Data System (ADS)

    Wagner, Daniela M.; Hüttenrauch, Petra; Anton, Mathias; von Voigts-Rhetz, Philip; Zink, Klemens; Wolff, Hendrik A.

    2017-07-01

    The Physikalisch-Technische Bundesanstalt has established a secondary standard measurement system for the dose to water, D W, based on alanine/ESR (Anton et al 2013 Phys. Med. Biol. 58 3259-82). The aim of this study was to test the established measurement system for the out-of-field measurements of inpatients with breast cancer. A set of five alanine pellets were affixed to the skin of each patient at the contra lateral breast beginning at the sternum and extending over the mammilla to the distal surface. During 28 fractions with 2.2 Gy per fraction, the accumulated dose was measured in four patients. A cone beam computer tomography (CBCT) scan was generated for setup purposes before every treatment. The reference CT dataset was registered rigidly and deformably to the CBCT dataset for 28 fractions. To take the actual alanine pellet position into account, the dose distribution was calculated for every fraction using the Acuros XB algorithm. The results of the ESR measurements were compared to the calculated doses. The maximum dose measured at the sternum was 19.9 Gy  ±  0.4 Gy, decreasing to 6.8 Gy  ±  0.2 Gy at the mammilla and 4.5 Gy  ±  0.1 Gy at the distal surface of the contra lateral breast. The absolute differences between the calculated and measured doses ranged from  -1.9 Gy to 0.9 Gy. No systematic error could be seen. It was possible to achieve a combined standard uncertainty of 1.63% for D W  =  5 Gy for the measured dose. The alanine/ESR method is feasible for in vivo measurements.

  15. A MULTI-ELEMENT THICK GAS ELECTRON MULTIPLIER-BASED MICRODOSEMETER FOR MEASUREMENT OF NEUTRONS DOSE-EQUIVALENT: A MONTE CARLO STUDY.

    PubMed

    Moslehi, A; Raisali, G

    2017-11-01

    To determine the dose-equivalent of neutrons in an extended energy range, in the present work a multi-element thick gas electron multiplier-based microdosemeter made of PMMA (Perspex) walls of 10 mm in thickness is designed. Each cavity is filled with the propane-based tissue-equivalent (TE) gas simulating 1 µm of tissue. Also, a few weight fractions of 3He are assumed to be added to the TE gas. The dose-equivalents are determined for 11 neutron energies between thermal and 14 MeV using the lineal energy distributions calculated by Geant4 simulation toolkit and also the lineal energy-based quality factors. The results show that by adding 0.04% of 3He to the TE gas in each cavity, an energy-independent dose-equivalent response within 30% uncertainty around a median value of 0.91 in the above energy range is achieved. It is concluded that after its construction, the studied microdosemeter can be used to measure the dose-equivalent of neutrons, favorably. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.

    PubMed

    Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun

    2015-10-21

    Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum dose difference within 1.7%. The maximum relative difference of output factors was within 0.5%. Over 98.5% passing rate was achieved in 3D gamma-index tests with 2%/2 mm criteria in both an IMRT prostate patient case and a head-and-neck case. These results demonstrated the efficacy of our model in terms of accurately representing a reference phase-space file. We have also tested the efficiency gain of our source model over our previously developed phase-space-let file source model. The overall efficiency of dose calculation was found to be improved by ~1.3-2.2 times in water and patient cases using our analytical model.

  17. Measurements and simulations of microscopic damage to DNA in water by 30 keV electrons: A general approach applicable to other radiation sources and biological targets

    NASA Astrophysics Data System (ADS)

    Hahn, Marc Benjamin; Meyer, Susann; Kunte, Hans-Jörg; Solomun, Tihomir; Sturm, Heinz

    2017-05-01

    The determination of the microscopic dose-damage relationship for DNA in an aqueous environment is of a fundamental interest for dosimetry and applications in radiation therapy and protection. We combine geant4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We juxtaposition these results to the experimentally determined damage to obtain the dose-damage relationship at a molecular level. This approach is tested for an experimentally challenging system concerning the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here a microscopic target model for the plasmid DNA based on the relation of lineal energy and radiation quality is used to calculate the effective target volume. It was found that on average fewer than two ionizations within a 7.5-nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E1 /2=6 ±4 eV. The presented method is applicable for ionizing radiation (e.g., γ rays, x rays, and electrons) and a variety of targets, such as DNA, proteins, or cells.

  18. Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71

    PubMed Central

    Gibbons, John P.; Antolak, John A.; Followill, David S.; Huq, M. Saiful; Klein, Eric E.; Lam, Kwok L.; Palta, Jatinder R.; Roback, Donald M.; Reid, Mark; Khan, Faiz M.

    2014-01-01

    A protocol is presented for the calculation of monitor units (MU) for photon and electron beams, delivered with and without beam modifiers, for constant source-surface distance (SSD) and source-axis distance (SAD) setups. This protocol was written by Task Group 71 of the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol defines the nomenclature for the dosimetric quantities used in these calculations, along with instructions for their determination and measurement. Calculations are made using the dose per MU under normalization conditions, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′, that is determined for each user's photon and electron beams. For electron beams, the depth of normalization is taken to be the depth of maximum dose along the central axis for the same field incident on a water phantom at the same SSD, where \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′ = 1 cGy/MU. For photon beams, this task group recommends that a normalization depth of 10 cm be selected, where an energy-dependent \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′ ≤ 1 cGy/MU is required. This recommendation differs from the more common approach of a normalization depth of dm, with \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$D_0^\\prime $\\end{document}D0′ = 1 cGy/MU, although both systems are acceptable within the current protocol. For photon beams, the formalism includes the use of blocked fields, physical or dynamic wedges, and (static) multileaf collimation. No formalism is provided for intensity modulated radiation therapy calculations, although some general considerations and a review of current calculation techniques are included. For electron beams, the formalism provides for calculations at the standard and extended SSDs using either an effective SSD or an air-gap correction factor. Example tables and problems are included to illustrate the basic concepts within the presented formalism. PMID:24593704

  19. Evaluation of the Effect of Source Geometry on the Output of Miniature X-ray Tube for Electronic Brachytherapy through Simulation

    PubMed Central

    Barati, B.; Zabihzadeh, M.; Tahmasebi Birgani, M.J.; Chegini, N.; Fatahiasl, J.; Mirr, I.

    2018-01-01

    Objective: The use of miniature X-ray source in electronic brachytherapy is on the rise so there is an urgent need to acquire more knowledge on X-ray spectrum production and distribution by a dose. The aim of this research was to investigate the influence of target thickness and geometry at the source of miniature X-ray tube on tube output. Method: Five sources were simulated based on problems each with a specific geometric structure and conditions using MCNPX code. Tallies proportional to the output were used to calculate the results for the influence of source geometry on output. Results: The results of this work include the size of the optimal thickness of 5 miniature sources, energy spectrum of the sources per 50 kev and also the axial and transverse dose of simulated sources were calculated based on these thicknesses. The miniature source geometric was affected on the output x-ray tube. Conclusion: The result of this study demonstrates that hemispherical-conical, hemispherical and truncated-conical miniature sources were determined as the most suitable tools. PMID:29732338

  20. Measuring Multi-Megavolt Diode Voltages

    NASA Astrophysics Data System (ADS)

    Pereira, N. R.; Swanekamp, S. B.; Weber, B. V.; Commisso, R. J.; Hinshelwood, D. D.; Stephanakis, S. J.

    2002-12-01

    The voltage in high-power diodes can be determined by measuring the Compton electrons generated by the diode's bremsstrahlung radiation. This technique is implemented with a Compton-Hall (C-H) voltmeter that collimates the bremsstrahlung onto a Compton target and bends the emitted Compton electron orbits off to the side with an applied magnetic field off to Si pin diode detectors. Voltage is determined from the ratio of the Compton electron dose to the forward x-ray dose. The instrument's calibration and response are determined from coupled electron/photon transport calculations. The applicable voltage range is tuned by adjusting the position of the electron detector relative to the Compton target or by varying the magnetic field strength. The instrument was used to obtain time-dependent voltage measurements for a pinched-beam diode whose voltage is enhanced by an upstream opening switch. In this case, plasmas and vacuum electron flow from the opening switch make it difficult to determine the voltage accurately from electrical measurements. The C-H voltmeter gives voltages that are significantly higher than those obtained from electrical measurements but are consistent with measurements of peak voltage based on nuclear activation of boron-nitride targets.

  1. Energy- and Intensity-Modulated Electron Beam for Breast Cancer Treatment

    DTIC Science & Technology

    1999-10-01

    calculations," in Teletherapy: Present and Future, Ed. By T.R. Mackie and J.R. Palta (Advanced Medical Publishing, Madison WI) Mackie TR, Reckwerdt PJ...edited by T. R. Mackie and J. R. Palta from 10% to 20% (or a 5-20 mm shift in the isodose lines) (Advanced Medical Publishing, Madison, WI, 1996). to...Ayyangar K, Palta J R, Sweet J W and Suntharalingam N 1993 Experimental verification of a three-dimensional dose calculation algorithm using a specially

  2. Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculations in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Tyagi, N.; Curran, B. H.; Roberson, P. L.; Moran, J. M.; Acosta, E.; Fraass, B. A.

    2008-02-01

    IMRT often requires delivering small fields which may suffer from electronic disequilibrium effects. The presence of heterogeneities, particularly low-density tissues in patients, complicates such situations. In this study, we report on verification of the DPM MC code for IMRT treatment planning in heterogeneous media, using a previously developed model of the Varian 120-leaf MLC. The purpose of this study is twofold: (a) design a comprehensive list of experiments in heterogeneous media for verification of any dose calculation algorithm and (b) verify our MLC model in these heterogeneous type geometries that mimic an actual patient geometry for IMRT treatment. The measurements have been done using an IMRT head and neck phantom (CIRS phantom) and slab phantom geometries. Verification of the MLC model has been carried out using point doses measured with an A14 slim line (SL) ion chamber inside a tissue-equivalent and a bone-equivalent material using the CIRS phantom. Planar doses using lung and bone equivalent slabs have been measured and compared using EDR films (Kodak, Rochester, NY).

  3. SU-F-T-307: Peripheral Dose Comparison Between Static and Dynamic Jaw Tracking On a High Definition MLC System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Andujar, A; Cheung, J; Chuang, C

    Purpose: To investigate the effect of dynamic and static jaw tracking on patient peripheral doses. Materials and Methods: A patient plan with a large sacral metastasis (volume 800cm3, prescription 600cGyx5) was selected for this study. The plan was created using 2-field RapidArc with jaw tracking enabled (Eclipse, V11.0.31). These fields were then exported and edited in MATLAB with static jaw positions using the control point with the largest field size for each respective arc, but preserving the optimized leaf sequences for delivery. These fields were imported back into Eclipse for dose calculation and comparison and copied to a Rando phantommore » for delivery analysis. Points were chosen in the phantom at depth and on the phantom surface at locations outside the primary radiation field, at distances of 12cm, 20cm, and 30cm from the isocenter. Measurements were acquired with OSLDs placed at these positions in the phantom with both the dynamic and static jaw deliveries for comparison. Surface measurements included an additional 1cm bolus over the OSLDs to ensure electron equilibrium. Results: The static jaw deliveries resulted in cumulative jaw-defined field sizes of 17.3% and 17.4% greater area than the dynamic jaw deliveries for each arc. The static jaw plan resulted in very small differences in calculated dose in the treatment planning system ranging from 0–16cGy. The measured dose differences were larger than calculated, but the differences in absolute dose were small. The measured dose differences at depth (surface) between the two deliveries showed an increase for the static jaw delivery of 2.2%(11.4%), 15.6%(20.0%), and 12.7%(12.7%) for distances of 12cm, 20cm, and 30cm, respectively. Eclipse calculates a difference of 0–3.1% for all of these points. The largest absolute dose difference between all points was 6.2cGy. Conclusion: While we demonstrated larger than expected differences in peripheral dose, the absolute dose differences were small.« less

  4. Dosimetric verification and clinical evaluation of a new commercially available Monte Carlo-based dose algorithm for application in stereotactic body radiation therapy (SBRT) treatment planning

    NASA Astrophysics Data System (ADS)

    Fragoso, Margarida; Wen, Ning; Kumar, Sanath; Liu, Dezhi; Ryu, Samuel; Movsas, Benjamin; Munther, Ajlouni; Chetty, Indrin J.

    2010-08-01

    Modern cancer treatment techniques, such as intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT), have greatly increased the demand for more accurate treatment planning (structure definition, dose calculation, etc) and dose delivery. The ability to use fast and accurate Monte Carlo (MC)-based dose calculations within a commercial treatment planning system (TPS) in the clinical setting is now becoming more of a reality. This study describes the dosimetric verification and initial clinical evaluation of a new commercial MC-based photon beam dose calculation algorithm, within the iPlan v.4.1 TPS (BrainLAB AG, Feldkirchen, Germany). Experimental verification of the MC photon beam model was performed with film and ionization chambers in water phantoms and in heterogeneous solid-water slabs containing bone and lung-equivalent materials for a 6 MV photon beam from a Novalis (BrainLAB) linear accelerator (linac) with a micro-multileaf collimator (m3 MLC). The agreement between calculated and measured dose distributions in the water phantom verification tests was, on average, within 2%/1 mm (high dose/high gradient) and was within ±4%/2 mm in the heterogeneous slab geometries. Example treatment plans in the lung show significant differences between the MC and one-dimensional pencil beam (PB) algorithms within iPlan, especially for small lesions in the lung, where electronic disequilibrium effects are emphasized. Other user-specific features in the iPlan system, such as options to select dose to water or dose to medium, and the mean variance level, have been investigated. Timing results for typical lung treatment plans show the total computation time (including that for processing and I/O) to be less than 10 min for 1-2% mean variance (running on a single PC with 8 Intel Xeon X5355 CPUs, 2.66 GHz). Overall, the iPlan MC algorithm is demonstrated to be an accurate and efficient dose algorithm, incorporating robust tools for MC-based SBRT treatment planning in the routine clinical setting.

  5. SU-G-IeP2-04: Dosimetric Accuracy of a Monte Carlo-Based Tool for Cone-Beam CT Organ Dose Calculation: Validation Against OSL and XRQA2 Film Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesneau, H; Lazaro, D; Blideanu, V

    Purpose: The intensive use of Cone-Beam Computed Tomography (CBCT) during radiotherapy treatments raise some questions about the dose to healthy tissues delivered during image acquisitions. We hence developed a Monte Carlo (MC)-based tool to predict doses to organs delivered by the Elekta XVI kV-CBCT. This work aims at assessing the dosimetric accuracy of the MC tool, in all tissue types. Methods: The kV-CBCT MC model was developed using the PENELOPE code. The beam properties were validated against measured lateral and depth dose profiles in water, and energy spectra measured with a CdTe detector. The CBCT simulator accuracy then required verificationmore » in clinical conditions. For this, we compared calculated and experimental dose values obtained with OSL nanoDots and XRQA2 films inserted in CIRS anthropomorphic phantoms (male, female, and 5-year old child). Measurements were performed at different locations, including bone and lung structures, and for several acquisition protocols: lung, head-and-neck, and pelvis. OSLs and film measurements were corrected when possible for energy dependence, by taking into account for spectral variations between calibration and measurement conditions. Results: Comparisons between measured and MC dose values are summarized in table 1. A mean difference of 8.6% was achieved for OSLs when the energy correction was applied, and 89.3% of the 84 dose points were within uncertainty intervals, including those in bones and lungs. Results with XRQA2 are not as good, because incomplete information about electronic equilibrium in film layers hampered the application of a simple energy correction procedure. Furthermore, measured and calculated doses (Fig.1) are in agreement with the literature. Conclusion: The MC-based tool developed was validated with an extensive set of measurements, and enables the organ dose calculation with accuracy. It can now be used to compute and report doses to organs for clinical cases, and also to drive strategies to optimize imaging protocols.« less

  6. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.

    PubMed

    Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir

    2009-11-01

    Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.

  7. TU-AB-BRC-07: Efficiency of An IAEA Phase-Space Source for a Low Energy X-Ray Tube Using Egs++

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, PGF; Renaud, MA; Seuntjens, J

    Purpose: To extend the capability of the EGSnrc C++ class library (egs++) to write and read IAEA phase-space files as a particle source, and to assess the relative efficiency gain in dose calculation using an IAEA phase-space source for modelling a miniature low energy x-ray source. Methods: We created a new ausgab object to score particles exiting a user-defined geometry and write them to an IAEA phase-space file. A new particle source was created to read from IAEA phase-space data. With these tools, a phase-space file was generated for particles exiting a miniature 50 kVp x-ray tube (The INTRABEAM System,more » Carl Zeiss). The phase-space source was validated by comparing calculated PDDs with a full electron source simulation of the INTRABEAM. The dose calculation efficiency gain of the phase-space source was determined relative to the full simulation. The efficiency gain as a function of i) depth in water, and ii) job parallelization was investigated. Results: The phase-space and electron source PDDs were found to agree to 0.5% RMS, comparable to statistical uncertainties. The use of a phase-space source for the INTRABEAM led to a relative efficiency gain of greater than 20 over the full electron source simulation, with an increase of up to a factor of 196. The efficiency gain was found to decrease with depth in water, due to the influence of scattering. Job parallelization (across 2 to 256 cores) was not found to have any detrimental effect on efficiency gain. Conclusion: A set of tools has been developed for writing and reading IAEA phase-space files, which can be used with any egs++ user code. For simulation of a low energy x-ray tube, the use of a phase-space source was found to increase the relative dose calculation efficiency by factor of up to 196. The authors acknowledge partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant No. 432290).« less

  8. A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse

    NASA Astrophysics Data System (ADS)

    Gotz, M.; Karsch, L.; Pawelke, J.

    2017-11-01

    In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 μs at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.

  9. A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse.

    PubMed

    Gotz, M; Karsch, L; Pawelke, J

    2017-11-01

    In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 [Formula: see text] at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.

  10. SU-F-T-85: Energy Modulated Electron Postmastectomy Unreconstructed (PU) Chest Wall (CW) Irradiation Technique to Achieve Heart Sparing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, L; Ballangrud, A; Mechalakos, J

    Purpose: For left-sided PU patients requiring CW and nodal irradiation, sometimes partial wide tangents (PWT) are not feasible due to abnormal chest wall contour or heart position close to the anterior chest wall or unusual wide excision scar. We developed an energy modulated electron chest wall irradiation technique that will achieve heart sparing. Methods: Ten left-sided PU patients were selected for this dosimetry study. If PWT were used, the amount of the ipsilateral lung would be ranged 3.4 to 4.4 cm, and the amount of heart would be ranged 1.3 to 3.8 cm. We used electron paired fields that matchedmore » on the skin to achieve dose conformity to the chest wall. The enface electron fields were designed at extended SSD from a single isocenter and gantry angle with different energy beams using different cutout. Lower energy was used in the central chest wall part and higher energy was used in the periphery of the chest wall. Bolus was used for the electron fields to ensure adequate skin dose coverage. The electron fields were matched to the photon supra-clavicle field in the superior region. Daily field junctions were used to feather the match lines between all the fields. Target volumes and normal tissues were drawn according to institutional protocols. Prescription dose was 2Gy per fraction for a total 50Gy. Dose calculations were done with Eclipse EMC-11031 for Electron and AAA-11031 for photons. Results: Six patients were planned using 6/9MeV, three using 9/12MeV and one 6/12MeV. Target volumes achieved adequate coverage. For heart, V30Gy, V20Gy and Mean Dose were 0.6%±0.6%, 2.7%±1.7%, and 3.0Gy±0.8Gy respectively. For ipsilateral lung, V50Gy, V20Gy, V10Gy and V5Gy were 0.9%±1.1%, 34.3%±5.1%, 51.6%±6.3% and 64.1%±7.5% respectively. Conclusion: For left-sided PU patients with unusual anatomy, energy modulated electron CW irradiation technique can achieve heart sparing with acceptable lung dose.« less

  11. Diagnostic x-ray dosimetry using Monte Carlo simulation.

    PubMed

    Ioppolo, J L; Price, R I; Tuchyna, T; Buckley, C E

    2002-05-21

    An Electron Gamma Shower version 4 (EGS4) based user code was developed to simulate the absorbed dose in humans during routine diagnostic radiological procedures. Measurements of absorbed dose using thermoluminescent dosimeters (TLDs) were compared directly with EGS4 simulations of absorbed dose in homogeneous, heterogeneous and anthropomorphic phantoms. Realistic voxel-based models characterizing the geometry of the phantoms were used as input to the EGS4 code. The voxel geometry of the anthropomorphic Rando phantom was derived from a CT scan of Rando. The 100 kVp diagnostic energy x-ray spectra of the apparatus used to irradiate the phantoms were measured, and provided as input to the EGS4 code. The TLDs were placed at evenly spaced points symmetrically about the central beam axis, which was perpendicular to the cathode-anode x-ray axis at a number of depths. The TLD measurements in the homogeneous and heterogenous phantoms were on average within 7% of the values calculated by EGS4. Estimates of effective dose with errors less than 10% required fewer numbers of photon histories (1 x 10(7)) than required for the calculation of dose profiles (1 x 10(9)). The EGS4 code was able to satisfactorily predict and thereby provide an instrument for reducing patient and staff effective dose imparted during radiological investigations.

  12. Diagnostic x-ray dosimetry using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Ioppolo, J. L.; Price, R. I.; Tuchyna, T.; Buckley, C. E.

    2002-05-01

    An Electron Gamma Shower version 4 (EGS4) based user code was developed to simulate the absorbed dose in humans during routine diagnostic radiological procedures. Measurements of absorbed dose using thermoluminescent dosimeters (TLDs) were compared directly with EGS4 simulations of absorbed dose in homogeneous, heterogeneous and anthropomorphic phantoms. Realistic voxel-based models characterizing the geometry of the phantoms were used as input to the EGS4 code. The voxel geometry of the anthropomorphic Rando phantom was derived from a CT scan of Rando. The 100 kVp diagnostic energy x-ray spectra of the apparatus used to irradiate the phantoms were measured, and provided as input to the EGS4 code. The TLDs were placed at evenly spaced points symmetrically about the central beam axis, which was perpendicular to the cathode-anode x-ray axis at a number of depths. The TLD measurements in the homogeneous and heterogenous phantoms were on average within 7% of the values calculated by EGS4. Estimates of effective dose with errors less than 10% required fewer numbers of photon histories (1 × 107) than required for the calculation of dose profiles (1 × 109). The EGS4 code was able to satisfactorily predict and thereby provide an instrument for reducing patient and staff effective dose imparted during radiological investigations.

  13. Radiation protection design considerations for man in geosynchronous orbits

    NASA Technical Reports Server (NTRS)

    Rossi, M. L.; Stauber, M. C.

    1977-01-01

    A description is presented of preliminary studies which have been carried out to identify design requirements and mission constraints imposed by the geosynchronous radiation environment. The radiation species of dominant impact are the trapped electrons and solar flare particles. The criterion used in the conducted shielding design analysis has been to limit the skin dose to 100 rems for 3 months. The analysis included the optimization of an electron/bremsstrahlung shield for residence within the vehicle, the minimization of the dose received in extravehicular activity, and the calculation of special shield requirements for solar flares. An investigation was conducted of the potential benefits accruing from a three-layered composite shield with part of the aluminum layer replaced with a lower atomic number material. The materials considered were polyethylene, carbon, beryllium, and lithium hydride.

  14. High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber.

    PubMed

    Petersson, Kristoffer; Jaccard, Maud; Germond, Jean-François; Buchillier, Thierry; Bochud, François; Bourhis, Jean; Vozenin, Marie-Catherine; Bailat, Claude

    2017-03-01

    The purpose of this work was to establish an empirical model of the ion recombination in the Advanced Markus ionization chamber for measurements in high dose rate/dose-per-pulse electron beams. In addition, we compared the observed ion recombination to calculations using the standard Boag two-voltage-analysis method, the more general theoretical Boag models, and the semiempirical general equation presented by Burns and McEwen. Two independent methods were used to investigate the ion recombination: (a) Varying the grid tension of the linear accelerator (linac) gun (controls the linac output) and measuring the relative effect the grid tension has on the chamber response at different source-to-surface distances (SSD). (b) Performing simultaneous dose measurements and comparing the dose-response, in beams with varying dose rate/dose-per-pulse, with the chamber together with dose rate/dose-per-pulse independent Gafchromic™ EBT3 film. Three individual Advanced Markus chambers were used for the measurements with both methods. All measurements were performed in electron beams with varying mean dose rate, dose rate within pulse, and dose-per-pulse (10 -2  ≤ mean dose rate ≤ 10 3 Gy/s, 10 2  ≤ mean dose rate within pulse ≤ 10 7  Gy/s, 10 -4  ≤ dose-per-pulse ≤ 10 1  Gy), which was achieved by independently varying the linac gun grid tension, and the SSD. The results demonstrate how the ion collection efficiency of the chamber decreased as the dose-per-pulse increased, and that the ion recombination was dependent on the dose-per-pulse rather than the dose rate, a behavior predicted by Boag theory. The general theoretical Boag models agreed well with the data over the entire investigated dose-per-pulse range, but only for a low polarizing chamber voltage (50 V). However, the two-voltage-analysis method and the Burns & McEwen equation only agreed with the data at low dose-per-pulse values (≤ 10 -2 and ≤ 10 -1  Gy, respectively). An empirical model of the ion recombination in the chamber was found by fitting a logistic function to the data. The ion collection efficiency of the Advanced Markus ionization chamber decreases for measurements in electron beams with increasingly higher dose-per-pulse. However, this chamber is still functional for dose measurements in beams with dose-per-pulse values up toward and above 10 Gy, if the ion recombination is taken into account. Our results show that existing models give a less-than-accurate description of the observed ion recombination. This motivates the use of the presented empirical model for measurements with the Advanced Markus chamber in high dose-per-pulse electron beams, as it enables accurate absorbed dose measurements (uncertainty estimation: 2.8-4.0%, k = 1). The model depends on the dose-per-pulse in the beam, and it is also influenced by the polarizing chamber voltage, with increasing ion recombination with a lowering of the voltage. © 2017 American Association of Physicists in Medicine.

  15. Gold-implanted shallow conducting layers in polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.

    2009-03-01

    PMMA (polymethylmethacrylate) was ion implanted with gold at very low energy and over a range of different doses using a filtered cathodic arc metal plasma system. A nanometer scale conducting layer was formed, fully buried below the polymer surface at low implantation dose, and evolving to include a gold surface layer as the dose was increased. Depth profiles of the implanted material were calculated using the Dynamic TRIM computer simulation program. The electrical conductivity of the gold-implanted PMMA was measured in situ as a function of dose. Samples formed at a number of different doses were subsequently characterized by Rutherford backscattering spectrometry, and test patterns were formed on the polymer by electron beam lithography. Lithographic patterns were imaged by atomic force microscopy and demonstrated that the contrast properties of the lithography were well maintained in the surface-modified PMMA.

  16. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation.

    PubMed

    O'Shea, Tuathan P; Foley, Mark J; Faddegon, Bruce A

    2011-06-01

    Monte Carlo (MC) simulation can be used for accurate electron beam treatment planning and modeling. Measurement of large electron fields, with the applicator removed and secondary collimator wide open, has been shown to provide accurate simulation parameters, including asymmetry in the measured dose, for the full range of clinical field sizes and patient positions. Recently, disassembly of the treatment head of a linear accelerator has been used to refine the simulation of the electron beam, setting tightly measured constraints on source and geometry parameters used in simulation. The simulation did not explicitly include the known deflection of the electron beam by a fringe magnetic field from the bending magnet, which extended into the treatment head. Instead, the secondary scattering foil and monitor chamber were unrealistically laterally offset to account for the beam deflection. This work is focused on accounting for this fringe magnetic field in treatment head simulation. The magnetic field below the exit window of a Siemens Oncor linear accelerator was measured with a Tesla-meter from 0 to 12 cm from the exit window and 1-3 cm off-axis. Treatment head simulation was performed with the EGSnrc/BEAMnrc code, modified to incorporate the effect of the magnetic field on charged particle transport. Simulations were used to analyze the sensitivity of dose profiles to various sources of asymmetry in the treatment head. This included the lateral spot offset and beam angle at the exit window, the fringe magnetic field and independent lateral offsets of the secondary scattering foil and electron monitor chamber. Simulation parameters were selected within the limits imposed by measurement uncertainties. Calculated dose distributions were then compared with those measured in water. The magnetic field was a maximum at the exit window, increasing from 0.006 T at 6 MeV to 0.020 T at 21 MeV and dropping to approximately 5% of the maximum at the secondary scattering foil. It was up to three times higher in the bending plane, away from the electron gun, and symmetric within measurement uncertainty in the transverse plane. Simulations showed the magnetic field resulted in an offset of the electron beam of 0.80 cm (mean) at the machine isocenter for the exit window only configuration. The fringe field resulted in a 3.5%-7.6% symmetry and 0.25-0.35 cm offset of the clinical beam R(max) profiles. With the magnetic field included in simulations, a single (realistic) position of the secondary scattering foil and monitor chamber was selected. Measured and simulated dose profiles showed agreement to an average of 2.5%/0.16 cm (maximum: 3%/0.2 cm), which is a better match than previously achieved without incorporating the magnetic field in the simulation. The undulations from the 3 stepped layers of the secondary scattering foil, evident in the measured profiles of the higher energy beams, are now aligned with those in the simulated beam. The simulated fringe magnetic field had negligible effect on the central axis depth dose curves and cross-plane dose profiles. The fringe magnetic field is a significant contributor to the electron beam in-plane asymmetry. With the magnetic field included explicitly in the simulation, realistic monitor chamber and secondary scattering foil positions have been achieved, and the calculated fluence and dose distributions are more accurate.

  17. Analysis and recent advances in gamma heating measurements in MINERVE facility by using TLD and OSLD techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amharrak, H.; Di Salvo, J.; Lyoussi, A.

    2011-07-01

    The objective of this study is to develop nuclear heating measurement methods in Zero Power experimental reactors. This paper presents the analysis of Thermo-Luminescent Detector (TLD) and Optically Stimulated Luminescent Detectors (OSLD) experiments in the UO{sub 2} core of the MINERVE research reactor at the CEA Cadarache. The experimental sources of uncertainties on the gamma dose have been reduced by improving the conditions, as well as the repeatability, of the calibration step for each individual TLD. The interpretation of these measurements needs to take into account calculation of cavity correction factors, related to calibration and irradiation configurations, as well asmore » neutron corrections calculations. These calculations are based on Monte Carlo simulations of neutron-gamma and gamma-electron transport coupled particles. TLD and OSLD are positioned inside aluminum pillboxes. The comparison between calculated and measured integral gamma-ray absorbed doses using TLD, shows that calculation slightly overestimates the measurement with a C/E value equal to 1.05 {+-} 5.3 % (k = 2). By using OSLD, the calculation slightly underestimates the measurement with a C/E value equal to 0.96 {+-} 7.0% (k = 2. (authors)« less

  18. Comparison of organ doses for patients undergoing balloon brachytherapy of the breast with HDR 192Ir or electronic sources using Monte Carlo simulations in a heterogeneous human phantom1

    PubMed Central

    Mille, Matthew M.; Xu, X. George; Rivard, Mark J.

    2010-01-01

    Purpose: Accelerated partial breast irradiation via interstitial balloon brachytherapy is a fast and effective treatment method for certain early stage breast cancers. The radiation can be delivered using a conventional high-dose rate (HDR) 192Ir gamma-emitting source or a novel electronic brachytherapy (eBx) source which uses lower energy x rays that do not penetrate as far within the patient. A previous study [A. Dickler, M. C. Kirk, N. Seif, K. Griem, K. Dowlatshahi, D. Francescatti, and R. A. Abrams, “A dosimetric comparison of MammoSite high-dose-rate brachytherapy and Xoft Axxent electronic brachytherapy,” Brachytherapy 6, 164–168 (2007)] showed that the target dose is similar for HDR 192Ir and eBx. This study compares these sources based on the dose received by healthy organs and tissues away from the treatment site. Methods: A virtual patient with left breast cancer was represented by a whole-body, tissue-heterogeneous female voxel phantom. Monte Carlo methods were used to calculate the dose to healthy organs in a virtual patient undergoing balloon brachytherapy of the left breast with HDR 192Ir or eBx sources. The dose-volume histograms for a few organs which received large doses were also calculated. Additional simulations were performed with all tissues in the phantom defined as water to study the effect of tissue inhomogeneities. Results: For both HDR 192Ir and eBx, the largest mean organ doses were received by the ribs, thymus gland, left lung, heart, and sternum which were close to the brachytherapy source in the left breast. eBx yielded mean healthy organ doses that were more than a factor of ∼1.4 smaller than for HDR 192Ir for all organs considered, except for the three closest ribs. Excluding these ribs, the average and median dose-reduction factors were ∼28 and ∼11, respectively. The volume distribution of doses in nearby soft tissue organs that were outside the PTV were also improved with eBx. However, the maximum dose to the closest rib with the eBx source was 5.4 times greater than that of the HDR 192Ir source. The ratio of tissue-to-water maximum rib dose for the eBx source was ∼5. Conclusions: The results of this study indicate that eBx may offer lower toxicity to most healthy tissues, except nearby bone. TG-43 methods have a tendency to underestimate dose to bone, especially the ribs. Clinical studies evaluating the negative health effects caused by irradiating healthy organs are needed so that physicians can better understand when HDR 192Ir or eBx might best benefit a patient. PMID:20229875

  19. Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCowan, P. M., E-mail: pmccowan@cancercare.mb.ca; McCurdy, B. M. C.; Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9

    Purpose: The in vivo 3D dose delivered to a patient during volumetric modulated arc therapy (VMAT) delivery can be calculated using electronic portal imaging device (EPID) images. These images must be acquired in cine-mode (i.e., “movie” mode) in order to capture the time-dependent delivery information. The angle subtended by each cine-mode EPID image during an arc can be changed via the frame averaging number selected within the image acquisition software. A large frame average number will decrease the EPID’s angular resolution and will result in a decrease in the accuracy of the dose information contained within each image. Alternatively, lessmore » EPID images acquired per delivery will decrease the overall 3D patient dose calculation time, which is appealing for large-scale clinical implementation. Therefore, the purpose of this study was to determine the optimal frame average value per EPID image, defined as the highest frame averaging that can be used without an appreciable loss in 3D dose reconstruction accuracy for VMAT treatments. Methods: Six different VMAT plans and six different SBRT-VMAT plans were delivered to an anthropomorphic phantom. Delivery was carried out on a Varian 2300ix model linear accelerator (Linac) equipped with an aS1000 EPID running at a frame acquisition rate of 7.5 Hz. An additional PC was set up at the Linac console area, equipped with specialized frame-grabber hardware and software packages allowing continuous acquisition of all EPID frames during delivery. Frames were averaged into “frame-averaged” EPID images using MATLAB. Each frame-averaged data set was used to calculate the in vivo dose to the patient and then compared to the single EPID frame in vivo dose calculation (the single frame calculation represents the highest possible angular resolution per EPID image). A mean percentage dose difference of low dose (<20% prescription dose) and high dose regions (>80% prescription dose) was calculated for each frame averaged scenario for each plan. The authors defined their unacceptable loss of accuracy as no more than a ±1% mean dose difference in the high dose region. Optimal frame average numbers were then determined as a function of the Linac’s average gantry speed and the dose per fraction. Results: The authors found that 9 and 11 frame averages were suitable for all VMAT and SBRT-VMAT treatments, respectively. This resulted in no more than a 1% loss to any of the dose region’s mean percentage difference when compared to the single frame reconstruction. The optimized number was dependent on the treatment’s dose per fraction and was determined to be as high as 14 for 12 Gy/fraction (fx), 15 for 8 Gy/fx, 11 for 6 Gy/fx, and 9 for 2 Gy/fx. Conclusions: The authors have determined an optimal EPID frame averaging number for multiple VMAT-type treatments. These are given as a function of the dose per fraction and average gantry speed. These optimized values are now used in the authors’ clinical, 3D, in vivo patient dosimetry program. This provides a reduction in calculation time while maintaining the authors’ required level of accuracy in the dose reconstruction.« less

  20. Thermal limits on MV x-ray production by bremsstrahlung targets in the context of novel linear accelerators.

    PubMed

    Wang, Jinghui; Trovati, Stefania; Borchard, Philipp M; Loo, Billy W; Maxim, Peter G; Fahrig, Rebecca

    2017-12-01

    To study the impact of target geometrical and linac operational parameters, such as target material and thickness, electron beam size, repetition rate, and mean current on the ability of the radiotherapy treatment head to deliver high-dose-rate x-ray irradiation in the context of novel linear accelerators capable of higher repetition rates/duty cycle than conventional clinical linacs. The depth dose in a water phantom without a flattening filter and heat deposition in an x-ray target by 10 MeV pulsed electron beams were calculated using the Monte-Carlo code MCNPX, and the transient temperature behavior of the target was simulated by ANSYS. Several parameters that affect both the dose distribution and temperature behavior were investigated. The target was tungsten with a thickness ranging from 0 to 3 mm and a copper heat remover layer. An electron beam with full width at half maximum (FWHM) between 0 and3 mm and mean current of 0.05-2 mA was used as the primary beam at repetition rates of 100, 200, 400, and 800 Hz. For a 10 MeV electron beam with FWHM of 1 mm, pulse length of 5 μs, by using a thin tungsten target with thickness of 0.2 mm instead of 1 mm, and by employing a high repetition rate of 800 Hz instead of 100 Hz, the maximum dose rate delivered can increase two times from 0.57 to 1.16 Gy/s. In this simple model, the limiting factor on dose rate is the copper heat remover's softening temperature, which was considered to be 500°C in our study. A high dose rate can be obtained by employing thin targets together with high repetition rate electron beams enabled by novel linac designs, whereas the benefit of thin targets is marginal at conventional repetition rates. Next generation linacs used to increase dose rate need different target designs compared to conventional linacs. © 2017 American Association of Physicists in Medicine.

  1. SU-F-P-49: Comparison of Mapcheck 2 Commission for Photon and Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, J; Yang, C; Morris, B

    2016-06-15

    Purpose: We will investigate the performance variation of the MapCheck2 detector array with different array calibration and dose calibration pairs from different radiation therapy machine. Methods: A MapCheck2 detector array was calibrated on 3 Elekta accelerators with different energy of photon (6 MV, 10 MV, 15 MV and 18 MV) and electron (6 MeV, 9 MeV, 12 MeV, 15 MeV, 18 MeV and 20 MeV) beams. Dose calibration was conducted by referring a water phantom measurement following TG-51 protocol and commission data for each accelerator. A 10 cm × 10 cm beam was measured. This measured map was morphed bymore » applying different calibration pairs. Then the difference was quantified by comparing the doses and similarity using gamma analysis of criteria (0.5 %, 0 mm). Profile variation was evaluated on a same dataset with different calibration pairs. The passing rate of an IMRT QA planar dose was calculated by using 3 mm and 3% criteria and compared with respect to each calibration pairs. Results: In this study, a dose variation up to 0.67% for matched photons and 1.0% for electron beams is observed. Differences of flatness and symmetry can be as high as 1% and 0.7% respectively. Gamma analysis shows a passing rate ranging from 34% to 85% for the standard 10 × 10 cm field. Conclusion: Our work demonstrated that a customized array calibration and dose calibration for each machine is preferred to fulfill a high standard patient QA task.« less

  2. Roos and NACP-02 ion chamber perturbations and water-air stopping-power ratios for clinical electron beams for energies from 4 to 22 MeV

    NASA Astrophysics Data System (ADS)

    Bailey, M.; Shipley, D. R.; Manning, J. W.

    2015-02-01

    Empirical fits are developed for depth-compensated wall- and cavity-replacement perturbations in the PTW Roos 34001 and IBA / Scanditronix NACP-02 parallel-plate ionisation chambers, for electron beam qualities from 4 to 22 MeV for depths up to approximately 1.1 × R50,D. These are based on calculations using the Monte Carlo radiation transport code EGSnrc and its user codes with a full simulation of the linac treatment head modelled using BEAMnrc. These fits are used with calculated restricted stopping-power ratios between air and water to match measured depth-dose distributions in water from an Elekta Synergy clinical linear accelerator at the UK National Physical Laboratory. Results compare well with those from recent publications and from the IPEM 2003 electron beam radiotherapy Code of Practice.

  3. Monte Carlo simulation for Neptun 10 PC medical linear accelerator and calculations of output factor for electron beam

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Momennezhad, Mehdi; Hashemi, Seyed Mohammad

    2012-01-01

    Aim Exact knowledge of dosimetric parameters is an essential pre-requisite of an effective treatment in radiotherapy. In order to fulfill this consideration, different techniques have been used, one of which is Monte Carlo simulation. Materials and methods This study used the MCNP-4Cb to simulate electron beams from Neptun 10 PC medical linear accelerator. Output factors for 6, 8 and 10 MeV electrons applied to eleven different conventional fields were both measured and calculated. Results The measurements were carried out by a Wellhofler-Scanditronix dose scanning system. Our findings revealed that output factors acquired by MCNP-4C simulation and the corresponding values obtained by direct measurements are in a very good agreement. Conclusion In general, very good consistency of simulated and measured results is a good proof that the goal of this work has been accomplished. PMID:24377010

  4. Doses from beta radiation in sensitive layers of human lung and dose conversion factors due to 222Rn/220Rn progeny.

    PubMed

    Markovic, V M; Stevanovic, N; Nikezic, D

    2011-08-01

    Great deal of work has been devoted to determine doses from alpha particles emitted by (222)Rn and (220)Rn progeny. In contrast, contribution of beta particles to total dose has been neglected by most of the authors. The present work describes a study of the detriment of (222)Rn and (220)Rn progeny to the human lung due to beta particles. The dose conversion factor (DCF) was introduced to relate effective dose and exposure to radon progeny; it is defined as effective dose per unit exposure to inhaled radon or thoron progeny. Doses and DCFs were determined for beta radiation in sensitive layers of bronchi (BB) and bronchioles (bb), taking into account inhaled (222)Rn and (220)Rn progeny deposited in mucus and cilia layer. The nuclei columnar secretory and short basal cells were considered to be sensitive target layers. For dose calculation, electron-absorbed fractions (AFs) in the sensitive layers of the BB and bb regions were used. Activities in the fast and slow mucus of the BB and bb regions were obtained using the LUNGDOSE software developed earlier. Calculated DCFs due to beta radiation were 0.21 mSv/WLM for (222)Rn and 0.06 mSv/WLM for (220)Rn progeny. In addition, the influence of Jacobi room parameters on DCFs was investigated, and it was shown that DCFs vary with these parameters by up to 50%.

  5. Sci-Fri PM: Planning-10: The replacement correction factors for cylindrical chambers in megavoltage beams.

    PubMed

    Wang, L; Rogers, Dwo

    2008-07-01

    The replacement correction factor (P repl ) in ion chamber dosimetry accounts for the effects of the medium being replaced by the air cavity of the chamber. In TG-21, P repl was conceptually separated into two components: fluence correction, P fl , and gradient correction, P gr . In TG-51, for electron beams, the calibration is at d ref where P gr is required for cylindrical chambers and P fl is unknown and assumed to be the same as that for a beam having the same mean electron energy at d max . For cylindrical chambers in high-energy photon beams, P repl also represents a major uncertainty in current dosimetry protocols. In this study, P repl is calculated with high precision (<0.1%) by the Monte Carlo method as the ratio of the dose in a phantom to the dose scored in water-walled cylindrical cavities of various radii (with the center of the cavity being the point of measurement) in both high energy photon and electron beams. It is found that, for electron beams, the mean electron energy at depth is a good beam quality specifier for P fl ; and TG-51's adoption of P fl at d max with the same mean electron energy for use at d ref is proven to be accurate. For Farmer chambers in photon beams, there is essentially no beam quality dependence for P repl values. In a Co photon beam, the calculated P repl is about 0.4-0.6% higher than the TG-21 value, indicating TG-21 (and TG-51) used incorrect values of P repl for cylindrical chambers. © 2008 American Association of Physicists in Medicine.

  6. SU-F-T-125: Radial Dose Distributions From Carbon Ions of Therapeutic Energies Calculated with Geant4-DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassiliev, O

    Purpose: Radial dose distribution D(r) is the dose as a function of lateral distance from the path of a heavy charged particle. Its main application is in modelling of biological effects of heavy ions, including applications to hadron therapy. It is the main physical parameter of a broad group of radiobiological models known as the amorphous track models. Our purpose was to calculate D(r) with Monte Carlo for carbon ions of therapeutic energies, find a simple formula for D(r) and fit it to the Monte Carlo data. Methods: All calculations were performed with Geant4-DNA code, for carbon ion energies frommore » 10 to 400 MeV/u (ranges in water: ∼ 0.4 mm to 27 cm). The spatial resolution of dose distribution in the lateral direction was 1 nm. Electron tracking cut off energy was 11 eV (ionization threshold). The maximum lateral distance considered was 10 µm. Over this distance, D(r) decreases with distance by eight orders of magnitude. Results: All calculated radial dose distributions had a similar shape dominated by the well-known inverse square dependence on the distance. Deviations from the inverse square law were observed close to the beam path (r<10 nm) and at large distances (r >1 µm). At small and large distances D(r) decreased, respectively, slower and faster than the inverse square of distance. A formula for D(r) consistent with this behavior was found and fitted to the Monte Carlo data. The accuracy of the fit was better than 10% for all distances considered. Conclusion: We have generated a set of radial dose distributions for carbon ions that covers the entire range of therapeutic energies, for distances from the ion path of up to 10 µm. The latter distance is sufficient for most applications because dose beyond 10 µm is extremely low.« less

  7. COMPILATION OF CONVERSION COEFFICIENTS FOR THE DOSE TO THE LENS OF THE EYE.

    PubMed

    Behrens, R

    2017-04-28

    A compilation of fluence-to-absorbed dose conversion coefficients for the dose to the lens of the eye is presented. The compilation consists of both previously published data and newly calculated values: photon data (5 keV-50 MeV for both kerma approximation and full electron transport), electron data (10 keV-50 MeV), and positron data (1 keV-50 MeV) - neutron data will be published separately. Values are given for angles of incidence from 0° up to 90° in steps of 15° and for rotational irradiation. The data presented can be downloaded from this article's website and they are ready for use by Report Committee (RC) 26. This committee has been set up by the International Commission on Radiation Units and Measurements (ICRU) and is working on a 'proposal for a redefinition of the operational quantities for external radiation exposure'. © The Author 2016. Published by Oxford University Press.

  8. Experimental check of bremsstrahlung dosimetry predictions for 0.75 MeV electrons

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Halbleib, J. A.; Beezhold, W.

    Bremsstrahlung dose in CaF2 TLDs from the radiation produced by 0.75 MeV electrons incident on Ta/C targets is measured and compared with that calculated via the CYLTRAN Monte Carlo code. The comparison was made to validate the code, which is used to predict and analyze radiation environments of flash X-ray simulators measured by TLDs. Over a wide range of Ta target thicknesses and radiation angles the code is found to agree with the 5% measurements. For Ta thickness near those that optimize the radiation output, however, the code overestimates the radiation dose at small angles. Maximum overprediction is about 14 + or - 5%. The general agreement, nonetheless, gives confidence in using the code at this energy and in the TLD calibration procedure. For the bulk of the measurements, a standard TLD employing a 2.2 mm thick Al equilibrator was used. In this paper we also show that this thickness can significantly attenuate the free-field dose and introduces significant photon buildup in the equalibrator.

  9. SU-E-T-643: Pure Alanine Dosimeter for Verification Dosimetry in IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Karmi, Anan M.; Zraiqat, Fadi

    Purpose: The objective of this study was evaluation of accuracy of pure alanine dosimeters measuring intensity-modulated radiation therapy (IMRT) dose distributions in a thorax phantom. Methods: Alanine dosimeters were prepared in the form of 110 mg pure L-α-alanine powder filled into clear tissue-equivalent polymethylmethacrylate (PMMA) plastic tubes with the dimensions 25 mm length, 3 mm inner diameter, and 1 mm wall thickness. A dose-response calibration curve was established for the alanine by placing the dosimeters at 1.5 cm depth in a 30×30×30 cm{sup 3} solid water phantom and then irradiating on a linac with 6 MV photon beam at 10×10more » cm{sup 2} field size to doses ranging from 1 to 5 Gy. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the absorbed dose in alanine. An IMRT treatment plan was designed for a commercial heterogeneous CIRS thorax phantom and the dose values were calculated at three different points located in tissue, lung, and bone equivalent materials. A set of dose measurements was carried out to compare measured and calculated dose values by placing the alanine dosimeters at those selected locations inside the thorax phantom and delivering the IMRT to the phantom. Results: The alanine dose measurements and the IMRT plan dose calculations were found to be in agreement within ±2%. Specifically, the deviations were −0.5%, 1.3%, and −1.7% for tissue, lung, and bone; respectively. The slightly large deviations observed for lung and bone may be attributed to tissue inhomogeneity, steep dose gradients in these regions, and uncontrollable changes in spectrometer conditions. Conclusion: The results described herein confirmed that pure alanine dosimeter was suitable for in-phantom dosimetry of IMRT beams because of its high sensitivity and acceptable accuracy. This makes the dosimeter a promising option for quality control of the therapeutic beams, complementing the commonly used ionization chambers, TLDs, and films.« less

  10. Monte Carlo-based QA for IMRT of head and neck cancers

    NASA Astrophysics Data System (ADS)

    Tang, F.; Sham, J.; Ma, C.-M.; Li, J.-S.

    2007-06-01

    It is well-known that the presence of large air cavity in a dense medium (or patient) introduces significant electronic disequilibrium when irradiated with megavoltage X-ray field. This condition may worsen by the possible use of tiny beamlets in intensity-modulated radiation therapy (IMRT). Commercial treatment planning systems (TPSs), in particular those based on the pencil-beam method, do not provide accurate dose computation for the lungs and other cavity-laden body sites such as the head and neck. In this paper we present the use of Monte Carlo (MC) technique for dose re-calculation of IMRT of head and neck cancers. In our clinic, a turn-key software system is set up for MC calculation and comparison with TPS-calculated treatment plans as part of the quality assurance (QA) programme for IMRT delivery. A set of 10 off-the-self PCs is employed as the MC calculation engine with treatment plan parameters imported from the TPS via a graphical user interface (GUI) which also provides a platform for launching remote MC simulation and subsequent dose comparison with the TPS. The TPS-segmented intensity maps are used as input for the simulation hence skipping the time-consuming simulation of the multi-leaf collimator (MLC). The primary objective of this approach is to assess the accuracy of the TPS calculations in the presence of air cavities in the head and neck whereas the accuracy of leaf segmentation is verified by fluence measurement using a fluoroscopic camera-based imaging device. This measurement can also validate the correct transfer of intensity maps to the record and verify system. Comparisons between TPS and MC calculations of 6 MV IMRT for typical head and neck treatments review regional consistency in dose distribution except at and around the sinuses where our pencil-beam-based TPS sometimes over-predicts the dose by up to 10%, depending on the size of the cavities. In addition, dose re-buildup of up to 4% is observed at the posterior nasopharyngeal mucosa for some treatments with heavily-weighted anterior fields.

  11. Density scaling of phantom materials for a 3D dose verification system.

    PubMed

    Tani, Kensuke; Fujita, Yukio; Wakita, Akihisa; Miyasaka, Ryohei; Uehara, Ryuzo; Kodama, Takumi; Suzuki, Yuya; Aikawa, Ako; Mizuno, Norifumi; Kawamori, Jiro; Saitoh, Hidetoshi

    2018-05-21

    In this study, the optimum density scaling factors of phantom materials for a commercially available three-dimensional (3D) dose verification system (Delta4) were investigated in order to improve the accuracy of the calculated dose distributions in the phantom materials. At field sizes of 10 × 10 and 5 × 5 cm 2 with the same geometry, tissue-phantom ratios (TPRs) in water, polymethyl methacrylate (PMMA), and Plastic Water Diagnostic Therapy (PWDT) were measured, and TPRs in various density scaling factors of water were calculated by Monte Carlo simulation, Adaptive Convolve (AdC, Pinnacle 3 ), Collapsed Cone Convolution (CCC, RayStation), and AcurosXB (AXB, Eclipse). Effective linear attenuation coefficients (μ eff ) were obtained from the TPRs. The ratios of μ eff in phantom and water ((μ eff ) pl,water ) were compared between the measurements and calculations. For each phantom material, the density scaling factor proposed in this study (DSF) was set to be the value providing a match between the calculated and measured (μ eff ) pl,water . The optimum density scaling factor was verified through the comparison of the dose distributions measured by Delta4 and calculated with three different density scaling factors: the nominal physical density (PD), nominal relative electron density (ED), and DSF. Three plans were used for the verifications: a static field of 10 × 10 cm 2 and two intensity modulated radiation therapy (IMRT) treatment plans. DSF were determined to be 1.13 for PMMA and 0.98 for PWDT. DSF for PMMA showed good agreement for AdC and CCC with 6 MV x ray, and AdC for 10 MV x ray. DSF for PWDT showed good agreement regardless of the dose calculation algorithms and x-ray energy. DSF can be considered one of the references for the density scaling factor of Delta4 phantom materials and may help improve the accuracy of the IMRT dose verification using Delta4. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  12. Development of PARMA: PHITS-based analytical radiation model in the atmosphere.

    PubMed

    Sato, Tatsuhiko; Yasuda, Hiroshi; Niita, Koji; Endo, Akira; Sihver, Lembit

    2008-08-01

    Estimation of cosmic-ray spectra in the atmosphere has been essential for the evaluation of aviation doses. We therefore calculated these spectra by performing Monte Carlo simulation of cosmic-ray propagation in the atmosphere using the PHITS code. The accuracy of the simulation was well verified by experimental data taken under various conditions, even near sea level. Based on a comprehensive analysis of the simulation results, we proposed an analytical model for estimating the cosmic-ray spectra of neutrons, protons, helium ions, muons, electrons, positrons and photons applicable to any location in the atmosphere at altitudes below 20 km. Our model, named PARMA, enables us to calculate the cosmic radiation doses rapidly with a precision equivalent to that of the Monte Carlo simulation, which requires much more computational time. With these properties, PARMA is capable of improving the accuracy and efficiency of the cosmic-ray exposure dose estimations not only for aircrews but also for the public on the ground.

  13. The radiation field measurement and analysis outside the shielding of A 10 MeV electron irradiation accelerator

    NASA Astrophysics Data System (ADS)

    Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong

    2011-10-01

    Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.

  14. Electronic structure of Fe1.08Te bulk crystals and epitaxial FeTe thin films on Bi2Te3

    NASA Astrophysics Data System (ADS)

    Arnold, Fabian; Warmuth, Jonas; Michiardi, Matteo; Fikáček, Jan; Bianchi, Marco; Hu, Jin; Mao, Zhiqiang; Miwa, Jill; Singh, Udai Raj; Bremholm, Martin; Wiesendanger, Roland; Honolka, Jan; Wehling, Tim; Wiebe, Jens; Hofmann, Philip

    2018-02-01

    The electronic structure of thin films of FeTe grown on Bi2Te3 is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk Fe1.08Te taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on Bi2Te3 in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film’s electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film’s high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.

  15. Ant colony algorithm implementation in electron and photon Monte Carlo transport: application to the commissioning of radiosurgery photon beams.

    PubMed

    García-Pareja, S; Galán, P; Manzano, F; Brualla, L; Lallena, A M

    2010-07-01

    In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within approximately 3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  16. Protracted Low-Dose Ionizing Radiation Effects upon Primate Performance

    DTIC Science & Technology

    1977-12-01

    61 G. Dosimetry ................................ ............. 74 NTiS Whife Sectle ) U A N O U C E D JUSTIFICATION...AECL facility. Standard dosimetry techniques were utilized during radiation expo- sur.. In addition, extensive preexposure calibration was conducted...During each of the epochs, the five basic variables were deter- mined. These calculations were accomplished on an analog computer, Electronics Associates

  17. M-Rated Video Games and Aggressive or Problem Behavior among Young Adolescents

    ERIC Educational Resources Information Center

    Olson, Cheryl K.; Kutner, Lawrence A.; Baer, Lee; Beresin, Eugene V.; Warner, Dorothy E.; Nicholi, Armand M., II

    2009-01-01

    This research examined the potential relationship between adolescent problem behaviors and amount of time spent with violent electronic games. Survey data were collected from 1,254 7th and 8th grade students in two states. A "dose" of exposure to Mature-rated games was calculated using Entertainment Software Rating Board ratings of…

  18. Dosimetry for electron Intra-Operative RadioTherapy: Comparison of output factors obtained through alanine/EPR pellets, ionization chamber and Monte Carlo-GEANT4 simulations for IORT mobile dedicate accelerator

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria

    2015-09-01

    In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus ionization chamber and Monte Carlo results (within about 3%) for both flat and bevelled applicators.

  19. Acceptance and commissioning of a treatment planning system based on Monte Carlo calculations.

    PubMed

    Lopez-Tarjuelo, J; Garcia-Molla, R; Juan-Senabre, X J; Quiros-Higueras, J D; Santos-Serra, A; de Marco-Blancas, N; Calzada-Feliu, S

    2014-04-01

    The Monaco Treatment Planning System (TPS), based on a virtual energy fluence model of the photon beam head components of the linac and a dose computation engine made with Monte Carlo (MC) algorithm X-Ray Voxel MC (XVMC), has been tested before being put into clinical use. An Elekta Synergy with 6 MV was characterized using routine equipment. After the machine's model was installed, a set of functionality, geometric, dosimetric and data transfer tests were performed. The dosimetric tests included dose calculations in water, heterogeneous phantoms and Intensity Modulated Radiation Therapy (IMRT) verifications. Data transfer tests were run for every imaging device, TPS and the electronic medical record linked to Monaco. Functionality and geometric tests were run properly. Dose calculations in water were in accordance with measurements so that, in 95% of cases, differences were up to 1.9%. Dose calculation in heterogeneous media showed expected results found in the literature. IMRT verification results with an ionization chamber led to dose differences lower than 2.5% for points inside a standard gradient. When an 2-D array was used, all the fields passed the g (3%, 3 mm) test with a percentage of succeeding points between 90% and 95%, of which the majority of the mentioned fields had a percentage of succeeding points between 95% and 100%. Data transfer caused problems that had to be solved by means of changing our workflow. In general, tests led to satisfactory results. Monaco performance complied with published international recommendations and scored highly in the dosimetric ambit. However, the problems detected when the TPS was put to work together with our current equipment showed that this kind of product must be completely commissioned, without neglecting data workflow, before treating the first patient.

  20. Revision of orthovoltage chest wall treatment using Monte Carlo simulations.

    PubMed

    Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Mosalaei, A; Hadad, K

    2017-01-01

    Given the high local control rates observed in breast cancer patients undergoing chest wall irradiation by kilovoltage x-rays, we aimed to revisit this treatment modality by accurate calculation of dose distributions using Monte Carlo simulation. The machine components were simulated using the MCNPX code. This model was used to assess the dose distribution of chest wall kilovoltage treatment in different chest wall thicknesses and larger contour or fat patients in standard and mid sternum treatment plans. Assessments were performed at 50 and 100 cm focus surface distance (FSD) and different irradiation angles. In order to evaluate different plans, indices like homogeneity index, conformity index, the average dose of heart, lung, left anterior descending artery (LAD) and percentage target coverage (PTC) were used. Finally, the results were compared with the indices provided by electron therapy which is a more routine treatment of chest wall. These indices in a medium chest wall thickness in standard treatment plan at 50 cm FSD and 15 degrees tube angle was as follows: homogeneity index 2.57, conformity index 7.31, average target dose 27.43 Gy, average dose of heart, lung and LAD, 1.03, 2.08 and 1.60 Gy respectively and PTC 11.19%. Assessments revealed that dose homogeneity in planning target volume (PTV) and conformity between the high dose region and PTV was poor. To improve the treatment indices, the reference point was transferred from the chest wall skin surface to the center of PTV. The indices changed as follows: conformity index 7.31, average target dose 60.19 Gy, the average dose of heart, lung and LAD, 3.57, 6.38 and 5.05 Gy respectively and PTC 55.24%. Coverage index of electron therapy was 89% while it was 22.74% in the old orthovoltage method and also the average dose of the target was about 50 Gy but in the given method it was almost 30 Gy. The results of the treatment study show that the optimized standard and mid sternum treatment for different chest wall thicknesses is with 50 cm FSD and zero (vertical) tube angle, while in large contour patients, it is with 100 cm FSD and zero tube angle. Finally, chest wall kilovoltage and electron therapies were compared, which revealed that electron therapy produces a better dose distribution than kilovoltage therapy.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, D; Badkul, R; Jiang, H

    Purpose: To compare dose distributions calculated using the iPlan XVMC algorithm and heterogeneities corrected/uncorrected Pencil Beam (PB-hete/PB-homo) algorithms for SBRT treatments of lung tumors. Methods: Ten patients with centrally located solitary lung tumors were treated using MC-based SBRT to 60Gy in 5 fractions for PTVV100%=95%. ITV was delineated on MIP-images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1–106.5cc(mean=48.6cc). MC-SBRT plans were generated with a combination of non-coplanar conformal arcs/beams using iPlan-XVMC-algorithm (BrainLABiPlan ver.4.1.2) for Novalis-TX consisting of HD-MLCs and 6MV-SRS(1000MU/min) mode, following RTOG 0813 dosimetric criteria. For comparison, PB-hete/PB-homo algorithms were used to re-calculate dose distributions using same beammore » configurations, MLCs/monitor units. Plans were evaluated with isocenter/maximal/mean doses to PTV. Normal lung doses were evaluated with V5/V10/V20 and mean-lung-dose(MLD), excluding PTV. Other OAR doses such as maximal spinal cord/2cc-esophagus/max bronchial tree (BT/maximal heart doses were tabulated. Results: Maximal/mean/isocenter doses to PTV calculated by PB-hete were uniformly larger than MC plans by a factors of 1.09/1.13/1.07, on average, whereas they were consistently lower by PB-homo by a factors of 0.9/0.84/0.9, respectively. The volume covered by 5Gy/10Gy/20Gy isodose-lines of the lung were comparable (average within±3%) when calculated by PB-hete compared to XVMC, but, consistently lower by PB-homo by a factors of 0.90/0.88/0.85, respectively. MLD was higher with PB-hete by 1.05, but, lower by PB-homo by 0.9, on average, compared to XVMC. XVMC max-cord/max-BT/max-heart and 2cc of esophagus doses were comparable to PB-hete; however, PB-homo underestimates by a factors of 0.82/0.89/0.88/0.86, on average, respectively. Conclusion: PB-hete significantly overestimates dose to PTV relative to XVMC -hence underdosing the target. MC is more complex and accurate with tissue-heterogeneities.The magnitude of variation significantly varies with ‘small-island-tumor’ surrounded by low-density lung tissues -PB algorithms lacks later electron scattering. Dose calculation with XVMC for lung SBRT is routinely performed in our clinic, its performance for head'neck/sinus cases will also be investigated.« less

  2. Feasibility of using Geant4 Monte Carlo simulation for IMRT dose calculations for the Novalis Tx with a HD-120 multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Jung, Hyunuk; Shin, Jungsuk; Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Choi, Doo Ho

    2015-05-01

    The aim of this study was to develop an independent dose verification system by using a Monte Carlo (MC) calculation method for intensity modulated radiation therapy (IMRT) conducted by using a Varian Novalis Tx (Varian Medical Systems, Palo Alto, CA, USA) equipped with a highdefinition multi-leaf collimator (HD-120 MLC). The Geant4 framework was used to implement a dose calculation system that accurately predicted the delivered dose. For this purpose, the Novalis Tx Linac head was modeled according to the specifications acquired from the manufacturer. Subsequently, MC simulations were performed by varying the mean energy, energy spread, and electron spot radius to determine optimum values of irradiation with 6-MV X-ray beams by using the Novalis Tx system. Computed percentage depth dose curves (PDDs) and lateral profiles were compared to the measurements obtained by using an ionization chamber (CC13). To validate the IMRT simulation by using the MC model we developed, we calculated a simple IMRT field and compared the result with the EBT3 film measurements in a water-equivalent solid phantom. Clinical cases, such as prostate cancer treatment plans, were then selected, and MC simulations were performed. The accuracy of the simulation was assessed against the EBT3 film measurements by using a gamma-index criterion. The optimal MC model parameters to specify the beam characteristics were a 6.8-MeV mean energy, a 0.5-MeV energy spread, and a 3-mm electron radius. The accuracy of these parameters was determined by comparison of MC simulations with measurements. The PDDs and the lateral profiles of the MC simulation deviated from the measurements by 1% and 2%, respectively, on average. The computed simple MLC fields agreed with the EBT3 measurements with a 95% passing rate with 3%/3-mm gamma-index criterion. Additionally, in applying our model to clinical IMRT plans, we found that the MC calculations and the EBT3 measurements agreed well with a passing rate of greater than 95% on average with a 3%/3-mm gamma-index criterion. In summary, the Novalis Tx Linac head equipped with a HD-120 MLC was successfully modeled by using a Geant4 platform, and the accuracy of the Geant4 platform was successfully validated by comparisons with measurements. The MC model we have developed can be a useful tool for pretreatment quality assurance of IMRT plans and for commissioning of radiotherapy treatment planning.

  3. Thermoluminescent dosimetry in rotary-dual technique of the total skin electron irradiation.

    PubMed

    Piotrowski, T; Fundowicz, D; Pawlaczyk, M; Malicki, J

    2003-01-01

    The aim of the study was to discuss the results of thermoluminescent dosimetry (TLD) in rotary-dual technique of the total skin electron irradiation (TSEI RD), to confirm beam calibration and monitor unit calculations and to provide data for making clinical decisions. Between May 2001 and April 2002, in 3 cases of mycosis fungoides, 736 dosimetric checks were performed in 34 points at the skin. CaF2:MnTLD-400 cubes (1/8"x1/8"x0.015") were used for in vivo dosimetry. Doses were computed and analyzed for all locations. Percent of described dose and SD for the following localizations from 34 points were: anterior abdomen (reference point) 100+/-6%, upper back 100+/-8%, right calf 98+/-10%, left foot (mid dorsum) 97+/-8%, posterior neck 93+/-6%, right hand (mid dorsum) 78+/-10%, hand fingers 57+/-10%, top of right shoulder 56+/-14%, left groin 35+/-20%, perineum 22+/-17%. The correlations between patient's height and measured doses were sufficient for the following localizations: scalp (top rear), occiput, elbows, hand fingers and hands (mid dorsum). The correlations between obesity index and measured doses were sufficient for the following localizations: shoulders and lateral neck, groins, and perineum. Dosimetric checks at the reference point confirm that our beam calibration technique and monitor unit calculation are accurate. TLD shows that for some parts of the skin such as shoulder, hands and perineum boost fields were required. The correlations with obesity index and height for several sites suggest that boost fields must be customized for each patient.

  4. TU-F-CAMPUS-J-04: Evaluation of Metal Artifact Reduction Technique for the Radiation Therapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, K; Kuo, H; Ritter, J

    Purpose: To evaluate the feasibility of using a metal artifact reduction technique in depleting metal artifact and its application in improving dose calculation in External Radiation Therapy Planning. Methods: CIRS electron density phantom was scanned with and without steel drill bits placed in some plug holes. Meta artifact reduction software with Metal Deletion Technique (MDT) was used to remove metal artifacts for scanned image with metal. Hounsfield units of electron density plugs from artifact free reference image and MDT processed images were compared. To test the dose calculation improvement after the MDT processed images, clinically approved head and neck planmore » with manual dental artifact correction was tested. Patient images were exported and processed with MDT and plan was recalculated with new MDT image without manual correction. Dose profiles near the metal artifacts were compared. Results: The MDT used in this study effectively reduced the metal artifact caused by beam hardening and scatter. The windmill around the metal drill was greatly improved with smooth rounded view. Difference of the mean HU in each density plug between reference and MDT images were less than 10 HU in most of the plugs. Dose difference between original plan and MDT images were minimal. Conclusion: Most metal artifact reduction methods were developed for diagnostic improvement purpose. Hence Hounsfield unit accuracy was not rigorously tested before. In our test, MDT effectively eliminated metal artifacts with good HU reproduciblity. However, it can introduce new mild artifacts so the MDT images should be checked with original images.« less

  5. Electron absorbed fractions of energy and S-values in an adult human skeleton based on µCT images of trabecular bone

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Richardson, R. B.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; Lira, C. A. B. de O.; Robson Brown, K.

    2011-03-01

    When the human body is exposed to ionizing radiation, among the soft tissues at risk are the active marrow (AM) and the bone endosteum (BE) located in tiny, irregular cavities of trabecular bone. Determination of absorbed fractions (AFs) of energy or absorbed dose in the AM and the BE represent one of the major challenges of dosimetry. Recently, at the Department of Nuclear Energy at the Federal University of Pernambuco, a skeletal dosimetry method based on µCT images of trabecular bone introduced into the spongiosa voxels of human phantoms has been developed and applied mainly to external exposure to photons. This study uses the same method to calculate AFs of energy and S-values (absorbed dose per unit activity) for electron-emitting radionuclides known to concentrate in skeletal tissues. The modelling of the skeletal tissue regions follows ICRP110, which defines the BE as a 50 µm thick sub-region of marrow next to the bone surfaces. The paper presents mono-energetic AFs for the AM and the BE for eight different skeletal regions for electron source energies between 1 keV and 10 MeV. The S-values are given for the beta emitters 14C, 59Fe, 131I, 89Sr, 32P and 90Y. Comparisons with results from other investigations showed good agreement provided that differences between methodologies and trabecular bone volume fractions were properly taken into account. Additionally, a comparison was made between specific AFs of energy in the BE calculated for the actual 50 µm endosteum and the previously recommended 10 µm endosteum. The increase in endosteum thickness leads to a decrease of the endosteum absorbed dose by up to 3.7 fold when bone is the source region, while absorbed dose increases by ~20% when the beta emitters are in marrow.

  6. Monaco and film dosimetry of 3D CRT, IMRT and VMAT cases in a realistic pelvic prosthetic phantom

    NASA Astrophysics Data System (ADS)

    Ade, Nicholas; du Plessis, F. C. P.

    2018-04-01

    The dosimetry of patients with metallic hip implants during irradiation of pelvic lesions is challenging due to dose distortions caused by implants. This work presents a dosimetric comparison of various multi-field photon-beam dose distributions in the presence of unilateral hip titanium prosthesis (UHTiP) embedded in a unique pelvic phantom made out of water-equivalent nylon slices. The impact of the UHTiP on the accuracy of dose calculations from a Monaco TPS (treatment planning system) using the X-ray voxel Monte Carlo (XVMC) algorithm was benchmarked against measured dose data using Gafchromic EBT3 film. Multi-field beam arrangements including a 4-field box, 5-field 3DCRT (three-dimensional conformal radiation therapy), 6-field IMRT (intensity modulated radiation therapy) and a single-arc VMAT (volumetric modulated arc therapy) plan were set up for 6 MV and 15 MV beams. These plans were generated for the pelvic phantom that contains the prosthesis with film inserted. Compared to Monaco TPS dose calculations, film measurements showed enhanced dose in the prosthesis which was not predicted by Monaco due to its limitation in relative density assignment. The enhanced prosthesis dose increased with increase in beam energy and decreased with the complexity of the treatment plans, with VMAT giving the least escalated dose. The dose increased between 5% and 19% for 6 MV and between 6% and 21% for 15 MV. A gamma index analysis showed that 70-92% of dose points (excluding the prosthesis) were within 3% discrepancy. Increasing the number of treatment fields increases target dose coverage and improves the agreement between film and Monaco. When the relative electron density (RED) in the prosthesis was varied between 3.72 and 15 the dose discrepancy between film and Monaco increased from 30% to 57% for 6 MV and from 30% to 50% for 15 MV. The study indicates that beam weights for fields that pass through the prosthesis should be minimised and its RED must be correct for accurate dose calculation on Monaco.

  7. Effective radiation reduction in Space Station and missions beyond the magnetosphere

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas M.; Stassinopoulos, E. G.

    1989-01-01

    This paper investigates the efficiency of low- and high-atomic number materials used as protective shields against biologically effective radiation in doses equivalent to those expected in low-earth-orbit and interplanetary manned missions. Results are presented on calculations for single-material shields from polyethylene, water, Be, Al, Fe, and Ta and multilayer shelds made from the combinations of any two or any three of these materials, for both LEO and interplanetary conditions. It is shown that, whereas for protons and Galactic cosmic rays the ordering of shield materials has a negligible effect, for electrons and secondary bremsstrahlung, both the order and the composition are important parameters. It was found that low-atomic-number materials are most effective shields against protons and galactic cosmic rays, and are most effective in decreasing bremsstrahlung production, while high-atomic-number shields are the best attenuators of both primary electrons (if the dose is dominated by primary electrons) and secondary bremsstrahlung (if this is produced).

  8. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    NASA Astrophysics Data System (ADS)

    Alexander, Andrew William

    Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and optimization algorithms are demonstrated. We investigated the clinical significance of MERT on spinal irradiation, breast boost irradiation, and a head and neck sarcoma cancer site using several parameters to analyze the treatment plans. Finally, we investigated the idea of mixed beam photon and electron treatment planning. Photon optimization treatment planning tools were included within the MERT planning toolkit for the purpose of mixed beam optimization. In conclusion, this thesis work has resulted in the development of an advanced framework for photon and electron Monte Carlo treatment planning studies and the development of an inverse planning system for photon, electron or mixed beam radiotherapy (MBRT). The justification and validation of this work is found within the results of the planning studies, which have demonstrated dosimetric advantages to using MERT or MBRT in comparison to clinical treatment alternatives.

  9. Experimental and numerical investigations of air plasmas induced by multi-MeV pulsed X-ray from low to atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno

    2016-09-01

    This research work is devoted to the experimental and theoretical analysis of air plasmas induced by multi-MeV pulsed X-ray for a large pressure range of humid air background gas varying from 20 mbar to atmospheric pressure. The time evolution of the electron density of the air plasma is determined by electromagnetic wave absorption measurements. The measurements have uncertainties of about ±30%, taking into account the precision of the dose measurement and also the shot to shot fluctuations of the generator. The experimental electron density is obtained by comparing the measurements of the transmitted microwave signals to the calculated ones. The calculations need the knowledge of the time evolution of the electron mean energy, which is determined by a chemical kinetic model based on a reaction scheme involving 39 species interacting following 265 reactions. During the X-ray pulse, a good agreement is obtained between time evolution of the electron density obtained from absorption measurements and calculations based on the kinetic model. The relative deviation on the maximum electron density and the corresponding plasma frequency is always lower than 10%. The maximum electron density varies from 4 × 1011 to 3.5 × 1013 cm-3 between 30 mbar to atmospheric pressure, while the peak of the electron mean energy decreases from 5.64 eV to 4.27 eV in the same pressure range.

  10. SU-F-BRB-14: Dosimetric Effects at Air- Tissue Boundary Due to Magnetic Field in MR-Guided IMRT/VMAT Delivery for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prior, P; Chen, X; Schultz, C

    Purpose: The advent of the MR-Linac enables real-time and high soft tissue contrast image guidance in radiation therapy (RT) delivery. Potential hot-spots at air-tissue interfaces, such as the sphenoid sinus, in RT for head and neck cancer (HNC), could potentially occur due to the electron return effect (ERE). In this study, we investigate the dosimetric effects of ERE on the dose distribution at air-tissues interfaces in HNC IMRT treatment planning. Methods: IMRT plans were generated based on planning CT’s acquired for HNC cases (nasopharynx, base of skull and paranasal sinus) using a research planning system (Monaco, v5.09.06, Elekta) employing Montemore » Carlo dose calculations with or without the presence of a transverse magnetic field (TMF). The dose in the air cavity was calculated in a 1 & 2 mm thick tissue layer, while the dose to the skin was calculated in a 1, 3 and 5 mm thick tissue layer. The maximum dose received in 1 cc volume, D1cc, were collected at different TMF strengths. Plan qualities generated with or without TMF or with increasing TMF were compared in terms of commonly-used dose-volume parameters (DVPs). Results: Variations in DVPs between plans with and without a TMF present were found to be within 5% of the planning CT. The presence of a TMF results in <5% changes in sinus air tissue interface. The largest skin dose differences with and without TMF were found within 1 mm of the skin surface Conclusion: The presence of a TMF results in practically insignificant changes in HNC IMRT plan quality, except for skin dose. Planning optimization with skin DV constraints could reduce the skin doses. This research was partially supported by Elekta Inc. (Crowley, U.K.)« less

  11. Primary and secondary particle contributions to the depth dose distribution in a phantom shielded from solar flare and Van Allen protons

    NASA Technical Reports Server (NTRS)

    Santoro, R. T.; Claiborne, H. C.; Alsmiller, R. G., Jr.

    1972-01-01

    Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields.

  12. The ion environment near Europa and its role in surface energetics

    NASA Astrophysics Data System (ADS)

    Paranicas, C.; Ratliff, J. M.; Mauk, B. H.; Cohen, C.; Johnson, R. E.

    2002-03-01

    This paper gives the composition, energy spectra, and time variability of energetic ions measured just upstream of Europa. From 100 keV to 100 MeV, ion intensities vary by less than a factor of ~5 among Europa passes considered between 1997 and 2000. We use the data to estimate the radiation dose rate into Europa's surface for depths 0.01 mm - 1 m. We find that in a critical fraction of the upper layer on Europa's trailing hemisphere, energetic electrons are the principal agent for radiolysis, and their bremsstrahlung photon products, not included in previous studies, dominate the dose below about 1 m. Because ion bombardment is more uniform across Europa's surface, the radiation dose on the leading hemisphere is dominated by the proton flux. Differences exist between this calculation and published doses based on the E4 wake pass. For instance, proton doses presented here are much greater below 1 mm.

  13. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.

    PubMed

    Sakata, Dousatsu; Kyriakou, Ioanna; Okada, Shogo; Tran, Hoang N; Lampe, Nathanael; Guatelli, Susanna; Bordage, Marie-Claude; Ivanchenko, Vladimir; Murakami, Koichi; Sasaki, Takashi; Emfietzoglou, Dimitris; Incerti, Sebastien

    2018-05-01

    Gold nanoparticles (GNPs) are known to enhance the absorbed dose in their vicinity following photon-based irradiation. To investigate the therapeutic effectiveness of GNPs, previous Monte Carlo simulation studies have explored GNP dose enhancement using mostly condensed-history models. However, in general, such models are suitable for macroscopic volumes and for electron energies above a few hundred electron volts. We have recently developed, for the Geant4-DNA extension of the Geant4 Monte Carlo simulation toolkit, discrete physics models for electron transport in gold which include the description of the full atomic de-excitation cascade. These models allow event-by-event simulation of electron tracks in gold down to 10 eV. The present work describes how such specialized physics models impact simulation-based studies on GNP-radioenhancement in a context of x-ray radiotherapy. The new discrete physics models are compared to the Geant4 Penelope and Livermore condensed-history models, which are being widely used for simulation-based NP radioenhancement studies. An ad hoc Geant4 simulation application has been developed to calculate the absorbed dose in liquid water around a GNP and its radioenhancement, caused by secondary particles emitted from the GNP itself, when irradiated with a monoenergetic electron beam. The effect of the new physics models is also quantified in the calculation of secondary particle spectra, when originating in the GNP and when exiting from it. The new physics models show similar backscattering coefficients with the existing Geant4 Livermore and Penelope models in large volumes for 100 keV incident electrons. However, in submicron sized volumes, only the discrete models describe the high backscattering that should still be present around GNPs at these length scales. Sizeable differences (mostly above a factor of 2) are also found in the radial distribution of absorbed dose and secondary particles between the new and the existing Geant4 models. The degree to which these differences are due to intrinsic limitations of the condensed-history models or to differences in the underling scattering cross sections requires further investigation. Improved physics models for gold are necessary to better model the impact of GNPs in radiotherapy via Monte Carlo simulations. We implemented discrete electron transport models for gold in Geant4 that is applicable down to 10 eV including the modeling of the full de-excitation cascade. It is demonstrated that the new model has a significant positive impact on particle transport simulations in gold volumes with submicron dimensions compared to the existing Livermore and Penelope condensed-history models of Geant4. © 2018 American Association of Physicists in Medicine.

  14. Delivery confirmation of bolus electron conformal therapy combined with intensity modulated x-ray therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavanaugh, James A.; Hogstrom, Kenneth R.; Fontenot, Jonas P.

    2013-02-15

    Purpose: The purpose of this study was to demonstrate that a bolus electron conformal therapy (ECT) dose plan and a mixed beam plan, composed of an intensity modulated x-ray therapy (IMXT) dose plan optimized on top of the bolus ECT plan, can be accurately delivered. Methods: Calculated dose distributions were compared with measured dose distributions for parotid and chest wall (CW) bolus ECT and mixed beam plans, each simulated in a cylindrical polystyrene phantom that allowed film dose measurements. Bolus ECT plans were created for both parotid and CW PTVs (planning target volumes) using 20 and 16 MeV beams, respectively,more » whose 90% dose surface conformed to the PTV. Mixed beam plans consisted of an IMXT dose plan optimized on top of the bolus ECT dose plan. The bolus ECT, IMXT, and mixed beam dose distributions were measured using radiographic films in five transverse and one sagittal planes for a total of 36 measurement conditions. Corrections for film dose response, effects of edge-on photon irradiation, and effects of irregular phantom optical properties on the Cerenkov component of the film signal resulted in high precision measurements. Data set consistency was verified by agreement of depth dose at the intersections of the sagittal plane with the five measured transverse planes. For these same depth doses, results for the mixed beam plan agreed with the sum of the individual depth doses for the bolus ECT and IMXT plans. The six mean measured planar dose distributions were compared with those calculated by the treatment planning system for all modalities. Dose agreement was assessed using the 4% dose difference and 0.2 cm distance to agreement. Results: For the combined high-dose region and low-dose region, pass rates for the parotid and CW plans were 98.7% and 96.2%, respectively, for the bolus ECT plans and 97.9% and 97.4%, respectively, for the mixed beam plans. For the high-dose gradient region, pass rates for the parotid and CW plans were 93.1% and 94.62%, respectively, for the bolus ECT plans and 89.2% and 95.1%, respectively, for the mixed beam plans. For all regions, pass rates for the parotid and CW plans were 98.8% and 97.3%, respectively, for the bolus ECT plans and 97.5% and 95.9%, respectively, for the mixed beam plans. For the IMXT component of the mixed beam plans, pass rates for the parotid and CW plans were 93.7% and 95.8%. Conclusions: Bolus ECT and mixed beam therapy dose delivery to the phantom were more accurate than IMXT delivery, adding confidence to the use of planning, fabrication, and delivery for bolus ECT tools either alone or as part of mixed beam therapy. The methodology reported in this work could serve as a basis for future standardization of the commissioning of bolus ECT or mixed beam therapy. When applying this technology to patients, it is recommended that an electron dose algorithm more accurate than the pencil beam algorithm, e.g., a Monte Carlo algorithm or analytical transport such as the pencil beam redefinition algorithm, be used for planning to ensure the desired accuracy.« less

  15. Out-of-field doses and neutron dose equivalents for electron beams from modern Varian and Elekta linear accelerators.

    PubMed

    Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F

    2016-07-08

    Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.

  16. Around Semipalatinsk nuclear test site: progress of dose estimations relevant to the consequences of nuclear tests (a summary of 3rd Dosimetry Workshop on the Semipalatinsk nuclear test site area, RIRBM, Hiroshima University, Hiroshima, 9-11 of March, 2005).

    PubMed

    Stepanenko, Valeriy F; Hoshi, Masaharu; Bailiff, Ian K; Ivannikov, Alexander I; Toyoda, Shin; Yamamoto, Masayoshi; Simon, Steven L; Matsuo, Masatsugu; Kawano, Noriyuki; Zhumadilov, Zhaxybay; Sasaki, Masao S; Rosenson, Rafail I; Apsalikov, Kazbek N

    2006-02-01

    The paper is an analytical overview of the main results presented at the 3rd Dosimetry Workshop in Hiroshima(9-11 of March 2005), where different aspects of the dose reconstruction around the Semipalatinsk nuclear test site(SNTS) were discussed and summarized. The results of the international intercomparison of the retrospective luminescence dosimetry(RLD) method for Dolon' village(Kazakhstan) were presented at the Workshop and good concurrence between dose estimations by different laboratories from 6 countries (Japan, Russia, USA, Germany, Finland and UK) was pointed out. The accumulated dose values in brick for a common depth of 10mm depth obtained independently by all participating laboratories were in good agreement for all four brick samples from Dolon' village, Kazakhstan, with the average value of the local gamma dose due to fallout (near the sampling locations) being about 220 mGy(background dose has been subtracted).Furthermore, using a conversion factor of about 2 to obtain the free-in-air dose, a value of local dose approximately 440 mGy is obtained, which supports the results of external dose calculations for Dolon': recently published soil contamination data, archive information and new models were used for refining dose calculations and the external dose in air for Dolon village was estimated to be about 500 mGy. The results of electron spin resonance(ESR) dosimetry with tooth enamel have demonstrated the notable progress in application of ESR dosimetry to the problems of dose reconstruction around the Semipalatinsk nuclear test site. At the present moment, dose estimates by the ESR method have become more consistent with calculated values and with retrospective luminescence dosimetry data, but differences between ESR dose estimates and RLD/calculation data were noted. For example mean ESR dose for eligible tooth samples from Dolon' village was estimated to be about 140 mGy(above background dose), which is less than dose values obtained by RLD and calculations. A possible explanation of the differences between ESR and RLD/calculations doses is the following: for interpretation of ESR data the "shielding and behaviour" factors for investigated persons should be taken into account. The "upper level" of the combination of "shielding and behaviour" factors of dose reduction for inhabitants of Dolon' village of about 0.28 was obtained by comparing the individual ESR tooth enamel dose estimates with the calculated mean dose for this settlement. The biological dosimetry data related to the settlements near SNTS were presented at the Workshop. A higher incidence of unstable chromosome aberrations, micronucleus in lymphocytes, nuclear abnormalities of thyroid follicular cells, T-cell receptor mutations in peripheral blood were found for exposed areas (Dolon', Sarjal) in comparison with unexposed ones(Kokpekty). The significant greater frequency of stable translocations (results of analyses of chromosome aberrations in lymphocytes by the FISH technique) was demonstrated for Dolon' village in comparison with Chekoman(unexposed village). The elevated level of stable translocations in Dolon' corresponds to a dose of about 180 mSv, which is close to the results of ESR dosimetry for this village. The importance of investigating specific morphological types of thyroid nodules for thyroid dosimetry studies was pointed out. In general the 3rd Dosimetry Workshop has demonstrated remarkable progress in developing an international level of common approaches for retrospective dose estimations around the SNTS and in understanding the tasks for the future joint work in this direction. In the framework of a special session the problems of developing a database and registry in order to support epidemiological studies around SNTS were discussed. The results of investigation of psychological consequences of nuclear tests, which are expressed in the form of verbal behaviour, were presented at this session as well.

  17. Development of skeletal system for mesh-type ICRP reference adult phantoms

    NASA Astrophysics Data System (ADS)

    Yeom, Yeon Soo; Wang, Zhao Jun; Tat Nguyen, Thang; Kim, Han Sung; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Chung, Beom Sun; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik

    2016-10-01

    The reference adult computational phantoms of the international commission on radiological protection (ICRP) described in Publication 110 are voxel-type computational phantoms based on whole-body computed tomography (CT) images of adult male and female patients. The voxel resolutions of these phantoms are in the order of a few millimeters and smaller tissues such as the eye lens, the skin, and the walls of some organs cannot be properly defined in the phantoms, resulting in limitations in dose coefficient calculations for weakly penetrating radiations. In order to address the limitations of the ICRP-110 phantoms, an ICRP Task Group has been recently formulated and the voxel phantoms are now being converted to a high-quality mesh format. As a part of the conversion project, in the present study, the skeleton models, one of the most important and complex organs of the body, were constructed. The constructed skeleton models were then tested by calculating red bone marrow (RBM) and endosteum dose coefficients (DCs) for broad parallel beams of photons and electrons and comparing the calculated values with those of the original ICRP-110 phantoms. The results show that for the photon exposures, there is a generally good agreement in the DCs between the mesh-type phantoms and the original voxel-type ICRP-110 phantoms; that is, the dose discrepancies were less than 7% in all cases except for the 0.03 MeV cases, for which the maximum difference was 14%. On the other hand, for the electron exposures (⩽4 MeV), the DCs of the mesh-type phantoms deviate from those of the ICRP-110 phantoms by up to ~1600 times at 0.03 MeV, which is indeed due to the improvement of the skeletal anatomy of the developed skeleton mesh models.

  18. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River.

    PubMed

    Degteva, M O; Shagina, N B; Shishkina, E A; Vozilova, A V; Volchkova, A Y; Vorobiova, M I; Wieser, A; Fattibene, P; Della Monaca, S; Ainsbury, E; Moquet, J; Anspaugh, L R; Napier, B A

    2015-11-01

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated (89,90)Sr, the EPR and FISH assays were supported by measurements of (90)Sr-body burdens and estimates of (90)Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from (137)Cs incorporated in donors' soft tissues. It is shown here that the TRDS-based absorbed doses in tooth enamel and muscle are in agreement with EPR- and FISH-based estimates within uncertainty bounds. Basically, this agreement between the estimates has confirmed the validity of external doses calculated with the TRDS.

  19. SU-C-BRB-06: Utilizing 3D Scanner and Printer for Dummy Eye-Shield: Artifact-Free CT Images of Tungsten Eye-Shield for Accurate Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Lee, J; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul

    Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm{sup 2} applicator. Themore » gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield.« less

  20. Technical Report: Evaluation of peripheral dose for flattening filter free photon beams.

    PubMed

    Covington, E L; Ritter, T A; Moran, J M; Owrangi, A M; Prisciandaro, J I

    2016-08-01

    To develop a comprehensive peripheral dose (PD) dataset for the two unflattened beams of nominal energy 6 and 10 MV for use in clinical care. Measurements were made in a 40 × 120 × 20 cm(3) (width × length × depth) stack of solid water using an ionization chamber at varying depths (dmax, 5, and 10 cm), field sizes (3 × 3 to 30 × 30 cm(2)), and distances from the field edge (5-40 cm). The effects of the multileaf collimator (MLC) and collimator rotation were also evaluated for a 10 × 10 cm(2) field. Using the same phantom geometry, the accuracy of the analytic anisotropic algorithm (AAA) and Acuros dose calculation algorithm was assessed and compared to the measured values. The PDs for both the 6 flattening filter free (FFF) and 10 FFF photon beams were found to decrease with increasing distance from the radiation field edge and the decreasing field size. The measured PD was observed to be higher for the 6 FFF than for the 10 FFF for all field sizes and depths. The impact of collimator rotation was not found to be clinically significant when used in conjunction with MLCs. AAA and Acuros algorithms both underestimated the PD with average errors of -13.6% and -7.8%, respectively, for all field sizes and depths at distances of 5 and 10 cm from the field edge, but the average error was found to increase to nearly -69% at greater distances. Given the known inaccuracies of peripheral dose calculations, this comprehensive dataset can be used to estimate the out-of-field dose to regions of interest such as organs at risk, electronic implantable devices, and a fetus. While the impact of collimator rotation was not found to significantly decrease PD when used in conjunction with MLCs, results are expected to be machine model and beam energy dependent. It is not recommended to use a treatment planning system to estimate PD due to the underestimation of the out-of-field dose and the inability to calculate dose at extended distances due to the limits of the dose calculation matrix.

  1. Field size dependent mapping of medical linear accelerator radiation leakage

    NASA Astrophysics Data System (ADS)

    Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima

    2015-03-01

    The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.

  2. Electronic transport properties of graphene doped by gallium.

    PubMed

    Mach, J; Procházka, P; Bartošík, M; Nezval, D; Piastek, J; Hulva, J; Švarc, V; Konečný, M; Kormoš, L; Šikola, T

    2017-10-13

    In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10 -7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.

  3. Electronic transport properties of graphene doped by gallium

    NASA Astrophysics Data System (ADS)

    Mach, J.; Procházka, P.; Bartošík, M.; Nezval, D.; Piastek, J.; Hulva, J.; Švarc, V.; Konečný, M.; Kormoš, L.; Šikola, T.

    2017-10-01

    In this work we present the effect of low dose gallium (Ga) deposition (<4 ML) performed in UHV (10-7 Pa) on the electronic doping and charge carrier scattering in graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.

  4. SU-F-T-325: On the Use of Bolus in Dosimetry and Dose Reduction for Pacemaker and Defibrillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Kenneth, R; Higgins, S

    Purpose: Special attention is required in planning and administering radiation therapy to patients with cardiac implantable electronic devices (CIEDs), such as pacemaker and defibrillator. The range of dose to CIEDs that can induce malfunction is very large among CIEDs. Significant defects have been reported at dose as low as 0.15Gy. Failures causing discomfort have been reported at dose as low as 0.05Gy. Therefore, accurate estimation of dose to CIED and dose reduction are both important even if the dose is expected to be less than the often-used 2Gy limit. We investigate the use of bolus in in vivo dosimetry formore » CIEDs. Methods: In our clinic, high-energy beams (>10MV) are not used for patients with CIED due to neutron production. Solid water phantom measurements of out-of-field dose for a 6MV beam were performed using parallel plate chamber at different depth with and without 2cm bolus covering the chamber. In vivo dosimetry at skin surface above the pacemaker was performed with and without bolus for 3 patients with pacemaker <5cm from the field edge. Results: Chamber measured dose at depth ∼1 to 1.5cm below the skin surface, where the CIED is normally located, was reduced by ∼6% – 20% with bolus. The dose reduction became smaller at deeper depth. In vivo dosimetry at skin surface also yielded ∼20% – 60% lower dose when using bolus for the 3 patients. In general, TPS calculation underestimated the dose. The dose measured with bolus is closer to the dose at the depth of the pacemaker and less affected by contaminant electrons and linac head leakage. Conclusion: In vivo CIED dose measurements should be performed with 1 to 2cm bolus covering the dosimeter on the skin above the CIED for more accurate CIED dose estimation. The use of bolus also reduces the dose delivered to CIED.« less

  5. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank

    2014-10-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.

  6. SU-F-J-162: Is Bulky Electron Density Assignment Appropriatefor MRI-Only Based Treatment Planning for Lung Cancer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prior, P; Chen, X; Johnstone, C

    Purpose: To assess the appropriateness of bulky electron density assisment for MRI-only treatment planning for lung cancer via comparing dosimetric difference between MRI- and CT-based plans. Methods: Planning 4DCTs acquired for six representative lung cancer patients were used to generate CT-based IMRT plans. To avoid the effect of anatomic difference between CT and MRI, MRI-based plans were generated using CTs by forcing the relative electron density (rED) of organ specific values from ICRU report 46 and using the mean rED value of the internal target volume (ITV) of the patient for the ITV. Both CT and “MRI” plans were generatedmore » using a research planning system (Monaco, Elekta) employing Monte Carlo dose calculation the following dose-volume-parameters (DVPs): D99 – dose delivered to 99% of the ITV/PTV volume; D95; D5; D1; Vpd –volume receiving the prescription dose; V5 – volume of normal lung irradiated > 5 Gy; and V20. The percent point difference and dose difference was used for comparison for Vpd-V5-V20 and D99-D1, respectively. Four additional plans per patient were calculated with rEDITV = 0.6 and 1.0 and rEDlung = 0.1 and 0.5. Results: Noticeable differences in the ITV and PTV point doses and DVPs were observed. Variations in Vpd ranged from 0.0–6.4% and 0.32–18.3% for the ITV and PTV, respectively. The ITV and PTV variations in D99, D95, D5 and D1 were 0.15–3.2 Gy. The normal lung V5 & V20 variations were no larger than 1.9%. In some instances, varying the rEDITV between rEDmean, 0.6 and 1.0 resulted in D95 increases ranging from 3.9–6.3%. Uniform rED assignment on normal lung affected DVPs of ITV and PTV by 4.0–9.8% and 0.3–19.6%, respectively. Conclusion: The commonly-used uniform rED assignment in MRI-only based planning may not be appropriate for lung-cancer. A voxel based method, e.g. synthetic CT generated from MRI data, is required. This work was partially funded by Elekta, Inc.« less

  7. Water and tissue equivalence of a new PRESAGE{sup Registered-Sign} formulation for 3D proton beam dosimetry: A Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorjiara, Tina; Kuncic, Zdenka; Doran, Simon

    2012-11-15

    Purpose: To evaluate the water and tissue equivalence of a new PRESAGE{sup Registered-Sign} 3D dosimeter for proton therapy. Methods: The GEANT4 software toolkit was used to calculate and compare total dose delivered by a proton beam with mean energy 62 MeV in a PRESAGE{sup Registered-Sign} dosimeter, water, and soft tissue. The dose delivered by primary protons and secondary particles was calculated. Depth-dose profiles and isodose contours of deposited energy were compared for the materials of interest. Results: The proton beam range was found to be Almost-Equal-To 27 mm for PRESAGE{sup Registered-Sign }, 29.9 mm for soft tissue, and 30.5 mmmore » for water. This can be attributed to the lower collisional stopping power of water compared to soft tissue and PRESAGE{sup Registered-Sign }. The difference between total dose delivered in PRESAGE{sup Registered-Sign} and total dose delivered in water or tissue is less than 2% across the entire water/tissue equivalent range of the proton beam. The largest difference between total dose in PRESAGE{sup Registered-Sign} and total dose in water is 1.4%, while for soft tissue it is 1.8%. In both cases, this occurs at the distal end of the beam. Nevertheless, the authors find that PRESAGE{sup Registered-Sign} dosimeter is overall more tissue-equivalent than water-equivalent before the Bragg peak. After the Bragg peak, the differences in the depth doses are found to be due to differences in primary proton energy deposition; PRESAGE{sup Registered-Sign} and soft tissue stop protons more rapidly than water. The dose delivered by secondary electrons in the PRESAGE{sup Registered-Sign} differs by less than 1% from that in soft tissue and water. The contribution of secondary particles to the total dose is less than 4% for electrons and Almost-Equal-To 1% for protons in all the materials of interest. Conclusions: These results demonstrate that the new PRESAGE{sup Registered-Sign} formula may be considered both a tissue- and water-equivalent 3D dosimeter for a 62 MeV proton beam. The results further suggest that tissue-equivalent thickness may provide better dosimetric and geometric accuracy than water-equivalent thickness for 3D dosimetry of this proton beam.« less

  8. Evaluation of Exposure From a Low Energy X-Ray Device Using Thermoluminescent Dosimeters

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Harris, William S., Jr.

    1997-01-01

    The exposure from an electron beam welding device was evaluated using thermoluminescent dosimeters (TLDs). The device generated low energy X-rays which the current dose equivalent conversion algorithm was not designed to evaluate making it necessary to obtain additional information relating to TLD operation at the photon energies encountered with the device. This was accomplished by performing irradiations at the National Institute of Standards and Technology (NIST) using low energy X-ray techniques. The resulting data was used to determine TLD badge response for low energy X-rays and to establish the relationship between TLD element response and the dose equivalent at specific depths in tissue for these photon energies. The new energy/dose equivalent calibration data was used to calculate the shallow and eye dose equivalent of badges exposed to the device.

  9. Hybrid dose calculation: a dose calculation algorithm for microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Donzelli, Mattia; Bräuer-Krisch, Elke; Oelfke, Uwe; Wilkens, Jan J.; Bartzsch, Stefan

    2018-02-01

    Microbeam radiation therapy (MRT) is still a preclinical approach in radiation oncology that uses planar micrometre wide beamlets with extremely high peak doses, separated by a few hundred micrometre wide low dose regions. Abundant preclinical evidence demonstrates that MRT spares normal tissue more effectively than conventional radiation therapy, at equivalent tumour control. In order to launch first clinical trials, accurate and efficient dose calculation methods are an inevitable prerequisite. In this work a hybrid dose calculation approach is presented that is based on a combination of Monte Carlo and kernel based dose calculation. In various examples the performance of the algorithm is compared to purely Monte Carlo and purely kernel based dose calculations. The accuracy of the developed algorithm is comparable to conventional pure Monte Carlo calculations. In particular for inhomogeneous materials the hybrid dose calculation algorithm out-performs purely convolution based dose calculation approaches. It is demonstrated that the hybrid algorithm can efficiently calculate even complicated pencil beam and cross firing beam geometries. The required calculation times are substantially lower than for pure Monte Carlo calculations.

  10. Feasibility study on the verification of actual beam delivery in a treatment room using EPID transit dosimetry.

    PubMed

    Baek, Tae Seong; Chung, Eun Ji; Son, Jaeman; Yoon, Myonggeun

    2014-12-04

    The aim of this study is to evaluate the ability of transit dosimetry using commercial treatment planning system (TPS) and an electronic portal imaging device (EPID) with simple calibration method to verify the beam delivery based on detection of large errors in treatment room. Twenty four fields of intensity modulated radiotherapy (IMRT) plans were selected from four lung cancer patients and used in the irradiation of an anthropomorphic phantom. The proposed method was evaluated by comparing the calculated dose map from TPS and EPID measurement on the same plane using a gamma index method with a 3% dose and 3 mm distance-to-dose agreement tolerance limit. In a simulation using a homogeneous plastic water phantom, performed to verify the effectiveness of the proposed method, the average passing rate of the transit dose based on gamma index was high enough, averaging 94.2% when there was no error during beam delivery. The passing rate of the transit dose for 24 IMRT fields was lower with the anthropomorphic phantom, averaging 86.8% ± 3.8%, a reduction partially due to the inaccuracy of TPS calculations for inhomogeneity. Compared with the TPS, the absolute value of the transit dose at the beam center differed by -0.38% ± 2.1%. The simulation study indicated that the passing rate of the gamma index was significantly reduced, to less than 40%, when a wrong field was erroneously irradiated to patient in the treatment room. This feasibility study suggested that transit dosimetry based on the calculation with commercial TPS and EPID measurement with simple calibration can provide information about large errors for treatment beam delivery.

  11. DICOM organ dose does not accurately represent calculated dose in mammography

    NASA Astrophysics Data System (ADS)

    Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.

    2016-03-01

    This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 centers were included in the study, mean calculated dose and mean organ dose (+/- standard deviation) were 1.47 (+/-0.66) and 1.38 (+/-0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal agents for differences between organ and calculated doses and to generate a correction factor for organ dose.

  12. Linear array measurements of enhanced dynamic wedge and treatment planning system (TPS) calculation for 15 MV photon beam and comparison with electronic portal imaging device (EPID) measurements.

    PubMed

    Petrovic, Borislava; Grzadziel, Aleksandra; Rutonjski, Laza; Slosarek, Krzysztof

    2010-09-01

    Enhanced dynamic wedges (EDW) are known to increase drastically the radiation therapy treatment efficiency. This paper has the aim to compare linear array measurements of EDW with the calculations of treatment planning system (TPS) and the electronic portal imaging device (EPID) for 15 MV photon energy. The range of different field sizes and wedge angles (for 15 MV photon beam) were measured by the linear chamber array CA 24 in Blue water phantom. The measurement conditions were applied to the calculations of the commercial treatment planning system XIO CMS v.4.2.0 using convolution algorithm. EPID measurements were done on EPID-focus distance of 100 cm, and beam parameters being the same as for CA24 measurements. Both depth doses and profiles were measured. EDW linear array measurements of profiles to XIO CMS TPS calculation differ around 0.5%. Profiles in non-wedged direction and open field profiles practically do not differ. Percentage depth doses (PDDs) for all EDW measurements show the difference of not more than 0.2%, while the open field PDD is almost the same as EDW PDD. Wedge factors for 60 deg wedge angle were also examined, and the difference is up to 4%. EPID to linear array differs up to 5%. The implementation of EDW in radiation therapy treatments provides clinicians with an effective tool for the conformal radiotherapy treatment planning. If modelling of EDW beam in TPS is done correctly, a very good agreement between measurements and calculation is obtained, but EPID cannot be used for reference measurements.

  13. High Energy Electron Detectors on Sphinx

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  14. Probing the defect nanostructure of helium and proton tracks in LiF:Mg,Ti using optical absorption: Implications to track structure theory calculations of heavy charged particle relative efficiency

    NASA Astrophysics Data System (ADS)

    Eliyahu, I.; Horowitz, Y. S.; Oster, L.; Weissman, L.; Kreisel, A.; Girshevitz, O.; Marino, S.; Druzhyna, S.; Biderman, S.; Mardor, I.

    2015-04-01

    A major objective of track structure theory (TST) is the calculation of heavy charged particle (HCP) induced effects. Previous calculations have been based exclusively on the radiation action/dose response of the released secondary electrons during the HCP slowing down. The validity of this presumption is investigated herein using optical absorption (OA) measurements on LiF:Mg,Ti (TLD-100) samples following irradiation with 1.4 MeV protons and 4 MeV He ions at levels of fluence from 1010 cm-2 to 2 × 1014 cm-2. The major bands in the OA spectrum are the 5.08 eV (F band), 4.77 eV, 5.45 eV and the 4.0 eV band (associated with the trapping structure leading to composite peak 5 in the thermoluminescence (TL) glow curve). The maximum intensity of composite peak 5 occurs at a temperature of ∼200 °C in the glow curve and is the glow peak used for most dosimetric applications. The TST calculations use experimentally measured OA dose response following low ionization density (LID) 60Co photon irradiation over the dose-range 10-105 Gy for the simulation of the radiation action of the HCP induced secondary electron spectrum. Following proton and He irradiation the saturation levels of concentration for the F band and the 4.77 eV band are approximately one order of magnitude greater than following LID irradiation indicating enhanced HCP creation of the relevant defects. Relative HCP OA efficiencies, ηHCP, are calculated by TST and are compared with experimentally measured values, ηm, at levels of fluence from 1010 cm-2 to 1011 cm-2 where the response is linear due to negligible track overlap. For the F band, values of ηm/ηHCP = 2.0 and 2.6 for the He ions and protons respectively arise from the neglect of enhanced Fluorine vacancy/F center creation by the HCPs in the TST calculations. It is demonstrated that kinetic analysis simulating LID F band dose response with enhanced Fluorine vacancy creation, and incorporated into the TST calculation, can lead to values of ηm = ηHCP. On the other hand, the values of ηm/ηHCP for the 4.0 eV band are much less than unity at 0.18 for the protons and <0.12 for the He ions. These very low values suggest that the 4.0 eV trapping structure is either destroyed or de-populated, perhaps by local heating/thermal spike/Coulomb explosion, during the HCP slowing down. These HCP induced processes are believed to be absent or greatly reduced during LID irradiation. The large deviations of ηm/ηHCP from unity for both the F band and especially the 4.0 eV band demonstrate that conventional TST which attempts to predict HCP induced radiation effects from the exclusive action of the released secondary electrons is woefully inadequate.

  15. Statistical variability and confidence intervals for planar dose QA pass rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Daniel W.; Nelms, Benjamin E.; Attwood, Kristopher

    Purpose: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics ofmore » various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. Methods: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm{sup 2} uniform grid, a 2 detector/cm{sup 2} uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization techniques. Results: For the prostate and head/neck cases studied, the pass rates obtained with gamma analysis of high density dose planes were 2%-5% higher than respective %/DTA composite analysis on average (ranging as high as 11%), depending on tolerances and normalization. Meanwhile, the pass rates obtained via local normalization were 2%-12% lower than with global maximum normalization on average (ranging as high as 27%), depending on tolerances and calculation method. Repositioning of simulated low-density sampled grids leads to a distribution of possible pass rates for each measured/calculated dose plane pair. These distributions can be predicted using a binomial distribution in order to establish confidence intervals that depend largely on the sampling density and the observed pass rate (i.e., the degree of difference between measured and calculated dose). These results can be extended to apply to 3D arrays of detectors, as well. Conclusions: Dose plane QA analysis can be greatly affected by choice of calculation metric and user-defined parameters, and so all pass rates should be reported with a complete description of calculation method. Pass rates for low-density arrays are subject to statistical uncertainty (vs. the high-density pass rate), but these sampling errors can be modeled using statistical confidence intervals derived from the sampled pass rate and detector density. Thus, pass rates for low-density array measurements should be accompanied by a confidence interval indicating the uncertainty of each pass rate.« less

  16. Irradiation effects in UO2 and CeO2

    NASA Astrophysics Data System (ADS)

    Ye, Bei; Oaks, Aaron; Kirk, Mark; Yun, Di; Chen, Wei-Ying; Holtzman, Benjamin; Stubbins, James F.

    2013-10-01

    Single crystal CeO2, as a surrogate material to UO2, was irradiated with 500 keV xenon ions at 800 °C while being observed using in situ transmission electron microscopy (TEM). Experimental results show the formation and growth of defect clusters including dislocation loops and cavities as a function of increasing atomic displacement dose. At high dose, the dislocation loop structure evolves into an extended dislocation line structure, which appears to remain stable to the high dose levels examined in this study. A high concentration of cavities was also present in the microstructure. Despite high atomic displacement doses, the specimen remained crystalline to a cumulated dose of 5 × 1015 ions/cm2, which is consistent with the known stability of the fluorite structure under high dose irradiation. Kinetic Monte Carlo calculations show that oxygen mobility is substantially higher in hypo-stoichiometric UO2/CeO2 than hyper-stoichiometric systems. This result is consistent with the ability of irradiation damage to recover even at intermediate irradiation temperatures.

  17. SU-E-T-278: Realization of Dose Verification Tool for IMRT Plan Based On DPM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Jinfeng; Cao, Ruifen; Dai, Yumei

    Purpose: To build a Monte Carlo dose verification tool for IMRT Plan by implementing a irradiation source model into DPM code. Extend the ability of DPM to calculate any incident angles and irregular-inhomogeneous fields. Methods: With the virtual source and the energy spectrum which unfolded from the accelerator measurement data,combined with optimized intensity maps to calculate the dose distribution of the irradiation irregular-inhomogeneous field. The irradiation source model of accelerator was substituted by a grid-based surface source. The contour and the intensity distribution of the surface source were optimized by ARTS (Accurate/Advanced Radiotherapy System) optimization module based on the tumormore » configuration. The weight of the emitter was decided by the grid intensity. The direction of the emitter was decided by the combination of the virtual source and the emitter emitting position. The photon energy spectrum unfolded from the accelerator measurement data was adjusted by compensating the contaminated electron source. For verification, measured data and realistic clinical IMRT plan were compared with DPM dose calculation. Results: The regular field was verified by comparing with the measured data. It was illustrated that the differences were acceptable (<2% inside the field, 2–3mm in the penumbra). The dose calculation of irregular field by DPM simulation was also compared with that of FSPB (Finite Size Pencil Beam) and the passing rate of gamma analysis was 95.1% for peripheral lung cancer. The regular field and the irregular rotational field were all within the range of permitting error. The computing time of regular fields were less than 2h, and the test of peripheral lung cancer was 160min. Through parallel processing, the adapted DPM could complete the calculation of IMRT plan within half an hour. Conclusion: The adapted parallelized DPM code with irradiation source model is faster than classic Monte Carlo codes. Its computational accuracy and speed satisfy the clinical requirement, and it is expectable to be a Monte Carlo dose verification tool for IMRT Plan. Strategic Priority Research Program of the China Academy of Science(XDA03040000); National Natural Science Foundation of China (81101132)« less

  18. Protocols for the dosimetry of high-energy photon and electron beams: a comparison of the IAEA TRS-398 and previous international Codes of Practice

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro; Saiful Huq, M.; Westermark, Mathias; Song, Haijun; Tilikidis, Aris; DeWerd, Larry; Shortt, Ken

    2002-09-01

    A new international Code of Practice for radiotherapy dosimetry co-sponsored by several international organizations has been published by the IAEA, TRS-398. It is based on standards of absorbed dose to water, whereas previous protocols (TRS-381 and TRS-277) were based on air kerma standards. To estimate the changes in beam calibration caused by the introduction of TRS-398, a detailed experimental comparison of the dose determination in reference conditions in high-energy photon and electron beams has been made using the different IAEA protocols. A summary of the formulation and reference conditions in the various Codes of Practice, as well as of their basic data, is presented first. Accurate measurements have been made in 25 photon and electron beams from 10 clinical accelerators using 12 different cylindrical and plane-parallel chambers, and dose ratios under different conditions of TRS-398 to the other protocols determined. A strict step-by-step checklist was followed by the two participating clinical institutions to ascertain that the resulting calculations agreed within tenths of a per cent. The maximum differences found between TRS-398 and the previous Codes of Practice TRS-277 (2nd edn) and TRS-381 are of the order of 1.5-2.0%. TRS-398 yields absorbed doses larger than the previous protocols, around 1.0% for photons (TRS-277) and for electrons (TRS-381 and TRS-277) when plane-parallel chambers are cross-calibrated. For the Markus chamber, results show a very large variation, although a fortuitous cancellation of the old stopping powers with the ND,w/NK ratios makes the overall discrepancy between TRS-398 and TRS-277 in this case smaller than for well-guarded plane-parallel chambers. Chambers of the Roos-type with a 60Co ND,w calibration yield the maximum discrepancy in absorbed dose, which varies between 1.0% and 1.5% for TRS-381 and between 1.5% and 2.0% for TRS-277. Photon beam calibrations using directly measured or calculated TPR20,10 from a percentage dose data at SSD = 100 cm were found to be indistinguishable. Considering that approximately 0.8% of the differences between TRS-398 and the NK-based protocols are caused by the change to the new type of standards, the remaining difference in absolute dose is due either to a close similarity in basic data or to a fortuitous cancellation of the discrepancies in data and type of chamber calibration. It is emphasized that the NK-ND,air and ND,w formalisms have very similar uncertainty when the same criteria are used for both procedures. Arguments are provided in support of the recommendation for a change in reference dosimetry based on standards of absorbed dose to water.

  19. SU-E-J-240: The Impact On Clinical Dose-Distributions When Using MR-Images Registered with Stereotactic CT-Images in Gamma Knife Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benmakhlouf, H; Kraepelien, T; Forander, P

    2014-06-01

    Purpose: Most Gamma knife treatments are based solely on MR-images. However, for fractionated treatments and to implement TPS dose calculations that require electron densities, CT image data is essential. The purpose of this work is to assess the dosimetric effects of using MR-images registered with stereotactic CT-images in Gamma knife treatments. Methods: Twelve patients treated for vestibular schwannoma with Gamma Knife Perfexion (Elekta Instruments, Sweden) were selected for this study. The prescribed doses (12 Gy to periphery) were delivered based on the conventional approach of using stereotactic MR-images only. These plans were imported into stereotactic CT-images (by registering MR-images withmore » stereotactic CT-images using the Leksell gamma plan registration software). The dose plans, for each patient, are identical in both cases except for potential rotations and translations resulting from the registration. The impact of the registrations was assessed by an algorithm written in Matlab. The algorithm compares the dose-distributions voxel-by-voxel between the two plans, calculates the full dose coverage of the target (treated in the conventional approach) achieved by the CT-based plan, and calculates the minimum dose delivered to the target (treated in the conventional approach) achieved by the CT-based plan. Results: The mean dose difference between the plans was 0.2 Gy to 0.4 Gy (max 4.5 Gy) whereas between 89% and 97% of the target (treated in the conventional approach) received the prescribed dose, by the CT-plan. The minimum dose to the target (treated in the conventional approach) given by the CT-based plan was between 7.9 Gy and 10.7 Gy (compared to 12 Gy in the conventional treatment). Conclusion: The impact of using MR-images registered with stereotactic CT-images has successfully been compared to conventionally delivered dose plans showing significant differences between the two. Although CTimages have been implemented clinically; the effect of the registration has not been fully investigated.« less

  20. SU-E-T-404: Evaluation of the Effect of Spine Hardware for CyberKnife Spinal Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, J; Zhang, Y; Zheng, Y

    2015-06-15

    Purpose: Spine hardware made of high-Z materials such as titanium has the potential to affect the dose distribution around the metal rods in CyberKnife spinal stereotactic radiosurgery (SRS) treatments. The purpose of this work was to evaluate the magnitude of such effect retrospectively for clinical CyberKnife plans. Methods: The dose calculation was performed within the MultiPlan treatment planning system using the ray tracing (RT) and Monte Carlo (MC) method. A custom density model was created by extending the CT-to-Density table to titanium density of 4.5 g/cm3 with the CT number of 4095. To understand the dose perturbation caused by themore » titanium rod, a simple beam setup (7.5 mm IRIS collimator) was used to irradiate a mimic rod (5 mm) with overridden high density. Five patient spinal SRS cases were found chronologically from 2010 to 2015 in our institution. For each case, the hardware was contoured manually. The original plan was re-calculated using both RT and MC methods with and without rod density override without changing clinical beam parameters. Results: The simple beam irradiation shows that there is 10% dose increase at the interface because of electron backscattering and 7% decrease behind the rod because of photon attenuation. For actual clinical plans, the iso-dose lines and DVHs are almost identical (<2%) for calculations with and without density override for both RT and MC methods. However, there is a difference of more than 10% for D90 between RT and MC method. Conclusion: Although the dose perturbation around the metal rods can be as large as 10% for a single beam irradiation, for clinical treatments with complex beam composition the effect of spinal hardware to the PTV and spinal dose is minimal. As such, the MC dose algorithm without rod density override for CyberKnife spinal SRS is acceptable.« less

  1. Effect of blood activity on dosimetric calculations for radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Zvereva, Alexandra; Petoussi-Henss, Nina; Li, Wei Bo; Schlattl, Helmut; Oeh, Uwe; Zankl, Maria; Graner, Frank Philipp; Hoeschen, Christoph; Nekolla, Stephan G.; Parodi, Katia; Schwaiger, Markus

    2016-11-01

    The objective of this work was to investigate the influence of the definition of blood as a distinct source on organ doses, associated with the administration of a novel radiopharmaceutical for positron emission tomography-computed tomography (PET/CT) imaging—(S)-4-(3-18F-fluoropropyl)-L-glutamic acid (18F-FSPG). Personalised pharmacokinetic models were constructed based on clinical PET/CT images from five healthy volunteers and blood samples from four of them. Following an identifiability analysis of the developed compartmental models, person-specific model parameters were estimated using the commercial program SAAM II. Organ doses were calculated in accordance to the formalism promulgated by the Committee on Medical Internal Radiation Dose (MIRD) and the International Commission on Radiological Protection (ICRP) using specific absorbed fractions for photons and electrons previously derived for the ICRP reference adult computational voxel phantoms. Organ doses for two concepts were compared: source organ activities in organs parenchyma with blood as a separate source (concept-1); aggregate activities in perfused source organs without blood as a distinct source (concept-2). Aggregate activities comprise the activities of organs parenchyma and the activity in the regional blood volumes (RBV). Concept-1 resulted in notably higher absorbed doses for most organs, especially non-source organs with substantial blood contents, e.g. lungs (92% maximum difference). Consequently, effective doses increased in concept-1 compared to concept-2 by 3-10%. Not considering the blood as a distinct source region leads to an underestimation of the organ absorbed doses and effective doses. The pronounced influence of the blood even for a radiopharmaceutical with a rapid clearance from the blood, such as 18F-FSPG, suggests that blood should be introduced as a separate compartment in most compartmental pharmacokinetic models and blood should be considered as a distinct source in dosimetric calculations. Hence, blood samples should be included in all pharmacokinetic and dosimetric studies for new tracers if possible.

  2. A dual two dimensional electronic portal imaging device transit dosimetry model based on an empirical quadratic formalism

    PubMed Central

    Metwaly, M; Glegg, M; Baggarley, S P; Elliott, A

    2015-01-01

    Objective: This study describes a two dimensional electronic portal imaging device (EPID) transit dosimetry model that can predict either: (1) in-phantom exit dose, or (2) EPID transit dose, for treatment verification. Methods: The model was based on a quadratic equation that relates the reduction in intensity to the equivalent path length (EPL) of the attenuator. In this study, two sets of quadratic equation coefficients were derived from calibration dose planes measured with EPID and ionization chamber in water under reference conditions. With two sets of coefficients, EPL can be calculated from either EPID or treatment planning system (TPS) dose planes. Consequently, either the in-phantom exit dose or the EPID transit dose can be predicted from the EPL. The model was tested with two open, five wedge and seven sliding window prostate and head and neck intensity-modulated radiation therapy (IMRT) fields on phantoms. Results were analysed using absolute gamma analysis (3%/3 mm). Results: The open fields gamma pass rates were >96.8% for all comparisons. For wedge and IMRT fields, comparisons between predicted and TPS-computed in-phantom exit dose resulted in mean gamma pass rate of 97.4% (range, 92.3–100%). As for the comparisons between predicted and measured EPID transit dose, the mean gamma pass rate was 97.5% (range, 92.6–100%). Conclusion: An EPID transit dosimetry model that can predict in-phantom exit dose and EPID transit dose was described and proven to be valid. Advances in knowledge: The described model is practical, generic and flexible to encourage widespread implementation of EPID dosimetry for the improvement of patients' safety in radiotherapy. PMID:25969867

  3. Comparison of current recommended regimens of atropinization in organophosphate poisoning.

    PubMed

    Connors, Nicholas J; Harnett, Zachary H; Hoffman, Robert S

    2014-06-01

    Atropine is the mainstay of therapy in organophosphate (OP) toxicity, though research and consensus on dosing is lacking. In 2004, as reported by Eddleston et al. (J Toxicol Clin Toxicol 42(6):865-75, 2004), they noted variation in recommended regimens. We assessed revisions of original references, additional citations, and electronic sources to determine the current variability in atropine dosing recommendations. Updated editions of references from Eddleston et al.'s work, texts of Internal and Emergency Medicine, and electronic resources were reviewed for atropine dosing recommendations. For comparison, recommendations were assessed using the same mean dose (23.4 mg) and the highest dose (75 mg) of atropine as used in the original paper. Recommendations were also compared with the dosing regimen from the World Health Organization (WHO). Thirteen of the original recommendations were updated and 15 additional references were added giving a convenience sample of 28. Sufficient information to calculate time to targeted dose was provided by 24 of these samples. Compared to 2004, current recommendations have greatly increased the speed of atropinization with 13/24 able to reach the mean and high atropine dose within 30 min compared to 1/36 in 2004. In 2004, there were 13 regimens where the maximum time to reach 75 mg was over 18 h, whereas now, there are 2. While only one recommendation called for doubling the dose for faster escalation in 2004, 15 of the 24 current works include dose doubling. In 2004, Eddleston et al. called for an evidence-based guideline for the treatment of OP poisoning that could be disseminated worldwide. Many current recommendations can adequately treat patients within 1 h. While the WHO recommendations remain slow to treat patients with OP poisoning, other authorities are close to a consensus on rapid atropinization.

  4. Poster — Thur Eve — 14: Improving Tissue Segmentation for Monte Carlo Dose Calculation using DECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Salvio, A.; Bedwani, S.; Carrier, J-F.

    2014-08-15

    Purpose: To improve Monte Carlo dose calculation accuracy through a new tissue segmentation technique with dual energy CT (DECT). Methods: Electron density (ED) and effective atomic number (EAN) can be extracted directly from DECT data with a stoichiometric calibration method. Images are acquired with Monte Carlo CT projections using the user code egs-cbct and reconstructed using an FDK backprojection algorithm. Calibration is performed using projections of a numerical RMI phantom. A weighted parameter algorithm then uses both EAN and ED to assign materials to voxels from DECT simulated images. This new method is compared to a standard tissue characterization frommore » single energy CT (SECT) data using a segmented calibrated Hounsfield unit (HU) to ED curve. Both methods are compared to the reference numerical head phantom. Monte Carlo simulations on uniform phantoms of different tissues using dosxyz-nrc show discrepancies in depth-dose distributions. Results: Both SECT and DECT segmentation methods show similar performance assigning soft tissues. Performance is however improved with DECT in regions with higher density, such as bones, where it assigns materials correctly 8% more often than segmentation with SECT, considering the same set of tissues and simulated clinical CT images, i.e. including noise and reconstruction artifacts. Furthermore, Monte Carlo results indicate that kV photon beam depth-dose distributions can double between two tissues of density higher than muscle. Conclusions: A direct acquisition of ED and the added information of EAN with DECT data improves tissue segmentation and increases the accuracy of Monte Carlo dose calculation in kV photon beams.« less

  5. Dedicated high dose rate 192Ir brachytherapy radiation fields for in vitro cell exposures at variable source-target cell distances: killing of mammalian cells depends on temporal dose rate fluctuation

    NASA Astrophysics Data System (ADS)

    Veigel, Cornelia; Hartmann, Günther H.; Fritz, Peter; Debus, Jürgen; Weber, Klaus-Josef

    2017-02-01

    Afterloading brachytherapy is conducted by the stepwise movement of a radioactive source through surgically implanted applicator tubes where at predefined dwell positions calculated dwell times optimize spatial dose delivery with respect to a planned dose level. The temporal exposure pattern exhibits drastic fluctuations in dose rate at a given coordinate and within a single treatment session because of the discontinuous and repeated source movement into the target volume. This could potentially affect biological response. Therefore, mammalian cells were exposed as monolayers to a high dose rate 192Ir source by utilizing a dedicated irradiation device where the distance between a planar array of radioactive source positions and the plane of the cell monolayer could be varied from 2.5 mm to 40 mm, thus varying dose rate pattern for any chosen total dose. The Gammamed IIi afterloading system equipped with a nominal 370 GBq (10 Ci) 192-Ir source was used to irradiate V79 Chinese hamster lung fibroblasts from both confluent and from exponential growth phase with dose up to 12 Gy (at room temperature, total exposure not exceeding 1 h). For comparison, V79 cells were also exposed to 6 MV x-rays from a clinical linear accelerator (dose rate of 2.5 Gy min-1). As biological endpoint, cell survival was determined by standard colony forming assay. Dose measurements were conducted with a diamond detector (sensitive area 7.3 mm2), calibrated by means of 60Co radiation. Additionally, dose delivery was simulated by Monte Carlo calculations using the EGSnrc code system. The calculated secondary electron fluence spectra at the cell location did not indicate a significant change of radiation quality (i.e. higher linear energy transfer) at the lower distances. Clonogenic cell survival curves obtained after brachytherapy exhibited an altered biological response compared to x-rays which was characterized by a significant reduction of the survival curve shoulder when dose rate fluctuations were high. Therefore, also for the time scale of the present investigation, cellular effects of radiation are not invariant to the temporal pattern in dose rate. We propose that with high dose rate variation the cells activate less efficiently their DNA damage response than after continuous irradiation.

  6. SU-E-T-25: Real Time Simulator for Designing Electron Dual Scattering Foil Systems.

    PubMed

    Carver, R; Hogstrom, K; Price, M; Leblanc, J; Harris, G

    2012-06-01

    To create a user friendly, accurate, real time computer simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator should allow for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator consists of an analytical algorithm for calculating electron fluence and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with a refined Moliere formalism for scattering powers. The simulator also estimates central-axis x-ray dose contamination from the dual foil system. Once the geometry of the beamline is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scattering foil material and Gaussian shape (thickness and sigma), and beam energy. The beam profile and x-ray contamination are displayed in real time. The simulator was tuned by comparison of off-axis electron fluence profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV and using present foils on the Elekta radiotherapy accelerator, the simulator profiles agreed to within 2% of MC profiles from within 20 cm of the central axis. The x-ray contamination predictions matched measured data to within 0.6%. The calculation time was approximately 100 ms using a single processor, which allows for real-time variation of foil parameters using sliding bars. A real time dual scattering foil system simulator has been developed. The tool has been useful in a project to redesign an electron dual scattering foil system for one of our radiotherapy accelerators. The simulator has also been useful as an instructional tool for our medical physics graduate students. © 2012 American Association of Physicists in Medicine.

  7. Energy modulated electron therapy: Design, implementation, and evaluation of a novel method of treatment planning and delivery

    NASA Astrophysics Data System (ADS)

    Al-Yahya, Khalid

    Energy modulated electron therapy (EMET) is a promising treatment modality that has the fundamental capabilities to enhance the treatment planning and delivery of superficially located targets. Although it offers advantages over x-ray intensity modulated radiation therapy (IMRT), EMET has not been widely implemented to the same level of accuracy, automation, and clinical routine as its x-ray counterpart. This lack of implementation is attributed to the absence of a remotely automated beam shaping system as well as the deficiency in dosimetric accuracy of clinical electron pencil beam algorithms in the presence of beam modifiers and tissue heterogeneities. In this study, we present a novel technique for treatment planning and delivery of EMET. The delivery is achieved using a prototype of an automated "few leaf electron collimator" (FLEC). It consists of four copper leaves driven by stepper motors which are synchronized with the x-ray jaws in order to form a series of collimated rectangular openings or "fieldlets". Based on Monte Carlo studies, the FLEC has been designed to serve as an accessory tool to the current accelerator equipment. The FLEC was constructed and its operation was fully automated and integrated with the accelerator through an in-house assembled control unit. The control unit is a portable computer system accompanied with customized software that delivers EMET plans after acquiring them from the optimization station. EMET plans are produced based on dose volume constraints that employ Monte Carlo pre-generated and patient-specific kernels which are utilized by an in-house developed optimization algorithm. The structure of the optimization software is demonstrated. Using Monte Carlo techniques to calculate dose allows for accurate modeling of the collimation system as well as the patient heterogeneous geometry and take into account their impact on optimization. The Monte Carlo calculations were validated by comparing them against output measurements with an ionization chamber. Comparisons with measurements using nearly energy-independent radiochromic films were performed to confirm the Monte Carlo calculation accuracy for 1-D and 2-D dose distributions. We investigated the clinical significance of EMET on cancer sites that are inherently difficult to plan with IMRT. Several parameters were used to analyze treatment plans where they show that EMET provides significant overall improvements over IMRT.

  8. A summary of evidence on radiation exposures received near to the Semipalatinsk nuclear weapons test site in Kazakhstan.

    PubMed

    Simon, Steven L; Baverstock, Keith F; Lindholm, Carita

    2003-06-01

    The presently available evidence about the magnitude of doses received by members of the public living in villages in the vicinity of Semipalatinsk nuclear test in Kazakhstan, particularly with respect to external radiation, while preliminary, is conflicting. The village of Dolon, in particular, has been identified for many years as the most highly exposed location in the vicinity of the test site. Previous publications cited external doses of more than 2 Gy to residents of Dolon while an expert group assembled by the WHO in 1997 estimated that external doses were likely to have been less than 0.5 Gy. In 2001, a larger expert group workshop was held in Helsinki jointly by the WHO, the National Cancer Institute of the United States, and the Radiation and Nuclear Safety Authority of Finland, with the expressed purpose to acquire data to evaluate the state of knowledge concerning doses received in Kazakhstan. This paper summarizes evidence presented at that workshop. External dose estimates from calculations based on sparse physical measurements and bio-dosimetric estimates based on chromosome abnormalities and electron paramagnetic resonance from a relatively small sample of teeth do not agree well. The physical dose estimates are generally higher than the biodosimetric estimates (1 Gy or more compared to 0.5 Gy or less). When viewed in its entirety, the present body of evidence does not appear to support external doses greater than 0.5 Gy; however, research is continuing to try and resolve the difference in dose estimates from the different methods. Thyroid doses from internal irradiation, which can only be estimated via calculation, are expected to have been several times greater than the doses from external irradiation, especially where received by small children.

  9. WE-G-BRE-03: Dose Painting by Numbers Using Targeted Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altundal, Y; Sajo, E; Korideck, H

    Purpose: Homogeneous dose enhancement in tumor cells of lung cancer patients treated with conventional dose of 60–66 Gy in five fractions is limited due to increased risk of toxicity to normal structures. Dose painting by numbers (DPBN) is the prescription of a non-uniform radiation dose distribution in the tumor for each voxel based on the intensity level of that voxel obtained from the tumor image. The purpose of this study is to show that DPBN using targeted gold nanoparticles (GNPs) could enhance conventional doses in the more resistant tumor areas. Methods: Cone beam computed tomography (CBCT) images of GNPs aftermore » intratumoral injection into human tumor were taken at 0, 48, 144 and 160 hours. The dose enhancement in the tumor voxels by secondary electrons from the GNPs was calculated based on analytical microdosimetry methods. The dose enhancement factor (DEF) is the ratio of the doses to the tumor with and without the presence of GNPs. The DEF was calculated for each voxel of the images based on the GNP concentration in the tumor sub-volumes using 6-MV photon spectra obtained using Monte Carlo simulations at 5 cm depth (10×10 cm2 field). Results: The results revealed DEF values of 1.05–2.38 for GNPs concentrations of 1–30 mg/g which corresponds to 12.60 – 28.56 Gy per fraction for delivering 12 Gy per fraction homogenously to lung tumor region. Conclusion: Our preliminary results verify that DPBN could be achieved using GNPs to enhance conventional doses to high risk tumor sub-volumes. In practice, DPBN using GNPs could be achieved due to diffusion of targeted GNPs sustainably released in-situ from radiotherapy biomaterials (e.g. fiducials) coated with polymer film containing the GNPs.« less

  10. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand

    NASA Astrophysics Data System (ADS)

    Perrot, Y.; Degoul, F.; Auzeloux, P.; Bonnet, M.; Cachin, F.; Chezal, J. M.; Donnarieix, D.; Labarre, P.; Moins, N.; Papon, J.; Rbah-Vidal, L.; Vidal, A.; Miot-Noirault, E.; Maigne, L.

    2014-05-01

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors’ guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic.

  11. ICRP Publication 107. Nuclear decay data for dosimetric calculations.

    PubMed

    Eckerman, K; Endo, A

    2008-01-01

    In this report, the Commission provides an electronic database of the physical data needed in calculations of radionuclide-specific protection and operational quantities. This database supersedes the data of Publication 38 (ICRP, 1983), and will be used in future ICRP publications of dose coefficients for the intake of or exposure to radionuclides in the workplace and the environment.The database contains information on the half-lives, decay chains, and yields and energies of radiations emitted in nuclear transformations of 1252 radionuclides of 97 elements. The CD accompanying the publication provides electronic access to complete tables of the emitted radiations, as well as the beta and neutron spectra. The database has been constructed such that user-developed software can extract the data needed for further calculations of a radionuclide of interest. A Windows-based application is provided to display summary information on a user-specified radionuclide, as well as the general characterisation of the nuclides contained in the database. In addition, the application provides a means by which the user can export the emissions of a specified radionuclide for use in subsequent calculations.

  12. TU-H-BRC-03: Evaluation of Very High-Energy Electron (VHEE) Beams in Comparison to VMAT and PBS Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schueler, E; Loo, B; Maxim, P

    2016-06-15

    Purpose: The aim of this study was to evaluate the performance of very high-energy electron (VHEE) beams in comparison to clinically delivered treatment plans generated with volumetric modulated arc therapy (VMAT) and proton pencil beam scanning (PBS) technology. Methods: Three clinical cases were selected (prostate, lung, and pediatric CNS). The VHEE plans were calculated in the Monte Carlo EGSnrc code and pencil beam doses were calculated using the DOSxyznrc MC code for 100 and 200 MeV beams. Treatment plans with VHEE, VMAT, and PBS were optimized in a research version of RayStation using an in house build script in ordermore » to minimize operator bias between the different techniques. Results: For the prostate cancer case, the PBS plan showed lower mean organ at risk (OAR) doses compared to the other modalities. An exception was the femoral heads, due to the lateral beam arrangements. The VMAT plan showed lower mean doses to the rectum and the bladder compared to the 100 MeV VHEE plan. The lung cancer case showed minor differences between the three modalities. However, the PBS plan showed a lower contralateral lung dose. The pediatric CNS case showed a better conformity and lower spinal cord dose for the 100 MeV VHEE plan. For all cases, the 200 MeV VHEE plans were found to be similar to or better than the 100 MeV VHEE plans. Conclusion: The present study showed that VHEE plans are similar or superior to VMAT plans with reduced mean OAR dose and increased target conformity for a variety of clinical cases. With increased VHEE energy, better conformity and even higher reductions in mean OAR doses can be achieved. Funding: DoD, Award#:W81XWH-13-1-0165, Weston Havens Foundation, Bio-X (Stanford University), the Office of the Dean of the Medical School, the Office of the Provost (Stanford University), and the Swedish Childhood Cancer Foundation. BL and PM are founders of TibaRay,Inc. BL and PM have received research grants from Varian and RaySearch Laboratory.« less

  13. Impact of electronic chemotherapy order forms on prescribing errors at an urban medical center: results from an interrupted time-series analysis.

    PubMed

    Elsaid, K; Truong, T; Monckeberg, M; McCarthy, H; Butera, J; Collins, C

    2013-12-01

    To evaluate the impact of electronic standardized chemotherapy templates on incidence and types of prescribing errors. A quasi-experimental interrupted time series with segmented regression. A 700-bed multidisciplinary tertiary care hospital with an ambulatory cancer center. A multidisciplinary team including oncology physicians, nurses, pharmacists and information technologists. Standardized, regimen-specific, chemotherapy prescribing forms were developed and implemented over a 32-month period. Trend of monthly prevented prescribing errors per 1000 chemotherapy doses during the pre-implementation phase (30 months), immediate change in the error rate from pre-implementation to implementation and trend of errors during the implementation phase. Errors were analyzed according to their types: errors in communication or transcription, errors in dosing calculation and errors in regimen frequency or treatment duration. Relative risk (RR) of errors in the post-implementation phase (28 months) compared with the pre-implementation phase was computed with 95% confidence interval (CI). Baseline monthly error rate was stable with 16.7 prevented errors per 1000 chemotherapy doses. A 30% reduction in prescribing errors was observed with initiating the intervention. With implementation, a negative change in the slope of prescribing errors was observed (coefficient = -0.338; 95% CI: -0.612 to -0.064). The estimated RR of transcription errors was 0.74; 95% CI (0.59-0.92). The estimated RR of dosing calculation errors was 0.06; 95% CI (0.03-0.10). The estimated RR of chemotherapy frequency/duration errors was 0.51; 95% CI (0.42-0.62). Implementing standardized chemotherapy-prescribing templates significantly reduced all types of prescribing errors and improved chemotherapy safety.

  14. Design of the Experimental Exposure Conditions to Simulate Ionizing Radiation Effects on Candidate Replacement Materials for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Smith, L. Montgomery

    1998-01-01

    In this effort, experimental exposure times for monoenergetic electrons and protons were determined to simulate the space radiation environment effects on Teflon components of the Hubble Space Telescope. Although the energy range of the available laboratory particle accelerators was limited, optimal exposure times for 50 keV, 220 keV, 350 keV, and 500 KeV electrons were calculated that produced a dose-versus-depth profile that approximated the full spectrum profile, and were realizable with existing equipment. For the case of proton exposure, the limited energy range of the laboratory accelerator restricted simulation of the dose to a depth of .5 mil. Also, while optimal exposure times were found for 200 keV, 500 keV and 700 keV protons that simulated the full spectrum dose-versus-depth profile to this depth, they were of such short duration that the existing laboratory could not be controlled to within the required accuracy. In addition to the obvious experimental issues, other areas exist in which the analytical work could be advanced. Improved computer codes for the dose prediction- along with improved methodology for data input and output- would accelerate and make more accurate the calculational aspects. This is particularly true in the case of proton fluxes where a paucity of available predictive software appears to exist. The dated nature of many of the existing Monte Carlo particle/radiation transport codes raises the issue as to whether existing codes are sufficient for this type of analysis. Other areas that would result in greater fidelity of laboratory exposure effects to the space environment is the use of a larger number of monoenergetic particle fluxes and improved optimization algorithms to determine the weighting values.

  15. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey

    2015-04-15

    Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dosemore » distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.« less

  16. Promotion of acceptor formation in SnO2 nanowires by e-beam bombardment and impacts to sensor application

    PubMed Central

    Sub Kim, Sang; Gil Na, Han; Woo Kim, Hyoun; Kulish, Vadym; Wu, Ping

    2015-01-01

    We have realized a p-type-like conduction in initially n-type SnO2 nanowires grown using a vapor-liquid-solid method. The transition was achieved by irradiating n-type SnO2 nanowires with a high-energy electron beam, without intentional chemical doping. The nanowires were irradiated at doses of 50 and 150 kGy, and were then used to fabricate NO2 gas sensors, which exhibited n-type and p-type conductivities, respectively. The tuneability of the conduction behavior is assumed to be governed by the formation of tin vacancies (under high-energy electron beam irradiation), because it is the only possible acceptor, excluding all possible defects via density functional theory (DFT) calculations. The effect of external electric fields on the defect stability was studied using DFT calculations. The measured NO2 sensing dynamics, including response and recovery times, were well represented by the electron-hole compensation mechanism from standard electron-hole gas equilibrium statistics. This study elucidates the charge-transport characteristics of bipolar semiconductors that underlie surface chemical reactions. The principles derived will guide the development of future SnO2-based electronic and electrochemical devices. PMID:26030815

  17. Quantitative modeling of total ionizing dose reliability effects in device silicon dioxide layers

    NASA Astrophysics Data System (ADS)

    Rowsey, Nicole L.

    The electrical breakdown of oxides and oxide/semiconductor interfaces is one of the main reasons for device failure in integrated circuits, especially devices under high-stress conditions. One high-stress environment of interest is the space environment. All electronics are vulnerable to ionizing radiation; any high-energy particle that passes through an insulating layer will deposit unwanted charge there, causing shifts in device characteristics. Designing electronics for use in space can be a challenge, because much more energetic radiation exits in space than on Earth, as there is no atmosphere in space to collide with, and thereby reduce the energy of, energetic particles. Although oxide charging due to ionizing radiation creates well-known changes in device characteristics, or total ionizing dose effects, it is still poorly-understood exactly how these changes come about. There are many theories that draw upon a large body of both experimental work and, more recently, quantum-mechanical first principles calculations at the molecular level. This work uses FLOODS, a 3D object-oriented device simulator with multi-physics capability, to investigate these theories, by simulating oxide degradation in realistic device geometries, and comparing the subsequent degradation in device characteristics to experimental measurements. The charge trapping and defect-modulated transport models developed and implemented here have resulted in the first quantitative account of the enhanced low-dose-rate sensitivity effect, and are applicable in a comprehensive range of hydrogen environments. Measurements show that devices exposed to ionizing radiation at high dose rates exhibit less degradation that those exposed at low dose rates. Furthermore, the observed trend differs depending on the amount of hydrogen available before, during, and after irradiation. It is therefore important to understand and take into account the effects of dose rate and hydrogen when developing accelerated testing procedures for devices which have been exposed to various levels of hydrogen during processing and packaging, and which must be deployed in the low-dose-rate space environment. Thus, this work represents a substantial increase in the state-of-the-art, since a quantitative model has not previously been available. The success of the model is due in great part to the use of first-principles calculations of defect and hydrogen bond energies. Vanderbilt collaborators provided the results of these calculations as input to the FLOODS simulations. Using these physical insights, a sensitivity analysis in FLOODS yielded insights into key controlling parameters.

  18. SU-G-JeP2-09: Minimal Skin Dose Increase in Longitudinal Rotating Biplanar Linac-MR Systems: Examination of Radiation Energy and Flattening Filter Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallone, B; Keyvanloo, A; Burke, B

    Purpose: To quantify increase in entrance skin-dose due to magnetic fields of the Alberta longitudinal linac-MR by examining the effect of radiation energy and flattening filter, using Monte Carlo calculations and accurate 3-D models of the magnetic field. Methods: The 3-D magnetic fields generated by the bi-planar Linac-MR are calculated with FEM using Opera-3D. BEAMnrc simulates the particle phase-space in the presence of the rapidly decaying fringe field of 0.5T MRI assembled with a Varian 600C linac with an isocentre distance of 130 cm for 6 MV and 10 MV beams. Skin doses are calculated at an average depth ofmore » 70 µm using DOSXYZnrc with varying SSDs and field sizes. Furthermore, flattening filters are reshaped to compensate for the significant drop in dose rate due to increased SAD of 130 cm and skin-doses are evaluated. Results: The confinement effect of the MRI fringe field on the contaminant electrons is minimal. For SSDs of 100 – 120 cm the increase in skin dose is ∼6% – 19% and ∼1% – 9% for the 6 and 10 MV beams, respectively. For 6MV, skin dose increases from ∼10.5% to 1.5%. for field-size increases of 5×5 cm2 to 20×20 cm2. For 10 MV, skin dose increases by ∼6% for a 5×5 cm2 field, and decreases by ∼1.5% for a 20×20 cm2 field. The reshaped flattening filter increases the dose rate from 355 MU/min to 529 MU/min (6 MV) or 604 MU/min (10 MV), while the skin-dose increases by only an additional ∼2.6% (all percent increases in skin dose are relative to Dmax). Conclusion: There is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. There is even lower skin-dose increase at 10 MV. Funding: Alberta Innovates - Health Solutions (AIHS) Conflict of Interest: Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)« less

  19. Setup and Calibration of SLAC's Peripheral Monitoring Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, C.

    2004-09-03

    The goals of this project were to troubleshoot, repair, calibrate, and establish documentation regarding SLAC's (Stanford Linear Accelerator Center's) PMS (Peripheral Monitoring Station) system. The PMS system consists of seven PMSs that continuously monitor skyshine (neutron and photon) radiation levels in SLAC's environment. Each PMS consists of a boron trifluoride (BF{sub 3}) neutron detector (model RS-P1-0802-104 or NW-G-20-12) and a Geiger Moeller (GM) gamma ray detector (model TGM N107 or LND 719) together with their respective electronics. Electronics for each detector are housed in Nuclear Instrument Modules (NIMs) and are plugged into a NIM bin in the station. All communicationmore » lines from the stations to the Main Control Center (MCC) were tested prior to troubleshooting. To test communication with MCC, a pulse generator (Systron Donner model 100C) was connected to each channel in the PMS and data at MCC was checked for consistency. If MCC displayed no data, the communication cables to MCC or the CAMAC (Computer Automated Measurement and Control) crates were in need of repair. If MCC did display data, then it was known that the communication lines were intact. All electronics from each station were brought into the lab for troubleshooting. Troubleshooting usually consisted of connecting an oscilloscope or scaler (Ortec model 871 or 775) at different points in the circuit of each detector to record simulated pulses produced by a pulse generator; the input and output pulses were compared to establish the location of any problems in the circuit. Once any problems were isolated, repairs were done accordingly. The detectors and electronics were then calibrated in the field using radioactive sources. Calibration is a process that determines the response of the detector. Detector response is defined as the ratio of the number of counts per minute interpreted by the detector to the amount of dose equivalent rate (in mrem per hour, either calculated or measured). Detector response for both detectors is dependent upon the energy of the incident radiation; this trend had to be accounted for in the calibration of the BF{sub 3} detector. Energy dependence did not have to be taken into consideration when calibrating the GM detectors since GM detector response is only dependent on radiation energy below 100 keV; SLAC only produces a spectrum of gamma radiation above 100 keV. For the GM detector, calibration consisted of bringing a {sup 137}Cs source and a NIST-calibrated RADCAL Radiation Monitor Controller (model 9010) out to the field; the absolute dose rate was determined by the RADCAL device while simultaneously irradiating the GM detector to obtain a scaler reading corresponding to counts per minute. Detector response was then calculated. Calibration of the BF{sub 3} detector was done using NIST certified neutron sources of known emission rates and energies. Five neutron sources ({sup 238}PuBe, {sup 238}PuB, {sup 238}PuF4, {sup 238}PuLi and {sup 252}Cf) with different energies were used to account for the energy dependence of the response. The actual neutron dose rate was calculated by date-correcting NIST source data and considering the direct dose rate and scattered dose rate. Once the total dose rate (sum of the direct and scattered dose rates) was known, the response vs. energy curve was plotted. The first station calibrated (PMS6) was calibrated with these five neutron sources; all subsequent stations were calibrated with one neutron source and the energy dependence was assumed to be the same.« less

  20. SU-F-P-37: Implementation of An End-To-End QA Test of the Radiation Therapy Imaging, Planning and Delivery Process to Identify and Correct Possible Sources of Deviation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salinas Aranda, F; Suarez, V; Arbiser, S

    2016-06-15

    Purpose: To implement an end-to-end QA test of the radiation therapy imaging, planning and delivery process, aimed to assess the dosimetric agreement accuracy between planned and delivered treatment, in order to identify and correct possible sources of deviation. To establish an internal standard for machine commissioning acceptance. Methods: A test involving all steps of the radiation therapy: imaging, planning and delivery process was designed. The test includes analysis of point dose and planar dose distributions agreement between TPS calculated and measured dose. An ad hoc 16 cm diameter PMMA phantom was constructed with one central and four peripheral bores thatmore » can accommodate calibrated electron density inserts. Using Varian Eclipse 10.0 and Elekta XiO 4.50 planning systems, IMRT, RapidArc and 3DCRT with hard and dynamic wedges plans were planned on the phantom and tested. An Exradin A1SL chamber is used with a Keithley 35617EBS electrometer for point dose measurements in the phantom. 2D dose distributions were acquired using MapCheck and Varian aS1000 EPID.Gamma analysis was performed for evaluation of 2D dose distribution agreement using MapCheck software and Varian Portal Dosimetry Application.Varian high energy Clinacs Trilogy, 2100C/CD, 2000CR and low energy 6X/EX where tested.TPS-CT# vs. electron density table were checked for CT-scanners used. Results: Calculated point doses were accurate to 0.127% SD: 0.93%, 0.507% SD: 0.82%, 0.246% SD: 1.39% and 0.012% SD: 0.01% for LoX-3DCRT, HiX-3DCRT, IMRT and RapidArc plans respectively. Planar doses pass gamma 3% 3mm in all cases and 2% 2mm for VMAT plans. Conclusion: Implementation of a simple and reliable quality assurance tool was accomplished. The end-to-end proved efficient, showing excellent agreement between planned and delivered dose evidencing strong consistency of the whole process from imaging through planning to delivery. This test can be used as a first step in beam model acceptance for clinical use.« less

Top