Barnes, M P; Ebert, M A
2008-03-01
The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.
SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enright, S; Asprinio, A; Lu, L
2014-06-01
Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. Allmore » phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.« less
Dose computation for therapeutic electron beams
NASA Astrophysics Data System (ADS)
Glegg, Martin Mackenzie
The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).
Björk, P; Knöös, T; Nilsson, P
2000-11-01
The aim of the present study is to examine the validity of using silicon semiconductor detectors in degraded electron beams with a broad energy spectrum and a wide angular distribution. A comparison is made with diamond detector measurements, which is the dosimeter considered to give the best results provided that dose rate effects are corrected for. Two-dimensional relative absorbed dose distributions in electron beams (6-20 MeV) for intraoperative radiation therapy (IORT) are measured in a water phantom. To quantify deviations between the detectors, a dose comparison tool that simultaneously examines the dose difference and distance to agreement (DTA) is used to evaluate the results in low- and high-dose gradient regions, respectively. Uncertainties of the experimental measurement setup (+/- 1% and +/- 0.5 mm) are taken into account by calculating a composite distribution that fails this dose-difference and DTA acceptance limit. Thus, the resulting area of disagreement should be related to differences in detector performance. The dose distributions obtained with the diode are generally in very good agreement with diamond detector measurements. The buildup region and the dose falloff region show good agreement with increasing electron energy, while the region outside the radiation field close to the water surface shows an increased difference with energy. The small discrepancies in the composite distributions are due to several factors: (a) variation of the silicon-to-water collision stopping-power ratio with electron energy, (b) a more pronounced directional dependence for diodes than for diamonds, and (c) variation of the electron fluence perturbation correction factor with depth. For all investigated treatment cones and energies, the deviation is within dose-difference and DTA acceptance criteria of +/- 3% and +/- 1 mm, respectively. Therefore, p-type silicon diodes are well suited, in the sense that they give results in close agreement with diamond detectors, for practical measurements of relative absorbed dose distributions in degraded electron beams used for IORT.
Nedaie, H A; Ghahraman, A R; Bolouri, B; Arbabi, A
2012-07-01
Recently, radiation sensitive polymer gels are being used as a reliable dosimetry method for three-dimensional (3D) verification of radiation doses in clinical use. Some properties of gel dosimeters have made them useful in verifying complex situations in electron therapy. The aim of this study was to experimentally evaluate the influence of tissue inhomogeneities on electron beam dose distributions by use of polymer gel dosimetry. Another purpose was to evaluate the appropriateness of polymer gels for electron beam dosimetry applications. A cylindrical phantom filled with MAGIC polymer gel with a polyacrilic wall (ρ = 1.18 g.cm -3 ) was placed in a Perspex water-filled tank exactly underneath the bone inhomogeneity region .Then, the slab phantom was irradiated with a dose of 5Gy of 8MeV electrons to measure the dose distribution beyond the heterogeneity region. Afterwards, another cylindrical gel phantom similar to the above was used and irradiated with the same dose of 15 MeV electrons to measure the dose distribution beyond the same heterogeneity region. The same mentioned setup was repeated for measurement of the dose distribution beneath the air heterogeneity and homogenous phantom. The results of gel dosimetry under bone inhomogeneity have shown a reduction in dose. This is related to the high mass stopping and mass scattering powers of bone tissue. In addition, dose enhancement is seen laterally near the bone-tissue interface, due to increased side scattering of electrons. Hot and cold scatter lobes under heterogeneity regions are other effects that can be seen. The results of gel dosimetry under the air inhomogeneity have shown an increase in dose. This is related to the low mass stopping and mass scattering powers of the air cavity. When a high energy beam passes through a low-density medium or an air cavity, electronic equilibrium is lost along the central axis of the beam .The dose rebuild up is a consequence of this electronic disequilibrium. An overall good agreement was found between measurements with gel and with a diode detector for the single beam experiment. Electron dose distributions are significantly altered in the presence of tissue inhomogeneities such as bone and air cavities which are related to mass stopping and mass scattering powers of heterogeneous materials. © 2012 American Association of Physicists in Medicine.
Monte Carlo based electron treatment planning and cutout output factor calculations
NASA Astrophysics Data System (ADS)
Mitrou, Ellis
Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.
Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki
2013-03-01
Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.
Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V
2012-06-01
To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.
Monte Carlo N Particle code - Dose distribution of clinical electron beams in inhomogeneous phantoms
Nedaie, H. A.; Mosleh-Shirazi, M. A.; Allahverdi, M.
2013-01-01
Electron dose distributions calculated using the currently available analytical methods can be associated with large uncertainties. The Monte Carlo method is the most accurate method for dose calculation in electron beams. Most of the clinical electron beam simulation studies have been performed using non- MCNP [Monte Carlo N Particle] codes. Given the differences between Monte Carlo codes, this work aims to evaluate the accuracy of MCNP4C-simulated electron dose distributions in a homogenous phantom and around inhomogeneities. Different types of phantoms ranging in complexity were used; namely, a homogeneous water phantom and phantoms made of polymethyl methacrylate slabs containing different-sized, low- and high-density inserts of heterogeneous materials. Electron beams with 8 and 15 MeV nominal energy generated by an Elekta Synergy linear accelerator were investigated. Measurements were performed for a 10 cm × 10 cm applicator at a source-to-surface distance of 100 cm. Individual parts of the beam-defining system were introduced into the simulation one at a time in order to show their effect on depth doses. In contrast to the first scattering foil, the secondary scattering foil, X and Y jaws and applicator provide up to 5% of the dose. A 2%/2 mm agreement between MCNP and measurements was found in the homogenous phantom, and in the presence of heterogeneities in the range of 1-3%, being generally within 2% of the measurements for both energies in a "complex" phantom. A full-component simulation is necessary in order to obtain a realistic model of the beam. The MCNP4C results agree well with the measured electron dose distributions. PMID:23533162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sponseller, Patricia, E-mail: sponselp@uw.edu; Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA; Paravathaneni, Upendra
2013-07-01
The purpose of this report is to communicate a technique to match an electron field to the dose distribution of an Intensity-Modulated Radiation Therapy (IMRT) plan. A patient with multiple areas of squamous cell carcinoma over the scalp was treated using 60 Gy in 2.0-Gy fractions to the entire scalp and first echelon nodes with multiple 6-MV photon fields. To deliver an adequate dose to the scalp, a custom 1.0-cm bolus helmet was fashioned using a solid piece of aquaplast. Along with the IMRT scalp treatment, a left zygoma area was treated with electrons matching the anterior border of themore » IMRT dose distribution. The border was matched by creating a left lateral field with the multileaf collimator shaped to the IMRT dose distribution. The result indicated an adequate dose to the skin match between the IMRT plan and the electron field. Results were confirmed using optically stimulated luminescence placed at the skin match area, so that the dose matched the prescription within 10%.« less
NASA Astrophysics Data System (ADS)
Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.
2017-11-01
Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions. The use of NPD may serve as an intermediate between PSI and radiation delivered by radiolabeled AuNP by providing a controlled method to improve delivery of prescribed doses as well as homogenize dose from low penetrating electron sources.
Maarouf, Mohammad; Schleicher, Ursula; Schmachtenberg, Axel; Ammon, Jürgen
2002-06-01
Aim of this study was to evaluate the advantages of electron beam irradiation compared to kilovoltage X-ray therapy in the treatment of keloids. Furthermore, the risk of developing malignancy following keloid radiotherapy was assessed. An automatic water phantom was used to evaluate the dose distribution in tissue. Furthermore, a series of measurements was done on the patients using thermoluminescence dosimeters (TLD) to estimate the doses absorbed by the organs at risk. We also report our clinical experience with electron beam radiation of 134 keloids following surgical excision. Electron beam irradiation offers a high control rate (84%) with minimal side effects for keloids. Electron irradiation provides better dose distribution in tissue, and therefore less radiation burden to the organs at risk. After a mean follow-up period of 7.2 years, no severe side effects or malignancies were observed after keloid radiotherapy. Electron radiation therapy is superior to kilovoltage irradiation for treating keloids due to better dose distribution in tissue. In agreement with the literature, no cases of malignancy were observed after keloid irradiation.
Harada, Ken; Akashi, Tetsuya; Niitsu, Kodai; Shimada, Keiko; Ono, Yoshimasa A; Shindo, Daisuke; Shinada, Hiroyuki; Mori, Shigeo
2018-01-17
Advanced electron microscopy technologies have made it possible to perform precise double-slit interference experiments. We used a 1.2-MV field emission electron microscope providing coherent electron waves and a direct detection camera system enabling single-electron detections at a sub-second exposure time. We developed a method to perform the interference experiment by using an asymmetric double-slit fabricated by a focused ion beam instrument and by operating the microscope under a "pre-Fraunhofer" condition, different from the Fraunhofer condition of conventional double-slit experiments. Here, pre-Fraunhofer condition means that each single-slit observation was performed under the Fraunhofer condition, while the double-slit observations were performed under the Fresnel condition. The interference experiments with each single slit and with the asymmetric double slit were carried out under two different electron dose conditions: high-dose for calculation of electron probability distribution and low-dose for each single electron distribution. Finally, we exemplified the distribution of single electrons by color-coding according to the above three types of experiments as a composite image.
Mahdavi, Hoda; Jabbari, Keyvan; Roayaei, Mahnaz
2016-01-01
Delivering radiotherapy to the postmastectomy chest wall can be achieved using matched electron fields. Surgical defects of the chest wall change the dose distribution of electrons. In this study, the improvement of dose homogeneity using simple, nonconformal techniques of thermoplastic bolus application on a defect is evaluated. The proposed phantom design improves the capability of film dosimetry for obtaining dose profiles of a patient's anatomical condition. A modeled electron field of a patient with a postmastectomy inward surgical defect was planned. High energy electrons were delivered to the phantom in various settings, including no bolus, a bolus that filled the inward defect (PB0), a uniform thickness bolus of 5 mm (PB1), and two 5 mm boluses (PB2). A reduction of mean doses at the base of the defect was observed by any bolus application. PB0 increased the dose at central parts of the defect, reduced hot areas at the base of steep edges, and reduced dose to the lung and heart. Thermoplastic boluses that compensate a defect (PB0) increased the homogeneity of dose in a fixed depth from the surface; adversely, PB2 increased the dose heterogeneity. This study shows that it is practical to investigate dose homogeneity profiles inside a target volume for various techniques of electron therapy. PMID:27051169
Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro.
Babayan, Nelly; Hovhannisyan, Galina; Grigoryan, Bagrat; Grigoryan, Ruzanna; Sarkisyan, Natalia; Tsakanova, Gohar; Haroutiunian, Samvel; Aroutiounian, Rouben
2017-11-01
Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
NASA Astrophysics Data System (ADS)
Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka
2018-05-01
The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.
Latent uncertainties of the precalculated track Monte Carlo method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, Marc-André; Seuntjens, Jan; Roberge, David
Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited numbermore » of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D{sub max}. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. Conclusions: The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.« less
Latent uncertainties of the precalculated track Monte Carlo method.
Renaud, Marc-André; Roberge, David; Seuntjens, Jan
2015-01-01
While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Particle tracks were pregenerated for electrons and protons using EGSnrc and geant4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (cuda) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a "ground truth" benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of Dmax. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤ 1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.
Three-Dimensional Electron Beam Dose Calculations.
NASA Astrophysics Data System (ADS)
Shiu, Almon Sowchee
The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry. A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional, fluence-based, pencil-beam algorithm, especially in predicting the dose distribution downstream of a local inhomogeneity. The accuracy of this algorithm appears sufficient for clinical use, and the algorithm is structured for future expansion of the physical model if required for site specific treatment planning problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebe, M; Pacaci, P; Mabhouti, H
Purpose: In this study, the two available calculation algorithms of the Varian Eclipse treatment planning system(TPS), the electron Monte Carlo(eMC) and General Gaussian Pencil Beam(GGPB) algorithms were used to compare measured and calculated peripheral dose distribution of electron beams. Methods: Peripheral dose measurements were carried out for 6, 9, 12, 15, 18 and 22 MeV electron beams of Varian Triology machine using parallel plate ionization chamber and EBT3 films in the slab phantom. Measurements were performed for 6×6, 10×10 and 25×25cm{sup 2} cone sizes at dmax of each energy up to 20cm beyond the field edges. Using the same filmmore » batch, the net OD to dose calibration curve was obtained for each energy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution measured using parallel plate ionization chamber and EBT3 film and calculated by eMC and GGPB algorithms were compared. The measured and calculated data were then compared to find which algorithm calculates peripheral dose distribution more accurately. Results: The agreement between measurement and eMC was better than GGPB. The TPS underestimated the out of field doses. The difference between measured and calculated doses increase with the cone size. The largest deviation between calculated and parallel plate ionization chamber measured dose is less than 4.93% for eMC, but it can increase up to 7.51% for GGPB. For film measurement, the minimum gamma analysis passing rates between measured and calculated dose distributions were 98.2% and 92.7% for eMC and GGPB respectively for all field sizes and energies. Conclusion: Our results show that the Monte Carlo algorithm for electron planning in Eclipse is more accurate than previous algorithms for peripheral dose distributions. It must be emphasized that the use of GGPB for planning large field treatments with 6 MeV could lead to inaccuracies of clinical significance.« less
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.
1999-01-01
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.
Calculation of radiation therapy dose using all particle Monte Carlo transport
Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.
1999-02-09
The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.
Thermoluminescent dosimetry in electron beams: energy dependence.
Robar, V; Zankowski, C; Olivares Pla, M; Podgorsak, E B
1996-05-01
The response of thermoluminescent dosimeters to electron irradiations depends on the radiation dose, mean electron energy at the position of the dosimeter in phantom, and the size of the dosimeter. In this paper the semi-empirical expression proposed by Holt et al. [Phys. Med. Biol. 20, 559-570 (1975)] is combined with the calculated electron dose fraction to determine the thermoluminescent dosimetry (TLD) response as a function of the mean electron energy and the dosimeter size. The electron and photon dose fractions, defined as the relative contributions of electrons and bremsstrahlung photons to the total dose for a clinical electron beam, are calculated with Monte Carlo techniques using EGS4. Agreement between the calculated and measured TLD response is very good. We show that the considerable reduction in TLD response per unit dose at low electron energies, i.e., at large depths in phantom, is offset by an ever-increasing relative contribution of bremsstrahlung photons to the total dose of clinical electron beams. This renders the TLD sufficiently reliable for dose measurements over the entire electron depth dose distribution despite the dependence of the TLD response on electron beam energy.
Monte Carlo calculations of energy deposition distributions of electrons below 20 keV in protein.
Tan, Zhenyu; Liu, Wei
2014-05-01
The distributions of energy depositions of electrons in semi-infinite bulk protein and the radial dose distributions of point-isotropic mono-energetic electron sources [i.e., the so-called dose point kernel (DPK)] in protein have been systematically calculated in the energy range below 20 keV, based on Monte Carlo methods. The ranges of electrons have been evaluated by extrapolating two calculated distributions, respectively, and the evaluated ranges of electrons are compared with the electron mean path length in protein which has been calculated by using electron inelastic cross sections described in this work in the continuous-slowing-down approximation. It has been found that for a given energy, the electron mean path length is smaller than the electron range evaluated from DPK, but it is large compared to the electron range obtained from the energy deposition distributions of electrons in semi-infinite bulk protein. The energy dependences of the extrapolated electron ranges based on the two investigated distributions are given, respectively, in a power-law form. In addition, the DPK in protein has also been compared with that in liquid water. An evident difference between the two DPKs is observed. The calculations presented in this work may be useful in studies of radiation effects on proteins.
Wilson, Jolaine M.; Sanzari, Jenine K.; Diffenderfer, Eric S.; Yee, Stephanie S.; Seykora, John T.; Maks, Casey; Ware, Jeffrey H.; Litt, Harold I.; Reetz, Jennifer A.; McDonough, James; Weissman, Drew; Kennedy, Ann R.; Cengel, Keith A.
2011-01-01
In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses. PMID:21859326
A Characterization of the Radiation from a Rod-Pinch Diode
NASA Astrophysics Data System (ADS)
Swanekamp, Stephen B.; Allen, Raymond J.; Hinshelwood, David D.; Mosher, David; Schumer, Joseph W.
2002-12-01
Coupled PIC-Monte-Carlo simulations of the electron-flow and radiation production in a rod-pinch diode show that multiple scatterings in the rod produce incident electron energies that ranging from zero to slightly higher than the applied voltage. It is speculated that those electrons that gain energy do so by remaining in phase with a rapidly varying electric field near the tip of the rod. The simulations also show that multiple passes in the rod produce a wide spread in incident electron angles. For diode voltages of V=2 MV, the angular distribution of electrons incident on the rod is broad and peaked near 90° to the axis of the rod with a larger fraction of electrons striking the rod at angles less than 90°. The electron angular distribution for V=4 MV is narrower and peaked at 105° with a larger fraction of electrons incident on the rod with angles greater than 90°. The photon distributions are peaked along the direction of the high-energy electrons. For V=2 MV the dose filtered through 21/4-cm thick Plexiglas is peaked at 90° and is 1.8 times higher than the forward-directed [0°] dose. For V=4 MV the dose filtered through 21/4-cm thick Plexiglas is peaked at 120° and is 2.3 times higher than the forward-directed dose. Similar angular variation of the dose has been observed on the 4-MV Asterix accelerator [2] and on 1-2 MV accelerators at the Atomic Weapons Establishment [8].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, M; Seuntjens, J; Roberge, D
Purpose: Assessing the performance and uncertainty of a pre-calculated Monte Carlo (PMC) algorithm for proton and electron transport running on graphics processing units (GPU). While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from recycling a limited number of tracks in the pre-generated track bank is missing from the literature. With a proper uncertainty analysis, an optimal pre-generated track bank size can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pre-generated for electrons and protons using EGSnrc and GEANT4, respectively. The PMC algorithm for track transport was implementedmore » on the CUDA programming framework. GPU-PMC dose distributions were compared to benchmark dose distributions simulated using general-purpose MC codes in the same conditions. A latent uncertainty analysis was performed by comparing GPUPMC dose values to a “ground truth” benchmark while varying the track bank size and primary particle histories. Results: GPU-PMC dose distributions and benchmark doses were within 1% of each other in voxels with dose greater than 50% of Dmax. In proton calculations, a submillimeter distance-to-agreement error was observed at the Bragg Peak. Latent uncertainty followed a Poisson distribution with the number of tracks per energy (TPE) and a track bank of 20,000 TPE produced a latent uncertainty of approximately 1%. Efficiency analysis showed a 937× and 508× gain over a single processor core running DOSXYZnrc for 16 MeV electrons in water and bone, respectively. Conclusion: The GPU-PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty below 1%. The track bank size necessary to achieve an optimal efficiency can be tuned based on the desired uncertainty. Coupled with a model to calculate dose contributions from uncharged particles, GPU-PMC is a candidate for inverse planning of modulated electron radiotherapy and scanned proton beams. This work was supported in part by FRSQ-MSSS (Grant No. 22090), NSERC RG (Grant No. 432290) and CIHR MOP (Grant No. MOP-211360)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carver, R; Popple, R; Benhabib, S
Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10{sup 9}),more » resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickling, S; El Naqa, I
Purpose: Previous work has demonstrated the detectability of acoustic waves induced following the irradiation of high density metals with radiotherapy linac photon beams. This work demonstrates the ability to experimentally detect such acoustic signals following both photon and electron irradiation in a more radiotherapy relevant material. The relationship between induced acoustic signal properties in water and the deposited dose distribution is explored, and the feasibility of exploiting such signals for radiotherapy dosimetry is demonstrated. Methods: Acoustic waves were experimentally induced in a water tank via the thermoacoustic effect following a single pulse of photon or electron irradiation produced by amore » clinical linac. An immersion ultrasound transducer was used to detect these acoustic waves in water and signals were read out on an oscilloscope. Results: Peaks and troughs in the detected acoustic signals were found to correspond to the location of gradients in the deposited dose distribution following both photon and electron irradiation. Signal amplitude was linearly related to the dose per pulse deposited by photon or electron beams at the depth of detection. Flattening filter free beams induced large acoustic signals, and signal amplitude decreased with depth after the depth of maximum dose. Varying the field size resulted in a temporal shift of the acoustic signal peaks and a change in the detected signal frequency. Conclusion: Acoustic waves can be detected in a water tank following irradiation by linac photon and electron beams with basic electronics, and have characteristics related to the deposited dose distribution. The physical location of dose gradients and the amount of dose deposited can be inferred from the location and magnitude of acoustic signal peaks. Thus, the detection of induced acoustic waves could be applied to photon and electron water tank and in vivo dosimetry. This work was supported in part by CIHR grants MOP-114910 and MOP-136774. S.H. acknowledges support by the NSERC CREATE Medical Physics Research Training Network grant 432290.« less
The calculation of radial dose from heavy ions: predictions of biological action cross sections
NASA Technical Reports Server (NTRS)
Katz, R.; Cucinotta, F. A.; Zhang, C. X.; Wilson, J. W. (Principal Investigator)
1996-01-01
The track structure model of heavy ion cross sections was developed by Katz and co-workers in the 1960s. In this model the action cross section is evaluated by mapping the dose-response of a detector to gamma rays (modeled from biological target theory) onto the radial dose distribution from delta rays about the path of the ion. This is taken to yield the radial distribution of probability for a "hit" (an interaction leading to an observable end-point). Radial integration of the probability yields the cross section. When different response from ions of different Z having the same stopping power is observed this model may be indicated. Since the 1960s there have been several developments in the computation of the radial dose distribution, in the measurement of these distributions, and in new radiobiological data against which to test the model. The earliest model, by Butts and Katz made use of simplified delta ray distribution functions, of simplified electron range-energy relations, and neglected angular distributions. Nevertheless it made possible the calculation of cross sections for the inactivation of enzymes and viruses, and allowed extension to tracks in nuclear emulsions and other detectors and to biological cells. It set the pattern for models of observable effects in the matter through which the ion passed. Here we outline subsequent calculations of radial dose which make use of improved knowledge of the electron emission spectrum, the electron range-energy relation, the angular distribution, and some considerations of molecular excitation, of particular interest both close to the path of the ion and the outer limits of electron penetration. These are applied to the modeling of action cross sections for the inactivation of several strains of E-coli and B. subtilis spores where extensive measurements in the "thin-down" region have been made with heavy ion beams. Such calculations serve to test the radial dose calculations at the outer limit of electron penetration. We lack data from which to test these calculations in regions close to the path of the ion aside from our earliest work on latent tracks in plastics, though it appears that the criterion then suggested for the threshold of track formation, of a minimal dose at a minimal distance (of about 20 angstroms, in plastics), remains valid.
Wiklund, Kristin; Olivera, Gustavo H; Brahme, Anders; Lind, Bengt K
2008-07-01
To speed up dose calculation, an analytical pencil-beam method has been developed to calculate the mean radial dose distributions due to secondary electrons that are set in motion by light ions in water. For comparison, radial dose profiles calculated using a Monte Carlo technique have also been determined. An accurate comparison of the resulting radial dose profiles of the Bragg peak for (1)H(+), (4)He(2+) and (6)Li(3+) ions has been performed. The double differential cross sections for secondary electron production were calculated using the continuous distorted wave-eikonal initial state method (CDW-EIS). For the secondary electrons that are generated, the radial dose distribution for the analytical case is based on the generalized Gaussian pencil-beam method and the central axis depth-dose distributions are calculated using the Monte Carlo code PENELOPE. In the Monte Carlo case, the PENELOPE code was used to calculate the whole radial dose profile based on CDW data. The present pencil-beam and Monte Carlo calculations agree well at all radii. A radial dose profile that is shallower at small radii and steeper at large radii than the conventional 1/r(2) is clearly seen with both the Monte Carlo and pencil-beam methods. As expected, since the projectile velocities are the same, the dose profiles of Bragg-peak ions of 0.5 MeV (1)H(+), 2 MeV (4)He(2+) and 3 MeV (6)Li(3+) are almost the same, with about 30% more delta electrons in the sub keV range from (4)He(2+)and (6)Li(3+) compared to (1)H(+). A similar behavior is also seen for 1 MeV (1)H(+), 4 MeV (4)He(2+) and 6 MeV (6)Li(3+), all classically expected to have the same secondary electron cross sections. The results are promising and indicate a fast and accurate way of calculating the mean radial dose profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duwel, D; Lamba, M; Elson, H
Purpose: Various cancers of the eye are successfully treated with radiotherapy utilizing one anterior-posterior (A/P) beam that encompasses the entire content of the orbit. In such cases, a hanging lens shield can be used to spare dose to the radiosensitive lens of the eye to prevent cataracts. Methods: This research focused on Monte Carlo characterization of dose distributions resulting from a single A-P field to the orbit with a hanging shield in place. Monte Carlo codes were developed which calculated dose distributions for various electron radiation energies, hanging lens shield radii, shield heights above the eye, and beam spoiler configurations.more » Film dosimetry was used to benchmark the coding to ensure it was calculating relative dose accurately. Results: The Monte Carlo dose calculations indicated that lateral and depth dose profiles are insensitive to changes in shield height and electron beam energy. Dose deposition was sensitive to shield radius and beam spoiler composition and height above the eye. Conclusion: The use of a single A/P electron beam to treat cancers of the eye while maintaining adequate lens sparing is feasible. Shield radius should be customized to have the same radius as the patient’s lens. A beam spoiler should be used if it is desired to substantially dose the eye tissues lying posterior to the lens in the shadow of the lens shield. The compromise between lens sparing and dose to diseased tissues surrounding the lens can be modulated by varying the beam spoiler thickness, spoiler material composition, and spoiler height above the eye. The sparing ratio is a metric that can be used to evaluate the compromise between lens sparing and dose to surrounding tissues. The higher the ratio, the more dose received by the tissues immediately posterior to the lens relative to the dose received by the lens.« less
A comparison of TPS and different measurement techniques in small-field electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donmez Kesen, Nazmiye, E-mail: nazo94@gmail.com; Cakir, Aydin; Okutan, Murat
In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5 cm and smaller, for nominal energies of 6, 9, and 15 MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with datamore » that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15 MeV and 32% for 9 MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry.« less
Monte Carlo simulation of depth-dose distributions in TLD-100 under 90Sr-90Y irradiation.
Rodríguez-Villafuerte, M; Gamboa-deBuen, I; Brandan, M E
1997-04-01
In this work the depth-dose distribution in TLD-100 dosimeters under beta irradiation from a 90Sr-90Y source was investigated using the Monte Carlo method. Comparisons between the simulated data and experimental results showed that the depth-dose distribution is strongly affected by the different components of both the source and dosimeter holders due to the large number of electron scattering events.
Matching of electron beams for conformal therapy of target volumes at moderate depths.
Zackrisson, B; Karlsson, M
1996-06-01
The basic requirements for conformal electron therapy are an accelerator with a wide range of energies and field shapes. The beams should be well characterised in a full 3-D dose planning system which has been verified for the geometries of the current application. Differences in the basic design of treatment units have been shown to have a large influence on beam quality and dosimetry. Modern equipment can deliver electron beams of good quality with a high degree of accuracy. A race-track microtron with minimised electron scattering and a multi-leaf collimator (MLC) for electron collimating will facilitate the isocentric technique as a general treatment technique for electrons. This will improve the possibility of performing combined electron field techniques in order to conform the dose distribution with no or minimal use of a bolus. Furthermore, the isocentric technique will facilitate multiple field arrangements that decrease the problems with distortion of the dose distribution due to inhomogeneities, etc. These situations are demonstrated by clinical examples where isocentric, matched electron fields for treatment of the nose, thyroid and thoracic wall have been used.
Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A
2016-05-08
The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and < 0.2% statistical uncertainties. The accuracy of the dose calculations using moderate smoothing and no smooth-ing were evaluated. Dose differences (eMC-calculated less measured dose) were evaluated in terms of absolute dose difference, where 100% equals the given dose, as well as distance to agreement (DTA). Dose calculations were also evaluated for calculation speed. Results from the eMC for the retromolar trigone phantom using 1% statistical uncertainty without smoothing showed calculated dose at 89% (41/46) of the measured TLD-dose points was within 3% dose difference or 3 mm DTA of the measured value. The average dose difference was -0.21%, and the net standard deviation was 2.32%. Differences as large as 3.7% occurred immediately distal to the mandible bone. Results for the nose phantom, using 1% statistical uncertainty without smoothing, showed calculated dose at 93% (53/57) of the measured TLD-dose points within 3% dose difference or 3 mm DTA. The average dose difference was 1.08%, and the net standard deviation was 3.17%. Differences as large as 10% occurred lateral to the nasal air cavities. Including smoothing had insignificant effects on the accuracy of the retromolar trigone phantom calculations, but reduced the accuracy of the nose phantom calculations in the high-gradient dose areas. Dose calculation times with 1% statistical uncertainty for the retromolar trigone and nose treatment plans were 30 s and 24 s, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.
Comparison of the secondary electrons produced by proton and electron beams in water
NASA Astrophysics Data System (ADS)
Kia, Mohammad Reza; Noshad, Houshyar
2016-05-01
The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.
Comparison of the secondary electrons produced by proton and electron beams in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar
The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, andmore » secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.« less
Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments
Liang, Taiee; Bauer, Johannes M.; Liu, James C.; ...
2016-12-01
A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less
Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Taiee; Bauer, Johannes M.; Liu, James C.
A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less
Optimization of combined electron and photon beams for breast cancer
NASA Astrophysics Data System (ADS)
Xiong, W.; Li, J.; Chen, L.; Price, R. A.; Freedman, G.; Ding, M.; Qin, L.; Yang, J.; Ma, C.-M.
2004-05-01
Recently, intensity-modulated radiation therapy and modulated electron radiotherapy have gathered a growing interest for the treatment of breast and head and neck tumours. In this work, we carried out a study to combine electron and photon beams to achieve differential dose distributions for multiple target volumes simultaneously. A Monte Carlo based treatment planning system was investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We compared breast treatment plans generated using this home-grown optimization and dose calculation software for different treatment techniques. Five different planning techniques have been developed for this study based on a standard photon beam whole breast treatment and an electron beam tumour bed cone down. Technique 1 includes two 6 MV tangential wedged photon beams followed by an anterior boost electron field. Technique 2 includes two 6 MV tangential intensity-modulated photon beams and the same boost electron field. Technique 3 optimizes two intensity-modulated photon beams based on a boost electron field. Technique 4 optimizes two intensity-modulated photon beams and the weight of the boost electron field. Technique 5 combines two intensity-modulated photon beams with an intensity-modulated electron field. Our results show that technique 2 can reduce hot spots both in the breast and the tumour bed compared to technique 1 (dose inhomogeneity is reduced from 34% to 28% for the target). Techniques 3, 4 and 5 can deliver a more homogeneous dose distribution to the target (with dose inhomogeneities for the target of 22%, 20% and 9%, respectively). In many cases techniques 3, 4 and 5 can reduce the dose to the lung and heart. It is concluded that combined photon and electron beam therapy may be advantageous for treating breast cancer compared to conventional treatment techniques using tangential wedged photon beams followed by a boost electron field.
A system for electron therapy dosimetry surveys with thermoluminescence dosimeters.
Soares, C G; Ehrlich, M; Padikal, T N; Gromadzki, Z C
1982-11-01
Radiation-therapy dosimetry surveys employing thermoluminescence dosimeters (TLDs) are now being considered for high-energy electron beams. Using a system of individually calibrated pressed LiF TLDs in a water and a polystyrene phantom, we established that the distortions of depth-dose distributions in non-conducting materials previously observed at high absorbed doses and high dose rates were not detectable in the present geometry at doses and dose rates as much as 40 times higher than those employed in radiation therapy. The system was then used to measure TLD response in water and in polystyrene in the nominal electron-energy range from 7 to 18 MeV. In the water phantom, the well-known trend for TLD response to decrease with increasing electron energy was observed. In the polystyrene phantom, TLD response was found to be independent of electron energy.
Value of the use of a combination of photons and electrons in radiotherapy (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gharbi, H.E.A.; Rietsch, J.
1973-01-01
The modification of the distribution of the dose delivered in an electron beam by its addition to a photon beam is studied for three cases: electron beams of 10 to 30 MeV, x-ray beams produced by the same accelerator with gamma beams from /sup 60/Co, and thicknesses of 10 to 20 cm. The results showed that the dose distributions obtained in the combination of the two beams varies according to the energy (particularly the electron energy) and according to the contribution of the different beams and the geometric comparison of the irradiated region. The graphs presented show the relative contributionmore » or each beam. (JSR)« less
Skin dose from radionuclide contamination on clothing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.
1997-06-01
Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by propermore » weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg
2013-08-15
Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-termmore » stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible.Conclusions: It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.« less
Kroll, Florian; Pawelke, Jörg; Karsch, Leonhard
2013-08-01
Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time. A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators. Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible. It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.
Nakamura, T; Uwamino, Y
1986-02-01
The neutron leakage from medical and industrial electron accelerators has become an important problem and its detection and shielding is being performed in their facilities. This study provides a new simple method of design calculation for neutron shielding of those electron accelerator facilities by dividing into the following five categories; neutron dose distribution in the accelerator room, neutron attenuation through the wall and the door in the accelerator room, neutron and secondary photon dose distributions in the maze, neutron and secondary photon attenuation through the door at the end of the maze, neutron leakage outside the facility-skyshine.
Acharya, Santhosh; Sanjeev, Ganesh; Bhat, Nagesh N; Narayana, Yerol
2010-03-01
The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7+/-0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor.
A comparison of TPS and different measurement techniques in small-field electron beams.
Donmez Kesen, Nazmiye; Cakir, Aydin; Okutan, Murat; Bilge, Hatice
2015-01-01
In recent years, small-field electron beams have been used for the treatment of superficial lesions, which requires small circular fields. However, when using very small electron fields, some significant dosimetric problems may occur. In this study, dose distributions and outputs of circular fields with dimensions of 5cm and smaller, for nominal energies of 6, 9, and 15MeV from the Siemens ONCOR Linac, were measured and compared with data from a treatment planning system using the pencil-beam algorithm in electron beam calculations. All dose distribution measurements were performed using the Gafchromic EBT film; these measurements were compared with data that were obtained from the Computerized Medical Systems (CMS) XiO treatment planning system (TPS), using the gamma-index method in the PTW VeriSoft software program. Output measurements were performed using the Gafchromic EBT film, an Advanced Markus ion chamber, and thermoluminescent dosimetry (TLD). Although the pencil-beam algorithm is used to model electron beams in many clinics, there is no substantial amount of detailed information in the literature about its use. As the field size decreased, the point of maximum dose moved closer to the surface. Output factors were consistent; differences from the values obtained from the TPS were, at maximum, 42% for 6 and 15MeV and 32% for 9MeV. When the dose distributions from the TPS were compared with the measurements from the Gafchromic EBT films, it was observed that the results were consistent for 2-cm diameter and larger fields, but the outputs for fields of 1-cm diameter and smaller were not consistent. In CMS XiO TPS, calculated using the pencil-beam algorithm, the dose distributions of electron treatment fields that were created with circular cutout of a 1-cm diameter were not appropriate for patient treatment and the pencil-beam algorithm is not convenient for monitor unit (MU) calculations in electron dosimetry. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Effect of electron irradiation dose on the performance of avalanche photodiode electron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawauchi, Taizo; Wilde, Markus; Fukutani, Katsuyuki
2009-01-01
Avalanche photodiodes (APDs) are efficient detectors for electrons with energies below 100 keV. The damaging effects of 8 keV electron beam irradiation on the dark current and the output signal of the APD detector were investigated in this study. The APD dark current increases after electron doses exceeding 1.4x10{sup 13} cm{sup -2}. Preirradiation by high doses of 8 keV electrons further causes a deformation of the pulse height distribution of the APD output in the subsequent detection of low-flux electrons. This effect is particularly prominent when the energy of the detected electrons is lower than that of the damaging electrons.more » By comparing the experimental data with results of a simulation based on an electron trapping model, we conclude that the degradation of the APD performance is attributable to an enhancement of secondary-electron trapping at irradiation induced defects.« less
Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.
2014-01-01
Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care. PMID:24506635
MO-H-19A-03: Patient Specific Bolus with 3D Printing Technology for Electron Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, W; Swann, B; Siderits, R
2014-06-15
Purpose: Bolus is widely used in electron radiotherapy to achieve desired dose distribution. 3D printing technologies provide clinicians with easy access to fabricate patient specific bolus accommodating patient body surface irregularities and tissue inhomogeneity. This study presents the design and the clinical workflow of 3D printed bolus for patient electron therapy in our clinic. Methods: Patient simulation CT images free of bolus were exported from treatment planning system (TPS) to an in-house developed software package. Bolus with known material properties was designed in the software package and then exported back to the TPS as a structure. Dose calculation was carriedmore » out to examine the coverage of the target. After satisfying dose distribution was achieved, the bolus structure was transferred in Standard Tessellation Language (STL) file format for the 3D printer to generate the machine codes for printing. Upon receiving printed bolus, a quick quality assurance was performed with patient resimulated with bolus in place to verify the bolus dosimetric property before treatment started. Results: A patient specific bolus for electron radiotherapy was designed and fabricated in Form 1 3D printer with methacrylate photopolymer resin. Satisfying dose distribution was achieved in patient with bolus setup. Treatment was successfully finished for one patient with the 3D printed bolus. Conclusion: The electron bolus fabrication with 3D printing technology was successfully implemented in clinic practice.« less
Radiation leakage dose from Elekta electron collimation system
Hogstrom, Kenneth R.; Carver, Robert L.
2016-01-01
This study provided baseline data required for a greater project, whose objective was to design a new Elekta electron collimation system having significantly lighter electron applicators with equally low out‐of field leakage dose. Specifically, off‐axis dose profiles for the electron collimation system of our uniquely configured Elekta Infinity accelerator with the MLCi2 treatment head were measured and calculated for two primary purposes: 1) to evaluate and document the out‐of‐field leakage dose in the patient plane and 2) to validate the dose distributions calculated using a BEAMnrc Monte Carlo (MC) model for out‐of‐field dose profiles. Off‐axis dose profiles were measured in a water phantom at 100 cm SSD for 1 and 2 cm depths along the in‐plane, cross‐plane, and both diagonal axes using a cylindrical ionization chamber with the 10×10 and 20×20 cm2 applicators and 7, 13, and 20 MeV beams. Dose distributions were calculated using a previously developed BEAMnrc MC model of the Elekta Infinity accelerator for the same beam energies and applicator sizes and compared with measurements. Measured results showed that the in‐field beam flatness met our acceptance criteria (±3% on major and ±4% on diagonal axes) and that out‐of‐field mean and maximum percent leakage doses in the patient plane met acceptance criteria as specified by the International Electrotechnical Commission (IEC). Cross‐plane out‐of‐field dose profiles showed greater leakage dose than in‐plane profiles, attributed to the curved edges of the upper X‐ray jaws and multileaf collimator. Mean leakage doses increased with beam energy, being 0.93% and 0.85% of maximum central axis dose for the 10×10 and 20×20 cm2 applicators, respectively, at 20 MeV. MC calculations predicted the measured dose to within 0.1% in most profiles outside the radiation field; however, excluding modeling of nontrimmer applicator components led to calculations exceeding measured data by as much as 0.2% for some regions along the in‐plane axis. Using EGSnrc LATCH bit filtering to separately calculate out‐of‐field leakage dose components (photon dose, primary electron dose, and electron dose arising from interactions in various collimating components), MC calculations revealed that the primary electron dose in the out‐of‐field leakage region was small and decreased as beam energy increased. Also, both the photon dose component and electron dose component resulting from collimator scatter dominated the leakage dose, increasing with increasing beam energy. We concluded that our custom Elekta Infinity with the MLCi2 treatment head met IEC leakage dose criteria in the patient plane. Also, accuracy of our MC model should be sufficient for our use in the design of a new, improved electron collimation system. PACS number(s): 87.56.nk, 87.10.Rt, 87.56.J PMID:27685101
SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadhan; Way, S; Arentsen, L
2016-06-15
Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R{sub 80–20} electron distal falloff distancemore » and number of particle histories was set at 500,000 per cm{sup 2}. Percent depth dose scans and beam profiles at dmax, d{sub 90} and d{sub 80} depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom{sup 2} scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d{sub 90} and d{sub 80} depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.« less
Monte Carlo dose distribution calculation at nuclear level for Auger-emitting radionuclide energies.
Di Maria, S; Belchior, A; Romanets, Y; Paulo, A; Vaz, P
2018-05-01
The distribution of radiopharmaceuticals in tumor cells represents a fundamental aspect for a successful molecular targeted radiotherapy. It was largely demonstrated at microscopic level that only a fraction of cells in tumoral tissues incorporate the radiolabel. In addition, the distribution of the radionuclides at sub-cellular level, namely inside each nucleus, should also be investigated for accurate dosimetry estimation. The most used method to perform cellular dosimetry is the MIRD one, where S-values are able to estimate cellular absorbed doses for several electron energies, nucleus diameters, and considering homogeneous source distributions. However the radionuclide distribution inside nuclei can be also highly non-homogeneous. The aim of this study is to show in what extent a non-accurate cellular dosimetry could lead to misinterpretations of surviving cell fraction vs dose relationship; in this context, a dosimetric case study with 99m Tc is also presented. The state-of-art MCNP6 Monte Carlo simulation was used in order to model cell structures both in MIRD geometry (MG) and MIRD modified geometries (MMG), where also entire mitotic chromosome volumes were considered (each structure was modeled as liquid water material). In order to simulate a wide energy range of Auger emitting radionuclides, four mono energetic electron emissions were considered, namely 213eV, 6keV, 11keV and 20keV. A dosimetric calculation for 99m Tc undergoing inhomogeneous nuclear internalization was also performed. After a successful validation step between MIRD and our computed S-values for three Auger-emitting radionuclides ( 99m Tc, 125 I and 64 Cu), absorbed dose results showed that the standard MG could differ from the MMG from one to three orders of magnitude. These results were also confirmed by considering the 99m Tc spectrum emission (Auger and internal conversion electrons). Moreover, considering an inhomogeneous radionuclide distribution, the average electron energy that maximizes the absorbed dose was found to be different for MG and MMG. The modeling of realistic radionuclide localization inside cells, including a inhomogeneous nuclear distribution, revealed that i) a strong bias in surviving cell fraction vs dose relationships (taking to different radiobiological models) can arise; ii) the alternative models might contribute to a more accurate prediction of the radiobiological effects inherent to more specific molecular targeted radiotherapy strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Differential pencil beam dose computation model for photons.
Mohan, R; Chui, C; Lidofsky, L
1986-01-01
Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.
NASA Astrophysics Data System (ADS)
Antoni, Rodolphe; Bourgois, Laurent
2017-12-01
In this work, the calculation of specific dose distribution in water is evaluated in MCNP6.1 with the regular condensed history algorithm the "detailed electron energy-loss straggling logic" and the new electrons transport algorithm proposed the "single event algorithm". Dose Point Kernel (DPK) is calculated with monoenergetic electrons of 50, 100, 500, 1000 and 3000 keV for different scoring cells dimensions. A comparison between MCNP6 results and well-validated codes for electron-dosimetry, i.e., EGSnrc or Penelope, is performed. When the detailed electron energy-loss straggling logic is used with default setting (down to the cut-off energy 1 keV), we infer that the depth of the dose peak increases with decreasing thickness of the scoring cell, largely due to combined step-size and boundary crossing artifacts. This finding is less prominent for 500 keV, 1 MeV and 3 MeV dose profile. With an appropriate number of sub-steps (ESTEP value in MCNP6), the dose-peak shift is almost complete absent to 50 keV and 100 keV electrons. However, the dose-peak is more prominent compared to EGSnrc and the absorbed dose tends to be underestimated at greater depths, meaning that boundaries crossing artifact are still occurring while step-size artifacts are greatly reduced. When the single-event mode is used for the whole transport, we observe the good agreement of reference and calculated profile for 50 and 100 keV electrons. Remaining artifacts are fully vanished, showing a possible transport treatment for energies less than a hundred of keV and accordance with reference for whatever scoring cell dimension, even if the single event method initially intended to support electron transport at energies below 1 keV. Conversely, results for 500 keV, 1 MeV and 3 MeV undergo a dramatic discrepancy with reference curves. These poor results and so the current unreliability of the method is for a part due to inappropriate elastic cross section treatment from the ENDF/B-VI.8 library in those energy ranges. Accordingly, special care has to be taken in setting choice for calculating electron dose distribution with MCNP6, in particular with regards to dosimetry or nuclear medicine applications.
Calculation of Dose Deposition in 3D Voxels by Heavy Ions
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2010-01-01
The biological response to high-LET radiation is very different from low-LET radiation, and can be partly attributed to the energy deposition by the radiation. Several experiments, notably detection of gamma-H2AX foci by immunofluorescence, has revealed important differences in the nature and in the spatial distribution of double-strand breaks (DSB) induced by low- and high-LET radiations. Many calculations, most of which are based on amorphous track models with radial dose, have been combined with chromosome models to calculate the number and distribution of DSB within nuclei and chromosome aberrations. In this work, the Monte-Carlo track structure simulation code RITRACKS have been used to calculate directly the energy deposition in voxels (3D pixels). A cubic volume of 5 micrometers of side was irradiated by 1) 450 (1)H+ ions of 300 MeV (LET is approximately 0.3 keV/micrometer) and 2) by 1 (56)Fe26+ ion of 1 GeV/amu (LET is approximately 150 keV/micrometer). In both cases, the dose deposited in the volume is approximately 1 Gy. All energy deposition events are recorded and dose is calculated in voxels of 20 micrometers of side. The voxels are then visualized in 3D by using a color scale to represent the intensity of the dose in a voxel. This simple approach has revealed several important points which may help understand experimental observations. In both simulations, voxels which receive low dose are the most numerous, and those corresponding to electron track ends received a dose which is in the higher range. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. The distribution of the voxels shows major differences for the (56)Fe26+ ion. The track structure can still be seen, and voxels with much higher dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and may be responsible for DSB that are more difficult to repair. By applying a threshold on the dose visualization, voxels corresponding to electron track ends are evidenced and the spatial distribution of voxels is very similar to the distribution of DSB observed in gamma H2AX experiments, even if no chromosomes have been included in the simulation. Furthermore, this work has shown that a significant dose is deposited in voxels corresponding to electron track ends. Since some delta-rays from iron ion can travel several millimeters, they may also be of radiobiological importance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feygelman, Vladimir; Department of Physics, University of Manitoba, Winnipeg, MB; Mandelzweig, Yuri
2015-01-15
Matching electron beams without secondary collimators (applicators) were used for treatment of extensive, recurrent chest-wall carcinoma. Due to the wide penumbra of such beams, the homogeneity of the dose distribution at and around the junction point is clinically acceptable and relatively insensitive to positional errors. Specifically, dose around the junction point is homogeneous to within ±4% as calculated from beam profiles, while the positional error of 1 cm leaves this number essentially unchanged. The experimental isodose distribution in an anthropomorphic phantom supports this conclusion. Two electron beams with wide penumbra were used to cover the desired treatment area with satisfactorymore » dose homogeneity. The technique is relatively simple yet clinically useful and can be considered a viable alternative for treatment of extensive chest-wall disease. The steps are suggested to make this technique more universal.« less
Higher energy: is it necessary, is it worth the cost for radiation oncology?
Das, I J; Kase, K R
1992-01-01
The physical characteristics of the interactions of megavoltage photons and electrons with matter provide distinct advantages, relative to low-energy (orthovoltage) x rays, that lead to better radiation dose distributions in patients. Use of these high-energy radiations has resulted in better patient care, which has been reflected in improved radiation treatment outcome in recent years. But, as the desire for higher energy radiation beams increases, it becomes important to determine whether the physical characteristics that make megavoltage beams beneficial continue to provide a net advantage. It is demonstrated that, in fact, there is an energy range from 4 to 15 MV for photons and 4 to 20 MeV for electrons that is optimally suited for the treatment of cancer in humans. Radiation beams that exceed these maximum energies were found to add no advantage. This is because the costs (price of unit, installation, maintenance, shielding for neutron and photons) are not justified by either improved physical characteristics of the radiation (penetration, skin sparing, dose distribution) or treatment outcome. In fact, for photon beams some physical characteristics result in less desirable dose distributions, less accurate dosimetry, and increased safety problems as the energy increases for example, increasingly diffuse beam edges, loss of electron equilibrium, uncertainty in dose perturbations at interfaces, increased neutron contamination, and potential for higher personnel dose. The special features that make electron beams useful at lower energies, for example, skin sparing and small penetration, are lost at high energies. These physical factors are analyzed together with the economic factors related to radiation therapy patient care using megavoltage beams.
Shen, L; Levine, S H; Catchen, G L
1987-07-01
This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.
SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawad, M Abdel; Elgohary, M; Hassaan, M
Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less
Electron beam therapy with coil-generated magnetic fields.
Nardi, Eran; Barnea, Gideon; Ma, Chang-Ming
2004-06-01
This paper presents an initial study on the issues involved in the practical implementation of the use of transverse magnetic fields in electron beam therapy. By using such magnetic fields the dose delivered to the tumor region can increase significantly relative to that deposited to the healthy tissue. Initially we calculated the magnetic fields produced by the Helmholtz coil and modified Helmholtz coil configurations. These configurations, which can readily be used to generate high intensity magnetic fields, approximate the idealized magnetic fields studied in our previous publications. It was therefore of interest to perform a detailed study of the fields produced by these configurations. Electron beam dose distributions for 15 MeV electrons were calculated using the ACCEPTM code for a 3T transverse magnetic field produced by the modified Helmholtz configuration. The dose distribution was compared to those obtained with no magnetic field. The results were similar to those obtained in our previous work, where an idealized step function magnetic field was used and a 3T field was shown to be the optimal field strength. A simpler configuration was also studied in which a single external coil was used to generate the field. Electron dose distributions are also presented for a given geometry and given magnetic field strength using this configuration. The results indicate that this method is more difficult to apply to radiotherapy due to its lack of symmetry and its irregularity. For the various configurations dealt with here, a major problem is the need to shield the magnetic field in the beam propagation volume, a topic that must be studied in detail.
Ghasroddashti, E; Sawchuk, S
2008-07-01
To assess a diode detector array (MapCheck) for commissioning, quality assurance (QA); and patient specific QA for electrons. 2D dose information was captured for various depths at several square fields ranging from 2×2 to 25×25cm 2 , and 9 patient customized cutouts using both Mapcheck and a scanning water phantom. Beam energies of 6, 9, 12, 16 and 20 MeV produced by Varian linacs were used. The water tank, beam energies and fields were also modeled on the Pinnacle planning system obtaining dose information. Mapcheck, water phantom and Pinnacle results were compared. Relative output factors (ROF) acquired with Mapcheck were compared to an in-house algorithm (JeffIrreg). Inter- and intra-observer variability was also investigated Results: Profiles and %DD data for Mapcheck, water tank, and Pinnacle agree well. High-dose, low-dose-gradient comparisons agree to within 1% between Mapcheck and water phantom. Field size comparisons showed mostly sub-millimeter agreement. ROFs for Mapcheck and JeffIrreg agreed within 2.0% (mean=0.9%±0.6%). The current standard for electron commissioning and QA is the scanning water tank which may be inefficient. Our results demonstrate that MapCheck can potentially be an alternative. Also the dose distributions for patient specific electron treatment require verification. This procedure is particularly challenging when the minimum dimension across the central axis of the cutout is smaller than the range of the electrons in question. Mapcheck offers an easy and efficient way of determining patient dose distributions especially compared to using the alternatives, namely, ion chamber and film. © 2008 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin
A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shieldmore » was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.« less
A small-scale anatomical dosimetry model of the liver
NASA Astrophysics Data System (ADS)
Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders
2014-07-01
Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.
NASA Astrophysics Data System (ADS)
Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki
2016-10-01
Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.
NASA Astrophysics Data System (ADS)
Ansari, M.; Abbasi Davani, F.; Lamehi Rashti, M.; Monadi, Sh.; Emami, H.
2018-05-01
Total skin electron irradiation technique is used in treatment of the mycosis fungoid. The implementation of this technique requires non-standard measurements and complex dosimetry methods. Depending on the linear accelerator (Linac) type, bunker size, room dimensions and dosimetry equipment, the design of instruments for appropriate set up and implementation of TSEI in different radiation therapy centers varies. The studies which have been done in this article provide an introduction to the implementing of this method for the first time in Iran and its results can be used for the centers with similar specifications in the world. This article determined the electron beam characteristic of TSEI for the only electron accelerator, located at the radiation center of the Seyed Alshohada Hospital of Isfahan (NEPTUN 10PC), by performing Monte Carlo simulations and using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). For the best uniformity of the vertical profile, the optimal angle of gantry was defined at SSD=350 cm. The effect of the degrader plane that is located at a distance of 20 cm from the patient surface, was evaluated on the amount of energy reduction of the beam, the opening of the electron beam field and the homogeneity of the dose distribution. The transversal dose distribution from the whole treatment with Stanford technique (six dual fields) and Rotational technique was simulated in a CT-based anthropomorphic phantom. Also, the percentage depth dose in the head, neck, thorax, abdomen and legs was obtained for both methods. The simulation results show that the 20o angle between the horizontal and the beam central axis is optimal in order to provide the best vertical dose uniformity. The mean energy decreases from 6.1 MeV (the exit window) to 3 MeV (the treatment surface) by placing a degrader with 0.8 cm thickness in front of the treatment plane. FWHM of the angular distribution of the electron beam increased from 15o at SSD=100 cm to more than 30o on the treatment surface by traversing the PMMA degrader. The MC calculated percentage depth dose curves in different organs of anthropomorphic phantom for RTSEI indicates that the depth of maximum dose is on the surface of the phantom and Isodose curve of 80% is formed at a depth less than 4 mm. the results also show, with the degrader plane in front of the patient, the degree of homogeneity of the dose distribution for both Stanford and rotational techniques is the same.
Costa, Filipa; Gomes, Dora; Magalhães, Helena; Arrais, Rosário; Moreira, Graciete; Cruz, Maria Fátima; Silva, José Pedro; Santos, Lúcio; Sousa, Olga
2016-01-01
Objective: To characterize in vivo dose distributions during pelvic intraoperative electron radiation therapy (IOERT) for rectal cancer and to assess the alterations introduced by irregular irradiation surfaces in the presence of bevelled applicators. Methods: In vivo measurements were performed with Gafchromic films during 32 IOERT procedures. 1 film per procedure was used for the first 20 procedures. The methodology was then optimized for the remaining 12 procedures by using a set of 3 films. Both the average dose and two-dimensional dose distributions for each film were determined. Phantom measurements were performed for comparison. Results: For flat and concave surfaces, the doses measured in vivo agree with expected values. For concave surfaces with step-like irregularities, measured doses tend to be higher than expected doses. Results obtained with three films per procedure show a large variability along the irradiated surface, with important differences from expected profiles. These results are consistent with the presence of surface hotspots, such as those observed in phantoms in the presence of step-like irregularities, as well as fluid build-up. Conclusion: Clinical dose distributions in the IOERT of rectal cancer are often different from the references used for prescription. Further studies are necessary to assess the impact of these differences on treatment outcomes. In vivo measurements are important, but need to be accompanied by accurate imaging of positioning and irradiated surfaces. Advances in knowledge: These results confirm that surface irregularities occur frequently in rectal cancer IOERT and have a measurable effect on the dose distribution. PMID:27188847
Kumar, P P; Henschke, K; Mandal, K P; Nibhanupudy, J R; Patel, I S
1977-04-01
This paper describes the problems and solutions in using 18 MeV linear accelerator, with minimum 6 MeV electron capability, for total skin irradiation for mycosis fungoides. The 6 MeV electron energy can be degraded to acceptable electron energy of 3.2 MeV by interposing a plexiglass sheet of 9.6 mm in the beam. To minimize the bremsstrahlung, the degrading plexiglass should be kept away from the machine head. A wide area with uniform dose distribution over single plane can be achieved by using dual fields but homogenous dose distribution over irregular body surface cannot be achieved mainly because of self-shielding. The nails and the ocular lens can be easily shielded from the low energy electrons with 1.5 mm lead shield.
NASA Astrophysics Data System (ADS)
Qin, Huaili; Yang, Guang; Kuang, Shan; Wang, Qiang; Liu, Jingjing; Zhang, Xiaomin; Li, Cancan; Han, Zhiwei; Li, Yuanjing
2018-02-01
The present project will adopt the principle and technology of X-ray imaging to quickly measure the mass thickness (wherein the mass thickness of the item =density of the item × thickness of the item) of the irradiated items and thus to determine whether the packaging size and inside location of the item will meet the requirements for treating thickness upon electron beam irradiation processing. The development of algorithm of X-ray mass thickness detector as well as the prediction of dose distribution have been completed. The development of the algorithm was based on the X-ray attenuation. 4 standard modules, Al sheet, Al ladders, PMMA sheet and PMMA ladders, were selected for the algorithm development. The algorithm was optimized until the error between tested mass thickness and standard mass thickness was less than 5%. Dose distribution of all energy (1-10 MeV) for each mass thickness was obtained using Monte-carlo method and used for the analysis of dose distribution, which provides the information of whether the item will be penetrated or not, as well as the Max. dose, Min. dose and DUR of the whole item.
Borzov, Egor; Daniel, Shahar; Bar‐Deroma, Raquel
2016-01-01
Total skin electron irradiation (TSEI) is a complex technique which requires many nonstandard measurements and dosimetric procedures. The purpose of this work was to validate measured dosimetry data by Monte Carlo (MC) simulations using EGSnrc‐based codes (BEAMnrc and DOSXYZnrc). Our MC simulations consisted of two major steps. In the first step, the incident electron beam parameters (energy spectrum, FWHM, mean angular spread) were adjusted to match the measured data (PDD and profile) at SSD=100 cm for an open field. In the second step, these parameters were used to calculate dose distributions at the treatment distance of 400 cm. MC simulations of dose distributions from single and dual fields at the treatment distance were performed in a water phantom. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. MC calculations were compared to the available set of measurements used in clinical practice. For one direct field, MC calculated PDDs agreed within 3%/1 mm with the measurements, and lateral profiles agreed within 3% with the measured data. For the OF, the measured and calculated results were within 2% agreement. The optimal angle of 17° was confirmed for the dual field setup. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. The MC‐calculated multiplication factor (B12‐factor), which relates the skin dose for the whole treatment to the dose from one calibration field, for setups with and without degrader was 2.9 and 2.8, respectively. The measured B12‐factor was 2.8 for both setups. The difference between calculated and measured values was within 3.5%. It was found that a degrader provides more homogeneous dose distribution. The measured X‐ray contamination for the full treatment was 0.4%; this is compared to the 0.5% X‐ray contamination obtained with the MC calculation. Feasibility of MC simulation in an anthropomorphic phantom for a full TSEI treatment was proved and is reported for the first time in the literature. The results of our MC calculations were found to be in general agreement with the measurements, providing a promising tool for further studies of dose distribution calculations in TSEI. PACS number(s): 87.10. Rt, 87.55.K, 87.55.ne PMID:27455502
The treatment of extensive scalp lesions combining electrons with intensity-modulated photons.
Chan, Maria F; Song, Yulin; Burman, Chandra; Chui, Chen S; Schupak, Karen
2006-01-01
This study was to investigate the feasibility and potential benefits of combining electrons with intensity modulated photons (IMRT+e) for patients with extensive scalp lesions. A case of a patient with an extensive scalp lesion, in which the target volume covered the entire front half of the scalp, is presented. This approach incorporated the electron dose into the inverse treatment planning optimization. The resulting doses to the planning target volume (PTV) and relevant critical structures were compared. Thermoluminescent dosimeters (TLD), diodes, and GAFCHROMIC EBT films were used to verify the accuracy of the techniques. The IMRT+e plan produced a superior dose distribution to the patient as compared to the IMRT plan in terms of reduction of the dose to the brain with the same dose conformity and homogeneity in the target volumes. This study showed that IMRT+e is a viable treatment modality for extensive scalp lesions patients. It provides a feasible alternative to existing treatment techniques, resulting in improved homogeneity of dose to the PTV compared to conventional electron techniques and a decrease in dose to the brain compared to photon IMRT alone.
Lee, Tae Kyu; Sandison, George A
2003-01-21
Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, chi, in the algorithm to be determined in advance of calculation.
The energy-dependent electron loss model: backscattering and application to heterogeneous slab media
NASA Astrophysics Data System (ADS)
Lee, Tae Kyu; Sandison, George A.
2003-01-01
Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, χ, in the algorithm to be determined in advance of calculation.
Monte Carlo study of si diode response in electron beams.
Wang, Lilie L W; Rogers, David W O
2007-05-01
Silicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc. The results indicate that, for this particular diode model, the diode response per unit water dose (or water/diode dose ratio) in both 6 and 18 MeV electron beams is flat within 2% versus depth, from near the phantom surface to the depth of R50 (with calculation uncertainty <0.3%). This suggests that there must be some other correction factors for ion chambers that counter-balance the large wall correction factor at depth in electron beams. In addition, the beam quality and field-size dependence of the diode model are also calculated. The results show that the water/diode dose ratio remains constant within 2% over the electron energy range from 6 to 18 MeV. The water/diode dose ratio does not depend on field size as long as the incident electron beam is broad and the electron energy is high. However, for a very small beam size (1 X 1 cm(2)) and low electron energy (6 MeV), the water/diode dose ratio may decrease by more than 2% compared to that of a broad beam.
NASA Astrophysics Data System (ADS)
Beld, E.; Seevinck, P. R.; Lagendijk, J. J. W.; Viergever, M. A.; Moerland, M. A.
2016-09-01
In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner’s magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.
Beld, E; Seevinck, P R; Lagendijk, J J W; Viergever, M A; Moerland, M A
2016-09-21
In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner's magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.
Revision of orthovoltage chest wall treatment using Monte Carlo simulations.
Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Mosalaei, A; Hadad, K
2017-01-01
Given the high local control rates observed in breast cancer patients undergoing chest wall irradiation by kilovoltage x-rays, we aimed to revisit this treatment modality by accurate calculation of dose distributions using Monte Carlo simulation. The machine components were simulated using the MCNPX code. This model was used to assess the dose distribution of chest wall kilovoltage treatment in different chest wall thicknesses and larger contour or fat patients in standard and mid sternum treatment plans. Assessments were performed at 50 and 100 cm focus surface distance (FSD) and different irradiation angles. In order to evaluate different plans, indices like homogeneity index, conformity index, the average dose of heart, lung, left anterior descending artery (LAD) and percentage target coverage (PTC) were used. Finally, the results were compared with the indices provided by electron therapy which is a more routine treatment of chest wall. These indices in a medium chest wall thickness in standard treatment plan at 50 cm FSD and 15 degrees tube angle was as follows: homogeneity index 2.57, conformity index 7.31, average target dose 27.43 Gy, average dose of heart, lung and LAD, 1.03, 2.08 and 1.60 Gy respectively and PTC 11.19%. Assessments revealed that dose homogeneity in planning target volume (PTV) and conformity between the high dose region and PTV was poor. To improve the treatment indices, the reference point was transferred from the chest wall skin surface to the center of PTV. The indices changed as follows: conformity index 7.31, average target dose 60.19 Gy, the average dose of heart, lung and LAD, 3.57, 6.38 and 5.05 Gy respectively and PTC 55.24%. Coverage index of electron therapy was 89% while it was 22.74% in the old orthovoltage method and also the average dose of the target was about 50 Gy but in the given method it was almost 30 Gy. The results of the treatment study show that the optimized standard and mid sternum treatment for different chest wall thicknesses is with 50 cm FSD and zero (vertical) tube angle, while in large contour patients, it is with 100 cm FSD and zero tube angle. Finally, chest wall kilovoltage and electron therapies were compared, which revealed that electron therapy produces a better dose distribution than kilovoltage therapy.
NASA Astrophysics Data System (ADS)
Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria
2015-09-01
In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus ionization chamber and Monte Carlo results (within about 3%) for both flat and bevelled applicators.
Materials Degradation in the Jovian Radiation Environment
NASA Technical Reports Server (NTRS)
Miloshevsky, Gennady; Caffrey, Jarvis A.; Jones, Jonathan E.; Zoladz, Thomas F.
2017-01-01
The radiation environment of Jupiter represents a significant hazard for Europa Lander deorbit stage components, and presents a significant potential mission risk. The radiolytic degradation of ammonium perchlorate (AP) oxidizer in solid propellants may affect its properties and performance. The Monte Carlo code MONSOL was used for modeling of laboratory experiments on the electron irradiation of propellant samples. An approach for flattening dose profiles along the depth of irradiated samples is proposed. Depth-dose distributions produced by Jovian electrons in multi-layer slabs of materials are calculated. It is found that the absorbed dose in a particular slab is significantly affected by backscattered electrons and photons from neighboring slabs. The dose and radiolytic decomposition of AP crystals are investigated and radiation-induced chemical yields and weight percent of radical products are reported.
Transport of secondary electrons and reactive species in ion tracks
NASA Astrophysics Data System (ADS)
Surdutovich, Eugene; Solov'yov, Andrey V.
2015-08-01
The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.
SU-E-T-279: A Novel Electron-Beam Combined with Magnetic Field Application for Radiotherapy.
Alezra, D; Nardi, E; Koren, S; Bragilovski, D; Orion, I
2012-06-01
The new beam and delivery system consists of an electron accelerator and a system of magnets (one or more). Introducing a transverse magnetic field in and near the tumor, causes the electrons to spiral in this region, thereby producing an effective peak in the depth dose distribution, within the tumor volume. Although the basic idea is not new, we suggest here for the first time, a viable as well as a workable, magnetic field configuration, which in addition to focusing the beam does not interfere with its propagation to the target. The electron accelerator: can be a linear accelerator or any other type electron accelerator, capable of producing different electron energies for different depths and dose absorption accumulation. The Field size can be as small as a pencil beam and as big as any of the other standard field sizes that are used in radiotherapy. The scatter filter can be used or removed. The dose rate accumulation can be as higher as possible.The magnets are able to produce magnetic fields. The order, direction, width, place, shape and number of the magnetic fields define the shape and the Percentage Depth Dose (PDD) curve of the electron beam. Prototypes were successfully tested by means of computer simulation, using:COMSOL-Multiphsics for magnetic fields calculations. FLUKA package, for electron beam MC simulation. Our results suggest that by using an electron beam at different energies, combined with magnetic fields, we could modify the delivered dose. This is caused by manipulating the electron motion via the Lorentz force. The applied magnetic field, will focus the electron beam at a given depth and deposit the energy in a given volume and depth, where otherwise the electron energy will have spread deeper. The direction and magnitude of the magnetic fields will prevent the scattering of the electron beam and its absorption in remote volumes. In practice, we get a pseudo Bragg peak depth dose distribution, applying a relatively low cost system. The therapeutic efficiency induced by the system is of similar efficiency as the ion beam therapy techniques. Our novel concept demonstrates treatment that is almost similar to proton therapy and in some parameters even better performance.Unlike the current high-energy electron therapy, our system's beam deposit almost all of its energy on its target, with a low amount of radiation deposited in tissues from the surface of the skin to the front of tumor, and almost no "exit dose" beyond the tumor. This property will enables to hit tumors with higher, potentially more effective radiation doses, while being considerably less expensive. © 2012 American Association of Physicists in Medicine.
ORANGE: a Monte Carlo dose engine for radiotherapy.
van der Zee, W; Hogenbirk, A; van der Marck, S C
2005-02-21
This study presents data for the verification of ORANGE, a fast MCNP-based dose engine for radiotherapy treatment planning. In order to verify the new algorithm, it has been benchmarked against DOSXYZ and against measurements. For the benchmarking, first calculations have been done using the ICCR-XIII benchmark. Next, calculations have been done with DOSXYZ and ORANGE in five different phantoms (one homogeneous, two with bone equivalent inserts and two with lung equivalent inserts). The calculations have been done with two mono-energetic photon beams (2 MeV and 6 MeV) and two mono-energetic electron beams (10 MeV and 20 MeV). Comparison of the calculated data (from DOSXYZ and ORANGE) against measurements was possible for a realistic 10 MV photon beam and a realistic 15 MeV electron beam in a homogeneous phantom only. For the comparison of the calculated dose distributions and dose distributions against measurements, the concept of the confidence limit (CL) has been used. This concept reduces the difference between two data sets to a single number, which gives the deviation for 90% of the dose distributions. Using this concept, it was found that ORANGE was always within the statistical bandwidth with DOSXYZ and the measurements. The ICCR-XIII benchmark showed that ORANGE is seven times faster than DOSXYZ, a result comparable with other accelerated Monte Carlo dose systems when no variance reduction is used. As shown for XVMC, using variance reduction techniques has the potential for further acceleration. Using modern computer hardware, this brings the total calculation time for a dose distribution with 1.5% (statistical) accuracy within the clinical range (less then 10 min). This means that ORANGE can be a candidate for a dose engine in radiotherapy treatment planning.
NASA Astrophysics Data System (ADS)
Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.
2003-08-01
Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.
Doucet, R; Olivares, M; DeBlois, F; Podgorsak, E B; Kawrakow, I; Seuntjens, J
2003-08-07
Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 x 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid Water (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez-Beltran, M; Fernandez Gonzalez, F
2014-06-15
Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less
Simulation of angular and energy distributions of the PTB beta secondary standard.
Faw, R E; Simons, G G; Gianakon, T A; Bayouth, J E
1990-09-01
Calculations and measurements have been performed to assess radiation doses delivered by the PTB Secondary Standard that employs 147Pm, 204Tl, and 90Sr:90Y sources in prescribed geometries, and features "beam-flattening" filters to assure uniformity of delivered doses within a 5-cm radius of the axis from source to detector plane. Three-dimensional, coupled, electron-photon Monte Carlo calculations, accounting for transmission through the source encapsulation and backscattering from the source mounting, led to energy spectra and angular distributions of electrons penetrating the source encapsulation that were used in the representation of pseudo sources of electrons for subsequent transport through the atmosphere, filters, and detectors. Calculations were supplemented by measurements made using bare LiF TLD chips on a thick polymethyl methacrylate phantom. Measurements using the 204Tl and 90Sr:90Y sources revealed that, even in the absence of the beam-flattening filters, delivered dose rates were very uniform radially. Dosimeter response functions (TLD:skin dose ratios) were calculated and confirmed experimentally for all three beta-particle sources and for bare LiF TLDs ranging in mass thickness from 10 to 235 mg cm-2.
Search for ionisation density effects in the radiation absorption stage in LiF:Mg,Ti.
Nail, I; Horowitz, Y S; Oster, L; Brandan, M E; Rodríguez-Villafuerte, M; Buenfil, A E; Ruiz-Trejo, C; Gamboa-Debuen, I; Avila, O; Tovar, V M; Olko, P; Ipe, N
2006-01-01
Optical absorption (OA) dose-response of LiF:Mg,Ti (TLD-100) is studied as a function of electron energy (ionisation density) and irradiation dose. Contrary to the situation in thermoluminescence dose-response where the supralinearity is strongly energy-dependent, no dependence of the OA dose filling constants on energy is observed. This result is interpreted as indicating a lack of competitive process in the radiation absorption stage. The lack of an energy dependence of the dose filling constant also suggests that the charge carrier migration distances are sufficiently large to smear out the differences in the non-uniform distribution of ionisation events created by the impinging gamma/electron radiation of various energies.
Monte Carlo simulation of electron beams from an accelerator head using PENELOPE.
Sempau, J; Sánchez-Reyes, A; Salvat, F; ben Tahar, H O; Jiang, S B; Fernández-Varea, J M
2001-04-01
The Monte Carlo code PENELOPE has been used to simulate electron beams from a Siemens Mevatron KDS linac with nominal energies of 6, 12 and 18 MeV. Owing to its accuracy, which stems from that of the underlying physical interaction models, PENELOPE is suitable for simulating problems of interest to the medical physics community. It includes a geometry package that allows the definition of complex quadric geometries, such as those of irradiation instruments, in a straightforward manner. Dose distributions in water simulated with PENELOPE agree well with experimental measurements using a silicon detector and a monitoring ionization chamber. Insertion of a lead slab in the incident beam at the surface of the water phantom produces sharp variations in the dose distributions, which are correctly reproduced by the simulation code. Results from PENELOPE are also compared with those of equivalent simulations with the EGS4-based user codes BEAM and DOSXYZ. Angular and energy distributions of electrons and photons in the phase-space plane (at the downstream end of the applicator) obtained from both simulation codes are similar, although significant differences do appear in some cases. These differences, however, are shown to have a negligible effect on the calculated dose distributions. Various practical aspects of the simulations, such as the calculation of statistical uncertainties and the effect of the 'latent' variance in the phase-space file, are discussed in detail.
The evaluation of 6 and 18 MeV electron beams for small animal irradiation
NASA Astrophysics Data System (ADS)
Chao, T. C.; Chen, A. M.; Tu, S. J.; Tung, C. J.; Hong, J. H.; Lee, C. C.
2009-10-01
A small animal irradiator is critical for providing optimal radiation dose distributions for pre-clinical animal studies. This paper focuses on the evaluation of using 6 or 18 MeV electron beams as small animal irradiators. Compared with all other prototypes which use photons to irradiate small animals, an electron irradiator has many advantages in its shallow dose distribution. Two major approaches including simulation and measurement were used to evaluate the feasibility of applying electron beams in animal irradiation. These simulations and measurements were taken in three different fields (a 6 cm × 6 cm square field, and 4 mm and 30 mm diameter circular fields) and with two different energies (6 MeV and 18 MeV). A PTW Semiflex chamber in a PTW-MP3 water tank, a PTW Markus chamber type 23343, a PTW diamond detector type 60003 and KODAK XV films were used to measure PDDs, lateral beam profiles and output factors for either optimizing parameters of Monte Carlo simulation or to verify Monte Carlo simulation in small fields. Results show good agreement for comparisons of percentage depth doses (<=2.5% for 6 MeV e; <=1.8% for 18 MeV e) and profiles (FWHM <= 0.5 mm) between simulations and measurements on the 6 cm field. Greater deviation can be observed in the 4 mm field, which is mainly caused by the partial volume effects of the detectors. The FWHM of the profiles for the 18 MeV electron beam is 32.6 mm in the 30 mm field, and 4.7 mm in the 4 mm field at d90. It will take 1-13 min to complete one irradiation of 5-10 Gy. In addition, two different digital phantoms were also constructed, including a homogeneous cylindrical water phantom and a CT-based heterogeneous mouse phantom, and were implemented into Monte Carlo to simulate dose distribution with different electron irradiations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eley, J; Krishnan, S
2014-06-15
Purpose: The purpose of this study was to investigate the theoretical dose enhancement to a cell nucleus due to increased fluence of secondary electrons when gold nanospheres are present in the cytoplasm during proton therapy. Methods: We modeled the irradiation of prostate cancer cells using protons of variable energies when 10,000 gold nanoparticles, each with radius of 10 nm, were randomly distributed in the cytoplasm. Using simple analytical equations, we calculated the increased mean dose to the cell nucleus due to secondary electrons produced by hard collisions of 0.1, 1, 10, and 100 MeV protons with orbital electrons in gold.more » We only counted electrons with kinetic energy higher than 1 keV. In addition to calculating the increase in the mean dose to the cell nucleus, we also calculated the increase in local dose in the “shadow,” i.e., the umbra, of individual gold nanospheres due to forward scattered electrons. Results: For proton energies of 0.1, 1, 10, and 100 MeV, we calculated increases to the mean nuclear dose of 0.15, 0.09, 0.05, and 0.04%, respectively. When we considered local dose increases in the shadows of individual gold spheres, we calculated local dose increases of 5.5, 3.2, 1.9, and 1.3%, respectively. Conclusion: We found negligible, less than 0.2%, increases in the mean dose to the cell nucleus due to electrons produced by hard collisions of protons with electrons in gold nanospheres. However, we observed increases up to 5.5% in the local dose in the shadow of gold nanospheres. Considering the shadow radius of 10 nm, these local dose enhancements may have implications for slightly increased probability of clustered DNA damage when gold nanoparticles are close to the nuclear membrane.« less
Generation and dose distribution measurement of flash x-ray in KALI-5000 system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, Rakhee; Roy, Amitava; Mitra, S.
2008-10-15
Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm{sup 2} current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO{sub 4}:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance {approx}1/x{sup n}, where n varies from 1.8 to 1.85. Amore » maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.« less
Gültekin, Melis; Karabuğa, Mehmet; Yıldız, Ferah; Özyiğit, Gökhan; Cengiz, Mustafa; Zorlu, Faruk; Akyol, Fadıl; Gürkaynak, Murat
2014-04-01
The aim of this study was to find the most appropriate technique for postmastectomy chest wall (CW) and lymphatic irradiation. Partially wide tangent, 30/70 photon/electron mix, 20/80 photon/electron mix and CW and internal mammary en face electron field, were studied on computerized tomography (CT) scans of 10 left breast carcinoma patients and dosimetric calculations have been studied. Dose volume histograms (DVH) obtained from treatment planning system (TPS) were used for minimal, maximal and mean doses received by the clinical target volumes and critical structures. Partially wide tangent field resulted in the most homogeneous dose distribution for the CW and a significantly lower lung and heart doses compared with all other techniques. However, right breast dose was significantly higher for partially wide tangent technique than that each of the other techniques. Approximately 0.6-7.9% differences were found between thermoluminescent dosimeter (TLD) and treatment planning system (TPS). The daily surface doses calculating using Gafchromic® external beam therapy (EBT) dosimetry films were 161.8±2.7 cGy for the naked, 241.0±1.5 cGy when 0.5 cm bolus was used and 255.3±2.7 cGy when 1 cm bolus was used. As a result of this study, partially wide tangent field was found to be the most appropriate technique in terms of the dose distribution, treatment planning and set-up procedure. The main disadvantage of this technique was the higher dose to the contralateral breast comparing the other techniques.
WE-E-18A-06: To Remove Or Not to Remove: Comfort Pads From Beneath Neonates for Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, X; Baad, M; Reiser, I
2014-06-15
Purpose: To obtain an analytical empirical formula for the photon dose source term in forward direction from bremsstrahlung generated from laser-plasma accelerated electron beams in aluminum solid targets, with electron-plasma temperatures in the 10–100 keV energy range, and to calculate transmission factors for iron, aluminum, methacrylate, lead and concrete and air, materials most commonly found in vacuum chamber labs. Methods: Bremsstrahlung fluence is calculated from the convolution of thin-target bremsstrahlung spectrum for monoenergetic electrons and the relativistic Maxwell-Juettner energy distribution for the electron-plasma. Unattenuatted dose in tissue is calculated by integrating the photon spectrum with the mass-energy absorption coefficient. Formore » the attenuated dose, energy dependent absorption coefficient, build-up factors and finite shielding correction factors were also taken into account. For the source term we use a modified formula from Hayashi et al., and we fitted the proportionality constant from experiments with the aid of the previously calculated transmission factors. Results: The forward dose has a quadratic dependence on electron-plasma temperature: 1 joule of effective laser energy transferred to the electrons at 1 m in vacuum yields 0,72 Sv per MeV squared of electron-plasma temperature. Air strongly filters the softer part of the photon spectrum and reduce the dose to one tenth in the first centimeter. Exponential higher energy tail of maxwellian spectrum contributes mainly to the transmitted dose. Conclusion: A simple formula for forward photon dose from keV range temperature plasma is obtained, similar to those found in kilovoltage x-rays but with higher dose per dissipated electron energy, due to thin target and absence of filtration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de; Zaragoza, Francisco J.; Sempau, Josep
Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Montemore » Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donovan, Ellen M., E-mail: ellen.donovan@icr.ac.u; Ciurlionis, Laura; Fairfoul, Jamie
Purpose: To establish planning solutions for a concomitant three-level radiation dose distribution to the breast using linear accelerator- or tomotherapy-based intensity-modulated radiotherapy (IMRT), for the U.K. Intensity Modulated and Partial Organ (IMPORT) High trial. Methods and Materials: Computed tomography data sets for 9 patients undergoing breast conservation surgery with implanted tumor bed gold markers were used to prepare three-level dose distributions encompassing the whole breast (36 Gy), partial breast (40 Gy), and tumor bed boost (48 or 53 Gy) treated concomitantly in 15 fractions within 3 weeks. Forward and inverse planned IMRT and tomotherapy were investigated as solutions. A standardmore » electron field was compared with a photon field arrangement encompassing the tumor bed boost volume. The out-of-field doses were measured for all methods. Results: Dose-volume constraints of volume >90% receiving 32.4 Gy and volume >95% receiving 50.4 Gy for the whole breast and tumor bed were achieved. The constraint of volume >90% receiving 36 Gy for the partial breast was fulfilled in the inverse IMRT and tomotherapy plans and in 7 of 9 cases of a forward planned IMRT distribution. An electron boost to the tumor bed was inadequate in 8 of 9 cases. The IMRT methods delivered a greater whole body dose than the standard breast tangents. A contralateral lung volume >2.5 Gy was increased in the inverse IMRT and tomotherapy plans, although it did not exceed the constraint. Conclusion: We have demonstrated a set of widely applicable solutions that fulfilled the stringent clinical trial requirements for the delivery of a concomitant three-level dose distribution to the breast.« less
Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marini, Sara, E-mail: s.marini@unicas.it; Buonanno, Giorgio; Queensland University of Technology, Brisbane
The objective of this study was to compare the short-term respiratory effects due to the inhalation of electronic and conventional tobacco cigarette-generated mainstream aerosols through the measurement of the exhaled nitric oxide (eNO). To this purpose, twenty-five smokers were asked to smoke a conventional cigarette and to vape an electronic cigarette (with and without nicotine), and an electronic cigarette without liquid (control session). Electronic and tobacco cigarette mainstream aerosols were characterized in terms of total particle number concentrations and size distributions. On the basis of the measured total particle number concentrations and size distributions, the average particle doses deposited inmore » alveolar and tracheobronchial regions of the lungs for a single 2-s puff were also estimated considering a subject performing resting (sitting) activity. Total particle number concentrations in the mainstream resulted equal to 3.5 ± 0.4 × 10{sup 9}, 5.1 ± 0.1 × 10{sup 9}, and 3.1 ± 0.6 × 10{sup 9} part. cm{sup −3} for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively. The corresponding alveolar doses for a resting subject were estimated equal to 3.8 × 10{sup 10}, 5.2 × 10{sup 10} and 2.3 × 10{sup 10} particles. The mean eNO variations measured after each smoking/vaping session were equal to 3.2 ppb, 2.7 ppb and 2.8 ppb for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively; whereas, negligible eNO changes were measured in the control session. Statistical tests performed on eNO data showed statistically significant differences between smoking/vaping sessions and the control session, thus confirming a similar effect on human airways whatever the cigarette smoked/vaped, the nicotine content, and the particle dose received. - Highlights: • Electronic cigarettes (with and without nicotine) mainstream aerosols were analyzed; • Particle number concentrations and size distributions were measured; • Nitric oxide exhaled by smokers before and after smoking/vaping was evaluated; • Alveolar and tracheobronchial doses of particle for a single puff were estimated; • Comparisons with conventional cigarette were made.« less
NASA Astrophysics Data System (ADS)
Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.
2000-08-01
A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey
2015-04-15
Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dosemore » distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.« less
Chibani, Omar; Li, X Allen
2002-05-01
Three Monte Carlo photon/electron transport codes (GEPTS, EGSnrc, and MCNP) are bench-marked against dose measurements in homogeneous (both low- and high-Z) media as well as at interfaces. A brief overview on physical models used by each code for photon and electron (positron) transport is given. Absolute calorimetric dose measurements for 0.5 and 1 MeV electron beams incident on homogeneous and multilayer media are compared with the predictions of the three codes. Comparison with dose measurements in two-layer media exposed to a 60Co gamma source is also performed. In addition, comparisons between the codes (including the EGS4 code) are done for (a) 0.05 to 10 MeV electron beams and positron point sources in lead, (b) high-energy photons (10 and 20 MeV) irradiating a multilayer phantom (water/steel/air), and (c) simulation of a 90Sr/90Y brachytherapy source. A good agreement is observed between the calorimetric electron dose measurements and predictions of GEPTS and EGSnrc in both homogeneous and multilayer media. MCNP outputs are found to be dependent on the energy-indexing method (Default/ITS style). This dependence is significant in homogeneous media as well as at interfaces. MCNP(ITS) fits more closely the experimental data than MCNP(DEF), except for the case of Be. At low energy (0.05 and 0.1 MeV), MCNP(ITS) dose distributions in lead show higher maximums in comparison with GEPTS and EGSnrc. EGS4 produces too penetrating electron-dose distributions in high-Z media, especially at low energy (<0.1 MeV). For positrons, differences between GEPTS and EGSnrc are observed in lead because GEPTS distinguishes positrons from electrons for both elastic multiple scattering and bremsstrahlung emission models. For the 60Co source, a quite good agreement between calculations and measurements is observed with regards to the experimental uncertainty. For the other cases (10 and 20 MeV photon sources and the 90Sr/90Y beta source), a good agreement is found between the three codes. In conclusion, differences between GEPTS and EGSnrc results are found to be very small for almost all media and energies studied. MCNP results depend significantly on the electron energy-indexing method.
A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector.
Asuni, G; Jensen, J M; McCurdy, B M C
2011-02-21
A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle(3) dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the contaminant electron source model of the Eclipse AAA dose algorithm. The off-axis coefficient in the Pinnacle(3) dose calculation algorithm decreases in the presence of TRD compared to without the device. The electron model parameters were modified to reflect the increase in electron contamination with the TRD, a necessary step for accurate beam modeling when using the device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, M. A. Pagnan, E-mail: miguelangel.pagnan@hotmail.com; Mitsoura, E., E-mail: meleni@uaemex.mx; Oviedo, J.O. Hernández
Mycosis fungoides is a cutaneous lymphoma that accounts for 2–3% of all lymphomas. Several clinical studies have demonstrated the effectiveness of TSEBT (Total Skin Electron Beam Therapy) in patients with mycosis fungoides. It is important to develop this technique and make it available to a larger number of patients in Mexico. Because large fields for electron TSEBT are required in order to cover the entire body of the patient, beam characterization at conventional treatment distances is not sufficient and a calibration distance of 500cm or higher is required. Materials and methods: Calibration of radiochromic Gafchromic® EBT2 film (RCF) for electronsmore » was performed in a solid water phantom (Scanditronix Wellhöfer) at a depth of 1.4cm and a Source Axis Distance (SAD) of 100cm. A polynomial fit was applied to the calibration curve, in order to obtain the equation relating dose response with optical density. The spatial distribution is obtained in terms of percentage of the dose, placing 3×3cm samples of RCF on the acrylic screen, which is placed in front of the patient in order to obtain maximum absorbed dose on the skin, covering an area of 200×100cm{sup 2}. The Percentage Depth Dose (PDD) curve was obtained placing RCF samples at depths of 0, 1, 1.2, 1.4, 1.5, 2, 3, 4, 5, 6, 7, 8 and 9cm in the solid water phantom, irradiated with an ELEKTA SINERGY Linear Accelerator electron beam, with an energy of 6 MeV, at a Source Skin Distance (SSD) of 500cm, with 1000MU = 100Gy, with a cone of 40×40cm and gantry angle of 90°. The RCFs were scanned on a flatbed scanner (EPSON EXPRESSION 10000 XL) and the images were processed with the ImageJ program using a region of interest (ROI) of 1×1cm{sup 2}. Results: The relative spatial dose distribution and the percentage depth dose for a SSD of 500±0.5cm, over an area of 200×100cm{sup 2} was obtained, resulting to an effective maximum dose depth (Z{sub ref}) for electrons of 1.4±0.05cm. Using the same experimental data, horizontal and vertical beam profiles were also graphed, showing a horizontal symmetry of ±035%, horizontal flatness of ±3.62%, vertical symmetry of ±2.1% and vertical flatness of ±14.2%. Conclusions: The electron beam was characterized and the data obtained were useful to determine the spatial dose distribution to a SSD of 500±0.5cm, in an area of 200×100cm{sup 2}. Dose profiles were obtained both horizontally and vertically, thus allowing to assess electron beam symmetry and flatness. PDD analysis up to a depth of 9±0.05cm, has made possible to establish the depth of electron penetration, assuring an only skin irradiation treatment.« less
A scintillating gas detector for 2D dose measurements in clinical carbon beams.
Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B
2008-09-07
A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.
A scintillating gas detector for 2D dose measurements in clinical carbon beams
NASA Astrophysics Data System (ADS)
Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.
2008-09-01
A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syh, J; Syh, J; Patel, B
Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists ofmore » multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.« less
[The use of polymer gel dosimetry to measure dose distribution around metallic implants].
Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa
2014-10-01
A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.
Satoh, Daiki; Takahashi, Fumiaki; Endo, Akira; Ohmachi, Yasushi; Miyahara, Nobuyuki
2008-09-01
The radiation-transport code PHITS with an event generator mode has been applied to analyze energy depositions of electrons and charged heavy particles in two spherical phantoms and a voxel-based mouse phantom upon neutron irradiation. The calculations using the spherical phantoms quantitatively clarified the type and energy of charged particles which are released through interactions of neutrons with the phantom elements and contribute to the radiation dose. The relative contribution of electrons increased with an increase in the size of the phantom and with a decrease in the energy of the incident neutrons. Calculations with the voxel-based mouse phantom for 2.0-MeV neutron irradiation revealed that the doses to different locations inside the body are uniform, and that the energy is mainly deposited by recoil protons. The present study has demonstrated that analysis using PHITS can yield dose distributions that are accurate enough for RBE evaluation.
NASA Technical Reports Server (NTRS)
Edwards, David L.
1999-01-01
In-vacuum electron beam welding is a technology that NASA considered as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. The radiation exposure to astronauts performing the in-vacuum electron beam welding must be characterized and minimized to insure safe operating conditions. This investigation characterized the x-ray environment due to operation of an in-vacuum electron beam welding tool. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests consisted of Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) and exposed to x-ray radiation generated by operation of an in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 KeV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by electron impact with metal. These x-ray spectra were used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the TLD values.
Plasma-Filled Rod-Pinch Diode Research on Gamble II
2007-06-01
by the dashed red line in Fig. 3. CaF2 thermoluminescent dosimeters ( TLDs ) located on the front surface of the rolled edge measure the dose. The...half-maximum line-spread function] and high dose [23 rad(CaF2) at 1 m] with 1-2 MeV electron energies are unique capabilities that the PFRP offers...for radiographic imaging in this electron -energy range. The source distribution has a narrow central peak that can enhance the spatial resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yuanyuan; Munro, Catherine J.; Olszta, Matthew J.
In this work, we showcase that through precise control of the electron dose rate, state-of-the-art large solid angle energy dispersive X-ray spectroscopy (EDS) mapping in aberration-corrected scanning transmission electron microscope (STEM) is capable of faithful and unambiguous chemical characterization of the Pt and Pd distribution in a peptide-mediated nanosystem. This low-dose-rate recording scheme adds another dimension of flexibility to the design of elemental mapping experiments, and holds significant potential for extending its application to a wide variety of beam sensitive hybrid nanostructures.
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
NASA Astrophysics Data System (ADS)
NemÅ£anu, Monica R.; Braşoveanu, Mirela; Iacob, Nicuşor
2014-11-01
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔEab (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle ho was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.
Qing, Xian; Huang, Jin-Qiong; Yu, Xiao-Wei; Zhang, Su-Kun; Yang, Yan-Yan; Ren, Ming-Zhong; Wen, Yu-Long
2014-07-01
Concentrations and distribution characteristics of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (2,3,7,8-PCDD/Fs) were analyzed in waste water from a paper mill. And concentrations of 2,3,7,8-PCDD/Fs in waste water before and after electron beam irradiation with different doses were compared. The feasibility, mechanism and rates of 2,3,7,8-PCDD/Fs degradation were discussed. The PCDD/Fs concentrations and corresponding I-TEQ (toxic equivalent quantity) values were 239 pg x L(-1) and 41.0 pg x L(-1), respectively, in the waste water. The concentrations of total 2,3,7,8-PCDD/Fs decreased after electron beam radiolysis at a dose of 30 kGy and 60 kGy with degradation rates of 5.27% and 23.6%, respectively.
SU-E-T-357: Electronic Compensation Technique to Deliver Total Body Dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakeman, T; Wang, I; Podgorsak, M
Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient’s immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has conventionally been used to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Methods: Treatment plans utilizing electronic compensation to deliver a total body dose were created retrospectively for patients for whom CTmore » data had been previously acquired. Each treatment plan includes two, specifically weighted, pair of opposed fields. One pair of open, large fields (collimator=45°), to encompass the patient’s entire anatomy, and one pair of smaller fields (collimator=0°) focused only on the thicker midsection of the patient. The optimal fluence for each one of the smaller fields was calculated at a patient specific penetration depth. Irregular surface compensators provide a more uniform dose distribution within the smaller opposed fields. Results: Dose-volume histograms (DVH) were calculated for the evaluating the electronic compensation technique. In one case, the maximum body doses calculated from the DVH were reduced from the non-compensated 195.8% to 165.3% in the electronically compensated plans, indicating a more uniform dose with the region of electronic compensation. The mean body doses calculated from the DVH were also reduced from the non-compensated 120.6% to 112.7% in the electronically compensated plans, indicating a more accurate delivery of the prescription dose. All calculated monitor units were well within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not substantially increase the beam on time while it can significantly reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.« less
Electronic compensation technique to deliver a total body dose
NASA Astrophysics Data System (ADS)
Lakeman, Tara E.
Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been conventionally used to compensate for the varying thickness throughout the body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two pair of parallel opposed fields. One pair of large fields is used to encompass the majority of the patient's anatomy. The other pair are very small open fields focused only on the thin bottom portion of the patient's anatomy, which requires much less radiation than the rest of the body to reach 100% of the prescribed dose. A desirable fluence pattern was manually painted within each of the larger fields for each patient to provide a more uniform distribution. Results: Dose-volume histograms (DVH) were calculated for evaluating the electronic compensation technique. In the electronically compensated plans, the maximum body doses calculated from the DVH were reduced from the conventionally-compensated plans by an average of 15%, indicating a more uniform dose. The mean body doses calculated from the electronically compensated DVH remained comparable to that of the conventionally-compensated plans, indicating an accurate delivery of the prescription dose using electronic compensation. All calculated monitor units were within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not increase the beam on time beyond clinically acceptable limits while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.
Design and dosimetry of a few leaf electron collimator for energy modulated electron therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Yahya, Khalid; Verhaegen, Frank; Seuntjens, Jan
2007-12-15
Despite the capability of energy modulated electron therapy (EMET) to achieve highly conformal dose distributions in superficial targets it has not been widely implemented due to problems inherent in electron beam radiotherapy such as planning dosimetry accuracy, and verification as well as a lack of systems for automated delivery. In previous work we proposed a novel technique to deliver EMET using an automated 'few leaf electron collimator' (FLEC) that consists of four motor-driven leaves fit in a standard clinical electron beam applicator. Integrated with a Monte Carlo based optimization algorithm that utilizes patient-specific dose kernels, a treatment delivery was incorporatedmore » within the linear accelerator operation. The FLEC was envisioned to work as an accessory tool added to the clinical accelerator. In this article the design and construction of the FLEC prototype that match our compact design goals are presented. It is controlled using an in-house developed EMET controller. The structure of the software and the hardware characteristics of the EMET controller are demonstrated. Using a parallel plate ionization chamber, output measurements were obtained to validate the Monte Carlo calculations for a range of fields with different energies and sizes. Further verifications were also performed for comparing 1-D and 2-D dose distributions using energy independent radiochromic films. Comparisons between Monte Carlo calculations and measurements of complex intensity map deliveries show an overall agreement to within {+-}3%. This work confirms our design objectives of the FLEC that allow for automated delivery of EMET. Furthermore, the Monte Carlo dose calculation engine required for EMET planning was validated. The result supports the potential of the prototype FLEC for the planning and delivery of EMET.« less
A sub-sampled approach to extremely low-dose STEM
Stevens, A.; Luzi, L.; Yang, H.; ...
2018-01-22
The inpainting of deliberately and randomly sub-sampled images offers a potential means to image specimens at a high resolution and under extremely low-dose conditions (≤1 e -/Å 2) using a scanning transmission electron microscope. We show that deliberate sub-sampling acquires images at least an order of magnitude faster than conventional low-dose methods for an equivalent electron dose. More importantly, when adaptive sub-sampling is implemented to acquire the images, there is a significant increase in the resolution and sensitivity which accompanies the increase in imaging speed. Lastly, we demonstrate the potential of this method for beam sensitive materials and in-situ observationsmore » by experimentally imaging the node distribution in a metal-organic framework.« less
A sub-sampled approach to extremely low-dose STEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, A.; Luzi, L.; Yang, H.
The inpainting of deliberately and randomly sub-sampled images offers a potential means to image specimens at a high resolution and under extremely low-dose conditions (≤1 e -/Å 2) using a scanning transmission electron microscope. We show that deliberate sub-sampling acquires images at least an order of magnitude faster than conventional low-dose methods for an equivalent electron dose. More importantly, when adaptive sub-sampling is implemented to acquire the images, there is a significant increase in the resolution and sensitivity which accompanies the increase in imaging speed. Lastly, we demonstrate the potential of this method for beam sensitive materials and in-situ observationsmore » by experimentally imaging the node distribution in a metal-organic framework.« less
Dosimetric characteristics of electron beams produced by a mobile accelerator for IORT.
Pimpinella, M; Mihailescu, D; Guerra, A S; Laitano, R F
2007-10-21
Energy and angular distributions of electron beams with different energies were simulated by Monte Carlo calculations. These beams were generated by the NOVAC7 system (Hitesys, Italy), a mobile electron accelerator specifically dedicated to intra-operative radiation therapy (IORT). The electron beam simulations were verified by comparing the measured dose distributions with the corresponding calculated distributions. As expected, a considerable difference was observed in the energy and angular distributions between the IORT beams studied in the present work and the electron beams produced by conventional accelerators for non-IORT applications. It was also found that significant differences exist between the IORT beams used in this work and other IORT beams with different collimation systems. For example, the contribution from the scattered electrons to the total dose was found to be up to 15% higher in the NOVAC7 beams. The water-to-air stopping power ratios of the IORT beams used in this work were calculated on the basis of the beam energy distributions obtained by the Monte Carlo simulations. These calculated stopping power ratios, s(w,air), were compared with the corresponding s(w,air) values recommended by the TRS-381 and TRS-398 IAEA dosimetry protocols in order to estimate the deviations between a dosimetry based on generic parameters and a dosimetry based on parameters specifically obtained for the actual IORT beams. The deviations in the s(w,air) values were found to be as large as up to about 1%. Therefore, we recommend that a preliminary analysis should always be made when dealing with IORT beams in order to assess to what extent the possible differences in the s(w,air) values have to be accounted for or may be neglected on the basis of the specific accuracy needed in clinical dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Trovati, S; Loo, B
Purpose: To study the impact of electron beam size, target thickness, and target temperature on the ability of the flattening filter-free mode (FFF) treatment head to deliver high-dose-rate irradiations. Methods: The dose distribution and transient temperature of the X-ray target under 10 MeV electron beam with pulse length of 5 microseconds, and repetition rate of 1000 Hz was studied. A MCNP model was built to calculate the percentage depth dose (PPD) distribution in a water phantom at a distance of 100 cm. ANSYS software was used to run heat transfer simulations. The PPD and temperature for both tungsten and W25Remore » targets for different electron beam sizes (FHWM 0.2, 0.5, 1 and 2 mm) and target thickness (0.2 to 2 mm) were studied. Results: Decreasing the target thickness from 1 mm to 0.5 mm, caused a surface dose increase about 10 percent. For both target materials, the peak temperature was about 1.6 times higher for 0.5 mm electron beam compared to the 1 mm beam after reaching their equilibrium. For increasing target thicknesses, the temperature rise caused by the first pulse is similar for all thicknesses, however the temperature difference for subsequent pulses becomes larger until a constant ratio is reached. The target peak temperature after reaching equilibrium can be calculated by adding the steady state temperature and the amplitude of the temperature oscillation. Conclusion: This work indicates the potential to obtain high dose rate irradiation by selecting target material, geometry and electron beam parameters. W25Re may not outperformed tungsten when the target is thick due to its relatively low thermal conductivity. The electron beam size only affects the target temperature but not the PPD. Thin target is preferred to obtain high dose rate and low target temperature, however, the resulting high surface dose is a major concern. NIH funding:R21 EB015957-01; DOD funding:W81XWH-13-1-0165 BL, PM, PB, and RF are founders of TibaRay, Inc. BL is also a borad member. BL and PM have received research grants from Varian Medical System, Inc. and RaySearch Laboratory. RF is an employee of Siemens Healthcare GmbH.« less
Electron beam collimation with a photon MLC for standard electron treatments
NASA Astrophysics Data System (ADS)
Mueller, S.; Fix, M. K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M. F. M.; Manser, P.
2018-01-01
Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.
Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V
2011-02-07
The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.
Choosing a therapy electron accelerator target.
Hutcheon, R M; Schriber, S O; Funk, L W; Sherman, N K
1979-01-01
Angular distributions of photon depth dose produced by 25-MeV electrons incident on several fully stopping single-element targets (C, Al, Cu, Mo, Ta, Pb) and two composite layered targets (Ni-Al, W-Al) were studied. Depth-dose curves measured using TLD-700 (thermoluminescent dosimeter) chips embedded in lucite phantoms. Several useful therapy electron accelerator design curves were determined, including relative flattener thickness as a function of target atomic number, "effective" bremsstrahlung endpoint energy or beam "hardness" as a function of target atomic number and photon emission angle, and estimates of shielding thickness as a function of angle required to reduce the radiation outside the treatment cone to required levels.
Shinohara, Ayaka; Hanaoka, Hirofumi; Sakashita, Tetsuya; Sato, Tatsuhiko; Yamaguchi, Aiko; Ishioka, Noriko S; Tsushima, Yoshito
2018-02-01
Radionuclide therapy with low-energy auger electron emitters may provide high antitumor efficacy while keeping the toxicity to normal organs low. Here we evaluated the usefulness of an auger electron emitter and compared it with that of a beta emitter for tumor treatment in in vitro models and conducted a dosimetry simulation using radioiodine-labeled metaiodobenzylguanidine (MIBG) as a model compound. We evaluated the cellular uptake of 125 I-MIBG and the therapeutic effects of 125 I- and 131 I-MIBG in 2D and 3D PC-12 cell culture models. We used a Monte Carlo simulation code (PHITS) to calculate the absorbed radiation dose of 125 I or 131 I in computer simulation models for 2D and 3D cell cultures. In the dosimetry calculation for the 3D model, several distribution patterns of radionuclide were applied. A higher cumulative dose was observed in the 3D model due to the prolonged retention of MIBG compared to the 2D model. However, 125 I-MIBG showed a greater therapeutic effect in the 2D model compared to the 3D model (respective EC 50 values in the 2D and 3D models: 86.9 and 303.9 MBq/cell), whereas 131 I-MIBG showed the opposite result (respective EC 50 values in the 2D and 3D models: 49.4 and 30.2 MBq/cell). The therapeutic effect of 125 I-MIBG was lower than that of 131 I-MIBG in both models, but the radionuclide-derived difference was smaller in the 2D model. The dosimetry simulation with PHITS revealed the influence of the radiation quality, the crossfire effect, radionuclide distribution, and tumor shape on the absorbed dose. Application of the heterogeneous distribution series dramatically changed the radiation dose distribution of 125 I-MIBG, and mitigated the difference between the estimated and measured therapeutic effects of 125 I-MIBG. The therapeutic effect of 125 I-MIBG was comparable to that of 131 I-MIBG in the 2D model, but the efficacy was inferior to that of 131 I-MIBG in the 3D model, since the crossfire effect is negligible and the homogeneous distribution of radionuclides was insufficient. Thus, auger electrons would be suitable for treating small-sized tumors. The design of radiopharmaceuticals with auger electron emitters requires particularly careful consideration of achieving a homogeneous distribution of the compound in the tumor.
Construction of new skin models and calculation of skin dose coefficients for electron exposures
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Kim, Chan Hyeong; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Jeong, Jong Hwi
2016-08-01
The voxel-type reference phantoms of the International Commission on Radiological Protection (ICRP), due to their limited voxel resolutions, cannot represent the 50- μm-thick radiosensitive target layer of the skin necessary for skin dose calculations. Alternatively, in ICRP Publication 116, the dose coefficients (DCs) for the skin were calculated approximately, averaging absorbed dose over the entire skin depth of the ICRP phantoms. This approximation is valid for highly-penetrating radiations such as photons and neutrons, but not for weakly penetrating radiations like electrons due to the high gradient in the dose distribution in the skin. To address the limitation, the present study introduces skin polygon-mesh (PM) models, which have been produced by converting the skin models of the ICRP voxel phantoms to a high-quality PM format and adding a 50- μm-thick radiosensitive target layer into the skin models. Then, the constructed skin PM models were implemented in the Geant4 Monte Carlo code to calculate the skin DCs for external exposures of electrons. The calculated values were then compared with the skin DCs of the ICRP Publication 116. The results of the present study show that for high-energy electrons (≥ 1 MeV), the ICRP-116 skin DCs are, indeed, in good agreement with the skin DCs calculated in the present study. For low-energy electrons (< 1 MeV), however, significant discrepancies were observed, and the ICRP-116 skin DCs underestimated the skin dose as much as 15 times for some energies. Besides, regardless of the small tissue weighting factor of the skin ( w T = 0.01), the discrepancies in the skin dose were found to result in significant discrepancies in the effective dose, demonstarting that the effective DCs in ICRP-116 are not reliable for external exposure to electrons.
SU-F-T-669: Commissioning of An Electronic Brachytherapy System for Targeted Mouse Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culberson, W; Micka, J; Carchman, E
Purpose: The aim of this study was to commission the Xoft Axxent™ electronic brachytherapy (eBT) source and 10 mm diameter surface applicator with NIST traceability for targeted irradiations of mouse anal carcinomas. Methods: The Xoft Axxent™ electronic brachytherapy (eBT) and 10 mm diameter surface applicator was chosen by the collaborating physician as a radiation delivery mechanism for mouse anal carcinomas. The target dose was 2 Gy at a depth of 3 mm in tissue to be delivered in a single fraction. To implement an accurate and reliable irradiation plan, the system was commissioned by first determining the eBT source outputmore » and corresponding dose rate at a depth of 3 mm in tissue. This was determined through parallel-plate ion chamber measurements and published conversion factors. Well-type ionization chamber measurements were used to determine a transfer coefficient, which correlates the measured dose rate at 3 mm to the NIST-traceable quantity, air-kerma rate at 50 cm in air, for eBT sources. By correlating these two quantities, daily monitoring in the well chamber becomes an accurate and efficient quality assurance technique. Once the dose-rate was determined, a treatment recipe was developed and confirmed with chamber measurements to deliver the requested dose. Radiochromic film was used to verify the dose distribution across the field. Results: Dose rates at 3 mm depth in tissue were determined for two different Xoft Axxent™ sources and correlated with NIST-traceable well-type ionization chamber measurements. Unique transfer coefficients were determined for each source and the treatment recipe was validated by measurements. Film profiles showed a uniform dose distribution across the field. Conclusion: A Xoft Axxent™ eBT system was successfully commissioned for use in the irradiation of mouse rectal tumors. Dose rates in tissue were determined as well as other pertinent parameters to ensure accurate delivery of dose to the target region.« less
Practical use of a plastic scintillator for quality assurance of electron beam therapy.
Yogo, Katsunori; Tatsuno, Yuya; Tsuneda, Masato; Aono, Yuki; Mochizuki, Daiki; Fujisawa, Yoshiki; Matsushita, Akihiro; Ishigami, Minoru; Ishiyama, Hiromichi; Hayakawa, Kazushige
2017-06-07
Quality assurance (QA) of clinical electron beams is essential for performing accurate and safe radiation therapy. However, with advances in radiation therapy, QA has become increasingly labor-intensive and time-consuming. In this paper, we propose a tissue-equivalent plastic scintillator for quick and easy QA of clinical electron beams. The proposed tool comprises a plastic scintillator plate and a charge-coupled device camera that enable the scintillation light by electron beams to be recorded with high sensitivity and high spatial resolution. Further, the Cerenkov image is directly subtracted from the scintillation image to discriminate Cerenkov emissions and accurately measure the dose profiles of electron beams with high spatial resolution. Compared with conventional methods, discrepancies in the depth profile improved from 7% to 2% in the buildup region via subtractive corrections. Further, the output brightness showed good linearity with dose, good reproducibility (deviations below 1%), and dose rate independence (within 0.5%). The depth of 50% dose measured with the tool, an index of electron beam quality, was within ±0.5 mm of that obtained with an ionization chamber. Lateral brightness profiles agreed with the lateral dose profiles to within 4% and no significant improvement was obtained using Cerenkov corrections. Field size agreed to within 0.5 mm with those obtained with ionization chamber. For clinical QA of electron boost treatment, a disk scintillator that mimics the shape of a patient's breast is applied. The brightness distribution and dose, calculated using a treatment planning system, was generally acceptable for clinical use, except in limited zones. Overall, the proposed plastic scintillator plate tool efficiently performs QA for electron beam therapy and enables simultaneous verification of output constancy, beam quality, depth, and lateral dose profiles during monthly QAs at lower doses of irradiation (small monitor units, MUs).
Balosso, Jacques
2017-01-01
Background During the past decades, in radiotherapy, the dose distributions were calculated using density correction methods with pencil beam as type ‘a’ algorithm. The objectives of this study are to assess and evaluate the impact of dose distribution shift on the predicted secondary cancer risk (SCR), using modern advanced dose calculation algorithms, point kernel, as type ‘b’, which consider change in lateral electrons transport. Methods Clinical examples of pediatric cranio-spinal irradiation patients were evaluated. For each case, two radiotherapy treatment plans with were generated using the same prescribed dose to the target resulting in different number of monitor units (MUs) per field. The dose distributions were calculated, respectively, using both algorithms types. A gamma index (γ) analysis was used to compare dose distribution in the lung. The organ equivalent dose (OED) has been calculated with three different models, the linear, the linear-exponential and the plateau dose response curves. The excess absolute risk ratio (EAR) was also evaluated as (EAR = OED type ‘b’ / OED type ‘a’). Results The γ analysis results indicated an acceptable dose distribution agreement of 95% with 3%/3 mm. Although, the γ-maps displayed dose displacement >1 mm around the healthy lungs. Compared to type ‘a’, the OED values from type ‘b’ dose distributions’ were about 8% to 16% higher, leading to an EAR ratio >1, ranged from 1.08 to 1.13 depending on SCR models. Conclusions The shift of dose calculation in radiotherapy, according to the algorithm, can significantly influence the SCR prediction and the plan optimization, since OEDs are calculated from DVH for a specific treatment. The agreement between dose distribution and SCR prediction depends on dose response models and epidemiological data. In addition, the γ passing rates of 3%/3 mm does not translate the difference, up to 15%, in the predictions of SCR resulting from alternative algorithms. Considering that modern algorithms are more accurate, showing more precisely the dose distributions, but that the prediction of absolute SCR is still very imprecise, only the EAR ratio could be used to rank radiotherapy plans. PMID:28811995
Vilches, M; García-Pareja, S; Guerrero, R; Anguiano, M; Lallena, A M
2009-09-01
In this work, recent results from experiments and simulations (with EGSnrc) performed by Ross et al. [Med. Phys. 35, 4121-4131 (2008)] on electron scattering by foils of different materials and thicknesses are compared to those obtained using several Monte Carlo codes. Three codes have been used: GEANT (version 3.21), Geant4 (version 9.1, patch03), and PENELOPE (version 2006). In the case of PENELOPE, mixed and fully detailed simulations have been carried out. Transverse dose distributions in air have been obtained in order to compare with measurements. The detailed PENELOPE simulations show excellent agreement with experiment. The calculations performed with GEANT and PENELOPE (mixed) agree with experiment within 3% except for the Be foil. In the case of Geant4, the distributions are 5% narrower compared to the experimental ones, though the agreement is very good for the Be foil. Transverse dose distribution in water obtained with PENELOPE (mixed) is 4% wider than those calculated by Ross et al. using EGSnrc and is 1% narrower than the transverse dose distributions in air, as considered in the experiment. All the codes give a reasonable agreement (within 5%) with the experimental results for all the material and thicknesses studied.
Caracappa, Peter F.; Chao, T. C. Ephraim; Xu, X. George
2010-01-01
Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body. PMID:19430219
Caracappa, Peter F; Chao, T C Ephraim; Xu, X George
2009-06-01
Red bone marrow is among the tissues of the human body that are most sensitive to ionizing radiation, but red bone marrow cannot be distinguished from yellow bone marrow by normal radiographic means. When using a computational model of the body constructed from computed tomography (CT) images for radiation dose, assumptions must be applied to calculate the dose to the red bone marrow. This paper presents an analysis of two methods of calculating red bone marrow distribution: 1) a homogeneous mixture of red and yellow bone marrow throughout the skeleton, and 2) International Commission on Radiological Protection cellularity factors applied to each bone segment. A computational dose model was constructed from the CT image set of the Visible Human Project and compared to the VIP-Man model, which was derived from color photographs of the same individual. These two data sets for the same individual provide the unique opportunity to compare the methods applied to the CT-based model against the observed distribution of red bone marrow for that individual. The mass of red bone marrow in each bone segment was calculated using both methods. The effect of the different red bone marrow distributions was analyzed by calculating the red bone marrow dose using the EGS4 Monte Carlo code for parallel beams of monoenergetic photons over an energy range of 30 keV to 6 MeV, cylindrical (simplified CT) sources centered about the head and abdomen over an energy range of 30 keV to 1 MeV, and a whole-body electron irradiation treatment protocol for 3.9 MeV electrons. Applying the method with cellularity factors improves the average difference in the estimation of mass in each bone segment as compared to the mass in VIP-Man by 45% over the homogenous mixture method. Red bone marrow doses calculated by the two methods are similar for parallel photon beams at high energy (above about 200 keV), but differ by as much as 40% at lower energies. The calculated red bone marrow doses differ significantly for simplified CT and electron beam irradiation, since the computed red bone marrow dose is a strong function of the cellularity factor applied to bone segments within the primary radiation beam. These results demonstrate the importance of properly applying realistic cellularity factors to computation dose models of the human body.
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-21
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.
NASA Astrophysics Data System (ADS)
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-01
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.
Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus
2015-01-01
Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532
Preparation of metallic nanoparticles by irradiation in starch aqueous solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro
Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{supmore » o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.« less
Severgnini, Mara; de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo
2014-01-08
Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose-optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off-line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%.
A diamond detector in the dosimetry of high-energy electron and photon beams.
Laub, W U; Kaulich, T W; Nüsslin, F
1999-09-01
A diamond detector type 60003 (PTW Freiburg) was examined for the purpose of dosimetry with 4-20 MeV electron beams and 4-25 MV photon beams. Results were compared with those obtained by using a Markus chamber for electron beams and an ionization chamber for photon beams. Dose distributions were measured in a water phantom with the detector connected to a Unidos electrometer (PTW Freiburg). After a pre-irradiation of about 5 Gy the diamond detector shows a stability in response which is better than that of an ionization chamber. The current of the diamond detector was measured under variation of photon beam dose rate between 0.1 and 7 Gy min(-1). Different FSDs were chosen. Furthermore the pulse repetition frequency and the depth of the detector were changed. The electron beam dose rate was varied between 0.23 and 4.6 Gy min(-1) by changing the pulse-repetition frequency. The response shows no energy dependence within the covered photon-beam energy range. Between 4 MeV and 18 MeV electron beam energy it shows only a small energy dependence of about 2%, as expected from theory. For smaller electron energies the response increases significantly and an influence of the contact material used for the diamond detector can be surmised. A slight sublinearity of the current and dose rate was found. Detector current and dose rate are related by the expression i alpha Ddelta, where i is the detector current, D is the dose rate and delta is a correction factor of approximately 0.963. Depth-dose curves of photon beams, measured with the diamond detector, show a slight overestimation compared with measurements with the ionization chamber. This overestimation is compensated for by the above correction term. The superior spatial resolution of the diamond detector leads to minor deviations between depth-dose curves of electron beams measured with a Markus chamber and a diamond detector.
Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Saeedi-Moghadam, M; Jalli, R; Sina, S
2018-01-01
MRI-only treatment planning (TP) can be advantageous in paediatric radiotherapy. However, electron density extraction is necessary for dose calculation. Normally, after bone segmentation, a bulk density is assigned. However, the variation of bone bulk density in patients makes the creation of pseudo CTs challenging. This study aims to assess the effects of bone density variations in children on radiation attenuation and dose calculation for MRI-only TP. Bone contents of <15-year-old children were calculated, and substituted in the Oak Ridge National Laboratory paediatric phantoms. The percentage depth dose and beam profile of 150 kVp and 6 MV photon and 6 MeV electron beams were then calculated using Xcom, MCNPX (Monte Carlo N-particle version X) and ORLN phantoms. Using 150 kVp X-rays, the difference in attenuation coefficient was almost 5% between an 11-year-old child and a newborn, and ~8% between an adult and a newborn. With megavoltage radiation, the differences were smaller but still important. For an 18 MV photon beam, the difference of radiation attenuation between an 11-year-old child and a newborn was 4% and ~7.4% between an adult and a newborn. For 6 MeV electrons, dose differences were observed up to the 2 cm depth. The percentage depth dose difference between 1 and 10-year-olds was 18.5%, and between 10 and 15-year-olds was 24%. The results suggest that for MRI-only TP of photon- or electron-beam radiotherapy, the bone densities of each age group should be defined separately for accurate dose calculation. Advances in knowledge: This study highlights the need for more age-specific determination of bone electron density for accurate dose calculations in paediatric MRI-only radiotherapy TP.
Serban, M; Ruo, R; Sarfehnia, A; Parker, W; Evans, M
2012-07-01
Fast electron Monte Carlo systems have been developed commercially, and implemented for clinical practice in radiation therapy clinics. In this work the Varian eMC (electron Monte Carlo) algorithm was commissioned for clinical electron beams of energies between 6 MeV and 20 MeV. Beam outputs, PDDs and profiles were measured for 29 regular and irregular cutouts using the IC-10 (Wellhöfer) ionization chamber. Detailed percentage depth dose comparisons showed that the agreement between measurement and eMC for different characteristic points on the PDD are generally less than 1 mm and always less than 2 mm, with the eMC calculated values being lower than the measured values. Of the 145 measured output factors, 19 cases fail a ±2% agreement but only 8 cases fail a ±3% agreement between calculation and measurement. Comparison of central axis dose distributions for two electron energies (9, and 20 MeV) for a 10 × 10 cm 2 field, centrally shielded with Pb of width 0 cm (open), 1, 2 and 3 cm, shows agreement to within 3% except near the surface. Comparison of central axis dose distributions for 9 MeV in heterogeneous phantoms including bone and lung inserts showed agreement of 1 mm and 3 mm respectively with measured TLD data. The overall agreement between measurement and eMC calculation has enabled us to begin implementing this calculation model for clinical use. © 2012 American Association of Physicists in Medicine.
Handling Density Conversion in TPS.
Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji
2016-01-01
Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.
Bittencourt, Carla; Bals, Sara; Van Tendeloo, Gustaaf
2013-01-01
Summary Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature. PMID:23399584
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavanaugh, James A.; Hogstrom, Kenneth R.; Fontenot, Jonas P.
2013-02-15
Purpose: The purpose of this study was to demonstrate that a bolus electron conformal therapy (ECT) dose plan and a mixed beam plan, composed of an intensity modulated x-ray therapy (IMXT) dose plan optimized on top of the bolus ECT plan, can be accurately delivered. Methods: Calculated dose distributions were compared with measured dose distributions for parotid and chest wall (CW) bolus ECT and mixed beam plans, each simulated in a cylindrical polystyrene phantom that allowed film dose measurements. Bolus ECT plans were created for both parotid and CW PTVs (planning target volumes) using 20 and 16 MeV beams, respectively,more » whose 90% dose surface conformed to the PTV. Mixed beam plans consisted of an IMXT dose plan optimized on top of the bolus ECT dose plan. The bolus ECT, IMXT, and mixed beam dose distributions were measured using radiographic films in five transverse and one sagittal planes for a total of 36 measurement conditions. Corrections for film dose response, effects of edge-on photon irradiation, and effects of irregular phantom optical properties on the Cerenkov component of the film signal resulted in high precision measurements. Data set consistency was verified by agreement of depth dose at the intersections of the sagittal plane with the five measured transverse planes. For these same depth doses, results for the mixed beam plan agreed with the sum of the individual depth doses for the bolus ECT and IMXT plans. The six mean measured planar dose distributions were compared with those calculated by the treatment planning system for all modalities. Dose agreement was assessed using the 4% dose difference and 0.2 cm distance to agreement. Results: For the combined high-dose region and low-dose region, pass rates for the parotid and CW plans were 98.7% and 96.2%, respectively, for the bolus ECT plans and 97.9% and 97.4%, respectively, for the mixed beam plans. For the high-dose gradient region, pass rates for the parotid and CW plans were 93.1% and 94.62%, respectively, for the bolus ECT plans and 89.2% and 95.1%, respectively, for the mixed beam plans. For all regions, pass rates for the parotid and CW plans were 98.8% and 97.3%, respectively, for the bolus ECT plans and 97.5% and 95.9%, respectively, for the mixed beam plans. For the IMXT component of the mixed beam plans, pass rates for the parotid and CW plans were 93.7% and 95.8%. Conclusions: Bolus ECT and mixed beam therapy dose delivery to the phantom were more accurate than IMXT delivery, adding confidence to the use of planning, fabrication, and delivery for bolus ECT tools either alone or as part of mixed beam therapy. The methodology reported in this work could serve as a basis for future standardization of the commissioning of bolus ECT or mixed beam therapy. When applying this technology to patients, it is recommended that an electron dose algorithm more accurate than the pencil beam algorithm, e.g., a Monte Carlo algorithm or analytical transport such as the pencil beam redefinition algorithm, be used for planning to ensure the desired accuracy.« less
Simultaneous optimization of photons and electrons for mixed beam radiotherapy
NASA Astrophysics Data System (ADS)
Mueller, S.; Fix, M. K.; Joosten, A.; Henzen, D.; Frei, D.; Volken, W.; Kueng, R.; Aebersold, D. M.; Stampanoni, M. F. M.; Manser, P.
2017-07-01
The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.
Simultaneous optimization of photons and electrons for mixed beam radiotherapy.
Mueller, S; Fix, M K; Joosten, A; Henzen, D; Frei, D; Volken, W; Kueng, R; Aebersold, D M; Stampanoni, M F M; Manser, P
2017-06-26
The aim of this work is to develop and investigate an inverse treatment planning process (TPP) for mixed beam radiotherapy (MBRT) capable of performing simultaneous optimization of photon and electron apertures. A simulated annealing based direct aperture optimization (DAO) is implemented to perform simultaneous optimization of photon and electron apertures, both shaped with the photon multileaf collimator (pMLC). Validated beam models are used as input for Monte Carlo dose calculations. Consideration of photon pMLC transmission during DAO and a weight re-optimization of the apertures after deliverable dose calculation are utilized to efficiently reduce the differences between optimized and deliverable dose distributions. The TPP for MBRT is evaluated for an academic situation with a superficial and an enlarged PTV in the depth, a left chest wall case including the internal mammary chain and a squamous cell carcinoma case. Deliverable dose distributions of MBRT plans are compared to those of modulated electron radiotherapy (MERT), photon IMRT and if available to those of clinical VMAT plans. The generated MBRT plans dosimetrically outperform the MERT, photon IMRT and VMAT plans for all investigated situations. For the clinical cases of the left chest wall and the squamous cell carcinoma, the MBRT plans cover the PTV similarly or more homogeneously than the VMAT plans, while OARs are spared considerably better with average reductions of the mean dose to parallel OARs and D 2% to serial OARs by 54% and 26%, respectively. Moreover, the low dose bath expressed as V 10% to normal tissue is substantially reduced by up to 45% compared to the VMAT plans. A TPP for MBRT including simultaneous optimization is successfully implemented and the dosimetric superiority of MBRT plans over MERT, photon IMRT and VMAT plans is demonstrated for academic and clinical situations including superficial targets with and without deep-seated part.
Zhu, Jinhan; Chen, Lixin; Chen, Along; Luo, Guangwen; Deng, Xiaowu; Liu, Xiaowei
2015-04-11
To use a graphic processing unit (GPU) calculation engine to implement a fast 3D pre-treatment dosimetric verification procedure based on an electronic portal imaging device (EPID). The GPU algorithm includes the deconvolution and convolution method for the fluence-map calculations, the collapsed-cone convolution/superposition (CCCS) algorithm for the 3D dose calculations and the 3D gamma evaluation calculations. The results of the GPU-based CCCS algorithm were compared to those of Monte Carlo simulations. The planned and EPID-based reconstructed dose distributions in overridden-to-water phantoms and the original patients were compared for 6 MV and 10 MV photon beams in intensity-modulated radiation therapy (IMRT) treatment plans based on dose differences and gamma analysis. The total single-field dose computation time was less than 8 s, and the gamma evaluation for a 0.1-cm grid resolution was completed in approximately 1 s. The results of the GPU-based CCCS algorithm exhibited good agreement with those of the Monte Carlo simulations. The gamma analysis indicated good agreement between the planned and reconstructed dose distributions for the treatment plans. For the target volume, the differences in the mean dose were less than 1.8%, and the differences in the maximum dose were less than 2.5%. For the critical organs, minor differences were observed between the reconstructed and planned doses. The GPU calculation engine was used to boost the speed of 3D dose and gamma evaluation calculations, thus offering the possibility of true real-time 3D dosimetric verification.
de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo
2014-01-01
Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose‐optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off‐line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%. PACS number: 87.55.kh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L; Eldib, A; Li, J
Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reducemore » the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin.« less
Role of particle radiotherapy in the management of head and neck cancer.
Laramore, George E
2009-05-01
Modern imaging techniques and powerful computers allow a radiation oncologist to design treatments delivering higher doses of radiation than previously possible. Dose distributions imposed by the physics of 'standard' photon and electron beams limit further dose escalation. Hadron radiotherapy offers advantages in either dose distribution and/or improved radiobiology that may significantly improve the treatment of certain head and neck malignancies. Clinical studies support the effectiveness of fast-neutron radiotherapy in the treatment of major and minor salivary gland tumors. Data show highly favorable outcomes with proton radiotherapy for skull-base malignancies and tumors near highly critical normal tissues compared with that expected with standard radiotherapy. Heavy-ion radiotherapy clinical studies are mainly being conducted with fully stripped carbon ions, and limited data seem to indicate a possible improvement over proton radiotherapy for the same subset of radioresistant tumors where neutrons show a benefit over photons. Fast-neutron radiotherapy has different radiobiological properties compared with standard radiotherapy but similar depth dose distributions. Its role in the treatment of head and neck cancer is currently limited to salivary gland malignancies and certain radioresistant tumors such as sarcomas. Protons have the same radiobiological properties as standard radiotherapy beams but more optimal depth dose distributions, making it particularly advantageous when treating tumors adjacent to highly critical structures. Heavy ions combine the radiobiological properties of fast neutrons with the physical dose distributions of protons, and preliminary data indicate their utility for radioresistant tumors adjacent to highly critical structures.
NASA Astrophysics Data System (ADS)
Jha, Pradeep K.; Jha, Rakhi; Gupta, B. L.; Guha, Sujoy K.
2010-05-01
Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG ® (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG ®. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.
Computational study of radiation doses at UNLV accelerator facility
NASA Astrophysics Data System (ADS)
Hodges, Matthew; Barzilov, Alexander; Chen, Yi-Tung; Lowe, Daniel
2017-09-01
A Varian K15 electron linear accelerator (linac) has been considered for installation at University of Nevada, Las Vegas (UNLV). Before experiments can be performed, it is necessary to evaluate the photon and neutron spectra as generated by the linac, as well as the resulting dose rates within the accelerator facility. A computational study using MCNPX was performed to characterize the source terms for the bremsstrahlung converter. The 15 MeV electron beam available in the linac is above the photoneutron threshold energy for several materials in the linac assembly, and as a result, neutrons must be accounted for. The angular and energy distributions for bremsstrahlung flux generated by the interaction of the 15 MeV electron beam with the linac target were determined. This source term was used in conjunction with the K15 collimators to determine the dose rates within the facility.
NASA Technical Reports Server (NTRS)
Santoro, R. T.; Claiborne, H. C.; Alsmiller, R. G., Jr.
1972-01-01
Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields.
Field size dependent mapping of medical linear accelerator radiation leakage
NASA Astrophysics Data System (ADS)
Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima
2015-03-01
The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.
Ferretti, A; Martignano, A; Simonato, F; Paiusco, M
2014-02-01
The aim of the present work was the validation of the VMC(++) Monte Carlo (MC) engine implemented in the Oncentra Masterplan (OMTPS) and used to calculate the dose distribution produced by the electron beams (energy 5-12 MeV) generated by the linear accelerator (linac) Primus (Siemens), shaped by a digital variable applicator (DEVA). The BEAMnrc/DOSXYZnrc (EGSnrc package) MC model of the linac head was used as a benchmark. Commissioning results for both MC codes were evaluated by means of 1D Gamma Analysis (2%, 2 mm), calculated with a home-made Matlab (The MathWorks) program, comparing the calculations with the measured profiles. The results of the commissioning of OMTPS were good [average gamma index (γ) > 97%]; some mismatches were found with large beams (size ≥ 15 cm). The optimization of the BEAMnrc model required to increase the beam exit window to match the calculated and measured profiles (final average γ > 98%). Then OMTPS dose distribution maps were compared with DOSXYZnrc with a 2D Gamma Analysis (3%, 3 mm), in 3 virtual water phantoms: (a) with an air step, (b) with an air insert, and (c) with a bone insert. The OMTPD and EGSnrc dose distributions with the air-water step phantom were in very high agreement (γ ∼ 99%), while for heterogeneous phantoms there were differences of about 9% in the air insert and of about 10-15% in the bone region. This is due to the Masterplan implementation of VMC(++) which reports the dose as "dose to water", instead of "dose to medium". Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos
2010-09-21
A low-energy electronic brachytherapy source (EBS), the model S700 Axxent x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V(100) reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95.2% in water phantoms without RBE enhancement (planned BED). About 10% increase in the source output is required to raise BED PTV V(100) to 95%. As a conclusion, the composite effect of dose reduction in the target due to heterogeneities and RBE enhancement results in a net effect of 5.3% target BED coverage loss for electronic brachytherapy. Therefore, it is suggested that about 10% increase in the source output may be necessary to achieve sufficient target coverage higher than 95%.
NASA Astrophysics Data System (ADS)
Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos
2010-09-01
A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95.2% in water phantoms without RBE enhancement (planned BED). About 10% increase in the source output is required to raise BED PTV V100 to 95%. As a conclusion, the composite effect of dose reduction in the target due to heterogeneities and RBE enhancement results in a net effect of 5.3% target BED coverage loss for electronic brachytherapy. Therefore, it is suggested that about 10% increase in the source output may be necessary to achieve sufficient target coverage higher than 95%.
Organ and effective dose rate coefficients for submersion exposure in occupational settings
Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.; ...
2017-08-24
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less
Organ and effective dose rate coefficients for submersion exposure in occupational settings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less
Dose optimization of total or partial skin electron irradiation by thermoluminescent dosimetry.
Schüttrumpf, Lars; Neumaier, Klement; Maihoefer, Cornelius; Niyazi, Maximilian; Ganswindt, Ute; Li, Minglun; Lang, Peter; Reiner, Michael; Belka, Claus; Corradini, Stefanie
2018-05-01
Due to the complex surface of the human body, total or partial skin irradiation using large electron fields is challenging. The aim of the present study was to quantify the magnitude of dose optimization required after the application of standard fields. Total skin electron irradiation (TSEI) was applied using the Stanford technique with six dual-fields. Patients presenting with localized lesions were treated with partial skin electron irradiation (PSEI) using large electron fields, which were individually adapted. In order to verify and validate the dose distribution, in vivo dosimetry with thermoluminescent dosimeters (TLD) was performed during the first treatment fraction to detect potential dose heterogeneity and to allow for an individual dose optimization with adjustment of the monitor units (MU). Between 1984 and 2017, a total of 58 patients were treated: 31 patients received TSEI using 12 treatment fields, while 27 patients underwent PSEI and were treated with 4-8 treatment fields. After evaluation of the dosimetric results, an individual dose optimization was necessary in 21 patients. Of these, 7 patients received TSEI (7/31). Monitor units (MU) needed to be corrected by a mean value of 117 MU (±105, range 18-290) uniformly for all 12 treatment fields, corresponding to a mean relative change of 12% of the prescribed MU. In comparison, the other 14 patients received PSEI (14/27) and the mean adjustment of monitor units was 282 MU (±144, range 59-500) to single or multiple fields, corresponding to a mean relative change of 22% of the prescribed MU. A second dose optimization to obtain a satisfying dose at the prescription point was need in 5 patients. Thermoluminescent dosimetry allows an individual dose optimization in TSEI and PSEI to enable a reliable adjustment of the MUs to obtain the prescription dose. Especially in PSEI in vivo dosimetry is of fundamental importance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taborda, A; Benabdallah, N; Desbree, A
2015-06-15
Purpose: To perform a dosimetry study at the sub-cellular scale of Auger-electron emitter 99m-Tc using a mouse single thyroid cellular model to investigate the contribution of the 99m-Tc Auger-electrons to the absorbed dose and possible link to the thyroid stunning in in vivo experiments in mice, recently reported in literature. Methods: The simulation of S-values for Auger-electron emitting radionuclides was performed using both the recent MCNP6 software and the Geant4-DNA extension of the Geant4 toolkit. The dosimetric calculations were validated through comparison with results from literature, using a simple model of a single cell consisting of two concentric spheres ofmore » unit density water and for six Auger-electron emitting radionuclides. Furthermore, the S-values were calculated using a single thyroid follicle model for uniformly distributed 123-I and 125-I radionuclides and compared with published S-values. After validation, the simulation of the S-values was performed for the 99m-Tc radionuclide within the several mouse thyroid follicle cellular compartments, considering the radiative and non-radiative transitions of the 99m-Tc radiation spectrum. Results: The calculated S-values using MCNP6 are in good agreement with the results from literature, validating its use for the 99m-Tc S-values calculations. The most significant absorbed dose corresponds to the case where the radionuclide is uniformly distributed in the follicular cell’s nucleus, with a S-value of 7.8 mGy/disintegration, due mainly to the absorbed Auger-electrons. The results show that, at a sub-cellular scale, the emitted X-rays and gamma particles do not contribute significantly to the absorbed dose. Conclusion: In this work, MCNP6 was validated for dosimetric studies at the sub-cellular scale. It was shown that the contribution of the Auger-electrons to the absorbed dose is important at this scale compared to the emitted photons’ contribution and can’t be neglected. The obtained S-values of Auger-electron emitting 99m-Tc radionuclide will be presented and discussed.« less
Wang, R; Li, X A
2001-02-01
The dose parameters for the beta-particle emitting 90Sr/90Y source for intravascular brachytherapy (IVBT) have been calculated by different investigators. At a distant distance from the source, noticeable differences are seen in these parameters calculated using different Monte Carlo codes. The purpose of this work is to quantify as well as to understand these differences. We have compared a series of calculations using an EGS4, an EGSnrc, and the MCNP Monte Carlo codes. Data calculated and compared include the depth dose curve for a broad parallel beam of electrons, and radial dose distributions for point electron sources (monoenergetic or polyenergetic) and for a real 90Sr/90Y source. For the 90Sr/90Y source, the doses at the reference position (2 mm radial distance) calculated by the three code agree within 2%. However, the differences between the dose calculated by the three codes can be over 20% in the radial distance range interested in IVBT. The difference increases with radial distance from source, and reaches 30% at the tail of dose curve. These differences may be partially attributed to the different multiple scattering theories and Monte Carlo models for electron transport adopted in these three codes. Doses calculated by the EGSnrc code are more accurate than those by the EGS4. The two calculations agree within 5% for radial distance <6 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L; Fan, J; Eldib, A
Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-housemore » developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.« less
Dose properties of a laser accelerated electron beam and prospects for clinical application.
Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D; Chiu, C; Fomytskyi, M; Raischel, F; Downer, M; Tajima, T
2004-07-01
Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25 x 25 cm2 field. An energy window (deltaE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to deltaE. However, since the falloff of the depth-dose curve (R10-R90) and the dose rate both increase with deltaE, a tradeoff between minimizing (R10-R90) and maximizing dose rate is implied. If deltaE is constrained so that R10-R90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min(-1) for a 9 MeV beam and 0.03 Gy min(-1) for a 15 MeV beam. It was concluded that current LWFA technology should allow a table-top terawatt (T3) laser to produce therapeutic electron beams that have acceptable flatness, penetration, and falloff of depth dose; however, the dose rate is still 1%-3% of that which would be acceptable, especially for higher-energy electron beams. Further progress in laser technology, e.g., increasing the pulse repetition rate or number of high energy electrons generated per pulse, is necessary to give dose rates acceptable for electron beams. Future measurements confirming dosimetric calculations are required to substantiate our results. In addition to achieving adequate dose rate, significant engineering developments are needed for this technology to compete with current electron acceleration technology. Also, the functional benefits of LWFA electron beams require further study and evaluation.
Gustafsson, H; Lund, E; Olsson, S
2008-09-07
The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor kappa = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.
NASA Astrophysics Data System (ADS)
Gustafsson, H.; Lund, E.; Olsson, S.
2008-09-01
The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.
SU-C-BRC-07: Parametrized GPU Accelerated Electron Monte Carlo Second Check
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haywood, J
Purpose: I am presenting a parameterized 3D GPU accelerated electron Monte Carlo second check program. Method: I wrote the 3D grid dose calculation algorithm in CUDA and utilized an NVIDIA GeForce GTX 780 Ti to run all of the calculations. The electron path beyond the distal end of the cone is governed by four parameters: the amplitude of scattering (AMP), the mean and width of a Gaussian energy distribution (E and α), and the percentage of photons. In my code, I adjusted all parameters until the calculated PDD and profile fit the measured 10×10 open beam data within 1%/1mm. Imore » then wrote a user interface for reading the DICOM treatment plan and images in Python. In order to verify the algorithm, I calculated 3D dose distributions on a variety of phantoms and geometries, and compared them with the Eclipse eMC calculations. I also calculated several patient specific dose distributions, including a nose and an ear. Finally, I compared my algorithm’s computation times to Eclipse’s. Results: The calculated MU for all of the investigated geometries agree with the TPS within the TG-114 action level of 5%. The MU for the nose was < 0.5 % different while the MU for the ear at 105 SSD was ∼2 %. Calculation times for a 12MeV 10×10 open beam ranged from 1 second for a 2.5 mm grid resolution with ∼15 million particles to 33 seconds on a 1 mm grid with ∼460 million particles. Eclipse calculation runtimes distributed over 10 FAS workers were 9 seconds to 15 minutes respectively. Conclusion: The GPU accelerated second check allows quick MU verification while accounting for patient specific geometry and heterogeneity.« less
DNA Damage Dependence on the Subcellular Distribution of Low-Energy Beta Emitters
NASA Astrophysics Data System (ADS)
Cutaia, Claudia; Alloni, Daniele; Mariotti, Luca; Friedland, Werner; Ottolenghi, Andrea
One of the main issues of low-energy internal emitters is related to the short ranges of beta particles, compared to the dimensions of the biological targets (e.g. the cell nucleus). Also depending on the chemical form, the radionuclide may be more concentrated in the cytoplasm of the target cell (in our calculations a human fibroblast in interphase) and consequently the conventional dosimetry may overestimate the dose to the nucleus; whereas if the radionuclide is more concentrated in the nuclei of the cells there is a risk of underestimating the nucleus dose. The computer code PARTRAC was modified to calculate the energy depositions in the nucleus and the DNA damage for different relative concentrations of the radionuclide in the nucleus and in the cytoplasm. The nuclides considered in the simulations were Tritium (the electrons emitted due to the β - decay have an average energy of 5.7 keV, corresponding to an average range of 0.42 µm) and Nickel-63 (the electrons emitted have an average energy of 17 keV corresponding to an average range of 5 µm). In the case of Tritium, the dose in the nucleus due the tracks generated outside this region is 15% of the average dose in the cell, whereas in the case of Nickel-63 the dose in the nucleus resulted to be 64% of the average dose in the cell. The distributions of DNA fragments as a function of the relative concentration of the nuclides in the nucleus and in the cytoplasm, were also calculated. In the same conditions, the number of complex lesions (which have a high probability of inducing lethal damage to the cells) per Gy (circa 0.5-1) and the total number of double strand breaks (DSBs) per Gy (circa 40) were also calculated. To complete the characterization of the effects of internal emitters inside the cell the distributions of DSBs per chromosome were studied for different radionuclide distributions in the cell. The results obtained from these simulations show the possible overestimation or underestimation of the risk, (particularly for Tritium intake), due to the distribution of the low energy emitters at subcellular levels.
NASA Astrophysics Data System (ADS)
Salguero, Francisco Javier; Arráns, Rafael; Atriana Palma, Bianey; Leal, Antonio
2010-03-01
The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.
Low-Energy Electrons Emitted in Ion Collisions with Thin Foils
NASA Astrophysics Data System (ADS)
Kraemer, Michael; Kozhuharov, Christophor; Durante, Marco; Hagmann, Siegbert; Kraft, Gerhard; Lineva, Natallia
The realistic description of radiation damage after charged particle passage is an ongoing issue for both radiotherapy as well as space applications. In both areas of applied radiological science, living as well as nonliving matter is exposed to ionizing radiation, and it is of vital interest to predict the responses of structures like cells, detectors or electronic devices. In ion beam radiotherapy, for example, the Local Effect Model (LEM) is being used to calculate radiobiological effects with so far unprecedented versatility. This has been shown in the GSI radiotherapy pilot project and consequently this model has become the "industry standard" for treatment planning in subsequent commercial ion radiotherapy sites. The model has also been extended to nonliving matter, i.e. to describe the response of solid state detectors such as TLDs and films. A prerequisite for this model (and possibly similar ones) is the proper description of microscopic track structure and energy deposition. In particular, the area at a very low distance (¡20 nm) from the ion path needs special attention due to the locally very high dose and the rather limited experimental evidence for the shape of the dose distribution. The dose distribution at low distances is inevitably associated with the creation and transport of low-energy (sub-keV) electrons. While some data, elementary cross sections as well as dose distributions, exist for gaseous media, i.e. under single collision conditions, experimental data for the condensed phase are scarce. We have, therefore, launched a project aimed at systematic research of the energy and angular distributions of low-energy (sub-keV) electrons emitted from solids. These investigations com-prise creation as well as transport of low-energy electrons under multiple collision conditions and hence require accounting for the properties of the target, both bulk and surface, i.e. for the inherent inhomogeneity of the thickness and for the surface roughness. To this end, electron spectra were measured from collisions of 3.6 and 11.4 MeV/u carbon ions impinging on thin (4 to 40ug/cm**2) C, Ni, Ag, and Au targets. The results were compared with simple conventional theories as well as with dedicated TRAX Monte Carlo simulations taking transport through the material into account. We will discuss the importance of the projectile electrons as well as the instantaneous charge state of the projectile within the target material. These investigations were complemented with protons in comparison with singly charged H3 molecules as projectiles. The fact that the ratio of the cross sections for electron production is not unity and slightly increases with the electron energy supports the emphasis that we put on the importance of the projectile electrons and on the knowledge of the instantaneous charge state. The spectra further exhibit two structures that belong to the KLL-Auger lines of carbon and oxygen. The C-line originates from the target surface and from the adsorbed carbon; the O-line originates entirely from the adsorbed oxygen molecules. It appears that the line structure can be explained by the back-diffusion of the Auger electrons.
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)
NASA Astrophysics Data System (ADS)
Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun
2015-09-01
Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun
2015-10-07
Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.
Carinou, Eleutheria; Stamatelatos, Ion Evangelos; Kamenopoulou, Vassiliki; Georgolopoulou, Paraskevi; Sandilos, Panayotis
The development of a computational model for the treatment head of a medical electron accelerator (Elekta/Philips SL-18) by the Monte Carlo code mcnp-4C2 is discussed. The model includes the major components of the accelerator head and a pmma phantom representing the patient body. Calculations were performed for a 14 MeV electron beam impinging on the accelerator target and a 10 cmx10 cm beam area at the isocentre. The model was used in order to predict the neutron ambient dose equivalent at the isocentre level and moreover the neutron absorbed dose distribution within the phantom. Calculations were validated against experimental measurements performed by gold foil activation detectors. The results of this study indicated that the equivalent dose at tissues or organs adjacent to the treatment field due to photoneutrons could be up to 10% of the total peripheral dose, for the specific accelerator characteristics examined. Therefore, photoneutrons should be taken into account when accurate dose calculations are required to sensitive tissues that are adjacent to the therapeutic X-ray beam. The method described can be extended to other accelerators and collimation configurations as well, upon specification of treatment head component dimensions, composition and nominal accelerating potential.
NASA Astrophysics Data System (ADS)
Wei, Jikun; Sandison, George A.; Hsi, Wen-Chien; Ringor, Michael; Lu, Xiaoyi
2006-10-01
Accurate dose calculation is essential to precision radiation treatment planning and this accuracy depends upon anatomic and tissue electron density information. Modern treatment planning inhomogeneity corrections use x-ray CT images and calibrated scales of tissue CT number to electron density to provide this information. The presence of metal in the volume scanned by an x-ray CT scanner causes metal induced image artefacts that influence CT numbers and thereby introduce errors in the radiation dose distribution calculated. This paper investigates the dosimetric improvement achieved by a previously proposed x-ray CT metal artefact suppression technique when the suppressed images of a patient with bilateral hip prostheses are used in commercial treatment planning systems for proton, electron or photon therapies. For all these beam types, this clinical image and treatment planning study reveals that the target may be severely underdosed if a metal artefact-contaminated image is used for dose calculations instead of the artefact suppressed one. Of the three beam types studied, the metal artefact suppression is most important for proton therapy dose calculations, intermediate for electron therapy and least important for x-ray therapy but still significant. The study of a water phantom having a metal rod simulating a hip prosthesis indicates that CT numbers generated after image processing for metal artefact suppression are accurate and thus dose calculations based on the metal artefact suppressed images will be of high fidelity.
NASA Astrophysics Data System (ADS)
Bencheikh, Mohamed; Maghnouj, Abdelmajid; Tajmouati, Jaouad
2017-11-01
The Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy and beam characterization investigation, in this study, the Varian Clinac 2100 medical linear accelerator with and without flattening filter (FF) was modelled. The objective of this study was to determine flattening filter impact on particles' energy properties at phantom surface in terms of energy fluence, mean energy, and energy fluence distribution. The Monte Carlo codes used in this study were BEAMnrc code for simulating linac head, DOSXYZnrc code for simulating the absorbed dose in a water phantom, and BEAMDP for extracting energy properties. Field size was 10 × 10 cm2, simulated photon beam energy was 6 MV and SSD was 100 cm. The Monte Carlo geometry was validated by a gamma index acceptance rate of 99% in PDD and 98% in dose profiles, gamma criteria was 3% for dose difference and 3mm for distance to agreement. In without-FF, the energetic properties was as following: electron contribution was increased by more than 300% in energy fluence, almost 14% in mean energy and 1900% in energy fluence distribution, however, photon contribution was increased 50% in energy fluence, and almost 18% in mean energy and almost 35% in energy fluence distribution. The removing flattening filter promotes the increasing of electron contamination energy versus photon energy; our study can contribute in the evolution of removing flattening filter configuration in future linac.
Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator
NASA Astrophysics Data System (ADS)
Weinberg, Rebecca
The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity.
NASA Astrophysics Data System (ADS)
Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.
2017-04-01
Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were ⩽0.02% and the radiotherapy structure mean volume deviations were <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.
Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E
2017-04-21
Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were ⩽0.02% and the radiotherapy structure mean volume deviations were <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.
NASA Astrophysics Data System (ADS)
Jechel, Christopher Alexander
In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.
Kocher, David C; Apostoaei, A Iulian; Hoffman, F Owen; Trabalka, John R
2018-06-01
This paper presents an analysis to develop a subjective state-of-knowledge probability distribution of a dose and dose-rate effectiveness factor for use in estimating risks of solid cancers from exposure to low linear energy transfer radiation (photons or electrons) whenever linear dose responses from acute and chronic exposure are assumed. A dose and dose-rate effectiveness factor represents an assumption that the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation, RL, differs from the risk per Gy at higher acute doses, RH; RL is estimated as RH divided by a dose and dose-rate effectiveness factor, where RH is estimated from analyses of dose responses in Japanese atomic-bomb survivors. A probability distribution to represent uncertainty in a dose and dose-rate effectiveness factor for solid cancers was developed from analyses of epidemiologic data on risks of incidence or mortality from all solid cancers as a group or all cancers excluding leukemias, including (1) analyses of possible nonlinearities in dose responses in atomic-bomb survivors, which give estimates of a low-dose effectiveness factor, and (2) comparisons of risks in radiation workers or members of the public from chronic exposure to low linear energy transfer radiation at low dose rates with risks in atomic-bomb survivors, which give estimates of a dose-rate effectiveness factor. Probability distributions of uncertain low-dose effectiveness factors and dose-rate effectiveness factors for solid cancer incidence and mortality were combined using assumptions about the relative weight that should be assigned to each estimate to represent its relevance to estimation of a dose and dose-rate effectiveness factor. The probability distribution of a dose and dose-rate effectiveness factor for solid cancers developed in this study has a median (50th percentile) and 90% subjective confidence interval of 1.3 (0.47, 3.6). The harmonic mean is 1.1, which implies that the arithmetic mean of an uncertain estimate of the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation is only about 10% less than the mean risk per Gy at higher acute doses. Data were also evaluated to define a low acute dose or low dose rate of low linear energy transfer radiation, i.e., a dose or dose rate below which a dose and dose-rate effectiveness factor should be applied in estimating risks of solid cancers.
Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials
NASA Astrophysics Data System (ADS)
Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.
2016-09-01
The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.
Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K
2009-06-07
Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.
A dose optimization method for electron radiotherapy using randomized aperture beams
NASA Astrophysics Data System (ADS)
Engel, Konrad; Gauer, Tobias
2009-09-01
The present paper describes the entire optimization process of creating a radiotherapy treatment plan for advanced electron irradiation. Special emphasis is devoted to the selection of beam incidence angles and beam energies as well as to the choice of appropriate subfields generated by a refined version of intensity segmentation and a novel random aperture approach. The algorithms have been implemented in a stand-alone programme using dose calculations from a commercial treatment planning system. For this study, the treatment planning system Pinnacle from Philips has been used and connected to the optimization programme using an ASCII interface. Dose calculations in Pinnacle were performed by Monte Carlo simulations for a remote-controlled electron multileaf collimator (MLC) from Euromechanics. As a result, treatment plans for breast cancer patients could be significantly improved when using randomly generated aperture beams. The combination of beams generated through segmentation and randomization achieved the best results in terms of target coverage and sparing of critical organs. The treatment plans could be further improved by use of a field reduction algorithm. Without a relevant loss in dose distribution, the total number of MLC fields and monitor units could be reduced by up to 20%. In conclusion, using randomized aperture beams is a promising new approach in radiotherapy and exhibits potential for further improvements in dose optimization through a combination of randomized electron and photon aperture beams.
Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny
2011-01-01
Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning
NASA Astrophysics Data System (ADS)
Ma, C.-M.; Li, J. S.; Deng, J.; Fan, J.
2008-02-01
Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife® SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head & neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations.
Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Carruth, Ralph (Technical Monitor)
2001-01-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in agreement with the measured TLD values.
SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chibani, O; Price, R; Ma, C
Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows thatmore » the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.
2008-09-15
The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less
Ding, Aiping; Xing, Lei; Han, Bin
2015-07-01
To develop an efficient and robust tool for output measurement and absolute dose verification of electron beam therapy by using a high spatial-resolution and high frame-rate amorphous silicon flat panel electronic portal imaging device (EPID). The dosimetric characteristics of the EPID, including saturation, linearity, and ghosting effect, were first investigated on a Varian Clinac 21EX accelerator. The response kernels of the individual pixels of the EPID to all available electron energies (6, 9, 12, 16, and 20 MeV) were calculated by using Monte Carlo (MC) simulations, which formed the basis to deconvolve an EPID raw images to the incident electron fluence map. The two-dimensional (2D) dose distribution at reference depths in water was obtained by using the constructed fluence map with a MC simulated pencil beam kernel with consideration of the geometric and structural information of the EPID. Output factor measurements were carried out with the EPID at a nominal source-surface distance of 100 cm for 2 × 2, 3 × 3, 6 × 6, 10 × 10, and 15 × 15 cm(2) fields for all available electron energies, and the results were compared with that measured in a solid water phantom using film and a Farmer-type ion chamber. The dose distributions at a reference depth specific to each energy and the flatness and symmetry of the 10 × 10 cm(2) electron beam were also measured using EPID, and the results were compared with ion chamber array and water scan measurements. Finally, three patient cases with various field sizes and irregular cutout shapes were also investigated. EPID-measured dose changed linearly with the monitor units and showed little ghosting effect for dose rate up to 600 MU/min. The flatness and symmetry measured with the EPID were found to be consistent with ion chamber array and water scan measurements. The EPID-measured output factors for standard square fields of 2 × 2, 3 × 3, 6 × 6, 10 × 10, 15 × 15 cm(2) agreed with film and ion chamber measurements. The average discrepancy between EPID and ion chamber/film measurements was 0.81% ± 0.60% (SD) and 1.34% ± 0.75%, respectively. For the three clinical cases, the difference in output between the EPID- and ion chamber array measured values was found to be 1.13% ± 0.11%, 0.54% ± 0.10%, and 0.74% ± 0.11%, respectively. Furthermore, the γ-index analysis showed an excellent agreement between the EPID- and ion chamber array measured dose distributions: 100% of the pixels passed the criteria of 3%/3 mm. When the γ-index was set to be 2%/2 mm, the pass rate was found to be 99.0% ± 0.07%, 98.2% ± 0.14%, and 100% for the three cases. The EPID dosimetry system developed in this work provides an accurate and reliable tool for routine output measurement and dosimetric verification of electron beam therapy. Coupled with its portability and ease of use, the proposed system promises to replace the current film-based approach for fast and reliable assessment of small and irregular electron field dosimetry.
Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.
Yoriyaz, H; Stabin, M G; dos Santos, A
2001-04-01
This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, J; Foottit, C
Metallic implants in patients can produce image artifacts in kilovoltage CT simulation images which can introduce noise and inaccuracies in CT number, affecting anatomical segmentation and dose distributions. The commercial orthopedic metal artifact reduction algorithm (O-MAR) (Philips Healthcare System) was recently made available on CT simulation scanners at our institution. This study validated the clinical use of O-MAR by investigating its effects on CT number and dose distributions. O-MAR corrected and uncorrected images were acquired with a Philips Brilliance Big Bore CT simulator of a cylindrical solid water phantom that contained various plugs (including metal) of known density. CT numbermore » accuracy was investigated by determining the mean and standard deviation in regions of interest (ROI) within each plug for uncorrected and O-MAR corrected images and comparing with no-metal image values. Dose distributions were calculated using the Monaco treatment planning system. Seven open fields were equally spaced about the phantom around a ROI near the center of the phantom. These were compared to a “correct” dose distribution calculated by overriding electron densities a no-metal phantom image to produce an image containing metal but no artifacts. An overall improvement in CT number and dose distribution accuracy was achieved by applying the O-MAR correction. Mean CT numbers and standard deviations were found to be generally improved. Exceptions included lung equivalent media, which is consistent with vendor specified contraindications. Dose profiles were found to vary by ±4% between uncorrected or O-MAR corrected images with O-MAR producing doses closer to ground truth.« less
SU-C-213-06: Dosimetric Verification of 3D Printed Electron Bolus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmussen, K; Corbett, M; Pelletier, C
2015-06-15
Purpose: To determine the dosimetric effect of 3D printed bolus in an anthropomorphic phantom. Methods: Conformable bolus material was generated for an anthropomorphic phantom from a DICOM volume. The bolus generated was a uniform expansion of 5mm applied to the nose region of the phantom, as this is a difficult area to uniformly apply bolus clinically. A Printrbot metal 3D Printer using PLA plastic generated the bolus. A 9MeV anterior beam with a 5cm cone was used to deliver dose to the nose of the phantom. TLD measurements were compared to predicted values at the phantom surface. Film planes weremore » analyzed for the printed bolus, a standard 5mm bolus sheet placed on the phantom, and the phantom with no bolus applied to determine depth and dose distributions. Results: TLDs measured within 2.5% of predicted value for the 3D bolus. Film demonstrated a more uniform dose distribution in the nostril region for the 3d printed bolus than the standard bolus. This difference is caused by the air gap created around the nostrils by the standard bolus, creating a secondary build-up region. Both demonstrated a 50% central axis dose shift of 5mm relative to the no bolus film. HU for the bolus calculated the PLA electron density to be ∼1.1g/cc. Physical density was measured to be 1.3g/cc overall. Conclusion: 3D printed PLA bolus demonstrates improved dosimetric performance to standard bolus for electron beams with complex phantom geometry.« less
Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide.
Marini, Sara; Buonanno, Giorgio; Stabile, Luca; Ficco, Giorgio
2014-07-01
The objective of this study was to compare the short-term respiratory effects due to the inhalation of electronic and conventional tobacco cigarette-generated mainstream aerosols through the measurement of the exhaled nitric oxide (eNO). To this purpose, twenty-five smokers were asked to smoke a conventional cigarette and to vape an electronic cigarette (with and without nicotine), and an electronic cigarette without liquid (control session). Electronic and tobacco cigarette mainstream aerosols were characterized in terms of total particle number concentrations and size distributions. On the basis of the measured total particle number concentrations and size distributions, the average particle doses deposited in alveolar and tracheobronchial regions of the lungs for a single 2-s puff were also estimated considering a subject performing resting (sitting) activity. Total particle number concentrations in the mainstream resulted equal to 3.5±0.4×10(9), 5.1±0.1×10(9), and 3.1±0.6×10(9) part. cm(-3) for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively. The corresponding alveolar doses for a resting subject were estimated equal to 3.8×10(10), 5.2×10(10) and 2.3×10(10) particles. The mean eNO variations measured after each smoking/vaping session were equal to 3.2ppb, 2.7ppb and 2.8ppb for electronic cigarettes without nicotine, with nicotine, and for conventional cigarettes, respectively; whereas, negligible eNO changes were measured in the control session. Statistical tests performed on eNO data showed statistically significant differences between smoking/vaping sessions and the control session, thus confirming a similar effect on human airways whatever the cigarette smoked/vaped, the nicotine content, and the particle dose received. Copyright © 2014 Elsevier Inc. All rights reserved.
Optimization of Monte Carlo dose calculations: The interface problem
NASA Astrophysics Data System (ADS)
Soudentas, Edward
1998-05-01
High energy photon beams are widely used for radiation treatment of deep-seated tumors. The human body contains many types of interfaces between dissimilar materials that affect dose distribution in radiation therapy. Experimentally, significant radiation dose perturbations has been observed at such interfaces. The EGS4 Monte Carlo code was used to calculate dose perturbations at boundaries between dissimilar materials (such as bone/water) for 60Co and 6 MeV linear accelerator beams using a UNIX workstation. A simple test of the reliability of a random number generator was also developed. A systematic study of the adjustable parameters in EGS4 was performed in order to minimize calculational artifacts at boundaries. Calculations of dose perturbations at boundaries between different materials showed that there is a 12% increase in dose at water/bone interface, and a 44% increase in dose at water/copper interface. with the increase mainly due to electrons produced in water and backscattered from the high atomic number material. The dependence of the dose increase on the atomic number was also investigated. The clinically important case of using two parallel opposed beams for radiation therapy was investigated where increased doses at boundaries has been observed. The Monte Carlo calculations can provide accurate dosimetry data under conditions of electronic non-equilibrium at tissue interfaces.
Siragusa, Mattia; Baiocco, Giorgio; Fredericia, Pil M; Friedland, Werner; Groesser, Torsten; Ottolenghi, Andrea; Jensen, Mikael
2017-08-01
COmputation Of Local Electron Release (COOLER), a software program has been designed for dosimetry assessment at the cellular/subcellular scale, with a given distribution of administered low-energy electron-emitting radionuclides in cellular compartments, which remains a critical step in risk/benefit analysis for advancements in internal radiotherapy. The software is intended to overcome the main limitations of the medical internal radiation dose (MIRD) formalism for calculations of cellular S-values (i.e., dose to a target region in the cell per decay in a given source region), namely, the use of the continuous slowing down approximation (CSDA) and the assumption of a spherical cell geometry. To this aim, we developed an analytical approach, entrusted to a MATLAB-based program, using as input simulated data for electron spatial energy deposition directly derived from full Monte Carlo track structure calculations with PARTRAC. Results from PARTRAC calculations on electron range, stopping power and residual energy versus traveled distance curves are presented and, when useful for implementation in COOLER, analytical fit functions are given. Example configurations for cells in different culture conditions (V79 cells in suspension or adherent culture) with realistic geometrical parameters are implemented for use in the tool. Finally, cellular S-value predictions by the newly developed code are presented for different cellular geometries and activity distributions (uniform activity in the nucleus, in the entire cell or on the cell surface), validated against full Monte Carlo calculations with PARTRAC, and compared to MIRD standards, as well as results based on different track structure calculations (Geant4-DNA). The largest discrepancies between COOLER and MIRD predictions were generally found for electrons between 25 and 30 keV, where the magnitude of disagreement in S-values can vary from 50 to 100%, depending on the activity distribution. In calculations for activity distribution on the cell surface, MIRD predictions appeared to fail the most. The proposed method is suitable for Auger-cascade electrons, but can be extended to any energy of interest and to beta spectra; as an example, the 3 H case is also discussed. COOLER is intended to be accessible to everyone (preclinical and clinical researchers included), and may provide important information for the selection of radionuclides, the interpretation of radiobiological or preclinical results, and the general establishment of doses in any scenario, e.g., with cultured cells in the laboratory or with therapeutic or diagnostic applications. The software will be made available for download from the DTU-Nutech website: http://www.nutech.dtu.dk/ .
Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno
2014-01-01
A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066
Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.
Hocine, Nora; Farlay, Delphine; Boivin, Georges; Franck, Didier; Agarande, Michelle
2014-11-01
To improve risk assessments associated with chronic exposure to Strontium-90 (Sr-90), for both the environment and human health, it is necessary to know the energy distribution in specific cells or tissue. Monte Carlo (MC) simulation codes are extremely useful tools for calculating deposition energy. The present work was focused on the validation of the MC code PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and the assessment of dose distribution to bone marrow cells from punctual Sr-90 source localized within the cortical bone part. S-values (absorbed dose per unit cumulated activity) calculations using Monte Carlo simulations were performed by using PENELOPE and Monte Carlo N-Particle eXtended (MCNPX). Cytoplasm, nucleus, cell surface, mouse femur bone and Sr-90 radiation source were simulated. Cells are assumed to be spherical with the radii of the cell and cell nucleus ranging from 2-10 μm. The Sr-90 source is assumed to be uniformly distributed in cell nucleus, cytoplasm and cell surface. The comparison of S-values calculated with PENELOPE to MCNPX results and the Medical Internal Radiation Dose (MIRD) values agreed very well since the relative deviations were less than 4.5%. The dose distribution to mouse bone marrow cells showed that the cells localized near the cortical part received the maximum dose. The MC code PENELOPE may prove useful for cellular dosimetry involving radiation transport through materials other than water, or for complex distributions of radionuclides and geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Al-Azhar University, Cairo; Jin, L
2014-06-15
Purpose: Electron arc therapy has long been proposed as the most suitable technique for the treatment of superficial tumors that follow circularly curved surfaces. However it was challenged by unsuitability of the conventional applicators and the lack of adequate 3-D dose calculation tools for arc electron beams in the treatment planning systems (TPS). Now with the availability of an electron specific multi-leaf collimator (eMLC) and an in-house Monte Carlo (MC) based TPS, we were motivated to investigate more advanced modulated electron arc (MeARC) therapy and its beneficial outcome. Methods: We initiated the study by a film measurement conducted in amore » head and neck phantom, where we delivered electron arcs in a step and shoot manner using the light field as a guide to avoid fields abutments. This step was done to insure enough clearance for the arcs with eMLC. MCBEAM and MCPLAN MC codes were used for the treatment head simulation and phantom dose calculation, respectively. Treatment plans were generated for targets drawn in real patient CTs and head and neck phantom. We utilized beams eye view available from a commercial planning system to create beamlets having same isocenter and adjoined at the scalp surface. Then dose-deposition coefficients from those beamlets were calculated for all electron energies using MCPLAN. An in-house optimization code was then used to find the optimum weights needed from individual beamlets. Results: MeARC showed a nicely tailored dose distribution around the circular curved target on the scalp. Some hot spots were noticed and could be attributed to fields abutment problem owing to the bulging nature of electron profiles. Brain dose was shown to be at lower levels compared to photon treatment. Conclusion: MeARC was shown to be a promising modality for treating scalp cases and could be beneficial to all superficial tumors with a circular curvature.« less
A virtual photon energy fluence model for Monte Carlo dose calculation.
Fippel, Matthias; Haryanto, Freddy; Dohm, Oliver; Nüsslin, Fridtjof; Kriesen, Stephan
2003-03-01
The presented virtual energy fluence (VEF) model of the patient-independent part of the medical linear accelerator heads, consists of two Gaussian-shaped photon sources and one uniform electron source. The planar photon sources are located close to the bremsstrahlung target (primary source) and to the flattening filter (secondary source), respectively. The electron contamination source is located in the plane defining the lower end of the filter. The standard deviations or widths and the relative weights of each source are free parameters. Five other parameters correct for fluence variations, i.e., the horn or central depression effect. If these parameters and the field widths in the X and Y directions are given, the corresponding energy fluence distribution can be calculated analytically and compared to measured dose distributions in air. This provides a method of fitting the free parameters using the measurements for various square and rectangular fields and a fixed number of monitor units. The next step in generating the whole set of base data is to calculate monoenergetic central axis depth dose distributions in water which are used to derive the energy spectrum by deconvolving the measured depth dose curves. This spectrum is also corrected to take the off-axis softening into account. The VEF model is implemented together with geometry modules for the patient specific part of the treatment head (jaws, multileaf collimator) into the XVMC dose calculation engine. The implementation into other Monte Carlo codes is possible based on the information in this paper. Experiments are performed to verify the model by comparing measured and calculated dose distributions and output factors in water. It is demonstrated that open photon beams of linear accelerators from two different vendors are accurately simulated using the VEF model. The commissioning procedure of the VEF model is clinically feasible because it is based on standard measurements in air and water. It is also useful for IMRT applications because a full Monte Carlo simulation of the treatment head would be too time-consuming for many small fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Q; Cao, R; Pei, X
2015-06-15
Purpose: Three-dimensional dose verification can detect errors introduced by the treatment planning system (TPS) or differences between planned and delivered dose distribution during the treatment. The aim of the study is to extend a previous in-house developed three-dimensional dose reconstructed model in homogeneous phantom to situtions in which tissue inhomogeneities are present. Methods: The method was based on the portal grey images from an electronic portal imaging device (EPID) and the relationship between beamlets and grey-scoring voxels at the position of the EPID. The relationship was expressed in the form of grey response matrix that was quantified using thickness-dependence scattermore » kernels determined by series of experiments. From the portal grey-value distribution information measured by the EPID the two-dimensional incident fluence distribution was reconstructed based on the grey response matrix using a fast iterative algorithm. The accuracy of this approach was verified using a four-field intensity-modulated radiotherapy (IMRT) plan for the treatment of lung cancer in anthopomorphic phantom. Each field had between twenty and twenty-eight segments and was evaluated by comparing the reconstructed dose distribution with the measured dose. Results: The gamma-evaluation method was used with various evaluation criteria of dose difference and distance-to-agreement: 3%/3mm and 2%/2 mm. The dose comparison for all irradiated fields showed a pass rate of 100% with the criterion of 3%/3mm, and a pass rate of higher than 92% with the criterion of 2%/2mm. Conclusion: Our experimental results demonstrate that our method is capable of accurately reconstructing three-dimensional dose distribution in the presence of inhomogeneities. Using the method, the combined planning and treatment delivery process is verified, offing an easy-to-use tool for the verification of complex treatments.« less
TU-H-CAMPUS-TeP3-03: Dose Enhancement by Gold Nanoparticles Around the Bragg Peak of Proton Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, J; Sutherland, K; Hashimoto, T
2016-06-15
Purpose: To make clear the spatial distribution of dose enhancement around gold nanoparticles (GNPs) located near the proton Bragg peak, and to evaluate the potential of GNPs as a radio sensitizer. Methods: The dose enhancement by electrons emitted from GNPs under proton irradiation was estimated by Geant4 Monte Carlo simulation toolkit in two steps. In an initial macroscopic step, 100 and 195 MeV proton beams were incident on a water cube, 30 cm on a side. Energy distributions of protons were calculated at four depths, 50% and 75% proximal to the Bragg peak, 100% peak, and 75% distal to themore » peak (P50, P75, Peak, and D75, respectively). In a subsequent microscopic step, protons with the energy distribution calculated above were incident on a 20 nm diameter GNP in a nanometer-size water box and the spatial distribution of dose around the GNP was determined for each energy distribution. The dose enhancement factor (DEF) was also deduced. Results: The dose enhancement effect was spread to several tens of nanometers in the both depth and radial directions. The enhancement area increased in the order of P50, P75, Peak, and D75 for both cases with 100 and 195 MeV protons. In every position around the Bragg peak, the 100 MeV beam resulted in a higher dose enhancement than the 195 MeV beam. At P75, the average and maximum DEF were 3.9 and 17.0 for 100 MeV, and 3.5 and 16.2 for 195 MeV, respectively. These results indicate that lower energy protons caused higher dose enhancement in this incident proton energy range. Conclusion: The dose enhancement around GNPs spread as the position in the Bragg peak region becomes deeper and depends on proton energy. It is expected that GNPs can be used as a radio sensitizer with consideration of the location and proton beam energy.« less
NASA Astrophysics Data System (ADS)
Mukherjee, Bhaskar; Makowski, Dariusz; Simrock, Stefan
2005-06-01
The neutron and gamma doses are crucial to interpreting the radiation effects in microelectronic devices operating in a high-energy accelerator environment. This report highlights a method for an accurate estimation of photoneutron and the accompanying bremsstrahlung (gamma) doses produced by a 450 MeV electron linear accelerator (linac) operating in pulsed mode. The principle is based on the analysis of thermoluminescence glow-curves of TLD-500 (Aluminium Oxide) and TLD-700 (Lithium Fluoride) dosimeter pairs. The gamma and fast neutron response of the TLD-500 and TLD-700 dosimeter pairs were calibrated with a 60Co (gamma) and a 241Am-Be (α, n) neutron standard-source, respectively. The Kinetic Energy Released in Materials (kerma) conversion factor for photoneutrons was evaluated by folding the neutron kerma (dose) distribution in 7LiF (the main component of the TLD-700 dosimeter) with the energy spectra of the 241Am-Be (α, n) neutrons and electron accelerator produced photoneutrons. The neutron kerma conversion factors for 241Am-Be neutrons and photoneutrons were calculated to be 2.52×10 -3 and 1.37×10 -3 μGy/a.u. respectively. The bremsstrahlung (gamma) dose conversion factor was evaluated to be 7.32×10 -4 μGy/a.u. The above method has been successfully utilised to assess the photoneutron and bremsstrahlung doses from a 450 MeV electron linac operating at DESY Research Centre in Hamburg, Germany.
NASA Astrophysics Data System (ADS)
Falzone, Nadia; Lee, Boon Q.; Fernández-Varea, José M.; Kartsonaki, Christiana; Stuchbery, Andrew E.; Kibédi, Tibor; Vallis, Katherine A.
2017-03-01
The aim of this study was to investigate the impact of decay data provided by the newly developed stochastic atomic relaxation model BrIccEmis on dose point kernels (DPKs - radial dose distribution around a unit point source) and S-values (absorbed dose per unit cumulated activity) of 14 Auger electron (AE) emitting radionuclides, namely 67Ga, 80mBr, 89Zr, 90Nb, 99mTc, 111In, 117mSn, 119Sb, 123I, 124I, 125I, 135La, 195mPt and 201Tl. Radiation spectra were based on the nuclear decay data from the medical internal radiation dose (MIRD) RADTABS program and the BrIccEmis code, assuming both an isolated-atom and condensed-phase approach. DPKs were simulated with the PENELOPE Monte Carlo (MC) code using event-by-event electron and photon transport. S-values for concentric spherical cells of various sizes were derived from these DPKs using appropriate geometric reduction factors. The number of Auger and Coster-Kronig (CK) electrons and x-ray photons released per nuclear decay (yield) from MIRD-RADTABS were consistently higher than those calculated using BrIccEmis. DPKs for the electron spectra from BrIccEmis were considerably different from MIRD-RADTABS in the first few hundred nanometres from a point source where most of the Auger electrons are stopped. S-values were, however, not significantly impacted as the differences in DPKs in the sub-micrometre dimension were quickly diminished in larger dimensions. Overestimation in the total AE energy output by MIRD-RADTABS leads to higher predicted energy deposition by AE emitting radionuclides, especially in the immediate vicinity of the decaying radionuclides. This should be taken into account when MIRD-RADTABS data are used to simulate biological damage at nanoscale dimensions.
Absorbed dose determination using experimental and analytical predictions of x-ray spectra
NASA Astrophysics Data System (ADS)
Edwards, David Lee
1999-10-01
Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate radiation shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) to measure the radiation dose. The TLD's were exposed to x- ray radiation generated by operation of the ISWE in- vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose values were found to be in good agreement with the measured TLD values.
NASA Astrophysics Data System (ADS)
Salimi, E.; Rahighi, J.; Sardari, D.; Mahdavi, S. R.; Lamehi Rachti, M.
2014-12-01
Gas bremsstrahlung is generated in high energy electron storage rings through interaction of the electron beam with the residual gas molecules in vacuum chamber. In this paper, Monte Carlo calculation has been performed to evaluate radiation hazard due to gas bremsstrahlung in the Iranian Light Source Facility (ILSF) insertion devices. Shutter/stopper dimensions is determined and dose rate from the photoneutrons via the giant resonance photonuclear reaction which takes place inside the shutter/stopper is also obtained. Some other characteristics of gas bremsstrahlung such as photon fluence, energy spectrum, angular distribution and equivalent dose in tissue equivalent phantom have also been investigated by FLUKA Monte Carlo code.
Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim.
Kinoshita, Angela; Baffa, Oswaldo; Mascarenhas, Sérgio
2018-01-01
Explosion of the bombs in Hiroshima and Nagasaki corresponds to the only historical moment when atomic bombs were used against civilians. This event triggered countless investigations into the effects and dosimetry of ionizing radiation. However, none of the investigations has used the victims' bones as dosimeter. Here, we assess samples of bones obtained from fatal victims of the explosion by Electron Spin Resonance (ESR). In 1973, one of the authors of the present study (SM) traveled to Japan and conducted a preliminary experiment on the victims' bone samples. The idea was to use the paramagnetism induced in bone after irradiation to measure the radiation dose. Technological advances involved in the construction of spectrometers, better knowledge of the paramagnetic center, and improvement in signal processing techniques have allowed us to resume the investigation. We obtained a reconstructed dose of 9.46 ± 3.4 Gy from the jawbone, which was compatible with the dose distribution in different locations as measured in non-biological materials such as wall bricks and roof tiles.
Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite
NASA Technical Reports Server (NTRS)
Dudkin, V. E.; Kovalev, E. E.; Potapov, Y. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Watts, J. W. Jr; Parnell, T. A.; Schopper, E.; Baican, B.;
1992-01-01
Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the LET spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm-2 shielding) and outside (1 g cm-2) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d-1, respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d-1. The effects of the flight parameters on the total fluence of, and on the dose from, the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Si Young; Liu, H. Helen; Mohan, Radhe
Because of complex dose distributions and dose gradients that are created in three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), photon- and electron-energy spectra might change significantly with spatial locations and doses. This study examined variations in photon- and electron-energy spectra in 3D-CRT and IMRT photon fields. The effects of spectral variations on water-to-material stopping-power ratios used in Monte Carlo treatment planning systems and the responses of energy-dependent dosimeters, such as thermoluminescent dosimeters (TLDs) and radiographic films were further studied. The EGSnrc Monte Carlo code was used to simulate megavoltage 3D-CRT and IMRT photon fields. The photon- and electron-energymore » spectra were calculated in 3D water phantoms and anthropomorphic phantoms based on the fluence scored in voxel grids. We then obtained the water-to-material stopping-power ratios in the local voxels using the Spencer-Attix cavity theory. Changes in the responses of films and TLDs were estimated based on the calculated local energy spectra and published data on the dosimeter energy dependency. Results showed that the photon-energy spectra strongly depended on spatial positions and doses in both the 3D-CRT and IMRT fields. The relative fraction of low-energy photons (<100 keV) increased inversely with the photon dose in low-dose regions of the fields. A similar but smaller effect was observed for electrons in the phantoms. The maximum variation of the water-to-material stopping-power ratio over the range of calculated dose for both 3D-CRT and IMRT was negligible (<1.0%) for ICRU tissue, cortical bone, and soft bone and less than 3.6% for dry air and lung. Because of spectral softening at low doses, radiographic films in the phantoms could over-respond to dose by more than 30%, whereas the over-response of TLDs was less than 10%. Thus, spatial variations of the photon- and electron-energy spectra should be considered as important factors in 3D-CRT and IMRT dosimetry.« less
Dosimetric characteristics with spatial fractionation using electron grid therapy.
Meigooni, A S; Parker, S A; Zheng, J; Kalbaugh, K J; Regine, W F; Mohiuddin, M
2002-01-01
Recently, promising clinical results have been shown in the delivery of palliative treatments using megavoltage photon grid therapy. However, the use of megavoltage photon grid therapy is limited in the treatment of bulky superficial lesions where critical radiosensitive anatomical structures are present beyond tumor volumes. As a result, spatially fractionated electron grid therapy was investigated in this project. Dose distributions of 1.4-cm-thick cerrobend grid blocks were experimentally determined for electron beams ranging from 6 to 20 MeV. These blocks were designed and fabricated at out institution to fit into a 20 x 20-cm(2) electron cone of a commercially available linear accelerator. Beam profiles and percentage depth dose (PDD) curves were measured in Solid Water phantom material using radiographic film, LiF TLD, and ionometric techniques. Open-field PDD curves were compared with those of single holes grid with diameters of 1.5, 2.0, 2.5, 3.0, and 3.5 cm to find the optimum diameter. A 2.5-cm hole diameter was found to be the optimal size for all electron energies between 6 and 20 MeV. The results indicate peak-to-valley ratios decrease with depth and the largest ratio is found at Dmax. Also, the TLD measurements show that the dose under the blocked regions of the grid ranged from 9.7% to 39% of the dose beneath the grid holes, depending on the measurement location and beam energy.
Pencil-beam redefinition algorithm dose calculations for electron therapy treatment planning
NASA Astrophysics Data System (ADS)
Boyd, Robert Arthur
2001-08-01
The electron pencil-beam redefinition algorithm (PBRA) of Shiu and Hogstrom has been developed for use in radiotherapy treatment planning (RTP). Earlier studies of Boyd and Hogstrom showed that the PBRA lacked an adequate incident beam model, that PBRA might require improved electron physics, and that no data existed which allowed adequate assessment of the PBRA-calculated dose accuracy in a heterogeneous medium such as one presented by patient anatomy. The hypothesis of this research was that by addressing the above issues the PBRA-calculated dose would be accurate to within 4% or 2 mm in regions of high dose gradients. A secondary electron source was added to the PBRA to account for collimation-scattered electrons in the incident beam. Parameters of the dual-source model were determined from a minimal data set to allow ease of beam commissioning. Comparisons with measured data showed 3% or better dose accuracy in water within the field for cases where 4% accuracy was not previously achievable. A measured data set was developed that allowed an evaluation of PBRA in regions distal to localized heterogeneities. Geometries in the data set included irregular surfaces and high- and low-density internal heterogeneities. The data was estimated to have 1% precision and 2% agreement with accurate, benchmarked Monte Carlo (MC) code. PBRA electron transport was enhanced by modeling local pencil beam divergence. This required fundamental changes to the mathematics of electron transport (divPBRA). Evaluation of divPBRA with the measured data set showed marginal improvement in dose accuracy when compared to PBRA; however, 4% or 2mm accuracy was not achieved by either PBRA version for all data points. Finally, PBRA was evaluated clinically by comparing PBRA- and MC-calculated dose distributions using site-specific patient RTP data. Results show PBRA did not agree with MC to within 4% or 2mm in a small fraction (<3%) of the irradiated volume. Although the hypothesis of the research was shown to be false, the minor dose inaccuracies should have little or no impact on RTP decisions or patient outcome. Therefore, given ease of beam commissioning, documentation of accuracy, and calculational speed, the PBRA should be considered a practical tool for clinical use.
Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite
NASA Technical Reports Server (NTRS)
Watts, J. W., Jr.; Parnell, T. A.; Akatov, Yu. A.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.
1995-01-01
Significant absorbed dose levels exceeding 1.0 Gy day(exp -1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD's) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.
Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite
NASA Technical Reports Server (NTRS)
Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.; Watts, J. W. Jr; Parnell, T. A.
1990-01-01
Significant absorbed dose levels exceeding 1.0 Gy day-1 have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLDs) of U.S.S.R. and U.S.A. manufacture. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.
NASA Astrophysics Data System (ADS)
Sramek, Benjamin Koerner
The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and neck phantoms. The conclusions of this investigation were: (1) the implementation of intermediate view estimation techniques to megavoltage cone-beam CT produced improvements in image quality, with the largest impact occurring for smaller numbers of initially-acquired projections, (2) the SPECS scatter correction algorithm could be successfully incorporated into projection data acquired using an electronic portal imaging device during megavoltage cone-beam CT image reconstruction, (3) a large range of SPECS parameters were shown to reduce cupping artifacts as well as improve reconstruction accuracy, with application to anthropomorphic phantom geometries improving the percent difference in reconstructed electron density for soft tissue from -13.6% to -2.0%, and for cortical bone from -9.7% to 1.4%, (4) dose measurements in the anthropomorphic phantoms showed consistent agreement between planar measurements using radiochromic film and point measurements using thermoluminescent dosimeters, and (5) a comparison of normalized dose measurements acquired with radiochromic film to those calculated using multiple treatment planning systems, accelerator-detector combinations, patient geometries and accelerator outputs produced a relatively good agreement.
Davidson, Scott E; Cui, Jing; Kry, Stephen; Deasy, Joseph O; Ibbott, Geoffrey S; Vicic, Milos; White, R Allen; Followill, David S
2016-08-01
A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today's modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data points tested. The model was capable of predicting the depth of the maximum dose within 1 mm. Anthropomorphic phantom benchmark testing of modulated and patterned MLCs treatment plans showed agreement to measurement within 3% in target regions using thermoluminescent dosimeters (TLD). Using radiochromic film normalized to TLD, a gamma criteria of 3% of maximum dose and 2 mm DTA was applied with a pass rate of least 85% in the high dose, high gradient, and low dose regions. Finally, recalculations of patient plans using DPM showed good agreement relative to a commercial TPS when comparing dose volume histograms and 2D dose distributions. A unique analytical source model coupled to the dose planning method Monte Carlo dose calculation code has been modified and validated using basic beam data and anthropomorphic phantom measurement. While this tool can be applied in general use for a particular linac model, specifically it was developed to provide a singular methodology to independently assess treatment plan dose distributions from those clinical institutions participating in National Cancer Institute trials.
The boron implantation in the varied zone MBE MCT epilayer
NASA Astrophysics Data System (ADS)
Voitsekhovskii, Alexander V.; Grigor'ev, Denis V.; Kokhanenko, Andrey P.; Korotaev, Alexander G.; Sidorov, Yuriy G.; Varavin, Vasiliy S.; Dvoretsky, Sergey A.; Mikhailov, Nicolay N.; Talipov, Niyaz Kh.
2005-09-01
In the paper experimental results on boron implantation of the CdxHg1-xTe epilayers with various composition near surface of the material are discussed. The electron concentration in the surface layer after irradiation vs irradiation dose and ion energy are investigated for range of doses 1011 - 3•1015 cm-2 and energies of 20 - 150 keV. Also the results of the electrical active defects distribution measurement, carried out by differential Hall method, after boron implantation are represented. Consideration of the received data shows, that composition gradient influence mainly on the various dynamics of accumulation of electric active radiation defects. The electric active defects distribution analysis shows, that the other factors are negligible.
Analysis of a Distributed Pulse Power System Using a Circuit Analysis Code
1979-06-01
dose rate was then integrated to give a number that could be compared with measure- ments made using thermal luminescent dosimeters ( TLD ’ s). Since...NM 8 7117 AND THE BDM CORPORATION, ALBUQUERQUE, NM 87106 Abstract A sophisticated computer code (SCEPTRE), used to analyze electronic circuits...computer code (SCEPTRE), used to analyze electronic circuits, was used to evaluate the performance of a large flash X-ray machine. This device was
GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms.
Lacornerie, Thomas; Lisbona, Albert; Mirabel, Xavier; Lartigau, Eric; Reynaert, Nick
2014-10-16
The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the median GTV dose provides a very robust method for treating lung lesions.
Nakamura, Nori; Hirai, Yuko; Kodama, Yoshiaki; Hamasaki, Kanya; Cullings, Harry M; Cordova, Kismet A; Awa, Akio
2017-10-01
Retrospective estimation of the doses received by atomic bomb (A-bomb) survivors by cytogenetic methods has been hindered by two factors: One is that the photon energies released from the bomb were widely distributed, and since the aberration yield varies depending on the energy, the use of monoenergetic 60 Co gamma radiation to construct a calibration curve may bias the estimate. The second problem is the increasing proportion of newly formed lymphocytes entering into the lymphocyte pool with increasing time intervals since the exposures. These new cells are derived from irradiated precursor/stem cells whose radiosensitivity may differ from that of blood lymphocytes. To overcome these problems, radiation doses to tooth enamel were estimated using the electron spin resonance (ESR; or EPR, electron paramagnetic resonance) method and compared with the cytogenetically estimated doses from the same survivors. The ESR method is only weakly dependent on the photon energy and independent of the years elapsed since an exposure. Both ESR and cytogenetic doses were estimated from 107 survivors. The latter estimates were made by assuming that although a part of the cells examined could be lymphoid stem or precursor cells at the time of exposure, all the cells had the same radiosensitivity as blood lymphocytes, and that the A-bomb gamma-ray spectrum was the same as that of the 60 Co gamma rays. Subsequently, ESR and cytogenetic endpoints were used to estimate the kerma doses using individual DS02R1 information on shielding conditions. The results showed that the two sets of kerma doses were in close agreement, indicating that perhaps no correction is needed in estimating atomic bomb gamma-ray doses from the cytogenetically estimated 60 Co gamma-ray equivalent doses. The present results will make it possible to directly compare cytogenetic doses with the physically estimated doses of the survivors, which would pave the way for testing whether or not there are any systematic trends or factors affecting physically estimated doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobler, Matt; Watson, Gordon; Leavitt, Dennis
Radiotherapy plays a key role in the definitive or adjuvant management of patients with mesothelioma of the pleural surface. Many patients are referred for radiation with intact lung following biopsy or subtotal pleurectomy. Delivery of efficacious doses of radiation to the pleural lining while avoiding lung parenchyma toxicity has been a difficult technical challenge. Using opposed photon fields produce doses in lung that result in moderate-to-severe pulmonary toxicity in 100% of patients treated. Combined photon-electron beam treatment, at total doses of 4250 cGy to the pleural surface, results in two-thirds of the lung volume receiving over 2100 cGy. We havemore » developed a technique using intensity-modulated photon arc therapy (IMRT) that significantly improves the dose distribution to the pleural surface with concomitant decrease in dose to lung parenchyma compared to traditional techniques. IMRT treatment of the pleural lining consists of segments of photon arcs that can be intensity modulated with varying beam weights and multileaf positions to produce a more uniform distribution to the pleural surface, while at the same time reducing the overall dose to the lung itself. Computed tomography (CT) simulation is critical for precise identification of target volumes as well as critical normal structures (lung and heart). Rotational arc trajectories and individual leaf positions and weightings are then defined for each CT plane within the patient. This paper will describe the proposed rotational IMRT technique and, using simulated isodose distributions, show the improved potential for sparing of dose to the critical structures of the lung, heart, and spinal cord.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salinas Aranda, F; Suarez, V; Arbiser, S
2016-06-15
Purpose: To implement an end-to-end QA test of the radiation therapy imaging, planning and delivery process, aimed to assess the dosimetric agreement accuracy between planned and delivered treatment, in order to identify and correct possible sources of deviation. To establish an internal standard for machine commissioning acceptance. Methods: A test involving all steps of the radiation therapy: imaging, planning and delivery process was designed. The test includes analysis of point dose and planar dose distributions agreement between TPS calculated and measured dose. An ad hoc 16 cm diameter PMMA phantom was constructed with one central and four peripheral bores thatmore » can accommodate calibrated electron density inserts. Using Varian Eclipse 10.0 and Elekta XiO 4.50 planning systems, IMRT, RapidArc and 3DCRT with hard and dynamic wedges plans were planned on the phantom and tested. An Exradin A1SL chamber is used with a Keithley 35617EBS electrometer for point dose measurements in the phantom. 2D dose distributions were acquired using MapCheck and Varian aS1000 EPID.Gamma analysis was performed for evaluation of 2D dose distribution agreement using MapCheck software and Varian Portal Dosimetry Application.Varian high energy Clinacs Trilogy, 2100C/CD, 2000CR and low energy 6X/EX where tested.TPS-CT# vs. electron density table were checked for CT-scanners used. Results: Calculated point doses were accurate to 0.127% SD: 0.93%, 0.507% SD: 0.82%, 0.246% SD: 1.39% and 0.012% SD: 0.01% for LoX-3DCRT, HiX-3DCRT, IMRT and RapidArc plans respectively. Planar doses pass gamma 3% 3mm in all cases and 2% 2mm for VMAT plans. Conclusion: Implementation of a simple and reliable quality assurance tool was accomplished. The end-to-end proved efficient, showing excellent agreement between planned and delivered dose evidencing strong consistency of the whole process from imaging through planning to delivery. This test can be used as a first step in beam model acceptance for clinical use.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, K; Araki, F; Ohno, T
Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photonmore » and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Susie A.; Ogunleye, Tomiwa; Dhabbaan, Anees
Purpose: Temporary tissue expanders (TTE) with an internal magnetic metal port (IMP) have been increasingly used for breast reconstruction in post-mastectomy patients who receive radiation therapy (XRT). We evaluated XRT plans of patients with IMP to determine its effect on XRT dose distribution. Methods and Materials: Original treatment plans with CT simulation scans of 24 consecutive patients who received XRT (ORI), planned without heterogeneity corrections, to a reconstructed breast containing an IMP were used. Two additional treatment plans were then generated: one treatment plan with the IMP assigned the electron density of the rare earth magnet, nickel plated neodymium-iron-boron (HET),more » and a second treatment plan with the IMP assigned a CT value of 1 to simulate a homogeneous breast without an IMP (BRS). All plans were prescribed 50 Gy to the reconstructed breast (CTV). Results: CTV coverage by 50 Gy was significantly lower in the HET (mean 87.7% CTV) than in either the ORI (mean 99.7% CTV, P<.001) or BRS plans (mean 95.0% CTV, P<.001). The effect of the port was more pronounced on CT slices containing the IMP with prescription dose coverage of the CTV being less in the HET than in either ORI (mean difference 33.6%, P<.01) or BRS plans (mean difference 30.1%, P<.001). HET had a less homogeneous and conformal dose distribution than BRS or ORI. Conclusion: IMPs increase dose heterogeneity and reduce dose to the breast CTV through attenuation of the beam. For optimal XRT treatment, heterogeneity corrections should be used in XRT planning for patients with TTE with IMP, as the IMP impacts dose distribution.« less
NASA Astrophysics Data System (ADS)
Chang, Kwo-Ping; Lin, Wei-Ting; Shiau, An-Cheng; Chie, Yu-Huang
2014-11-01
In radiotherapy of the head and neck, metal dentures or implants will increase the risk of complications such as mucositis and osteoradionecrosis. The aim of this study is to explore the back scatter effect of commercially available dental metal alloys on the mucosa and bone under 6 MV LINAC irradiation. The Monte Carlo method has been employed to calculate the dose distribution in the heterogeneous media of the designed oral phantom based on the oral cavity geometry. Backscatter dose increases up to a maximum of 53%, and is primarily dependent on the physical density and electron density of the metal crown alloy. Ceramic metal crowns have been quantified to increase backscatter dose up to 10% on mucosa. Ceramic serves as an inherent shield of mucosa. The backscatter dose will be greater for a small field size if the tumor is located at a deeper region. Titanium implants will increase the backscatter dose by 13% to bone but will not affect the mucosa. QC-20 (polystyrene resin) is recommended as a shield material (3 mm) to eliminate the backscatter dose on mucosa due to the high density metals.
Kim, Hyun Nam; Lee, Ju Hyuk; Park, Han Beom; Kim, Hyun Jin; Cho, Sung Oh
2018-01-01
We designed and fabricated a surface applicator of a novel carbon nanotube (CNT)-based miniature X-ray tube for the use in superficial electronic brachytherapy of skin cancer. To investigate the effectiveness of the surface applicator, the performance of the applicator was numerically and experimentally analyzed. The surface applicator consists of a graphite flattening filter and an X-ray shield. A Monte Carlo radiation transport code, MCNP6, was used to optimize the geometries of both the flattening filter and the shield so that X-rays are generated uniformly over the desired region. The performance of the graphite filter was compared with that of conventional aluminum (Al) filters of different geometries using the numerical simulations. After fabricating a surface applicator, the X-ray spatial distribution was measured to evaluate the performance of the applicator. The graphite filter shows better spatial dose uniformity and less dose distortion than Al filters. Moreover, graphite allows easy fabrication of the flattening filter due to its low X-ray attenuation property, which is particularly important for low-energy electronic brachytherapy. The applicator also shows that no further X-ray shielding is required for the application because unwanted X-rays are completely protected. As a result, highly uniform X-ray dose distribution was achieved from the miniature X-ray tube mounted with the surface applicators. The measured values of both flatness and symmetry were less than 5% and the measured penumbra values were less than 1 mm. All these values satisfy the currently accepted tolerance criteria for radiation therapy. The surface applicator exhibits sufficient performance capability for their application in electronic brachytherapy of skin cancers. © 2017 American Association of Physicists in Medicine.
Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J.
2010-02-15
The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 tomore » 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4x4 cm{sup 2} photon fields or 6x6 cm{sup 2} electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6x6 cm{sup 2}, 12 and 16 MeV electron fields. The dose response of the BANG 3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752{+-}3%, 0.0756{+-}3%, 0.0767{+-}3%, and 0.0759{+-}3% cm{sup -1} Gy{sup -1}) and the PDD matching methods (0.0768{+-}3% and 0.0761{+-}3% cm{sup -1} Gy{sup -1}) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6x6 cm{sup 2} electron field. Three-dimensional dose distributions from the gel measurement and the Eclipse planning system (Varian Corporation, Palo Alto, CA) were compared and evaluated using 3% dose difference and 2 mm distance-to-agreement criteria.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Park, Yang-Kyun; Doppke, Karen P.
2015-06-15
Purpose: This study evaluated the performance of the electron Monte Carlo dose calculation algorithm in RayStation v4.0 for an Elekta machine with Agility™ treatment head. Methods: The machine has five electron energies (6–8 MeV) and five applicators (6×6 to 25×25 cm {sup 2}). The dose (cGy/MU at d{sub max}), depth dose and profiles were measured in water using an electron diode at 100 cm SSD for nine square fields ≥2×2 cm{sup 2} and four complex fields at normal incidence, and a 14×14 cm{sup 2} field at 15° and 30° incidence. The dose was also measured for three square fields ≥4×4more » cm{sup 2} at 98, 105 and 110 cm SSD. Using selected energies, the EBT3 radiochromic film was used for dose measurements in slab-shaped inhomogeneous phantoms and a breast phantom with surface curvature. The measured and calculated doses were analyzed using a gamma criterion of 3%/3 mm. Results: The calculated and measured doses varied by <3% for 116 of the 120 points, and <5% for the 4×4 cm{sup 2} field at 110 cm SSD at 9–18 MeV. The gamma analysis comparing the 105 pairs of in-water isodoses passed by >98.1%. The planar doses measured from films placed at 0.5 cm below a lung/tissue layer (12 MeV) and 1.0 cm below a bone/air layer (15 MeV) showed excellent agreement with calculations, with gamma passing by 99.9% and 98.5%, respectively. At the breast-tissue interface, the gamma passing rate is >98.8% at 12–18 MeV. The film results directly validated the accuracy of MU calculation and spatial dose distribution in presence of tissue inhomogeneity and surface curvature - situations challenging for simpler pencil-beam algorithms. Conclusion: The electron Monte Carlo algorithm in RayStation v4.0 is fully validated for clinical use for the Elekta Agility™ machine. The comprehensive validation included small fields, complex fields, oblique beams, extended distance, tissue inhomogeneity and surface curvature.« less
A deterministic partial differential equation model for dose calculation in electron radiotherapy.
Duclous, R; Dubroca, B; Frank, M
2010-07-07
High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g.Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung, Compton scattering and the production of delta electrons are added to our model, the computation time will only slightly increase. Its margin of error, on the other hand, will decrease and should be within a few per cent of the actual dose. Therefore, the new model has the potential to become useful for dose calculations in clinical practice.
A deterministic partial differential equation model for dose calculation in electron radiotherapy
NASA Astrophysics Data System (ADS)
Duclous, R.; Dubroca, B.; Frank, M.
2010-07-01
High-energy ionizing radiation is a prominent modality for the treatment of many cancers. The approaches to electron dose calculation can be categorized into semi-empirical models (e.g. Fermi-Eyges, convolution-superposition) and probabilistic methods (e.g. Monte Carlo). A third approach to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. We derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on Berthon et al (2007 J. Sci. Comput. 31 347-89) that exactly preserves the key properties of the analytical solution on the discrete level. We discuss several test cases taken from the medical physics literature. A test case with an academic Henyey-Greenstein scattering kernel is considered. We compare our model to a benchmark discrete ordinate solution. A simplified model of electron interactions with tissue is employed to compute the dose of an electron beam in a water phantom, and a case of irradiation of the vertebral column. Here our model is compared to the PENELOPE Monte Carlo code. In the academic example, the fluences computed with the new model and a benchmark result differ by less than 1%. The depths at half maximum differ by less than 0.6%. In the two comparisons with Monte Carlo, our model gives qualitatively reasonable dose distributions. Due to the crude interaction model, these so far do not have the accuracy needed in clinical practice. However, the new model has a computational cost that is less than one-tenth of the cost of a Monte Carlo simulation. In addition, simulations can be set up in a similar way as a Monte Carlo simulation. If more detailed effects such as coupled electron-photon transport, bremsstrahlung, Compton scattering and the production of δ electrons are added to our model, the computation time will only slightly increase. Its margin of error, on the other hand, will decrease and should be within a few per cent of the actual dose. Therefore, the new model has the potential to become useful for dose calculations in clinical practice.
Looe, Hui Khee; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn
2017-06-21
The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.
Moslehi, Amir; Raisali, Gholamreza
2018-07-01
The response of a microdosimeter for neutrons above 14 MeV is investigated. The mean quality factors and dose-equivalents are determined using lineal energy distributions calculated by Monte Carlo simulations (Geant4 toolkit). From 14 MeV to 5 GeV, the mean quality factors were found to vary between 6.00 and 9.30 and the dose-equivalents were in agreement with the true ambient dose-equivalent at the depth of 10 mm inside the ICRU sphere, H * (10). An energy-independent dose-equivalent response around a median value of 0.86 within 22% uncertainty was obtained. Therefore, the microdosimeter is appropriate for dose-equivalent measurement of high-energy neutrons. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS.
Vilches, Manuel; García-Pareja, Salvador; Guerrero, Rafael; Anguiano, Marta; Lallena, Antonio M
2008-01-01
Results obtained from Monte Carlo simulations of the transport of electrons in thin slabs of dense material media and air slabs with different widths are analyzed. Various general purpose Monte Carlo codes have been used: PENELOPE, GEANT3, GEANT4, EGSNRC, MCNPX. Non-negligible differences between the angular and radial distributions after the slabs have been found. The effects of these differences on the depth doses measured in water are also discussed.
Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite
NASA Technical Reports Server (NTRS)
Watts, J. W., Jr.; Parnell, T. A.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Beaujean, R.; Heilmann, C.
1995-01-01
Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the Linear Energy Transfer (LET) spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm (exp -2) shielding) and outside (1 g cm(exp -2) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d (exp -1), respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d(exp -1). The effects of the flight parameters on the total fluence of, and on the dose from the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.
Accuracy of megavolt radiation dosimetry using thermoluminescent lithium fluoride.
Rudén, B I; Bengtsson, L G
1977-04-01
The relative light output per Gy in polystyrene for roentgen beams of 6 and 42 MV and electrons between 2.2 and 34.5 MeV relative to 60Co gamma radiation is reported for different kinds of LiF dosemeters. The distribution of the absorbed dose inside a 0.25 and 0.4 mm thick LiF-teflon disc surrounded by polystyrene and irradiated with 60Co, 42 MV roentgen radiation and 39 MeV electrons was measured using 0.01 and 0.02 mm thick Lif-teflon discs. The measurements show that the absorbed dose distribution in the dosemeter depends on the energy of the radiation. When flat dosemeters were used, differences between the signals measured at the two orientations possible during read-out could easily amount to several per cent, and for this reason 0.4 mm and 0.5 mm LiF-Teflon discs were not trusted when the highest accuracy was required. The cavity theory by Burlin does not account for the phenomena caused by differences in electron scattering properties of the dosemeter and the phantom material. Some suggestions are presented for a different cavity theory for flat dosemeters dealing also with these phenomena. It describes the results to about the same degree of approximation as the Burlin theory, and fails to explain the observed energy dependence for electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiatt, JR; Rivard, MJ
2014-06-01
Purpose: The model S700 Axxent electronic brachytherapy source by Xoft was characterized in 2006 by Rivard et al. The source design was modified in 2006 to include a plastic centering insert at the source tip to more accurately position the anode. The objectives of the current study were to establish an accurate Monte Carlo source model for simulation purposes, to dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and to determine dose differences between the source with and without the centering insert. Methods: Design information from dissected sources and vendor-supplied CAD drawings were used to devisemore » the source model for radiation transport simulations of dose distributions in a water phantom. Collision kerma was estimated as a function of radial distance, r, and polar angle, θ, for determination of reference TG-43 dosimetry parameters. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.03% at r=1 cm and 0.08% at r=10 cm. Results: The dose rate distribution the transverse plane did not change beyond 2% between the 2006 model and the current study. While differences exceeding 15% were observed near the source distal tip, these diminished to within 2% for r>1.5 cm. Differences exceeding a factor of two were observed near θ=150° and in contact with the source, but diminished to within 20% at r=10 cm. Conclusions: Changes in source design influenced the overall dose rate and distribution by more than 2% over a third of the available solid angle external from the source. For clinical applications using balloons or applicators with tissue located within 5 cm from the source, dose differences exceeding 2% were observed only for θ>110°. This study carefully examined the current source geometry and presents a modern reference TG-43 dosimetry dataset for the model S700 source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassiliev, O
Purpose: Radial dose distribution D(r) is the dose as a function of lateral distance from the path of a heavy charged particle. Its main application is in modelling of biological effects of heavy ions, including applications to hadron therapy. It is the main physical parameter of a broad group of radiobiological models known as the amorphous track models. Our purpose was to calculate D(r) with Monte Carlo for carbon ions of therapeutic energies, find a simple formula for D(r) and fit it to the Monte Carlo data. Methods: All calculations were performed with Geant4-DNA code, for carbon ion energies frommore » 10 to 400 MeV/u (ranges in water: ∼ 0.4 mm to 27 cm). The spatial resolution of dose distribution in the lateral direction was 1 nm. Electron tracking cut off energy was 11 eV (ionization threshold). The maximum lateral distance considered was 10 µm. Over this distance, D(r) decreases with distance by eight orders of magnitude. Results: All calculated radial dose distributions had a similar shape dominated by the well-known inverse square dependence on the distance. Deviations from the inverse square law were observed close to the beam path (r<10 nm) and at large distances (r >1 µm). At small and large distances D(r) decreased, respectively, slower and faster than the inverse square of distance. A formula for D(r) consistent with this behavior was found and fitted to the Monte Carlo data. The accuracy of the fit was better than 10% for all distances considered. Conclusion: We have generated a set of radial dose distributions for carbon ions that covers the entire range of therapeutic energies, for distances from the ion path of up to 10 µm. The latter distance is sufficient for most applications because dose beyond 10 µm is extremely low.« less
NASA Astrophysics Data System (ADS)
Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.
2015-11-01
Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.
Parsai, E Ishmael; Zhang, Zhengdong; Feldmeier, John J
2009-01-01
The commercially available brachytherapy treatment-planning systems today, usually neglects the attenuation effect from stainless steel (SS) tube when Fletcher-Suit-Delclos (FSD) is used in treatment of cervical and endometrial cancers. This could lead to potential inaccuracies in computing dwell times and dose distribution. A more accurate analysis quantifying the level of attenuation for high-dose-rate (HDR) iridium 192 radionuclide ((192)Ir) source is presented through Monte Carlo simulation verified by measurement. In this investigation a general Monte Carlo N-Particles (MCNP) transport code was used to construct a typical geometry of FSD through simulation and compare the doses delivered to point A in Manchester System with and without the SS tubing. A quantitative assessment of inaccuracies in delivered dose vs. the computed dose is presented. In addition, this investigation expanded to examine the attenuation-corrected radial and anisotropy dose functions in a form parallel to the updated AAPM Task Group No. 43 Report (AAPM TG-43) formalism. This will delineate quantitatively the inaccuracies in dose distributions in three-dimensional space. The changes in dose deposition and distribution caused by increased attenuation coefficient resulted from presence of SS are quantified using MCNP Monte Carlo simulations in coupled photon/electron transport. The source geometry was that of the Vari Source wire model VS2000. The FSD was that of the Varian medical system. In this model, the bending angles of tandem and colpostats are 15 degrees and 120 degrees , respectively. We assigned 10 dwell positions to the tandem and 4 dwell positions to right and left colpostats or ovoids to represent a typical treatment case. Typical dose delivered to point A was determined according to Manchester dosimetry system. Based on our computations, the reduction of dose to point A was shown to be at least 3%. So this effect presented by SS-FSD systems on patient dose is of concern.
Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki
2016-09-01
Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\\bullet{\\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more penetration by nanoradiators. In conclusion, the combined use of a synchrotron X-ray microbeam-irradiated three-dimensional ROS gel and confocal laser scanning fluorescence microscopy provides a simple dosimetry method for track analysis of X-ray photoelectric nanoradiator radiation, suggesting extensive cellular damage with dose-enhancement beyond a single cell containing IONs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, G; Lee, H; Alqathami, M
Purpose: To demonstrate the capability of 3D radiochromic PRESAGE and Fricke-type dosimeters to measure the influence of magnetic fields on dose distribution, including the electron return effect (ERE), for MR-guided radiation therapy applications. Methods: Short cylindrical 3D dosimeters with PRESAGE and Fricke-type formulations were created in-house prior to irradiations in a 1.5T/7MV MR-linac. Each dosimeter was prepared with a concentric cylindrical air cavity with diameters of 1.5 cm and 2.5 cm, and the diameters of the dosimeters were 7.2 cm and 8.8 cm for PRESAGE and Fricke-type respectively. The dosimeters were irradiated within the bore of the MR-linac with themore » flat face of the dosimeters perpendicular to the magnetic field. Dosimeters were irradiated to approximately 9 Gy and 29 Gy to the center of dosimeters with a 15×15 cm{sup 2} field. The PRESAGE dosimeter was scanned using an optical-CT 2 hours post-irradiation; the Fricke-type dosimeter was immediately imaged with the MR component of the MR-linac post-irradiation. Results: Axial slices of the dose distributions show a clear demonstration of the dose enhancement due to the ERE above the cavity and the region of reduced dose below the cavity. The regions of increased and reduced dose are rotated with respect to the radiation beam axis due to the average directional change of the electrons. Measurements from line profiles show the dose enhanced up to ∼0.5 cm around the cavity by up to a factor of 1.3 and 1.4 for PRESAGE and Fricke-type dosimeters respectively. Conclusion: PRESAGE and Fricke-type dosimeters are able to qualitatively measure the ERE with good agreement with previously published simulation and 2D dosimetry demonstrations of the ERE. Further investigation of these 3D dosimeters as promising candidates for quality assurance of MR-guided radiation therapy systems is encouraged to assess changes in response and measurement accuracy due to the magnetic field.« less
Chetty, Indrin J; Curran, Bruce; Cygler, Joanna E; DeMarco, John J; Ezzell, Gary; Faddegon, Bruce A; Kawrakow, Iwan; Keall, Paul J; Liu, Helen; Ma, C M Charlie; Rogers, D W O; Seuntjens, Jan; Sheikh-Bagheri, Daryoush; Siebers, Jeffrey V
2007-12-01
The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for improved dose distributions to influence treatment outcomes, the long calculation times previously associated with MC simulation rendered this method impractical for routine clinical treatment planning. However, the development of faster codes optimized for radiotherapy calculations and improvements in computer processor technology have substantially reduced calculation times to, in some instances, within minutes on a single processor. These advances have motivated several major treatment planning system vendors to embark upon the path of MC techniques. Several commercial vendors have already released or are currently in the process of releasing MC algorithms for photon and/or electron beam treatment planning. Consequently, the accessibility and use of MC treatment planning algorithms may well become widespread in the radiotherapy community. With MC simulation, dose is computed stochastically using first principles; this method is therefore quite different from conventional dose algorithms. Issues such as statistical uncertainties, the use of variance reduction techniques, the ability to account for geometric details in the accelerator treatment head simulation, and other features, are all unique components of a MC treatment planning algorithm. Successful implementation by the clinical physicist of such a system will require an understanding of the basic principles of MC techniques. The purpose of this report, while providing education and review on the use of MC simulation in radiotherapy planning, is to set out, for both users and developers, the salient issues associated with clinical implementation and experimental verification of MC dose algorithms. As the MC method is an emerging technology, this report is not meant to be prescriptive. Rather, it is intended as a preliminary report to review the tenets of the MC method and to provide the framework upon which to build a comprehensive program for commissioning and routine quality assurance of MC-based treatment planning systems.
Moslehi, A; Raisali, G
2017-11-01
To determine the dose-equivalent of neutrons in an extended energy range, in the present work a multi-element thick gas electron multiplier-based microdosemeter made of PMMA (Perspex) walls of 10 mm in thickness is designed. Each cavity is filled with the propane-based tissue-equivalent (TE) gas simulating 1 µm of tissue. Also, a few weight fractions of 3He are assumed to be added to the TE gas. The dose-equivalents are determined for 11 neutron energies between thermal and 14 MeV using the lineal energy distributions calculated by Geant4 simulation toolkit and also the lineal energy-based quality factors. The results show that by adding 0.04% of 3He to the TE gas in each cavity, an energy-independent dose-equivalent response within 30% uncertainty around a median value of 0.91 in the above energy range is achieved. It is concluded that after its construction, the studied microdosemeter can be used to measure the dose-equivalent of neutrons, favorably. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Study of Dose Perturbation at Bone-Tissue Interfaces in Megavoltage Photon Beam Therapy.
NASA Astrophysics Data System (ADS)
Das, Indra Jeet
Dose perturbations during photon beam irradiation occur at interfaces between two dissimilar media due to the loss of electronic equilibrium. The human body contains many different types of interfaces between soft tissue and other media such as, air cavities, lungs, bones, and high atomic number (Z) materials. The dose to critical organs in the vicinity of high Z interfaces, is what leads to this project. This work describes the dose perturbation at high Z (from bone to lead) interfaces with soft tissue for clinically used megavoltage photon beams in the range of CO-60 gamma rays to 24 MV X-rays. It is divided into three main sections: (1) the dose outside the inhomogeneity in the direction of backscatter, (2) the dose inside the inhomogeneity, and (3) the dose on the photon transmission side of the inhomogeneity. Using different types of parallel plate ion chambers, TLD (powder and chip), and film as dosimeters, the dose perturbation is studied as a function of photon energy, thickness, width, and depth of inhomogeneity, distance from the interface and radiation field size. The concept of Bragg-Gray cavity theory is applied and verified for dose determination inside the inhomogeneity. A significant dose enhancement has been observed on the backscatter side for all photon energies. It is strongly dependent on the atomic number of the inhomogeneity and less dependent on the photon energy, thickness, depth, width, and field size. In the forward direction, a dose reduction occurs at the interface at beam energies lower than 10 MV, whereas a dose enhancement occurs for higher photon energies. The interface effect persists up to a few millimeters on the backscatter side but a distance equivalent to the secondary electron range for the particular photon beams in the forward direction. The dose perturbation is explained on the basis of production and transport of secondary electrons. Empirical functions are derived from the experimental data to predict the dose distribution in the vicinity of an inhomogeneity. These equations could form the basis of a treatment planning system that would accurately represent the dose both at the interface and surrounding tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Scott E., E-mail: sedavids@utmb.edu
Purpose: A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who usesmore » these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today’s modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. Methods: The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Results: Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data points tested. The model was capable of predicting the depth of the maximum dose within 1 mm. Anthropomorphic phantom benchmark testing of modulated and patterned MLCs treatment plans showed agreement to measurement within 3% in target regions using thermoluminescent dosimeters (TLD). Using radiochromic film normalized to TLD, a gamma criteria of 3% of maximum dose and 2 mm DTA was applied with a pass rate of least 85% in the high dose, high gradient, and low dose regions. Finally, recalculations of patient plans using DPM showed good agreement relative to a commercial TPS when comparing dose volume histograms and 2D dose distributions. Conclusions: A unique analytical source model coupled to the dose planning method Monte Carlo dose calculation code has been modified and validated using basic beam data and anthropomorphic phantom measurement. While this tool can be applied in general use for a particular linac model, specifically it was developed to provide a singular methodology to independently assess treatment plan dose distributions from those clinical institutions participating in National Cancer Institute trials.« less
Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim
2018-01-01
Explosion of the bombs in Hiroshima and Nagasaki corresponds to the only historical moment when atomic bombs were used against civilians. This event triggered countless investigations into the effects and dosimetry of ionizing radiation. However, none of the investigations has used the victims’ bones as dosimeter. Here, we assess samples of bones obtained from fatal victims of the explosion by Electron Spin Resonance (ESR). In 1973, one of the authors of the present study (SM) traveled to Japan and conducted a preliminary experiment on the victims’ bone samples. The idea was to use the paramagnetism induced in bone after irradiation to measure the radiation dose. Technological advances involved in the construction of spectrometers, better knowledge of the paramagnetic center, and improvement in signal processing techniques have allowed us to resume the investigation. We obtained a reconstructed dose of 9.46 ± 3.4 Gy from the jawbone, which was compatible with the dose distribution in different locations as measured in non-biological materials such as wall bricks and roof tiles. PMID:29408890
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, J; Jung, J; Yi, B
2015-06-15
Purpose: To test a method to reconstruct a four-dimensional (4D) dose distribution using the correlation of pre-calculated 4D electronic portal imaging device (EPID) images and measured cine-EPID images. Methods: 1. A phantom designed to simulate a tumor in lung (a polystyrene block with 3.0 cm diameter embedded in cork) was placed on a sinusoidally moving platform with 2 cm amplitude and 4 sec/cycle. Ten-phase 4D CT images were acquired for treatment planning and dose reconstruction. A 6MV photon beam was irradiated on the phantom with static (field size=5×8.5 cm{sup 2}) and dynamic fields (sliding windows, 10×10 cm{sup 2}, X1 MLCmore » closing in parallel with the tumor movement). 2. 4D and 3D doses were calculated forwardly on PTV (1 cm margin). 3. Dose images on EPID under the fields were calculated for 10 phases. 4. Cine EPID images were acquired during irradiation. 5. Their acquisition times were correlated to the phases of the phantom at which irradiation occurred by inter-comparing calculated “reference” EPID images with measured images (2D gamma comparison). For the dynamic beam, the tumor was hidden under MLCs during a portion of irradiation time; the correlation performed when the tumor was visible was extrapolated. 6. Dose for each phase was reconstructed on the 4D CT images and summed over all phases. The summation was compared with forwardly calculated 4D and 3D dose distributions. Monte Carlo methods were used for all calculations. Results: For the open and dynamic beams, the 4D reconstructed doses showed the pass rates of 92.7 % and 100 %, respectively, at the isocenter plane given 3% / 3 mm criteria. The better agreement of the dynamic beam was from its dose gradient which blurred the otherwise sharp difference between forward and reconstructed doses. This also contributed slightly better agreement in DVH of PTV. Conclusion: The feasibility of 4D reconstruction was demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Al-Azhar University Cairo; Jin, L
2014-06-01
Purpose: Modulated electron radiotherapy (MERT) has the potential to achieve better treatment outcome for shallow tumors such as those of breast and scalp. In a separate study with scalp lesions, MERT was compared to volumetric modulated arc therapy. Our results showed a reduction in the dose reaching the brain with MERT. However dose calculation accuracy and delivery efficiency challenges remain. Thus in the current study we proceed to add more cases to demonstrate MERT beneficial outcome and its delivery accuracy using an electron specific multileaf collimator (eMLC). Methods: We have used the MCBEAM code for treatment head simulation and formore » generating phase space files to be used as radiation source input for our Monte Carlo based treatment planning system (MC TPS). MCPLAN code is used for calculation of patient specific dose deposition coefficient and for final MERT plan dose calculation. An in-house developed optimization code is used for the optimization process. MERT plans were generated for real patients and head and neck phantom. Film was used for dosimetric verification. The film was cut following the contour of the curved phantom surface and then sealed with black masking tape. In the measurement, the sealed film packet was sandwiched between two adjacent slabs of the head and neck phantom. The measured 2D dose distribution was then compared with calculations. Results: The eMLC allows effective treatment of scalps with multi-lesions spreading around the patient head, which was usually difficult to plan or very time consuming with conventional applicators. MERT continues to show better reduction in the brain dose. The dosimetric measurements showed slight discrepancy, which was attributed to the film setup. Conclusion: MERT can improve treatment plan quality for patients with scalp cancers. Our in-house MC TPS is capable of performing treatment planning and accurate dose calculation for MERT using the eMLC.« less
NASA Astrophysics Data System (ADS)
Boudreau, C.; Heath, E.; Seuntjens, J.; Ballivy, O.; Parker, W.
2005-03-01
The PEREGRINE Monte Carlo dose-calculation system (North American Scientific, Cranberry Township, PA) is the first commercially available Monte Carlo dose-calculation code intended specifically for intensity modulated radiotherapy (IMRT) treatment planning and quality assurance. In order to assess the impact of Monte Carlo based dose calculations for IMRT clinical cases, dose distributions for 11 head and neck patients were evaluated using both PEREGRINE and the CORVUS (North American Scientific, Cranberry Township, PA) finite size pencil beam (FSPB) algorithm with equivalent path-length (EPL) inhomogeneity correction. For the target volumes, PEREGRINE calculations predict, on average, a less than 2% difference in the calculated mean and maximum doses to the gross tumour volume (GTV) and clinical target volume (CTV). An average 16% ± 4% and 12% ± 2% reduction in the volume covered by the prescription isodose line was observed for the GTV and CTV, respectively. Overall, no significant differences were noted in the doses to the mandible and spinal cord. For the parotid glands, PEREGRINE predicted a 6% ± 1% increase in the volume of tissue receiving a dose greater than 25 Gy and an increase of 4% ± 1% in the mean dose. Similar results were noted for the brainstem where PEREGRINE predicted a 6% ± 2% increase in the mean dose. The observed differences between the PEREGRINE and CORVUS calculated dose distributions are attributed to secondary electron fluence perturbations, which are not modelled by the EPL correction, issues of organ outlining, particularly in the vicinity of air cavities, and differences in dose reporting (dose to water versus dose to tissue type).
Wang, Jinghui; Trovati, Stefania; Borchard, Philipp M; Loo, Billy W; Maxim, Peter G; Fahrig, Rebecca
2017-12-01
To study the impact of target geometrical and linac operational parameters, such as target material and thickness, electron beam size, repetition rate, and mean current on the ability of the radiotherapy treatment head to deliver high-dose-rate x-ray irradiation in the context of novel linear accelerators capable of higher repetition rates/duty cycle than conventional clinical linacs. The depth dose in a water phantom without a flattening filter and heat deposition in an x-ray target by 10 MeV pulsed electron beams were calculated using the Monte-Carlo code MCNPX, and the transient temperature behavior of the target was simulated by ANSYS. Several parameters that affect both the dose distribution and temperature behavior were investigated. The target was tungsten with a thickness ranging from 0 to 3 mm and a copper heat remover layer. An electron beam with full width at half maximum (FWHM) between 0 and3 mm and mean current of 0.05-2 mA was used as the primary beam at repetition rates of 100, 200, 400, and 800 Hz. For a 10 MeV electron beam with FWHM of 1 mm, pulse length of 5 μs, by using a thin tungsten target with thickness of 0.2 mm instead of 1 mm, and by employing a high repetition rate of 800 Hz instead of 100 Hz, the maximum dose rate delivered can increase two times from 0.57 to 1.16 Gy/s. In this simple model, the limiting factor on dose rate is the copper heat remover's softening temperature, which was considered to be 500°C in our study. A high dose rate can be obtained by employing thin targets together with high repetition rate electron beams enabled by novel linac designs, whereas the benefit of thin targets is marginal at conventional repetition rates. Next generation linacs used to increase dose rate need different target designs compared to conventional linacs. © 2017 American Association of Physicists in Medicine.
Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F
2016-07-08
Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.
O'Shea, Tuathan P; Foley, Mark J; Faddegon, Bruce A
2011-06-01
Monte Carlo (MC) simulation can be used for accurate electron beam treatment planning and modeling. Measurement of large electron fields, with the applicator removed and secondary collimator wide open, has been shown to provide accurate simulation parameters, including asymmetry in the measured dose, for the full range of clinical field sizes and patient positions. Recently, disassembly of the treatment head of a linear accelerator has been used to refine the simulation of the electron beam, setting tightly measured constraints on source and geometry parameters used in simulation. The simulation did not explicitly include the known deflection of the electron beam by a fringe magnetic field from the bending magnet, which extended into the treatment head. Instead, the secondary scattering foil and monitor chamber were unrealistically laterally offset to account for the beam deflection. This work is focused on accounting for this fringe magnetic field in treatment head simulation. The magnetic field below the exit window of a Siemens Oncor linear accelerator was measured with a Tesla-meter from 0 to 12 cm from the exit window and 1-3 cm off-axis. Treatment head simulation was performed with the EGSnrc/BEAMnrc code, modified to incorporate the effect of the magnetic field on charged particle transport. Simulations were used to analyze the sensitivity of dose profiles to various sources of asymmetry in the treatment head. This included the lateral spot offset and beam angle at the exit window, the fringe magnetic field and independent lateral offsets of the secondary scattering foil and electron monitor chamber. Simulation parameters were selected within the limits imposed by measurement uncertainties. Calculated dose distributions were then compared with those measured in water. The magnetic field was a maximum at the exit window, increasing from 0.006 T at 6 MeV to 0.020 T at 21 MeV and dropping to approximately 5% of the maximum at the secondary scattering foil. It was up to three times higher in the bending plane, away from the electron gun, and symmetric within measurement uncertainty in the transverse plane. Simulations showed the magnetic field resulted in an offset of the electron beam of 0.80 cm (mean) at the machine isocenter for the exit window only configuration. The fringe field resulted in a 3.5%-7.6% symmetry and 0.25-0.35 cm offset of the clinical beam R(max) profiles. With the magnetic field included in simulations, a single (realistic) position of the secondary scattering foil and monitor chamber was selected. Measured and simulated dose profiles showed agreement to an average of 2.5%/0.16 cm (maximum: 3%/0.2 cm), which is a better match than previously achieved without incorporating the magnetic field in the simulation. The undulations from the 3 stepped layers of the secondary scattering foil, evident in the measured profiles of the higher energy beams, are now aligned with those in the simulated beam. The simulated fringe magnetic field had negligible effect on the central axis depth dose curves and cross-plane dose profiles. The fringe magnetic field is a significant contributor to the electron beam in-plane asymmetry. With the magnetic field included explicitly in the simulation, realistic monitor chamber and secondary scattering foil positions have been achieved, and the calculated fluence and dose distributions are more accurate.
Characteristics of a p-Si detector in high energy electron fields.
Rikner, G
1985-01-01
Comparison of depth ionization distributions from a silicon semiconductor detector and depth dose curves from a plane parallel ionization chamber show that a semiconductor detector of p-type is well suited for relative electron dosimetry in the energy range of 6 to 20 MeV in Ep,0. Maximum deviations of the order of 1.5 per cent and of 1 mm were obtained down to a phantom depth of about 1 mm. The directional dependence of the detector was about 4 per cent.
NASA Technical Reports Server (NTRS)
Plante, I.; Cucinotta, F. A.
2010-01-01
INTRODUCTION: The radiation track structure is of crucial importance to understand radiation damage to molecules and subsequent biological effects. Of a particular importance in radiobiology is the induction of double-strand breaks (DSBs) by ionizing radiation, which are caused by clusters of lesions in DNA, and oxidative damage to cellular constituents leading to aberrant signaling cascades. DSB can be visualized within cell nuclei with gamma-H2AX experiments. MATERIAL AND METHODS: In DSB induction models, the DSB probability is usually calculated by the local dose obtained from a radial dose profile of HZE tracks. In this work, the local dose imparted by HZE ions is calculated directly from the 3D Monte-Carlo simulation code RITRACKS. A cubic volume of 5 micron edge (Figure 1) is irradiated by a (Fe26+)-56 ion of 1 GeV/amu (LET approx.150 keV/micron) and by a fluence of 450 H+ ions, 300 MeV/amu (LET approx. 0.3 keV/micron). In both cases, the dose deposited in the volume is approx.1 Gy. The dose is then calculated into each 3D pixels (voxels) of 20 nm edge and visualized in 3D. RESULTS AND DISCUSSION: The dose is deposited uniformly in the volume by the H+ ions. The voxels which receive a high dose (orange) corresponds to electron track ends. The dose is deposited differently by the 56Fe26+ ion. Very high dose (red) is deposited in voxels with direct ion traversal. Voxels with electron track ends (orange) are also found distributed around the path of the track. In both cases, the appearance of the dose distribution looks very similar to DSBs seen in gammaH2AX experiments, particularly when the visualization threshold is applied. CONCLUSION: The refinement of the dose calculation to the nanometer scale has revealed important differences in the energy deposition between high- and low-LET ions. Voxels of very high dose are only found in the path of high-LET ions. Interestingly, experiments have shown that DSB induced by high-LET radiation are more difficult to repair. Therefore, this new approach may be useful to understand the nature of DSB and oxidative damage induced by ionizing radiation.
Zink, F E; McCollough, C H
1994-08-01
The unique geometry of electron-beam CT (EBCT) scanners produces radiation dose profiles with widths which can be considerably different from the corresponding nominal scan width. Additionally, EBCT scanners produce both complex (multiple-slice) and narrow (3 mm) radiation profiles. This work describes the measurement of the axial dose distribution from EBCT within a scattering phantom using film dosimetry methods, which offer increased convenience and spatial resolution compared to thermoluminescent dosimetry (TLD) techniques. Therapy localization film was cut into 8 x 220 mm strips and placed within specially constructed light-tight holders for placement within the cavities of a CT Dose Index (CTDI) phantom. The film was calibrated using a conventional overhead x-ray tube with spectral characteristics matched to the EBCT scanner (130 kVp, 10 mm A1 HVL). The films were digitized at five samples per mm and calibrated dose profiles plotted as a function of z-axis position. Errors due to angle-of-incidence and beam hardening were estimated to be less than 5% and 10%, respectively. The integral exposure under film dose profiles agreed with ion-chamber measurements to within 15%. Exposures measured along the radiation profile differed from TLD measurements by an average of 5%. The film technique provided acceptable accuracy and convenience in comparison to conventional TLD methods, and allowed high spatial-resolution measurement of EBCT radiation dose profiles.
NASA Astrophysics Data System (ADS)
Yeh, Peter C. Y.; Lee, C. C.; Chao, T. C.; Tung, C. J.
2017-11-01
Intensity-modulated radiation therapy is an effective treatment modality for the nasopharyngeal carcinoma. One important aspect of this cancer treatment is the need to have an accurate dose algorithm dealing with the complex air/bone/tissue interface in the head-neck region to achieve the cure without radiation-induced toxicities. The Acuros XB algorithm explicitly solves the linear Boltzmann transport equation in voxelized volumes to account for the tissue heterogeneities such as lungs, bone, air, and soft tissues in the treatment field receiving radiotherapy. With the single beam setup in phantoms, this algorithm has already been demonstrated to achieve the comparable accuracy with Monte Carlo simulations. In the present study, five nasopharyngeal carcinoma patients treated with the intensity-modulated radiation therapy were examined for their dose distributions calculated using the Acuros XB in the planning target volume and the organ-at-risk. Corresponding results of Monte Carlo simulations were computed from the electronic portal image data and the BEAMnrc/DOSXYZnrc code. Analysis of dose distributions in terms of the clinical indices indicated that the Acuros XB was in comparable accuracy with Monte Carlo simulations and better than the anisotropic analytical algorithm for dose calculations in real patients.
Electronic noise in CT detectors: Impact on image noise and artifacts.
Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H
2013-10-01
The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Zhang, W; Lu, J
Purpose: To investigate the accuracy and feasibility of dose calculations using kilovoltage cone beam computed tomography in cervical cancer radiotherapy using a correction algorithm. Methods: The Hounsfield units (HU) and electron density (HU-density) curve was obtained for both planning CT (pCT) and kilovoltage cone beam CT (CBCT) using a CIRS-062 calibration phantom. The pCT and kV-CBCT images have different HU values, and if the HU-density curve of CBCT was directly used to calculate dose in CBCT images may have a deviation on dose distribution. It is necessary to normalize the different HU values between pCT and CBCT. A HU correctionmore » algorithm was used for CBCT images (cCBCT). Fifteen intensity-modulated radiation therapy (IMRT) plans of cervical cancer were chosen, and the plans were transferred to the pCT and cCBCT data sets without any changes for dose calculations. Phantom and patient studies were carried out. The dose differences and dose distributions were compared between cCBCT plan and pCT plan. Results: The HU number of CBCT was measured by several times, and the maximum change was less than 2%. To compare with pCT, the CBCT and cCBCT has a discrepancy, the dose differences in CBCT and cCBCT images were 2.48%±0.65% (range: 1.3%∼3.8%) and 0.48%±0.21% (range: 0.1%∼0.82%) for phantom study, respectively. For dose calculation in patient images, the dose differences were 2.25%±0.43% (range: 1.4%∼3.4%) and 0.63%±0.35% (range: 0.13%∼0.97%), respectively. And for the dose distributions, the passing rate of cCBCT was higher than the CBCTs. Conclusion: The CBCT image for dose calculation is feasible in cervical cancer radiotherapy, and the correction algorithm offers acceptable accuracy. It will become a useful tool for adaptive radiation therapy.« less
Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy
NASA Astrophysics Data System (ADS)
Yang, C.; Bromma, Kyle; Chithrani, B. D.
2018-02-01
Recent developments in nanotechnology has provided new tools for cancer therapy and diagnosis. Among other nanomaterial systems, gold nanoparticles are being used as radiation dose enhancers and anticancer drug carriers in cancer therapy. Fate of gold nanoparticles within biological tissues can be probed using techniques such as TEM (transmission electron microscopy) and SEM (Scanning Electron Microscopy) due to their high electron density. We have shown for the first time that cancer drug loaded gold nanoparticles can reach the nucleus (or the brain) of cancer cells enhancing the therapeutic effect dramatically. Nucleus of the cancer cells are the most desirable target in cancer therapy. In chemotherapy, smart delivery of highly toxic anticancer drugs through packaging using nanoparticles will reduce the side effects and improve the quality and care of cancer patients. In radiation therapy, use of gold nanoparticles as radiation dose enhancer is very promising due to enhanced localized dose within the cancer tissue. Recent advancement in nanomaterial characterization techniques will facilitate mapping of nanomaterial distribution within biological specimens to correlate the radiobiological effects due to treatment. Hence, gold nanoparticle mediated combined chemoradiation would provide promising tools to achieve personalized and tailored cancer treatments in the near future.
NASA Astrophysics Data System (ADS)
Aleksandrova, P. V.; Gueorguiev, V. K.; Ivanov, Tz. E.; Kaschieva, S.
2006-08-01
The influence of high energy electron (23 MeV) irradiation on the electrical characteristics of p-channel polysilicon thin film transistors (PSTFTs) was studied. The channel 220 nm thick LPCVD (low pressure chemical vapor deposition) deposited polysilicon layer was phosphorus doped by ion implantation. A 45 nm thick, thermally grown, SiO2 layer served as gate dielectric. A self-alignment technology for boron doping of the source and drain regions was used. 200 nm thick polysilicon film was deposited as a gate electrode. The obtained p-channel PSTFTs were irradiated with different high energy electron doses. Leakage currents through the gate oxide and transfer characteristics of the transistors were measured. A software model describing the field enhancement and the non-uniform current distribution at textured polysilicon/oxide interface was developed. In order to assess the irradiation-stimulated changes of gate oxide parameters the gate oxide tunneling conduction and transistor characteristics were studied. At MeV dose of 6×1013 el/cm2, a negligible degradation of the transistor properties was found. A significant deterioration of the electrical properties of PSTFTs at MeV irradiation dose of 3×1014 el/cm2 was observed.
Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films
NASA Astrophysics Data System (ADS)
Deshpande, N. G.; Gudage, Y. G.; Ghosh, A.; Vyas, J. C.; Singh, F.; Tripathi, A.; Sharma, Ramphal
2008-02-01
We have examined the effect of swift heavy ions using 100 MeV Au8+ ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 × 10-4 Ω cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.
Nicolini, G; Abraham, S; Fogliata, A; Jordaan, A; Clivio, A; Vanetti, E; Cozzi, L
2013-03-01
To evaluate the use of volumetric-modulated arc therapy [VMAT, RapidArc® (RA); Varian Medical Systems, Palo Alto, CA] for the treatment of cutaneous Kaposi's sarcoma (KS) of lower extremities with adequate target coverage and high bone sparing, and to compare VMAT with electron beam therapy. 10 patients were planned with either RA or electron beams. The dose was prescribed to 30 Gy, 10 fractions, to mean the planning target volume (PTV), and significant maximum dose to bone was limited to 30 Gy. Plans were designed for 6-MV photon beams for RA and 6 MeV for electrons. Dose distributions were computed with AcurosXB® (Varian Medical Systems) for photons and with a Monte Carlo algorithm for electrons. V(90%) was 97.3±1.2 for RA plans and 78.2±2.6 for electrons; similarly, V(107%) was 2.5±2.2 and 37.7±3.4, respectively. RA met coverage criteria. Concerning bone sparing, D(2%) was 29.6±1.1 for RA and 31.0±2.4 for electrons. Although acceptable for bone involvement, pronounced target coverage violations were obtained for electron plans. Monitor units were similar for electrons and RA, although for the latter they increased when superior bone sparing was imposed. Delivery times were 12.1±4.0 min for electrons and 4.8±1.3 min for the most modulated RA plans. High plan quality was shown for KS in the lower extremities using VMAT, and this might simplify their management in comparison with the more conventional usage of electrons, particularly in institutes with limited staff resources and heavy workloads. VMAT is also dosimetrically extremely advantageous in a typology of treatments where electron beam therapy is mainly considered to be effective owing to the limited penetration of the beams.
Dynamic scan control in STEM: Spiral scans
Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.; ...
2016-06-13
Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less
Dynamic scan control in STEM: Spiral scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.
Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less
Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code
NASA Astrophysics Data System (ADS)
Peri, Eyal; Orion, Itzhak
2017-09-01
High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.
Study of the impact of artificial articulations on the dose distribution under medical irradiation
NASA Astrophysics Data System (ADS)
Buffard, E.; Gschwind, R.; Makovicka, L.; Martin, E.; Meunier, C.; David, C.
2005-02-01
Perturbations due to the presence of high density heterogeneities in the body are not correctly taken into account in the Treatment Planning Systems currently available for external radiotherapy. For this reason, the accuracy of the dose distribution calculations has to be improved by using Monte Carlo simulations. In a previous study, we established a theoretical model by using the Monte Carlo code EGSnrc [I. Kawrakow, D.W.O. Rogers, The EGSnrc code system: MC simulation of electron and photon transport. Technical Report PIRS-701, NRCC, Ottawa, Canada, 2000] in order to obtain the dose distributions around simple heterogeneities. These simulations were then validated by experimental results obtained with thermoluminescent dosemeters and an ionisation chamber. The influence of samples composed of hip prostheses materials (titanium alloy and steel) and a substitute of bone were notably studied. A more complex model was then developed with the Monte Carlo code BEAMnrc [D.W.O. Rogers, C.M. MA, G.X. Ding, B. Walters, D. Sheikh-Bagheri, G.G. Zhang, BEAMnrc Users Manual. NRC Report PPIRS 509(a) rev F, 2001] in order to take into account the hip prosthesis geometry. The simulation results were compared to experimental measurements performed in a water phantom, in the case of a standard treatment of a pelvic cancer for one of the beams passing through the implant. These results have shown the great influence of the prostheses on the dose distribution.
NASA Astrophysics Data System (ADS)
Alexander, Andrew William
Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and optimization algorithms are demonstrated. We investigated the clinical significance of MERT on spinal irradiation, breast boost irradiation, and a head and neck sarcoma cancer site using several parameters to analyze the treatment plans. Finally, we investigated the idea of mixed beam photon and electron treatment planning. Photon optimization treatment planning tools were included within the MERT planning toolkit for the purpose of mixed beam optimization. In conclusion, this thesis work has resulted in the development of an advanced framework for photon and electron Monte Carlo treatment planning studies and the development of an inverse planning system for photon, electron or mixed beam radiotherapy (MBRT). The justification and validation of this work is found within the results of the planning studies, which have demonstrated dosimetric advantages to using MERT or MBRT in comparison to clinical treatment alternatives.
Electron linear accelerator system for natural rubber vulcanization
NASA Astrophysics Data System (ADS)
Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.
2017-09-01
Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.
NASA Technical Reports Server (NTRS)
Chang, C. K.; Kamaratos, E.
1982-01-01
Tetraglycidyl 4,4'-diamino diphenyl methane epoxy cured with diamino diphenyl sulfone was used as a model compound. Computer programs were developed to calculate (1) energy deposition coefficients of protons and electrons of various energies at different depths of the material; (2) ranges of protons and electrons of various energies in the material; and (3) cumulative doses received by the composite in different geometric shapes placed in orbits of various altitudes and inclination. A preliminary study on accelerated testing was conducted and it was found that an elliptical equitorial orbit of 300 km perigee by 2750 km apogee can accumulate, in 2 years or less, enough radiation dose comparable to geosynchronous environment for 30 years. The local plasma model calculated the mean excitation energies for covalent and ionic compounds. Longitudinal and lateral distributions of excited species by electron and proton impact as well as the probability of overlapping of two tracks due to two charged particles within various time intervals were studied.
2D dosimetry in a proton beam with a scintillating GEM detector
NASA Astrophysics Data System (ADS)
Seravalli, E.; de Boer, M. R.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.
2009-06-01
A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for pre-treatment verification of dose distributions in particle therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two gas electron multiplier (GEM) structures are mounted (Seravalli et al 2008b Med. Phys. Biol. 53 4651-65). Photons emitted by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD camera system. The intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the characterization of the scintillating GEM detector in terms of those properties that are of particular importance in relative dose measurements, e.g. response reproducibility, dose dependence, dose rate dependence, spatial and time response, field size dependence, response uniformity. The experiments were performed in a 150 MeV proton beam. We found that the detector response is very stable for measurements performed in succession (σ = 0.6%) and its response reproducibility over 2 days is about 5%. The detector response was found to be linear with the dose in the range 0.05-19 Gy. No dose rate effects were observed between 1 and 16 Gy min-1 at the shallow depth of a water phantom and 2 and 38 Gy min-1 at the Bragg peak depth. No field size effects were observed in the range 120-3850 mm2. A signal rise and fall time of 2 µs was recorded and a spatial response of <=1 mm was measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, D; Kry, S; Salehpour, M
Purpose: Patient-specific tissue equivalent compensators can be used for post-mastectomy radiation therapy (PMRT) to achieve homogenous dose distributions with single-field treatments. However, current fabrication methods are time consuming and expensive. 3D-printing technology could overcome these limitations. The purposes of this study were to [1] evaluate materials for 3D-printed compensators [2] design and print a compensator to achieve a uniform thickness to a clinical target volume (CTV), and [3] demonstrate that a single-field electron compensator plan is a clinically feasible treatment option for PMRT. Methods: Blocks were printed with three materials; print accuracy, density, Hounsfield units (HU), and percent depth dosesmore » (PDD) were evaluated. For a CT scan of an anthropomorphic phantom, we used a ray-tracing method to design a compensator that achieved uniform thickness from compensator surface to CTV. The compensator was printed with flexible tissue equivalent material whose physical and radiological properties were most similar to soft tissue. A single-field electron compensator plan was designed and compared with two standard-of-care techniques. The compensator plan was validated with thermoluminescent dosimeter (TLD) measurements. Results: We identified an appropriate material for 3D-printed compensators that had high print accuracy (99.6%) and was similar to soft tissue; density was 1.04, HU was - 45 ± 43, and PDD curves agreed with clinical curves within 3 mm. We designed and printed a compensator that conformed well to the phantom surface and created a uniform thickness to the CTV. In-house fabrication was simple and inexpensive (<$75). Compared with the two standard plans, the compensator plan resulted in overall more homogeneous dose distributions and performed similarly in terms of lung/heart doses and 90% isodose coverage of the CTV. TLD measurements agreed well with planned doses (within 5 %). Conclusions: We have demonstrated that 3D-printed compensators make single-field electron therapy a clinically feasible treatment option for PMRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, H; Qi, P; Yu, N
Purpose: To implement and validate a method of using electronic portal image device (EPID) for pre-treatment quality assurance (QA) of volumetric modulated arc therapy (VMAT) plans using flattering filter free (FFF) beams for stereotactic body radiotherapy (SBRT). Methods: On Varian Edge with 6MV FFF beam, open field (from 2×2 cm to 20×20 cm) EPID images were acquired with 200 monitor unit (MU) at the image device to radiation source distance of 150cm. With 10×10 open field and calibration unit (CU) provided by vendor to EPID image pixel, a dose conversion factor was determined by dividing the center dose calculated frommore » the treatment planning system (TPS) to the corresponding CU readout on the image. Water phantom measured beam profile and the output factors for various field sizes were further correlated to those of EPID images. The dose conversion factor and correction factors were then used for converting the portal images to the planner dose distributions of clinical fields. A total of 28 VMAT fields of 14 SBRT plans (8 lung, 2 prostate, 2 liver and 2 spine) were measured. With 10% low threshold cutoff, the delivered dose distributions were compared to the reference doses calculated in water phantom from the TPS. A gamma index analysis was performed for the comparison in percentage dose difference/distance-to-agreement specifications. Results: The EPID device has a linear response to the open fields with increasing MU. For the clinical fields, the gamma indices between the converted EPID dose distributions and the TPS calculated 2D dose distributions were 98.7%±1.1%, 94.0%±3.4% and 70.3%±7.7% for the criteria of 3%/3mm, 2%/2mm and 1%/1mm, respectively. Conclusion: Using a portal image device, a high resolution and high accuracy portal dosimerty was achieved for pre-treatment QA verification for SBRT VMAT plans with FFF beams.« less
Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...
2016-02-01
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less
The use of normoxic polymer gel for measuring dose distributions of 1, 4 and 30 mm cones
NASA Astrophysics Data System (ADS)
Lee, C. C.; Wu, J. F.; Chang, K. P.; Chu, C. H.; Wey, S. P.; Liu, H. L.; Tung, C. J.; Wu, S. W.; Chao, T. C.
2014-11-01
This study demonstrates the use of normoxic polymer gel for measuring dose distributions of small fields that lack lateral electronic equilibrium. Two different types of normoxic polymer gel, MAGAT and PAGAT, are studied in a larger field (10 cm×10 cm) and 1, 4 and 30 mm cones to obtain cone factors, dose profiles and percentage depth doses. These results were then compared to KODAK XV film measurements and BEAMnrc Monte Carlo simulations. The results show that the sensitivity of PAGAT gel is 0.090±0.074 s-1 Gy-1, which may not be suitable for small-field dosimetry with a 0.3 mm resolution scanned using a 3 T MR imager in a dose range lower than 2.5 Gy. There are good agreements between cone factors estimated using KODAK XV film and MAGAT gel. In a dose profile comparison, good dose agreement among MAGAT gel, XV film and MC simulation can be seen in the central area for a 30 mm cone. In penumbra, the distance to agreement is at most 1.2 mm (4 pixel), and less than 0.3 mm (1 pixel) for 4 and 1 mm cones. In a percentage depth dose comparison, there were good agreements between MAGAT and MC up to a depth of 8 cm. Possible factors for gel uncertainty such as MRI magnetic field inhomogeneity and temperature were also investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey
2015-05-15
Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphicalmore » user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric plan, OAR doses were up to 70% lower and the integral dose was 33% lower for VHEE compared to 6 MV VMAT. Additionally, VHEE conformity indices (CI{sub 100} = 1.09 and CI{sub 50} = 4.07) were better than VMAT conformity indices (CI{sub 100} = 1.30 and CI{sub 50} = 6.81). The 100 MeV VHEE lung plan resulted in mean dose decrease to all OARs by up to 27% for the same target coverage compared to the clinical 6 MV flattening filter-free (FFF) VMAT plan. The 100 MeV prostate plan resulted in 3% mean dose increase to the penile bulb and the urethra, but all other OAR mean doses were lower compared to the 15 MV VMAT plan. The lung case CI{sub 100} and CI{sub 50} conformity indices were 3% and 8% lower, respectively, in the VHEE plan compared to the VMAT plan. The prostate case CI{sub 100} and CI{sub 50} conformity indices were 1% higher and 8% lower, respectively, in the VHEE plan compared to the VMAT plan. Conclusions: The authors have developed a treatment planning workflow for MC dose calculation of pencil beams and optimization for treatment planning of VHEE radiotherapy. The authors have demonstrated that VHEE plans resulted in similar or superior dose distributions for pediatric, lung, and prostate cases compared to clinical VMAT plans.« less
TH-AB-BRB-04: Quality Assurance for Advanced Digital Linac Implementations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, V.
2016-06-15
Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less
TH-AB-BRB-00: Research Opportunities with Digital Linear Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2016-06-15
Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less
Some computer graphical user interfaces in radiation therapy.
Chow, James C L
2016-03-28
In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations.
NASA Astrophysics Data System (ADS)
Gauduel, Y. A.
2017-02-01
The initial distribution of energy deposition triggered by the interaction of ionizing radiations (far UV and X rays, electron, proton and accelerated ions) with molecular targets or integrated biological systems is often decisive for the spatio-temporal behavior of radiation effects that take place on several orders of magnitude. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances on primary radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to laser-driven relativistic particles acceleration. Recent advances of powerful TW laser sources (~ 1019 Wcm-2) and laser-plasma interactions providing ultrashort relativistic particle beams in the energy domain 2.5-150 MeV open exciting opportunities for the development of high-energy radiation femtochemistry (HERF). Early radiation damages being dependent on the survival probability of secondary electrons and radial distribution of short-lived radicals inside ionization clusters, a thorough knowledge of these processes involves the real-time probing of primary events in the temporal range 10-14-10-11 s. In the framework of a closed synergy between low-energy radiation femtochemistry (LERF) and the emerging domain of HERF, the paper focuses on early phenomena that occur in the prethermal regime of low-energy secondary electrons, considering very short-lived quantum effects in aqueous environments. A high dose-rate delivered by femtosecond electron beam (~ 1011-1013 Gy s-1) can be used to investigate early radiation processes in native ionization tracks, down to 10-12 s and 10-9 m. We explain how this breakthrough favours the innovating development of real-time nanodosimetry in biologically relevant environments and open new perspectives for spatio-temporal radiation biophysics. The emerging domain of HERF would provide guidance for understanding the specific bioeffects of ultrashort particle bunches. This domain represents also a prerequisite for the control of in vitro and in vivo irradiation at ultrahigh dose-rates or the investigation of ultrafast dose-fractionating phenomena.
NASA Astrophysics Data System (ADS)
Lee, Chang Yeol; Kim, Woo Chul; Kim, Hun Jeong; Huh, Hyun Do; Park, Seungwoo; Choi, Sang Hyoun; Kim, Kum Bae; Min, Chul Kee; Kim, Seong Hoon; Shin, Dong Oh
2017-02-01
The purpose of this study is to perform a comparison and on analysis of measured dose factor values by using various commercially available high-energy electron beam detectors to measure dose profiles and energy property data. By analyzing the high-energy electron beam data from each detector, we determined the optimal detector for measuring electron beams in clinical applications. The dose linearity, dose-rate dependence, percentage depth dose, and dose profile of each detector were measured to evaluate the dosimetry characteristics of high-energy electron beams. The dose profile and the energy characteristics of high-energy electron beams were found to be different when measured by different detectors. Through comparison with other detectors based on the analyzed data, the microdiamond detector was found to have outstanding dose linearity, a low dose-rate dependency, and a small effective volume. Thus, this detector has outstanding spatial resolution and is the optimal detector for measuring electron beams. Radiation therapy results can be improved and related medical accidents can be prevented by using the procedure developed in this research in clinical practice for all beam detectors when measuring the electron beam dose.
Robatjazi, Mostafa; Baghani, Hamid Reza; Mahdavic, Seied Rabi; Felici, Giuseppe
2018-05-01
A shielding disk is used for IOERT procedures to absorb radiation behind the target and protect underlying healthy tissues. Setup variation of shielding disk can affect the corresponding in-vivo dose distribution. In this study, the changes of dosimetric parameters due to the disk setup variations is evaluated using EGSnrc Monte Carlo (MC) code. The results can help treatment team to decide about the level of accuracy in the setup procedure and delivered dose to the target volume during IOERT. Copyright © 2018 Elsevier Ltd. All rights reserved.
Song, Yanbo; Zhang, Miao; Gan, Lu; Chen, Xiaopin; Zhang, Tao; Yue, Ning J; Goyal, Sharad; Haffty, Bruce; Ren, Guosheng
2016-05-31
Electronic tissue compensation (eComp) is an external beam planning technique allowing user to manually generate dynamic beam fluence to produce more uniform or modulated dose distribution. In this study, we compared the effectiveness between conventional three-dimensional conformal radiotherapy (3DCRT) and eComp for whole breast irradiation. 3DCRT and eComp planning techniques were used to generate treatment plans for 60 whole breast patients, respectively. The planning goal was to cover 95% of the planning target volume (PTV) with 95% of the prescription dose while minimizing doses to lung, heart, and skin. Comparing to 3DCRT plans, on the average, eComp treatment planning process was about 7 minutes longer, but resulted in lower lung V20Gy, lower mean skin dose, with similar heart dose. The benefits were more pronounced for larger breast patients. Statistical analyses were performed between critical organ doses and patient anatomic features, i.e., central lung distance (CLD), maximal heart distance (MHD), maximal heart length (MHL) and breast separation (BS) to explore any correlations and planning method selection. It was found that to keep the lung V20Gy lower than 20% and mean skin dose lower than 85% of the prescription dose, eComp was the preferred method for patients with more than 2.3 cm CLD or larger than 22.5 cm BS. The study results may be useful in providing a handy criterion in clinical practice allowing us to easily choose between different planning techniques to satisfy the planning goal with minimal increase in complexity and cost.
A sub-sampled approach to extremely low-dose STEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, A.; Luzi, L.; Yang, H.
The inpainting of randomly sub-sampled images acquired by scanning transmission electron microscopy (STEM) is an attractive method for imaging under low-dose conditions (≤ 1 e -Å 2) without changing either the operation of the microscope or the physics of the imaging process. We show that 1) adaptive sub-sampling increases acquisition speed, resolution, and sensitivity; and 2) random (non-adaptive) sub-sampling is equivalent, but faster than, traditional low-dose techniques. Adaptive sub-sampling opens numerous possibilities for the analysis of beam sensitive materials and in-situ dynamic processes at the resolution limit of the aberration corrected microscope and is demonstrated here for the analysis ofmore » the node distribution in metal-organic frameworks (MOFs).« less
Bockrath, Richard; Person, Stanley; Funk, Fred
1968-01-01
Transmutation of the radioisotope tritium occurs with the production of a low energy electron, having a range in biological material similar to the dimensions of a bacterium. A computer program was written to determine the radiation dose distributions which may be expected within a bacterium as a result of tritium decay, when the isotope has been incorporated into specific regions of the bacterium. A nonspherical model bacterium was used, represented by a cylinder with hemispherical ends. The energy distributions resulting from a wide variety of simulated labeled regions were determined; the results suggested that the nuclear region of a bacterium receives on the average significantly different per decay doses, if the labeled regions were those conceivably produced by the incorporation of thymidine-3H, uracil-3H, or 3H-amino acids. Energy distributions in the model bacterium were also calculated for the decay of incorporated 14carbon, 35sulfur, and 32phosphorous. PMID:5678319
NASA Astrophysics Data System (ADS)
Lin, Yi-Chun; Huang, Tseng-Te; Liu, Yuan-Hao; Chen, Wei-Lin; Chen, Yen-Fu; Wu, Shu-Wei; Nievaart, Sander; Jiang, Shiang-Huei
2015-06-01
The paired ionization chambers (ICs) technique is commonly employed to determine neutron and photon doses in radiology or radiotherapy neutron beams, where neutron dose shows very strong dependence on the accuracy of accompanying high energy photon dose. During the dose derivation, it is an important issue to evaluate the photon and electron response functions of two commercially available ionization chambers, denoted as TE(TE) and Mg(Ar), used in our reactor based epithermal neutron beam. Nowadays, most perturbation corrections for accurate dose determination and many treatment planning systems are based on the Monte Carlo technique. We used general purposed Monte Carlo codes, MCNP5, EGSnrc, FLUKA or GEANT4 for benchmark verifications among them and carefully measured values for a precise estimation of chamber current from absorbed dose rate of cavity gas. Also, energy dependent response functions of two chambers were calculated in a parallel beam with mono-energies from 20 keV to 20 MeV photons and electrons by using the optimal simple spherical and detailed IC models. The measurements were performed in the well-defined (a) four primary M-80, M-100, M120 and M150 X-ray calibration fields, (b) primary 60Co calibration beam, (c) 6 MV and 10 MV photon, (d) 6 MeV and 18 MeV electron LINACs in hospital and (e) BNCT clinical trials neutron beam. For the TE(TE) chamber, all codes were almost identical over the whole photon energy range. In the Mg(Ar) chamber, MCNP5 showed lower response than other codes for photon energy region below 0.1 MeV and presented similar response above 0.2 MeV (agreed within 5% in the simple spherical model). With the increase of electron energy, the response difference between MCNP5 and other codes became larger in both chambers. Compared with the measured currents, MCNP5 had the difference from the measurement data within 5% for the 60Co, 6 MV, 10 MV, 6 MeV and 18 MeV LINACs beams. But for the Mg(Ar) chamber, the derivations reached 7.8-16.5% below 120 kVp X-ray beams. In this study, we were especially interested in BNCT doses where low energy photon contribution is less to ignore, MCNP model is recognized as the most suitable to simulate wide photon-electron and neutron energy distributed responses of the paired ICs. Also, MCNP provides the best prediction of BNCT source adjustment by the detector's neutron and photon responses.
Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y
2011-05-01
The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.
Pawelec, Andrzej; Dobrowolski, Andrzej
2017-01-01
In the process of electron beam flue gas treatment (EBFGT), most energy is spent on NO x removal. The dose distribution in the reactor is not uniform and the flue gas flow pattern plays an important role in the process efficiency. It was found that proper construction of the reactor may increase the energy efficiency of the process. The impact of the number of irradiation stages and mixing conditions on NO x removal efficiency was investigated for an ideal case and a practical solution was presented and compared with previously known EBFGT reactor constructions. The research was performed by means of computational fluid dynamics methods in combination with empirical Wittig formula. Two versions of dose distribution were taken for calculations. The results of the research show that for an ideal case, application of multistage irradiation and interstage mixing may reduce the energy consumption in the process by up to 39%. On the other side, simulation of reactor construction modification for two-stage irradiation results in 25% energy consumption reduction. The results of presented case study may be applied for improving the existing reactors and proper design of future installations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englbrecht, F; Lindner, F; Bin, J
2016-06-15
Purpose: To measure and simulate well-defined electron spectra using a linear accelerator and a permanent-magnetic wide-angle spectrometer to test the performance of a novel reconstruction algorithm for retrieval of unknown electron-sources, in view of application to diagnostics of laser-driven particle acceleration. Methods: Six electron energies (6, 9, 12, 15, 18 and 21 MeV, 40cm × 40cm field-size) delivered by a Siemens Oncor linear accelerator were recorded using a permanent-magnetic wide-angle electron spectrometer (150mT) with a one dimensional slit (0.2mm × 5cm). Two dimensional maps representing beam-energy and entrance-position along the slit were measured using different scintillating screens, read by anmore » online CMOS detector of high resolution (0.048mm × 0.048mm pixels) and large field of view (5cm × 10cm). Measured energy-slit position maps were compared to forward FLUKA simulations of electron transport through the spectrometer, starting from IAEA phase-spaces of the accelerator. The latter ones were validated against measured depth-dose and lateral profiles in water. Agreement of forward simulation and measurement was quantified in terms of position and shape of the signal distribution on the detector. Results: Measured depth-dose distributions and lateral profiles in the water phantom showed good agreement with forward simulations of IAEA phase-spaces, thus supporting usage of this simulation source in the study. Measured energy-slit position maps and those obtained by forward Monte-Carlo simulations showed satisfactory agreement in shape and position. Conclusion: Well-defined electron beams of known energy and shape will provide an ideal scenario to study the performance of a novel reconstruction algorithm using measured and simulated signal. Future work will increase the stability and convergence of the reconstruction-algorithm for unknown electron sources, towards final application to the electrons which drive the interaction of TW-class laser pulses with nanometer thin target foils to accelerate protons and ions to multi-MeV kinetic energy. Cluster of Excellence of the German Research Foundation (DFG) “Munich-Centre for Advanced Photonics”.« less
Teruel, Reyes Serrano; Thue, Geir; Fylkesnes, Svein Ivar; Sandberg, Sverre; Kristoffersen, Ann Helen
2017-09-01
Older adults treated with warfarin are prone to complications, and high-quality monitoring is essential. The aim of this case history based study was to assess the quality of warfarin monitoring in a routine situation, and in a situation with an antibiotic-warfarin interaction, before and after receiving an electronic alert. In April 2014, a national web-based survey with two case histories was distributed among Norwegian nursing home physicians and general practitioners working part-time in nursing homes. Case A represented a patient on stable warfarin treatment, but with a substantial INR increase within the therapeutic interval. Case B represented a more challenging patient with trimethoprim sulfamethoxazole (TMS) treatment due to pyelonephritis. In both cases, the physicians were asked to state the next warfarin dose and the INR recall interval. In case B, the physicians could change their suggestions after receiving an electronic alert on the TMS-warfarin interaction. Three hundred and ninety eight physicians in 292 nursing homes responded. Suggested INR recall intervals and warfarin doses varied substantially in both cases. In case A, 61% gave acceptable answers according to published recommendations, while only 9% did so for case B. Regarding the TMS-warfarin interaction in case history B, the electronic alert increased the percentage of respondents correctly suggesting a dose reduction from 29% to 53%. Having an INR instrument in the nursing home was associated with shortened INR recall times. Practical advice on handling of warfarin treatment and drug interactions is needed. Electronic alerts as presented in electronic medical records seem insufficient to change practice. Availability of INR instruments may be important regarding recall time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Syed Bilal
Purpose: To quantify and explain the backscatter dose effects for clinically relevant high atomic number materials being irradiated in the presence of a 1.5 T transverse magnetic field. Methods: Interface effects were investigated using Monte Carlo simulation techniques. We used GPUMCD (v5.1) and GEANT4 (v10.1) for this purpose. GPUMCD is a commercial software written for the Elekta AB, MRI linac. Dose was scored using GPUMCD in cubic voxels of side 1 and 0.5 mm, in two different virtual phantoms of dimensions 20 × 20 × 20 cm and 5 × 5 × 13.3 cm, respectively. A photon beam was generatedmore » from a point 143.5 cm away from the isocenter with energy distribution sampled from a histogram representing the true Elekta, MRI linac photon spectrum. A slab of variable thickness and position containing either bone, aluminum, titanium, stainless steel, or one of the two different dental filling materials was inserted as an inhomogeneity in the 20 × 20 × 20 cm phantom. The 5 × 5 × 13.3 cm phantom was used as a clinical test case in order to explain the dose perturbation effects for a head and neck cancer patient. The back scatter dose factor (BSDF) was defined as the ratio of the doses at a given depth with and without the presence of the inhomogeneity. Backscattered electron fluence was calculated at the inhomogeneity interface using GEANT4. A 1.5 T magnetic field was applied perpendicular to the direction of the beam in both phantoms, identical to the geometry in the Elekta MRI linac. Results: With the application of a 1.5 T magnetic field, all the BSDF’s were reduced by 12%–47%, compared to the no magnetic field case. The corresponding backscattered electron fluence at the interface was also reduced by 45%–64%. The reduction in the BSDF at the interface, due to the application of the magnetic field, is manifested in a different manner for each material. In the case of bone, the dose drops at the interface contrary to the expected increase when no magnetic field is applied. In the case of aluminum, the dose at the interface is the same with and without the presence of the aluminum. For all of the other materials the dose increases at the interface. Conclusions: The reduction in dose at the interface, in the presence of the magnetic field, is directly related to the reduction in backscattered electron fluence. This reduction occurs due to two different reasons. First, the electron spectrum hitting the interface is changed when the magnetic field is turned on, which results in changes in the electron scattering probability. Second, some electrons that have curved trajectories due to the presence of the magnetic field are absorbed by the higher density side of the interface and no longer contribute to the backscattered electron fluence.« less
Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Rovira, I., E-mail: immamartinez@gmail.com; Prezado, Y.
Purpose: The outcome of radiotherapy can be further improved by combining irradiation with dose enhancers such as high-Z nanoparticles. Since 2004, spectacular results have been obtained when low-energy x-ray irradiations have been combined with nanoparticles. Recently, the same combination has been explored in hadron therapy. In vitro studies have shown a significant amplification of the biological damage in tumor cells charged with nanoparticles and irradiated with fast ions. This has been attributed to the increase in the ionizations and electron emissions induced by the incident ions or the electrons in the secondary tracks on the high-Z atoms, resulting in amore » local energy deposition enhancement. However, this subject is still a matter of controversy. Within this context, the main goal of the authors’ work was to provide new insights into the dose enhancement effects of nanoparticles in proton therapy. Methods: For this purpose, Monte Carlo calculations (GATE/GEANT4 code) were performed. In particular, the GEANT4-DNA toolkit, which allows the modeling of early biological damages induced by ionizing radiation at the DNA scale, was used. The nanometric radial energy distributions around the nanoparticle were studied, and the processes (such as Auger deexcitation or dissociative electron attachment) participating in the dose deposition of proton therapy treatments in the presence of nanoparticles were evaluated. It has been reported that the architecture of Monte Carlo calculations plays a crucial role in the assessment of nanoparticle dose enhancement and that it may introduce a bias in the results or amplify the possible final dose enhancement. Thus, a dosimetric study of different cases was performed, considering Au and Gd nanoparticles, several nanoparticle sizes (from 4 to 50 nm), and several beam configurations (source-nanoparticle distances and source sizes). Results: This Monte Carlo study shows the influence of the simulations’ parameters on the local dose enhancement and how more realistic configurations lead to a negligible increase of local energy deposition. The obtained dose enhancement factor was up to 1.7 when the source was located at the nanoparticle surface. This dose enhancement was reduced when the source was located at further distances (i.e., in more realistic situations). Additionally, no significant increase in the dissociative electron attachment processes was observed. Conclusions: The authors’ results indicate that physical effects play a minor role in the amplification of damage, as a very low dose enhancement or increase of dissociative electron attachment processes is observed when the authors get closer to more realistic simulations. Thus, other effects, such as biological or chemical processes, may be mainly responsible for the enhanced radiosensibilization observed in biological studies. However, more biological studies are needed to verify this hypothesis.« less
Brown, Paul D; Kline, Robert W; Petersen, Ivy A; Haddock, Michael G
2004-01-01
The treatment of the inguinal lymph nodes with radiotherapy is strongly influenced by the body habitus of the patient. The effect of 7 radiotherapy techniques on femoral head doses was studied. Three female patients of differing body habitus (ectomorph, mesomorph, endomorph) were selected. Radiation fields included the pelvis and contiguous inguinal regions and were representative of fields used in the treatment of cancers of the lower pelvis. Seven treatment techniques were compared. In the ectomorph and mesomorph, normal tissue complication probability (NTCP) for the femoral heads was lowest with use of anteroposterior (AP) and modified posteroanterior (PA) field with inguinal electron field supplements (technique 1). In the endomorph, NTCP was lowest with use of AP and modified PA field without electron field supplements (technique 2) or a 4-field approach (technique 6). Technique 1 for ectomorphs and mesomorphs and techniques 2 and 6 for endomorphs were optimal techniques for providing relatively homogeneous dose distributions within the target area while minimizing the dose to the femoral heads.
A nanotube based electron microbeam cellular irradiator for radiobiology research
Bordelon, David E.; Zhang, Jian; Graboski, Sarah; Cox, Adrienne; Schreiber, Eric; Zhou, Otto Z.; Chang, Sha
2008-01-01
A prototype cellular irradiator utilizing a carbon nanotube (CNT) based field emission electron source has been developed for microscopic image-guided cellular region irradiation. The CNT cellular irradiation system has shown great potential to be a high temporal and spatial resolution research tool to enable researchers to gain a better understanding of the intricate cellular and intercellular microprocesses occurring following radiation deposition, which is essential to improving radiotherapy cancer treatment outcomes. In this paper, initial results of the system development are reported. The relationship between field emission current, the dose rate, and the dose distribution has been investigated. A beam size of 23 μm has been achieved with variable dose rates of 1–100 Gy∕s, and the system dosimetry has been measured using a radiochromic film. Cell irradiation has been demonstrated by the visualization of H2AX phosphorylation at DNA double-strand break sites following irradiation in a rat fibroblast cell monolayer. The prototype single beam cellular irradiator is a preliminary step to a multipixel cell irradiator that is under development. PMID:19123587
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie Tianwu; Liu Qian; Zaidi, Habib
2012-03-15
Purpose: Rats have been widely used in radionuclide therapy research for the treatment of hepatocellular carcinoma (HCC). This has created the need to assess rat liver absorbed radiation dose. In most dose estimation studies, the rat liver is considered as a homogeneous integrated target organ with a tissue composition assumed to be similar to that of human liver tissue. However, the rat liver is composed of several lobes having different anatomical and chemical characteristics. To assess the overall impact on rat liver dose calculation, the authors use a new voxel-based rat model with identified suborgan regions of the liver. Methods:more » The liver in the original cryosectional color images was manually segmented into seven individual lobes and subsequently integrated into a voxel-based computational rat model. Photon and electron particle transport was simulated using the MCNPX Monte Carlo code to calculate absorbed fractions and S-values for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re for the seven liver lobes. The effect of chemical composition on organ-specific absorbed dose was investigated by changing the chemical composition of the voxel filling liver material. Radionuclide-specific absorbed doses at the voxel level were further assessed for a small spherical hepatic tumor. Results: The self-absorbed dose for different liver lobes varied depending on their respective masses. A maximum difference of 3.5% was observed for the liver self-absorbed fraction between rat and human tissues for photon energies below 100 keV. {sup 166}Ho and {sup 188}Re produce a uniformly distributed high dose in the tumor and relatively low absorbed dose for surrounding tissues. Conclusions: The authors evaluated rat liver radiation doses from various radionuclides used in HCC treatments using a realistic computational rat model. This work contributes to a better understanding of all aspects influencing radiation transport in organ-specific radiation dose evaluation for preclinical therapy studies, from tissue composition to organ morphology and activity distribution.« less
Monte Carlo simulation and film dosimetry for electron therapy in vicinity of a titanium mesh
Rostampour, Masoumeh; Roayaei, Mahnaz
2014-01-01
Titanium (Ti) mesh plates are used as a bone replacement in brain tumor surgeries. In the case of radiotherapy, these plates might interfere with the beam path. The purpose of this study is to evaluate the effect of titanium mesh on the dose distribution of electron fields. Simulations were performed using Monte Carlo BEAMnrc and DOSXYZnrc codes for 6 and 10 MeV electron beams. In Monte Carlo simulation, the shape of the titanium mesh was simulated. The simulated titanium mesh was considered as the one which is used in head and neck surgery with a thickness of 0.055 cm. First, by simulation, the percentage depth dose was obtained while the titanium mesh was present, and these values were then compared with the depth dose of homogeneous phantom with no titanium mesh. In the experimental measurements, the values of depth dose with titanium mesh and without titanium mesh in various depths were measured. The experiments were performed using a RW3 phantom with GAFCHROMIC EBT2 film. The results of experimental measurements were compared with values of depth dose obtained by simulation. In Monte Carlo simulation, as well as experimental measurements, for the voxels immediately beyond the titanium mesh, the change of the dose were evaluated. For this purpose the ratio of the dose for the case with titanium to the case without titanium was calculated as a function of titanium depth. For the voxels before the titanium mesh there was always an increase of the dose up to 13% with respect to the same voxel with no titanium mesh. This is because of the increased back scattering effect of the titanium mesh. The results also showed that for the voxel right beyond the titanium mesh, there is an increased or decreased dose to soft tissues, depending on the depth of the titanium mesh. For the regions before the depth of maximum dose, there is an increase of the dose up to 10% compared to the dose of the same depth in homogeneous phantom. Beyond the depth of maximum dose, there was a 16% decrease in dose. For both 6 and 10 MeV, before the titanium mesh, there was always an increase in dose. If titanium mesh is placed in buildup region, it causes an increase of the dose and could lead to overdose of the adjacent tissue, whereas if titanium mesh is placed beyond the buildup region, it would lead to a decrease in dose compared to the homogenous tissue. PACS number: 87.53.Bn PMID:25207397
NASA Astrophysics Data System (ADS)
Semkova, J.; Koleva, R.; Maltchev, St.; Bankov, N.; Benghin, V.; Chernykh, I.; Shurshakov, V.; Petrov, V.; Drobyshev, S.; Nikolaev, I.
2012-02-01
The Liulin-5 experiment is a part of the international project MATROSHKA-R on the Russian segment of the ISS, which uses a tissue-equivalent spherical phantom equipped with a set of radiation detectors. The objective of the MATROSHKA-R project is to provide depth dose distribution of the radiation field inside the sphere in order to get more information on the distribution of dose in a human body. Liulin-5 is a charged particle telescope using three silicon detectors. It measures time resolved energy deposition spectra, linear energy transfer (LET) spectra, particle flux, and absorbed doses of electrons, protons and heavy ions, simultaneously at three depths along the radius of the phantom. Measurements during the minimum of the solar activity in cycle 23 show that the average absorbed daily doses at 40 mm depth in the phantom are between 180 μGy/day and 220 μGy/day. The absorbed doses at 165 mm depth in the phantom decrease by a factor of 1.6-1.8 compared to the doses at 40 mm depth due to the self-shielding of the phantom from trapped protons. The average dose equivalent at 40 mm depth is 590 ± 32 μSV/day and the galactic cosmic rays (GCR) contribute at least 70% of the total dose equivalent at that depth. Shown is that due to the South Atlantic Anomaly (SAA) trapped protons asymmetry and the direction of Liulin-5 lowest shielding zone the dose rates on ascending and descending nodes in SAA are different. The data obtained are compared to data from other radiation detectors on ISS.
Men, Kuo; Dai, Jianrong; Chen, Xinyuan; Li, Minghui; Zhang, Ke; Huang, Peng
2017-04-01
To improve the image quality and accuracy of dose calculation for cone-beam computed tomography (CT) images through implementation of a dual-energy cone-beam computed tomography method (DE-CBCT), and evaluate the improvement quantitatively. Two sets of CBCT projections were acquired using the X-ray volumetric imaging (XVI) system on a Synergy (Elekta, Stockholm, Sweden) system with 120kV (high) and 70kV (low) X-rays, respectively. Then, the electron density relative to water (relative electron density (RED)) of each voxel was calculated using a projection-based dual-energy decomposition method. As a comparison, single-energy cone-beam computed tomography (SE-CBCT) was used to calculate RED with the Hounsfield unit-RED calibration curve generated by a CIRS phantom scan with identical imaging parameters. The imaging dose was measured with a dosimetry phantom. The image quality was evaluated quantitatively using a Catphan 503 phantom with the evaluation indices of the reproducibility of the RED values, high-contrast resolution (MTF 50% ), uniformity, and signal-to-noise ratio (SNR). Dose calculation of two simulated volumetric-modulated arc therapy plans using an Eclipse treatment-planning system (Varian Medical Systems, Palo Alto, CA, USA) was performed on an Alderson Rando Head and Neck (H&N) phantom and a Pelvis phantom. Fan-beam planning CT images for the H&N and Pelvis phantom were set as the reference. A global three-dimensional gamma analysis was used to compare dose distributions with the reference. The average gamma values for targets and OAR were analyzed with paired t-tests between DE-CBCT and SE-CBCT. In two scans (H&N scan and body scan), the imaging dose of DE-CBCT increased by 1.0% and decreased by 1.3%. It had a better reproducibility of the RED values (mean bias: 0.03 and 0.07) compared with SE-CBCT (mean bias: 0.13 and 0.16). It also improved the image uniformity (57.5% and 30.1%) and SNR (9.7% and 2.3%), but did not affect the MTF 50% . Gamma analyses of the 3D dose distribution with criteria of 1%/1mm showed a pass rate of 99.0-100% and 85.3-97.6% for DE-CBCT and 73.5-99.1% and 80.4-92.7% for SE-CBCT. The average gamma values were reduced significantly by DE-CBCT (p< 0.05). Gamma index maps showed that matching of the dose distribution between CBCT-based and reference was improved by DE-CBCT. DE-CBCT can achieve both better image quality and higher accuracy of dose calculation, and could be applied to adaptive radiotherapy. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Electronic brachytherapy—current status and future directions
2015-01-01
In the past decade, electronic brachytherapy (EB) has emerged as an attractive modality for the treatment of skin lesions and intraoperative partial breast irradiation, as well as finding wider applications in intracavitary and interstitial sites. These miniature X-ray sources, which operate at low kilovoltage energies (<100 kV), have reduced shielding requirements and inherent portability, therefore can be used outside the traditional realms of the radiotherapy department. However, steep dose gradients and increased sensitivity to inhomogeneities challenge accurate dosimetry. Secondly, ease of use does not mitigate the need for close involvement by medical physics experts and consultant oncologists. Finally, further studies are needed to relate the more heterogeneous dose distributions to clinical outcomes. With these provisos, the practical convenience of EB strongly suggests that it will become an established option for selected patients, not only in radiotherapy departments but also in a range of operating theatres and clinics around the world. PMID:25748070
Blank, Holger; Schneider, Reinhard; Gerthsen, Dagmar; Gehrke, Helge; Jarolim, Katharina; Marko, Doris
2014-06-01
High-angle annular dark-field scanning transmission electron microscopy (HAADF STEM) in a scanning electron microscope facilitates the acquisition of images with high chemical sensitivity and high resolution. HAADF STEM at low electron energies is particularly suited to image nanoparticles (NPs) in thin cell sections which are not subjected to poststaining procedures as demonstrated by comparison with bright-field TEM. High membrane contrast is achieved and distinction of NPs with different chemical composition is possible at first sight. Low-energy HAADF STEM was applied to systematically study the uptake of Pt-NPs with a broad size distribution in HT29 colon carcinoma cells as a function of incubation time and incubation temperature. The cellular dose was quantified, that is, the amount and number density of NPs taken up by the cells, as well as the particle-size distribution. The results show a strong dependence of the amount of incubated NPs on the exposure time which can be understood by considering size-dependent diffusion and gravitational settling of the NPs in the cell culture medium.
Abraham, S; Fogliata, A; Jordaan, A; Clivio, A; Vanetti, E; Cozzi, L
2013-01-01
Objective: To evaluate the use of volumetric-modulated arc therapy [VMAT, RapidArc® (RA); Varian Medical Systems, Palo Alto, CA] for the treatment of cutaneous Kaposi’s sarcoma (KS) of lower extremities with adequate target coverage and high bone sparing, and to compare VMAT with electron beam therapy. Methods: 10 patients were planned with either RA or electron beams. The dose was prescribed to 30 Gy, 10 fractions, to mean the planning target volume (PTV), and significant maximum dose to bone was limited to 30 Gy. Plans were designed for 6-MV photon beams for RA and 6 MeV for electrons. Dose distributions were computed with AcurosXB® (Varian Medical Systems) for photons and with a Monte Carlo algorithm for electrons. Results: V90% was 97.3±1.2 for RA plans and 78.2±2.6 for electrons; similarly, V107% was 2.5±2.2 and 37.7±3.4, respectively. RA met coverage criteria. Concerning bone sparing, D2% was 29.6±1.1 for RA and 31.0±2.4 for electrons. Although acceptable for bone involvement, pronounced target coverage violations were obtained for electron plans. Monitor units were similar for electrons and RA, although for the latter they increased when superior bone sparing was imposed. Delivery times were 12.1±4.0 min for electrons and 4.8±1.3 min for the most modulated RA plans. Conclusion: High plan quality was shown for KS in the lower extremities using VMAT, and this might simplify their management in comparison with the more conventional usage of electrons, particularly in institutes with limited staff resources and heavy workloads. Advances in knowledge: VMAT is also dosimetrically extremely advantageous in a typology of treatments where electron beam therapy is mainly considered to be effective owing to the limited penetration of the beams. PMID:23392192
NASA Astrophysics Data System (ADS)
Sumini, M.; Mostacci, D.; Tartari, A.; Mazza, A.; Cucchi, G.; Isolan, L.; Buontempo, F.; Zironi, I.; Castellani, G.
2017-11-01
In a Plasma Focus device the plasma collapses into the pinch where it reaches thermonuclear conditions for a few tens of nanoseconds, becoming a multi-radiation source. The nature of the radiation generated depends on the gas filling the chamber and the device working parameters. The self-collimated electron beam generated in the backward direction with respect to the plasma motion is one of the main radiation sources of interest also for medical applications. The electron beam may be guided against a high Z material target to produce an X-ray beam. This technique offers an ultra-high dose rate source of X-rays, able to deliver during the pinch a massive dose (up to 1 Gy per discharge for the PFMA-3 test device), as measured with EBT3 GafchromicⒸfilm tissue equivalent dosimeters. Given the stochastic behavior of the discharge process, a reliable on-line estimate of the dose-delivered is a very challenging task, in some way preventing a systematic application as a potentially interesting therapy device. This work presents an approach to linking the dose registered by the EBT3 GafchromicⒸfilms with the information contained in the signal recorded during the current discharge process. Processing the signal with the Wigner-Ville distribution, a spectrogram was obtained, displaying the information on intensity at various frequency scales, identifying the band of frequencies representative of the pinch events and define some patterns correlated with the dose.
Low temperature neutron irradiation effects on microstructure and tensile properties of molybdenum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Eldrup, M.; Byun, Thak Sang
2008-01-01
Polycrystalline molybdenum was irradiated in the hydraulic tube facility at the High Flux Isotope Reactor to doses ranging from 7.2 x 10{sup -5} to 0.28 dpa at {approx} 80 C. As-irradiated microstructure was characterized by room-temperature electrical resistivity measurements, transmission electron microscopy (TEM) and positron annihilation spectroscopy (PAS). Tensile tests were carried out between -50 and 100 C over the strain rate range 1 x 10{sup -5} to 1 x 10{sup -2} s{sup -1}. Fractography was performed by scanning electron microscopy (SEM), and the deformation microstructure was examined by TEM after tensile testing. Irradiation-induced defects became visible by TEM atmore » {approx}0.001 dpa. Both their density and mean size increased with increasing dose. Submicroscopic three-dimensional cavities were detected by PAS even at {approx}0.0001 dpa. The cavity density increased with increasing dose, while their mean size and size distribution was relatively insensitive to neutron dose. It is suggested that the formation of visible dislocation loops was predominantly a nucleation and growth process, while in-cascade vacancy clustering may be significant in Mo. Neutron irradiation reduced the temperature and strain rate dependence of the yield stress, leading to radiation softening in Mo at lower doses. Irradiation had practically no influence on the magnitude and the temperature and strain rate dependence of the plastic instability stress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Haizhou; Zhang, Yanwen; Zhu, Zihua
Single crystalline 6H-SiC samples were irradiated at 150 K using 2MeV Pt ions. Local volume swelling is determined by electron energy loss spectroscopy (EELS), a nearly sigmoidal dependence with irradiation dose is observed. The disorder profiles and ion distribution are determined by Rutherford backscattering spectrometry (RBS), transmission electron microscopy and secondary ion mass spectrum. Since the volume swelling reaches 12% over the damage region under high ion fluence, lattice expansion is considered and corrected during the data analysis of RBS spectra to obtain depth profiles. Projectile and damage profiles are estimated by SRIM (Stopping and Range of Ions in Matter).more » Comparing with the measured profiles, SRIM code significantly overestimates the electronic stopping power for the slow heavy Pt ions, and large derivations are observed in the predicted ion distribution and the damage profiles. Utilizing the reciprocity method that is based on the invariance of the inelastic excitation in ion atom collisions against interchange of projectile and target, much lower electronic stopping is deduced. A simple approach based on reducing the density of SiC target in SRIM simulation is proposed to compensate the overestimated SRIM electronic stopping power values. Better damage profile and ion range are predicted.« less
Dose-dependent high-resolution electron ptychography
NASA Astrophysics Data System (ADS)
D'Alfonso, A. J.; Allen, L. J.; Sawada, H.; Kirkland, A. I.
2016-02-01
Recent reports of electron ptychography at atomic resolution have ushered in a new era of coherent diffractive imaging in the context of electron microscopy. We report and discuss electron ptychography under variable electron dose conditions, exploring the prospects of an approach which has considerable potential for imaging where low dose is needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, C; Nitsch, P; Kudchadker, R
2015-06-15
Purpose: Accurately determining out-of-field doses when using electron beam radiotherapy is of importance when treating pregnant patients or patients with implanted electronic devices. Scattered doses outside of the applicator field in electron beams have not been broadly investigated, especially since manufacturers have taken different approaches in applicator designs. Methods: In this study, doses outside of the applicator field were measured for electron beams produced by a 10×10 applicator on two Varian 21iXs operating at 6, 9, 12, 16, and 20 MeV, a Varian TrueBeam operating at 6, 9, 12, 16, and 20 MeV, and an Elekta Versa HD operating atmore » 6, 9, 12 and 15 MeV. Peripheral dose profiles and percent depth doses were measured in a Wellhofer water phantom at 100 cm SSD with a Farmer ion chamber. Doses were compared to peripheral photon doses from AAPM’s Task Group #36 report. Results: Doses were highest for the highest electron energies. Doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. Substantial dose differences were observed between different accelerators; the Elekta accelerator had much higher doses than any Varian unit examined. Surprisingly, doses were often similar to, and could be much higher than, doses from photon therapy. Doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. Conclusion: The results of this study indicate that proper shielding may be very important when utilizing electron beams, particularly on a Versa HD, while treating pregnant patients or those with implanted electronic devices. Applying a water equivalent bolus of Emax(MeV)/4 thickness (cm) on the patient would reduce fetal dose drastically for all clinical energies and is a practical solution to manage the potentially high peripheral doses seen from modern electron beams. Funding from NIH Grant number: #CA180803.« less
SU-E-T-137: The Response of TLD-100 in Mixed Fields of Photons and Electrons.
Lawless, M; Junell, S; Hammer, C; DeWerd, L
2012-06-01
Thermoluminescent dosimeters are used routinely for dosimetric measurements of photon and electron fields. However, no work has been published characterizing TLDs for use in combined photon and electron fields. This work investigates the response of TLD-100 (LiF:Mg,Ti) in mixed fields of photon and electron beam qualities. TLDs were irradiated in a 6 MV photon beam, 6 MeV electron beam, and a NIST traceable cobalt-60 beam. TLDs were also irradiated in a mixed field of the electron and photon beams. All irradiations were normalized to absorbed dose to water as defined in the AAPM TG-51 report. The average response per dose (nC/Gy) for each linac beam quality was normalized to the average response per dose of the TLDs irradiated by the cobalt-60 standard.Irradiations were performed in a water tank and a Virtual Water™ phantom. Two TLD dose calibration curves for determining absorbed dose to water were generated using photon and electron field TLD response data. These individual beam quality dose calibration curves were applied to the TLDs irradiated in the mixed field. The TLD response in the mixed field was less sensitive than the response in the photon field and more sensitive than the response in the electron field. TLD determination of dose in the mixed field using the dose calibration curve generated by TLDs irradiated by photons resulted in an underestimation of the delivered dose, while the use of a dose calibration curve generated using electrons resulted in an overestimation of the delivered dose. The relative response of TLD-100 in mixed fields fell consistently between the photon nd electron relative responses. When using TLD-100 in mixed fields, the user must account for this intermediate response to avoid an over- or underestimation of the dose due to calibration in a single photon or electron field. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, C; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Nitsch, P
Purpose: To investigate out-of-field electron doses and neutron production from electron beams from modern Varian and Elekta linear accelerators. Methods: Electron dose measurements were made using 10×10cm{sup 2} applicators on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at energies from 6 to 20 MeV. Out-of-field dose profiles and PDD curves were measured in a Wellhofer water phantom using a Farmer chamber. Neutron measurements were made with a combination of moderator buckets and gold activation-foils placed on the treatment couch at various locations in the patient plane on both the 21iX and Versa HD linear accelerators.more » Results: Electron doses were highest for the highest electron energies. Dose profile curves for the Varian units were found to be lower than those from the Versa HD unit, and were lower than photon beams. Elekta’s dose profiles were higher and exhibited a second dose peak around 20–30 cm from central-axis. Electron doses in this region (0.8–1.3% of dmax at central-axis) were close to 5 times (2.5–4.8) greater than doses from photon beams with similar energies. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. Q-values and neutron dose equivalent increased with energy and were typically higher on central-axis. 18 MV photon beam neutron dose equivalents were greater than any electron beam, being approximately 40 times greater than for the 20 MeV electron beam (21iX). Conclusion: The Versa HD exhibited higher than expected out-of-field electron doses in comparison to typical radiotherapy photon beams. Fortunately, out-of-field electron doses can be substantially reduced by applying a water-equivalent bolus with thickness of E(MeV)/4 in cm. Neutron contamination from clinical electron beams can be considered negligible in relation to photon beams but may need to be considered for special cases. This work was supported by Public Health Service Grant CA180803 awarded by the National Cancer Institute, United States Department of Health and Human Services.« less
NASA Astrophysics Data System (ADS)
Miloichikova, I. A.; Bespalov, V. I.; Krasnykh, A. A.; Stuchebrov, S. G.; Cherepennikov, Yu. M.; Dusaev, R. R.
2018-04-01
Simulation by the Monte Carlo method is widely used to calculate the character of ionizing radiation interaction with substance. A wide variety of programs based on the given method allows users to choose the most suitable package for solving computational problems. In turn, it is important to know exactly restrictions of numerical systems to avoid gross errors. Results of estimation of the feasibility of application of the program PCLab (Computer Laboratory, version 9.9) for numerical simulation of the electron energy distribution absorbed in beryllium, aluminum, gold, and water for industrial, research, and clinical beams are presented. The data obtained using programs ITS and Geant4 being the most popular software packages for solving the given problems and the program PCLab are presented in the graphic form. A comparison and an analysis of the results obtained demonstrate the feasibility of application of the program PCLab for simulation of the absorbed energy distribution and dose of electrons in various materials for energies in the range 1-20 MeV.
The radiation dosimetry of intrathecally administered radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stabin, M.G.; Evans, J.F.
The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energymore » deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.« less
NASA Astrophysics Data System (ADS)
Alexander, A.; DeBlois, F.; Stroian, G.; Al-Yahya, K.; Heath, E.; Seuntjens, J.
2007-07-01
Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM_RT, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform-independent, large-scale MC treatment planning for different treatment sites. Patient recalculations were performed to validate the software and ensure proper functionality.
Some computer graphical user interfaces in radiation therapy
Chow, James C L
2016-01-01
In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations. PMID:27027225
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, S; Joosten, A; Fix, MK
Purpose: To estimate the dosimetric potential of mixed beam radiotherapy (MBRT) by using a single process optimizing the shape and weight of photon and electron apertures simultaneously based on Monte Carlo beamlet dose distributions. Methods: A simulated annealing based direct aperture optimization capable to perform simultaneous optimization was developed to generate treatment plans for MERT, photon-IMRT and MBRT. Both photon and electron apertures are collimated with the photon-MLC and are delivered in a segmented manner. For dosimetric comparison and for investigating the dependency on the number of apertures, photon-IMRT, MERT and MBRT plans were generated for an academic case consistingmore » of a water phantom containing two shallow PTVs differing in the maximal depth of 5 and 7 cm, respectively and two OARs in distal and lateral direction to the PTVs. Results: For the superficial PTV, the dose homogeneity (V95%–V107%) and the mean dose (in percent of the prescribed dose) to the distal and the lateral OARs of the MBRT plan (94.9%, 16.9%, 17.8%) are superior or comparable to those for the MERT (74%, 18.4%, 15.4%) and the photon-IMRT plan (89.4%, 20.8%, 24.7%). For the enlarged PTV, the dosimetric superiority of MBRT compared to MERT and photon-IMRT is even more pronounced. Furthermore, an MBRT plan with 12 electron and 10 photon apertures lead to an objective function value 38% lower than that of a photon-IMRT plan with 40 apertures. Conclusion: The results of simultaneous optimization for MBRT are promising with regards to further OAR sparing and improved dose coverage to the PTV compared to photon-IMRT and MERT. Especially superficial targets with deeper subparts (>5 cm) could substantially benefit. Moreover, MBRT seems to be a possible solution of two downsides of photon-IMRT, namely the extended low dose bath and the requirement of numerous apertures. This work was supported by Varian Medical Systems. This work was supported by Varian Medical Systems.« less
Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R
2014-03-01
Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Yahya, Khalid; Schwartz, Matthew; Shenouda, George
2005-09-15
Energy modulated electron therapy (EMET) based on Monte Carlo dose calculation is a promising technique that enhances the treatment planning and delivery of superficially located tumors. This study investigated the application of EMET using a novel few-leaf electron collimator (FLEC) in head and neck and breast sites in comparison with three-dimensional conventional radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) techniques. Treatment planning was performed for two parotid cases and one breast case. Four plans were compared for each case: 3D-CRT, IMRT, 3D-CRT in conjunction with EMET (EMET-CRT), and IMRT in conjunction with EMET (EMET-IMRT), all of which weremore » performed and calculated with Monte Carlo techniques. For all patients, dose volume histograms (DVHs) were obtained for all organs of interest and the DVHs were used as a means of comparing the plans. Homogeneity and conformity of dose distributions were calculated, as well as a sparing index that compares the effect of the low isodose lines. In addition, the whole-body dose equivalent (WBDE) was estimated for each plan. Adding EMET delivered with the FLEC to 3D-CRT improves sparing of normal tissues. For the two head and neck cases, the mean dose to the contralateral parotid and brain stem was reduced relative to IMRT by 43% and 84%, and by 57% and 71%, respectively. Improved normal tissue sparing was quantified as an increase in sparing index of 47% and 30% for the head and neck and the breast cases, respectively. Adding EMET to either 3D-CRT or IMRT results in preservation of target conformity and dose homogeneity. When adding EMET to the treatment plan, the WBDE was reduced by between 6% and 19% for 3D-CRT and by between 21% and 33% for IMRT, while WBDE for EMET-CRT was reduced by up to 72% when compared with IMRT. FLEC offers a practical means of delivering modulated electron therapy. Although adding EMET delivered using the FLEC results in perturbation of target conformity when compared to IMRT, it significantly improves normal tissue sparing while offering enhanced target conformity to the 3D-CRT planning. The addition of EMET systematically leads to a reduction in WBDE especially when compared with IMRT.« less
Dose verification of eye plaque brachytherapy using spectroscopic dosimetry.
Jarema, T; Cutajar, D; Weaver, M; Petasecca, M; Lerch, M; Kejda, A; Rosenfeld, A
2016-09-01
Eye plaque brachytherapy has been developed and refined for the last 80 years, demonstrating effective results in the treatment of ocular malignancies. Current dosimetry techniques for eye plaque brachytherapy (such as TLD- and film-based techniques) are time consuming and cannot be used prior to treatment in a sterile environment. The measurement of the expected dose distribution within the eye, prior to insertion within the clinical setting, would be advantageous, as any errors in source loading will lead to an erroneous dose distribution and inferior treatment outcomes. This study investigated the use of spectroscopic dosimetry techniques for real-time quality assurance of I-125 based eye plaques, immediately prior to insertion. A silicon detector based probe, operating in spectroscopy mode was constructed, containing a small (1 mm(3)) silicon detector, mounted within a ceramic holder, all encapsulated within a rubber sheath to prevent water infiltration of the electronics. Preliminary tests of the prototype demonstrated that the depth dose distribution through the central axis of an I-125 based eye plaque may be determined from AAPM Task Group 43 recommendations to a deviation of 6 % at 3 mm depth, 7 % at 5 mm depth, 1 % at 10 mm depth and 13 % at 20 mm depth, with the deviations attributed to the construction of the probe. A new probe design aims to reduce these discrepancies, however the concept of spectroscopic dosimetry shows great promise for use in eye plaque quality assurance in the clinical setting.
NASA Astrophysics Data System (ADS)
Costa, Filipa; Doran, Simon J.; Hanson, Ian M.; Nill, Simeon; Billas, Ilias; Shipley, David; Duane, Simon; Adamovics, John; Oelfke, Uwe
2018-03-01
Dosimetric quality assurance (QA) of the new Elekta Unity (MR-linac) will differ from the QA performed of a conventional linac due to the constant magnetic field, which creates an electron return effect (ERE). In this work we aim to validate PRESAGE® dosimetry in a transverse magnetic field, and assess its use to validate the research version of the Monaco TPS of the MR-linac. Cylindrical samples of PRESAGE® 3D dosimeter separated by an air gap were irradiated with a cobalt-60 unit, while placed between the poles of an electromagnet at 0.5 T and 1.5 T. This set-up was simulated in EGSnrc/Cavity Monte Carlo (MC) code and relative dose distributions were compared with measurements using 1D and 2D gamma criteria of 3% and 1.5 mm. The irradiation conditions were adapted for the MR-linac and compared with Monaco TPS simulations. Measured and EGSnrc/Cavity simulated profiles showed good agreement with a gamma passing rate of 99.9% for 0.5 T and 99.8% for 1.5 T. Measurements on the MR-linac also compared well with Monaco TPS simulations, with a gamma passing rate of 98.4% at 1.5 T. Results demonstrated that PRESAGE® can accurately measure dose and detect the ERE, encouraging its use as a QA tool to validate the Monaco TPS of the MR-linac for clinically relevant dose distributions at tissue-air boundaries.
Electron fluence correction factors for various materials in clinical electron beams.
Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P
2001-08-01
Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.
NASA Astrophysics Data System (ADS)
Torres-Xirau, I.; Olaciregui-Ruiz, I.; Rozendaal, R. A.; González, P.; Mijnheer, B. J.; Sonke, J.-J.; van der Heide, U. A.; Mans, A.
2017-08-01
In external beam radiotherapy, electronic portal imaging devices (EPIDs) are frequently used for pre-treatment and for in vivo dose verification. Currently, various MR-guided radiotherapy systems are being developed and clinically implemented. Independent dosimetric verification is highly desirable. For this purpose we adapted our EPID-based dose verification system for use with the MR-Linac combination developed by Elekta in cooperation with UMC Utrecht and Philips. In this study we extended our back-projection method to cope with the presence of an extra attenuating medium between the patient and the EPID. Experiments were performed at a conventional linac, using an aluminum mock-up of the MRI scanner housing between the phantom and the EPID. For a 10 cm square field, the attenuation by the mock-up was 72%, while 16% of the remaining EPID signal resulted from scattered radiation. 58 IMRT fields were delivered to a 20 cm slab phantom with and without the mock-up. EPID reconstructed dose distributions were compared to planned dose distributions using the γ -evaluation method (global, 3%, 3 mm). In our adapted back-projection algorithm the averaged {γmean} was 0.27+/- 0.06 , while in the conventional it was 0.28+/- 0.06 . Dose profiles of several square fields reconstructed with our adapted algorithm showed excellent agreement when compared to TPS.
NASA Astrophysics Data System (ADS)
Jong, W. L.; Ung, N. M.; Tiong, A. H. L.; Rosenfeld, A. B.; Wong, J. H. D.
2018-03-01
The aim of this study is to investigate the fundamental dosimetric characteristics of the MOSkin detector for megavoltage electron beam dosimetry. The reproducibility, linearity, energy dependence, dose rate dependence, depth dose measurement, output factor measurement, and surface dose measurement under megavoltage electron beam were tested. The MOSkin detector showed excellent reproducibility (>98%) and linearity (R2= 1.00) up to 2000 cGy for 4-20 MeV electron beams. The MOSkin detector also showed minimal dose rate dependence (within ±3%) and energy dependence (within ±2%) over the clinical range of electron beams, except for an energy dependence at 4 MeV electron beam. An energy dependence correction factor of 1.075 is needed when the MOSkin detector is used for 4 MeV electron beam. The output factors measured by the MOSkin detector were within ±2% compared to those measured with the EBT3 film and CC13 chamber. The measured depth doses using the MOSkin detector agreed with those measured using the CC13 chamber, except at the build-up region due to the dose volume averaging effect of the CC13 chamber. For surface dose measurements, MOSkin measurements were in agreement within ±3% to those measured using EBT3 film. Measurements using the MOSkin detector were also compared to electron dose calculation algorithms namely the GGPB and eMC algorithms. Both algorithms were in agreement with measurements to within ±2% and ±4% for output factor (except for the 4 × 4 cm2 field size) and surface dose, respectively. With the uncertainties taken into account, the MOSkin detector was found to be a suitable detector for dose measurement under megavoltage electron beam. This has been demonstrated in the in vivo skin dose measurement on patients during electron boost to the breast tumour bed.
Warlick, W B; O'Rear, J H; Earley, L; Moeller, J H; Gaffney, D K; Leavitt, D D
1997-01-01
The dose to the contralateral breast has been associated with an increased risk of developing a second breast malignancy. Varying techniques have been devised and described in the literature to minimize this dose. Metal beam modifiers such as standard wedges are used to improve the dose distribution in the treated breast, but unfortunately introduce an increased scatter dose outside the treatment field, in particular to the contralateral breast. The enhanced dynamic wedge is a means of remote wedging created by independently moving one collimator jaw through the treatment field during dose delivery. This study is an analysis of differing doses to the contralateral breast using two common clinical set-up techniques with the enhanced dynamic wedge versus the standard metal wedge. A tissue equivalent block (solid water), modeled to represent a typical breast outline, was designed as an insert in a Rando phantom to simulate a standard patient being treated for breast conservation. Tissue equivalent material was then used to complete the natural contour of the breast and to reproduce appropriate build-up and internal scatter. Thermoluminescent dosimeter (TLD) rods were placed at predetermined distances from the geometric beam's edge to measure the dose to the contralateral breast. A total of 35 locations were used with five TLDs in each location to verify the accuracy of the measured dose. The radiation techniques used were an isocentric set-up with co-planar, non divergent posterior borders and an isocentric set-up with a half beam block technique utilizing the asymmetric collimator jaw. Each technique used compensating wedges to optimize the dose distribution. A comparison of the dose to the contralateral breast was then made with the enhanced dynamic wedge vs. the standard metal wedge. The measurements revealed a significant reduction in the contralateral breast dose with the enhanced dynamic wedge compared to the standard metal wedge in both set-up techniques. The dose was measured at varying distances from the geometric field edge, ranging from 2 to 8 cm. The average dose with the enhanced dynamic wedge was 2.7-2.8%. The average dose with the standard wedge was 4.0-4.7%. Thermoluminescent dosimeter measurements suggest an increase in both scattered electrons and photons with metal wedges. The enhanced dynamic wedge is a practical clinical advance which improves the dose distribution in patients undergoing breast conservation while at the same time minimizing dose to the contralateral breast, thereby reducing the potential carcinogenic effects.
Quantitative Analysis of Electron Beam Damage in Organic Thin Films
2017-01-01
In transmission electron microscopy (TEM) the interaction of an electron beam with polymers such as P3HT:PCBM photovoltaic nanocomposites results in electron beam damage, which is the most important factor limiting acquisition of structural or chemical data at high spatial resolution. Beam effects can vary depending on parameters such as electron dose rate, temperature during imaging, and the presence of water and oxygen in the sample. Furthermore, beam damage will occur at different length scales. To assess beam damage at the angstrom scale, we followed the intensity of P3HT and PCBM diffraction rings as a function of accumulated electron dose by acquiring dose series and varying the electron dose rate, sample preparation, and the temperature during acquisition. From this, we calculated a critical dose for diffraction experiments. In imaging mode, thin film deformation was assessed using the normalized cross-correlation coefficient, while mass loss was determined via changes in average intensity and standard deviation, also varying electron dose rate, sample preparation, and temperature during acquisition. The understanding of beam damage and the determination of critical electron doses provides a framework for future experiments to maximize the information content during the acquisition of images and diffraction patterns with (cryogenic) transmission electron microscopy. PMID:28553431
SU-C-17A-01: MRI-Based Radiotherapy Treatment Planning In Pelvis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, S; Cao, Y; Jolly, S
2014-06-15
Purpose: To support radiotherapy dose calculation, synthetic CT (MRCT) image volumes need to represent the electron density of tissues with sufficient accuracy. This study compares CT and MRCT for pelvic radiotherapy. Methods: CT and multi-contrast MRI acquired using T1- based Dixon, T2 TSE, and PETRA sequences were acquired on an IRBapproved protocol patient. A previously published method was used to create a MRCT image volume by applying fuzzy classification on T1- weighted and calculated water image volumes (air and fluid voxels were excluded using thresholds applied to PETRA and T2-weighted images). The correlation of pelvic bone intensity between CT andmore » MRCT was investigated. Two treatment plans, based on CT and MRCT, were performed to mimic treatment for: (a) pelvic bone metastasis with a 16MV parallel beam arrangement, and (b) gynecological cancer with 6MV volumetric modulated arc therapy (VMAT) using two full arcs. The CT-calculated fluence maps were used to recalculate doses using the MRCT-derived density grid. The dose-volume histograms and dose distributions were compared. Results: Bone intensities in the MRCT volume correlated linearly with CT intensities up to 800 HU (containing 96% of the bone volume), and then decreased with CT intensity increase (4% volume). There was no significant difference in dose distributions between CT- and MRCTbased plans, except for the rectum and bladder, for which the V45 differed by 15% and 9%, respectively. These differences may be attributed to normal and visualized organ movement and volume variations between CT and MR scans. Conclusion: While MRCT had lower bone intensity in highly-dense bone, this did not cause significant dose deviations from CT due to its small percentage of volume. These results indicate that treatment planning using MRCT could generate comparable dose distributions to that using CT, and further demonstrate the feasibility of using MRI-alone to support Radiation Oncology workflow. NIH R01EB016079.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muralidhar, K Raja; Pangam, S; Kolla, J
2015-06-15
Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence ofmore » beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.« less
NASA Astrophysics Data System (ADS)
Vassiliev, Oleg N.; Kry, Stephen F.; Grosshans, David R.; Mohan, Radhe
2018-03-01
This study concerns calculation of the average electronic stopping power for photon and electron sources. It addresses two problems that have not yet been fully resolved. The first is defining the electron spectrum used for averaging in a way that is most suitable for radiobiological modeling. We define it as the spectrum of electrons entering the sensitive to radiation volume (SV) within the cell nucleus, at the moment they enter the SV. For this spectrum we derive a formula that combines linearly the fluence spectrum and the source spectrum. The latter is the distribution of initial energies of electrons produced by a source. Previous studies used either the fluence or source spectra, but not both, thereby neglecting a part of the complete spectrum. Our derived formula reduces to these two prior methods in the case of high and low energy sources, respectively. The second problem is extending electron spectra to low energies. Previous studies used an energy cut-off on the order of 1 keV. However, as we show, even for high energy sources, such as 60Co, electrons with energies below 1 keV contribute about 30% to the dose. In this study all the spectra were calculated with Geant4-DNA code and a cut-off energy of only 11 eV. We present formulas for calculating frequency- and dose-average stopping powers, numerical results for several important electron and photon sources, and tables with all the data needed to use our formulas for arbitrary electron and photon sources producing electrons with initial energies up to ∼1 MeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, S; Sarfehnia, A; Kim, A
Purpose: To investigate and explain the interface effects for clinically relevant materials being irradiated in the presence of a 1.5 T transverse magnetic field. Methods: Interface effects were investigated using Geant4.10.1 both with (B-On) and without (B-Off) a magnetic field for an Elekta MRI-Linac. A slab of thickness 8 cm, representing inhomogeneity, was placed at a depth of 4 cm in a 20×20×20 cm water phantom. Backscattered electron fluence was calculated through a 20×20 cm plane aligned with the surface of the inhomogeneity. Inhomogeneities investigated were lung, bone, aluminum, titanium, stainless steel, and dental filling. A photon beam with fieldmore » size of 2×2 cm at the isocenter and SAD of 143.5 cm was generated from a point source with energy distribution sampled from a histogram representing the true Elekta MRI-Linac photon spectrum. Results: In the B-On case, if the heterogeneity is a low Z{sub eff} material, such as lung, the backscattered electron fluence is increased considerably, i.e. by 54 %, and the corresponding dose is expected to be higher near the interface compared to the B-Off case. On the contrary, if the heterogeneity is a high Z{sub eff} material then the backscattered electron fluence is reduced in the B-On electron fluence is reduced in the B-On case. This reduction leads to a lower dose deposition at the interface compared to the B-Off case. Conclusion: The reduction in dose at the interface, in the B-On case, is directly related to the reduction in backscattered electron fluence. The reduction in backscattered electron fluence occurs due to two different reasons. First, the electron energy spectrum hitting the interface is changed for the B-On case which changes the electron scattering probability. Second, some electrons that are looping under the influence of the magnetic field are captured by the higher density side of the interface and no longer contribute to the backscattered electron stream. Funding support for this study was provided by ElektaTM.« less
Radiation Dose from Reentrant Electrons
NASA Technical Reports Server (NTRS)
Badhwar, G.D.; Cleghorn, T. E.; Watts, J.
2003-01-01
In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.
Three-dimensional electron diffraction of plant light-harvesting complex
Wang, Da Neng; Kühlbrandt, Werner
1992-01-01
Electron diffraction patterns of two-dimensional crystals of light-harvesting chlorophyll a/b-protein complex (LHC-II) from photosynthetic membranes of pea chloroplasts, tilted at different angles up to 60°, were collected to 3.2 Å resolution at -125°C. The reflection intensities were merged into a three-dimensional data set. The Friedel R-factor and the merging R-factor were 21.8 and 27.6%, respectively. Specimen flatness and crystal size were critical for recording electron diffraction patterns from crystals at high tilts. The principal sources of experimental error were attributed to limitations of the number of unit cells contributing to an electron diffraction pattern, and to the critical electron dose. The distribution of strong diffraction spots indicated that the three-dimensional structure of LHC-II is less regular than that of other known membrane proteins and is not dominated by a particular feature of secondary structure. ImagesFIGURE 1FIGURE 2 PMID:19431817
Jankowska, Petra J; Kong, Christine; Burke, Kevin; Harrington, Kevin J; Nutting, Christopher
2007-10-01
High dose irradiation of the posterior cervical lymph nodes usually employs applied electron fields to treat the target volume and maintain the spinal cord dose within tolerance. In the light of recent advances in elective lymph node localisation we investigated optimization of field shape and electron energy to treat this target volume. In this study, three sequential hypotheses were tested. Firstly, that customization of the electron fields based on the nodal PTV outlined gives better PTV coverage than conventional field delineation. Using the consensus guidelines, customization of the electron field shape was compared to conventional fields based on bony landmarks. Secondly, that selection of electron energy using DVHs for spinal cord and PTV improves the minimum dose to PTV. Electron dose-volume histograms (DVHs) for the PTV, spinal cord and para-vertebral muscles, were generated using the Monte Carlo electron algorithm. These DVHs were used to compare standard vs optimized electron energy calculations. Finally, that combination of field customization and electron energy optimization improves both the minimum and mean doses to PTV compared with current standard practice. Customized electron beam shaping based on the consensus guidelines led to fewer geographical misses than standard field shaping. Customized electron energy calculation led to higher minimum doses to the PTV. Overall, the customization of field shape and energy resulted in an improved mean dose to the PTV (92% vs 83% p=0.02) and a 27% improvement in the minimum dose delivered to the PTV (45% vs 18% p=0.0009). Optimization of electron field shape and beam energy based on current consensus guidelines led to significant improvement in PTV coverage and may reduce recurrence rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X
Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteriamore » of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.« less
TH-AB-BRB-01: Trajectory Modulated Arc Therapy: Application to Partial Breast Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hristov, D.
2016-06-15
Current state-of-the art digital C-arm medical linear accelerators are capable of delivering radiation treatments with high level of automation, which affords coordinated motions of gantry, couch, and multileaf collimator (MLC) with dose rate modulations. The new machine capacity has shown the potential to bring substantially improved radiation dosimetry and/or delivery efficiency to many challenging diseases. Combining an integrated beam orientation optimization algorithm with automated machine navigation, markedly improved dose conformity has been achieved using 4ρ therapy. Trajectory modulated radiation therapy (TMAT) can be used to deliver highly conformal dose to partial breast or to carve complex dose distribution for therapymore » involving extended volumes such as total marrow and total lymph node treatment. Dynamic electron arc radiotherapy (DEAR) not only overcomes the deficiencies of conventional electron therapy in dose conformity and homogeneity but also achieves so without patient-specific shields. The combination of MLC and couch tracking provides improved motion management of thoracic and abdominal tumors. A substantial body of work has been done in these technological advances for clinical translation. The proposed symposium will provide a timely review of these exciting opportunities. Learning Objectives: Recognize the potential of using digitally controlled linacs for clinically significant improvements in delivered dose distributions for various treatment sites. Identify existing approaches to treatment planning, optimization and delivery for treatment techniques utilizing the advanced functions of digital linacs and venues for further development and improvement. Understand methods for testing and validating delivery system performance. Identify tools available on current delivery systems for implementation and control for such treatments. Obtain the update in clinical applications, trials and regulatory approval. K. Sheng, NIH U19AI067769, NIH R43CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.« less
A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uilkema, Sander, E-mail: s.uilkema@nki.nl; Heide, Uulke van der; Sonke, Jan-Jakob
2015-12-15
Purpose: MRI guidance during radiotherapy has the potential to enable more accurate dose delivery, optimizing the balance between local control and treatment related toxicity. However, the presence of a permanent magnetic field influences the dose delivery, especially around air cavities. Here, electrons are able to return to the surface through which they entered the air cavity (electron return effect, ERE) locally resulting in dose hot- and cold-spots. Where RT of rectal cancer patients might benefit from MRI guidance for margin reduction, air cavities in and around the target volume are frequently present. The purpose of this research is to evaluatemore » the impact of the presence of a 1.5 T transverse magnetic field on dose delivery in patients with rectal cancer. Methods: Ten patients treated with 5 × 5 Gy RT having large changes in pelvic air content were selected out of a cohort of 33 patients. On the planning CT, a 1.5 T, 6 MV, 7-field intensity modulated radiotherapy (IMRT) plan was created. This plan was subsequently recalculated on daily CT scans. For each daily CT, the CTV V{sub 95%} and V{sub 107%} and bowel area V{sub 5Gy}, V{sub 10Gy}, V{sub 15Gy}, V{sub 20Gy}, and V{sub 25Gy} were calculated to evaluate the changes in dose distribution from fraction to fraction. For comparison, the authors repeated this procedure for the 0 T situation. To study the effect of changing air cavities separate from other anatomical changes, the authors also generated artificial air cavities in the CTV of one patient (2 and 5 cm diameter), in the high dose gradient region (2 cm), and in the low dose area (2 cm). Treatment plans were optimized without and with each simulated air cavity. For appearing and disappearing air cavities, the CTV V{sub 95%} and V{sub 107%} were evaluated. The authors also evaluated the ERE separate from attenuation changes locally around appearing gas pockets. Results: For the ten patients, at 1.5 T, the V{sub 95%} was influenced by both appearing and disappearing air, and dropped to <98% in 2 out of 50 fractions due a disappearing air cavity of 150 cm{sup 3}. V{sub 95%} differences between 0 and 1.5 T were all within 2%. The V{sub 107%} was below 1% in 46 out of 50 fractions, and increased to 3% in the remaining fractions due to appearing air of around 120 cm{sup 3}. For comparison, V{sub 107%} was <1% at 0 T for all fractions. In the bowel area, the V{sub 15Gy} varied strongest from fraction to fraction, but differences between 1.5 and 0 T were minimal with an average difference of 2.3 cm{sup 3} (SD = 18.7 cm{sup 3}, p = 0.38). For the simulated air cavities, the ERE resulted in cold-spots maximally 5% lower than prescribed and hot-spots maximally 6% higher than prescribed. Conclusions: The presence of a 1.5 T magnetic field has an impact on the dose distribution when the air content changes of within a few percent in these selected rectal cancer patients. The authors consider this influence of the transverse magnetic field on the dose distribution in IMRT for rectal cancer patients clinically acceptable.« less
Sonier, Marcus; Wronski, Matt; Yeboah, Collins
2015-03-08
Lens dose is a concern during the treatment of facial lesions with anterior electron beams. Lead shielding is routinely employed to reduce lens dose and minimize late complications. The purpose of this work is twofold: 1) to measure dose pro-files under large-area lead shielding at the lens depth for clinical electron energies via film dosimetry; and 2) to assess the accuracy of the Pinnacle treatment planning system in calculating doses under lead shields. First, to simulate the clinical geometry, EBT3 film and 4 cm wide lead shields were incorporated into a Solid Water phantom. With the lead shield inside the phantom, the film was positioned at a depth of 0.7 cm below the lead, while a variable thickness of solid water, simulating bolus, was placed on top. This geometry was reproduced in Pinnacle to calculate dose profiles using the pencil beam electron algorithm. The measured and calculated dose profiles were normalized to the central-axis dose maximum in a homogeneous phantom with no lead shielding. The resulting measured profiles, functions of bolus thickness and incident electron energy, can be used to estimate the lens dose under various clinical scenarios. These profiles showed a minimum lead margin of 0.5 cm beyond the lens boundary is required to shield the lens to ≤ 10% of the dose maximum. Comparisons with Pinnacle showed a consistent overestimation of dose under the lead shield with discrepancies of ~ 25% occur-ring near the shield edge. This discrepancy was found to increase with electron energy and bolus thickness and decrease with distance from the lead edge. Thus, the Pinnacle electron algorithm is not recommended for estimating lens dose in this situation. The film measurements, however, allow for a reasonable estimate of lens dose from electron beams and for clinicians to assess the lead margin required to reduce the lens dose to an acceptable level.
Analysis of Compton continuum measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, R.; Olson, I. K.
1970-01-01
Five computer programs: COMPSCAT, FEND, GABCO, DOSE, and COMPLOT, have been developed and used for the analysis and subsequent reduction of measured energy distributions of Compton recoil electrons to continuous gamma spectra. In addition to detailed descriptions of these computer programs, the relationship amongst these codes is stressed. The manner in which these programs function is illustrated by tracing a sample measurement through a complete cycle of the data-reduction process.
Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Rychert, Kevin M.; Zhu, Gang; Kmiec, Maciej M.; Nemani, Venkata K.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.; Gimi, Barjor
2015-03-01
In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance (EPR) tooth biodosimetry, which measures the number of persistent free radicals that are generated in tooth enamel following irradiation. However, the accuracy of dose estimates may be impacted by individual variations in teeth, especially the amount and distribution of enamel in the inhomogeneous sensitive volume of the resonator used to detect the radicals. In order to study the relationship between interpersonal variations in enamel and EPR-based dose estimates, it is desirable to estimate these parameters nondestructively and without adding radiation to the teeth. Magnetic Resonance Imaging (MRI) is capable of acquiring structural and biochemical information without imparting additional radiation, which may be beneficial for many EPR dosimetry studies. However, the extremely short T2 relaxation time in tooth structures precludes tooth imaging using conventional MRI methods. Therefore, we used zero echo time (ZTE) MRI to image teeth ex vivo to assess enamel volumes and spatial distributions. Using these data in combination with the data on the distribution of the transverse radio frequency magnetic field from electromagnetic simulations, we then can identify possible sources of variations in radiation-induced signals detectable by EPR. Unlike conventional MRI, ZTE applies spatial encoding gradients during the RF excitation pulse, thereby facilitating signal acquisition almost immediately after excitation, minimizing signal loss from short T2 relaxation times. ZTE successfully provided volumetric measures of tooth enamel that may be related to variations that impact EPR dosimetry and facilitate the development of analytical procedures for individual dose estimates.
Development of a scintillating G-GEM detector for a 6-MeV X-band Linac for medical applications
NASA Astrophysics Data System (ADS)
Fujiwara, T.; Tanaka, S.; Mitsuya, Y.; Takahashi, H.; Tagi, K.; Kusano, J.; Tanabe, E.; Yamamoto, M.; Nakamura, N.; Dobashi, K.; Tomita, H.; Uesaka, M.
2013-12-01
We recently developed glass gas electron multipliers (G-GEMs) with an entirely new process using photo-etchable glass. The photo-etchable glass used for the substrate is called PEG3 (Hoya Corporation). Taking advantage of low outgassing material, we have envisioned a medical application of G-GEMs. A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for real-time dose distribution monitoring in X-ray radiation therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside of which G-GEM structures are mounted. Photons produced by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD-camera system. We found that the intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the first results from a scintillating G-GEM detector for a position-sensitive X-ray beam dosimeter.
Radiation dose from reentrant electrons
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Watts, J.; Cleghorn, T. E.
2001-01-01
In estimating the crew exposures during an extra vehicular activity (EVA), the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more that 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO. Published by Elsevier Science Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansourekidou, P; Allen, C
2015-06-15
Purpose: To evaluate the Raystation v4.51 Electron Monte Carlo algorithm for Varian Trilogy, IX and 2100 series linear accelerators and commission for clinical use. Methods: Seventy two water and forty air scans were acquired with a water tank in the form of profiles and depth doses, as requested by vendor. Data was imported into Rayphysics beam modeling module. Energy spectrum was modeled using seven parameters. Contamination photons were modeled using five parameters. Source phase space was modeled using six parameters. Calculations were performed in clinical version 4.51 and percent depth dose curves and profiles were extracted to be compared tomore » water tank measurements. Sensitivity tests were performed for all parameters. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Results: Model accuracy for air profiles is poor in the shoulder and penumbra region. However, model accuracy for water scans is acceptable. All energies and cones are within 2%/2mm for 90% of the points evaluated. Source phase space parameters have a cumulative effect. To achieve distributions with satisfactory smoothness level a 0.1cm grid and 3,000,000 particle histories were used for commissioning calculations. Calculation time was approximately 3 hours per energy. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use for the Varian accelerators listed. Results are inferior to Elekta Electron Monte Carlo modeling. Known issues were reported to Raysearch and will be resolved in upcoming releases. Auto-modeling is limited to open cone depth dose curves and needs expansion.« less
The use of megavoltage CT (MVCT) images for dose recomputations
NASA Astrophysics Data System (ADS)
Langen, K. M.; Meeks, S. L.; Poole, D. O.; Wagner, T. H.; Willoughby, T. R.; Kupelian, P. A.; Ruchala, K. J.; Haimerl, J.; Olivera, G. H.
2005-09-01
Megavoltage CT (MVCT) images of patients are acquired daily on a helical tomotherapy unit (TomoTherapy, Inc., Madison, WI). While these images are used primarily for patient alignment, they can also be used to recalculate the treatment plan for the patient anatomy of the day. The use of MVCT images for dose computations requires a reliable CT number to electron density calibration curve. In this work, we tested the stability of the MVCT numbers by determining the variation of this calibration with spatial arrangement of the phantom, time and MVCT acquisition parameters. The two calibration curves that represent the largest variations were applied to six clinical MVCT images for recalculations to test for dosimetric uncertainties. Among the six cases tested, the largest difference in any of the dosimetric endpoints was 3.1% but more typically the dosimetric endpoints varied by less than 2%. Using an average CT to electron density calibration and a thorax phantom, a series of end-to-end tests were run. Using a rigid phantom, recalculated dose volume histograms (DVHs) were compared with plan DVHs. Using a deformed phantom, recalculated point dose variations were compared with measurements. The MVCT field of view is limited and the image space outside this field of view can be filled in with information from the planning kVCT. This merging technique was tested for a rigid phantom. Finally, the influence of the MVCT slice thickness on the dose recalculation was investigated. The dosimetric differences observed in all phantom tests were within the range of dosimetric uncertainties observed due to variations in the calibration curve. The use of MVCT images allows the assessment of daily dose distributions with an accuracy that is similar to that of the initial kVCT dose calculation.
Limitations of silicon diodes for clinical electron dosimetry.
Song, Haijun; Ahmad, Munir; Deng, Jun; Chen, Zhe; Yue, Ning J; Nath, Ravinder
2006-01-01
This work investigates the relevance of several factors affecting the response of silicon diode dosemeters in depth-dose scans of electron beams. These factors are electron energy, instantaneous dose rate, dose per pulse, photon/electron dose ratio and electron scattering angle (directional response). Data from the literature and our own experiments indicate that the impact of these factors may be up to +/-15%. Thus, the different factors would have to cancel out perfectly at all depths in order to produce true depth-dose curves. There are reports of good agreement between depth-doses measured with diodes and ionisation chambers. However, our measurements with a Scantronix electron field detector (EFD) diode and with a plane-parallel ionisation chamber show discrepancies both in the build-up and in the low-dose regions, with a ratio up to 1.4. Moreover, the absolute sensitivity of two diodes of the same EFD model was found to differ by a factor of 3, and this ratio was not constant but changed with depth between 5 and 15% in the low-dose regions of some clinical electron beams. Owing to these inhomogeneities among diodes even of the same model, corrections for each factor would have to be diode-specific and beam-specific. All these corrections would have to be determined using parallel plane chambers, as recommended by AAPM TG-25, which would be unrealistic in clinical practice. Our conclusion is that in general diodes are not reliable in the measurement of depth-dose curves of clinical electron beams.
Calculated effects of backscattering on skin dosimetry for nuclear fuel fragments.
Aydarous, A Sh
2008-01-01
The size of hot particles contained in nuclear fallout ranges from 10 nm to 20 microm for the worldwide weapons fallout. Hot particles from nuclear power reactors can be significantly bigger (100 microm to several millimetres). Electron backscattering from such particles is a prominent secondary effect in beta dosimetry for radiological protection purposes, such as skin dosimetry. In this study, the effect of electron backscattering due to hot particles contamination on skin dose is investigated. These include parameters such as detector area, source radius, source energy, scattering material and source density. The Monte-Carlo Neutron Particle code (MCNP4C) was used to calculate the depth dose distribution for 10 different beta sources and various materials. The backscattering dose factors (BSDF) were then calculated. A significant dependence is shown for the BSDF magnitude upon detector area, source radius and scatterers. It is clearly shown that the BSDF increases with increasing detector area. For high Z scatterers, the BSDF can reach as high as 40 and 100% for sources with radii 0.1 and 0.0001 cm, respectively. The variation of BSDF with source radius, source energy and source density is discussed.
Sung, Wonmo; Park, Jong In; Kim, Jung-in; Carlson, Joel; Ye, Sung-Joon
2017-01-01
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans. PMID:28493940
Sung, Wonmo; Park, Jong In; Kim, Jung-In; Carlson, Joel; Ye, Sung-Joon; Park, Jong Min
2017-01-01
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.
Yamamoto, Hideo; Yoneda, Tarou; Satou, Shuji; Ishikawa, Toru; Hara, Misako
2009-12-20
By input of the actual dose of a drug given into a radiology information system, the system converting with an accounting system into a cost of the drug from the actual dose in the electronic medical record was built. In the drug master, the first unit was set as the cost of the drug, and we set the second unit as the actual dose. The second unit in the radiology information system was received by the accounting system through electronic medical record. In the accounting system, the actual dose was changed into the cost of the drug using the dose of conversion to the first unit. The actual dose was recorded on a radiology information system and electronic medical record. The actual dose was indicated on the accounting system, and the cost for the drug was calculated. About the actual dose of drug, cooperation of the information in a radiology information system and electronic medical record were completed. It was possible to decide the volume of drug from the correct dose of drug at the previous inspection. If it is necessary for the patient to have another treatment of medicine, it is important to know the actual dose of drug given. Moreover, authenticity of electronic medical record based on a statute has also improved.
SU-E-T-551: PTV Is the Worst-Case of CTV in Photon Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, D; Liu, W; Park, P
2014-06-01
Purpose: To examine the supposition of the static dose cloud and adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution for photon therapy in head and neck (H and N) plans. Methods: Five diverse H and N plans clinically delivered at our institution were selected. Isocenter for each plan was shifted positively and negatively in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (3 mm) for a total of six shifted plans per original plan. The perturbed plan dose was recalculated inmore » Eclipse (AAA v11.0.30) using the same, fixed fluence map as the original plan. The dose distributions for all plans were exported from the treatment planning system to determine the worst-case CTV dose distributions for each nominal plan. Two worst-case distributions, cold and hot, were defined by selecting the minimum or maximum dose per voxel from all the perturbed plans. The resulting dose volume histograms (DVH) were examined to evaluate the worst-case CTV and nominal PTV dose distributions. Results: Inspection demonstrates that the CTV DVH in the nominal dose distribution is indeed bounded by the CTV DVHs in the worst-case dose distributions. Furthermore, comparison of the D95% for the worst-case (cold) CTV and nominal PTV distributions by Pearson's chi-square test shows excellent agreement for all plans. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the five plans under examination. Although the worst-case dose distributions are unphysical since the dose per voxel is chosen independently, the cold worst-case distribution serves as a lower bound for the worst-case possible CTV coverage. Minor discrepancies between the nominal PTV dose distribution and worst-case CTV dose distribution are expected since the dose cloud is not strictly static. This research was supported by the NCI through grant K25CA168984, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, and by the Fraternal Order of Eagles Cancer Research Fund, the Career Development Award Program at Mayo Clinic.« less
SU-C-213-03: Custom 3D Printed Boluses for Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, B; Yang, M; Yan, Y
2015-06-15
Purpose: To develop a clinical workflow and to commission the process of creating custom 3d printed boluses for radiation therapy. Methods: We designed a workflow to create custom boluses using a commercial 3D printer. Contours of several patients were deformably mapped to phantoms where the test bolus contours were designed. Treatment plans were created on the phantoms following our institutional planning guideline. The DICOM file of the bolus contours were then converted to stereoLithography (stl) file for the 3d printer. The boluses were printed on a commercial 3D printer using polylactic acid (PLA) material. Custom printing parameters were optimized inmore » order to meet the requirement of bolus composition. The workflow was tested on multiple anatomical sites such as skull, nose and chest wall. The size of boluses varies from 6×9cm2 to 12×25cm2. To commission the process, basic CT and dose properties of the printing materials were measured in photon and electron beams and compared against water and soft superflab bolus. Phantoms were then scanned to confirm the placement of custom boluses. Finally dose distributions with rescanned CTs were compared with those computer-generated boluses. Results: The relative electron density(1.08±0.006) of the printed boluses resemble those of liquid tap water(1.04±0.004). The dosimetric properties resemble those of liquid tap water(1.04±0.004). The dosimetric properties were measured at dmax with an ion chamber in electron and photon open beams. Compared with solid water and soft bolus, the output difference was within 1% for the 3D printer material. The printed boluses fit well to the phantom surfaces on CT scans. The dose distribution and DVH based on the printed boluses match well with those based on TPS generated boluses. Conclusion: 3d printing provides a cost effective and convenient solution for patient-specific boluses in radiation therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, I; Algan, O; Ahmad, S
Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for themore » stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management techniques such as beam-gating or breath-holding and has potential applications in adaptive radiation therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Dan; Eckerman, Keith F; Karagiannis, Harriet
This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters that are used to show compliance with applicable regulations may overestimate or underestimate radiation doses to the skin depending on the nature of the particular procedure and the radionuclide being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations of realistic configurations typical for workers handling radiopharmaceuticals weremore » performedfor a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from dosimeter readings when dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less
Dose Assessments to the Hands of Radiopharmaceutical Workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Dan; Eckerman, Keith F; Sherbini, Sami
This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters may overestimate or underestimate the radiation doses to the skin that are used to show compliance with applicable regulations depending on the nature of the particular procedure and the radioisotope being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations on realistic configurations typical for workers handling radiopharmaceuticalsmore » were performed for a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from the dosimeters' readings when the dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less
Kartashov, D A; Petrov, V M; Kolomenskiĭ, A V; Akatov, Iu A; Shurshakov, V A
2010-01-01
Russian space experiment "Matryeshka-R" was conducted in 2004-2005 to study dose distribution in the body of anthropomorphous phantom inserted in a spacesuit imitating container mounted on outer surface of the ISS Service module (experiment "Matryeshka"). The objective was to compare doses inside the phantom in the container to human body donned in spacesuit "Orlan-M" during extravehicular activity (EVA). The shielding function was calculated using the geometric model, specification of the phantom shielded by the container, "Orlan-M" description, and results of ground-based estimation of shielding effectiveness by gamma-raying. Doses were calculated from the dose attenuation curves obtained for galactic cosmic rays, and the AE-8/AP-8 models of electron and proton flows in Earth's radiation belt. Calculated ratios of equivalent doses in representative points of the body critical organs to analogous doses in phantom "Matryeshka" H(ORLAN-M)/H(Matryeshka) for identical radiation conditions vary with organs and solar activity in the range from 0.1 to 1.8 with organs and solar activity. These observations should be taken into account when applying Matryeshka data to the EVA conditions.
Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maximenko, S. I., E-mail: sergey.maximenko@nrl.navy.mil; Scheiman, D. A.; Jenkins, P. P.
Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In{sub 0.01}Ga{sub 0.99}As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across themore » MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ∼6.06–9.88 × 10{sup 9} MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.« less
High-resolution low-dose scanning transmission electron microscopy.
Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning
2010-01-01
During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Haizhou; Zhang, Yanwen; Zhu, Zihua
Single crystalline 6H-SiC samples were irradiated at 150 K with 2 MeV Pt ions. The local volume swelling was determined by electron energy loss spectroscopy (EELS), and a nearly sigmoidal dependence on irradiation dose is observed. The disorder profiles and ion distribution were determined by Rutherford backscattering spectrometry (RBS), transmission electron microscopy, and secondary ion mass spectrometry. Since the volume swelling reaches 12% over the damage region at high ion fluence, the effect of lattice expansion is considered and corrected for in the analysis of RBS spectra to obtain depth profiles. Projectile and damage profiles are estimated by SRIM (Stoppingmore » and Range of Ions in Matter).When compared with the measured profiles, the SRIM code predictions of ion distribution and the damage profiles are underestimated due to significant overestimation of the electronic stopping power for the slow heavy Pt ions. By utilizing the reciprocity method, which is based on the invariance of the inelastic energy loss in ion-solid collisions against interchange of projectile and target atom, a much lower electronic stopping power is deduced. A simple approach, based on reducing the density of SiC target in SRIM simulation, is proposed to compensate the overestimated SRIM electronic stopping power values, which results in improved agreement between predicted and measured damage profiles and ion ranges.« less
Response of TLD-100 in mixed fields of photons and electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawless, Michael J.; Junell, Stephanie; Hammer, Cliff
Purpose: Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. Methods: TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable {sup 60}Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam.more » The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the {sup 60}Co beam. Irradiations were performed in water and in a Virtual Water Trade-Mark-Sign phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. Results: TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. Conclusions: The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.« less
Response of TLD-100 in mixed fields of photons and electrons.
Lawless, Michael J; Junell, Stephanie; Hammer, Cliff; DeWerd, Larry A
2013-01-01
Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable (60)Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam. The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the (60)Co beam. Irradiations were performed in water and in a Virtual Water™ phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palma, B; Bazalova-Carter, M; Qu, B
Purpose: To evaluate the performance of 100–120 MeV very-high energy electron (VHEE) scanning pencil beams to radiotherapy by means of Monte Carlo (MC) simulations. Methods: We selected five clinical cases with target sizes of 1.2 cm{sup 3} to 990.4 cm{sup 3}. We calculated VHEE treatment plans using the MC EGSnrc code implemented in a MATLAB-based graphical user interface developed by our group. We generated phase space data for beam energies: 100 and 120 MeV and pencil beam spot sizes of 1, 3, and 5 mm at FWHM. The number of equidistant beams considered in this work was 16 or 32.more » Dose was calculated and then imported into a research version of RayStation where treatment plan optimization was performed. We compared the VHEE plans with the clinically delivered volumetric modulated arc therapy (VMAT) plan to evaluate VHEE plans performance. Results: VHEE plans provided the same PTV coverage and dose homogeneity than VMAT plans for all the cases. In average, the mean dose to organs at risk (OARs) was 24% lower for the VHEE plans. The structures that benefited the most from using VHEE were: large bowel for the esophagus case, chest wall for the liver case, brainstem for the acoustic case, carina for the lung case, and genitalia for the anal case, with 23.7–34.6% lower dose. VHEE dose distributions were more conformal than VMAT solution as confirmed by conformity indices CI100 and CI50. Integral dose to the body was in average 19.6% (9.2%–36.5%) lower for the VHEE plans. Conclusion: We have shown that VHEE plans resulted in similar or superior dose distributions compared to clinical VMAT plans for five different cases and a wide range of target volumes, including a case with a small target (1.2 cm{sup 3}), which represents a challenge for VMAT planning and might require the use of more complex non-coplanar VMAT plans. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Laboratories AB. E Hynning: Employee, RaySearch Laboratories AB. B Qu: None. B Loo Jr.: Research support, RaySearch, Varian. P Maxim: Research support, RaySearch, Varian.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uilkema, S; Heide, U; Nijkamp, J
Purpose: The purpose of this planning study is to investigate the influence of the ERE on the day-to-day dose distribution in rectal cancer patients, where changes in gas-pockets frequently occur. Methods: Daily CT scans of 5 patients treated neo-adjuvant with 5x5Gy for rectal cancer were used. We optimized two plans on the planning CT (Monaco, 1 mm3 dosegrid), a conventional 7-field 6MV IMRT plan (Dconv) and a plan in the presence of a 1.5T field (Dmrl). We recalculated the plans on all repeat-CT scans and evaluated under/over-dosage of the daily CTVs. Changes of more than 1% were considered significant. Inmore » the bowel area, we investigated the relative dose changes due to the ERE, where the contribution of the ERE was separated from other effects such as attenuation. Results: Both plans were comparable and compliant with ICRU 62 for all patients. For 2 fractions in one patient under-dosage in the CTV was significant, due to a disappearing gas-pocket. Here the V95 was 96.82 and 97.36% in in Dmrl compared to 98.85 and 98.66% in Dconv, respectively. For 3 fractions in another patient appearing gas-pockets resulted in significant over-dosage of the CTV. In these fractions the V107 was 1.88–2.68% in Dmrl compared to 0.33–1.27% in Dconv. In the bowel area the dose changes attributable to the ERE were approximately ± 5% in 1cc, at low dose levels. Conclusion: We were able to calculate acceptable treatment plans with and without a magnetic field. The ERE was present in the Dmrl, but the volumetric effect within the CTV was limited. Outside the CTV relative dose differences were similar, but on small volumes at lower, less relevant dose levels. This suggests that there is no clinical relevant ERE on dose distributions in rectal cancer patients on a 1.5T MR-Linac.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Lee, J; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul
Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm{sup 2} applicator. Themore » gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Eldib, A; Chibani, O
2015-06-15
Purpose: Co-60 beams have unique dosimetric properties for cranial treatments and thoracic cancers. The conventional concern about the high surface dose is overcome by modern system designs with rotational treatment techniques. This work investigates a novel rotational Gamma ray system for image-guided, external beam radiotherapy. Methods: The CybeRT system (Cyber Medical Corp., China) consists of a ring gantry with either one or two treatment heads containing a Gamma source and a multileaf collimator (MLC). The MLC has 60 paired leaves, and the maximum field size is either 40cmx40cm (40 pairs of 0.5cm central leaves, 20 pairs of 1cm outer leaves),more » or 22cmx40cm (32 pairs of 0.25cm central leaves, 28 pairs of 0.5cm outer leaves). The treatment head(s) can swing 35° superiorly and 8° inferiorly, allowing a total of 43° non-coplanar beam incident. The treatment couch provides 6-degrees-of-freedom motion compensation and the kV cone-beam CT system has a spatial resolution of 0.4mm. Monte Carlo simulations were used to compute dose distributions and compare with measurements. A retrospective study of 98 previously treated patients was performed to compare CybeRT with existing RT systems. Results: Monte Carlo results confirmed the CybeRT design parameters including output factors and 3D dose distributions. Its beam penumbra/dose gradient was similar to or better than that of 6MV photon beams and its isocenter accuracy is 0.3mm. Co-60 beams produce lower-energy secondary electrons that exhibit better dose properties in low-density lung tissues. Because of their rapid depth dose falloff, Co-60 beams are favorable for peripheral lung tumors with half-arc arrangements to spare the opposite lung and critical structures. Superior dose distributions were obtained for head and neck, breast, spine and lung tumors. Conclusion: Because of its accurate dose delivery and unique dosimetric properties of C-60 sources, CybeRT is ideally suited for advanced SBRT as well as conventional RT. This work was partially supported by Cyber Medical Corp.« less
Real-time measurement and monitoring of absorbed dose for electron beams
NASA Astrophysics Data System (ADS)
Korenev, Sergey; Korenev, Ivan; Rumega, Stanislav; Grossman, Leon
2004-09-01
The real-time method and system for measurement and monitoring of absorbed dose for industrial and research electron accelerators is considered in the report. The system was created on the basis of beam parameters method. The main concept of this method consists in the measurement of dissipated kinetic energy of electrons in the irradiated product, determination of number of electrons and mass of irradiated product in the same cell by following calculation of absorbed dose in the cell. The manual and automation systems for dose measurements are described. The systems are acceptable for all types of electron accelerators.
Field-size dependence of doses of therapeutic carbon beams.
Kusano, Yohsuke; Kanai, Tatsuaki; Yonai, Shunsuke; Komori, Masataka; Ikeda, Noritoshi; Tachikawa, Yuji; Ito, Atsushi; Uchida, Hirohisa
2007-10-01
To estimate the physical dose at the center of spread-out Bragg peaks (SOBP) for various conditions of the irradiation system, a semiempirical approach was applied. The dose at the center of the SOBP depends on the field size because of large-angle scattering particles in the water phantom. For a small field of 5 x 5 cm2, the dose was reduced to 99.2%, 97.5%, and 96.5% of the dose used for the open field in the case of 290, 350, and 400 MeV/n carbon beams, respectively. Based on the three-Gaussian form of the lateral dose distributions of the carbon pencil beam, which has previously been shown to be effective for describing scattered carbon beams, we reconstructed the dose distributions of the SOBP beam. The reconstructed lateral dose distribution reproduced the measured lateral dose distributions very well. The field-size dependencies calculated using the reconstructed lateral dose distribution of the therapeutic carbon beam agreed with the measured dose dependency very well. The reconstructed beam was also used for irregularly shaped fields. The resultant dose distribution agreed with the measured dose distribution. The reconstructed beams were found to be applicable to the treatment-planning system.
Depth resolved investigations of boron implanted silicon
NASA Astrophysics Data System (ADS)
Sztucki, M.; Metzger, T. H.; Milita, S.; Berberich, F.; Schell, N.; Rouvière, J. L.; Patel, J.
2003-01-01
We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6×10 15 ions/cm -2 at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {1 1 1} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.
NASA Technical Reports Server (NTRS)
Swyler, K. J.; Levy, P. W.
1976-01-01
The coloring of NBS 710 glass was studied using a facility for making optical absorption measurements during and after electron irradiation. The induced absorption contains three Gaussian shaped bands. The color center growth curves contain two saturating exponential and one linear components. After irradiation the coloring decays can be described by three decreasing exponentials. At room temperature both the coloring curve plateau and coloring rate increases with increasing dose rate. Coloring measurements made at fixed dose rate but at increasing temperature indicate: (1) The coloring curve plateau decreases with increasing temperature and coloring is barely measurable near 400 C. (2) The plateau is reached more rapidly as the temperature increases. (3) The decay occurring after irradiation cannot be described by Arrhenius kinetics. At each temperature the coloring can be explained by simple kinetics. The temperature dependence of the decay can be explained if it is assumed that the thermal untrapping is controlled by a distribution of activation energies.
Testing of the analytical anisotropic algorithm for photon dose calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esch, Ann van; Tillikainen, Laura; Pyykkonen, Jukka
2006-11-15
The analytical anisotropic algorithm (AAA) was implemented in the Eclipse (Varian Medical Systems) treatment planning system to replace the single pencil beam (SPB) algorithm for the calculation of dose distributions for photon beams. AAA was developed to improve the dose calculation accuracy, especially in heterogeneous media. The total dose deposition is calculated as the superposition of the dose deposited by two photon sources (primary and secondary) and by an electron contamination source. The photon dose is calculated as a three-dimensional convolution of Monte-Carlo precalculated scatter kernels, scaled according to the electron density matrix. For the configuration of AAA, an optimizationmore » algorithm determines the parameters characterizing the multiple source model by optimizing the agreement between the calculated and measured depth dose curves and profiles for the basic beam data. We have combined the acceptance tests obtained in three different departments for 6, 15, and 18 MV photon beams. The accuracy of AAA was tested for different field sizes (symmetric and asymmetric) for open fields, wedged fields, and static and dynamic multileaf collimation fields. Depth dose behavior at different source-to-phantom distances was investigated. Measurements were performed on homogeneous, water equivalent phantoms, on simple phantoms containing cork inhomogeneities, and on the thorax of an anthropomorphic phantom. Comparisons were made among measurements, AAA, and SPB calculations. The optimization procedure for the configuration of the algorithm was successful in reproducing the basic beam data with an overall accuracy of 3%, 1 mm in the build-up region, and 1%, 1 mm elsewhere. Testing of the algorithm in more clinical setups showed comparable results for depth dose curves, profiles, and monitor units of symmetric open and wedged beams below d{sub max}. The electron contamination model was found to be suboptimal to model the dose around d{sub max}, especially for physical wedges at smaller source to phantom distances. For the asymmetric field verification, absolute dose difference of up to 4% were observed for the most extreme asymmetries. Compared to the SPB, the penumbra modeling is considerably improved (1%, 1 mm). At the interface between solid water and cork, profiles show a better agreement with AAA. Depth dose curves in the cork are substantially better with AAA than with SPB. Improvements are more pronounced for 18 MV than for 6 MV. Point dose measurements in the thoracic phantom are mostly within 5%. In general, we can conclude that, compared to SPB, AAA improves the accuracy of dose calculations. Particular progress was made with respect to the penumbra and low dose regions. In heterogeneous materials, improvements are substantial and more pronounced for high (18 MV) than for low (6 MV) energies.« less
Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J
2012-09-01
To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than uniformly-loaded (125)I plaques. This method may support coordinated investigations of an appropriate clinical target for eye plaque brachytherapy.
NASA Astrophysics Data System (ADS)
Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank
2014-10-01
Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.
NASA Astrophysics Data System (ADS)
Hackett, S. L.; van Asselen, B.; Wolthaus, J. W. H.; Bluemink, J. J.; Ishakoglu, K.; Kok, J.; Lagendijk, J. J. W.; Raaymakers, B. W.
2018-05-01
The transverse magnetic field of an MRI-linac sweeps contaminant electrons away from the radiation beam. Films oriented perpendicular to the magnetic field and 5 cm from the radiation beam edge show a projection of the divergent beam, indicating that contaminant electrons spiral along magnetic field lines and deposit dose on surfaces outside the primary beam perpendicular to the magnetic field. These spiraling contaminant electrons (SCE) could increase skin doses to protruding regions of the patient along the cranio-caudal axis. This study investigated doses from SCE for an MRI-linac comprising a 7 MV linac and a 1.5 T MRI scanner. Surface doses to films perpendicular to the magnetic field and 5 cm from the radiation beam edge showed increased dose within the projection of the primary beam, whereas films parallel to the magnetic field and 5 cm from the beam edge showed no region of increased dose. However, the dose from contaminant electrons is absorbed within a few millimeters. For large fields, the SCE dose is within the same order of magnitude as doses from scattered and leakage photons. Doses for both SCE and scattered photons decrease rapidly with decreasing beam size and increasing distance from the beam edge.
Feasibility of Nanoparticle-Guided Radiation Therapy (NGRT) Using a Conventional CT Scanner
2010-10-01
deliverability of plan on CT scanner 2c. Calibrate dosimeters ( TLDs ) in phantom material 2d. Deliver dose distribution to phantom with TLDs in...phantom (SOW 2a). Next, small thermoluminescent dosimeters ( TLDs ) are placed within the tumor cavity. The TLDs are irradiated both with and without...nuclear data files. Electron interaction data is taken from the RSICC-EL03 library. The tumor volume was simulated as a small cavity containing
Wronski, Matt; Yeboah, Collins
2015-01-01
Lens dose is a concern during the treatment of facial lesions with anterior electron beams. Lead shielding is routinely employed to reduce lens dose and minimize late complications. The purpose of this work is twofold: 1) to measure dose profiles under large‐area lead shielding at the lens depth for clinical electron energies via film dosimetry; and 2) to assess the accuracy of the Pinnacle treatment planning system in calculating doses under lead shields. First, to simulate the clinical geometry, EBT3 film and 4 cm wide lead shields were incorporated into a Solid Water phantom. With the lead shield inside the phantom, the film was positioned at a depth of 0.7 cm below the lead, while a variable thickness of solid water, simulating bolus, was placed on top. This geometry was reproduced in Pinnacle to calculate dose profiles using the pencil beam electron algorithm. The measured and calculated dose profiles were normalized to the central‐axis dose maximum in a homogeneous phantom with no lead shielding. The resulting measured profiles, functions of bolus thickness and incident electron energy, can be used to estimate the lens dose under various clinical scenarios. These profiles showed a minimum lead margin of 0.5 cm beyond the lens boundary is required to shield the lens to ≤10% of the dose maximum. Comparisons with Pinnacle showed a consistent overestimation of dose under the lead shield with discrepancies of ∼25% occurring near the shield edge. This discrepancy was found to increase with electron energy and bolus thickness and decrease with distance from the lead edge. Thus, the Pinnacle electron algorithm is not recommended for estimating lens dose in this situation. The film measurements, however, allow for a reasonable estimate of lens dose from electron beams and for clinicians to assess the lead margin required to reduce the lens dose to an acceptable level. PACS number(s): 87.53.Bn, 87.53.Kn, 87.55.‐x, 87.55.D‐ PMID:27074448
Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope.
Johnston-Peck, Aaron C; DuChene, Joseph S; Roberts, Alan D; Wei, Wei David; Herzing, Andrew A
2016-11-01
Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO 2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. Published by Elsevier B.V.
Dose-rate-dependent damage of cerium dioxide in the scanning transmission electron microscope
Johnston-Peck, Aaron C.; DuChene, Joseph S.; Roberts, Alan D.; Wei, Wei David; Herzing, Andrew A.
2016-01-01
Beam damage caused by energetic electrons in the transmission electron microscope is a fundamental constraint limiting the collection of artifact-free information. Through understanding the influence of the electron beam, experimental routines may be adjusted to improve the data collection process. Investigations of CeO2 indicate that there is not a critical dose required for the accumulation of electron beam damage. Instead, measurements using annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy demonstrate that the onset of measurable damage occurs when a critical dose rate is exceeded. The mechanism behind this phenomenon is that oxygen vacancies created by exposure to a 300 keV electron beam are actively annihilated as the sample re-oxidizes in the microscope environment. As a result, only when the rate of vacancy creation exceeds the recovery rate will beam damage begin to accumulate. This observation suggests that dose-intensive experiments can be accomplished without disrupting the native structure of the sample when executed using dose rates below the appropriate threshold. Furthermore, the presence of an encapsulating carbonaceous layer inhibits processes that cause beam damage, markedly increasing the dose rate threshold for the accumulation of damage. PMID:27469265
NASA Astrophysics Data System (ADS)
Lund, Matthew Lawrence
The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements. From these models the greatest contributor to radiation dose for the Apollo missions was from Galactic Cosmic Rays due to the short time within the radiation belts. The Apollo 14 dose measurements were an order of magnitude higher compared to other Apollo missions. The GEANT4 model of the Apollo Command Module shows consistent doses due to Galactic Cosmic Rays and Radiation Belts for all missions, with a small variation in dose distribution across the capsule. The model also predicts well the dose depositions and equivalent dose values in various human organs for the International Space Station or Apollo Command Module.
Soft-tissue reactions following irradiation of primary brain and pituitary tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglan, R.J.; Marks, J.E.
1981-04-01
One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface.more » Patients treated with small portals (<70 cm/sup 2/) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams.« less
What happens when spins meet for ionizing radiation dosimetry?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavoni, Juliana F.; Baffa, Oswaldo, E-mail: baffa@usp.br; Neves-Junior, Wellington F. P.
2016-07-07
Electron spin resonance (ESR) and magnetic resonance imaging (MRI) can be used to measure radiation dose deposited in different milieu through its effects. Radiation can break chemical bonds and if they produce stable free radicals, ESR can measure their concentration through their spins and a dose can be inferred. Ionizing radiation can also promote polymerization and in this case proton relaxation times can be measured and an image weighed by T2 can be produced giving spatial information about dose. A review of the basics of these applications is presented concluding with an end-to-end test using a composite Gel-Alanine phantom tomore » validate 3-dimensionally dose distribution delivered in a simulation of Volume Modulated Arch Therapy on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.« less
What happens when spins meet for ionizing radiation dosimetry?
NASA Astrophysics Data System (ADS)
Pavoni, Juliana F.; Neves-Junior, Wellington F. P.; Baffa, Oswaldo
2016-07-01
Electron spin resonance (ESR) and magnetic resonance imaging (MRI) can be used to measure radiation dose deposited in different milieu through its effects. Radiation can break chemical bonds and if they produce stable free radicals, ESR can measure their concentration through their spins and a dose can be inferred. Ionizing radiation can also promote polymerization and in this case proton relaxation times can be measured and an image weighed by T2 can be produced giving spatial information about dose. A review of the basics of these applications is presented concluding with an end-to-end test using a composite Gel-Alanine phantom to validate 3-dimensionally dose distribution delivered in a simulation of Volume Modulated Arch Therapy on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.
NASA Astrophysics Data System (ADS)
Sangappa, Asha, S.; Sanjeev, Ganesh; Subramanya, G.; Parameswara, P.; Somashekar, R.
2010-01-01
The present work looks into the microstructural modification in electron irradiated Bombyx mori P31 silk fibers. The irradiation process was performed in air at room temperature using 8 MeV electron accelerator at different doses: 0, 25, 50 and 100 kGy. Irradiation of polymer is used to cross-link or degrade the desired component or to fix the polymer morphology. The changes in microstructural parameters in these natural polymer fibers have been computed using wide angle X-ray scattering (WAXS) data and employing line profile analysis (LPA) using Fourier transform technique of Warren. Exponential, Lognormal and Reinhold functions for the column length distributions have been used for the determination of crystal size, lattice strain and enthalpy parameters.
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance
Liuzzi, Raffaele; Savino, Federica; D’Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Background Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2–12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. Methods LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0–10 Gy in step of 2Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. Results The TLD-100 dose-response curves were obtained. In the dose range of 0–10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). Conclusions This study demonstrates that the TLD dose response, for doses ≤10Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided. PMID:26427065
Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance.
Liuzzi, Raffaele; Savino, Federica; D'Avino, Vittoria; Pugliese, Mariagabriella; Cella, Laura
2015-01-01
Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2-12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0-10 Gy in step of 2 Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. The TLD-100 dose-response curves were obtained. In the dose range of 0-10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). This study demonstrates that the TLD dose response, for doses ≤10 Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided.
NASA Technical Reports Server (NTRS)
Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.
1989-01-01
The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.
Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment
NASA Astrophysics Data System (ADS)
Asuni, Ganiyu Adeniyi
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.
Superficial Dosimetry Imaging of Čerenkov Emission in Electron Beam Radiotherapy of Phantoms
Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.
2014-01-01
Čerenkov emission is generated from ionizing radiation in tissue above 264keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6cm×6cm to 20cm×20cm, incident angles from 0 to 50 degrees, and energies from 6 to 18 MeV. The Čerenkov images were compared with estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2=0.97) with reference data of the known dose for energies from 6MeV to 18MeV. When orthogonal delivery was done, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2~4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50 degrees, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system (TPS) had at a larger error (OPT=±1~2%, Diode=±2~3%, TPS=±6~8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging from incident radiotherapy beams of electrons. PMID:23880473
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hua; Noel, Camille; Chen, Haijian
Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on amore » Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The {gamma} pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose distributions were clinically identical. In all patient cases, radiation oncologists rated O-MAR corrected images as higher quality. Formerly obscured critical structures were able to be visualized. The overall image quality and the conspicuity in critical organs were significantly improved compared with the uncorrected images: overall quality score (1.35 vs 3.25, P= 0.0022); bladder (2.15 vs 3.7, P= 0.0023); prostate and seminal vesicles/vagina (1.3 vs 3.275, P= 0.0020); rectum (2.8 vs 3.9, P= 0.0021). The noise levels of the selected ROIs were reduced from 93.7 to 38.2 HU. On most cases (8/10), the average CT Hounsfield numbers of the prostate/vagina on the O-MAR corrected images were closer to the referenced value (41.2 HU, an average measured from patients without metal implants) than those on the uncorrected images. High {gamma} pass rates of the five IMRT dose distribution pairs indicated that the dose distributions were not significantly affected by the CT image improvements. Conclusions: Overall, this study indicated that the O-MAR function can remarkably reduce metal artifacts and improve both CT Hounsfield number accuracy and target and critical structure visualization. Although there was no significant impact of the O-MAR algorithm on the calculated dose distributions, we suggest that O-MAR corrected images are more suitable for the entire treatment planning process by offering better anatomical structure visualization, improving radiation oncologists' confidence in target delineation, and by avoiding subjective density overrides of artifact regions on uncorrected images.« less
Li, Hua; Noel, Camille; Chen, Haijian; Harold Li, H.; Low, Daniel; Moore, Kevin; Klahr, Paul; Michalski, Jeff; Gay, Hiram A.; Thorstad, Wade; Mutic, Sasa
2012-01-01
Purpose: Severe artifacts in kilovoltage-CT simulation images caused by large metallic implants can significantly degrade the conspicuity and apparent CT Hounsfield number of targets and anatomic structures, jeopardize the confidence of anatomical segmentation, and introduce inaccuracies into the radiation therapy treatment planning process. This study evaluated the performance of the first commercial orthopedic metal artifact reduction function (O-MAR) for radiation therapy, and investigated its clinical applications in treatment planning. Methods: Both phantom and clinical data were used for the evaluation. The CIRS electron density phantom with known physical (and electron) density plugs and removable titanium implants was scanned on a Philips Brilliance Big Bore 16-slice CT simulator. The CT Hounsfield numbers of density plugs on both uncorrected and O-MAR corrected images were compared. Treatment planning accuracy was evaluated by comparing simulated dose distributions computed using the true density images, uncorrected images, and O-MAR corrected images. Ten CT image sets of patients with large hip implants were processed with the O-MAR function and evaluated by two radiation oncologists using a five-point score for overall image quality, anatomical conspicuity, and CT Hounsfield number accuracy. By utilizing the same structure contours delineated from the O-MAR corrected images, clinical IMRT treatment plans for five patients were computed on the uncorrected and O-MAR corrected images, respectively, and compared. Results: Results of the phantom study indicated that CT Hounsfield number accuracy and noise were improved on the O-MAR corrected images, especially for images with bilateral metal implants. The γ pass rates of the simulated dose distributions computed on the uncorrected and O-MAR corrected images referenced to those of the true densities were higher than 99.9% (even when using 1% and 3 mm distance-to-agreement criterion), suggesting that dose distributions were clinically identical. In all patient cases, radiation oncologists rated O-MAR corrected images as higher quality. Formerly obscured critical structures were able to be visualized. The overall image quality and the conspicuity in critical organs were significantly improved compared with the uncorrected images: overall quality score (1.35 vs 3.25, P = 0.0022); bladder (2.15 vs 3.7, P = 0.0023); prostate and seminal vesicles/vagina (1.3 vs 3.275, P = 0.0020); rectum (2.8 vs 3.9, P = 0.0021). The noise levels of the selected ROIs were reduced from 93.7 to 38.2 HU. On most cases (8/10), the average CT Hounsfield numbers of the prostate/vagina on the O-MAR corrected images were closer to the referenced value (41.2 HU, an average measured from patients without metal implants) than those on the uncorrected images. High γ pass rates of the five IMRT dose distribution pairs indicated that the dose distributions were not significantly affected by the CT image improvements. Conclusions: Overall, this study indicated that the O-MAR function can remarkably reduce metal artifacts and improve both CT Hounsfield number accuracy and target and critical structure visualization. Although there was no significant impact of the O-MAR algorithm on the calculated dose distributions, we suggest that O-MAR corrected images are more suitable for the entire treatment planning process by offering better anatomical structure visualization, improving radiation oncologists’ confidence in target delineation, and by avoiding subjective density overrides of artifact regions on uncorrected images. PMID:23231300
Radiation measurement in the environment of FLASH using passive dosimeters
NASA Astrophysics Data System (ADS)
Mukherjee, B.; Rybka, D.; Makowski, D.; Lipka, T.; Simrock, S.
2007-08-01
Sophisticated electronic devices comprising sensitive microelectronic components have been installed in the close proximity of the 720 MeV superconducting electron linear accelerator (linac) driving the FLASH (Free Electron Laser in Hamburg), presently in operation at DESY in Hamburg. Microelectronic chips are inherently vulnerable to ionizing radiation, usually generated during routine operation of high-energy particle accelerator facilities like the FLASH. Hence, in order to assess the radiation effect on microelectronic chips and to develop suitable mitigation strategy, it becomes imperative to characterize the radiation field in the FLASH environment. We have evaluated the neutron and gamma energy (spectra) and dose distributions at critical locations in the FLASH tunnel using superheated emulsion (bubble) detectors, GaAs light emitting diodes (LED), LiF-thermoluminescence dosimeters (TLD) and radiochromic (Gafchromic EBT) films. This paper highlights the application of passive dosimeters for an accurate analysis of the radiation field produced by high-energy electron linear accelerators.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan
2013-09-01
High energy electron beam (HEEB) irradiation was used to disperse nanoscale zero-valent iron (NZVI) for reduction of Crvi to Criii in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.
NASA Astrophysics Data System (ADS)
Wayson, Michael B.; Bolch, Wesley E.
2018-04-01
Various computational tools are currently available that facilitate patient organ dosimetry in diagnostic nuclear medicine, yet they are typically restricted to reporting organ doses to ICRP-defined reference phantoms. The present study, while remaining computational phantom based, provides straightforward tools to adjust reference phantom organ dose for both internal photon and electron sources. A wide variety of monoenergetic specific absorbed fractions were computed using radiation transport simulations for tissue spheres of varying size and separation distance. Scaling methods were then constructed for both photon and electron self-dose and cross-dose, with data validation provided from patient-specific voxel phantom simulations, as well as via comparison to the scaling methodology given in MIRD Pamphlet No. 11. Photon and electron self-dose was found to be dependent on both radiation energy and sphere size. Photon cross-dose was found to be mostly independent of sphere size. Electron cross-dose was found to be dependent on sphere size when the spheres were in close proximity, owing to differences in electron range. The validation studies showed that this dataset was more effective than the MIRD 11 method at predicting patient-specific photon doses for at both high and low energies, but gave similar results at photon energies between 100 keV and 1 MeV. The MIRD 11 method for electron self-dose scaling was accurate for lower energies but began to break down at higher energies. The photon cross-dose scaling methodology developed in this study showed gains in accuracy of up to 9% for actual patient studies, and the electron cross-dose scaling methodology showed gains in accuracy up to 9% as well when only the bremsstrahlung component of the cross-dose was scaled. These dose scaling methods are readily available for incorporation into internal dosimetry software for diagnostic phantom-based organ dosimetry.
Wayson, Michael B; Bolch, Wesley E
2018-04-13
Various computational tools are currently available that facilitate patient organ dosimetry in diagnostic nuclear medicine, yet they are typically restricted to reporting organ doses to ICRP-defined reference phantoms. The present study, while remaining computational phantom based, provides straightforward tools to adjust reference phantom organ dose for both internal photon and electron sources. A wide variety of monoenergetic specific absorbed fractions were computed using radiation transport simulations for tissue spheres of varying size and separation distance. Scaling methods were then constructed for both photon and electron self-dose and cross-dose, with data validation provided from patient-specific voxel phantom simulations, as well as via comparison to the scaling methodology given in MIRD Pamphlet No. 11. Photon and electron self-dose was found to be dependent on both radiation energy and sphere size. Photon cross-dose was found to be mostly independent of sphere size. Electron cross-dose was found to be dependent on sphere size when the spheres were in close proximity, owing to differences in electron range. The validation studies showed that this dataset was more effective than the MIRD 11 method at predicting patient-specific photon doses for at both high and low energies, but gave similar results at photon energies between 100 keV and 1 MeV. The MIRD 11 method for electron self-dose scaling was accurate for lower energies but began to break down at higher energies. The photon cross-dose scaling methodology developed in this study showed gains in accuracy of up to 9% for actual patient studies, and the electron cross-dose scaling methodology showed gains in accuracy up to 9% as well when only the bremsstrahlung component of the cross-dose was scaled. These dose scaling methods are readily available for incorporation into internal dosimetry software for diagnostic phantom-based organ dosimetry.
NASA Astrophysics Data System (ADS)
Raffi, Julie A.
Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to illustrate the limitations of TG-43 dosimetry for intracavitary APBI. TG-43 dose calculations overestimate the dose for regions approaching the lung and breast surface and underestimate the dose for regions in and beyond less-attenuating media such as lung tissue, and for lower energies, breast tissue as well.
Dose controlled low energy electron irradiator for biomolecular films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S. V. K., E-mail: svkk@tifr.res.in; Tare, Satej T.; Upalekar, Yogesh V.
2016-03-15
We have developed a multi target, Low Energy Electron (LEE), precise dose controlled irradiator for biomolecular films. Up to seven samples can be irradiated one after another at any preset electron energy and dose under UHV conditions without venting the chamber. In addition, one more sample goes through all the steps except irradiation, which can be used as control for comparison with the irradiated samples. All the samples are protected against stray electron irradiation by biasing them at −20 V during the entire period, except during irradiation. Ethernet based communication electronics hardware, LEE beam control electronics and computer interface weremore » developed in house. The user Graphical User Interface to control the irradiation and dose measurement was developed using National Instruments Lab Windows CVI. The working and reliability of the dose controlled irradiator has been fully tested over the electron energy range of 0.5 to 500 eV by studying LEE induced single strand breaks to ΦX174 RF1 dsDNA.« less
Redler, Gage; Templeton, Alistair; Zhen, Heming; Turian, Julius; Bernard, Damian; Chu, James C H; Griem, Katherine L; Liao, Yixiang
The Xoft Axxent Electronic Brachytherapy System (Xoft, Inc., San Jose, CA) is a viable option for intraoperative radiation therapy (IORT) treatment of early-stage breast cancer. The low-energy (50-kVp) X-ray source simplifies shielding and increases relative biological effectiveness but increases dose distribution sensitivity to medium composition. Treatment planning systems typically assume homogenous water for brachytherapy dose calculations, including precalculated atlas plans for Xoft IORT. However, Xoft recommends saline for balloon applicator filling. This study investigates dosimetric differences due to increased effective atomic number (Z eff ) for saline (Z eff = 7.56) versus water (Z eff = 7.42). Balloon applicator diameters range from 3 to 6 cm. Monte Carlo N-Particle software is used to calculate dose at the surface (D s ) of and 1 cm away (D 1cm ) from the water-/saline-filled balloon applicator using a single dwell at the applicator center as a simple estimation of the dosimetry and multiple dwells simulating the clinical dose distributions for the atlas plans. Single-dwell plans show a 4.4-6.1% decrease in D s for the 3- to 6-cm diameter applicators due to the saline. Multidwell plans show similar results: 4.9% and 6.4% D s decrease, for 4-cm and 6-cm diameter applicators, respectively. For the single-dwell plans, D 1cm decreases 3.6-5.2% for the 3- to 6-cm diameter applicators. For the multidwell plans, D 1cm decreases 3.3% and 5.3% for the 4-cm and 6-cm applicators, respectively. The dosimetric effect introduced by saline versus water filling for Xoft balloon applicator-based IORT treatments is ∼5%. Users should be aware of this in the context of both treatment planning and patient outcome studies. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guerra, Pedro; Udías, José M.; Herranz, Elena; Santos-Miranda, Juan Antonio; Herraiz, Joaquín L.; Valdivieso, Manlio F.; Rodríguez, Raúl; Calama, Juan A.; Pascau, Javier; Calvo, Felipe A.; Illana, Carlos; Ledesma-Carbayo, María J.; Santos, Andrés
2014-12-01
This work analysed the feasibility of using a fast, customized Monte Carlo (MC) method to perform accurate computation of dose distributions during pre- and intraplanning of intraoperative electron radiation therapy (IOERT) procedures. The MC method that was implemented, which has been integrated into a specific innovative simulation and planning tool, is able to simulate the fate of thousands of particles per second, and it was the aim of this work to determine the level of interactivity that could be achieved. The planning workflow enabled calibration of the imaging and treatment equipment, as well as manipulation of the surgical frame and insertion of the protection shields around the organs at risk and other beam modifiers. In this way, the multidisciplinary team involved in IOERT has all the tools necessary to perform complex MC dosage simulations adapted to their equipment in an efficient and transparent way. To assess the accuracy and reliability of this MC technique, dose distributions for a monoenergetic source were compared with those obtained using a general-purpose software package used widely in medical physics applications. Once accuracy of the underlying simulator was confirmed, a clinical accelerator was modelled and experimental measurements in water were conducted. A comparison was made with the output from the simulator to identify the conditions under which accurate dose estimations could be obtained in less than 3 min, which is the threshold imposed to allow for interactive use of the tool in treatment planning. Finally, a clinically relevant scenario, namely early-stage breast cancer treatment, was simulated with pre- and intraoperative volumes to verify that it was feasible to use the MC tool intraoperatively and to adjust dose delivery based on the simulation output, without compromising accuracy. The workflow provided a satisfactory model of the treatment head and the imaging system, enabling proper configuration of the treatment planning system and providing good accuracy in the dosage simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas, E-mail: nmassage@ulb.ac.be; Neurosurgery-Department, Hospital Erasme, Brussels; Lonneville, Sarah
2011-11-15
Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradientmore » index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.« less
Applications of amorphous track models in radiation biology
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Nikjoo, H.; Goodhead, D. T.; Wilson, J. W. (Principal Investigator)
1999-01-01
The average or amorphous track model uses the response of a system to gamma-rays and the radial distribution of dose about an ion's path to describe survival and other cellular endpoints from proton, heavy ion, and neutron irradiation. This model has been used for over 30 years to successfully fit many radiobiology data sets. We review several extensions of this approach that address objections to the original model, and consider applications of interest in radiobiology and space radiation risk assessment. In the light of present views of important cellular targets, the role of target size as manifested through the relative contributions from ion-kill (intra-track) and gamma-kill (inter-track) remains a critical question in understanding the success of the amorphous track model. Several variations of the amorphous model are discussed, including ones that consider the radial distribution of event-sizes rather than average electron dose, damage clusters rather than multiple targets, and a role for repair or damage processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penfold, S; Miller, A
2015-06-15
Purpose: Stoichiometric calibration of Hounsfield Units (HUs) for conversion to proton relative stopping powers (RStPs) is vital for accurate dose calculation in proton therapy. However proton dose distributions are not only dependent on RStP, but also on relative scattering power (RScP) of patient tissues. RScP is approximated from material density but a stoichiometric calibration of HU-density tables is commonly neglected. The purpose of this work was to quantify the difference in calculated dose of a commercial TPS when using HU-density tables based on tissue substitute materials and stoichiometric calibrated ICRU tissues. Methods: Two HU-density calibration tables were generated based onmore » scans of the CIRS electron density phantom. The first table was based directly on measured HU and manufacturer quoted density of tissue substitute materials. The second was based on the same CT scan of the CIRS phantom followed by a stoichiometric calibration of ICRU44 tissue materials. The research version of Pinnacle{sup 3} proton therapy was used to compute dose in a patient CT data set utilizing both HU-density tables. Results: The two HU-density tables showed significant differences for bone tissues; the difference increasing with increasing HU. Differences in density calibration table translated to a difference in calculated RScP of −2.5% for ICRU skeletal muscle and 9.2% for ICRU femur. Dose-volume histogram analysis of a parallel opposed proton therapy prostate plan showed that the difference in calculated dose was negligible when using the two different HU-density calibration tables. Conclusion: The impact of HU-density calibration technique on proton therapy dose calculation was assessed. While differences were found in the calculated RScP of bony tissues, the difference in dose distribution for realistic treatment scenarios was found to be insignificant.« less
Trudel, David; Tlustos, Christina; Von Goetz, Natalie; Scheringer, Martin; Hungerbühler, Konrad
2011-01-01
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants added to plastics, polyurethane foam, electronics, textiles, and other products. These products release PBDEs into the indoor and outdoor environment, thus causing human exposure through food and dust. This study models PBDE dose distributions from ingestion of food for Irish adults on congener basis by using two probabilistic and one semi-deterministic method. One of the probabilistic methods was newly developed and is based on summary statistics of food consumption combined with a model generating realistic daily energy supply from food. Median (intermediate) doses of total PBDEs are in the range of 0.4-0.6 ng/kg(bw)/day for Irish adults. The 97.5th percentiles of total PBDE doses lie in a range of 1.7-2.2 ng/kg(bw)/day, which is comparable to doses derived for Belgian and Dutch adults. BDE-47 and BDE-99 were identified as the congeners contributing most to estimated intakes, accounting for more than half of the total doses. The most influential food groups contributing to this intake are lean fish and salmon which together account for about 22-25% of the total doses.
SUMMARY OF FRUIT IRRADIATION AT WAGENINGEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Zeeuw, D.
Use was made of l Mev electrons produced by a normal Van de Graaff accelerator in fresh soft fruit. In order to obtain an even dose distribution over the surface of fruit, it was packed one layer thick in small plastic boxes. Both upper and lower sides of these boxes were irradiated. In case of firmer fruit species, such as plums, these were also placed on mechanically driven rollers on which they were slowly rotated during irradiation. With this method the irradiation time was chosen twice as long as for the packed fruit so as to meet the total dosemore » requirement. Dosimetry measurements were made by both chemical and physical methods. The dose rate was 2 Krad per second. Results obtained with 100 to 500 Krad doses are given for strawberries, raspberries, red and black currants, blackberries, cherries, and plums. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairchild, R.G.; Bond, V.P.
The characteristics of dose distribution, beam alignment, and radiobiological advantages accorded to high LET radiation were reviewed and compared for various particle beam radiotherapeutic modalities (neutron, Auger electrons, p, ..pi../sup -/, He, C, Ne, and Ar ions). Merit factors were evaluated on the basis of effective dose to tumor relative to normal tissue, linear energy transfer (LET), and dose localization, at depths of 1, 4, and 10 cm. In general, it was found that neutron capture therapy using an epithermal neutron beam provided the best merit factors available for depths up to 8 cm. The position of fast neutron therapymore » on the Merit Factor Tables was consistently lower than that of other particle modalities, and above only /sup 60/Co. The largest body of clinical data exists for fast neutron therapy; results are considered by some to be encouraging. It then follows that if benefits with fast neutron therapy are real, additional gains are within reach with other modalities.« less
Fine-resolution voxel S values for constructing absorbed dose distributions at variable voxel size.
Dieudonné, Arnaud; Hobbs, Robert F; Bolch, Wesley E; Sgouros, George; Gardin, Isabelle
2010-10-01
This article presents a revised voxel S values (VSVs) approach for dosimetry in targeted radiotherapy, allowing dose calculation for any voxel size and shape of a given SPECT or PET dataset. This approach represents an update to the methodology presented in MIRD pamphlet no. 17. VSVs were generated in soft tissue with a fine spatial sampling using the Monte Carlo (MC) code MCNPX for particle emissions of 9 radionuclides: (18)F, (90)Y, (99m)Tc, (111)In, (123)I, (131)I, (177)Lu, (186)Re, and (201)Tl. A specific resampling algorithm was developed to compute VSVs for desired voxel dimensions. The dose calculation was performed by convolution via a fast Hartley transform. The fine VSVs were calculated for cubic voxels of 0.5 mm for electrons and 1.0 mm for photons. Validation studies were done for (90)Y and (131)I VSV sets by comparing the revised VSV approach to direct MC simulations. The first comparison included 20 spheres with different voxel sizes (3.8-7.7 mm) and radii (4-64 voxels) and the second comparison a hepatic tumor with cubic voxels of 3.8 mm. MC simulations were done with MCNPX for both. The third comparison was performed on 2 clinical patients with the 3D-RD (3-Dimensional Radiobiologic Dosimetry) software using the EGSnrc (Electron Gamma Shower National Research Council Canada)-based MC implementation, assuming a homogeneous tissue-density distribution. For the sphere model study, the mean relative difference in the average absorbed dose was 0.20% ± 0.41% for (90)Y and -0.36% ± 0.51% for (131)I (n = 20). For the hepatic tumor, the difference in the average absorbed dose to tumor was 0.33% for (90)Y and -0.61% for (131)I and the difference in average absorbed dose to the liver was 0.25% for (90)Y and -1.35% for (131)I. The comparison with the 3D-RD software showed an average voxel-to-voxel dose ratio between 0.991 and 0.996. The calculation time was below 10 s with the VSV approach and 50 and 15 h with 3D-RD for the 2 clinical patients. This new VSV approach enables the calculation of absorbed dose based on a SPECT or PET cumulated activity map, with good agreement with direct MC methods, in a faster and more clinically compatible manner.
NASA Astrophysics Data System (ADS)
Neretti, G.; Taglioli, M.; Colonna, G.; Borghi, C. A.
2017-01-01
In this work a low-temperature plasma source for the generation of plasma activated water (PAW) is developed and characterized. The plasma reactor was operated by means of an atmospheric-pressure air dielectric barrier discharge (DBD). The plasma generated is in contact with the water surface and is able to chemically activate the liquid medium. Electrodes were supplied by both sinusoidal and nanosecond-pulsed voltage waveforms. Treatment times were varied from 2 to 12 min to increase the energy dose released to the water by the DBD plasma. The physics of the discharge was studied by means of electrical, spectroscopic and imaging diagnostics. The interaction between the plasma and the liquid was investigated as well. Temperature and composition of the treated water were detected. Images of the discharges showed a filamentary behaviour in the sinusoidal case and a more homogeneous behaviour in the nanosecond-pulsed one. The images and the electrical measurements allowed to evaluate an average electron number density of about 4 × 1019 and 6 × 1017 m-3 for the sinusoidal and nanosecond-pulsed discharges respectively. Electron temperatures in the range of 2.1÷2.6 eV were measured by using spectroscopic diagnostics. Rotational temperatures in the range of 318-475 K were estimated by fitting synthetic spectra with the measured ones. Water temperature and pH level did not change significantly after the exposure to the DBD plasma. The production of ozone and hydrogen peroxide within the water was enhanced by increasing the plasma treatment time and the energy dose. Numerical simulations of the nanosecond-pulsed discharge were performed by using a self-consistent coupling of state-to-state kinetics of the air mixture with the Boltzmann equation of free electron kinetics. Temporal evolution of the electron energy distribution function shows departure from the Maxwellian distribution especially during the afterglow phase of the discharge. When limited deviations from Maxwellian distribution were observed, calculated electron temperature is in good agreement with the one measured by means of spectroscopic diagnostics. Computed temporal evolution of the energy delivered to the discharge is comparable with the one obtained from electrical measurements. The electrical discharges supplied by both voltage waveforms produce plasma activated water with negligible thermal effects and pH variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smit, C; Plessis, F du
Purpose: To extract the electron contamination energy spectra for an Elekta Precise Linac, based on pure photon and measured clinical beam percentage depth dose data. And to include this as an additional source in isource 4 in DOSXYZnrc. Methods: A pure photon beam was simulated for the Linac using isource 4 in the DOSXYZnrc Monte Carlo (MC) code. Percentage depth dose (PDD) data were extracted afterwards for a range of field sizes (FS). These simulated dose data were compared to actual measured dose PDD data, with the data normalized at 10 cm depth. The resulting PDD data resembled the electronmore » contamination depth dose. Since the dose fall-off is a strictly decreasing function, a method was adopted to derive the contamination electron spectrum. Afterwards this spectrum was used in a DOSXYZnrc MC simulation run to verify that the original electron depth dose could be replicated. Results: Various square aperture FS’s for 6, 8 and 15 megavolt (MV) photon beams were modeled, simulated and compared to their respective actual measured PDD data. As FS increased, simulated pure photon depth-dose profiles shifted deeper, thus requiring electron contamination to increase the surface dose. The percentage of electron weight increased with increase in FS. For a FS of 15×15 cm{sup 2}, the percentage electron weight is 0.1%, 0.2% and 0.4% for 6, 8 and 15 MV beams respectively. Conclusion: From the PDD results obtained, an additional electron contamination source was added to the photon source model so that simulation and measured PDD data could match within 2 % / 2 mm gamma-index criteria. The improved source model could assure more accurate simulations of surface doses. This research project was funded by the South African Medical Research Council (MRC) with funds from National Treasury under its Economic Competitiveness and Support package.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, S. A. M.; Ansbacher, W.; Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6
2013-01-15
Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are usedmore » to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements support the dose perturbations demonstrated by Monte Carlo and Acuros XB data. Conclusions: Acuros XB is shown to perform as well as Monte Carlo methods and better than existing clinical algorithms for dose calculations involving high-density volumes.« less
SU-F-T-68: Characterizes of Microdetectors in Electron Beam Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, I; Andersen, A; Akino, Y
Purpose: Electron beam dosimetry requires high resolution data due to finite range that can be accomplished with small volume detectors. The small-field used in advance technologies in photon beam has created a market for microdetectors, however characteristics are significantly variable in photon beams and relatively unknown in electron beam that is investigated in this study. Methods: Among nearly 2 dozen microdetectors that have been investigated in small fields of photon beam, two popular detectors (microDiamond 60019 (PTW)) and W1 plastic scintillator detector (Standard Imaging)) that are tissue equivalent and have very small sensitive volume are selected. Electron beams from Varianmore » linear accelerators were used to investigate dose linearity dose rate dependence, energy dependence, depth dose and profiles in a reference condition in a water phantom. For W1 that has its own Supermax electrometer point by point measurements were performed. For microDiamond, a PTW-scanning tank was used for both scanning and point dose measurements. Results: W1 detector showed excellent dose linearity (r{sup 2} =1.0) from 5–500 MU either with variation of dose rate or beam energy. Similar findings were also observed for microdiamond with r{sup 2}=1.0. Percent variations in dose/MU for W1 and microDiamond were 0.2–1.1% and 0.4–1.2%, respectively among dose rate and beam energy. This variation was random for microDiamond, whereas it decreased with beam energy and dose rate for W1. The depth dose and profiles were within ±1 mm for both detectors. Both detectors did not show any energy dependence in electron beams. Conclusion: Both microDiamond and W1 detectors provided superior characteristics of beam parameters in electron beam including dose, dose rate linearity and energy independence. Both can be used in electron beam except W1 require point by point measurements and microdiamond requires 1500 MU for initial quenching.« less
NASA Astrophysics Data System (ADS)
Hoffmann, Ryan; Dennison, J. R.; Abbott, Jonathan
2006-03-01
When incident energetic electrons interact with a material, they excite electrons within the material to escape energies. The electron emission is quantified as the ratio of emitted electrons to incident particle flux, termed electron yield. Measuring the electron yield of insulators is difficult due to dynamic surface charge accumulation which directly affects landing energies and the potential barrier that emitted electrons must overcome. Our recent measurements of highly insulating materials have demonstrated significant changes in total yield curves and yield decay curves for very small electron doses equivalent to a trapped charge density of <10^10 electrons /cm^3. The Chung-Everhart theory provides a basic model for the behavior of the electron emission spectra which we relate to yield decay curves as charge is allowed to accumulate. Yield measurements as a function of dose for polyimide (Kapton^TM) and microcrystalline SiO2 will be presented. We use our data and model to address the question of whether there is a minimal dose threshold at which the accumulated charge no longer affects the yield.
Electron beam patterning for writing of positively charged gold colloidal nanoparticles
NASA Astrophysics Data System (ADS)
Zafri, Hadar; Azougi, Jonathan; Girshevitz, Olga; Zalevsky, Zeev; Zitoun, David
2018-02-01
Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68 ± 18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate. [Figure not available: see fulltext.
Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.
Sterpin, E; Sorriaux, J; Vynckier, S
2013-11-01
Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4. PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer-Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for (1)H and ICRU 63 data for (12)C, (14)N, (16)O, (31)P, and (40)Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth-dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth-dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone. For simulations with EM collisions only, integral depth-dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth-dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth-dose distributions). The agreement is much better with FLUKA, with deviations within 3%/3 mm. When nuclear interactions were turned on, agreement (within 6% before the Bragg-peak) between PENH and Geant4 was consistent with uncertainties on nuclear models and cross sections, whatever the material simulated (water, muscle, or bone). A detailed and flexible description of nuclear reactions has been implemented in the PENH extension of PENELOPE to protons, which utilizes a mixed-simulation scheme for both elastic and inelastic EM collisions, analogous to the well-established algorithm for electrons/positrons. PENH is compatible with all current main programs that use PENELOPE as the MC engine. The nuclear model of PENH is realistic enough to give dose distributions in fair agreement with those computed by Geant4.
Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterpin, E.; Sorriaux, J.; Vynckier, S.
2013-11-15
Purpose: Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4.Methods: PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer–Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for {sup 1}H and ICRUmore » 63 data for {sup 12}C, {sup 14}N, {sup 16}O, {sup 31}P, and {sup 40}Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth–dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth–dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone.Results: For simulations with EM collisions only, integral depth–dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth–dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth–dose distributions). The agreement is much better with FLUKA, with deviations within 3%/3 mm. When nuclear interactions were turned on, agreement (within 6% before the Bragg-peak) between PENH and Geant4 was consistent with uncertainties on nuclear models and cross sections, whatever the material simulated (water, muscle, or bone).Conclusions: A detailed and flexible description of nuclear reactions has been implemented in the PENH extension of PENELOPE to protons, which utilizes a mixed-simulation scheme for both elastic and inelastic EM collisions, analogous to the well-established algorithm for electrons/positrons. PENH is compatible with all current main programs that use PENELOPE as the MC engine. The nuclear model of PENH is realistic enough to give dose distributions in fair agreement with those computed by Geant4.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, G. S.; Joshi, D. S.; Tripathy, S. P., E-mail: sam.tripathy@gmail.com, E-mail: tripathy@barc.gov.in
2016-07-14
In this work, electron induced modifications on the bulk etch rate, structural and optical parameters of CR-39 polymer were studied using gravimetric, FTIR (Fourier Transform Infrared) and UV–vis (Ultraviolet–Visible) techniques, respectively. CR-39 samples were irradiated with 10 MeV electron beam for different durations to have the absorbed doses of 1, 10, 550, 5500, 16 500, and 55 000 kGy. From the FTIR analysis, the peak intensities at different bands were found to be changing with electron dose. A few peaks were observed to shift at high electron doses. From the UV-vis analysis, the optical band gaps for both direct and indirect transitions weremore » found to be decreasing with the increase in electron dose whereas the opacity, number of carbon atoms in conjugation length, and the number of carbon atoms per cluster were found to be increasing. The bulk etch rate was observed to be increasing with the electron dose. The primary objective of this investigation was to study the response of CR-39 to high electron doses and to determine a suitable pre-irradiation condition. The results indicated that, the CR-39 pre-irradiated with electrons can have better sensitivity and thus can be potentially applied for neutron dosimetry.« less
Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L.
2015-09-15
Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed usingmore » a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7–13 MeV) and the 1.0-cm (13–20 MeV) R{sub 90} spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R{sub 80–20} decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. Conclusions: The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6–20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.« less
Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.
McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P
2015-09-01
The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7-13 MeV) and the 1.0-cm (13-20 MeV) R90 spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R80-20 decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6-20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.
QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.
Nilsen, Vegard; Wyller, John
2016-01-01
Spatial and/or temporal clustering of pathogens will invalidate the commonly used assumption of Poisson-distributed pathogen counts (doses) in quantitative microbial risk assessment. In this work, the theoretically predicted effect of spatial clustering in conventional "single-hit" dose-response models is investigated by employing the stuttering Poisson distribution, a very general family of count distributions that naturally models pathogen clustering and contains the Poisson and negative binomial distributions as special cases. The analysis is facilitated by formulating the dose-response models in terms of probability generating functions. It is shown formally that the theoretical single-hit risk obtained with a stuttering Poisson distribution is lower than that obtained with a Poisson distribution, assuming identical mean doses. A similar result holds for mixed Poisson distributions. Numerical examples indicate that the theoretical single-hit risk is fairly insensitive to moderate clustering, though the effect tends to be more pronounced for low mean doses. Furthermore, using Jensen's inequality, an upper bound on risk is derived that tends to better approximate the exact theoretical single-hit risk for highly overdispersed dose distributions. The bound holds with any dose distribution (characterized by its mean and zero inflation index) and any conditional dose-response model that is concave in the dose variable. Its application is exemplified with published data from Norovirus feeding trials, for which some of the administered doses were prepared from an inoculum of aggregated viruses. The potential implications of clustering for dose-response assessment as well as practical risk characterization are discussed. © 2016 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y; Chang, A; Liu, Y
Purpose: Electron beams are commonly used for boost radiation following whole breast irradiation (WBI) to improve the in-breast local control. Proton beams have a finite range and a sharper distal dose falloff compared to electron beams, thus potentially sparing more heart and lung in breast treatment. The purpose of the study is to compare protons with electrons for boost breast treatment in terms of target coverage and normal tissue sparing. Methods: Six breast cancer patients were included in this study. All women received WBI to 45–50 Gy, followed by a 10–16.2 Gy boost with standard fractionation. If proton beams weremore » used for the boost treatment, an electron plan was retrospectively generated for comparison using the same CT set and structures, and vice versa if electron beams were used for treatment. Proton plans were generated using the treatment planning system (TPS) with two to three uniform scanning proton beams. Electron plans were generated using the Pinnacle TPS with one single en face beam. Dose-volume histograms (DVH) were calculated and compared between proton and electron boost plans. Results: Proton plans show a similar boost target coverage, similar skin dose, and much better heart and lung sparing. For an example patient, V95% for PTV was 99.98% and skin (5 mm shell) received a max dose close to the prescription dose for both protons and electrons; however, V2 and V5 for the ipsilateral lung and heart were 37.5%, 17.9% and 19.9%, 4.9% respectively for electrons, but were essentially 0 for protons. Conclusions: This dosimetric comparison demonstrates that while both proton therapy and electron therapy provided similar coverage and skin dose, proton therapy could largely reduce the dose to lung and heart, thus leading to potential less side effects.« less
Monte Carlo studies on photon interactions in radiobiological experiments
Shahmohammadi Beni, Mehrdad; Krstic, D.; Nikezic, D.
2018-01-01
X-ray and γ-ray photons have been widely used for studying radiobiological effects of ionizing radiations. Photons are indirectly ionizing radiations so they need to set in motion electrons (which are a directly ionizing radiation) to perform the ionizations. When the photon dose decreases to below a certain limit, the number of electrons set in motion will become so small that not all cells in an “exposed” cell population can get at least one electron hit. When some cells in a cell population are not hit by a directly ionizing radiation (in other words not irradiated), there will be rescue effect between the irradiated cells and non-irradiated cells, and the resultant radiobiological effect observed for the “exposed” cell population will be different. In the present paper, the mechanisms underlying photon interactions in radiobiological experiments were studied using our developed NRUphoton computer code, which was benchmarked against the MCNP5 code by comparing the photon dose delivered to the cell layer underneath the water medium. The following conclusions were reached: (1) The interaction fractions decreased in the following order: 16O > 12C > 14N > 1H. Bulges in the interaction fractions (versus water medium thickness) were observed, which reflected changes in the energies of the propagating photons due to traversals of different amount of water medium as well as changes in the energy-dependent photon interaction cross-sections. (2) Photoelectric interaction and incoherent scattering dominated for lower-energy (10 keV) and high-energy (100 keV and 1 MeV) incident photons. (3) The fractions of electron ejection from different nuclei were mainly governed by the photoelectric effect cross-sections, and the fractions from the 1s subshell were the largest. (4) The penetration fractions in general decreased with increasing medium thickness, and increased with increasing incident photon energy, the latter being explained by the corresponding reduction in interaction cross-sections. (5) The areas under the angular distribution curves of photons exiting the medium layer and subsequently undergoing interactions within the cell layer became smaller for larger incident photon energies. (6) The number of cells suffering at least one electron hit increased with the administered dose. For larger incident photon energies, the numbers of cells suffering at least one electron hit became smaller, which was attributed to the reduction in the photon interaction cross-section. These results highlighted the importance of the administered dose in radiobiological experiments. In particular, the threshold administered doses at which all cells in the exposed cell array suffered at least one electron hit might provide hints on explaining the intriguing observation that radiation-induced cancers can be statistically detected only above the threshold value of ~100 mSv, and thus on reconciling controversies over the linear no-threshold model. PMID:29561871
Modified radiotherapy technique in the treatment of medulloblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewit, L.; Van Dam, J.; Rijnders, A.
1984-02-01
Craniospinal irradiation is a standard treatment technique in patients who receive surgery for medulloblastoma. In most centers megavoltage photon irradiation is used, resulting in significant irradiation exposure to critical organs. In order to overcome this difficulty, the authors recently modified the technique applied in their center, by using high energy electrons (20 MeV) for irradiation of the spinal cord. The reliability of this technique was checked by performing dosimetry in a specially constructed wax phantom. Attention was focused upon dose variations at the junction of fields. Furthermore, the influence of vertebrae on the absorbed dose distribution of high energy electronsmore » is presented. This technique seems to be safe and reliable in selected patients (children and teenagers).« less
1990-04-01
and a stepped lead flattening filter. The electron energy used for these studies was 13 MeV. Dosimetry was performed by the Health Physics Division...VolI LJSAFSAPA-TR-90-4 AD-A222 722 SURVIVAL OF CHINESE HAMSTER OVARY CELLS FOLLOWING ULTRAHIGH DOSE RATE ELECTRON AND BREMISSTRAHLUNG RADIATION...Include Security ;a!. iatcn) Survival of Chinese Hamster Ovary Cells Following Ultrahigh Dose Rate Electron and Bremsstrahlung Radiation 12 PERSONAL
Patient-specific CT dosimetry calculation: a feasibility study.
Fearon, Thomas; Xie, Huchen; Cheng, Jason Y; Ning, Holly; Zhuge, Ying; Miller, Robert W
2011-11-15
Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of "standard man". Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient-specific CT dosimetry. A radiation treatment planning system was modified to calculate patient-specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose-volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi-empirical, measured correction-based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point-by-point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%-20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient-specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation.
Dose specification for radiation therapy: dose to water or dose to medium?
NASA Astrophysics Data System (ADS)
Ma, C.-M.; Li, Jinsheng
2011-05-01
The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.
Aluminum surface modification by a non-mass-analyzed nitrogen ion beam
NASA Astrophysics Data System (ADS)
Ohira, Shigeo; Iwaki, Masaya
Non-mass-analyzed nitrogen ion implantation into polycrystal and single crystal aluminum sheets has been carried out at an accelerating voltage of 90 kV and a dose of 1 × 10 18 N ions/cm 2 using a Zymet implanter model Z-100. The pressure during implantation rose to 10 -3 Pa due to the influence of N gas feeding into the ion source. The characteristics of the surface layers were investigated by means of Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission electron diffraction (TED), and microscopy (TEM). The AES depth profiling shows a rectangular-like distribution of N atoms and little migration of O atoms near the surface. The high dose N-implantation forms c-axis oriented aluminum nitride (AIN) crystallines, and especially irradiation of Al single crystals with N ions leads to the formation of a hcp AlN single crystal. It is concluded that the high dose N-implantation in Al can result in the formation of AlN at room temperature without any thermal annealing. Furthermore, non-mass-analyzed N-implantation at a pressure of 10 -3 Pa of the nitrogen atmosphere causes the formation of pure AlN single crystals in the Al surface layer and consequently it can be practically used for AlN production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova, M; Qu, B; Palma, B
2014-06-15
Purpose: To develop a tool for treatment planning optimization for fast radiotherapy delivered with very high-energy electron beams (VHEE) and to compare VHEE plans to state-of-the-art plans for challenging pelvis and H'N cases. Methods: Treatment planning for radiotherapy delivered with VHEE scanning pencil beams was performed by integrating EGSnrc Monte Carlo (MC) dose calculations with spot scanning optimization run in a research version of RayStation. A Matlab GUI for MC beamlet generation was developed, in which treatment parameters such as the pencil beam size and spacing, energy and number of beams can be selected. Treatment planning study for H'N andmore » pelvis cases was performed and the effect of treatment parameters on the delivered dose distributions was evaluated and compared to the clinical treatment plans. The pelvis case with a 691cm3 PTV was treated with 2-arc 15MV VMAT and the H'N case with four PTVs with total volume of 531cm3 was treated with 4-arc 6MV VMAT. Results: Most studied VHEE plans outperformed VMAT plans. The best pelvis 80MeV VHEE plan with 25 beams resulted in 12% body dose sparing and 8% sparing to the bowel and right femur compared to the VMAT plan. The 100MeV plan was superior to the 150MeV plan. Mixing 100 and 150MeV improved dose sparing to the bladder by 7% compared to either plan. Plans with 16 and 36 beams did not significantly affect the dose distributions compared to 25 beam plans. The best H'N 100MeV VHEE plan decreased mean doses to the brainstem, chiasm, and both globes by 10-42% compared to the VMAT plan. Conclusion: The pelvis and H'N cases suggested that sixteen 100MeV beams might be sufficient specifications of a novel VHEE treatment machine. However, optimum machine parameters will be determined with the presented VHEE treatment-planning tool for a large number of clinical cases. BW Loo and P Maxim received research support from RaySearch Laboratories. E Hynning and B Hardemark are employees of RaySearch Laboratories.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, B; Chiu, T; Gu, X
Purpose: 3D printed custom bolus is regularly used in radiation therapy clinic as a compensator. However, usual method of bolus printing with 100% filling is very time-consuming. The purpose of this study is to evaluate the feasibility and benefit of 3D printed bolus filled with UR. Methods: Two boluses were designed on nose (9e electrons) and ear (6× photons) for a head phantom in treatment planning system (TPS) to achieve dose coverage to the skin. The bolus structures (56–167cc) were converted to STereoLithographic (STL) model using an in-house developed algorithm and sent to a commercial fused deposition modeling (FDM) printer.more » Only shells were printed with polylactic acid (PLA) material. Liquid UR was then placed in a vacuum pump and slowly poured into the hollow bolus from its top opening. Liquid UR hardened in around half an hour. The phantom was rescanned with custom boluses attached and the dosimetry was compared with original design in TPS. Basic CT and dose properties were investigated. GaF films were irradiated to measure dose profile and output of several open photon and electron beams under solid water and UR slabs of same thicknesses. Results: CT number was 11.2±7.3 and 65.4±7.8, respectively for solid water(∼1.04g/cc) and UR(∼1.08g/cc). The output measurement at dmax for 6× was within 2% for the two materials. The relative dose profiles of the two materials above dmax show 94–99% Gamma analysis passing rates for both photons and electrons. Dose distributions with 3D PUR boluses maintained great coverage on the intended skin regions and resembled that with computer generated boluses. Manufacturing 3D PUR boluses was 3–4 times faster than 100% printed boluses. The efficiency significantly improves for larger boluses. Conclusion: The study suggests UR has similar dose responses as solid water. Making custom bolus with UR greatly increases clinical workflow efficiency.« less
Software electron counting for low-dose scanning transmission electron microscopy.
Mittelberger, Andreas; Kramberger, Christian; Meyer, Jannik C
2018-05-01
The performance of the detector is of key importance for low-dose imaging in transmission electron microscopy, and counting every single electron can be considered as the ultimate goal. In scanning transmission electron microscopy, low-dose imaging can be realized by very fast scanning, however, this also introduces artifacts and a loss of resolution in the scan direction. We have developed a software approach to correct for artifacts introduced by fast scans, making use of a scintillator and photomultiplier response that extends over several pixels. The parameters for this correction can be directly extracted from the raw image. Finally, the images can be converted into electron counts. This approach enables low-dose imaging in the scanning transmission electron microscope via high scan speeds while retaining the image quality of artifact-free slower scans. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Mille, Matthew M.; Xu, X. George; Rivard, Mark J.
2010-01-01
Purpose: Accelerated partial breast irradiation via interstitial balloon brachytherapy is a fast and effective treatment method for certain early stage breast cancers. The radiation can be delivered using a conventional high-dose rate (HDR) 192Ir gamma-emitting source or a novel electronic brachytherapy (eBx) source which uses lower energy x rays that do not penetrate as far within the patient. A previous study [A. Dickler, M. C. Kirk, N. Seif, K. Griem, K. Dowlatshahi, D. Francescatti, and R. A. Abrams, “A dosimetric comparison of MammoSite high-dose-rate brachytherapy and Xoft Axxent electronic brachytherapy,” Brachytherapy 6, 164–168 (2007)] showed that the target dose is similar for HDR 192Ir and eBx. This study compares these sources based on the dose received by healthy organs and tissues away from the treatment site. Methods: A virtual patient with left breast cancer was represented by a whole-body, tissue-heterogeneous female voxel phantom. Monte Carlo methods were used to calculate the dose to healthy organs in a virtual patient undergoing balloon brachytherapy of the left breast with HDR 192Ir or eBx sources. The dose-volume histograms for a few organs which received large doses were also calculated. Additional simulations were performed with all tissues in the phantom defined as water to study the effect of tissue inhomogeneities. Results: For both HDR 192Ir and eBx, the largest mean organ doses were received by the ribs, thymus gland, left lung, heart, and sternum which were close to the brachytherapy source in the left breast. eBx yielded mean healthy organ doses that were more than a factor of ∼1.4 smaller than for HDR 192Ir for all organs considered, except for the three closest ribs. Excluding these ribs, the average and median dose-reduction factors were ∼28 and ∼11, respectively. The volume distribution of doses in nearby soft tissue organs that were outside the PTV were also improved with eBx. However, the maximum dose to the closest rib with the eBx source was 5.4 times greater than that of the HDR 192Ir source. The ratio of tissue-to-water maximum rib dose for the eBx source was ∼5. Conclusions: The results of this study indicate that eBx may offer lower toxicity to most healthy tissues, except nearby bone. TG-43 methods have a tendency to underestimate dose to bone, especially the ribs. Clinical studies evaluating the negative health effects caused by irradiating healthy organs are needed so that physicians can better understand when HDR 192Ir or eBx might best benefit a patient. PMID:20229875
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benmakhlouf, H; Kraepelien, T; Forander, P
2014-06-01
Purpose: Most Gamma knife treatments are based solely on MR-images. However, for fractionated treatments and to implement TPS dose calculations that require electron densities, CT image data is essential. The purpose of this work is to assess the dosimetric effects of using MR-images registered with stereotactic CT-images in Gamma knife treatments. Methods: Twelve patients treated for vestibular schwannoma with Gamma Knife Perfexion (Elekta Instruments, Sweden) were selected for this study. The prescribed doses (12 Gy to periphery) were delivered based on the conventional approach of using stereotactic MR-images only. These plans were imported into stereotactic CT-images (by registering MR-images withmore » stereotactic CT-images using the Leksell gamma plan registration software). The dose plans, for each patient, are identical in both cases except for potential rotations and translations resulting from the registration. The impact of the registrations was assessed by an algorithm written in Matlab. The algorithm compares the dose-distributions voxel-by-voxel between the two plans, calculates the full dose coverage of the target (treated in the conventional approach) achieved by the CT-based plan, and calculates the minimum dose delivered to the target (treated in the conventional approach) achieved by the CT-based plan. Results: The mean dose difference between the plans was 0.2 Gy to 0.4 Gy (max 4.5 Gy) whereas between 89% and 97% of the target (treated in the conventional approach) received the prescribed dose, by the CT-plan. The minimum dose to the target (treated in the conventional approach) given by the CT-based plan was between 7.9 Gy and 10.7 Gy (compared to 12 Gy in the conventional treatment). Conclusion: The impact of using MR-images registered with stereotactic CT-images has successfully been compared to conventionally delivered dose plans showing significant differences between the two. Although CTimages have been implemented clinically; the effect of the registration has not been fully investigated.« less
MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pater, P; Vallieres, M; Seuntjens, J
2014-06-15
Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dosemore » deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)« less
Antolak, J A; Cundiff, J H; Ha, C S
1998-01-01
The purpose of this report is to discuss the utilization of thermoluminescent dosimetry (TLD) in total skin electron beam (TSEB) radiotherapy to: (a) compare patient dose distributions for similar techniques on different machines, (b) confirm beam calibration and monitor unit calculations, (c) provide data for making clinical decisions, and (d) study reasons for variations in individual dose readings. We report dosimetric results for 72 cases of mycosis fungoides, using similar irradiation techniques on two different linear accelerators. All patients were treated using a modified Stanford 6-field technique. In vivo TLD was done on all patients, and the data for all patients treated on both machines was collected into a database for analysis. Means and standard deviations (SDs) were computed for all locations. Scatter plots of doses vs. height, weight, and obesity index were generated, and correlation coefficients with these variables were computed. The TLD results show that our current TSEB implementation is dosimetrically equivalent to the previous implementation, and that our beam calibration technique and monitor unit calculation is accurate. Correlations with obesity index were significant at several sites. Individual TLD results allow us to customize the boost treatment for each patient, in addition to revealing patient positioning problems and/or systematic variations in dose caused by patient variability. The data agree well with previously published TLD results for similar TSEB techniques. TLD is an important part of the treatment planning and quality assurance programs for TSEB, and routine use of TLD measurements for TSEB is recommended.
Poster — Thur Eve — 14: Improving Tissue Segmentation for Monte Carlo Dose Calculation using DECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Salvio, A.; Bedwani, S.; Carrier, J-F.
2014-08-15
Purpose: To improve Monte Carlo dose calculation accuracy through a new tissue segmentation technique with dual energy CT (DECT). Methods: Electron density (ED) and effective atomic number (EAN) can be extracted directly from DECT data with a stoichiometric calibration method. Images are acquired with Monte Carlo CT projections using the user code egs-cbct and reconstructed using an FDK backprojection algorithm. Calibration is performed using projections of a numerical RMI phantom. A weighted parameter algorithm then uses both EAN and ED to assign materials to voxels from DECT simulated images. This new method is compared to a standard tissue characterization frommore » single energy CT (SECT) data using a segmented calibrated Hounsfield unit (HU) to ED curve. Both methods are compared to the reference numerical head phantom. Monte Carlo simulations on uniform phantoms of different tissues using dosxyz-nrc show discrepancies in depth-dose distributions. Results: Both SECT and DECT segmentation methods show similar performance assigning soft tissues. Performance is however improved with DECT in regions with higher density, such as bones, where it assigns materials correctly 8% more often than segmentation with SECT, considering the same set of tissues and simulated clinical CT images, i.e. including noise and reconstruction artifacts. Furthermore, Monte Carlo results indicate that kV photon beam depth-dose distributions can double between two tissues of density higher than muscle. Conclusions: A direct acquisition of ED and the added information of EAN with DECT data improves tissue segmentation and increases the accuracy of Monte Carlo dose calculation in kV photon beams.« less
Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N
2000-05-01
We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.
Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Wuu, C.-S.; Maryanski, Marek J.
2004-11-01
Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG{sup reg}3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS{sup TM} laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner ismore » further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG{sup registered}3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cmx6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the '3%-or-2 mm' criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.« less
High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+
NASA Astrophysics Data System (ADS)
Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.
2018-03-01
The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.
Mrázová, H; Koller, J; Kubišová, K; Fujeríková, G; Klincová, E; Babál, P
2016-06-01
Sterilization is an important step in the preparation of biological material for transplantation. The aim of the study is to compare morphological changes in three types of biological tissues induced by different doses of gamma and electron beam radiation. Frozen biological tissues (porcine skin xenografts, human skin allografts and human amnion) were irradiated with different doses of gamma rays (12.5, 25, 35, 50 kGy) and electron beam (15, 25, 50 kGy). Not irradiated specimens served as controls. The tissue samples were then thawn and fixed in 10 % formalin, processed by routine paraffin technique and stained with hematoxylin and eosin, alcian blue at pH 2.5, orcein, periodic acid Schiff reaction, phosphotungstic acid hematoxylin, Sirius red and silver impregnation. The staining with hematoxylin and eosin showed vacuolar cytoplasmic changes of epidermal cells mainly in the samples of xenografts irradiated by the lowest doses of gamma and electron beam radiation. The staining with orcein revealed damage of fine elastic fibers in the xenograft dermis at the dose of 25 kGy of both radiation types. Disintegration of epithelial basement membrane, especially in the xenografts, was induced by the dose of 15 kGy of electron beam radiation. The silver impregnation disclosed nuclear chromatin condensation mainly in human amnion at the lowest doses of both radiation types and disintegration of the fine collagen fibers in the papillary dermis induced by the lowest dose of electron beam and by the higher doses of gamma radiation. Irradiation by both, gamma rays and the electron beam, causes similar changes on cells and extracellular matrix, with significant damage of the basement membrane and of the fine and elastic and collagen fibers in the papillary dermis, the last caused already by low dose electron beam radiation.
Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George
2010-01-01
Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874
Gas bremsstrahlung shielding calculation for first optic enclosure of ILSF medical beamline
NASA Astrophysics Data System (ADS)
Beigzadeh Jalali, H.; Salimi, E.; Rahighi, J.
2016-10-01
Gas bremsstrahlung is generated in high energy electron storage ring accompanies the synchrotron radiation into the beamlines and strike the various components of the beamline. In this paper, radiation shielding calculation for secondary gas bremsstrahlung is performed for the first optics enclosure (FOE) of medical beamline of the Iranian Light Source Facility (ILSF). Dose equivalent rate (DER) calculation is accomplished using FLUKA Monte Carlo code. A comprehensive study of DER distribution at the back wall, sides and roof is given.
NASA Astrophysics Data System (ADS)
Hajdas, Wojtek; Mrigakshi, Alankrita; Xiao, Hualin
2017-04-01
The primary concern of the ESA JUICE mission to Jupiter is the harsh particle radiation environment. Ionizing particles introduce radiation damage by total dose effects, displacement damages or single events effects. Therefore, both the total ionizing dose and the displacement damage equivalent fluence must be assessed to alert spacecraft and its payload as well as to quantify radiation levels for the entire mission lifetime. We present a concept and implementations steps for simplified method used to compute in flight a dose rate and total dose caused by protons. We also provide refinement of the method previously developed for electrons. The dose rates values are given for predefined active volumes located behind layers of materials with known thickness. Both methods are based on the electron and proton flux measurements provided by the Electron and Proton Detectors inside the Radiation Hard Electron Monitor (RADEM) located on-board of JUICE. The trade-off between method accuracy and programming limitations for in-flight computations are discussed. More comprehensive and precise dose rate computations based on detailed analysis of all stack detectors will be made during off-line data processing. It will utilize full spectral unfolding from all RADEM detector subsystems.
Toxicity of silver nanoparticles in zebrafish models
NASA Astrophysics Data System (ADS)
Asharani, P. V.; Lian Wu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh
2008-06-01
This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag+ ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W; Johnson, D; Ahmad, S
Purpose: To quantitatively evaluate the dosimetric impact of differing breast tissue compositions for electronic brachytherapy source for high dose rate accelerated partial breast irradiation. Methods: A series of Monte Carlo Simulation were created using the GEANT4 toolkit (version 10.0). The breast phantom was modeled as a semi-circle with a radius of 5.0 cm. A water balloon with a radius of 1.5 cm was located in the phantom with the Xoft AxxentTM EBT source placed at center as a point source. A mixed of two tissue types (adipose and glandular tissue) was assigned as the materials for the breast phantom withmore » different weight ratios. The proportionality of glandular and adipose tissue was simulated in four different fashions, 80/20, 70/30, 50/50 and 30/70 respectively. The custom energy spectrum for the 50 kVp XOFT source was provided via the manufacturer and used to generate incident photons. The dose distributions were recorded using a parallel three dimensional mesh with a size of 30 × 30 × 30 cm3 with 1 × 1 × 1 mm3 voxels. The simulated doses absorbed along the transverse axis were normalized at the distance of 1 cm and then compared with the calculations using standard TG-43 formalism. Results: All simulations showed underestimation of dose beyond balloon surface compared to standard TG-43 calculations. The maximum percentage differences within 2 cm distance from balloon surface were found to be 18%, 11%, 10% and 8% for the fat breast (30/70), standard breast (50/50), dense breast (70/30 and 80/20), respectively. Conclusion: The accuracy of dose calculations for low energy EBT source was limited when considering tissue heterogeneous composition. The impact of atomic number on photo-electric effect for lower energy Brachytherapy source is not accounted for and resulting in significant errors in dose calculation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oborn, B; Ge, Y; Hardcastle, N
Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: 9 clinical lung plans were recalculated using Monte Carlo methods and external inline (parallel to the beam direction) magnetic fields of 0.5 T, 1.0 T and 3 T were included. Three plans were 6MV 3D-CRT and six were 6MV IMRT. The GTV’s ranged from 0.8 cc to 73 cc, while the PTV ranged from 1 cc to 180 cc. Results: The inline magnetic field has a moderatemore » impact in lung dose distributions by reducing the lateral scatter of secondary electrons and causing a small local dose increase. Superposition of multiple small beams acts to superimpose the small dose increases and can lead to significant dose enhancements, especially when the GTV is low density. Two plans with very small, low mean density GTV’s (<1 cc, ρ(mean)<0.35g/cc) showed uniform increases of 16% and 23% at 1 T throughout the PTV. Three plans with moderate mean density PTV’s (3–13 cc, ρ(mean)=0.58–0.67 g/cc) showed 6% mean dose enhancement at 1 T in the PTV, however not uniform throughout the GTV/PTV. Replanning would benefit these cases. The remaining 5 plans had large dense GTV’s (∼ 1 g/cc) and so only a minimal (<2%) enhancement was seen. In general the mean dose enhancement at 0.5 T was 60% less than 1 T, while 5–50% higher at 3 T. Conclusions: A paradigm shift in the efficacy of small lung tumor radiotherapy is predicted with future inline MRI-linac systems. This will be achieved by carefully taking advantage of the reduction of lateral electronic disequilibrium withing lung tissue that is induced naturally inside strong inline magnetic fields.« less
Sawkey, D L; Faddegon, B A
2009-03-01
Monte Carlo simulations of x-ray beams typically take parameters of the electron beam in the accelerating waveguide to be free parameters. In this paper, a methodology is proposed and implemented to determine the energy, spectral width, and beam divergence of the electron source. All treatment head components were removed from the beam path, leaving only the exit window. With the x-ray target and flattener out of the beam, uncertainties in physical characteristics and relative position of the target and flattening filter, and in spot size, did not contribute to uncertainty in the energy. Beam current was lowered to reduce recombination effects. The measured dose distributions were compared with Monte Carlo simulation of the electron beam through the treatment head to extract the electron source characteristics. For the nominal 6 and 18 MV x-ray beams, the energies were 6.51 +/- 0.15 and 13.9 +/- 0.2 MeV, respectively, with the uncertainties resulting from uncertainties in the detector position in the measurement and in the stopping power in the simulations. Gaussian spectral distributions were used, with full widths at half maximum ranging from 20 +/- 4% at 6 MV to 13 +/- 4% at 18 MV required to match the fall-off portion of the percent-depth ionization curve. Profiles at the depth of maximum dose from simulations that used the manufacturer-specified exit window geometry and no beam divergence were 2-3 cm narrower than measured profiles. Two simulation configurations yielding the measured profile width were the manufacturer-specified exit window thickness with electron source divergences of 3.3 degrees at 6 MV and 1.8 degrees at 18 MV and an exit window 40% thicker than the manufacturer's specification with no beam divergence. With the x-ray target in place (and no flattener), comparison of measured to simulated profiles sets upper limits on the electron source divergences of 0.2 degrees at 6 MV and 0.1 degrees at 18 MV. A method of determining source characteristics without mechanical modification of the treatment head, and therefore feasible in clinics, is presented. The energies and spectral widths determined using this method agree with those determined with only the exit window in the beam path.
Famulari, Gabriel; Pater, Piotr; Enger, Shirin A
2017-07-07
The aim of this study was to calculate microdosimetric distributions for low energy electrons simulated using the Monte Carlo track structure code Geant4-DNA. Tracks for monoenergetic electrons with kinetic energies ranging from 100 eV to 1 MeV were simulated in an infinite spherical water phantom using the Geant4-DNA extension included in Geant4 toolkit version 10.2 (patch 02). The microdosimetric distributions were obtained through random sampling of transfer points and overlaying scoring volumes within the associated volume of the tracks. Relative frequency distributions of energy deposition f(>E)/f(>0) and dose mean lineal energy ([Formula: see text]) values were calculated in nanometer-sized spherical and cylindrical targets. The effects of scoring volume and scoring techniques were examined. The results were compared with published data generated using MOCA8B and KURBUC. Geant4-DNA produces a lower frequency of higher energy deposits than MOCA8B. The [Formula: see text] values calculated with Geant4-DNA are smaller than those calculated using MOCA8B and KURBUC. The differences are mainly due to the lower ionization and excitation cross sections of Geant4-DNA for low energy electrons. To a lesser extent, discrepancies can also be attributed to the implementation in this study of a new and fast scoring technique that differs from that used in previous studies. For the same mean chord length ([Formula: see text]), the [Formula: see text] calculated in cylindrical volumes are larger than those calculated in spherical volumes. The discrepancies due to cross sections and scoring geometries increase with decreasing scoring site dimensions. A new set of [Formula: see text] values has been presented for monoenergetic electrons using a fast track sampling algorithm and the most recent physics models implemented in Geant4-DNA. This dataset can be combined with primary electron spectra to predict the radiation quality of photon and electron beams.
Bao, Ande; Zhao, Xia; Phillips, William T; Woolley, F Ross; Otto, Randal A; Goins, Beth; Hevezi, James M
2005-01-01
Radioimmunotherapy of hematopoeitic cancers and micrometastases has been shown to have significant therapeutic benefit. The treatment of solid tumors with radionuclide therapy has been less successful. Previous investigations of intratumoral activity distribution and studies on intratumoral drug delivery suggest that a probable reason for the disappointing results in solid tumor treatment is nonuniform intratumoral distribution coupled with restricted intratumoral drug penetrance, thus inhibiting antineoplastic agents from reaching the tumor's center. This paper describes a nonuniform intratumoral activity distribution identified by limited radiolabeled tracer diffusion from tumor surface to tumor center. This activity was simulated using techniques that allowed the absorbed dose distributions to be estimated using different intratumoral diffusion capabilities and calculated for tumors of varying diameters. The influences of these absorbed dose distributions on solid tumor radionuclide therapy are also discussed. The absorbed dose distribution was calculated using the dose point kernel method that provided for the application of a three-dimensional (3D) convolution between a dose rate kernel function and an activity distribution function. These functions were incorporated into 3D matrices with voxels measuring 0.10 x 0.10 x 0.10 mm3. At this point fast Fourier transform (FFT) and multiplication in frequency domain followed by inverse FFT (iFFT) were used to effect this phase of the dose calculation process. The absorbed dose distribution for tumors of 1, 3, 5, 10, and 15 mm in diameter were studied. Using the therapeutic radionuclides of 131I, 186Re, 188Re, and 90Y, the total average dose, center dose, and surface dose for each of the different tumor diameters were reported. The absorbed dose in the nearby normal tissue was also evaluated. When the tumor diameters exceed 15 mm, a much lower tumor center dose is delivered compared with tumors between 3 and 5 mm in diameter. Based on these findings, the use of higher beta-energy radionuclides, such as 188Re and 90Y is more effective in delivering a higher absorbed dose to the tumor center at tumor diameters around 10 mm.
Magnetic field effects on the energy deposition spectra of MV photon radiation.
Kirkby, C; Stanescu, T; Fallone, B G
2009-01-21
Several groups worldwide have proposed various concepts for improving megavoltage (MV) radiotherapy that involve irradiating patients in the presence of a magnetic field-either for image guidance in the case of hybrid radiotherapy-MRI machines or for purposes of introducing tighter control over dose distributions. The presence of a magnetic field alters the trajectory of charged particles between interactions with the medium and thus has the potential to alter energy deposition patterns within a sub-cellular target volume. In this work, we use the MC radiation transport code PENELOPE with appropriate algorithms invoked to incorporate magnetic field deflections to investigate electron energy fluence in the presence of a uniform magnetic field and the energy deposition spectra within a 10 microm water sphere as a function of magnetic field strength. The simulations suggest only very minor changes to the electron fluence even for extremely strong magnetic fields. Further, calculations of the dose-averaged lineal energy indicate that a magnetic field strength of at least 70 T is required before beam quality will change by more than 2%.
Barati, B.; Zabihzadeh, M.; Tahmasebi Birgani, M.J.; Chegini, N.; Fatahiasl, J.; Mirr, I.
2018-01-01
Objective: The use of miniature X-ray source in electronic brachytherapy is on the rise so there is an urgent need to acquire more knowledge on X-ray spectrum production and distribution by a dose. The aim of this research was to investigate the influence of target thickness and geometry at the source of miniature X-ray tube on tube output. Method: Five sources were simulated based on problems each with a specific geometric structure and conditions using MCNPX code. Tallies proportional to the output were used to calculate the results for the influence of source geometry on output. Results: The results of this work include the size of the optimal thickness of 5 miniature sources, energy spectrum of the sources per 50 kev and also the axial and transverse dose of simulated sources were calculated based on these thicknesses. The miniature source geometric was affected on the output x-ray tube. Conclusion: The result of this study demonstrates that hemispherical-conical, hemispherical and truncated-conical miniature sources were determined as the most suitable tools. PMID:29732338
Improving the therapeutic ratio of craniospinal irradiation in medulloblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maor, M.H.; Fields, R.S.; Hogstrom, K.R.
1985-04-01
Radiation therapy delivered to the entire cerebrospinal axis is indicated for a number of pediatric brain tumors, especially medulloblastoma. Improved radiotherapy techniques have changed the near fatal prognosis for children with medulloblastoma to a 50%, 5-year survival. Nevertheless, the treatment results in substantial acute toxicity, and many survivors have serious sequelae. Refinements in radiotherapy technique, however, can improve the therapeutic ratio of the treatment by lowering its side effects. In the last year children who required craniospinal irradiation at M.D. Anderson Hospital were treated with 6 MV photons to the brain and primary tumor and with 15-17 MeV electrons tomore » the spinal canal. The elective dose to the whole brain was 30 Gy in 17 fractions and 30 Gy in 20 fractions to the spine. The primary tumor received an additional 20-25 Gy. An electron-beam dose distribution was drawn on a computerized tomography (CT) reconstructed sagittal plane. The treatment was well tolerated in the first five patients. It is projected that the current technique will cause fewer late effects and improve the tolerance to chemotherapy.« less
Ahmad, M; Nath, R
2001-02-20
The specific aim of three-dimensional conformal radiotherapy is to deliver adequate therapeutic radiation dose to the target volume while concomitantly keeping the dose to surrounding and intervening normal tissues to a minimum. The objective of this study is to examine dose distributions produced by various radiotherapy techniques used in managing head and neck tumors when the upper part of the esophagus is also involved. Treatment planning was performed with a three-dimensional (3-D) treatment planning system. Computerized tomographic (CT) scans used by this system to generate isodose distributions and dose-volume histograms were obtained directly from the CT scanner, which is connected via ethernet cabling to the 3-D planning system. These are useful clinical tools for evaluating the dose distribution to the treatment volume, clinical target volume, gross tumor volume, and certain critical organs. Using 6 and 18 MV photon beams, different configurations of standard treatment techniques for head and neck and esophageal carcinoma were studied and the resulting dose distributions were analyzed. Film validation dosimetry in solid-water phantom was performed to assess the magnitude of dose inhomogeneity at the field junction. Real-time dose measurements on patients using diode dosimetry were made and compared with computed dose values. With regard to minimizing radiation dose to surrounding structures (i.e., lung, spinal cord, etc.), the monoisocentric technique gave the best isodose distributions in terms of dose uniformity. The mini-mantle anterior-posterior/posterior-anterior (AP/PA) technique produced grossly non-uniform dose distribution with excessive hot spots. The dose measured on the patient during the treatment agrees to within +/- 5 % with the computed dose. The protocols presented in this work for simulation, immobilization and treatment planning of patients with head and neck and esophageal tumors provide the optimum dose distributions in the target volume with reduced irradiation of surrounding non-target tissues, and can be routinely implemented in a radiation oncology department. The presence of a real-time dose-measuring system plays an important role in verifying the actual delivery of radiation dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salem, Ahmed, E-mail: ahmed.salem@doctors.org.uk; Mohamad, Issa; Dayyat, Abdulmajeed
2015-10-01
Radiation pneumonitis is a well-documented side effect of radiation therapy for breast cancer. The purpose of this study was to compare combined photon-electron, photon-only, and electron-only plans in the radiation treatment of the supraclavicular lymph nodes. In total, 13 patients requiring chest wall and supraclavicular nodal irradiation were planned retrospectively using combined photon-electron, photon-only, and electron-only supraclavicular beams. A dose of 50 Gy over 25 fractions was prescribed. Chest wall irradiation parameters were fixed for all plans. The goal of this planning effort was to cover 95% of the supraclavicular clinical target volume (CTV) with 95% of the prescribed dosemore » and to minimize the volume receiving ≥ 105% of the dose. Comparative end points were supraclavicular CTV coverage (volume covered by the 95% isodose line), hotspot volume, maximum radiation dose, contralateral breast dose, mean total lung dose, total lung volume percentage receiving at least 20 Gy (V{sub 20} {sub Gy}), heart volume percentage receiving at least 25 Gy (V{sub 25} {sub Gy}). Electron and photon energies ranged from 8 to 18 MeV and 4 to 6 MV, respectively. The ratio of photon-to-electron fractions in combined beams ranged from 5:20 to 15:10. Supraclavicular nodal coverage was highest in photon-only (mean = 96.2 ± 3.5%) followed closely by combined photon-electron (mean = 94.2 ± 2.5%) and lowest in electron-only plans (mean = 81.7 ± 14.8%, p < 0.001). The volume of tissue receiving ≥ 105% of the prescription dose was higher in the electron-only (mean = 69.7 ± 56.1 cm{sup 3}) as opposed to combined photon-electron (mean = 50.8 ± 40.9 cm{sup 3}) and photon-only beams (mean = 32.2 ± 28.1 cm{sup 3}, p = 0.114). Heart V{sub 25} {sub Gy} was not statistically different among the plans (p = 0.999). Total lung V{sub 20} {sub Gy} was lowest in electron-only (mean = 10.9 ± 2.3%) followed by combined photon-electron (mean = 13.8 ± 2.3%) and highest in photon-only plans (mean = 16.2 ± 3%, p < 0.001). As expected, photon-only plans demonstrated the highest target coverage and total lung V{sub 20} {sub Gy}. The superiority of electron-only beams, in terms of decreasing lung dose, is set back by the dosimetric hotspots associated with such plans. Combined photon-electron treatment is a feasible technique for supraclavicular nodal irradiation and results in adequate target coverage, acceptable dosimetric hotspot volume, and slightly reduced lung dose.« less
NASA Astrophysics Data System (ADS)
Shih, Tian-Yu; Yen, Tsung-Hsien; Liu, Yan-Lin; Luzhbin, Dmytro; Wu, Jay
2017-11-01
The advantage of electron beam radiotherapy is that the absorbed dose rapidly decreases with the increasing depth, which can prevent damage to deeper organs and tissues. Accurately evaluating the absorbed dose in the superficial tumor is imperative. This study assessed the characteristics of electron beams by using the N-isopropyl-acrylamide (n-NIPAM) gel dosimeter. The n-NIPAM gel was composed of 6% gelatin, 5% monomer, and 2.5% cross-linker with 5 mM tetrakis (hydroxymethyl) phosphonium chloride for deoxygenation. The gel was irradiated with 6-, 9-, and 12-MeV electron beams with dose rates of 100-600 MU/min, respectively. The energy dependence and dose rate dependence were assessed. The beam profiles and percentage depth doses were measured and compared with the results of the Gafchromic film and ionization chamber. The linearity of the n-NIPAM gel under 6-, 9-, and 12-MeV electrons was larger than 0.990 with 2% variation in sensitivity. The sensitivity of the gel under 100-600 MU/min showed 5% variations. The energy and dose rate dependence can be negligible. The beam profiles and percentage depth doses measured by the n-NIPAM gel matched well with the results of the ionization chamber and film. This study reveals the possibility of using the n-NIPAM gel dosimeter for electron beam measurements in clinical radiotherapy.
Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.
Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G
2011-05-01
Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments.
Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate
Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.
2011-01-01
Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments. PMID:21525648
The effect of dose enhancement near metal interfaces on synthetic diamond based X-ray dosimeters
NASA Astrophysics Data System (ADS)
Alamoudi, D.; Lohstroh, A.; Albarakaty, H.
2017-11-01
This study investigates the effects of dose enhancement on the photocurrent performance at metallic interfaces in synthetic diamond detectors based X-ray dosimeters as a function of bias voltages. Monte Carlo (MC) simulations with the BEAMnrc code were carried out to simulate the dose enhancement factor (DEF) and compared against the equivalent photocurrent ratio from experimental investigations. The MC simulation results show that the sensitive region for the absorbed dose distribution covers a few micrometers distances from the interface. Experimentally, two single crystals (SC) and one polycrystalline (PC) synthetic diamond samples were fabricated into detectors with carbon based electrodes by boron and carbon ion implantation. Subsequently; the samples were each mounted inside a tissue equivalent encapsulation to minimize unintended fluence perturbation. Dose enhancement was generated by placing copper, lead or gold near the active volume of the detectors using 50 kVp and 100 kVp X-rays relevant for medical dosimetry. The results show enhancement in the detectors' photocurrent performance when different metals are butted up to the diamond bulk as expected. The variation in the photocurrent measurement depends on the type of diamond samples, their electrodes' fabrication and the applied bias voltages indicating that the dose enhancement near the detector may modify their electronic performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, A; Wu, Q; Sawkey, D
Purpose: DEAR is a radiation therapy technique utilizing synchronized motion of gantry and couch during delivery to optimize dose distribution homogeneity and penumbra for treatment of superficial disease. Dose calculation for DEAR is not yet supported by commercial TPSs. The purpose of this study is to demonstrate the feasibility of using a web-based Monte Carlo (MC) simulation tool (VirtuaLinac) to calculate dose distributions for a DEAR delivery. Methods: MC simulations were run through VirtuaLinac, which is based on the GEANT4 platform. VirtuaLinac utilizes detailed linac head geometry and material models, validated phase space files, and a voxelized phantom. The inputmore » was expanded to include an XML file for simulation of varying mechanical axes as a function of MU. A DEAR XML plan was generated and used in the MC simulation and delivered on a TrueBeam in Developer Mode. Radiographic film wrapped on a cylindrical phantom (12.5 cm radius) measured dose at a depth of 1.5 cm and compared to the simulation results. Results: A DEAR plan was simulated using an energy of 6 MeV and a 3×10 cm{sup 2} cut-out in a 15×15 cm{sup 2} applicator for a delivery of a 90° arc. The resulting data were found to provide qualitative and quantitative evidence that the simulation platform could be used as the basis for DEAR dose calculations. The resulting unwrapped 2D dose distributions agreed well in the cross-plane direction along the arc, with field sizes of 18.4 and 18.2 cm and penumbrae of 1.9 and 2.0 cm for measurements and simulations, respectively. Conclusion: Preliminary feasibility of a DEAR delivery using a web-based MC simulation platform has been demonstrated. This tool will benefit treatment planning for DEAR as a benchmark for developing other model based algorithms, allowing efficient optimization of trajectories, and quality assurance of plans without the need for extensive measurements.« less
NASA Astrophysics Data System (ADS)
Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Sydes, Matthew R.; Dearnaley, David P.; Partridge, Mike
2009-11-01
Many studies have been performed to assess correlations between measures derived from dose-volume histograms and late rectal toxicities for radiotherapy of prostate cancer. The purpose of this study was to quantify correlations between measures describing the shape and location of the dose distribution and different outcomes. The dose to the rectal wall was projected on a two-dimensional map. In order to characterize the dose distribution, its centre of mass, longitudinal and lateral extent, and eccentricity were calculated at different dose levels. Furthermore, the dose-surface histogram (DSH) was determined. Correlations between these measures and seven clinically relevant rectal-toxicity endpoints were quantified by maximally selected standardized Wilcoxon rank statistics. The analysis was performed using data from the RT01 prostate radiotherapy trial. For some endpoints, the shape of the dose distribution is more strongly correlated with the outcome than simple DSHs. Rectal bleeding was most strongly correlated with the lateral extent of the dose distribution. For loose stools, the strongest correlations were found for longitudinal extent; proctitis was most strongly correlated with DSH. For the other endpoints no statistically significant correlations could be found. The strengths of the correlations between the shape of the dose distribution and outcome differed considerably between the different endpoints. Due to these significant correlations, it is desirable to use shape-based tools in order to assess the quality of a dose distribution.
White, Shane A; Landry, Guillaume; Fonseca, Gabriel Paiva; Holt, Randy; Rusch, Thomas; Beaulieu, Luc; Verhaegen, Frank; Reniers, Brigitte
2014-06-01
The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy (<50 kV) brachytherapy system used in accelerated partial breast irradiation (APBI). Breast tissue is a heterogeneous tissue in terms of density and composition. Dosimetric calculations of seven APBI patients treated with Axxent were made using a model-based Monte Carlo platform for a number of tissue models and dose reporting methods and compared to TG-43 based plans. A model of the Axxent source, the S700, was created and validated against experimental data. CT scans of the patients were used to create realistic multi-tissue/heterogeneous models with breast tissue segmented using a published technique. Alternative water models were used to isolate the influence of tissue heterogeneity and backscatter on the dose distribution. Dose calculations were performed using Geant4 according to the original treatment parameters. The effect of the Axxent balloon applicator used in APBI which could not be modeled in the CT-based model, was modeled using a novel technique that utilizes CAD-based geometries. These techniques were validated experimentally. Results were calculated using two dose reporting methods, dose to water (Dw,m) and dose to medium (Dm,m), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D90 to PTV was reduced by between ~4% and ~40%, depending on the scoring method, compared to the TG-43 result. Peak skin dose is also reduced by 10%-15% due to the absence of backscatter not accounted for in TG-43. The balloon applicator also contributed to the reduced dose. Other ROIs showed a difference depending on the method of dose reporting. TG-186-based calculations produce results that are different from TG-43 for the Axxent source. The differences depend strongly on the method of dose reporting. This study highlights the importance of backscatter to peak skin dose. Tissue heterogeneities, applicator, and patient geometries demonstrate the need for a more robust dose calculation method for low energy brachytherapy sources.
Accelerator shield design of KIPT neutron source facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.; Gohar, Y.
Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generatedmore » by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q; Devpura, S; Feghali, K
2016-06-15
Purpose: To investigate correlation of normal lung CT density changes with dose accuracy and outcome after SBRT for patients with early stage lung cancer. Methods: Dose distributions for patients originally planned and treated using a 1-D pencil beam-based (PB-1D) dose algorithm were retrospectively recomputed using algorithms: 3-D pencil beam (PB-3D), and model-based Methods: AAA, Acuros XB (AXB), and Monte Carlo (MC). Prescription dose was 12 Gy × 4 fractions. Planning CT images were rigidly registered to the followup CT datasets at 6–9 months after treatment. Corresponding dose distributions were mapped from the planning to followup CT images. Following the methodmore » of Palma et al .(1–2), Hounsfield Unit (HU) changes in lung density in individual, 5 Gy, dose bins from 5–45 Gy were assessed in the peri-tumor region, defined as a uniform, 3 cm expansion around the ITV(1). Results: There is a 10–15% displacement of the high dose region (40–45 Gy) with the model-based algorithms, relative to the PB method, due to the electron scattering of dose away from the tumor into normal lung tissue (Fig.1). Consequently, the high-dose lung region falls within the 40–45 Gy dose range, causing an increase in HU change in this region, as predicted by model-based algorithms (Fig.2). The patient with the highest HU change (∼110) had mild radiation pneumonitis, and the patient with HU change of ∼80–90 had shortness of breath. No evidence of pneumonitis was observed for the 3 patients with smaller CT density changes (<50 HU). Changes in CT densities, and dose-response correlation, as computed with model-based algorithms, are in excellent agreement with the findings of Palma et al. (1–2). Conclusion: Dose computed with PB (1D or 3D) algorithms was poorly correlated with clinically relevant CT density changes, as opposed to model-based algorithms. A larger cohort of patients is needed to confirm these results. This work was supported in part by a grant from Varian Medical Systems, Palo Alto, CA.« less
Electron Accelerator Shielding Design of KIPT Neutron Source Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Zhaopeng; Gohar, Yousry
The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biologicalmore » dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, similar to 0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper. Copyright (C) 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.« less
Low-dose electron energy-loss spectroscopy using electron counting direct detectors.
Maigné, Alan; Wolf, Matthias
2018-03-01
Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.
Andreo, Pedro
2015-01-07
The difference between Monte Carlo Treatment Planning (MCTP) based on the assumption of 'water-like' tissues with densities obtained from CT procedures, or on tissue compositions derived from CT-determined densities, have been investigated. Stopping powers and electron fluences have been calculated for a range of media and body tissues for 6 MV photon beams, including changes in their physical data (density and stopping powers). These quantities have been used to determine absorbed doses using cavity theory. It is emphasized that tissue compositions given in ICRU or ICRP reports should not be given the standing of physical constants as they correspond to average values obtained for a limited number of human-body samples. It has been shown that mass stopping-power ratios to water are more dependent on patient-to-patient composition differences, and therefore on their mean excitation energies (I-values), than on mass density. Electron fluence in different media are also more dependent on media composition (and their I-values) than on density. However, as a consequence of the balance between fluence and stopping powers, doses calculated from their product are more constant than what the independent stopping powers and fluence variations suggest. Additionally, cancelations in dose ratios minimize the differences between the 'water-like' and 'tissue' approaches, yielding practically identical results except for bone, and to a lesser extent for adipose tissue. A priori, changing from one approach to another does not seem to be justified considering the large number of approximations and uncertainties involved throughout the treatment planning tissue segmentation and dose calculation procedures. The key issue continues to be the composition of tissues and their I-values, and as these cannot be obtained for individual patients, whatever approach is selected does not lead to significant differences from a water reference dose, the maximum of these being of the order of 5% for bone tissues. Considering, however, current developments in advanced dose calculation methods, planning in terms of dose-to-tissue should be the preferred choice, under the expectancy that progress in the field will gradually improve some of the crude approximations included in MCTP and numerical transport methods. The small differences obtained also show that a retrospective conversion from dose-to-tissue to dose-to-water, based on a widely used approach, would mostly increase the final uncertainty of the treatment planning process. It is demonstrated that, due to the difference between electron fluence distributions in water and in body tissues, the conversion requires an additional fluence correction that has so far been neglected. An improved expression for the conversion and data for the fluence correction factor are provided. These will be necessary even in a dose-to-tissue environment, for the normalization of the treatment plan to the reference dosimetry of the treatment unit, always calibrated in terms of absorbed dose to water.
NASA Astrophysics Data System (ADS)
Andreo, Pedro
2015-01-01
The difference between Monte Carlo Treatment Planning (MCTP) based on the assumption of ‘water-like’ tissues with densities obtained from CT procedures, or on tissue compositions derived from CT-determined densities, have been investigated. Stopping powers and electron fluences have been calculated for a range of media and body tissues for 6 MV photon beams, including changes in their physical data (density and stopping powers). These quantities have been used to determine absorbed doses using cavity theory. It is emphasized that tissue compositions given in ICRU or ICRP reports should not be given the standing of physical constants as they correspond to average values obtained for a limited number of human-body samples. It has been shown that mass stopping-power ratios to water are more dependent on patient-to-patient composition differences, and therefore on their mean excitation energies (I-values), than on mass density. Electron fluence in different media are also more dependent on media composition (and their I-values) than on density. However, as a consequence of the balance between fluence and stopping powers, doses calculated from their product are more constant than what the independent stopping powers and fluence variations suggest. Additionally, cancelations in dose ratios minimize the differences between the ‘water-like’ and ‘tissue’ approaches, yielding practically identical results except for bone, and to a lesser extent for adipose tissue. A priori, changing from one approach to another does not seem to be justified considering the large number of approximations and uncertainties involved throughout the treatment planning tissue segmentation and dose calculation procedures. The key issue continues to be the composition of tissues and their I-values, and as these cannot be obtained for individual patients, whatever approach is selected does not lead to significant differences from a water reference dose, the maximum of these being of the order of 5% for bone tissues. Considering, however, current developments in advanced dose calculation methods, planning in terms of dose-to-tissue should be the preferred choice, under the expectancy that progress in the field will gradually improve some of the crude approximations included in MCTP and numerical transport methods. The small differences obtained also show that a retrospective conversion from dose-to-tissue to dose-to-water, based on a widely used approach, would mostly increase the final uncertainty of the treatment planning process. It is demonstrated that, due to the difference between electron fluence distributions in water and in body tissues, the conversion requires an additional fluence correction that has so far been neglected. An improved expression for the conversion and data for the fluence correction factor are provided. These will be necessary even in a dose-to-tissue environment, for the normalization of the treatment plan to the reference dosimetry of the treatment unit, always calibrated in terms of absorbed dose to water.
A summary of the OV1-19 satellite dose, depth dose, and linear energy transfer spectral measurements
NASA Technical Reports Server (NTRS)
Cervini, J. T.
1972-01-01
Measurements of the biophysical and physical parameters in the near earth space environment, specifically, the Inner Van Allen Belt are discussed. This region of space is of great interest to planners of the Skylab and the Space Station programs because of the high energy proton environment, especially during periods of increased solar activity. Many physical measurements of charged particle flux, spectra, and pitch angle distribution have been conducted and are programmed in the space radiation environment. Such predictions are not sufficient to accurately predict the effects of space radiations on critical biological and electronic systems operating in these environments. Some of the difficulties encountered in transferring from physical data to a prediction of the effects of space radiation on operational systems are discussed.
Zhang, Jing; Zhang, Guilong; Wang, Min; Zheng, Kang; Cai, Dongqing; Wu, Zhengyan
2013-10-21
High energy electron beam (HEEB) irradiation was used to disperse nanoscale zero-valent iron (NZVI) for reduction of CrVI to CrIII in aqueous solution. Pore size distribution, scanning electron microscopy and X-ray diffraction characterizations demonstrated that HEEB irradiation could effectively increase the dispersion of NZVI resulting in more active reduction sites of Crvi on NZVI. Batch reduction experiments indicated that the reductive capacity of HEEB irradiation-modified NZVI (IMNZVI) was significantly improved, as the reductive efficiency reached 99.79% under the optimal conditions (electron beam dose of 30 kGy at 10 MeV, pH 2.0 and 313 K) compared with that of raw NZVI (72.14%). Additionally, the NZVI was stable for at least two months after irradiation. The modification mechanism of NZVI by HEEB irradiation was investigated and the results indicated that charge and thermal effects might play key roles in dispersing the NZVI particles.
Total-dose radiation effects data for semiconductor devices, volume 2
NASA Technical Reports Server (NTRS)
Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.
1981-01-01
Total ionizing dose radiation test data on integrated circuits are analyzed. Tests were performed with the electron accelerator (Dynamitron) that provides a steady state 2.5 MeV electron beam. Some radiation exposures were made with a Cobalt-60 gamma ray source. The results obtained with the Cobalt-60 source are considered an approximate measure of the radiation damage that would be incurred by an equivalent dose of electrons.
1997-12-01
Armed Forces Rad I Research Institute Retrospective Reconstruction of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance A...of Radiation Doses of Chernobyl Liquidators by Electron Paramagnetic Resonance Authored by Scientific Center of Radiation Medicine Academy of Medical...libraries associated with the U.S. Government’s Depository Library System. Preface On April 26, 1986, Reactor #4 at the Chernobyl Nuclear Power Plant near
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanier, M; Wronski, M; Yeboah, C
The purpose of this work is twofold: 1) to measure dose profiles under lead shielding at the level of the lens for a range of clinical electron energies via film dosimetry; and, 2) to assess the validity of the Pinnacle treatment planning system (TPS) in calculating the penumbral doses under lead shielding with the heterogeneous electron algorithm. First, a film calibration curve that spanned the electron energies of interest, 6–18MeV, was created. Next, EBT3 film and lead shielding were incorporated into a solid water phantom with the film positioned 7mm below the lead and a variable thickness of bolus onmore » top. This geometry was reproduced in the Pinnacle TPS and used to calculate dose profiles using the heterogeneous electron algorithm. The measured vs. calculated dose profiles were normalized to d{sub max} in a homogeneous phantom with no lead shielding and compared. Pinnacle consistently overestimated the dose distal to the lead shielding with significant discrepancies occurring near the edge of the lead shield reaching 25% at the edge and 35% in the open field region. The film measurements showed that a minimum lead margin of 5mm extending beyond the diameter of the lens is required to adequately shield the lens to ≤10% of the dose at d{sub max}. These measurements allow for a reasonable estimate of the dose to the lens from anterior electron beams. They also allow for clinicians to assess the extent of the lead margin required to reduce the lens dose to an acceptable amount prior to radiotherapy treatment.« less
Evaluation and Mitigation of Secondary Dose Delivered to Electronic Systems in Proton Therapy.
Wroe, Andrew J
2016-02-01
To evaluate the scattered and secondary radiation fields present in and around a passive proton treatment nozzle. In addition, based on these initial tests and system reliability analysis, to develop, install, and evaluate a radiation shielding structure to protect sensitive electronics against single-event effects (SEE) and improve system reliability. Landauer Luxel+ dosimeters were used to evaluate the radiation field around one of the gantry-mounted passive proton delivery nozzles at Loma Linda University Medical Center's James M Slater, MD Proton Treatment and Research Center. These detectors use optically stimulated luminescence technology in conjunction with CR-39 to measure doses from X-ray, gamma, proton, beta, fast neutron, and thermal neutron radiation. The dosimeters were stationed at various positions around the gantry pit and attached to racks on the gantry itself to evaluate the dose to electronics. Wax shielding was also employed on some detectors to evaluate the usefulness of this material as a dose moderator. To create the scattered and secondary radiation field in the gantry enclosure, a polystyrene phantom was placed at isocenter and irradiated with 250 MeV protons to a dose of 1.3 kGy over 16 hours. Using the collected data as a baseline, a composite shielding structure was created and installed to shield electronics associated with the precision patient positioner. The effectiveness of this shielding structure was evaluated with Landauer Luxel+ dosimeters and the results correlated against system uptime. The measured dose equivalent ranged from 1 to 60 mSv, with proton/photon, thermal neutron, fast neutron, and overall dose equivalent evaluated. The position of the detector/electronics relative to both isocenter and also neutron-producing devices, such as the collimators and first and second scatterers, definitely had a bearing on the dose received. The addition of 1-inch-thick wax shielding decreased the fast neutron component by almost 50%, yet this yielded a corresponding average increase in thermal neutron dose of 150% as there was no Boron-10 component to capture thermal neutrons. Using these data as a reference, a shielding structure was designed and installed to minimize radiation to electronics associated with the patient positioner. The installed shielding reduced the total dose experienced by these electronics by a factor of 5 while additionally reducing the fast and thermal neutron doses by a factor of 7 and 14, respectively. The reduction in radiation dose corresponded with a reduction of SEE-related downtime of this equipment from 16.5 hours to 2.5 hours over a 6-month reporting period. The data obtained in this study provided a baseline for radiation exposures experienced by gantry- and pit-mounted electronic systems. It also demonstrated and evaluated a shielding structure design that can be retrofitted to existing electronic system installations. It is expected that this study will benefit future upgrades and facility designs by identifying mechanisms that may minimize radiation dose to installed electronics, thus improving facility uptime. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Bailey, M.; Shipley, D. R.; Manning, J. W.
2015-02-01
Empirical fits are developed for depth-compensated wall- and cavity-replacement perturbations in the PTW Roos 34001 and IBA / Scanditronix NACP-02 parallel-plate ionisation chambers, for electron beam qualities from 4 to 22 MeV for depths up to approximately 1.1 × R50,D. These are based on calculations using the Monte Carlo radiation transport code EGSnrc and its user codes with a full simulation of the linac treatment head modelled using BEAMnrc. These fits are used with calculated restricted stopping-power ratios between air and water to match measured depth-dose distributions in water from an Elekta Synergy clinical linear accelerator at the UK National Physical Laboratory. Results compare well with those from recent publications and from the IPEM 2003 electron beam radiotherapy Code of Practice.
Development of a patient-specific 3D dose evaluation program for QA in radiation therapy
NASA Astrophysics Data System (ADS)
Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong
2015-03-01
We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose distributions. Further applications of the system utility are expected to result from future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-David, Merav A.; Diamante, Maximiliano; Radawski, Jeffrey D.
Purpose: To assess the prevalence and dosimetric and clinical predictors of mandibular osteoradionecrosis (ORN) in patients with head and neck cancer who underwent a pretherapy dental evaluation and prophylactic treatment according to a uniform policy and were treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Between 1996 and 2005, all patients with head-and-neck cancer treated with parotid gland-sparing IMRT in prospective studies underwent a dental examination and prophylactic treatment according to a uniform policy that included extractions of high-risk, periodontally involved, and nonrestorable teeth in parts of the mandible expected to receive high radiation doses, fluoride supplements, and the placementmore » of guards aiming to reduce electron backscatter off metal teeth restorations. The IMRT plans included dose constraints for the maximal mandibular doses and reduced mean parotid gland and noninvolved oral cavity doses. A retrospective analysis of Grade 2 or worse (clinical) ORN was performed. Results: A total of 176 patients had a minimal follow-up of 6 months. Of these, 31 (17%) had undergone teeth extractions before RT and 13 (7%) after RT. Of the 176 patients, 75% and 50% had received {>=}65 Gy and {>=}70 Gy to {>=}1% of the mandibular volume, respectively. Falloff across the mandible characterized the dose distributions: the average gradient (in the axial plane containing the maximal mandibular dose) was 11 Gy (range, 1-27 Gy; median, 8 Gy). At a median follow-up of 34 months, no cases of ORN had developed (95% confidence interval, 0-2%). Conclusion: The use of a strict prophylactic dental care policy and IMRT resulted in no case of clinical ORN. In addition to the dosimetric advantages offered by IMRT, meticulous dental prophylactic care is likely an essential factor in reducing ORN risk.« less
New era of electronic brachytherapy
Ramachandran, Prabhakar
2017-01-01
Traditional brachytherapy refers to the placement of radioactive sources on or inside the cancer tissues. Based on the type of sources, brachytherapy can be classified as radionuclide and electronic brachytherapy. Electronic brachytherapy uses miniaturized X-ray sources instead of radionuclides to deliver high doses of radiation. The advantages of electronic brachytherapy include low dose to organs at risk, reduced dose to treating staff, no leakage radiation in off state, less shielding, and no radioactive waste. Most of these systems operate between 50 and 100 kVp and are widely used in the treatment of skin cancer. Intrabeam, Xoft and Papillon systems are also used in the treatment of intra-operative radiotherapy to breast in addition to other treatment sites. The rapid fall-off in the dose due to its low energy is a highly desirable property in brachytherapy and results in a reduced dose to the surrounding normal tissues compared to the Ir-192 source. The Xoft Axxent brachytherapy system uses a 2.25 mm miniaturized X-ray tube and the source almost mimics the high dose rate Ir-192 source in terms of dose rate and it is the only electronic brachytherapy system specifically used in the treatment of cervical cancers. One of the limiting factors that impede the use of electronic brachytherapy for interstitial application is the source dimension. However, it is highly anticipated that the design of miniaturized X-ray tube closer to the dimension of an Ir-192 wire is not too far away, and the new era of electronic brachytherapy has just begun. PMID:28529679
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, M; Aldoohan, S; Sonnad, J
2015-06-15
Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: Themore » dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.« less
Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment.
Shiu, A S; Tung, S S; Gastorf, R J; Hogstrom, K R; Morrison, W H; Peters, L J
1996-06-01
The purpose of this study is to report that commercially available eye shields (designed for orthovoltage x-rays) are inadequate to protect the ocular structures from penetrating electrons for electron beam energies equal to or greater than 6 MeV. Therefore, a prototype medium size tungsten eye shield was designed and fabricated. The advantages of the tungsten eye shield over lead are discussed. Electron beams (6-9 MeV) are often used to irradiate eyelid tumors to curative doses. Eye shields can be placed under the eyelids to protect the globe. Film and thermoluminescent dosimeters (TLDs) were used within a specially constructed polystyrene eye phantom to determine the effectiveness of various commercially available internal eye shields (designed for orthovoltage x-rays). The same procedures were used to evaluate a prototype medium size tungsten eye shield (2.8 mm thick), which was designed and fabricated for protection of the globe from penetrating electrons for electron beam energy equal to 9 MeV. A mini-TLD was used to measure the dose enhancement due to electrons backscattered off the tungsten eye shield, both with or without a dental acrylic coating that is required to reduce discomfort, permit sterilization of the shield, and reduce the dose contribution from backscattered electrons. Transmission of a 6 MeV electron beam through a 1.7 mm thick lead eye shield was found to be 50% on the surface (cornea) of the phantom and 27% at a depth of 6 mm (lens). The thickness of lead required to stop 6-9 MeV electron beams is impractical. In place of lead, a prototype medium size tungsten eye shield was made. For 6 to 9 MeV electrons, the doses measured on the surface (cornea) and at 6 mm (lens) and 21 mm (retina) depths were all less than 5% of the maximum dose of the open field (4 x 4 cm). Electrons backscattered off a tungsten eye shield without acrylic coating increased the lid dose from 85 to 123% at 6 MeV and 87 to 119% at 9 MeV. For the tungsten eye shield coated with 2-3 mm of dental acrylic, the lid dose was increased from 85 to 98.5% at 6 MeV and 86 to 106% at 9 MeV. Commercially available eye shields were evaluated and found to be clearly inadequate to protect the ocular structures for electron beam energies equal to or greater than 6 MeV. A tungsten eye shield has been found to provide adequate protection for electrons up to 9 MeV. The increase in lid dose due to electrons backscattered off the tungsten eye shield should be considered in the dose prescription. A minimum thickness of 2 mm dental acrylic on the beam entrance surface of the tungsten eye shield was found to reduce the backscattered electron effect to acceptable levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.ed
Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume ofmore » the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). Results: For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. Conclusions: The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.« less
Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan
2016-07-01
A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.
NASA Astrophysics Data System (ADS)
Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen
2013-12-01
The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose rate values and data collected by the R3DE/R instruments and NASA Tissue Equivalent Proportional Counter (TEPC) during real cosmonauts and astronauts EVA in 79 the 2008-2010 time interval including large relativistic electrons doses during the magnetosphere enhancement in April 2010. The model was also used to be predicted the accumulated along the orbit of ISS galactic cosmic rays and inner radiation belt dose for 1 orbit (1.5 hours) and 4 consequences orbits (6 hours), which is the usual EVA continuation in dependence by the longitude of the ascending node of ISS. These predictions of the model could be used by space agencies medical and other not specialized in the radiobiology support staff for first approach in the ISS EVA time and space planning.
NASA Astrophysics Data System (ADS)
Murrill, Steven R.; Tipton, Charles W.; Self, Charles T.
1991-03-01
The dose absorbed in an integrated circuit (IC) die exposed to a pulse of low-energy electrons is a strong function of both electron energy and surrounding packaging materials. This report describes an experiment designed to measure how well the Integrated TIGER Series one-dimensional (1-D) electron transport simulation program predicts dose correction factors for a state-of-the-art IC package and package/printed circuit board (PCB) combination. These derived factors are compared with data obtained experimentally using thermoluminescent dosimeters (TLD's) and the FX-45 flash x-ray machine (operated in electron-beam (e-beam) mode). The results of this experiment show that the TIGER 1-D simulation code can be used to accurately predict FX-45 e-beam dose deposition correction factors for reasonably complex IC packaging configurations.
NASA Astrophysics Data System (ADS)
Cardarelli, Gene A.
The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.
Canters, Richard A; Lips, Irene M; Wendling, Markus; Kusters, Martijn; van Zeeland, Marianne; Gerritsen, Rianne M; Poortmans, Philip; Verhoef, Cornelia G
2016-10-01
Creating an individualized tissue equivalent material build-up (i.e. bolus) for electron beam radiation therapy is complex and highly labour-intensive. We implemented a new clinical workflow in which 3D printing technology is used to create the bolus. A patient-specific bolus is designed in the treatment planning system (TPS) and a shell around it is created in the TPS. The shell is printed and subsequently filled with silicone rubber to make the bolus. Before clinical implementation we performed a planning study with 11 patients to evaluate the difference in tumour coverage between the designed 3D-print bolus and the clinically delivered plan with manually created bolus. For the first 15 clinical patients a second CT scan with the 3D-print bolus was performed to verify the geometrical accuracy. The planning study showed that the V85% of the CTV was on average 97% (3D-print) vs 88% (conventional). Geometric comparison of the 3D-print bolus to the originally contoured bolus showed a high similarity (DSC=0.89). The dose distributions on the second CT scan with the 3D print bolus in position showed only small differences in comparison to the original planning CT scan. The implemented workflow is feasible, patient friendly, safe, and results in high quality dose distributions. This new technique increases time efficiency. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Sakata, Dousatsu; Kyriakou, Ioanna; Okada, Shogo; Tran, Hoang N; Lampe, Nathanael; Guatelli, Susanna; Bordage, Marie-Claude; Ivanchenko, Vladimir; Murakami, Koichi; Sasaki, Takashi; Emfietzoglou, Dimitris; Incerti, Sebastien
2018-05-01
Gold nanoparticles (GNPs) are known to enhance the absorbed dose in their vicinity following photon-based irradiation. To investigate the therapeutic effectiveness of GNPs, previous Monte Carlo simulation studies have explored GNP dose enhancement using mostly condensed-history models. However, in general, such models are suitable for macroscopic volumes and for electron energies above a few hundred electron volts. We have recently developed, for the Geant4-DNA extension of the Geant4 Monte Carlo simulation toolkit, discrete physics models for electron transport in gold which include the description of the full atomic de-excitation cascade. These models allow event-by-event simulation of electron tracks in gold down to 10 eV. The present work describes how such specialized physics models impact simulation-based studies on GNP-radioenhancement in a context of x-ray radiotherapy. The new discrete physics models are compared to the Geant4 Penelope and Livermore condensed-history models, which are being widely used for simulation-based NP radioenhancement studies. An ad hoc Geant4 simulation application has been developed to calculate the absorbed dose in liquid water around a GNP and its radioenhancement, caused by secondary particles emitted from the GNP itself, when irradiated with a monoenergetic electron beam. The effect of the new physics models is also quantified in the calculation of secondary particle spectra, when originating in the GNP and when exiting from it. The new physics models show similar backscattering coefficients with the existing Geant4 Livermore and Penelope models in large volumes for 100 keV incident electrons. However, in submicron sized volumes, only the discrete models describe the high backscattering that should still be present around GNPs at these length scales. Sizeable differences (mostly above a factor of 2) are also found in the radial distribution of absorbed dose and secondary particles between the new and the existing Geant4 models. The degree to which these differences are due to intrinsic limitations of the condensed-history models or to differences in the underling scattering cross sections requires further investigation. Improved physics models for gold are necessary to better model the impact of GNPs in radiotherapy via Monte Carlo simulations. We implemented discrete electron transport models for gold in Geant4 that is applicable down to 10 eV including the modeling of the full de-excitation cascade. It is demonstrated that the new model has a significant positive impact on particle transport simulations in gold volumes with submicron dimensions compared to the existing Livermore and Penelope condensed-history models of Geant4. © 2018 American Association of Physicists in Medicine.
Biophysical damage in metallo-enzyme and mammalian cells by Cu-K X-rays and radioisotopes
NASA Astrophysics Data System (ADS)
Younis, Abdul-Redha Sahib
In the fields of radiobiology and nuclear medicine there is considerable interest in the important role played by Auger electron cascades caused by inner-shell ionisation in realistic risk. It is necessary to quantify this risk when radionuclides are used on a routine basis as investigative, diagnostic and radiotherapeutic tools, whether the applications involve incorporated electron capture radionuclides or K-shell ionisation of selected stable nuclides by X-rays, as in "photon activation therapy". Relevant published survival data on biological damage caused by the internal emitters 125I, 77Br, 3H, 33P, 131I and 32P which are incorporated into the DNA of mammalian cells, bacteria (E. Coli) and bacteriophages have been collected and the results re-analysed in terms of the parameters of a new damage model to determine an inactivation cross-section for each internal emitter. These quality parameters are the absolute specification of radiation quality and are compared with cross-sections similarly determined for the effects of external radiations from heavy charged particles and photons (chapter 2). The inactivation probabilities obtained for the nuclides 125I, 77Br and 3H extend over a wide range of values depending on the type of nuclide and its distribution, the type of sensitive target and its shape and distribution, and the environmental temperature during both irradiation and post-irradiation incubation. The higher values approach those determined for heavy charged particles with the same mean free path for primary ionisation, and are an order of magnitude larger than would be expected for external irradiation with photon generated electrons. The results for 33P, 131I and 32P nuclides are appreciably smaller than that expected for external irradiation since the long range electrons dissipate most of their energy out of the sensitive target. A theoretical equation for X-ray production by accelerated electrons incident on a thick target has been revised by including factors to compensate for backscattering, direct and indirect ionisation, attenuation in the target and the incident angle of electrons (chapter 3). An electron accelerator X-ray machine capable of delivering monoenergetic photons up to 4.8 gray/sec exposure dose rate from four different targets has been designed, constructed and tested (chapter 4) The biophysical mechanisms of direct and indirect radiation action has also been studied using the metallo-enzyme dihydroorotic dehydrogenase. The enzyme was irradiated both in dry state and in solution at different concentrations and at different dose rates using monoenergetic Cu-K photons from our X-ray machine. A technique was developed whereby it was possible to isolate and quantify each type of radiation action (chapter 5). The inactivation of the enzyme in both solution and in dry state was found to be a single-hit/single-target process. It was also found that in solution the inactivation of the enzyme was dose-rate-and concentration-dependent with efficiency of radical inactivation has an exponential dependence on dose-rate and the inverse of the enzyme concentration. A new model for the inactivation of the enzyme has been suggested and its parameters, namely direct and indirect cross-sections, geometrical cross-section, saturated concentration constant, root mean square diffusion constant, mean free path of radicals absorption, life time and G value of radical production, have been determined. It is expected that this model can be generalised to suit other enzymes (chapter 6).
NASA Technical Reports Server (NTRS)
Lippincott, S. W.; Foelsche, T.; Montour, J. L.; Bender, R.; Wilson, I. J.
1972-01-01
The electron spectrum predicted for the synchronous orbit was simulated to determine the effects that might occur to astroscientists exposed to such irradiation while on a prolonged space station mission in that region. Miniature pigs were exposed to monoenergetic and spectral-fractionated irradiations with 0.5 to 2.1 MeV electrons. Clinical and pathological alterations observed in biopsies were correlated with depth-dose pattern and length of post irradiation period up to one year. With monoenergetic electrons, the lowest dose causing a recognizable lesion was 1450 rad and with increasing dose lesions appeared earlier and were more severe. At the highest dose given, 2650 rad, ulceration extending into the dermis was present by twenty one days and required about four months for complete healing. Spectral-fractionated irradiations, in which the total dose range was essentially comparable to that of the monoenergetic series, resulted in very minimal outer dermis edema at 1790 rad and at no dose employed did necrosis of epidermis or ulceration into dermis occur.
[Clinical evaluation of heavy-particle radiotherapy using dose volume histogram (DVH)].
Terahara, A; Nakano, T; Tsujii, H
1998-01-01
Radiotherapy with heavy particles such as proton and heavy-charged particles is a promising modality for treatment of localized malignant tumors because of the good dose distribution. A dose calculation and radiotherapy planning system which is essential for this kind of treatment has been developed in recent years. It has the capability to compute the dose volume histogram (DVH) which contains dose-volume information for the target volume and other interesting volumes. Recently, DVH is commonly used to evaluate and compare dose distributions in radiotherapy with both photon and heavy particles, and it shows that a superior dose distribution is obtained in heavy particle radiotherapy. DVH is also utilized for the evaluation of dose distribution related to clinical outcomes. Besides models such as normal tissue complication probability (NTCP) and tumor control probability (TCP), which can be calculated from DVH are proposed by several authors, they are applied to evaluate dose distributions themselves and to evaluate them in relation to clinical results. DVH is now a useful and important tool, but further studies are needed to use DVH and these models practically for clinical evaluation of heavy-particle radiotherapy.
Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application
NASA Astrophysics Data System (ADS)
Fabbri, A.; Falco, M. D.; De Notaristefani, F.; Galasso, M.; Marinelli, M.; Orsolini Cencelli, V.; Tortora, L.; Verona, C.; Verona Rinati, G.
2013-02-01
This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ``Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel.
Impact of temporal probability in 4D dose calculation for lung tumors.
Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi
2015-11-08
The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four-dimensional dose computed using the patient-specific respiratory trace.
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Katz, R.; Wilson, J. W.
1998-01-01
An analytic method is described for evaluating the average radial electron spectrum and the radial and total frequency-event spectrum for high-energy ions. For high-energy ions, indirect events make important contributions to frequency-event spectra. The method used for evaluating indirect events is to fold the radial electron spectrum with measured frequency-event spectrum for photons or electrons. The contribution from direct events is treated using a spatially restricted linear energy transfer (LET). We find that high-energy heavy ions have a significantly reduced frequency-averaged final energy (yF) compared to LET, while relativistic protons have a significantly increased yF and dose-averaged lineal energy (yD) for typical site sizes used in tissue equivalent proportional counters. Such differences represent important factors in evaluating event spectra with laboratory beams, in space- flight, or in atmospheric radiation studies and in validation of radiation transport codes. The inadequacy of LET as descriptor because of deviations in values of physical quantities, such as track width, secondary electron spectrum, and yD for ions of identical LET is also discussed.
An investigation of nonuniform dose deposition from an electron beam
NASA Astrophysics Data System (ADS)
Lilley, William; Luu, Kieu X.
1994-08-01
In a search for an explanation of nonuniform electron-beam dose deposition, the integrated tiger series (ITS) of coupled electron/photon Monte Carlo transport codes was used to calculate energy deposition in the package materials of an application-specific integrated circuit (ASIC) while the thicknesses of some of the materials were varied. The thicknesses of three materials that were in the path of an electron-beam pulse were varied independently so that analysis could determine how the radiation dose measurements using thermoluminescent dosimeters (TLD's) would be affected. The three materials were chosen because they could vary during insertion of the die into the package or during the process of taking dose measurements. The materials were aluminum, HIPEC (a plastic), and silver epoxy. The calculations showed that with very small variations in thickness, the silver epoxy had a large effect on the dose uniformity over the area of the die.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mwidu, U; Devic, S; Shehadeh, M
Purpose: A retrospective comparison of dose distributions achievable by High dose rate brachytherapy (HDRBT), Helical TomoTherapy (TOMO), CyberKnife (CK) and RapidArc (RA) in locally advanced inoperable cervical cancer patients is presented. Methods: Five patients with advanced stage cervical carcinoma were selected for this study after a full course of external beam radiotherapy (EBRT), chemotherapy and HDR Brachytherapy. To highlight any significant similarities/differences in dose distributions, high-risk clinical target volume (HRCTV) coverage, organs at risk (OAR) sparing, and machine specific delivery limitations, we used D90 (dose received by 90% of the volume) as the parameter for HRCTV coverage as recommended bymore » the GEC-ESTRO Working Group. We also compared both integral and differential dose volume histograms (DVH) between different dose distributions treatment modalities for HRCTV and OAR. Results: TOMO and RA provided the most conformal dose distributions to HRCTV. Median doses (in Gy) to organs at risk were; for rectal wall: 1.7±0.6, 2.5±0.6,1.2±0.3, and 1.5±0.6, and for bladder wall: 1.6±0.1, 2.4±0.4, 0.8±0.6, and 1.5±0.5, for HDRBT, TOMO, CK, and RA, respectively. Conclusion: Contemporary EBRT modalities might be able to replace brachytherapy treatments for cervix cancer. While brachytherapy dose distributions feature high dose gradients, EBRT modalities provide highly conformal dose distributions to the target. However, it is still not clear whether a highly conformal dose or high gradient dose is more clinically relevant for the HRCTV in cervix cancer patients.« less
First On-Site True Gamma-Ray Imaging-Spectroscopy of Contamination near Fukushima Plant
Tomono, Dai; Mizumoto, Tetsuya; Takada, Atsushi; Komura, Shotaro; Matsuoka, Yoshihiro; Mizumura, Yoshitaka; Oda, Makoto; Tanimori, Toru
2017-01-01
We have developed an Electron Tracking Compton Camera (ETCC), which provides a well-defined Point Spread Function (PSF) by reconstructing a direction of each gamma as a point and realizes simultaneous measurement of brightness and spectrum of MeV gamma-rays for the first time. Here, we present the results of our on-site pilot gamma-imaging-spectroscopy with ETCC at three contaminated locations in the vicinity of the Fukushima Daiichi Nuclear Power Plants in Japan in 2014. The obtained distribution of brightness (or emissivity) with remote-sensing observations is unambiguously converted into the dose distribution. We confirm that the dose distribution is consistent with the one taken by conventional mapping measurements with a dosimeter physically placed at each grid point. Furthermore, its imaging spectroscopy, boosted by Compton-edge-free spectra, reveals complex radioactive features in a quantitative manner around each individual target point in the background-dominated environment. Notably, we successfully identify a “micro hot spot” of residual caesium contamination even in an already decontaminated area. These results show that the ETCC performs exactly as the geometrical optics predicts, demonstrates its versatility in the field radiation measurement, and reveals potentials for application in many fields, including the nuclear industry, medical field, and astronomy. PMID:28155883
egs_brachy: a versatile and fast Monte Carlo code for brachytherapy
NASA Astrophysics Data System (ADS)
Chamberland, Marc J. P.; Taylor, Randle E. P.; Rogers, D. W. O.; Thomson, Rowan M.
2016-12-01
egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm)3 voxels) and eye plaque (with (1 mm)3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.
Pappas, Eleftherios P; Peppa, Vasiliki; Hourdakis, Costas J; Karaiskos, Pantelis; Papagiannis, Panagiotis
2018-01-01
To evaluate a commercially available Ferrous-Xylenol Orange-Gel (FXG) dosimeter (TrueView™) coupled with Optical-Computed Tomography (OCT) read out, for 3D dose verification in an Ir-192 superficial brachytherapy application. Two identical polyethylene containers filled with gel from the same batch were used. One was irradiated with an 18 MeV electron field to examine the dose-response linearity and obtain a calibration curve. A flap surface applicator was attached to the other to simulate treatment of a skin lesion. The dose distribution in the experimental set up was calculated with the TG-43 and the model based dose calculation (MBCA) algorithms of a commercial treatment planning system (TPS), as well as Monte Carlo (MC) simulation using the MCNP code. Measured and calculated dose distributions were spatially registered and compared. Apart from a region close to the container's neck, where gel measurements exhibited an over-response relative to MC calculations (probably due to stray light perturbation), an excellent agreement was observed between measurements and simulations. More than 97% of points within the 10% isodose line (80 cGy) met the gamma index criteria established from uncertainty analysis (5%/2 mm). The corresponding passing rates for the comparison of experiment to calculations using the TG-43 and MBDCA options of the TPS were 57% and 92%, respectively. TrueView™ is suitable for the quality assurance of demanding radiotherapy applications. Experimental results of this work confirm the advantage of the studied MBDCA over TG-43, expected from the improved account of scatter radiation in the treatment geometry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
egs_brachy: a versatile and fast Monte Carlo code for brachytherapy.
Chamberland, Marc J P; Taylor, Randle E P; Rogers, D W O; Thomson, Rowan M
2016-12-07
egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm) 3 voxels) and eye plaque (with (1 mm) 3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.
Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak
NASA Astrophysics Data System (ADS)
Rasouli, C.; Pourshahab, B.; Hosseini Pooya, S. M.; Orouji, T.; Rasouli, H.
2014-05-01
In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points - three TLDs per point - to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.
Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.
Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H
2014-05-01
In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.
NASA Technical Reports Server (NTRS)
Ferl, J. E.; Long, E. R., Jr.
1981-01-01
Infrared (IR) spectroscopy and tensile modulus testing were used to evaluate the importance of experimental procedure on changes in properties of pyromellitic dianhydride-p,p prime-oxydianiline film exposed to electron radiation. The radiation exposures were accelerated, approximate equivalents to the total dose expected for a 30 year mission in geosynchronous Earth orbit. The change in the tensile modulus depends more on the dose rate and the time interval between exposure and testing than on total dose. The IR data vary with both total dose and dose rate. A threshold dose rate exists below which reversible radiation effects on the IR spectra occur. Above the threshold dose rate, irreversible effects occur with the appearance of a new band. Post-irradiation and in situ IR absorption bands are significantly different. It is suggested that the electron radiation induced metastable, excites molecular states.
Surface dose measurements for highly oblique electron beams.
Ostwald, P M; Kron, T
1996-08-01
Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.
Measurement of Total Calcium in Neurons by Electron Probe X-ray Microanalysis
Pivovarova, Natalia B.; Andrews, S. Brian
2013-01-01
In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis provided critical insight into mechanisms of excitotoxic injury and another that revealed the basis of ischemia resistance. PMID:24300079
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M; Ramaseshan, R
2016-06-15
Purpose: In this project, we compared the conventional tangent pair technique to IMRT technique by analyzing the dose distribution. We also investigated the effect of respiration on planning target volume (PTV) dose coverage in both techniques. Methods: In order to implement IMRT technique a template based planning protocol, dose constrains and treatment process was developed. Two open fields with optimized field weights were combined with two beamlet optimization fields in IMRT plans. We compared the dose distribution between standard tangential pair and IMRT. The improvement in dose distribution was measured by parameters such as conformity index, homogeneity index and coveragemore » index. Another end point was the IMRT technique will reduce the planning time for staff. The effect of patient’s respiration on dose distribution was also estimated. The four dimensional computed tomography (4DCT) for different phase of breathing cycle was used to evaluate the effect of respiration on IMRT planned dose distribution. Results: We have accumulated 10 patients that acquired 4DCT and planned by both techniques. Based on the preliminary analysis, the dose distribution in IMRT technique was better than conventional tangent pair technique. Furthermore, the effect of respiration in IMRT plan was not significant as evident from the 95% isodose line coverage of PTV drawn on all phases of 4DCT. Conclusion: Based on the 4DCT images, the breathing effect on dose distribution was smaller than what we expected. We suspect that there are two reasons. First, the PTV movement due to respiration was not significant. It might be because we used a tilted breast board to setup patients. Second, the open fields with optimized field weights in IMRT technique might reduce the breathing effect on dose distribution. A further investigation is necessary.« less
An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.
Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun
2015-10-21
Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum dose difference within 1.7%. The maximum relative difference of output factors was within 0.5%. Over 98.5% passing rate was achieved in 3D gamma-index tests with 2%/2 mm criteria in both an IMRT prostate patient case and a head-and-neck case. These results demonstrated the efficacy of our model in terms of accurately representing a reference phase-space file. We have also tested the efficiency gain of our source model over our previously developed phase-space-let file source model. The overall efficiency of dose calculation was found to be improved by ~1.3-2.2 times in water and patient cases using our analytical model.
Czaplewski, David A; Holt, Martin V; Ocola, Leonidas E
2013-08-02
We present a set of universal curves that predict the range and intensity of backscattered electrons which can be used in conjunction with electron beam lithography to create high fidelity nanoscale patterns. The experimental method combines direct write dose, backscattered dose, and a self-reinforcing pattern geometry to measure the dose provided by backscattered electrons to a nanoscale volume on the substrate surface at various distances from the electron source. Electron beam lithography is used to precisely control the number and position of incident electrons on the surface of the material. Atomic force microscopy is used to measure the height of the negative electron beam lithography resist. Our data shows that the range and the intensity of backscattered electrons can be predicted using the density and the atomic number of any solid material, respectively. The data agrees with two independent Monte Carlo simulations without any fitting parameters. These measurements are the most accurate electron range measurements to date.
Jacqmin, Dustin J; Bredfeldt, Jeremy S; Frigo, Sean P; Smilowitz, Jennifer B
2017-01-01
The AAPM Medical Physics Practice Guideline (MPPG) 5.a provides concise guidance on the commissioning and QA of beam modeling and dose calculation in radiotherapy treatment planning systems. This work discusses the implementation of the validation testing recommended in MPPG 5.a at two institutions. The two institutions worked collaboratively to create a common set of treatment fields and analysis tools to deliver and analyze the validation tests. This included the development of a novel, open-source software tool to compare scanning water tank measurements to 3D DICOM-RT Dose distributions. Dose calculation algorithms in both Pinnacle and Eclipse were tested with MPPG 5.a to validate the modeling of Varian TrueBeam linear accelerators. The validation process resulted in more than 200 water tank scans and more than 50 point measurements per institution, each of which was compared to a dose calculation from the institution's treatment planning system (TPS). Overall, the validation testing recommended in MPPG 5.a took approximately 79 person-hours for a machine with four photon and five electron energies for a single TPS. Of the 79 person-hours, 26 person-hours required time on the machine, and the remainder involved preparation and analysis. The basic photon, electron, and heterogeneity correction tests were evaluated with the tolerances in MPPG 5.a, and the tolerances were met for all tests. The MPPG 5.a evaluation criteria were used to assess the small field and IMRT/VMAT validation tests. Both institutions found the use of MPPG 5.a to be a valuable resource during the commissioning process. The validation testing in MPPG 5.a showed the strengths and limitations of the TPS models. In addition, the data collected during the validation testing is useful for routine QA of the TPS, validation of software upgrades, and commissioning of new algorithms. © 2016 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Dose fractionation theorem in 3-D reconstruction (tomography)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaeser, R.M.
It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resultedmore » in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens.« less
Effect of a magnetic field on the track structure of low-energy electrons: a Monte Carlo study
NASA Astrophysics Data System (ADS)
Bug, M. U.; Gargioni, E.; Guatelli, S.; Incerti, S.; Rabus, H.; Schulte, R.; Rosenfeld, A. B.
2010-10-01
The increasing use of MRI-guided radiation therapy evokes the necessity to investigate the potential impact of a magnetic field on the biological effectiveness of therapeutic radiation beams. While it is known that a magnetic field, applied during irradiation, can improve the macroscopic absorbed dose distribution of electrons in the tumor region, effects on the microscopic distribution of energy depositions and ionizations have not yet been investigated. An effect on the number of ionizations in a DNA segment, which is related to initial DNA damage in form of complex strand breaks, could be beneficial in radiation therapy. In this work we studied the effects of a magnetic field on the pattern of ionizations at nanometric level by means of Monte Carlo simulations using the Geant4-DNA toolkit. The track structure of low-energy electrons in the presence of a uniform static magnetic field of strength up to 14 T was calculated for a simplified DNA segment model in form of a water cylinder. In the case that no magnetic field is applied, nanodosimetric results obtained with Geant4-DNA were compared with those from the PTB track structure code. The obtained results suggest that any potential enhancement of complexity of DNA strand breaks induced by irradiation in a magnetic field is not related to modifications of the low-energy secondary electrons track structure.
McCowan, Peter M; Asuni, Ganiyu; Van Uytven, Eric; VanBeek, Timothy; McCurdy, Boyd M C; Loewen, Shaun K; Ahmed, Naseer; Bashir, Bashir; Butler, James B; Chowdhury, Amitava; Dubey, Arbind; Leylek, Ahmet; Nashed, Maged
2017-04-01
To report findings from an in vivo dosimetry program implemented for all stereotactic body radiation therapy patients over a 31-month period and discuss the value and challenges of utilizing in vivo electronic portal imaging device (EPID) dosimetry clinically. From December 2013 to July 2016, 117 stereotactic body radiation therapy-volumetric modulated arc therapy patients (100 lung, 15 spine, and 2 liver) underwent 602 EPID-based in vivo dose verification events. A developed model-based dose reconstruction algorithm calculates the 3-dimensional dose distribution to the patient by back-projecting the primary fluence measured by the EPID during treatment. The EPID frame-averaging was optimized in June 2015. For each treatment, a 3%/3-mm γ comparison between our EPID-derived dose and the Eclipse AcurosXB-predicted dose to the planning target volume (PTV) and the ≥20% isodose volume were performed. Alert levels were defined as γ pass rates <85% (lung and liver) and <80% (spine). Investigations were carried out for all fractions exceeding the alert level and were classified as follows: EPID-related, algorithmic, patient setup, anatomic change, or unknown/unidentified errors. The percentages of fractions exceeding the alert levels were 22.6% for lung before frame-average optimization and 8.0% for lung, 20.0% for spine, and 10.0% for liver after frame-average optimization. Overall, mean (± standard deviation) planning target volume γ pass rates were 90.7% ± 9.2%, 87.0% ± 9.3%, and 91.2% ± 3.4% for the lung, spine, and liver patients, respectively. Results from the clinical implementation of our model-based in vivo dose verification method using on-treatment EPID images is reported. The method is demonstrated to be valuable for routine clinical use for verifying delivered dose as well as for detecting errors. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCowan, Peter M., E-mail: pmccowan@cancercare.mb.ca; Asuni, Ganiyu; Van Uytven, Eric
Purpose: To report findings from an in vivo dosimetry program implemented for all stereotactic body radiation therapy patients over a 31-month period and discuss the value and challenges of utilizing in vivo electronic portal imaging device (EPID) dosimetry clinically. Methods and Materials: From December 2013 to July 2016, 117 stereotactic body radiation therapy–volumetric modulated arc therapy patients (100 lung, 15 spine, and 2 liver) underwent 602 EPID-based in vivo dose verification events. A developed model-based dose reconstruction algorithm calculates the 3-dimensional dose distribution to the patient by back-projecting the primary fluence measured by the EPID during treatment. The EPID frame-averaging was optimized in Junemore » 2015. For each treatment, a 3%/3-mm γ comparison between our EPID-derived dose and the Eclipse AcurosXB–predicted dose to the planning target volume (PTV) and the ≥20% isodose volume were performed. Alert levels were defined as γ pass rates <85% (lung and liver) and <80% (spine). Investigations were carried out for all fractions exceeding the alert level and were classified as follows: EPID-related, algorithmic, patient setup, anatomic change, or unknown/unidentified errors. Results: The percentages of fractions exceeding the alert levels were 22.6% for lung before frame-average optimization and 8.0% for lung, 20.0% for spine, and 10.0% for liver after frame-average optimization. Overall, mean (± standard deviation) planning target volume γ pass rates were 90.7% ± 9.2%, 87.0% ± 9.3%, and 91.2% ± 3.4% for the lung, spine, and liver patients, respectively. Conclusions: Results from the clinical implementation of our model-based in vivo dose verification method using on-treatment EPID images is reported. The method is demonstrated to be valuable for routine clinical use for verifying delivered dose as well as for detecting errors.« less
Confidence Level Based Approach to Total Dose Specification for Spacecraft Electronics
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; Label, K. A.
2017-01-01
A confidence level based approach to total dose radiation hardness assurance is presented for spacecraft electronics. It is applicable to both ionizing and displacement damage dose. Results are compared to the traditional approach that uses radiation design margin and advantages of the new approach are discussed.
Total Dose Survivability of Hubble Electronic Components
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Stauffer, C.; Jordan, T.; Poivey, C.; Haskins, D. N.; Lum, G.; Pergosky, A. M.; Smith, D. C.; LaBel, K. A.
2017-01-01
A total dose analysis for exposure of electronic parts at the box level is presented for the Hubble Space Telescope. This was done using solid angle sectoring/3-dimensional ray trace and Monte Carlo radiation transport simulations. Results are discussed in terms of parts that are potential total dose concerns.
New Approach to Total Dose Specification for Spacecraft Electronics
NASA Technical Reports Server (NTRS)
Xapsos, Michael
2017-01-01
Variability of the space radiation environment is investigated with regard to total dose specification for spacecraft electronics. It is shown to have a significant impact. A new approach is developed for total dose requirements that replaces the radiation design margin concept with failure probability during a mission.
Food Irradiation Using Electron Beams and X-Rays
NASA Astrophysics Data System (ADS)
Miller, Bruce
2003-04-01
In this presentation we will discuss the technology of food irradiation using electron accelerators. Food irradiation has generally come to describe the use of ionizing radiation to decrease the population of, or prevent the growth of, undesirable biological organisms in food. The many beneficial applications include insect disinfestation, sprouting inhibition, delayed ripening, and the enhanced safety and sterilization of fresh and frozen meat products, seafood, and eggs. With special regard to food safety, bacteria such as Salmonella enteridis, Listeria monocytogenes, Campylobacter jejuni and Escherichia coli serotype O157:H7 are the primary causes of food poisoning in industrialized countries. Ionizing doses in the range of only 1-5 kilogray (kGy) can virtually eliminate these organisms from food, without affecting the food's sensory and nutritional qualities, and without inducing radioactivity. The key elements of an accelerator-based irradiation facility include the accelerator system, a scanning system, and a material handling system that moves the product through the beam in a precisely controlled manner. Extensive radiation shielding is necessary to reduce the external dose to acceptable levels, and a safety system is necessary to prevent accidental exposure of personnel during accelerator operation. Parameters that affect the dose distribution must be continuously monitored and controlled with process control software. The choice of electron beam vs x-ray depends on the areal density (density times thickness) of the product and the anticipated mass throughput. To eliminate nuclear activation concerns, the maximum kinetic energy of the accelerator is limited by regulation to 10 MeV for electron beams, and 5 MeV for x-rays. From penetration considerations, the largest areal density that can be treated by double-sided electron irradiation at 10 MeV is about 8.8 g/cm2. Products having greater areal densities must be processed using more penetrating x-rays. The mass throughput (dM/dt in kg/s) of an accelerator-based system is proportional to the average beam power (P in kW), and inversely proportional to the minimum required dose (Dm in kGy, with 1 kGy = 1 kJ/kg). The constant of proportionality is the mass throughput efficiency. Throughput efficiencies of 0.4 or better are typical of electron beam installations, but are only 0.025-0.035 for x-ray installations, primarily because of the inefficiency of bremsstrahlung generation at 5 MeV (about 8an axially-coupled, standing-wave, L-band linac with an average power in excess of 100 kW to achieve reasonable throughput rates with x-ray processing. Various design aspects of this new machine will be presented.