Science.gov

Sample records for electron emission characteristic

  1. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    NASA Astrophysics Data System (ADS)

    Chiang, Chang-Lin; Zeng, Hui-Kai; Li, Chia-Hung; Li, Jung-Yu; Chen, Shih-Pu; Lin, Yi-Ping; Hsieh, Tai-Chiung; Juang, Jenh-Yih

    2016-01-01

    The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL) devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT) to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO), aluminum oxide coated FTO (Al2O3/FTO) and magnesium oxide coated FTO (MgO/FTO) were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.

  2. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    SciTech Connect

    Chiang, Chang-Lin Li, Chia-Hung; Zeng, Hui-Kai; Li, Jung-Yu Chen, Shih-Pu; Lin, Yi-Ping; Hsieh, Tai-Chiung; Juang, Jenh-Yih

    2016-01-15

    The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL) devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT) to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO), aluminum oxide coated FTO (Al{sub 2}O{sub 3}/FTO) and magnesium oxide coated FTO (MgO/FTO) were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.

  3. Characteristics of a cold cathode electron source combined with secondary electron emission in a FED

    NASA Astrophysics Data System (ADS)

    Lei, Wei; Zhang, Xiaobing; Zhou, Xuedong; Zhu, Zuoya; Lou, Chaogang; Zhao, Hongping

    2005-09-01

    In electron beam devices, the voltage applied to the cathode (w.r.t. grid voltage) provides the initial energy for the electrons. Based on the type of electron emission, the electron sources are (mainly) classified into thermionic cathodes and cold cathodes. The power consumption of a cold cathode is smaller than that of a thermionic cathode. The delay time of the electron emission from a cold cathode following the voltage rise is also smaller. In cathode ray tubes, field emission display (=FED) panels and other devices, the electron current emitted from the cathode needs to be modulated. Since the strong electric field, which is required to extract electrons from the cold cathode, accelerates the electrons to a high velocity near the gate electrode, the required voltage swing for the current modulation is also high. The design of the driving circuit becomes quite difficult and expensive for a high driving voltage. In this paper, an insulator plate with holes is placed in front of a cold cathode. When the primary electrons hit the surface of the insulator tunnels, secondary electrons are generated. In this paper, the characteristics of the secondary electrons emitted from the gate structure are studied. Because the energies of the secondary electrons are smaller than that of the primary electron, the driving voltage for the current modulation is decreased by the introduction of the insulator tunnels, resulting in an improved energy uniformity of the electron beam. Triode structures with inclined insulator tunnels and with double insulator plates are also fabricated and lead to further improvements in the energy uniformity. The improved energy uniformity predicted by the simulation calculations is demonstrated by the improved brightness uniformity in the screen display images.

  4. Electron reflection and secondary emission characteristics of sputter-textured pyrolytic graphite surfaces

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Curren, A. N.; Sovey, J. S.

    1981-01-01

    Low secondary and reflected primary electron emission from the collector electrode surfaces is important for optimum collector efficiency and hence for high overall efficiency of microwave amplifier tubes used in communication satellites and in military systems. Ion sputter texturing of the surface effectively suppresses electron emission from pyrolytic graphite, which is a promising collector electrode material. Secondary and reflected primary electron emission characteristics of sputter textured pyrolytic graphite surfaces with microstructures of various sizes and densities are presented. The microstructure with the lowest electron emission levels, less than those of soot, consists of a dense array of tall, thin spires.

  5. Secondary electron emission characteristics of graphene films with copper substrate

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Yong; Xu, Yanhui; Zhang, Yuxin; Zhang, Bo; Wei, Wei

    2016-11-01

    For modern and future circular accelerators, especially high-intensity proton synchrotrons or colliders, the electron cloud effect is a key issue. So, in order to reduce the electron cloud effect, exploring very low secondary electron yield (SEY) material or coating used in vacuum tubes becomes necessary. In this article, we studied the SEY characteristics of graphene films with different thicknesses which were deposited on copper substrates using chemical vapor deposition. The SEY tests were done at temperatures of 25 °C and vacuum pressure of (2 - 6) × 10-9 torr. The properties of the deposited graphene films were investigated by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The SEY curves show that the number of graphene layers has a great effect on the SEY of graphene films. The maximum SEY of graphene films decreases with the increase of the number of layers. The maximum SEY of 6-8 layers of graphene film is 1.25. These results have a great significance for next-generation particle accelerators. Supported by the National Natural Science Foundation of China (11475166) National Natural Science Foundation of China (11205155) and National Natural Science Foundation of China (11575214).

  6. Secondary electron emission characteristics of ion-textured copper and high-purity isotropic graphite surfaces

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.

  7. Secondary electron emission characteristics of untreated and ion-textured titanium

    NASA Technical Reports Server (NTRS)

    Curren, Arthur N.; Jensen, Kenneth A.; Blackford, Gary A.

    1989-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield are presented for untreated (simply machined) and ion-textured, high-purity titanium over ranges of primary electron beam energies and beam impingement angles. The purpose of the investigation was to explore the feasibility of using titanium as electrode material in the multistage depressed collectors (MDC's) used in microwave amplifier traveling wave tubes (TWT's) for space communications and aircraft applications. Because of its relatively low density and thermal expansion characteristics and relatively high strength, thermal emissivity, and melting temperature, titanium presents itself as a possible candidate for the MDC electrode application. A detailed description of the method of ion texturing the titanium is included. Although the ion-treated surface considered in this study is not presented as being optimum from the standpoint of secondary electron emission suppression, it nevertheless serves to demonstrate that the surface can be modified by this procedure to significantly reduce these emission characteristics relative to those of the untreated surface. Further studies can reasonably be expected to produce surfaces with even lower secondary emission characteristics. The titanium surface were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near-grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the surfaces were compared with each other and with textured titanium surface exhibited secondary electron emission characteristics sharply lower than those exhibited by untreated titanium or copper. Clearly, then, in consideration of the secondary electron emission suppression of ion-textured titanium along with its other favorable physical properties, it must be included as a potential candidate for use as MDC electrode

  8. Textured carbon on copper: A novel surface with extremely low secondary electron emission characteristics

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1985-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for a range of primary electron beam energies and beam impingement angles are presented for a series of novel textured carbon surfaces on copper substrates. (All copper surfaces used in this study were oxygen-free, high-conductivity grade). The purpose of this investigation is to provide information necessary to develop high-efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes (TWT's) for communications and aircraft applications. To attain the highest TWT signal quality and overall efficiency, the MDC electrode surface must have low secondary electron emission characteristics. While copper is the material most commonly used for MDC electrodes, it exhibits relatively high levels of secondary electron emission unless its surface is treated for emission control. The textured carbon surface on copper substrate described in this report is a particularly promising candidate for the MDC electrode application. Samples of textured carbon surfaces on copper substrates typical of three different levels of treatment are prepared and tested for this study. The materials are tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near-grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the textured surfaces are compared with each other and with those of untreated copper. All the textured carbon surfaces on copper substrate tested exhibited sharply lower secondary electron emission characteristics than those of an untreated copper surface.

  9. Fully kinetic simulations of collisionless, mesothermal plasma emission: Macroscopic plume structure and microscopic electron characteristics

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Wang, Joseph

    2017-03-01

    This paper presents a fully kinetic particle particle-in-cell simulation study on the emission of a collisionless plasma plume consisting of cold beam ions and thermal electrons. Results are presented for both the two-dimensional macroscopic plume structure and the microscopic electron kinetic characteristics. We find that the macroscopic plume structure exhibits several distinctive regions, including an undisturbed core region, an electron cooling expansion region, and an electron isothermal expansion region. The properties of each region are determined by microscopic electron kinetic characteristics. The division between the undisturbed region and the cooling expansion region approximately matches the Mach line generated at the edge of the emission surface, and that between the cooling expansion region and the isothermal expansion region approximately matches the potential well established in the beam. The interactions between electrons and the potential well lead to a new, near-equilibrium state different from the initial distribution for the electrons in the isothermal expansion region. The electron kinetic characteristics in the plume are also very anisotropic. As the electron expansion process is mostly non-equilibrium and anisotropic, the commonly used assumption that the electrons in a collisionless, mesothermal plasma plume may be treated as a single equilibrium fluid in general is not valid.

  10. Beam impingement angle effects on secondary electron emission characteristics of textured pyrolytic graphite

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion-textured pyrolytic graphite over a range of primary electron energy levels and electron beam impingement angles are presented. Information required to develop high efficiency multistage depressed collectors (MDC's) for microwave amplifier traveling-wave tubes for space communication and aircraft applications is provided. To attain the highest possible MDC efficiencies, the electrode surfaces must have low secondary electron emission characteristics. Pyrolytic graphite, a chemically vapor-deposited material, is a particularly promising candidate for this application. The pyrolytic graphite surfaces studied were tested over a range of primary electron beam energies and beam impingement angles from 200 to 2000 eV and direct (0 deg) to near-grazing angles (85 deg), respectively. Surfaces both parallel to and normal to the planes of material deposition were examined. The true secondary electron emission and reflected primary electron yield characteristics of the pyrolytic graphite surfaces are compared to those of sooted control surfaces.

  11. Secondary electron emission characteristics of molybdenum-masked, ion-textured OFHC copper

    NASA Technical Reports Server (NTRS)

    Curren, Arthur N.; Jensen, Kenneth A.; Roman, Robert F.

    1990-01-01

    A method for producing a uniform, highly textured surface on oxygen-free, high conductivity (OFHC) copper by ion bombardment using sputtered molybdenum as a texture-inducing masking film was developed and used to provide samples for study. The purpose was to develop a basically OFHC copper surface having very low secondary electron emission characteristics. Surfaces having low secondary electron emission are a requirement for the electrodes of very high efficiency multistage depressed collectors (MDC's). Such MDC's are used in microwave amplifier traveling wave tubes for space communications and other applications. OFHC copper is the material most commonly used for MDC electrodes because it has high thermal conductivity, it is easy to machine, and its fabrication and brazing procedures are well established. However, its untreated surface displays relatively very high levels of secondary electron emissions. Textured OFHC copper samples were tested for true secondary electron emission and relative reflected primary electron yield at primary electron beam energy levels from 200 to 2000 eV and at direct (0 deg) to oblique (60 deg) beam impingement angles. The test results for three of the samples, each of which was processed in a slightly different way, are compared with each other and with test results for a machined OFHC copper sample. Although the textured samples are not represented here as having been processed optimally, their measured secondary electron emission characteristics are significantly lower than those of the untreated OFHC copper sample over the range of conditions studied. Importantly, the relative reflected primary electron yield of one of the textured samples is conspicuously lower than that of the others. Clearly, with further development, the molybdenum-masked ion-textured OFHC copper surface will be a promising material for high-efficiency MDC electrodes.

  12. Characteristics of a Sheath with Secondary Electron Emission in the Double Walls of a Hall Thruster

    NASA Astrophysics Data System (ADS)

    Duan, Ping; Li, Xi; Shen, Hongjuan; Chen, Long; E, Peng

    2012-09-01

    In order to investigate the effects of secondary electrons, which are emitted from the wall, on the performance of a thruster, a one-dimensional fluid model of the plasma sheath in double walls is applied to study the characteristics of a magnetized sheath. The effects of secondary electron emission (SEE) coefficients and trapping coefficients, as well as magnetic field, on the structure of the plasma sheath are investigated. The results show that sheath potential and wall potential rise with the increment of SEE coefficient and trapping coefficient which results in a reduced sheath thickness. In addition, magnetic field strength will influence the sheath potential distributions.

  13. Improvement of electron emission characteristics of porous silicon emitter by using cathode reduction and electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Li, He; Wenjiang, Wang; Xiaoning, Zhang

    2017-03-01

    A new simple and convenient post-treat technique combined the cathode reduction (CR) and electrochemical oxidation (ECO) was proposed to improve the electron emission properties of the surface-emitting cold cathodes based on the porous silicon (PS). It is demonstrated here that by introducing this new technique combined CR and ECO, the emission properties of the diode have been significantly improved than those as-prepared samples. The experimental results showed that the emission current densities and efficiencies of sample treated by CR were 62 μA/cm2 and 12.10‰, respectively, nearly 2 orders of magnitude higher than those of as-prepared sample. Furthermore, the CR-treated PS emitter shows higher repeatability and stability compared with the as-prepared PS emitter. The scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive spectrometer (EDS), furier transformed infrared (FTIR) spectroscopy results indicated that the improved mechanism is mainly due to the passivation of the PS, which not only improve the PS morphology by the passivation of the H+ but also improve the uniformity of the oxygen content distribution in the whole PS layer. Therefore, the method combined the CR treatment and ECO is expected to be a valuable technique to enhance the electron emission characteristics of the PS emitter.

  14. Experimental Study of Electron Emission Characteristics of a Surface Flashover Trigger in a Low Pressure Environment

    NASA Astrophysics Data System (ADS)

    Hu, Shangmao; Yao, Xueling; Chen, Jingliang

    2010-12-01

    Characteristics of electron emission induced by a surface flashover trigger device in a low-pressure trigger switch were investigated. A test method to measure the emitted charges from the trigger device was developed, and the factors affecting the emitted charges were analyzed. The results indicated that the major emitted charges from the trigger device were induced by surface plasma generated by surface flashover occurring on the trigger dielectric material. The emitted charges and the peak emission current increased linearly with the change in the trigger voltage and bias voltage. The emitted charges collected from the anode were affected by the gap distance. However, the emitted charges were less affected by the anode diameter. Furthermore, the emitted charges and the peak emission current decreased rapidly with the increase in gas pressure in a range from 0 Pa to 100 Pa, and then remained stable or changed slightly when the increase in gas pressure up to 2400 Pa.

  15. Evaluating the Field Emission Characteristics of Aluminum for DC High Voltage Photo-Electron Guns

    NASA Astrophysics Data System (ADS)

    Taus, Rhys; Poelker, Matthew; Forman, Eric; Mamun, Abdullah

    2013-10-01

    High current photoguns require high power laser light, but only a small portion of the laser light illuminating the photocathode produces electron beam. Most of the laser light (~ 65%) simply serves to heat the photocathode, which leads to evaporation of the chemicals required to create the negative electron affinity condition necessary for photoemission. Photocathode cooling techniques have been employed to address this problem, but active cooling of the photocathode is complicated because the cooling apparatus must float at high voltage. This work evaluates the field emission characteristics of cathode electrodes manufactured from materials with high thermal conductivity: aluminum and copper. These electrodes could serve as effective heat sinks, to passively cool the photocathode that resides within such a structure. However, literature suggests ``soft'' materials like aluminum and copper are ill suited for photogun applications, due to excessive field emission when biased at high voltage. This work provides an evaluation of aluminum and copper electrodes inside a high voltage field emission test stand, before and after coating with titanium nitride (TiN), a coating that enhances surface hardness. National Science Foundation Award Number: 1062320 and the Department of Defence ASSURE program.

  16. Evaluating the Field Emission Characteristics of Aluminum for DC High Voltage Photo-Electron Guns

    NASA Astrophysics Data System (ADS)

    Taus, Rhys; Poelker, Matthew; Forman, Eric; Mamun, Abdullah

    2014-03-01

    High current photoguns require high power laser light, but only a small portion of the laser light illuminating the photocathode produces electron beam. Most of the laser light (~ 65%) simply serves to heat the photocathode, which leads to evaporation of the chemicals required to create the negative electron affinity condition necessary for photoemission. Photocathode cooling techniques have been employed to address this problem, but active cooling of the photocathode is complicated because the cooling apparatus must float at high voltage. This work evaluates the field emission characteristics of cathode electrodes manufactured from materials with high thermal conductivity: aluminum and copper. These electrodes could serve as effective heat sinks, to passively cool the photocathode that resides within such a structure. However, literature suggests ``soft'' materials like aluminum and copper are ill suited for photogun applications, due to excessive field emission when biased at high voltage. This work provides an evaluation of aluminum and copper electrodes inside a high voltage field emission test stand, before and after coating with titanium nitride (TiN), a coating that enhances surface hardness. National Science Foundation Award Number: 1062320 and the Department of Defence ASSURE program.

  17. Monte Carlo simulation of characteristic x-ray emission from thick samples bombarded by kiloelectronvolt electrons

    NASA Astrophysics Data System (ADS)

    Bote, D.; Llovet, X.; Salvat, F.

    2008-05-01

    We describe systematic Monte Carlo (MC) calculations of characteristic K and L x-ray emission from thick samples bombarded by kiloelectronvolt electrons. The simulations were performed using the general-purpose MC code PENELOPE, which was modified by introducing a new database of electron-impact ionization cross sections calculated from the distorted-wave Born approximation (DWBA). The calculated yields, defined as the number of photons emerging from the target per unit solid angle and per incident electron, are compared with experimental measurements available from the literature, which pertain to single-element materials with atomic numbers ranging from Z = 6 up to Z = 82 and electron beam energies from a few kiloelectronvolts up to 40 keV. To reveal the dependence of the characteristic x-ray yields on the adopted ionization cross sections, simulations were also performed using cross sections based on the plane-wave Born approximation (PWBA). Our calculations confirm that, in the considered energy range, the DWBA is considerably more accurate than the PWBA.

  18. Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics.

    PubMed

    El-Hellani, Ahmad; Salman, Rola; El-Hage, Rachel; Talih, Soha; Malek, Nathalie; Baalbaki, Rima; Karaoghlanian, Nareg; Nakkash, Rima; Shihadeh, Alan; Saliba, Najat A

    2016-10-07

    Available in hundreds of device designs and thousands of flavors, electronic cigarette (ECIG) may have differing toxicant emission characteristics. This study assesses nicotine and carbonyl yields in the most popular brands in the U.S. market. These products included disposable, prefilled cartridge, and tank-based ECIGs. Twenty-seven ECIG products of 10 brands were procured and their power outputs were measured. The e-liquids were characterized for pH, nicotine concentration, propylene glycol/vegetable glycerin (PG/VG) ratio, and water content. Aerosols were generated using a puffing machine and nicotine and carbonyls were, respectively, quantified using gas chromatograph and high-performance liquid chromatography. A multiregression model was used to interpret the data. Nicotine yields varied from 0.27 to 2.91 mg/15 puffs, a range corresponding to the nicotine yield of less than 1 to more than 3 combustible cigarettes. Nicotine yield was highly correlated with ECIG type and brand, liquid nicotine concentration, and PG/VG ratio, and to a lower significance with electrical power, but not with pH and water content. Carbonyls, including the carcinogen formaldehyde, were detected in all ECIG aerosols, with total carbonyl concentrations ranging from 3.72 to 48.85 µg/15 puffs. Unlike nicotine, carbonyl concentrations were mainly correlated with power. In 15 puffs, some ECIG devices emit nicotine quantities that exceed those of tobacco cigarettes. Nicotine emissions vary widely across products but carbonyl emissions showed little variations. In spite of that ECIG users are exposed to toxicologically significant levels of carbonyl compounds, especially formaldehyde. Regression analysis showed the importance of design and e-liquid characteristics as determinants of nicotine and carbonyl emissions. Periodic surveying of characteristics of ECIG products available in the marketplace is valuable for understanding population-wide changes in ECIG use patterns over time. © The

  19. Electron field emission characteristics of different surface morphologies of ZnO nanostructures coated on carbon nanotubes.

    PubMed

    Li, Kuan-Wei; Lian, Huan-Bin; Cai, Jhen-Hong; Wang, Yao-Te; Lee, Kuei-Yi

    2011-12-01

    The optimal carbon nanotube (CNT) bundles with a hexagonal arrangement were synthesized using thermal chemical vapor deposition (TCVD). To enhance the electron field emission characteristics of the pristine CNTs, the zinc oxide (ZnO) nanostructures coated on CNT bundles using another TCVD technique. Transmission electron microscopy (TEM) images showed that the ZnO nanostructures were grown onto the CNT surface uniformly, and the surface morphology of ZnO nanostructures varied with the distance between the CNT bundle and the zinc acetate. The results of field emissions showed that the ZnO nanostructures grown onto the CNTs could improve the electron field emission characteristics. The enhancement of field emission characteristics was attributed to the increase of emission sites formed by the nanostructures of ZnO grown onto the CNT surface, and each ZnO nanostructure could be regarded as an individual field emission site. In addition, ZnO-coated CNT bundles exhibited a good emission uniformity and stable current density. These results demonstrated that ZnO-coated CNTs is a promising field emitter material.

  20. Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method.

    PubMed

    Kim, Bu-Jong; Kim, Jong-Pil; Park, Jin-Seok

    2014-01-01

    The effects of aluminum (Al) interlayer coating and thermal post-treatment on the electron emission characteristics of carbon nanotubes (CNTs) were investigated. These CNTs were deposited on conical-shaped tungsten (W) substrates using an electrophoretic method. The Al interlayers were coated on the W substrates via magnetron sputtering prior to the deposition of CNTs. Compared with the as-deposited CNTs, the thermally treated CNTs revealed significantly improved electron emission characteristics, such as the decrease of turn-on electric fields and the increase of emission currents. The observations of Raman spectra confirmed that the improved emission characteristics of the thermally treated CNTs were ascribed to their enhanced crystal qualities. The coating of Al interlayers played a role in enhancing the long-term emission stabilities of the CNTs. The thermally treated CNTs with Al interlayers sustained stable emission currents without any significant degradation even after continuous operation of 20 h. The X-ray photoelectron spectroscopy (XPS) study suggested that the cohesive forces between the CNTs and the underlying substrates were strengthened by the coating of Al interlayers.

  1. Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method

    PubMed Central

    2014-01-01

    The effects of aluminum (Al) interlayer coating and thermal post-treatment on the electron emission characteristics of carbon nanotubes (CNTs) were investigated. These CNTs were deposited on conical-shaped tungsten (W) substrates using an electrophoretic method. The Al interlayers were coated on the W substrates via magnetron sputtering prior to the deposition of CNTs. Compared with the as-deposited CNTs, the thermally treated CNTs revealed significantly improved electron emission characteristics, such as the decrease of turn-on electric fields and the increase of emission currents. The observations of Raman spectra confirmed that the improved emission characteristics of the thermally treated CNTs were ascribed to their enhanced crystal qualities. The coating of Al interlayers played a role in enhancing the long-term emission stabilities of the CNTs. The thermally treated CNTs with Al interlayers sustained stable emission currents without any significant degradation even after continuous operation of 20 h. The X-ray photoelectron spectroscopy (XPS) study suggested that the cohesive forces between the CNTs and the underlying substrates were strengthened by the coating of Al interlayers. PMID:24959105

  2. Secondary electron emission characteristics of a thermally grown SiO2 thin layer on Si

    NASA Astrophysics Data System (ADS)

    Jeong, Taewon; Yu, Segi; Jin, S. H.; Lee, Jeonghee; Yi, Whikun; Choi, Y. S.; Kim, J. M.; Jeon, D.

    2000-03-01

    The secondary electron emissions of thin SiO2 layers prepared by dry thermal oxidation of doped Si substrates were measured as a function of the oxide layer thickness and the dopant element. The oxide layer thickness was varied between 200 A and 1150 A by changing the oxidation time at 930 C. We found that secondary electron emission yield curves for the samples with a relatively thick oxide layer revealed two local maxima (one near 300 - 500 eV, the other near 1000 eV) regardless of the dopant type, while those for the samples with a relatively thin layer showed one maximum like many other previous results. When the oxide layer was formed by vapor deposition, the two peaks were not observed. This leads us to interpret the secondary electron emission data for the thermally oxidized samples in terms of the dopant accumulation and the electron tunneling through the narrow barrier at the Si/SiO2 interface. Sample characterization data and a simple phenomenological model will be presented. This work was supported by the Korean Ministry of Science and Technology through the Creative Research Initiative program.

  3. Post calibration of the two-dimensional electron cyclotron emission imaging instrument with electron temperature characteristics of the magnetohydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Choi, M. J.; Park, H. K.; Yun, G. S.; Nam, Y. B.; Choe, G. H.; Lee, W.; Jardin, S.

    2016-01-01

    The electron cyclotron emission imaging (ECEI) instrument is widely used to study the local electron temperature (Te) fluctuations by measuring the ECE intensity IECE ∝ Te in tokamak plasmas. The ECEI measurement is often processed in a normalized fluctuation quantity against the time averaged value due to complication in absolute calibration. In this paper, the ECEI channels are relatively calibrated using the flat Te assumption of the sawtooth crash or the tearing mode island and a proper extrapolation. The 2-D relatively calibrated electron temperature (Te,rel) images are reconstructed and the displacement amplitude of the magnetohydrodynamic modes can be measured for the accurate quantitative growth analysis.

  4. Post calibration of the two-dimensional electron cyclotron emission imaging instrument with electron temperature characteristics of the magnetohydrodynamic instabilities

    SciTech Connect

    Choi, M. J.; Park, H. K.; Yun, G. S.; Nam, Y. B.; Choe, G. H.; Lee, W.; Jardin, S.

    2016-01-15

    The electron cyclotron emission imaging (ECEI) instrument is widely used to study the local electron temperature (T{sub e}) fluctuations by measuring the ECE intensity I{sub ECE} ∝ T{sub e} in tokamak plasmas. The ECEI measurement is often processed in a normalized fluctuation quantity against the time averaged value due to complication in absolute calibration. In this paper, the ECEI channels are relatively calibrated using the flat T{sub e} assumption of the sawtooth crash or the tearing mode island and a proper extrapolation. The 2-D relatively calibrated electron temperature (T{sub e,rel}) images are reconstructed and the displacement amplitude of the magnetohydrodynamic modes can be measured for the accurate quantitative growth analysis.

  5. LPG gaseous phase electronic port injection on performance, emission and combustion characteristics of Lean Burn SI Engine

    NASA Astrophysics Data System (ADS)

    Bhasker J, Pradeep; E, Porpatham

    2016-08-01

    Gaseous fuels have always been established as an assuring way to lessen emissions in Spark Ignition engines. In particular, LPG resolved to be an affirmative fuel for SI engines because of their efficient combustion properties, lower emissions and higher knock resistance. This paper investigates performance, emission and combustion characteristics of a microcontroller based electronic LPG gaseous phase port injection system. Experiments were carried out in a single cylinder diesel engine altered to behave as SI engine with LPG as fuel at a compression ratio of 10.5:1. The engine was regulated at 1500 rpm at a throttle position of 20% at diverse equivalence ratios. The test results were compared with that of the carburetion system. The results showed that there was an increase in brake power output and brake thermal efficiency with LPG gas phase injection. There was an appreciable extension in the lean limit of operation and maximum brake power output under lean conditions. LPG injection technique significantly reduces hydrocarbon and carbon monoxide emissions. Also, it extremely enhances the rate of combustion and helps in extending the lean limit of LPG. There was a minimal increase of NOx emissions over the lean operating range due to higher temperature. On the whole it is concluded that port injection of LPG is best suitable in terms of performance and emission for LPG fuelled lean burn SI engine.

  6. Numerical study of effect of secondary electron emission on discharge characteristics in low pressure capacitive RF argon discharge

    SciTech Connect

    Liu, Qian; Liu, Yue Samir, Tagra; Ma, Zhaoshuai

    2014-08-15

    Based on the drift and diffusion approximation theory, a 1D fluid model on capacitively coupled RF argon glow discharge at low pressure is established to study the effect of secondary electron emission (SEE) on the discharge characteristics. The model is numerically solved by using a finite difference method and the numerical results are obtained. The numerical results indicate that when the SEE coefficient is larger, the plasma density is higher and the time of reaching steady state is longer. It is also found that the cycle-averaged electric field, electric potential, and electron temperature change a little as the SEE coefficient is increased. Moreover, the discharge characteristics in some nonequilibrium discharge processes with different SEE coefficients have been compared. The analysis shows that when the SEE coefficient is varied from 0.01 to 0.3, the cycle-averaged electron net power absorption, electron heating rate, thermal convective term, electron energy dissipation, and ionization all have different degrees of growth. While the electron energy dissipation and ionization are quite special, there appear two peaks near each sheath region in the discharge with a relatively larger SEE coefficient. In this case, the discharge is certainly operated in a hybrid α-γ-mode.

  7. Field emission electron source

    DOEpatents

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  8. Interactions of energetic electron bursts and whistler-mode chorus wave emissions: Survey of event characteristics

    NASA Astrophysics Data System (ADS)

    Roeder, J. L.; Fennell, J. F.; Schriver, D.; Echterling, N.

    2016-12-01

    Wave-particle interaction events have been detected by the Van Allen Probes at L 4-6 during the recovery of substorm plasma injections. We present a survey of similar events observed for the entire mission to date, and discus the implications of the measured particle and wave parameters for the interaction mechanisms. Fennell et al. [J. Geophys. Res., 2014] reported details of an event on January 13, 2013. Quasiperiodic bursts of 16-40 keV electrons in very narrow, oblique ranges of pitch angles (75-80° and 100-105°) were observed by MagEIS to correlate well with simultaneous bursts of upper-band, whistler-mode chorus waves. Electrostatic electron cyclotron harmonic (ECH) waves were also detected but exhibited little correlation with the electron bursts. Simultaneous electron observations by the HOPE plasma instrument at that energy show features consistent with the MagEIS data superimposed on a moderately anisotropic background plasma. The two Van Allen Probe spacecraft were approximately 0.3 hours apart in the post-midnight MLT sector. Spacecraft A, at earlier local times, detected the same time sequence of bursts 2 minutes prior to the observations by Spacecraft B. This relatively long delay corresponds to a propagation velocity of approximately 25 km/s. The observational survey focuses on the energy and pitch angle of the electron bursts, the anisotropy of the background plasma, the wave frequency and wave normal direction, and geomagnetic conditions during the events.

  9. ELECTRON EMISSION REGULATING MEANS

    DOEpatents

    Brenholdt, I.R.

    1957-11-19

    >An electronic regulating system is described for controlling the electron emission of a cathode, for example, the cathode in a mass spectrometer. The system incorporates a transformer having a first secondary winding for the above-mentioned cathode and a second secondary winding for the above-mentioned cathode and a second secondary winding load by grid controlled vacuum tubes. A portion of the electron current emitted by the cathode is passed through a network which develops a feedback signal. The system arrangement is completed by using the feedback signal to control the vacuum tubes in the second secondary winding through a regulator tube. When a change in cathode emission occurs, the feedback signal acts to correct this change by adjusting the load on the transformer.

  10. The plasma properties and electron emission characteristics of near-zero differential resistance of hollow cathode-based plasma contactors with a discharge chamber

    SciTech Connect

    Xie, Kan; Farnell, Casey C.; Williams, John D.

    2014-08-15

    The formation of electron emission-bias voltage (I-V) characteristics of near-zero differential resistance in the cathodic plasma contactor for bare electrodynamic tether applications, based on a hollow cathode embedded in a ring-cusp ionization stage, is studied. The existence of such an I-V regime is important to achieve low impedance performance without being affected by the space plasma properties for a cathodic plasma contactor. Experimental data on the plasma structure and properties downstream from the ionization stage are presented as functions of the xenon flow rate and the electron emission current. The electrons were emitted from the cathode to the cylindrical vacuum chamber wall (r = 0.9 m) under ≈10{sup −5 }Torr of vacuum pressure. The ring-cusp configuration selected for the plasma contactor created a 125-Gauss axial field near the cathode orifice, along with a large-volume 50-Gauss magnitude pocket in the stage. A baseline ion energy cost of ≈300 eV/ion was measured in the ionization stage when no electrons were emitted to the vacuum chamber wall. In addition, the anode fall growth limited the maximum propellant unitization to below ≈75% in the discharge loss curves for this ion stage. Detailed measurements on the plasma properties were carried out for the no-electron emission and 3 A emission conditions. The experimental data are compared with 1-D models, and the effectiveness of the model is discussed. The four key issues that played important roles in the process of building the near-zero different resistance I-V regime are: a significant amount of ionization by the emission electrons, a decrease in the number of reflected electrons in the plume, the electron-temperature increment, and low initial ion energy at the source outlet.

  11. Simulation of the generation of the characteristic X-ray emission by hot electrons in a foil

    SciTech Connect

    Kostenko, O F; Andreev, N E

    2013-03-31

    We have developed a model to calculate the yield of the characteristic X-ray radiation from a foil, taking into account the dependence of the average energy and the number of hot electrons on the intensity of the laser pulse, the self-absorption of X-rays and the effect of refluxing of hot electrons. The yield of K{sub {alpha}} radiation from a silver foil is optimised at relativistic intensities. A method is proposed for diagnosing the effect of electron refluxing, which greatly increases the yield of K{sub {alpha}} radiation. (extreme light fields and their applications)

  12. Multienergy gold ion implantation for enhancing the field electron emission characteristics of heterogranular structured diamond films grown on Au-coated Si substrates

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Manoharan, D.; Sundaravel, B.; Lin, I. N.

    2016-09-01

    Multienergy Au-ion implantation enhanced the electrical conductivity of heterogranular structured diamond films grown on Au-coated Si substrates to a high level of 5076.0 (Ω cm)-1 and improved the field electron emission (FEE) characteristics of the films to low turn-on field of 1.6 V/μm, high current density of 5.4 mA/cm2 (@ 2.65 V/μm), and high lifetime stability of 1825 min. The catalytic induction of nanographitic phases in the films due to Au-ion implantation and the formation of diamond-to-Si eutectic interface layer due to Au-coating on Si together encouraged the efficient conducting channels for electron transport, thereby improved the FEE characteristics of the films.

  13. W(310) cold-field emission characteristics reflecting the vacuum states of an extreme high vacuum electron gun.

    PubMed

    Cho, Boklae; Shigeru, Kokubo; Oshima, Chuhei

    2013-01-01

    An extremely high vacuum cold-field electron emission (CFE) gun operating at pressures ranging from ~10(-8) Pa to ~10(-10) Pa was constructed. Only the CFE current emitting from W(310) surfaces revealed the existence of a "stable region" with high current angular density just after tip flash heating. In the "stable region," the CFE current was damped very slowly. The presence of non-hydrogen gas eliminated this region from the plot. Improvement of the vacuum prolonged the 90% damping time of the CFE current from ~10 min to 800 min. The current angular density I' of CFE current was 60 and 250 μA/sr in the "stable region" for total CFE currents of 10 and 50 μA, respectively. These results were about three times larger than I' when measured after the complete damping of the CFE current. The CFE gun generated bright scanning transmission electron microscopy images of a carbon nanotube at 30 kV.

  14. W(310) cold-field emission characteristics reflecting the vacuum states of an extreme high vacuum electron gun

    NASA Astrophysics Data System (ADS)

    Cho, Boklae; Shigeru, Kokubo; Oshima, Chuhei

    2013-01-01

    An extremely high vacuum cold-field electron emission (CFE) gun operating at pressures ranging from ˜10-8 Pa to ˜10-10 Pa was constructed. Only the CFE current emitting from W(310) surfaces revealed the existence of a "stable region" with high current angular density just after tip flash heating. In the "stable region," the CFE current was damped very slowly. The presence of non-hydrogen gas eliminated this region from the plot. Improvement of the vacuum prolonged the 90% damping time of the CFE current from ˜10 min to 800 min. The current angular density I' of CFE current was 60 and 250 μA/sr in the "stable region" for total CFE currents of 10 and 50 μA, respectively. These results were about three times larger than I' when measured after the complete damping of the CFE current. The CFE gun generated bright scanning transmission electron microscopy images of a carbon nanotube at 30 kV.

  15. Ionizing Emissions and Electronics,

    DTIC Science & Technology

    1984-05-22

    modes of operation (factor of construction/design, the factor of mode /conditions), etc. In the radiobiology for the evaluation of the biological...radio-electronic equipment of space objects it is necessary to consider the dynamics of motion and the concrete/specific/actual mode of orbit or...is shown. The same figure gives the lines of the equal particle flux densities, recorded with the aid of a Geiger counter, arranged/located after the

  16. Hot Electron Emission in Semiconductors.

    DTIC Science & Technology

    2014-09-26

    Second Interim Report Hot Electron Emission in Semiconductors Jan. 85 - June 85 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 6. CONTRACT OR GRANT NUMBER(a...KEY WORDS (Continue on reverse side Jf necessary and identify by block number) " -novel tunable FIR sources) • hot electron emission in GaAs/GaAlAs...heterostructures)" -,/ " streaming of hot carriers in crossed electric and magnetic fields ABST’AACr C-rrhmus- m .wr. efe it rewo-- .rv d identify by

  17. Dependence of the Light Emission Characteristics on the Ne Gas Pressure in an Electron-beam-pumped Light Source Using a Field Emitter

    NASA Astrophysics Data System (ADS)

    Shiozawa, Kazufumi; Neo, Yoichiro; Okada, Morihiro; Kume, Hiroshi; Matsumoto, Takahiro; Ikedo, Tomoyuki; Takahashi, Masafumi; Hashiguchi, Gen; Mimura, Hidenori

    The dependence of the light intensity on the gas pressure was investigated in an electron-beam-pumped-light source using a graphite nanoneedle field emitter, a Si electron-transparent film and a Ne gas. A spot-like light emission and a background light emission are observed in at a Ne gas pressure less than 0.4 atm, while the back ground light emission disappears and the light emission becomes a completely spot with increasing the gas pressure. These experimental results are explained by the Monte-Calro simulation of electron trajectories inside the gas cell. On the other hand, the light intensity almost saturates at a gas pressure of 0.4 atm and dose not increase with increasing the gas pressure. The Monte-Calro simulation suggests that the saturation of the light intensity is due to the increase of the excited Ne atoms losing their energy without light emission.

  18. Net current measurements and secondary electron emission characteristics of the Voyager plasma science experiment and their impact on data interpretation

    NASA Technical Reports Server (NTRS)

    Mcnutt, Ralph L., Jr.

    1988-01-01

    The Voyager Plasma Science (PLS) instrument is capable of returning integral (DC) current measurements, similar in some respects to measurements made with a Langmuir probe or a retarding potential analyzer, although there are significant differences. The integral measurements were made during a calibration sequence in the solar wind, during Cruise Science Maneuvers, and within the magnetospheres of Jupiter and Saturn by Voyager 1. After the failure of the PLS experiment following the Saturn encounter, that instrument was placed in the DC return mode returning possibly usable data from early 1981 through early 1985. The DC return measurements are difficult to interpret and are above threshold values only for relatively large fluxes; the determination of the measured current level is dependent on the operating temperature of the preamplifiers which further complicates the interpretation. Nevertheless, these measurements can be used to determine the efficiency of the suppressor grid at preventing the loss of secondary electrons off the collector plate. Some DC return measurements have been invaluable in aiding in the interpretation of some electron plasma measurements not previously understood. It is found that electron spectra can be significantly modified by the presence of second generation secondary electrons produced by either first generation secondaries or photoelectrons on the support ring of the negative high voltage modulator grid within the instrument housing.

  19. Evaluation of computational models and cross sections used by MCNP6 for simulation of characteristic X-ray emission from thick targets bombarded by kiloelectronvolt electrons

    NASA Astrophysics Data System (ADS)

    Poškus, A.

    2016-09-01

    This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic Kα, total K (=Kα + Kβ) and Lα X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the Kα yield by more than 40% for the elements with Z > 25. The Lα yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the Lα yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated Kα yields are typically underestimated by (20-30)% for the elements with Z > 25, whereas the Lα yields are underestimated by (60-70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner-shell impact ionization cross sections are significantly more

  20. Chiral multi-electron emission

    NASA Astrophysics Data System (ADS)

    Berakdar, Jamal; Klar, Hubert

    2001-01-01

    In this report we review recent progress in the understanding of the role of chirality in the multi-electron emission. A brief account of the chiral single-electron photoemission is given. In this case the chirality of the experimental set-up is brought about by an initial orientation of the target or/and by specifying a certain projection of the photoelectron spin. The dependence of the photoelectron spectrum on the chirality of the experiment is probed by changing the initial orientation of the target or by inverting the photoelectron spin projection. In a further section we envisage the direct transition of chiral electron pairs from an isotropic bound initial state into a double-continuum state following the absorption of a circularly polarised photon. We work out the necessary conditions under which the spectrum of the correlated photoelectron pair shows a chiral character, i.e. a dependence on the chirality of the exciting photon. The magnitude and the general behaviour of the chiral effects are estimated from simple analytical models and more elaborate numerical methods are presented for a more quantitative predictions. As a further example for the chiral multi-electron emission we study the photoelectron Auger-electron coincidence spectrum. The Auger hole is created by ionising a randomly oriented target by a circular polarised photon. We investigate how the helicity the photon is transferred to the emitted photoelectron pair. The theoretical findings are analysed and interpreted in light of recent experiments. In a final section we focus on the emission of correlated electrons where the initial state is already oriented, e.g. via optical pumping by circularly polarised light. The initial orientation of the atom is transferred to the continuum states following the ionisation of the target by low-energy electrons. We formulate and analyse the theoretical concepts for the transition of the screw sense of the initially bound atomic electron to the continuum

  1. Temporal Characteristics of Otoacoustic Emissions

    NASA Astrophysics Data System (ADS)

    Withnell, R. H.; Dhar, S.; Talmadge, C. L.; Shaffer, L. A.; de Boer, E.; Roberts, R.; McPherson, D.

    2003-02-01

    The recent work of Talmadge et al. [1] and Shera and Guinan [2] argues for two distinct mechanisms for the production of otoacoustic emissions: i) a retrograde traveling wave produced by the amplifier induced pressure gradient across the basilar membrane due primarily to the nonlinearities inherent in the amplifier, and ii) linear coherent reflections encompassing intracochlear standing waves. It would appear that for emissions arising from their characteristic frequency (CF) place, the dominant mechanism of production is one of reflection [2,3]. Inherent in a reflection mechanism is that the incident energy propagates to the CF place and then is reflected back to the stapes (i.e., two distinct delays, an anterograde delay and a retrograde delay). For emissions arising significantly basal to the CF place the dominant mechanism of production is non-linear, but it is not clear if such emissions are a result of reflection or energy injected into the basilar membrane by the active process. Estimates of delay to date have been largely based on phase-gradients of steady-state signals and not true time delays [4]. In this study, we report signal-front delays measured in the human from DPOAEs (2f1-f2) using a pulsed-tone paradigm. In particular, we examine whether all DPOAEs arise from reflection, albeit via different mechanisms.

  2. Emission Characteristics of CNT-Based Cathodes

    NASA Astrophysics Data System (ADS)

    Bocharov, G. S.; Eletskii, A. V.; Pal, A. F.; Pernbaum, A. G.; Pichugin, V. V.

    2004-09-01

    There have been measured the current-voltage characteristics (CVC) of electron field emission cathodes fabricated on the basis of single walled carbon nanotubes (SWNT). SWNT's of 1.2 - 1.5 nm in diameter were produced by the standard arc discharge method using Ni-Cr alloy foil as a catalyst. At relatively high electrical field strength the CVC are well agreed with the known Fowler-Nordheim dependence (FND). A notable deviation of those from FND at low fields has been observed. This deviation is due presumably to a spread in geometry of SWNT, which promotes even a larger spread in their emission properties owing to the electrical field amplification phenomenon. A model approach to description of the electron field emission characteristics of a CNT-based cathode with taking into account a spread in the geometry of individual nanotubes has been developed. Supposing a normal distribution in the electrical field amplification factor γ of individual CNT's, the generalized expression for CVC of a CNT-based cathode has been derived. This expression transforms to the FND in the limiting case of zero dispersion of the amplification factor. Close agreement of measured CVC and calculated through the generalized expression is reached at Δγ/γ = 0.304.

  3. Ballistic-Electron-Emission Microscope

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Bell, L. Douglas

    1990-01-01

    Ballistic-electron-emission microscope (BEEM) employs scanning tunneling-microscopy (STM) methods for nondestructive, direct electrical investigation of buried interfaces, such as interface between semiconductor and thin metal film. In BEEM, there are at least three electrodes: emitting tip, biasing electrode, and collecting electrode, receiving current crossing interface under investigation. Signal-processing device amplifies electrode signals and converts them into form usable by computer. Produces spatial images of surface by scanning tip; in addition, provides high-resolution images of buried interface under investigation. Spectroscopic information extracted by measuring collecting-electrode current as function of one of interelectrode voltages.

  4. Output tube emission characteristics of operational radars

    NASA Astrophysics Data System (ADS)

    Matheson, R. J.; Smilley, J. D.; Falcon, G. D.; Lawrence, V. S.

    1982-01-01

    Measurement of the emission spectra and other characteristics of many radars operating in the government frequency bands is described. The emission spectra of 19 different types of radars, selected to show the different emission spectrum characteristics produced by a variety of radar output tube technologies are presented. The radars include examples of ground based search, airport surveillance, weather, and height finding radars operating in L band, S band, or C band. The RSMS, contained within a mobile van, is described, along with the measurement techniques used for obtaining radar emission characteristics. The emission limits imposed by the Radar Spectrum Engineering Criteria (RSEC) are displayed with each emission spectrum.

  5. Locally Resolved Electron Emission Area and Unified View of Field Emission from Ultrananocrystalline Diamond Films.

    PubMed

    Chubenko, Oksana; Baturin, Stanislav S; Kovi, Kiran K; Sumant, Anirudha V; Baryshev, Sergey V

    2017-09-27

    In this paper, we study the effect of the actual, locally resolved, field emission area on electron emission characteristics of uniform planar conductive nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) field emitters. High resolution imaging experiments were carried out in a field emission microscope with a specialty imaging anode screen such that electron emission micrographs were taken concurrently with measurements of I-V characteristics. An automated image processing algorithm was applied to process the extensive imaging data sets and calculate the emission area per image. It was routinely found that field emission from as-grown planar (N)UNCD films was always confined to a counted number of discrete emitting centers across the surface, which varied in size and electron emissivity. It was established that the actual field emission area critically depends on the applied electric field and that the field emission area and overall electron emissivity improve with the sp(2)-fraction present in the film, irrespective of the original substrate roughness or morphology. Most importantly, when as-measured I-E characteristics were normalized by the electric field-dependent emission area, the resulting j-E curves demonstrated a strong kink and departed from the Fowler-Nordheim law, finally saturating at a value on the order of 100 mA/cm(2). This value was nearly identical for all studied films regardless of substrate. It was concluded that the saturation value is specific to the intrinsic fundamental properties of (N)UNCD.

  6. Electron Impact Induced VUV Emission from Argon

    NASA Astrophysics Data System (ADS)

    Young, J. A.; Malone, C. P.; Johnson, P. V.

    2011-10-01

    Emission intensity and spectra are important tools for diagnosing plasma properties such as electron temperature and neutral density. In order to properly interpret emissions from low-density plasmas, accurate cross sections are needed, particularly low energy electron-impact cross sections. Of interest are the cross sections for Argon, a common species used in industrial and lighting applications. In this paper, we present recent measurements of electron-impact induced VUV emissions from Ar using a magnetically collimated monoenergetic beam of electrons and a 0.2m spectrometer. Specifically, we present emission excitation functions for both Ar I(1048 Å) and Ar I(1066 Å) emissions. Similarities and differences between current results and previously published emission results will be discussed. Also discussed will be the relation to recent electron energy loss results.

  7. Electron emission from nanostructured materials

    NASA Astrophysics Data System (ADS)

    Safir, Abdelilah

    In this dissertation, standardized methods for measuring electron emission (EE) from nanostructured materials are established. Design of an emitter array platform, synthesis and nanomanipulation of different types of are successfully conducted. Preexisting as well as novel nanostructures are examined for possible use as electron point sources. Three main categories of emitters are under evaluation: oxide nanowires, metallic nanowires and carbon based nanomaterials (CBNs). Tungsten oxides nanowires have low work function, then metallic nanowires have high electrical conductivity and abundant number of free electrons at and below their Fermi level and lastly, CBNs have superior electrical, mechanical, chemical and thermal properties. This evaluation is designed to compare and choose among the nanoemitters that are suitable for EE. Simulation through theoretical modeling is provided to optimize the parameters directly or indirectly affecting EE properties. The models are to enhance the emitter's performance through increase the packing density, reduce the field screening effect, lower the turn-on and the threshold electric fields and increase the emission current densities. The current estimations and the modeling of the validity regions where EE types theoretically exist, help to select and fabricate optimum emitters. An assembly consisting of sample substrate, electrical feedthroughs, electrodes, nano/micro-manipulator and insulators are mounted within a vacuum chamber. An ion vacuum pump and a turbo pump are used to reach a vacuum pressure of 10-7 Torr. Two systems are used for EE characterization of nanostructures: bulk and In-situ configurations. The bulk investigation is realized by designing a vacuum chamber and different sample holders that can resist harsh environment as well as high temperature for both FE and TE experiments. In-situ experiments are conducted in the chamber of the scanning electron microscope (SEM), it consists of designing special sample

  8. Computation of electron diode characteristics by monte carlo method including effect of collisions.

    NASA Technical Reports Server (NTRS)

    Goldstein, C. M.

    1964-01-01

    Consistent field Monte Carlo method calculation for collision effect on electron-ion diode characteristics and for hard sphere electron- neutral collision effect for monoenergetic- thermionic emission

  9. Electron emission at the rail surface

    SciTech Connect

    Thornhill, L.; Battech, J. )

    1991-01-01

    In this paper the authors examine the processes by which current is transferred from the cathode rail to the plasma armature in an arc-driven railgun. Three electron emission mechanisms are considered, namely thermionic emission, field-enhanced thermionic emission (or Schottky emission), and photoemission. The author's calculations show that the dominant electron emission mechanism depends, to a great extent, on the work function of the rail surface, the rail surface temperature, the electric field at the rail surface, and the effective radiation temperature of the plasma. For conditions that are considered to be typical of a railgun armature, Schottky emission is the dominant electron emission mechanism, providing current densities on the order of 10{sup 9} A/m{sup 2}.

  10. Analysis of emissions from prebunched electron beams

    NASA Astrophysics Data System (ADS)

    Jia, Qika

    2017-07-01

    The emissions of the prebunched electron beam, including the coherent spontaneous emission and the self-amplified stimulated emission, are analyzed by using one-dimensional FEL theory. Neglecting the interaction of the electrons and the radiation field, the formula of the coherent spontaneous emission is given, the power of which is proportional to the square of the initial bunching factor and of the undulator length. For the general emission case of the prebunched electron beam, the evolution equation of the optical field is deducted. Then the analytical expression of the emission power is obtained for the resonant case; it is applicable to the regions from the low gain to the high gain. It is found that when the undulator length is shorter than four gain lengths, the emission is just the coherent spontaneous emission, and conversely, it is the self-amplified stimulated emission growing exponentially. For the nonresonant prebunched electron beam, the variations of the emission intensity with the detuning parameter for different interaction length are presented. The radiation field characters of the prebunched electron beam are discussed and compared with that of the seeded FEL amplifier.

  11. Emission characteristics and electron kinetic coefficients of the plasma of a transverse volume discharge initiated in a mixture of heavy inert gases with chlorine molecules

    NASA Astrophysics Data System (ADS)

    Shuaibov, A. K.; Chygin, V. I.; Shimon, L. L.; Shevera, I. V.; Gorun, P. P.; Obukhovskii, R. O.

    2010-05-01

    The results of studying the radiation due to argon, krypton, and xenon monochloride bands, as well as to the bands of chlorine molecules, from the plasma of a transverse Ar-Kr-Xe-Cl2 volume discharge are reported. The working mixture of a pulse radiation source is optimized with regard to its pressure and elemental composition and parameters of an excitation system. By numerically solving the Boltzmann kinetic equation for the electron energy distribution function, the transport characteristics of plasma electrons and discharge power specific losses are found for different values of the reduced electric field strength. The plasma parameters are simulated for the quaternary mixture, which is most appropriate for a multiwave UV-VUV source. Qualitative analysis is conducted for the most important electron processes in the multicomponent plasma that govern the joint formation of argon, krypton, and xenon monochlorides in the transverse discharge.

  12. Electron emission from ferroelectrics - a review

    NASA Astrophysics Data System (ADS)

    Riege, H.

    1994-02-01

    The strong pulsed emission of electrons from the surface of ferroelectric (FE) materials was discovered at CERN in 1987. Since then many aspects and properties of the method of generation and propagation of electron beams from FE have been studied experimentally. The method is based on macroscopic charge separation and self-emission of electrons under the influence of their own space-charge fields. Hence, this type of emission is not limited by the Langmuir-Child law as are conventional emission methods. Charge separation and electron emission can be achieved by rapid switching of the spontaneous, ferroelectric polarization. Polarization switching may be induced by application of electrical-field or mechanical-pressure pulses, as well as by thermal heating or laser illumination of the ferroelectric emitter. At higher emission intensities plasma formation assists the FE emission and leads to a strong growth of emitted current amplitude, which is no longer limited by the FE material and the surface properties. The most attractive features of FE emission are robustness and ease of manipulation of the emitter cathodes which can be transported through atmospheric air and used without any problems in vacuum, low-pressure gas or plasma environments. Large-area arrangements of multiple emitters, switched in interleaved mode, can produce electron beams of any shape, current amplitude or time structure. The successful application of FE emission in accelerator technology has been demonstrated experimentally in several cases, e.g. for triggering high-power gas switches, for photocathodes in electron guns, and for electron-beam generators intended to generate, neutralize and enhance ion beams in ion sources and ion linacs. Other applications can be envisaged in microwave power generators and in the fields of electronics and vacuum microelectronics.

  13. Superthermal electron distribution measurements from polarized electron cyclotron emission

    SciTech Connect

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs.

  14. Positron annihilation induced Auger electron emission

    SciTech Connect

    Weiss, A.; Jibaly, M.; Lei, Chun; Mehl, D.; Mayer, R.; Lynn, K.G.

    1988-01-01

    We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.

  15. Modulated Electron Emission by Scattering-Interference of Primary Electrons

    NASA Astrophysics Data System (ADS)

    Valeri, Sergio; di Bona, Alessandro

    We review the effects of scattering-interference of the primary, exciting beam on the electron emission from ordered atomic arrays. The yield of elastically and inelastically backscattered electrons, Auger electrons and secondary electrons shows a marked dependence on the incidence angle of primary electrons. Both the similarity and the relative importance of processes experienced by incident and excident electrons are discussed. We also present recent studies of electron focusing and defocusing along atomic chains. The interplay between these two processes determines the in-depth profile of the primary electron intensity anisotropy. Finally, the potential for surface-structural studies and limits for quantitative analysis are discussed, in comparison with the Auger electron diffraction (AED) and photoelectron diffraction (PD) techniques.

  16. Hot Electron Emission in Semiconductors.

    DTIC Science & Technology

    1988-03-25

    Electronics U~. 751 (1988) Participatina Scientific Personal Prof .Dr. Erich Gornik (Principal Investigator) Dr. Ralph A. M~pfel Dr. Manf red Helm ( earned ...Ph.D. during report period) NAg. Karl Unterrainer ( earned Master degree during report period) Nag. Robert Christanell ( earned Master degree during...Classical motion of carriers in crossed fields in velocity and real space for different values of E Fla,~ Valence bandstructure of Ce and drifted

  17. Shunting effect in explosive electron emission

    NASA Astrophysics Data System (ADS)

    Mesyats, G. A.; Parkevich, E. V.; Pikuz, S. A.; Yalandin, M. I.

    2016-10-01

    An explanation is given to the results of an experiment on studying the explosive electron emission in a wire-cathode diode where a strongly nonuniform energy deposition into the wire material was observed using an X pinch as a radiation source for projection x-ray imaging. The specific input energy, contrary to the well-known observations, was not a maximum at the wire end, i.e., in the region of the strongest electric field, and the wire explosion occurred in the bulk, distant from the end. This is accounted for by the contribution of the wire side surface to explosive electron emission and by the gas desorption from the wire intensely heated by a current of density 108 A/cm2. Thus, the space between anode and cathode (wire end) is bridged by two plasmas: one generated due to the explosive electron emission from the wire side surface and the other produced from the desorbed gas.

  18. Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission.

    PubMed

    O'Donnell, Kane M; Edmonds, Mark T; Ristein, Jürgen; Rietwyk, Kevin J; Tadich, Anton; Thomsen, Lars; Pakes, Christopher I; Ley, Lothar

    2014-10-01

    In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.

  19. Ion-induced electron emission microscopy

    DOEpatents

    Doyle, Barney L.; Vizkelethy, Gyorgy; Weller, Robert A.

    2001-01-01

    An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

  20. Electron field emission for ultrananocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Krauss, A. R.; Auciello, O.; Ding, M. Q.; Gruen, D. M.; Huang, Y.; Zhirnov, V. V.; Givargizov, E. I.; Breskin, A.; Chechen, R.; Shefer, E.; Konov, V.; Pimenov, S.; Karabutov, A.; Rakhimov, A.; Suetin, N.

    2001-03-01

    Ultrananocrystalline diamond (UNCD) films 0.1-2.4 μm thick were conformally deposited on sharp single Si microtip emitters, using microwave CH4-Ar plasma-enhanced chemical vapor deposition in combination with a dielectrophoretic seeding process. Field-emission studies exhibited stable, extremely high (60-100 μA/tip) emission current, with little variation in threshold fields as a function of film thickness or Si tip radius. The electron emission properties of high aspect ratio Si microtips, coated with diamond using the hot filament chemical vapor deposition (HFCVD) process were found to be very different from those of the UNCD-coated tips. For the HFCVD process, there is a strong dependence of the emission threshold on both the diamond coating thickness and Si tip radius. Quantum photoyield measurements of the UNCD films revealed that these films have an enhanced density of states within the bulk diamond band gap that is correlated with a reduction in the threshold field for electron emission. In addition, scanning tunneling microscopy studies indicate that the emission sites from UNCD films are related to minima or inflection points in the surface topography, and not to surface asperities. These data, in conjunction with tight binding pseudopotential calculations, indicate that grain boundaries play a critical role in the electron emission properties of UNCD films, such that these boundaries: (a) provide a conducting path from the substrate to the diamond-vacuum interface, (b) produce a geometric enhancement in the local electric field via internal structures, rather than surface topography, and (c) produce an enhancement in the local density of states within the bulk diamond band gap.

  1. Effects of electron emission on sheath potential

    NASA Astrophysics Data System (ADS)

    Dow, Ansel; Khrabrov, Alexander; Kaganovich, Igor; Schamis, Hanna

    2015-11-01

    We investigate the potential profile of a sheath under the influence of surface electron emission. The plasma and sheath profiles are simulated using the Large Scale Plasma (LSP) particle-in-cell code. Using one dimensional models we corroborate the analytical relationship between sheath potential and plasma electron and emitted electron temperatures derived earlier. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  2. Influence of electronic emission on wire initiation

    NASA Astrophysics Data System (ADS)

    Sarkisov, Gennady; Struve, Kenneth; Rosenthal, Stephen; Sasorov, Pavel

    2001-10-01

    Direct experimental evidence of influence of electronic emissions on energy deposition during electrical explosion of fine metal wires is presented. Set of electrical and optical diagnostics has been used to observe value and structure of deposited energy. Main experiment has been done with different polarity between wire and coaxial ground. For a positive polarity explosion, the radial electric field “pushes” electrons into the wire, and a “conical” growth of deposited energy to the anode has been observed. For a negative polarity explosion, the radial electric field “expels” electrons from the wire, and more energy is deposited on the cathode and anode ends, and less in the central part of the wire. In this case the absorbed energy drops 2 times below positive polarity explosion. Explosion of wires in air does not show any polarity effect. Energy deposition is the same and the wire expands homogeneously. This experiment gives convincing evidence of direct influence of electronic thermo-field emissions on a process of energy deposition into the wire. Influence of electronic emission on energy deposition becomes stronger with decreasing dI/dt. The structure of the radial electric field surrounding the wire has been simulated using 2D electrostatic code. The experimental result has been compared with 2D MHD simulations.

  3. Electron Cyclotron Emission Diagnostics on ITER

    NASA Astrophysics Data System (ADS)

    Ellis, Richard; Austin, Max; Phillips, Perry; Rowan, William; Beno, Joseph; Auroua, Abelhamid; Feder, Russell; Patel, Ashish; Hubbard, Amanda; Pandya, Hitesh

    2010-11-01

    Electron cyclotron emission (ECE) will be employed on ITER to measure the radial profile of electron temperature and non thermal features of the electron distribution as well as measurements of ELMs, magnetic islands, high frequency instabilities, and turbulence. There are two quasioptical systems, designed with Gaussian beam analysis. One view is radial, primarily for temperature profile measurement, the other views at a small angle to radial for measuring non-thermal emission. Radiation is conducted to by a long corrugated waveguide to a multichannel Michelson interferometer which provides wide wavelength coverage but limited time response as well as two microwave radiometers which cover the fundamental and second harmonic ECE and provide excellent time response. Measurements will be made in both X and O mode. In-situ calibration is provided by a novel hot calibration source. We discuss spatial resolution and the implications for physics studies.

  4. Enhancement of field emission characteristics of carbon nanotubes on oxidation.

    PubMed

    Mathur, Ashish; Roy, Susanta Sinha; Ray, Sekhar Chandra; Hazra, Kiran Shankar; Hamilton, Jeremy; Dickinson, Calum; McLaughlin, James; Misra, Devi Shankar

    2011-08-01

    Vertically aligned multi-walled carbon nanotubes (CNTs) were grown on p-type silicon wafer using thermal chemical vapor deposition process and subsequently treated with oxygen plasma for oxidation. It was observed that the electron field emission (EFE) characteristics are enhanced. It showed that the turn-on electric field (E(TOE)) of CNTs decreased from 0.67 (untreated) to 0.26 V/microm (oxygen treated). Raman spectra showed that the numbers of defects are increased, which are generated by oxygen-treatment, and absorbed molecules on the CNTs are responsible for the enhancement of EFE. Scanning electron microscopy and Transmission electron microscopy images were used to identify the quality and physical changes of the nanotube morphology and surfaces; revealing the evidence of enhancement in the field emission properties after oxygen-plasma treatment.

  5. Diamond Analyzed by Secondary Electron Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.

    1998-01-01

    Diamond is a promising semiconductor material for novel electronic applications because of its chemical stability and inertness, heat conduction properties, and so-called negative electron affinity (NEA). When a surface has NEA, electrons generated inside the bulk of the material are able to come out into the vacuum without any potential barrier (work function). Such a material would have an extremely high secondary electron emission coefficient o, very high photoelectron (quantum) yield, and would probably be an efficient field emitter. Chemical-vapor-deposited (CVD) polycrystalline diamond films have even more advantages than diamond single crystals. Their fabrication is relatively easy and inexpensive, and they can be grown with high levels of doping--consequently, they can have relatively high conductivity. Because of these properties, diamond can be used for cold cathodes and photocathodes in high-power electronics and in high-frequency and high-temperature semiconductor devices.

  6. Secondary Electron Emission Spectroscopy of Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.; Asnin, Vladimir M.; Petukhov, Andre G.

    1999-01-01

    This report presents the results of the secondary electron emission spectroscopy study of hydrogenated diamond surfaces for single crystals and chemical vapor-deposited polycrystalline films. One-electron calculations of Auger spectra of diamond surfaces having various hydrogen coverages are presented, the major features of the experimental spectra are explained, and a theoretical model for Auger spectra of hydrogenated diamond surfaces is proposed. An energy shift and a change in the line shape of the carbon core-valence-valence (KVV) Auger spectra were observed for diamond surfaces after exposure to an electron beam or by annealing at temperatures higher than 950 C. This change is related to the redistribution of the valence-band local density of states caused by hydrogen desorption from the surface. A strong negative electron affinity (NEA) effect, which appeared as a large, narrow peak in the low-energy portion of the spectrum of the secondary electron energy distribution, was also observed on the diamond surfaces. A fine structure in this peak, which was found for the first time, reflected the energy structure of the bottom of the conduction band. Further, the breakup of the bulk excitons at the surface during secondary electron emission was attributed to one of the features of this structure. The study demonstrated that the NEA type depends on the extent of hydrogen coverage of the diamond surface, changing from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surface.

  7. An Effective Secondary Electron Emission Suppression Treatment For Copper MDC

    NASA Technical Reports Server (NTRS)

    Curren, Arthur N.; Long, Kenwyn J.; Jensen, Kenneth A.; Roman, Robert F.

    1993-01-01

    Untreated oxygen-free, high-conductivity (OFHC) copper, commonly used for MDC electrodes, exhibits relatively high secondary electron emission characteristics. This paper describes a specialized ion-bombardment procedure for texturing copper surfaces which sharply reduces the emission properties relative to untreated copper. The resulting surface is a particle-free, robust, uniformly highly-textured all-metal structure. The use of this process requires no modifications to copper machining, brazing, or other MDC normal fabrication procedures. The flight TWT for a planned NASA deep space probe, the Cassini Mission, will incorporate copper MDC electrodes treated with the method described here.

  8. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  9. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  10. Imaging electron emission from diamond and III V nitride surfaces with photo-electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Nemanich, R. J.; English, S. L.; Hartman, J. D.; Sowers, A. T.; Ward, B. L.; Ade, H.; Davis, R. F.

    1999-05-01

    Wide bandgap semiconductors such as diamond and the III-V nitrides (GaN, AlN, and AlGaN alloys) exhibit small or even negative electron affinities. Results have shown that different surface treatments will modify the electron affinity of diamond to cause a positive or negative electron affinity (NEA). This study describes the characterization of these surfaces with photo-electron emission microscopy (PEEM). The PEEM technique is unique in that it combines aspects of UV photoemission and field emission. In this study, PEEM images are obtained with either a traditional Hg lamp or with tunable UV excitation from a free electron laser. The UV-free electron laser at Duke University provides tunable emission from 3.5 to greater than 7 eV. PEEM images of boron or nitrogen (N)-doped diamond are similar to SEM of the same surface indicating relatively uniform emission. For the N-doped samples, PEEM images were obtained for different photon energies ranging from 5.0 to 6.0 eV. In these experiments, the hydrogen terminated surface showed more intense PEEM images at lower photon energy indicating a lower photothreshold than annealed surfaces which are presumed to be adsorbate free. For the nitrides, the emission properties of an array of GaN emitter structures is imaged. Emission is observed from the peaks, and relatively uniform emission is observed from the array. The field at the sample surface is approximately 10 V/μm which is sufficient to obtain an image without UV light. This process is termed field emission electron microscopy (FEEM).

  11. Electron cyclotron emission diagnostics on KSTAR tokamak

    SciTech Connect

    Jeong, S. H.; Lee, K. D.; Kwon, M.; Kogi, Y.; Kawahata, K.; Nagayama, Y.; Mase, A.

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  12. Deterministic Cold Cathode Electron Emission from Carbon Nanofibre Arrays

    PubMed Central

    Cole, Matthew T.; Teo, Kenneth B. K.; Groening, Oliver; Gangloff, Laurent; Legagneux, Pierre; Milne, William I.

    2014-01-01

    The ability to accurately design carbon nanofibre (CN) field emitters with predictable electron emission characteristics will enable their use as electron sources in various applications such as microwave amplifiers, electron microscopy, parallel beam electron lithography and advanced Xray sources. Here, highly uniform CN arrays of controlled diameter, pitch and length were fabricated using plasma enhanced chemical vapour deposition and their individual emission characteristics and field enhancement factors were probed using scanning anode field emission mapping. For a pitch of 10 µm and a CN length of 5 µm, the directly measured enhancement factors of individual CNs was 242, which was in excellent agreement with conventional geometry estimates (240). We show here direct empirical evidence that in regular arrays of vertically aligned CNs the overall enhancement factor is reduced when the pitch between emitters is less than half the emitter height, in accordance to our electrostatic simulations. Individual emitters showed narrow Gaussian-like field enhancement distributions, in excellent agreement with electric field simulations. PMID:24787895

  13. Anti-emission characteristics of the grid coated with hafnium film

    SciTech Connect

    Jiang Jun; Jiang Bingyao; Ren Congxin; Feng Tao; Wang Xi; Liu Xianghuai; Zou Shichang

    2005-05-01

    Hf was deposited onto the surface of Mo grids by ion-beam-assisted deposition. The electron-emission characteristics of the grids with and without Hf, which were contaminated by active electron-emission substances (Ba, BaO) of the cathode, were measured using an analogous-diode method. The surfaces of the grids were analyzed by x-ray diffraction and x-ray photoelectron spectroscopy. The results showed that electron-emission current from the Mo grid coated with Hf film was less than that from the Mo grid without Hf. During the course of the testing, active electron-emission substances from the cathode were deposited continuously onto the surface of the grid. Due to BaHfO{sub 3} compounds and Ba-Hf diffusion, the Mo grid coated with Hf effectively reduced the electron-emission substances on the grid from the cathode, which reduced grid electron emission.

  14. Development of reverse biased p-n junction electron emission

    NASA Technical Reports Server (NTRS)

    Fowler, P.; Muly, E. C.

    1971-01-01

    A cold cathode emitter of hot electrons for use as a source of electrons in vacuum gauges and mass spectrometers was developed using standard Norton electroluminescent silicon carbide p-n diodes operated under reverse bias conditions. Continued development including variations in the geometry of these emitters was carried out such that emitters with an emission efficiency (emitted current/junction current) as high as 3 x 10-0.00001 were obtained. Pulse measurements of the diode characteristics were made and showed that higher efficiency can be attained under pulse conditions probably due to the resulting lower temperatures resulting from such operation.

  15. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    NASA Astrophysics Data System (ADS)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-05-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  16. Secondary emission electron gun using external primaries

    DOEpatents

    Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY

    2009-10-13

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  17. Secondary emission electron gun using external primaries

    DOEpatents

    Srinivasan-Rao, Triveni; Ben-Zvi, Ilan; Kewisch, Jorg; Chang, Xiangyun

    2007-06-05

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  18. Electron Bernstein Wave Emission from RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Nornberg, M. D.; Thomas, M.; Anderson, J.; Forest, C. B.

    1998-11-01

    Electron cyclotron emission (ECE) has proven to be a powerfull diagnostic tool in tokamak plasmas for determining the time evolution of the electron temperature profile. The standard technique of observing O-mode or X-mode electromagnetic waves normal to the magnetic field is not applicable to reversed field pinch (RFP) plasmas since the plasma frequency is much larger than the electron cyclotron frequency. We are investigating the use of electron Bernstein waves (presumed to be in thermal equilibrium with the electrons) through the O-X-B mode conversion process. At oblique incidence, the evanescent layer separating the plamsa cutoff from the cyclotron cutoff vanishes, allowing conversion of the Bernstein mode waves to the extraordinary mode and finally to the ordinary mode. The O-mode radiation is received by a phased array antenna consisting of two waveguides on the edge of the plasma, and the spectrum of emitted radiation is measured using a radiometer spanning 4-8 GHz. In addition to providing information about the electron temperature profile, the spectrum can provide a novel method of measuring the central magnetic field strength for current profile reconstructions.

  19. EC-5 fifth international workshop on electron cyclotron emission and electron cyclotron heating

    SciTech Connect

    Prater, R.; Lohr, J.

    1985-12-31

    This report contains papers on the following topics: electron cyclotron emission measurements; electron cyclotron emission theory; electron cyclotron heating; gyrotron development; and ECH systems and waveguide development. These paper have been indexed separately elsewhere. (LSP).

  20. Charge state distribution and emission characteristics in a table top reflex discharge—Effect of ion confinement and electrons accelerated across the sheath

    SciTech Connect

    Kumar, Deepak Englesbe, Alexander; Parman, Matthew; Stutman, Dan; Finkenthal, Michael

    2015-11-15

    Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ∼10{sup 18 }m{sup −3} with a significant fraction >0.01 of fast primary electrons. The implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.

  1. Charge state distribution and emission characteristics in a table top reflex discharge - Effect of ion confinement and electrons accelerated across the sheath

    SciTech Connect

    Kumar, Deepak; Englesbe, Alexander; Parman, Matthew; Stutman, Dan; Finkenthal, Michael

    2015-11-05

    Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ~1018m–3 with a significant fraction >0.01 of fast primary electrons. As a result, the implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.

  2. Charge state distribution and emission characteristics in a table top reflex discharge - Effect of ion confinement and electrons accelerated across the sheath

    DOE PAGES

    Kumar, Deepak; Englesbe, Alexander; Parman, Matthew; ...

    2015-11-05

    Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ~1018m–3 withmore » a significant fraction >0.01 of fast primary electrons. As a result, the implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.« less

  3. Two Dimensional Synthetic Electron Cyclotron Emission Imaging

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Valeo, Ernest J.; Tobias, Benjamin J.; Kramer, Gerrit J.; Liu, Chang; Tang, William M.

    2016-10-01

    Electron Cyclotron Emission (ECE) has been widely used as a measurement of the electron temperature profile in magnetically confined plasmas. The ECE Imaging (ECEI) system provides additional vertical resolutions, and is used to measure the electron temperature fluctuations. The vertical resolution is typically a few centi-meters which is sometimes comparable to the vertical wave length of the underlying fluctuations. The ray-tracing technique used in most synthetic ECE codes to determine the origin and spatial extent of the ECE radiations is not accurate when the refraction and diffraction due to the fluctuations are important. In this presentation, we introduce a new synthetic ECEI code which solves the wave propagation up to the 2nd order of the WKB approximation, and provides full 2D information of the ECE source. We'll show that when the ECE frequency is near the cutoff, the refraction due to the fluctuations is important. A ``trapping'' of the ECE source by the density fluctuations is identified, and is potentially useful for determining the cross phase between electron temperature and density fluctuations. The new formalism is also used to study the Runaway Electrons contribution to the ECE signal, and provides insights to the measured ECE spectrum on DIII-D. This work has been funded by the US Department of Energy under Contract Number DE-AC02-09CH11466.

  4. Microwave emission from relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Bekefi, George

    1993-04-01

    This is a continuation proposal on Microwave Emission from Relativistic electron Beams. Below we summarize the various research activities. All of the experimental studies described below will be performed using our Physics International 615MR Pulserad Accelerator with a maximum voltage of 500 kV and peak currents of 4 kA and the 1.5MV, 30kA Pulserad 110A. The electron beam is presently generated by a thermionically emitting, electrostatically focused, Pierce-type electron gun (250 kV, 250 A) removed from a SLAC klystron. An assembly of six focusing coils is designed so that their magnetic field lines lie along the zero-magnetic field electron trajectories. This field configuration gives the least scalloping of the electron beam (low transverse temperature) and allows the magnetic field amplitude to be varied over a wide range without greatly affecting the electron beam temperature. Only the inner portion of the beam is used; an aperture limits the beam radius to r(sub b) = 0.254 cm. Consequently, the net current available for the different experiments is in the range of 1-8 A. In addition to the above gun, we have recently procured from SLAC a brand-new, state of the art, electron gun that can operate at 450 kV and a peak current of approximately 500 A. The advantage of this system over the previous one is our ability to operate at higher voltages and thus study the various coherent radiation mechanisms at considerably shorter wavelengths.

  5. A fully integrated isoprenoid emissions model coupling emissions to photosynthetic characteristics

    PubMed Central

    Grote, Rüdiger; Morfopoulos, Catherine; Niinemets, Ülo; Sun, Zhihong; Keenan, Trevor; Pacifico, Federica; Butler, Tim

    2015-01-01

    Recently, a biogenic isoprene emission model with improved CO2 dependency was developed for global change applications (Morfopoulos et al., 2013). The model is based on the mechanistic linkage between isoprene emission and the availability of reducing power. Here, we advance the model formulation by introducing an explicit link between the electron transport (supply-constraint) and enzyme activity (capacity-constraint). We furthermore investigate the sensitivity of the model to variations in photosynthetic and emission-specific parameters. By comparing species-specific simulations with experimental data, we demonstrate that differences in photosynthetic characteristics can well explain inter-species differences in emissions. Interestingly, also the seasonal development emissions could be explained to some degree by the change of energy supply from photosynthesis throughout the season. In addition, we show that the principal responses are not limited to isoprene but can be formulated to describe the emission of all light-dependent volatile species. Thus, the model is a good candidate to be implemented in regional and global models that already provide species-specific photosynthesis estimates. PMID:24661098

  6. Analysis of Carbon Emission Characteristics of China

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng

    Since the opening-up, our economy develops fastly with the energy consume and the carbon emission increasing year by year. At present, China is the biggest country of the carbon emission in the world. We face the huge pressure to control the green house gases emissions. So, the text analyses the feature of carbon emission applying the indexs of the carbon emission aggregate, per captial carbon emission and the carbon emission elasticity efficient, and puts forward the countermeasures of lessoning the carbon emission.

  7. Electron emission from nickel-alloy surfaces in cesium vapor

    NASA Technical Reports Server (NTRS)

    Manda, M.; Jacobson, D.

    1978-01-01

    An experimental apparatus and measurement techniques are described for measuring the thermionic emission from cesium-activated materials having adequate high-temperature properties such as creep strength and corrosion resistance, which might ultimately reduce the cost of thermionic converters. The electron emission characteristics are measured for nickel, Inconel 600, and Hastelloy X probes with a 412 K cesium reservoir. It is found that the nickel alloys exhibit a peak electron emission 1.4 to 2.1 times greater than pure nickel. Both the Inconel and the Hastelloy samples have work functions of 1.64 eV at peak emission. The minimum cesiated work functions are estimated to be 1.37 eV for Inconel at a probe temperature of 750 K and 1.4 eV for Hastelloy at a probe temperature of 665 K. The bare work functions for both alloys is estimated to be about the same as for pure nickel, 4.8 eV.

  8. Influence of the Electric Field on Secondary Electron Emission Yield

    SciTech Connect

    Beranek, M.; Richterova, I.; Nemecek, Z.; Pavlu, J.; Safrankova, J.

    2008-09-07

    We have applied a technique based on levitation of a single charged grain in the quadrupole. We have used 3-6 micrometer spherical grains from amorphous carbon. These grains were charged by an electron beam with the energy tunable up to 10 keV and the grain charge was continuously monitored. If the grain is charged by an constant energy, its surface potential is set to the value when incident electrons are slow down to the energy where the secondary emission yield is equal to unity. Our investigations reveal that this energy changes proportionally to the grain surface field. Moreover, we have observed a shift of charging characteristics after a long-time electron bombardment.

  9. EFFECT OF VEHICLE CHARACTERISTICS ON UNPAVED ROAD DUST EMISSIONS

    EPA Science Inventory

    This paper presents PM10 fugitive dust emission factors for a range of vehicles types and examines the influence of vehicle and wake characteristics on the strength of emissions from an unpaved road.

  10. EFFECT OF VEHICLE CHARACTERISTICS ON UNPAVED ROAD DUST EMISSIONS

    EPA Science Inventory

    This paper presents PM10 fugitive dust emission factors for a range of vehicles types and examines the influence of vehicle and wake characteristics on the strength of emissions from an unpaved road.

  11. Modeling and Electrostatic Focusing for a Field Emission Electron Source

    DTIC Science & Technology

    2013-06-01

    mechanisms of the beam formation, transport, field emission energy distributions, the effects of the emission properties, and parametric studies are...metals, the valence electrons possess the conduction energy band and are described by Sommerfeld free electron gas model with Fermi- Dirac statistics...which defines the electrons energy distribution. For the emission from not electrical conductors the Sommerfeld theory of metals with Fermi- Dirac

  12. Correlation electron cyclotron emission diagnostic in TCV

    NASA Astrophysics Data System (ADS)

    Fontana, M.; Porte, L.; Molina Cabrera, P.

    2017-08-01

    The correlation electron cyclotron emission diagnostic of tokamak à configuration variable has recently been upgraded. It now has the choice of three lines of sight: two horizontal lines placed on the low field side of the vessel, perpendicular to the magnetic field, and a dual-axis steerable antenna. The polarization of the radiation collected by the latter can be rotated using a universal polarizer situated in the transmission line. This line is also shared with a reflectometry system, allowing simultaneous measurements of temperature and density fluctuations in the same plasma volumes. When using this line, it is possible to choose between two dedicated front ends characterized by different local oscillator frequencies, adding flexibility in the choice of the plasma region to be studied. The intermediate frequency section is now equipped with six frequency tunable YIG filters allowing the study of turbulence properties in a wide range of radial positions. When studying fluctuations over the whole video bandwidth, the minimum detectable fluctuation level is δ Te/Te˜0.5 % . The new system has been used to measure electron temperature fluctuations over a large fraction of the plasma profiles in a series of plasmas with triangularity varying from 0.6 to -0.6 but comparable collisionality profiles.

  13. Ion-Induced Electron Emission from Metals

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Joseph Francis

    1992-01-01

    Ion-induced electron emission (IIEE) from several metals under 100 keV proton bombardment has been investigated. Room temperature (RT) yields, i.e., the number of electrons emitted per incident ion, were measured for gold, copper, and indium after sputter cleaning and agreed with published values. New experimental results indicate a lowering of the RT yield after ultra-high vacuum anneals and very light sputtering. Previously published RT yields, gamma _{rm sputtered}, were measured only after extensive sputter cleaning. Copper, after an anneal near 390^circC, had a room temperature gamma_{rm anneal} = 1.58 +/- 0.02 e^-/ion with gamma _{rm sputtered} = 1.77 +/- 0.02 e^-/ion. The yield for solid indium after melting and resolidification was measured as gamma_{rm anneal} = 1.69 +/- 0.02 e^-/ion with gamma _{rm sputtered} = 1.95 +/- 0.03 e^-/ion. It is believed that annealing orders the surface, while gamma_{rm sputtered} yield values are from disordered surfaces. Yield data as a function of target temperature were also measured. For copper and indium, yields were found to vary linearly with temperature up to at least 330^circC for Cu and 195 ^circC for In. The dgamma/ dT values found were 2.7 +/- 0.2 times 10^{ -4} and 3.3 +/- 0.3 times 10^{-4} e^-/ion/K, respectively. Yields for liquid indium and through the melting transition were also measured. UHV yields for liquid metals have not been reported before. After melting, no change was found in the yield (|Deltagamma/gamma |<0.2%). A semi-empirical model for the yields in nearly free electron metals has been developed and is based on the formalism of Sigmund and Tougaard. It suggests a strong dependence of yield on the surface potential barrier, U, which must be overcome for emission. The dependence of gamma on U^{ -2.5} has not been previously realized. The model explains yields measured by others, as well as the temperature dependent yield phenomena observed in this study. It also predicts relatively large yields

  14. Competition between coherent emission and broadband spontaneous emission in the quantum free electron laser

    SciTech Connect

    Robb, G. R. M.; Bonifacio, R.

    2013-03-15

    We extend previous analyses of spontaneous emission in a quantum free electron laser (QFEL) and competition between spontaneous and coherent QFEL emission to include a broad distribution of photon frequencies and momenta appropriate for spontaneous undulator radiation. We show that although the predictions of monochromatic and broadband models predict different electron momentum distributions for the quantum regime due to spontaneous emission alone after many photon emissions, the inclusion of broadband spontaneous emission has a negligible effect on the competition between spontaneous and coherent emission in the QFEL. Numerical results from both models are well described by the same condition for the threshold/critical value of spontaneous emission rate.

  15. Field emission characteristics from graphene on hexagonal boron nitride

    SciTech Connect

    Yamada, Takatoshi; Masuzawa, Tomoaki; Ebisudani, Taishi; Okano, Ken; Taniguchi, Takashi

    2014-06-02

    An attempt has been made to utilize uniquely high electron mobility of graphene on hexagonal boron nitride (h-BN) to electron emitter. The field emission property of graphene/h-BN/Si structure has shown enhanced threshold voltage and emission current, both of which are key to develop novel vacuum nanoelectronics devices. The field emission property was discussed along with the electronic structure of graphene investigated by Fowler-Nordheim plot and ultraviolet photoelectron spectroscopy. The result suggested that transferring graphene on h-BN modified its work function, which changed field emission mechanism. Our report opens up a possibility of graphene-based vacuum nanoelectronics devices with tuned work function.

  16. Electron cyclotron-electron Bernstein wave emission diagnostics for the COMPASS tokamak.

    PubMed

    Zajac, J; Preinhaelter, J; Urban, J; Zacek, F; Sestak, D; Nanobashvili, S

    2010-10-01

    The COMPASS tokamak recently started operation at the Institute of Plasma Physics AS CR, v.v.i., Prague. A new 16-channel radiometer, operating alternatively in three frequency bands, has been designed and constructed. The system is prepared for detection of normal electron cyclotron emission (O1 or X2) or oblique electron Bernstein wave emission. The end-to-end calibration method includes all components that influence the antenna radiation pattern. A steady recalibration is possible using a noise generator connected to the radiometer input through a fast waveguide PIN-switch. Measurements of the antenna radiation characteristics (2D electric field) were performed in free space as well as in the tokamak chamber, showing the degradation effect of structures on the Gaussian beam shape. First plasma radiation temperature measurements from low-field circular plasmas are available.

  17. Electron cyclotron-electron Bernstein wave emission diagnostics for the COMPASS tokamak

    SciTech Connect

    Zajac, J.; Preinhaelter, J.; Urban, J.; Zacek, F.; Sestak, D.

    2010-10-15

    The COMPASS tokamak recently started operation at the Institute of Plasma Physics AS CR, v.v.i., Prague. A new 16-channel radiometer, operating alternatively in three frequency bands, has been designed and constructed. The system is prepared for detection of normal electron cyclotron emission (O1 or X2) or oblique electron Bernstein wave emission. The end-to-end calibration method includes all components that influence the antenna radiation pattern. A steady recalibration is possible using a noise generator connected to the radiometer input through a fast waveguide PIN-switch. Measurements of the antenna radiation characteristics (2D electric field) were performed in free space as well as in the tokamak chamber, showing the degradation effect of structures on the Gaussian beam shape. First plasma radiation temperature measurements from low-field circular plasmas are available.

  18. Ballistic-electron-emission Microscopy of Semiconductor Heterostructures

    NASA Technical Reports Server (NTRS)

    Bell, L. Douglas; Narayanamurti, Venkatesh

    1997-01-01

    Balistic-electron-emission microscopy has developed from its beginning as a probe of Schottky barriers into a powerful nanometer-scale method for characterizing semiconductor interfaces and hot-electron transport.

  19. Ballistic-electron-emission Microscopy of Semiconductor Heterostructures

    NASA Technical Reports Server (NTRS)

    Bell, L. Douglas; Narayanamurti, Venkatesh

    1997-01-01

    Balistic-electron-emission microscopy has developed from its beginning as a probe of Schottky barriers into a powerful nanometer-scale method for characterizing semiconductor interfaces and hot-electron transport.

  20. Diffusive and inelastic scattering in ballistic-electron-emission spectroscopy and ballistic-electron-emission microscopy

    SciTech Connect

    Lee, E.Y.; Turner, B.R.; Schowalter, L.J.

    1993-07-01

    Ballistic-electron-emission microscopy (BEEM) of Au/Si(001) n type was done to study whether elastic scattering in the Au overlayer is dominant. It was found that there is no dependence of the BEEM current on the relative gradient of the Au surface with respect to the Si interface, and this demonstrates that significant elastic scattering must occur in the Au overlayer. Ballistic-electron-emission spectroscopy (BEES) was also done, and, rather than using the conventional direct-current BEES, alternating-current (ac) BEES was done on Au/Si and also on Au/PtSi/Si(001) n type. The technique of ac BEES was found to give linear threshold for the Schottky barrier, and it also clearly showed the onset of electron-hole pair creation and other inelastic scattering events. The study of device quality PtSi in Au/PtSi/Si(001) yielded an attenuation length of 4 nm for electrons of energy 1 eV above the PtSi Fermi energy. 20 refs., 5 figs.

  1. Electrostatic emissions between electron gyroharmonics in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1977-01-01

    A scheme was constructed and a theoretical model was developed to classify electrostatic emissions. All of the emissions appear to be generated by the same basic mechanism: an unstable electron plasma distribution consisting of cold electrons (less than 100 eV) and hot loss cone electrons (about 1 keV). Each emission class is associated with a particular range of model parameters; the wide band electric field data can thus be used to infer the density and temperature of the cold plasma component. The model predicts that gyroharmonic emissions near the plasma frequency require large cold plasma densities.

  2. Microwave emission characteristics of sea ice

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Poe, G.

    1972-01-01

    A general classification is presented for sea ice brightness temperatures with categories of high and low emission, corresponding to young and weathered sea ice, respectively. A sea ice emission model was developed which allows variations of ice salinity and temperature in directions perpendicular to the ice surface.

  3. Electronic structure and characteristics of Fe 3d valence states of Fe(1.01)Se superconductors under pressure probed by x-ray absorption spectroscopy and resonant x-ray emission spectroscopy.

    PubMed

    Chen, J M; Haw, S C; Lee, J M; Chen, S A; Lu, K T; Deng, M J; Chen, S W; Ishii, H; Hiraoka, N; Tsuei, K D

    2012-12-28

    The electronic structure and characteristics of Fe 3d valence states of iron-chalcogenide Fe(1.01)Se superconductors under pressure were probed with x-ray absorption spectroscopy and resonant x-ray emission spectroscopy (RXES). The intensity of the pre-edge peak at ~7112.7 eV of the Fe K-edge x-ray absorption spectrum of Fe(1.01)Se decreases for pressure from 0.5 GPa increased to 6.9 GPa. The satellite line Kβ' was reduced in intensity upon applying pressure and became absent for pressure 52 GPa. Fe(1.01)Se shows a small net magnetic moment of Fe(2+), likely arising from strong Fe-Fe spin fluctuations. The 1s3p-RXES spectra of Fe(1.01)Se at pressures 0.5, 6.9, and 52 GPa recorded at the Fe K-edge reveal that unoccupied Fe 3d states exhibit a delocalized character, stemming from hybridization of Fe 3d and 4p orbitals arising from a local distortion around the Fe atom in a tetrahedral site. Application of pressure causes suppression of this on-site Fe 3d-Fe 4p hybridization, and thereby decreases the intensity of the pre-edge feature in the Fe K-edge absorption spectrum of Fe(1.01)Se. Compression enhances spin fluctuations at Fe sites in Fe(1.01)Se and increases the corresponding T(c), through a competition between nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic superexchange interactions. This result aids our understanding of the physics underlying iron-based superconductors.

  4. On the Accuracy of Thermionic Electron Emission Models. I. Electron Detachment from SF6(-)

    DTIC Science & Technology

    2009-06-01

    more accurate calculations presented here. An effective " isokinetic " electron emission temperature T,(E) does not appear to be useful for the...more accurate calculations presented here. An effective " isokinetic " electron emission temperature Te(E) does not appear to be useful for the electron...see above. Apart from Td(E) there is still another effective tempera- ture in use, an " isokinetic electron emission temperature" Te(E). This is

  5. Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas.

    PubMed

    Hobbs, Richard G; Putnam, William P; Fallahi, Arya; Yang, Yujia; Kärtner, Franz X; Berggren, Karl K

    2017-10-11

    Understanding plasmon-mediated electron emission and energy transfer on the nanometer length scale is critical to controlling light-matter interactions at nanoscale dimensions. In a high-resolution lithographic material, electron emission and energy transfer lead to chemical transformations. In this work, we employ such chemical transformations in two different high-resolution electron-beam lithography resists, poly(methyl methacrylate) (PMMA) and hydrogen silsesquioxane (HSQ), to map local electron emission and energy transfer with nanometer resolution from plasmonic nanoantennas excited by femtosecond laser pulses. We observe exposure of the electron-beam resists (both PMMA and HSQ) in regions on the surface of nanoantennas where the local field is significantly enhanced. Exposure in these regions is consistent with previously reported optical-field-controlled electron emission from plasmonic hotspots as well as earlier work on low-electron-energy scanning probe lithography. For HSQ, in addition to exposure in hotspots, we observe resist exposure at the centers of rod-shaped nanoantennas in addition to exposure in plasmonic hotspots. Optical field enhancement is minimized at the center of nanorods suggesting that exposure in these regions involves a different mechanism to that in plasmonic hotspots. Our simulations suggest that exposure at the center of nanorods results from the emission of hot electrons produced via plasmon decay in the nanorods. Overall, the results presented in this work provide a means to map both optical-field-controlled electron emission and hot-electron transfer from nanoparticles via chemical transformations produced locally in lithographic materials.

  6. Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas

    DOE PAGES

    Hobbs, Richard G.; Putnam, William P.; Fallahi, Arya; ...

    2017-09-19

    Understanding plasmon-mediated electron emission and energy transfer on the nanometer length scale is critical to controlling light–matter interactions at nanoscale dimensions. In a high-resolution lithographic material, electron emission and energy transfer lead to chemical transformations. Here, we employ such chemical transformations in two different high-resolution electron-beam lithography resists, poly(methyl methacrylate) (PMMA) and hydrogen silsesquioxane (HSQ), to map local electron emission and energy transfer with nanometer resolution from plasmonic nanoantennas excited by femtosecond laser pulses. We observe exposure of the electron-beam resists (both PMMA and HSQ) in regions on the surface of nanoantennas where the local field is significantly enhanced. Exposuremore » in these regions is consistent with previously reported optical-field-controlled electron emission from plasmonic hotspots as well as earlier work on low-electron-energy scanning probe lithography. For HSQ, in addition to exposure in hotspots, we observe resist exposure at the centers of rod-shaped nanoantennas in addition to exposure in plasmonic hotspots. Optical field enhancement is minimized at the center of nanorods suggesting that exposure in these regions involves a different mechanism to that in plasmonic hotspots. Our simulations suggest that exposure at the center of nanorods results from the emission of hot electrons produced via plasmon decay in the nanorods. Our results provide a means to map both optical-field-controlled electron emission and hot-electron transfer from nanoparticles via chemical transformations produced locally in lithographic materials.« less

  7. Photo-enhanced field electron emission of cadmium sulfide nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Jinling; Lv, Yinghua; Liu, Ning; Li, Yanqing; Gao, Peng; Bai, Xuedong

    2011-11-01

    The response of field electron emission of cadmium sulfide (CdS) nanowires (NWs) to visible light has been investigated. It is found that, upon light illumination, the turn-on voltage drops, emission current increases obviously, and the Fowler-Nordheim behavior deviates from a straight line. A process of field emission coupled with semiconducting properties of CdS NWs is proposed. Photon-excited electron transition from the valence band to the conductance band of CdS nanowires increases the quantity of emitting electrons, and the photoemission decreases the effective work function of CdS emitters, which largely enhances the field emission performance. The response of field emission of CdS NWs to light illumination suggests an approach for tuning field emission of semiconductor emitters.

  8. Synchrotron emission from runaway electron distributions

    SciTech Connect

    Winske, D.; Peter, T.; Boyd, D.A.

    1983-12-01

    Synchrotron emission from a relativistic anti-loss-cone (runaway) distribution is investigated numerically and compared with various analytical approximations. The results are applied to recent measurements of enhanced emission during current-drive experiments on the Princeton Large Torus (PLT) as well as to impulsive solar microwave bursts.

  9. Effect of insulating layer on the Field Electron Emission Performance of Nano-Apex Metallic Emitters

    NASA Astrophysics Data System (ADS)

    AL-Qudah, Ala'a. A.; Mousa, Marwan S.; Fischer, A.

    2015-10-01

    This paper deals with the process of electron emission from the surface of metals (before and after coating with controlled layers of dielectric materials) into the vacuum due to an intense applied external electric field. This process is usually called cold field electron emission (CFE). The research work reported here includes the current-voltage (I-V) characteristics presented as Fowler-Nordheim (FN) plots and scanning electron micrographs in addition to the spatial emission current distributions (electron emission images). The process of coating the clean tungsten (W) emitters by layers of dielectric epoxylite resin was easy, and the measurements were performed under UHV ∼ 10-8 mbar. From comparing the results obtained in this work, significant improvement in properties of the emitters after coating are observed.

  10. Peculiarities of the electron field emission from quantum-size structures

    NASA Astrophysics Data System (ADS)

    Litovchenko, V. G.; Evtukh, A. A.; Litvin, Yu. M.; Goncharuk, N. M.; Hartnagel, H.; Yilmazoglu, O.; Pavlidis, D.

    2003-06-01

    The electron field emission from semiconductor based layered structures has been investigated. Among studied structures were silicon tips coated with ultra-thin DLC layer, multilayer structures Si-SiO 2-Si ∗-SiO 2 with delta-doped Si ∗ layer, nanocomposite layers SiO xN y(Si) with Si nanocrystals embedded in SiO xN y matrix, GaN layers and Si-SiGe heterostructures. All of them have such peculiarities of electron field emission as peaks on emission current-voltage characteristics and corresponding Fowler-Nordheim plots. A physical model is proposed for explanation of experimental results. All emitters have layer, cluster wire or dot with quantum-size restriction in it. As a result, the quantum well with splitted electron levels exists or appears at electric field. Additional mechanism of electron emission-resonance tunneling is realized at definite electric fields.

  11. Characteristics of surface sterilization using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  12. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... characteristics. 2.201 Section 2.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Emissions § 2.201 Emission, modulation.... See Appendix 1, Sub-Section IIB of the ITU Radio Regulations for the specifications of these...

  13. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... characteristics. 2.201 Section 2.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Emissions § 2.201 Emission, modulation.... See Appendix 1, Sub-Section IIB of the ITU Radio Regulations for the specifications of these...

  14. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... characteristics. 2.201 Section 2.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Emissions § 2.201 Emission, modulation.... See Appendix 1, Sub-Section IIB of the ITU Radio Regulations for the specifications of these...

  15. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... characteristics. 2.201 Section 2.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Emissions § 2.201 Emission, modulation.... See Appendix 1, Sub-Section IIB of the ITU Radio Regulations for the specifications of these...

  16. Plasma sheath model in the presence of field-induced electron emission

    NASA Astrophysics Data System (ADS)

    Dahal, Jiba; Ayyaswamy, Venkattraman

    2016-10-01

    Microplasmas have become an active area of research during the last two decades with several applications including nanomaterial synthesis, electronics, lighting, biomedicine, and metamaterials for controlling electromagnetic waves. The advances in micro/nanofabrication and the further miniaturization of plasma devices have contributed to the increasing role of new physical mechanisms that were previously neglected. Electric field-induced emission of electrons is one such mechanism that is gaining significance particularly with the discovery of novel electrodes that demonstrate excellent field emission properties. These field emitted electrons and their interaction with microdischarges has shown to affect both pre-breakdown and post-breakdown regimes of operation. The current work focuses on the development of self-consistent sheath model that includes the effects of field-induced electron emission. Sheath models presented earlier accounts for other emission mechanisms such as thermionic and secondary electron emission, the strong influence of electric field on electron emission is shown to lead to unique interplay. The results obtained from the sheath model for various parameters including current-voltage characteristics, and ion/electron number density are validated with PIC-MCC results.

  17. Secondary-electron emission from hydrogen-terminated diamond

    SciTech Connect

    Wang E.; Ben-Zvi, I.; Rao, T.; Wu, Q.; Dimitrov, D.A.; T. Xin, T.

    2012-05-20

    Diamond amplifiers demonstrably are an electron source with the potential to support high-brightness, high-average-current emission into a vacuum. We recently developed a reliable hydrogenation procedure for the diamond amplifier. The systematic study of hydrogenation resulted in the reproducible fabrication of high gain diamond amplifier. Furthermore, we measured the emission probability of diamond amplifier as a function of the external field and modelled the process with resulting changes in the vacuum level due to the Schottky effect. We demonstrated that the decrease in the secondary electrons average emission gain was a function of the pulse width and related this to the trapping of electrons by the effective NEA surface. The findings from the model agree well with our experimental measurements. As an application of the model, the energy spread of secondary electrons inside the diamond was estimated from the measured emission.

  18. Improved electron emission properties of the porous silicon emitter by chemical surface modification

    NASA Astrophysics Data System (ADS)

    Wang, Wenjiang; He, Li; Zhang, Xiaoning; Zhang, He

    2017-08-01

    A new chemical dipping method using nickel chloride (NiCl2) solution is proposed to improve the characteristics of an electron emitter based on porous silicon (PS). Two groups of PS samples were prepared, one group was then left untreated, while the other group was treated by the chemical dipping method. Energy dispersive x-ray (EDX) and x-ray photoemission spectroscopy (XPS) studies confirm the uniform filling of the reduced Ni and the formation of the SiO2 in the chemically dipped sample. The gold electrode was sputtered on the modified PS surface and the study of J-V characteristics show that the modified samples have more favorable rectifying behavior and longer-term durability than the unmodified one. The measured results showed that the voltage threshold ˜8 V, PVCR value ˜1.08, emission current density ˜48 μA cm-2, emission efficiency ˜0.72%, and stable emission were achieved for the modified sample; most of these electron emission characteristics were better than those from the unmodified emitter. Such improvements are mainly due to the decrease of the contact barrier height between the PS and the gold electrode, as is evident from analyzing the logarithmic J-V characteristics. The chemical dipping method is therefore expected to be a valuable technique to enhance the electron emission characteristics of the PS emitter.

  19. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, S.E.; Orvis, W.J.; Caporaso, G.J.; Wieskamp, T.F.

    1996-04-16

    A device is disclosed which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density. 6 figs.

  20. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, Stephen E.; Orvis, William J.; Caporaso, George J.; Wieskamp, Ted F.

    1996-01-01

    A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.

  1. Texturing Copper To Reduce Secondary Emission Of Electrons

    NASA Technical Reports Server (NTRS)

    Jensen, Kenneth A.; Curren, Arthur N.; Roman, Robert F.

    1995-01-01

    Ion-beam process produces clean, deeply textured surfaces on copper substrates with reduced secondary electron emission. In process, molybdenum ring target positioned above and around copper substrate. Target potential repeatedly switched on and off. Switching module described in "High-Voltage MOSFET Switching Circuit" (LEW-15986). Useful for making collector electrodes for traveling-wave-tube and klystron microwave amplifiers, in which secondary emission of electrons undesirable because of reducing efficiency.

  2. Texturing Copper To Reduce Secondary Emission Of Electrons

    NASA Technical Reports Server (NTRS)

    Jensen, Kenneth A.; Curren, Arthur N.; Roman, Robert F.

    1995-01-01

    Ion-beam process produces clean, deeply textured surfaces on copper substrates with reduced secondary electron emission. In process, molybdenum ring target positioned above and around copper substrate. Target potential repeatedly switched on and off. Switching module described in "High-Voltage MOSFET Switching Circuit" (LEW-15986). Useful for making collector electrodes for traveling-wave-tube and klystron microwave amplifiers, in which secondary emission of electrons undesirable because of reducing efficiency.

  3. Positional control of plasmonic fields and electron emission

    SciTech Connect

    Word, R. C.; Fitzgerald, J. P. S.; Könenkamp, R.

    2014-09-15

    We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800 nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.

  4. Coherent and spontaneous emission in the quantum free electron laser

    SciTech Connect

    Robb, G. R. M.; Bonifacio, R.

    2012-07-15

    We present an analysis of quantum free electron laser (QFEL) dynamics including the effects of spontaneous emission. The effects of spontaneous emission are undesirable for coherent short-wave generation using FELs and have been shown in previous studies to limit the capabilities of classical self amplified spontaneous emission (SASE)-FELs at short wavelengths {approx}1 A due to growth of electron beam energy spread. As one of the attractive features of the QFEL is its potential as a relatively compact coherent x-ray source, it is important to understand the role of spontaneous emission, but to date there has not been a model which is capable of consistently describing the dynamics of both coherent FEL emission and incoherent spontaneous emission. In this paper, we present such a model, and use it to show that the limitations imposed by spontaneous emission on coherent FEL operation are significantly different in the quantum regime to those in the classical regime. An example set of parameters constituting a QFEL using electron and laser parameters which satisfy the condition for neglect of spontaneous emission during coherent QFEL emission is presented.

  5. Dynamical enhanced electron emission and discharges at contaminated surfaces

    NASA Astrophysics Data System (ADS)

    Halbritter, J.

    1986-01-01

    Broad-area electrodes show electron emission already at electric field strengths F≈107 V/m. This enhanced field emission (EFE) occurs only for contaminated surfaces. EFE is accompanied by photon emission and gas desorption yielding finally discharges. EFE is caused by dust and contaminants initiating the following effects: an electron is stochastically emitted in a trigger zone the electron gains energy ΔE≃eΔxF * which excites electronic states which relax by the emission of electrons, photons, and atoms where the positive charges left behind enhance F *= βF (β≫1) initiating so an electron avalanche, i.e., a high conductivity channel. Because of charge migration and neutralization, this avalanche has a life time. This pulsating EFE is accompanied by light emission and gas desorption yielding finally a gas cloud and a discharge. The pulsating, self-sustained EFE has the same root as: the enhanced secondary emission found first by Malter the conductivity switching exhibited by thin (≈ 1 μm) layers of semiconductors or insulators the normal cathode fall and the firing-wave instability in neurodynamics.

  6. Relativistic Electron Beam Transport and Characteristics in Solid Density Plasmas

    SciTech Connect

    Snavely, R A; King, J; Freeman, R R; Hatchett, S; Key, M H; Koch, J; Langdon, A B; Lasinsky, B; MacKinnon, A; Wilks, S; Stephens, R

    2003-08-13

    The transport of intense relativistic beams in solid density plasma presently is actively being studied in laser laboratories around the world. The correct understanding of the transport enables further application of fast laser driven electrons to a host of interesting uses. Advanced x-ray sources, proton and ion beam generation and plasma heating in fast ignitor fusion all are owed their eventual utility to this transport. We report on measurements of relativistic transport over the whole of the transport region, via analysis of x-ray emission. Our experiments cover laser powers from Terawatt to Petawatt. Advances in transverse imaging of fluorescent k-alpha x-rays generated along the electron beam path are used to diagnose the electron emission. Additionally the spatial pattern of Bremsstrahlung x-rays provides clues into the physics of electron transport in above Alfven current limit beams. Issues regarding the electron distribution function will be discussed in light of possible electron transport anomalies. The initial experiments performed on the Nova Petawatt Laser System were those associated with determining the nature of the electrons and x-rays in this relativistic regime especially those useful for advanced radiography sources suitable for diagnostic use in dense high-Z dynamic processes or as the driver of a relativistic electron source in the Fast-Ignitor Inertial Confinement fusion concept. The development of very large arrays of thermoluminescent detectors is detailed along with their response. The characteristic pattern of x-rays and their intensity is found from detailed analysis of the TLD detector array data. Peak intensities as high as 2 Rads at 1 meter were measured with these shielded TLD arrays. An average energy yield of x-rays of 11 Joules indicates a very large fraction of 45-55% of the laser energy is absorbed into relativistic electrons. The pattern of x-ray distribution lends insight to the initial relativistic electron distribution

  7. Extraction of internal emission characteristics from printed OLEDs

    NASA Astrophysics Data System (ADS)

    Hildner, Mark L.; Ziebarth, Jonathan M.

    2012-09-01

    Accurate optical modeling of OLED device performance is beneficial to OLED manufacturing because as materials and architectures are modified, experimental effort and resources are saved in the search for optimal structures. The success of such modeling depends crucially on model inputs, which include, along with layer thicknesses and optical constants, internal emission characteristics such as the internal emission spectrum (IES) of the emitter and the location and profile of emission in the emissive layer (EML). This presentation will describe two methods we have used to extract the internal emission characteristics of our printed bottom emitting OLEDs. The first method, which we devised and implemented with assumptions specific to our devices, is a simpler one for both modeling and data collection: we collected spectra at normal viewing angle for a series of devices with different architectures, and extracted a normalized IES common to all these devices. We will show how an emission location was obtained from this method with some simple model assumptions. In the more rigorous second method - one presented by van Mensfoort et al 1 - internal emission characteristics were extracted independently for each device: spectra at multiple angles were collected, which allowed the extraction of an individual IES and emission profile. We will compare the findings of the two methods and assess the validity of the assumptions used in the first method.

  8. Laser light-stimulated exoelectron emission from solid Ar pre-irradiated by an electron beam

    NASA Astrophysics Data System (ADS)

    Gumenchuk, G. B.; Belov, A. G.; Savchenko, E. V.; Ponomaryov, A. N.; Bondybey, V. E.

    2007-06-01

    Spatially separated stable charge centers, self-trapped holes and trapped electrons, were generated in Ar cryocrystals by a low-energy electron beam. A combination of the cathodoluminescence (CL) and photon-stimulated exoelectron emission (PSEE) methods was used to monitor center formation and a selected relaxation channel—exoelectron emission. It was found that photon-promoted electron current decreased exponentially under irradiation with the laser operating in the visible range. The influence of the laser parameters (power and wavelength) on the characteristic lifetime of exoelectron emission is discussed. Effective bleaching of the low-temperature peaks of thermally stimulated exoelectron emission by the laser light in a visible range is observed.

  9. [Characteristic of Particulate Emissions from Concrete Batching in Beijing].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao

    2016-01-15

    With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed.

  10. Modeling electron emission and surface effects from diamond cathodes

    SciTech Connect

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.

  11. Modeling electron emission and surface effects from diamond cathodes

    DOE PAGES

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; ...

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore » electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less

  12. Modeling electron emission and surface effects from diamond cathodes

    SciTech Connect

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-07

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass, and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. Using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.

  13. Very Stable Electron Field Emission From Strontium Titanate Coated Carbon Nanotube Matrices With Low Emission Thresholds

    SciTech Connect

    Pandey, Archana; Prasad, Abhishek; Moscatello, Jason; Engelhard, Mark H.; Wang, Chong M.; Yap, Yoke K.

    2013-01-22

    PMMA-STO-CNT matrices were created by opened-tip vertically-aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coating of strontium titanate and Poly(methyl methacrylate). Emission threshold of 0.8 V/μm was demonstrated, about five-fold lower than that of the as-grown VAMWCNTs. Theoretical simulation and modeling suggest that PMMA-STO-CNT matrices have suppressed screening effects and Coulombs’ repulsion forces between electrons in adjacent CNTs, leading to low emission threshold, high emission density, and prolong emission stability. These findings are important for practical application of VA-MWCNTs in field emission devices.

  14. Electronic Structures of Supported Nanometer-Size Clusters Using Field Emission Energy Analyzer.

    NASA Astrophysics Data System (ADS)

    Lin, Mong-Ea.

    that electrons from a single C_{60} are being observed. Current-voltage characteristics allow estimates of the effective tunnel barrier for electron emission and provide information about the electron states in the supported C_{60} cluster. Furthermore, the field emission energy distributions of C_{60} show a two-level splitting of the HOMO h_{u} level under high electric field.

  15. Potential applications of electron emission membranes in medicine

    NASA Astrophysics Data System (ADS)

    Bilevych, Yevgen; Brunner, Stefan E.; Chan, Hong Wah; Charbon, Edoardo; van der Graaf, Harry; Hagen, Cornelis W.; Nützel, Gert; Pinto, Serge D.; Prodanović, Violeta; Rotman, Daan; Santagata, Fabio; Sarro, Lina; Schaart, Dennis R.; Sinsheimer, John; Smedley, John; Tao, Shuxia; Theulings, Anne M. M. G.

    2016-02-01

    With a miniaturised stack of transmission dynodes, a noise free amplifier is being developed for the detection of single free electrons, with excellent time- and 2D spatial resolution and efficiency. With this generic technology, a new family of detectors for individual elementary particles may become possible. Potential applications of such electron emission membranes in medicine are discussed.

  16. Characteristics of energetic solar flare electron spectra

    NASA Technical Reports Server (NTRS)

    Moses, Dan; Droege, Wolfgang; Meyer, Peter; Evenson, Paul

    1989-01-01

    A 55 event survey of energy spectra of 0.1-100 MeV interplanetary electrons originating from solar flares as measured by two spectrometers onboard the ISEE 3 (ICE) spacecraft for the years 1978-1982 has been completed. Spectra generated using the maximum flux of a given event in each energy channel were restricted to events with a well-defined flux rise time. Two broad groups of electron spectra are considered. In one group, the spectra are well represented by a single power law in rigidity with spectral index in the range 3-4.5. The spectra in the other group deviate from a power law in rigidity systematically in that they harden with increasing rigidity. Events with near power-law spectra are found to be correlated with long-duration soft X-ray events, whereas those with hardening spectra are correlated with short-duration events. The possible variation of acceleration and propagation processes with the properties of the flare site is discussed, using the duration of the soft X-ray flare emission as an indicator of the physical parameters of the flare site (flare volume, density, coronal height, and magnetic field geometry).

  17. 100 eV electron temperatures in the Maryland centrifugal experiment observed using electron Bernstein emission

    SciTech Connect

    Reid, R. R.; Romero-Talamás, C. A.; Young, W. C.; Ellis, R. F.; Hassam, A. B.

    2014-06-15

    Thermal electron Bernstein emission has been observed at the second harmonic of the electron cyclotron frequency at the mid-plane of the Maryland Centrifugal eXperiment. The emission is received in the X-mode polarization and coupled to the Bernstein wave by the B-X mode conversion process. The average B-X coupling efficiency is approximately 20%. The observed emission indicates thermal electron temperatures an excess of 100 eV in the core of the rotating plasma. The measured electron temperature is consistent with recent ion temperature measurements and indicates that the total energy confinement time exceeds 500 μs.

  18. Absolute Emission Spectroscopy of Electronically Excited Products of Dissociative Recombination

    NASA Astrophysics Data System (ADS)

    Skrzypkowski, M. P.; Gougousi, T.; Golde, M. F.; Johnsen, R.

    1997-10-01

    We have employed spatially-resolved optical emission spectroscopy in a flowing afterglow plasma to investigate radiations in the 200-400 nm range resulting from electron-ion dissociative recombination. Calibrated emission data combined with Langmuir probe electron-density measurements are analyzed to obtain branching ratios for electronically excited recombination products. In particular, we will report absolute yields of CO(a^3Π) resulting from recombining CO_2^+ ions, NO(B^2Π) from N_2O^+, OH(A^2Σ^+) from HCO_2^+, as well as NH(A^3Π_i), and OH(A^2Σ^+) from the recombination of N_2OH^+ ions.

  19. Surface Roughness Effect on Secondary Electron Emission from Beryllium under Electron Bombardment

    NASA Astrophysics Data System (ADS)

    Kawata, Jun; Ohya, Kaoru

    1994-02-01

    A direct Monte Carlo model is developed to simulate secondary electron emission from beryllium with a flat surface and Gaussian-ripple surfaces. The calculated electron yield and energy distribution of secondary electrons are in reasonable agreement with the experimental data. The emphasis is in this study put on the effect of surface roughness on secondary electron emission. The number of secondary electrons emitted largely depends on the position of bombardment of primary electrons on the ripple surface. The energy distribution of secondary electrons emitted from the ripple surface shifts towards low-energy side in comparison with the distribution for the flat surface. The over-cosine and gourd-shaped angular distributions, depending on the position of bombardment, are calculated for emission angle of electrons from the ripple surface; the distribution for the flat surface agrees quite well with the cosine distribution.

  20. Tunneling-Electron-Induced Light Emission from Single Gold Nanoclusters.

    PubMed

    Yu, Arthur; Li, Shaowei; Czap, Gregory; Ho, W

    2016-09-14

    The coupling of tunneling electrons with the tip-nanocluster-substrate junction plasmon was investigated by monitoring light emission in a scanning tunneling microscope (STM). Gold atoms were evaporated onto the ∼5 Å thick Al2O3 thin film grown on the NiAl (110) surface where they formed nanoclusters 3-7 nm wide. Scanning tunneling spectroscopy (STS) of these nanoclusters revealed quantum-confined electronic states. Spatially resolved photon imaging showed localized emission hot spots. Size dependent study and light emission from nanocluster dimers further support the viewpoint that coupling of tunneling electrons to the junction plasmon is the main radiative mechanism. These results showed the potential of the STM to reveal the electronic and optical properties of nanoscale metallic systems in the confined geometry of the tunnel junction.

  1. Source characteristics of Jovian hectometric radio emissions

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.

    1993-01-01

    Direct confirmation that low-frequency Jovian hectometric (HOM) radio emissions centered near 0 deg central meridian longitude consist of distinct, oppositely polarized northern and southern beams has been achieved using data from the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. Distinct northern and southern beams were observed in the frequency range from approximately 300 kHz to 1 MHz for at least eight Jovian rotations during the Ulysses inbound pass at distances from 100 to 40 R(sub j). The radiation from the two magnetic hemispheres was measured from different Jovigraphic longitudes and magnetic (or centrifugal) latitudes. Observed temporal variations in the radio intensities, with time scales on the order of 30 min, may result either from longitudinal variations of the HOM sources or from longitudinal density variations in the Io plasma torus. Using the URAP direction-finding capabilities and assuming a tilted dipole planetary magnetic field model, the three-dimensional HOM source locations, the L shell through these source locations, and the beam opening angles were independently deduced. The HOM sources were found to originate at approximately 3 R(sub j) and on low L shells (L approximately 4 to 6), with beam opening angles ranging from 10 to 50 deg.

  2. Microwave Emission from Relativistic Electron Beams

    DTIC Science & Technology

    1989-03-01

    crucial for the operation of short wavelength free-electron lasers. It mitigates the effects of diffraction and thereby allows the free electron...akin to the guiding properties of an optical fiber. Such "optical guiding" [5]-[10] would mitigate the effects of diffraction, and thereby allow the...beam aperture limits the size of the beam to rb/ 1, f 0.07, the wiggler field is close to that of an ideal wiggler. That is, the effects of the radial

  3. Light emission from carbon nanofilaments/nanotubes at field electron emission

    NASA Astrophysics Data System (ADS)

    Ormont, A. B.; Izrael'yants, K. R.; Musatov, A. L.

    2016-01-01

    The spatial distribution of light emission has been studied in planar field electron emitters with long and sparse carbon nanofilaments/nanotubes. The photographic recording of light emission of the emitting nanofilaments/nanotubes is shown to be efficient to determine the position of individual nanofilaments/ nanotubes in different emitter surface areas, as well as to highlight the nanofilaments/nanotube agglomerate distribution over the emitter surface, which mainly contributes to its emission.

  4. Spontaneous emission near the electron plasma frequency in a plasma with a runaway electron tail

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Lee, L. C.; Wu, C. S.

    1978-01-01

    Spontaneous emission of radiation with frequencies near the electron plasma frequency is studied for a plasma which consists of both thermal and runaway electrons. It is found that a substantial enhancement of the spontaneous radiation intensity can occur in this frequency regime via a Cherenkov resonance with the runaway electrons. Numerical analysis indicates that, for reasonable estimates of densities and energies, the plasma-frequency radiation can attain levels greater than the peak thermal emission at the second gyroharmonic.

  5. Multi-field electron emission pattern of 2D emitter: Illustrated with graphene

    NASA Astrophysics Data System (ADS)

    Luo, Ma; Li, Zhibing

    2016-11-01

    The mechanism of laser-assisted multi-field electron emission of two-dimensional emitters is investigated theoretically. The process is basically a cold field electron emission but having more controllable components: a uniform electric field controls the emission potential barrier, a magnetic field controls the quantum states of the emitter, while an optical field controls electron populations of specified quantum states. It provides a highly orientational vacuum electron line source whose divergence angle over the beam plane is inversely proportional to square root of the emitter height. Calculations are carried out for graphene with the armchair emission edge, as a concrete example. The rate equation incorporating the optical excitation, phonon scattering, and thermal relaxation is solved in the quasi-equilibrium approximation for electron population in the bands. The far-field emission patterns, that inherit the features of the Landau bands, are obtained. It is found that the optical field generates a characteristic structure at one wing of the emission pattern.

  6. Electron Emission from Cross-Sectional Surface of Porous Si on Glass Substrate

    NASA Astrophysics Data System (ADS)

    Higa, Katsuya

    2010-02-01

    The measurement of electron emission from the cross-sectional surface of porous Si layer on a glass substrate is demonstrated. The porous Si is formed by anodization, and subsequently bonded on a glass substrate with an Al electrode by anodic bonding. The electron emission device structure is composed of a Au electrode, a porous Si layer, and a glass substrate with an Al electrode. This structure is cut into two pieces during the formation of the cross-sectional surface of porous Si. The measurement of electron emission is carried out using a diode configuration in a vacuum chamber. A collector is placed close to the cross-sectional surface of porous Si. The negative voltages are applied at the Au electrode and electron emission from the cross-sectional surface of porous Si layer occurs. The characteristics of emission current are measured using the variation of applied negative voltage, the stability of electron emission, and the change in location of the Au electrode at the edge of the cross section of porous Si layer.

  7. Floating potential of large dust grains with electron emission

    SciTech Connect

    Bacharis, M.

    2014-07-15

    Electron emission from the surface of solid particles plays an important role in many dusty plasma phenomena and applications. Examples of such cases include fusion plasmas and dusty plasma systems in our solar system. Electron emission complicates the physics of the plasma-dust interaction. One of the most important aspects of the physics of the dust plasma interaction is the calculation of the particle's floating potential. This is the potential a dust particle acquires when it is in contact with a plasma and it plays a very important role for determining its dynamical behaviour. The orbital motion limited (OML) approach is used in most cases in the literature to model the dust charging physics. However, this approach has severe limitations when the size of the particles is larger than the electron Debye length λ{sub De}. Addressing this shortcoming for cases without electron emission, a modified version of OML (MOML) was developed for modelling the charging physics of dust grains larger than the electron Debye length. In this work, we will focus on extending MOML in cases where the particles emit electrons. Furthermore, a general method for calculating the floating potential of dust particles with electron emission will be presented for a range of grain sizes.

  8. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: COMPLEX ROLE OF SECONDARY ELECTRON EMISSIONS IN SPACE ENVIRONMENTS

    SciTech Connect

    Abbas, M. M.; Craven, P. D.; LeClair, A. C.; Spann, J. F.; Tankosic, D.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  9. Lunary Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.

    2010-01-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  10. Lunar Dust Grain Charging by Electron Impact: Complex Role of Secondary Electron Emissions in Space Environments

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; LeClair, A. C.; Spann, J. F.

    2010-08-01

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 μm size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.

  11. Field emission characteristics of regular arrays of carbon nanotubes.

    PubMed

    Al-Ghamdi, A A; Al-Heniti, S; Al-Hazmi, F S; Faidah, Adel S; Shalaan, E; Husain, M

    2014-06-01

    The developments of electronic devices based on micron-sized vacuum electron sources during the last decades have triggered intense research on highly efficient carbon based thin film electron emitters. The synthesis of massive arrays of carbon nanotubes that are oriented on patterned Fe catalyst deposited on quartz substrates is reported. The well-ordered nanotubes can be used as electron field emission arrays. Scaling up of the synthesis process should be entirely compatible with the existing semiconductor processes, and should allow the development of nanotubes devices integrated into future technology. The emission from carbon nanotubes array is explained by Fowler-Nordheim tunneling of electrons from tip-like structures in the nanometer range, which locally amplify the applied field by the field enhancement factor beta. We found that the low pressure chemical vapour deposition (LPCVD) system can produce nanotubes capable of excellent emission currents at lower voltages. The carbon nanotubes array shows good field emission with turn on field E(alpha) = 1.30 V/microm at the current density of 3.50 mA/cm2 with enhancement factor beta = 1.22 x 10(2).

  12. Controlled electron emission and vacuum breakdown with nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Seznec, B.; Dessante, Ph; Caillault, L.; Babigeon, J.-L.; Teste, Ph; Minea, T.

    2016-06-01

    Vacuum electron sources exploiting field emission are generally operated in direct current (DC) mode. The development of nanosecond and sub-nanosecond pulsed power supplies facilitates the emission of compact bunches of electrons of high density. The breakdown level is taken as the highest value of the voltage avoiding the thermo-emission instability. The effect of such ultra-fast pulses on the breakdown voltage and the emitted electron current is discussed as a result of the thermo-emission modelling applied to a significant protrusion. It is found that pulsing very rapidly the vacuum breakdown occurs at higher voltage values than for the DC case, because it rises faster than the heat diffusion. In addition, the electron emission current increases significantly regardless of the theoretical approach is used. A comparative study of this theoretical work is discussed for several different forms of the protrusion (elliptic and hyperbolic) and different metals (hence varying the melting point), particularly refractory (tungsten) versus conductor (titanium). Pulsed mode operation can provide an increase on breakdown voltage (up to 18%) and a significant increase (up to 330%) of the electron extracted current due to its high non-linear dependency with the voltage, for the case for the case with a hyperbolic protrusion.

  13. Emission from Polymethyl Methacrylate Irradiated by a Beam of Runaway Electrons of Subnanosecond Pulse Durations

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Beloplotov, D. V.; Tarasenko, V. F.

    2016-08-01

    Spectral and amplitude-temporal characteristics of emission from polymethyl methacrylate (fiberglass, PMMA) irradiated with a beam of runaway electrons of subnanosecond duration are investigated. It is found that at the beam current pulse duration within 200-600 ps at half maximum and the beam current density 10-200 A/cm2, the intensity maximum is registered at the wavelength ~490 nm and the emission pulse FWHM in the visible spectrum is ~1.5 ns at the half width. It is shown that the main contribution into the emission comes from luminescence.

  14. Electron energy-loss and soft X-ray emission spectroscopy of electronic structure of MgB4

    NASA Astrophysics Data System (ADS)

    Sato, Yohei; Saito, Taiki; Tsuchiya, Kohei; Terauchi, Masami; Saito, Hiroki; Takeda, Masatoshi

    2017-09-01

    The electronic structure of MgB4, with the characteristic crystal structure comprising one-dimensional pentagonal B6 cluster chain, was investigated using electron energy-loss spectroscopy and soft X-ray emission spectroscopy based on transmission electron microscopy. The dielectric function and density of state of unoccupied and occupied states were clarified experimentally for the first time. Although theoretical calculations has predicted MgB4 to be a semiconductor, the electron energy-loss spectrum in this study show a plasmon peak at 0.4 eV, which might be due to carrier electrons. Theoretical calculations suggested that the electronic states near the Fermi energy are localized along the one dimensional B6 cluster chain. Therefore, one-dimensional electric conductivity is expected.

  15. Odour emission characteristics of 22 recreational rivers in Nanjing.

    PubMed

    Wan, Yu; Ruan, Xiaohong; Wang, Xinguang; Ma, Qian; Lu, Xiaoming

    2014-10-01

    The odour emission characteristics of 22 recreational rivers in Nanjing were investigated and analysed. Eight odorous compounds (ammonia (NH₃), hydrogen sulphide (H₂S), sulphur dioxide (SO₂), carbon disulphide (CS₂), nitrobenzene (C₆H₅NO₂), aniline (C₆H₅NH₂), dimethylamine (C₂H₇N), and formaldehyde (HCHO)) were measured in odour emission samples collected using a custom-made emission flux hood chamber. The results showed that all odorants were detected in all monitoring rivers. NH₃ was the main odorant, with emission rates ranging from 4.86 to 15.13 μg/min m(2). The total odour emission rate of the Nan River, at 1 427.07 OU/s, was the highest of the all investigated rivers. H₂S, NH₃ and nitrobenzene were three key odour emission contributors according to their contributions to the total odour emission. A correlation analysis of the pollutants showed there was a significant positive correlation between the emission rate of NH₃ and the concentration of ammonia nitrogen (NH₄ (+)-N) and total nitrogen (TN). The H₂S and SO₂ emission rates had a significant positive correlation with sulphides (S(2-)) and available sulphur (AS) in the water and sediment. The content of TN, NH₄(+)-N, S(2-) and AS in the water and sediment affected the concentration of H₂S, SO₂ and NH₃ in the emission gases. NH₄(+)-N, S(2-) and AS are suggested as the key odour control indexes for reducing odours emitted from these recreational rivers. The study provides useful information for effective pollution control, especially for odour emission control for the recreational rivers of the city. It also provides a demonstrate example to show how to monitor and assess a contaminated river when odour emission and its control need to be focused on.

  16. Surface-electronic-state effects in electron emission from the Be(0001) surface

    SciTech Connect

    Archubi, C. D.; Gravielle, M. S.; Silkin, V. M.

    2011-07-15

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  17. Microwave Emission from Relativistic Electron Beams.

    DTIC Science & Technology

    1983-12-23

    serious problems . The rippled-field magnetron is a novel source of coherent radiation devoid " of physical slow-wave structures and capable RrM t r i...initial experiments on a circular FEL which uses a monoenergetic rotating electron ring and thereby circumvents the problem of velocity shear... problem how best to couple out the avail- able radiation. Our horn antenna merely probes the radiation field and re- ceives only a small fraction of

  18. Electrostatic potential barrier for electron emission at graphene edges induced by the nearly free electron states

    NASA Astrophysics Data System (ADS)

    Gao, Yanlin; Okada, Susumu

    2017-05-01

    Using the density functional theory, we studied the electronic structures of zigzag graphene nanoribbons with hydroxyl, H, ketone, aldehyde, or carboxyl terminations under a lateral electric field. The critical electric field for electron emission is proportional to the work function of the functionalized edges except the hydroxylated edge, which leads to the anomalous electric field outside the edge, owing to the electrons in the nearly free electron (NFE) state in the vacuum region. The strong electric field also causes a potential barrier for the electron emission from the H-terminated edge owing to the downward shift of the NFE state.

  19. PLASMA EMISSION BY COUNTER-STREAMING ELECTRON BEAMS

    SciTech Connect

    Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R.; Yoon, P. H.; Pavan, J. E-mail: yoonp@umd.edu

    2016-02-10

    The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.

  20. Plasma Emission by Counter-streaming Electron Beams

    NASA Astrophysics Data System (ADS)

    Ziebell, L. F.; Petruzzellis, L. T.; Yoon, P. H.; Gaelzer, R.; Pavan, J.

    2016-02-01

    The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.

  1. Probabilistic Model for the Simulation of Secondary Electron Emission

    SciTech Connect

    Furman, M

    2004-05-17

    We provide a detailed description of a model and its computational algorithm for the secondary electron emission process. The model is based on a broad phenomenological fit to data for the secondary emission yield (SEY) and the emitted-energy spectrum. We provide two sets of values for the parameters by fitting our model to two particular data sets, one for copper and the other one for stainless steel.

  2. Microscopic probabilistic model for the simulation of secondary electron emission

    SciTech Connect

    Furman, M.A.; Pivi, M.T.F.

    2002-07-29

    We provide a detailed description of a model and its computational algorithm for the secondary electron emission process. The model is based on a broad phenomenological fit to data for the secondary emission yield (SEY) and the emitted-energy spectrum. We provide two sets of values for the parameters by fitting our model to two particular data sets, one for copper and the other one for stainless steel.

  3. Scanning probe microscopy and field emission schemes for studying electron emission from polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Baturin, Stanislav S.; Baryshev, Sergey V.

    2016-09-01

    The letter introduces a diagram that rationalizes tunneling atomic force microscopy (TUNA) observations of electron emission from polycrystalline diamonds as described in the recent publications [Chatterjee et al., Appl. Phys. Lett. 104, 171907 (2014); Harniman et al., Carbon 94, 386 (2015)]. The direct observations of electron emission from the grain boundary sites by TUNA could indeed be the evidence of electrons originating from grain boundaries under external electric fields. At the same time, from the diagram, it follows that TUNA and field emission schemes are complimentary rather than equivalent for results interpretation. It is further proposed that TUNA could provide better insights into emission mechanisms by measuring the detailed structure of the potential barrier on the surface of polycrystalline diamonds.

  4. Exciton autoionization in ion-induced electron emission.

    PubMed

    Bajales, N; Cristina, L; Mendoza, S; Baragiola, R A; Goldberg, E C; Ferrón, J

    2008-06-06

    We report on measurements of electron emission spectra from surfaces of highly oriented pyrolytic graphite (HOPG) excited by 1-5 keV He+ and Li+ which, for He+, exhibit a previously unreported high-energy structure. Through a full quantum dynamic description that allows for the calculation of neutralization and electron-hole pair excitation, we show that these high-energy electrons can arise from autoionization of excitons formed by electron promotion to conduction band states close to the vacuum level. The same calculation explains the observed absence of high-energy excitons for Li+ on HOPG.

  5. Characteristics of electronic training collars for dogs.

    PubMed

    Lines, J A; van Driel, K; Cooper, J J

    2013-03-16

    A wide range of electronic dog training collars (e-collars) is available in the UK, but information enabling purchasers to compare the important characteristics of these collars is not available. In this research, the electrical characteristics of 13 e-collar models were examined, and an approach to ranking the strength of the electrical stimuli was developed. To achieve this, the electrical impedance of dogs' necks were measured so that e-collars could be tested under realistic conditions. This impedance was found to be about 10 kΩ for wet dogs and 640 kΩ for dry dogs. Two replicates of eight e-collar models and single copies of a further five models were then examined. The stimuli generated by these collars comprised sequences of short high-voltage pulses. There were large differences between e-collar models in the energy, peak voltage, number of pulses and duration of the pulses, but little variation between the replicates. The peak voltage varied with the impedance, from 6000V at an impedance of 500 kΩ to 100V at 5 kΩ. The highest voltages were generated for a few millionths of a second. Stimulus energy levels at the maximum strength setting with a 50 kΩ load ranged from 3.3 mJ to 287 mJ. A stimulus strength ranking indicator was then developed to enable the strengths of e-collars with diverse electrical characteristics to be ranked. This ranking shows a wide range in the stimulus strengths of collars, and that the relationships between 'momentary' and 'continuous' stimuli for various models differ significantly.

  6. Characteristics of typical non-road machinery emissions in China by using portable emission measurement system.

    PubMed

    Fu, Mingliang; Ge, Yunshan; Tan, Jianwei; Zeng, Tao; Liang, Bin

    2012-10-15

    Non-road machinery, especially construction equipment could be an important pollutant source of the deterioration in air quality in Chinese urban areas due to its large quantity and to the absence of stringent emission requirements. In this study, emission tests were performed on 12 excavators and 8 wheel loaders by using portable emission measurement system (PEMS) to determine their emission characteristics. The typical operating modes were categorized as idling mode, moving mode and working mode. Compared with those during idling and moving modes, the average time-based emission factors during working mode of HC were 2.61 and 1.27 times higher, NO(x) were 3.66 and 1.36 times higher, and PM were 4.05 and 1.95 times higher, respectively. Under all conditions, categories of the measured emissions increased with the rise in engine power. Compared with those of Stage I emission standard equipment, gaseous emissions and PM emitted from Stage II emission standard equipment were lower. The results indicated that, from Stage I to Stage II, the average reductions of HC, NO(x) and PM were 56%, 37% and 29% for the working mode, respectively. Those results also demonstrated the effectiveness of emission control regulation and the improvement of emission control technology. The data and tests show that the longer the accumulated working hours, the higher HC and NO(x) average fuel-based emission factors are. The emissions measured from the construction vehicles employed in this study were higher than the data collected in previous studies, which shows that it is critical for the government to put into effect more stringent emission regulations to further improve the air quality in Chinese urban areas.

  7. Electrospun MgO-loaded carbon nanofibers: Enhanced field electron emission from the fibers in vacuum

    NASA Astrophysics Data System (ADS)

    Aykut, Yakup

    2013-02-01

    MgO-loaded electrospun carbon nanofibers (MgO/CNFs) were prepared by electrospinning a magnesium acetate containing polyacrylonitrile composite followed by stabilization under an air atmosphere at 280 °C and carbonization under a nitrogen atmosphere at 800 °C. In addition to investigating the morphological and material features of the nanofibers, the field emission (FE) characteristics of the carbonized NFs (CNFs), performed in an ultra-high vacuum chamber utilizing scanning electron microscopy (SEM), were determined. The results of the investigation show that the MgO/CNFs (195.5% enhancement) display enhanced field electron emission as compared to that of pure CNFs as a result of the existence of a MgO phase. Consequently, it appears that the graphitic structures of CNFs can be tuned, a finding that has significance in studies aimed at developing new field electron emission devices.

  8. Electron cyclotron emission as a density fluctuation diagnostic

    SciTech Connect

    Lynn, A.G.; Phillips, P.E.; Hubbard, A.

    2004-10-01

    A new technique for measuring density fluctuations using a high-resolution heterodyne electron cyclotron emission (ECE) radiometer has been developed. Although ECE radiometry is typically used for electron temperature measurements, the unique viewing geometry of this system's quasioptical antenna has been found to make the detected emission extremely sensitive to refractive effects under certain conditions. This sensitivity gives the diagnostic the ability to measure very low levels of density fluctuations in the core of Alcator C-Mod tokamak. The refractive effects have been modeled using ray-tracing methods, allowing estimates of the density fluctuation magnitude and spatial localization.

  9. Carbon-containing cathodes for enhanced electron emission

    DOEpatents

    Cao, Renyu; Pan, Lawrence; Vergara, German; Fox, Ciaran

    2000-01-01

    A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.

  10. Applications of 1 MV field-emission transmission electron microscope.

    PubMed

    Tonomura, Akira

    2003-01-01

    A newly developed 1 MV field-emission transmission electron microscope has recently been applied to the field of superconductivity by utilizing its bright and monochromatic field-emission electron beam. This microscope allows individual magnetic vortices inside high-Tc superconductors to be observed, thus, opening the way to investigate the unusual behaviour of vortices, which reflects the anisotropic layered structure of these superconducting materials. One example is the observation of the arrangements of chain vortex lines that are formed when a magnetic field is applied obliquely to the layer plane of the materials.

  11. Microwave Emission From Relativistic Electron Beams

    DTIC Science & Technology

    1993-04-12

    V.L. Bratman, N.S. Ginzburg, G.S. Nusinovich, M.I. Petelin and P.S. Strelkov, Int. J. Electron., 51, 541-567 (1981). 3. K.D. Pendergast, B.G. Danly, R.J...Kol’chugin, M.M. Ofitserov, and M.I. Petelin , Pis’ma Zh. Eksp. Teor. Fiz., 35, 418-420 (1982). 7. I.E. Botvinnik, V.L. Bratman, A.B. Volkov, G. Denisov...1049-1080 (1986). [21 V.L. Bratman, N.S. Ginzburg, G.S. Nusinovich, M.I. Petelin and P.S. Strelkov, Int. J. Elec- tron., 51, 541-567 (1981). [31 K.D

  12. Extracting Microwave Emissivity Characteristics over City using AMSR-E

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Zhang, L.; Jiang, L.; Li, Y.

    2010-12-01

    The spectrums of different land types are very important in the application of remote sensing. Different spectrums of different land types can be used in surface classification, change detection, and so on. The microwave emissivity over land is the foundation of land parameters retrieval using passive microwave remote sensing. It depends on land type due to different objects’ structure, moisture and roughness on the earth. It has shown that the land surface microwave emissivity contributed to atmosphere temperature and moisture retrieval. Meanwhile, it depends on land type, vegetation cover, and moisture et al.. There are many researches on microwave emissivity of various land types, such as bare soil, vegetation, snow, but city was less mentioned [1]. However, with the development of society, the process of urbanization accelerated quickly. The area of city expanded fast and the fraction of city area increased in one microwave pixel, especially in The North China Plain (about 30%). The passive microwave pixel containing city has impact on satellite observation and surface parameters retrieval then. So it is essential to study the emissivity of city in order to improve the accuracy of land surface parameters retrieval from passive microwave remote sensing. To study the microwave emissivity of city, some ‘pure’ city pixels were selected according to IGBP classification data, which was defined the fraction cover of city is larger than 85%. The city emissivity was calculated using AMSR-E L2A brightness temperature and GLDAS land surface temperature data at different frequencies and polarizations over 2008 in China. Then the seasonal variation was analyzed along the year. Finally, the characteristic of city emissivity were compared with some meteorological data, seeking the relationship between city emissivity and climatic factors. The results have shown that the emissivity of city was different for different frequencies. It increased with the frequency becoming

  13. Effects of Enhanced Eathode Electron Emission on Hall Thruster Operation

    SciTech Connect

    Y. Raitses, A. Smirnov and N. J. Fisch

    2009-04-24

    Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steadystate parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction of the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction of the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes of the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.

  14. Secondary electron emission from surfaces with small structure

    NASA Astrophysics Data System (ADS)

    Dzhanoev, A. R.; Spahn, F.; Yaroshenko, V.; Lühr, H.; Schmidt, J.

    2015-09-01

    It is found that for objects possessing small surface structures with differing radii of curvature the secondary electron emission (SEE) yield may be significantly higher than for objects with smooth surfaces of the same material. The effect is highly pronounced for surface structures of nanometer scale, often providing a more than 100 % increase of the SEE yield. The results also show that the SEE yield from surfaces with structure does not show a universal dependence on the energy of the primary, incident electrons as it is found for flat surfaces in experiments. We derive conditions for the applicability of the conventional formulation of SEE using the simplifying assumption of universal dependence. Our analysis provides a basis for studying low-energy electron emission from nanometer structured surfaces under a penetrating electron beam important in many technological applications.

  15. The next generation of electron cyclotron emission imaging diagnostics (invited).

    PubMed

    Zhang, P; Domier, C W; Liang, T; Kong, X; Tobias, B; Shen, Z; Luhmann, N C; Park, H; Classen, I G J; van de Pol, M J; Donné, A J H; Jaspers, R

    2008-10-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T(e) profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.

  16. The next generation of electron cyclotron emission imaging diagnostics (invited)

    SciTech Connect

    Zhang, P.; Domier, C. W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; Luhmann, N. C. Jr.; Park, H.; Classen, I. G. J.; Pol, M. J. van de; Donne, A. J. H.; Jaspers, R.

    2008-10-15

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T{sub e} profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.

  17. Test emission characteristics of motorcycles in Central Taiwan.

    PubMed

    Lin, Chi-Wen; Lu, San-Ju; Lin, Kuo-Shian

    2006-09-15

    Due to the large population and high levels of motorized-vehicle exhaust emissions, motorcycle emissions make an important contribution to total emissions in Taiwan, ROC. Aiming to reduce the air pollution generated by these motorcycles, the Taiwan Environmental Protection Administration (TEPA) has maintained an enforced inspection and maintenance (I/M) program for in-use motorcycles since 1996. This report explores the effects of engine type, engine size, engine age, and manufacturers of in-use motorcycles on CO/HC emissions in I/M testing data during the period of 1996-2002 in the Central Air Quality Basin of Taiwan. Additionally, geographical characteristics and failure rates of motorcycles are analyzed. The results indicate that the age, size, and type of engine, and the manufacturers of motorcycles all play a significant role in determining I/M emission test results. The findings also show that two-stroke motorcycles emitted approximately ten times greater HC than those of four-stroke motorcycles. CO/HC test emissions increase with a decrease in engine size, HC test emissions contributed by Yamaha and other manufacturers being the highest. Although CO/HC test emissions generally increase with the age of the motorcycle, older motorcycles do not contribute significantly to total emissions due to the small number of older motorcycles. It was observed that CO/HC test emissions depend on driving patterns, geographical location, and inspection rates of motorcycles. The failure rate due to CO is nearly four times greater than that of HC, and the older and smaller-engine-size motorcycles obtain greater failure rates. These statistical findings can also provide the EPA of Taiwan or other Asian countries with useful information for formulating better environmental strategies to manage motorcycles effectively.

  18. Thermal and emission characteristics of a CAN combustor

    NASA Astrophysics Data System (ADS)

    Shah, Rupesh D.; Banerjee, Jyotirmay

    2016-03-01

    Experimental investigations are carried out to establish the thermal and emission characteristics of a CAN combustor. Temperature and emission levels at the combustor exit are measured for different swirler vane angles and air fuel ratios (AFR). Swirler vane angle is varied from 15° to 60° in steps of 15°. AFR is varied in the range of 41-51. Experimental analysis is carried out using methane as fuel. Measured temperature variation at combustor outlet indicates that the hot product of combustor flows near the liner wall. Gradient of temperature near the wall decreases as the swirler vane angle (and corresponding swirl number) is increased. The peak temperature reduces at higher value of AFR. Emission level of carbon monoxide decreases with increase in AFR and swirler vane orientation. A higher level of NOX emission is observed for AFR of 45. This is due to change in shape and strength of the recirculation region in the primary zone of the combustor.

  19. Peculiarities of the Field Electron Emission from Dust Grains

    SciTech Connect

    Richterova, I.; Beranek, M.; Pavlu, J.; Nemecek, Z.; Safrankova, J.

    2008-09-07

    The goal of the paper is investigation of the electron field emission that limits the attainable grain charge and can prevent electrostatic fragmentation of loosely bounded aggregates of dust grains. We have found that the effective work function of the spherical amorphous carbon grains does not depend on the relative beam energy. Preliminary results on an influence of the ion treatment/cleaning using the simultaneous electron and ion bombardments are discussed.

  20. Effect of vehicle characteristics on unpaved road dust emissions

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Etyemezian, V.; Kuhns, H.; Nikolic, D.; Gillette, D. A.

    This paper presents PM 10 fugitive dust emission factors for a range of vehicles types and examines the influence of vehicle and wake characteristics on the strength of emissions from an unpaved road. Vertical profile measurements of mass concentration of the passing plumes were carried out using a series of 3 instrumented towers. PM 10 emission fluxes at each tower were calculated from knowledge of the vertical mass concentration profile, the ambient wind speed and direction, and the time the plume took to pass the towers. The emission factors showed a strong linear dependence on speed and vehicle weight. Emission factors (EF=grams of PM 10 emitted per vehicle kilometer traveled) ranged from approximately EF=0.8×(km h -1) for a light (˜1200 kg) passenger car to EF=48×(km h -1) for large military vehicles (˜18 000 kg). In comparison to emission estimates derived using US EPA AP-42 methods the measured emission factors indicate larger than estimated contributions for speeds generally>10-20 km h -1 and for vehicle weights>3000 kg. The size of a wake created by a vehicle was observed to be dependent on the size of the vehicle, increasing roughly linearly with vehicle height. Injection height of the dust plume is least important to long-range transport of PM 10 under unstable conditions and most important under stable atmospheric conditions.

  1. [Emission characteristics of paved roads fugitive dust in Beijing].

    PubMed

    Fan, Shou-bin; Tian, Gang; Li, Gang; Shao, Xia

    2007-10-01

    Based on sampling and laboratory analyzing silt loading of 82 city roads and 56 suburb paved roads in Beijing, we using AP-42 emission factor model studied emission characteristics of paved road fugitive dust, and analyzed two methods to determine silt loading of different roads. The results show that silt loading of expressway, major arterial, minor arterial and collectors in city areas is 0.17, 0.34, 1.48, 2.60 g/m2 respectively, and silt loading of national road, province road, county road, village road and municipal road in the suburbs areas is 0.18, 0.56, 1.58, 3.10, 1.58 g/m2 respectively. In the city areas, using the relationship of silt loading and traffic volume,and in the suburbs areas, using the average value of different type roads to determine the silt loading are better. Silt loading and emission factor are negatively correlated with traffic volume, but the emission strength is increased with the increase of traffic volume. Emission strength of different type roads was also studied. In the city areas, emission strength of major arterial is strongest and the value is 130.2 kg/(km x d), and in the suburbs areas, emission strength of national road is strongest and the value is 43.8 kg/(km x d).

  2. Instrumentation and Measurements for Electron Emission from Charged Insulators

    NASA Technical Reports Server (NTRS)

    Sim, Alec M.

    2005-01-01

    The electron was first discovered in 1898 by Sir John Joseph Thomson and has since been the subject of detailed study by nearly every scientific discipline. At nearly the same time Heinrich Rudolf Hertz conducted a series of experiments using cathode tubes, high potentials and ultraviolet light. When applying a large potential to a cathode he found that an arching event across the metal plates would occur. In addition, when shining an ultraviolet light on the metal he found that less potential was required to induce the spark. This result, taken together with other electrical phenomena brought about by the shining of light upon metal and was eventually termed the photoelectric effect. The work of Thomson and Hertz represent the beginning of electron emission studies and a body of ideas that pervade nearly all aspects of physics. In particular these ideas tell us a great deal about the nature of physical interactions within solids. In this thesis we will focus on the emission of electrons induced by an incident electron source over a range of energies, in which one can observe changes in emitted electron flux and energy distribution. In particular, when energetic particles impinge on a solid they can impart their energy, exciting electrons within the material. If this energy is sufficient to overcome surface energy barriers such as the work function, electron affinity or surface charge potential, electrons can escape from the material. The extent of electron emission from the material can be quantified as the ratio of incident particle flux to emitted particle flux, and is termed the electron yield.

  3. Radiation emission from braided electrons in interacting wakefields

    NASA Astrophysics Data System (ADS)

    Wallin, Erik; Gonoskov, Arkady; Marklund, Mattias

    2017-09-01

    The radiation emission from electrons wiggling in a laser wakefield acceleration (LWFA) process, being initially considered as a parasitic effect for the electron energy gain, can eventually serve as a novel X-ray source, which could be used for diagnostic purposes. Although several schemes for enhancing the X-ray emission in LWFA has been recently proposed and analyzed, finding an efficient way to use and control this radiation emission remains an important problem. Based on analytical estimates and 3D particle-in-cell simulations, we here propose and examine a new method utilizing two colliding LWFA patterns with an angle in between their propagation directions. Varying the angle of collision, the distance of acceleration before the collision and other parameters provide an unprecedented control over the emission parameters. Moreover, we reveal here that for a collision angle of 5°, the two wakefields merge into a single LWFA cavity, inducing strong and stable collective oscillations between the two trapped electron bunches. This results in an X-ray emission which is strongly peaked, both in the spatial and frequency domains. The basic concept of the proposed scheme may pave a way for using LWFA radiation sources in many important applications, such as phase-contrast radiography.

  4. Electron heating during discharges driven by thermionic emission

    SciTech Connect

    Levko, D.; Krasik, Ya. E.

    2014-11-15

    The heating of plasma electrons during discharges driven by thermionic emission is studied using one-dimensional particle-in-cell Monte Carlo collisions modeling that self-consistently takes the dependence of the thermionic current on the plasma parameters into account. It is found that at a gas pressure of 10{sup 2 }Pa the electron two-stream instability is excited. As a consequence, the electrostatic plasma wave propagates from the cathode to the anode. The trapping of electrons by this wave contributes noticeably to the heating of the plasma. At a larger gas pressure, this instability is not excited. As a consequence, plasma electrons are heated only because of the generation of energetic electrons in ionization events and the scattering of emitted electrons.

  5. Electron-bombarded 〈110〉-oriented tungsten tips for stable tunneling electron emission

    SciTech Connect

    Yamada, T. K.; Abe, T.; Nazriq, N. M. K.; Irisawa, T.

    2016-03-15

    A clean tungsten (W) tip apex with a robust atomic plane is required for producing a stable tunneling electron emission under strong electric fields. Because a tip apex fabricated from a wire by aqueous chemical etching is covered by impurity layers, heating treatment in ultra-high vacuum is experimentally known to be necessary. However, strong heating frequently melts the tip apex and causes unstable electron emissions. We investigated quantitatively the tip apex and found a useful method to prepare a tip with stable tunneling electron emissions by controlling electron-bombardment heating power. Careful characterizations of the tip structures were performed with combinations of using field emission I–V curves, scanning electron microscopy, X-ray diffraction (transmitted Debye-Scherrer and Laue) with micro-parabola capillary, field ion microscopy, and field emission microscopy. Tips were chemically etched from (1) polycrystalline W wires (grain size ∼1000 nm) and (2) long-time heated W wires (grain size larger than 1 mm). Heating by 10-40 W (10 s) was found to be good enough to remove oxide layers and produced stable electron emission; however, around 60 W (10 s) heating was threshold power to increase the tip radius, typically +10 ± 5 nm (onset of melting). Further, the grain size of ∼1000 nm was necessary to obtain a conical shape tip apex.

  6. Scanning Electron Microscope Studies on Aggregation Characteristics of Alumina Nanofluids

    DTIC Science & Technology

    2013-08-01

    UNCLASSIFIED SCANNING ELECTRON MICROSCOPE STUDIES ON AGGREGATION CHARACTERISTICS OF ALUMINA NANOFLUIDS INTERIM REPORT TFLRF No. 443...UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SCANNING ELECTRON MICROSCOPE STUDIES ON AGGREGATION CHARACTERISTICS OF ALUMINA NANOFLUIDS INTERIM REPORT TFLRF...Aggregation Characteristics of Alumina Nanofluids 5a. CONTRACT NUMBER W56HZV-09-C-0100 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  7. Electron Cyclotron Emissions from AN Electron Cyclotron Heated Discharge in Isx-B

    NASA Astrophysics Data System (ADS)

    Elder, Gerald Blaine

    1983-09-01

    Observation of the electron cyclotron emissions (ECE) at both optically thick and optically thin frequencies can be a very useful tool in studying the behavior of the electron distribution. It is especially effective when studying the effects of electron cyclotron heating (ECH). Two detectors were built to observe the optically thin third harmonic radiation from ISX-B during the recent 28 GHz ECH experiments carried on at Oak Ridge National Laboratory. These detectors supplemented existing detectors at the fundamental frequency and at the second harmonic frequency. Observations of the three frequencies during and after the ECH was pulsed into the plasma showed an unexpected rise in their intensity, occurring after the ECH pulse was over. This rise lasted for many tens of milliseconds, well beyond estimates of the electron energy confinement time. The rise in the third harmonic intensity was frequently to an intensity 100 times greater than the pre-ECH intensity. The fundamental frequency and the second harmonic had a much milder change in their intensities. The rises were seen to depend critically on the density of the plasma and the length of the ECH pulse but only weakly on the pre-ECH temperature. A computer code which predicts the ECE from an electron distribution in ISX-B, taking into account the effect of the plasma's dielectric response to the emissions from a single electron, is developed. This code is the result of combining a ray tracing technique with the emissions from a single dressed test particle and summing over the electron distribution. The code confirms the sensitivity of the third harmonic emissions to small changes in the electron distribution. A Fokker-Planck code is combined with the emission code to predict the evolution of the ECE from a perturbed electron distribution. The codes clearly show that the rises in the emissions observed by the three detectors can be reasonably explained by consideration of the effect of pitch angle scattering

  8. Electron beam generated whistler emissions in a laboratory plasma

    SciTech Connect

    Van Compernolle, B. Pribyl, P.; Gekelman, W.; An, X.; Bortnik, J.; Thorne, R. M.

    2015-12-10

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  9. Effect of secondary electron emission on the plasma sheath

    SciTech Connect

    Langendorf, S. Walker, M.

    2015-03-15

    In this experiment, plasma sheath potential profiles are measured over boron nitride walls in argon plasma and the effect of secondary electron emission is observed. Results are compared to a kinetic model. Plasmas are generated with a number density of 3 × 10{sup 12} m{sup −3} at a pressure of 10{sup −4} Torr-Ar, with a 1%–16% fraction of energetic primary electrons. The sheath potential profile at the surface of each sample is measured with emissive probes. The electron number densities and temperatures are measured in the bulk plasma with a planar Langmuir probe. The plasma is non-Maxwellian, with isotropic and directed energetic electron populations from 50 to 200 eV and hot and cold Maxwellian populations from 3.6 to 6.4 eV and 0.3 to 1.3 eV, respectively. Plasma Debye lengths range from 4 to 7 mm and the ion-neutral mean free path is 0.8 m. Sheath thicknesses range from 20 to 50 mm, with the smaller thickness occurring near the critical secondary electron emission yield of the wall material. Measured floating potentials are within 16% of model predictions. Measured sheath potential profiles agree with model predictions within 5 V (∼1 T{sub e}), and in four out of six cases deviate less than the measurement uncertainty of 1 V.

  10. VLF-emissions from ring current electrons. An interpretation of the band of missing emissions

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Smith, P. H.; Anderson, R. R.

    1976-01-01

    VLF-emissions associated with the enhancement of ring current electrons during magnetic storms and substorms which were detected by the equatorially orbiting S-A satellite (Explorer 45) are described. The emissions observed near the geomagnetic equator consist of essentially two frequency regimes, i.e., one above the electron gyrofrequency, f sub H at the equator and the other below f sub H. This is indicated as a part of the wide-band data obtained during the main phase of the December 17, 1971 magnetic storm. The upper figure is the ac-magnetic field data measured by the search-coil magnetometer with the upper cutoff of 3kHz and the lower figure is the ac-electric field data obtained by the electric field sensor with the upper cutoff of 10kHz. These figures show the time sequence of the observed emissions along the inbound orbit (No. 101) of the satellite as f sub H changes approximately from 3 kHz at 20 UT to 6 kHz at 21 UT. The emissions above f sub H are electrostatic mode, which peak near the frequencies of (n + 1/2) f sub H where n is positive integer, and sometimes emissions up to n = 10 are observed. The emissions below f sub H are whistler mode, which have a conspicuous gap along exactly half electron gyrofrequency, f sub H/2.

  11. Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy

    NASA Technical Reports Server (NTRS)

    Kaiser, W. J.; Bell, L. D.

    1988-01-01

    A new technique for spectroscopic investigation of subsurface interface electronic structure has been developed. The method, ballistic-electron-emission microscopy (BEEM), is based on scanning tunneling microscopy. BEEM makes possible, for the first time, direct imaging of subsurface interface properties with nanometer spatial resolution. The first application of BEEM to subsurface Schottky-barrier interfaces is reported.

  12. Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy

    NASA Technical Reports Server (NTRS)

    Kaiser, W. J.; Bell, L. D.

    1988-01-01

    A new technique for spectroscopic investigation of subsurface interface electronic structure has been developed. The method, ballistic-electron-emission microscopy (BEEM), is based on scanning tunneling microscopy. BEEM makes possible, for the first time, direct imaging of subsurface interface properties with nanometer spatial resolution. The first application of BEEM to subsurface Schottky-barrier interfaces is reported.

  13. Search for multiple-electron emission in Auger transition processes in solids

    NASA Astrophysics Data System (ADS)

    Kalaskar, S.; Hulbert, S. L.; Dong, Q.; Bartynski, B. A.; Weiss, A. H.

    2010-03-01

    We present electron-electron coincidence measurements from Ag(100) taken using a synchrotron radiation photon beam of 465eV energy (which is just above the Ag 3d threshold), with one electron energy analyzer fixed at 175 eV kinetic energy and the other scanned from 150 to 200 eV. The data show a pronounced step at 175 eV consistent with processes in which the energy associated with the filling of the M core hole is shared with two or more correlated electrons that are emitted in an Auger transition accompanied by multiple-electron emission. These results provide direct evidence for the existence of these multiple-electron Auger processes, first posited to explain the origin of the large low energy tail characteristic of Auger spectra from solids.footnotetextE. Jensen, R. A. Bartynski, R. F. Garrett, S. L. Hulbert, E. D. Johnson, and C.-C., Phys. Rev. B 45, 13636 (1992)

  14. Average thermal characteristics of solar wind electrons

    NASA Technical Reports Server (NTRS)

    Montgomery, M. D.

    1972-01-01

    Average solar wind electron properties based on a 1 year Vela 4 data sample-from May 1967 to May 1968 are presented. Frequency distributions of electron-to-ion temperature ratio, electron thermal anisotropy, and thermal energy flux are presented. The resulting evidence concerning heat transport in the solar wind is discussed.

  15. Compact electron gun based on secondary emission through ionic bombardment.

    PubMed

    Diop, Babacar; Bonnet, Jean; Schmid, Thomas; Mohamed, Ajmal

    2011-01-01

    We present a new compact electron gun based on the secondary emission through ionic bombardment principle. The driving parameters to develop such a gun are to obtain a quite small electron gun for an in-flight instrument performing Electron Beam Fluorescence measurements (EBF) on board of a reentry vehicle in the upper atmosphere. These measurements are useful to characterize the gas flow around the vehicle in terms of gas chemical composition, temperatures and velocity of the flow which usually presents thermo-chemical non-equilibrium. Such an instrument can also be employed to characterize the upper atmosphere if placed on another carrier like a balloon. In ground facilities, it appears as a more practical tool to characterize flows in wind tunnel studies or as an alternative to complex electron guns in industrial processes requiring an electron beam. We describe in this paper the gun which has been developed as well as its different features which have been characterized in the laboratory.

  16. Role of Emission Character in Auger Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Idzerda, Y. U.

    A review of the interpretation of the angle-dependent Auger intensity pattern by both Auger electron diffraction (AED), which is concerned with identifying the nearby atomic structure, and angle-resolved Auger electron spectroscopy (ARAES), which is concerned with identifying the character of the emitted electron source function, is presented. The importance of the emission character of the Auger electron (in terms of its angular momentum, l, and its magnetic quantum number, m) in understanding the generation of the AED and ARAES patterns is described. Understanding of how the various direct and secondary mechanisms for the Auger electron generation can affect the populations of these states can also be used to help identify the multiplet structure within the Auger lineshape as well as elucidate the core hole generation process.

  17. Stimulated coherent emission from short electron bunches in free space

    SciTech Connect

    Robb, G.R.M.; Phelps, A.D.R.; Ginzburg, N.S.

    1995-12-31

    In previous papers stimulated coherent emission of short electron bunches (superradiance-SR) was considered in the frame of 1-D models. In the present work we study superradiance of an electron bunch which has a finite transverse size in the frame of a 2-D model. This model include effects of optical guiding as well as transverse electromagnetic energy escaping and diffraction. Using a nonstationary parabolic equation we described SR of a sheet shaped electron bunch in free space. It is shown that the radiation is composed of a sequence of e.m. pulses which are diffracted after escaping from the channel formed by the electron beam. This process is accompanied by a progressive increase of the electron efficiency. This enhancement is caused by the phenomenon of permanent self supporting resonance due to the variation of the radiation angle and frequency.

  18. Hot electron field emission via individually transistor-ballasted carbon nanotube arrays.

    PubMed

    Li, Chi; Zhang, Yan; Cole, Matthew T; Shivareddy, Sai G; Barnard, Jon S; Lei, Wei; Wang, Baoping; Pribat, Didier; Amaratunga, Gehan A J; Milne, William I

    2012-04-24

    We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.

  19. Chemical Ionization Mass Spectrometry Using Carbon Nanotube Field Emission Electron Sources

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich J.; Keil, Adam D.; Wells, Mitch; Amsden, Jason J.; Piascik, Jeffrey R.; Parker, Charles B.; Stoner, Brian R.; Glass, Jeffrey T.

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities.

  20. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources.

    PubMed

    Radauscher, Erich J; Keil, Adam D; Wells, Mitch; Amsden, Jason J; Piascik, Jeffrey R; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities. Graphical Abstract ᅟ.

  1. Field electron emission from pencil-drawn cold cathodes

    SciTech Connect

    Chen, Jiangtao; Yang, Bingjun; Liu, Xiahui; Yang, Juan; Yan, Xingbin

    2016-05-09

    Field electron emitters with flat, curved, and linear profiles are fabricated on flexible copy papers by direct pencil-drawing method. This one-step method is free of many restricted conditions such as high-temperature, high vacuum, organic solvents, and multistep. The cold cathodes display good field emission performance and achieve high emission current density of 78 mA/cm{sup 2} at an electric field of 3.73 V/μm. The approach proposed here would bring a rapid, low-cost, and eco-friendly route to fabricate but not limited to flexible field emitter devices.

  2. Secondary electron emission from lithium and lithium compounds

    DOE PAGES

    Capece, A. M.; Patino, M. I.; Raitses, Y.; ...

    2016-07-06

    In this work, measurements of electron-induced secondary electron emission ( SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γe, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly depends onmore » chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20-600 eV. The effect of Li composition was determined by introducing controlled amounts of O2 and H2O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γe = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls. Published by AIP Publishing.« less

  3. Secondary electron emission from lithium and lithium compounds

    SciTech Connect

    Capece, A. M.; Patino, M. I.; Raitses, Y.; Koel, B. E.

    2016-07-04

    In this work, measurements of electron-induced secondary electron emission (SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γ{sub e}, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly depends on chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20–600 eV. The effect of Li composition was determined by introducing controlled amounts of O{sub 2} and H{sub 2}O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γ{sub e} = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls.

  4. Electron cyclotron emission measurements on the Texas Experimental Tokamak

    SciTech Connect

    Austin, M.E. Jr.

    1992-01-01

    A ten-channel grating polychromator was designed, constructed, and installed on the Texas Experimental Tokamak to monitor the second harmonic electron cyclotron emission. Electron temperature profiles were derived from measurements of the optically thick radiation for a variety of plasma confinement experiments. The radial and temporal evolution of T[sub e] has been characterized for electron cyclotron heated discharges with 150 kW of 60 GHz power. Comparisons were made of the heating efficiency of two type of ECH launchers. A focussed launcher was shown to have slightly better heating efficiency than an unfocussed launcher; however, the focussed antenna did not yield significantly higher electron temperatures as expected. A study of the time evolution of the electron temperature indicated that increased sawtooth activity limited the effectiveness of the focussed launcher. A focussing hog-horn antenna was fabricated and installed on the inboard side of the tokamak to measure emission directed towards the high-field side during ECH. Comparison of the radiation temperature profiles from low-field side and high-field side antennas indicates the creation of a nonthermal electron distribution by the heating. The results of the experiment compare favorably with theoretical predictions from a quasi-linear Fokker-Planck code of a 6 keV nonthermal population with a density about 1 percent of the thermal density.

  5. Instrumentation for Studies of Electron Emission and Charging From Insulators

    NASA Technical Reports Server (NTRS)

    Thomson, C. D.; Zavyalov, V.; Dennison, J. R.

    2004-01-01

    Making measurements of electron emission properties of insulators is difficult since insulators can charge either negatively or positively under charge particle bombardment. In addition, high incident energies or high fluences can result in modification of a material s conductivity, bulk and surface charge profile, structural makeup through bond breaking and defect creation, and emission properties. We discuss here some of the charging difficulties associated with making insulator-yield measurements and review the methods used in previous studies of electron emission from insulators. We present work undertaken by our group to make consistent and accurate measurements of the electron/ion yield properties for numerous thin-film and thick insulator materials using innovative instrumentation and techniques. We also summarize some of the necessary instrumentation developed for this purpose including fast response, low-noise, high-sensitivity ammeters; signal isolation and interface to standard computer data acquisition apparatus using opto-isolation, sample-and-hold, and boxcar integration techniques; computer control, automation and timing using Labview software; a multiple sample carousel; a pulsed, compact, low-energy, charge neutralization electron flood gun; and pulsed visible and UV light neutralization sources. This work is supported through funding from the NASA Space Environments and Effects Program and the NASA Graduate Research Fellowship Program.

  6. Preparation and emission characteristics of ethanol-diesel fuel blends.

    PubMed

    Zhang, Run-Duo; He, Hong; Shi, Xiao-Yan; Zhang, Chang-Bin; He, Bang-Quan; Wang, Jian-Xin

    2004-01-01

    The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection (DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon (HC), and carbon monoxide (CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.

  7. Photoinduced field-assisted electron emission from dielectric-coated electrodes into gases

    NASA Astrophysics Data System (ADS)

    Josepson, R.; Laan, M.; Aarik, J.; Kasikov, A.

    2008-07-01

    A photoinduced non-self-sustained discharge in a point-plane gap at near-atmospheric pressures in nitrogen and nitrogen-oxygen mixture was studied. Molybdenum and platinum points were coated with thin layers of MgO and TiO2 of different thicknesses. Static current-voltage characteristics were recorded at different intensities of triggering light, layer thickness and gas pressure. The common regularities of current-voltage characteristics were independent of the electrode/coating combinations used. The studies showed that the field-assisted two-step model of emission describes the experimental findings. The electron emission is controlled by Schottky and Fowler-Nordheim mechanisms at the metal-dielectric interface and by a recombination of positive ions with 'hot' and free electrons near the dielectric-gas interface.

  8. Electron cyclotron emission spectrometry on the Tokamak a Configuration Variable

    SciTech Connect

    Klimanov, I.; Porte, L.; Alberti, S.; Blanchard, P.; Fasoli, A.; Goodman, T.P.

    2005-09-15

    Electron cyclotron emission (ECE) measurements are an important component of the diagnostic suite on the Tokamak a Configuration Variable (TCV) [F. Hoffman et al., Plasma Phys. Controlled Fusion 36, B277 (1994)]. A recently installed, 24-channel dual-conversion heterodyne radiometer covering the radio frequency range 65-100 GHz and viewing from the low-field side (LFS) of the tokamak greatly enhances the system and, in combination with an existing radiometer viewing from the high-field side (HFS), allows simultaneous measurements of emission from the HFS and LFS. In addition, the new radiometer has multiple lines of sight that can receive the emission perpendicular to the toroidal magnetic field as well as with a finite k{sub parallel} (wave vector parallel to magnetic field). Such flexibility allows the LFS radiometer to make standard measurements of thermal emission and nonstandard measurements of nonthermal, anisotropic emission. The toroidal line of sight allows access to overdense plasma via mode converted emission. The enhanced ECE diagnostic is described and examples of measurements made in various configurations are presented.

  9. Localized SXR Emission During Electron Bernstein Wave Injection in MST

    NASA Astrophysics Data System (ADS)

    Anderson, Jay; Forest, Cary; Seltzman, Andrew

    2008-11-01

    The electron Bernstein wave has been suggested as a solution to the RFP confinement problem: sustained, off-axis current drive stabilizes the resistive tearing modes which govern thermal transport. A staged experiment to test the feasibility of EBW heating and current drive is underway on MST. Experiments (˜10^5 W) aimed at a demonstration of EBW heating have produced a localized increase in SXR emission. This measured emission is consistent with modeling in its location, energy spectrum and dependence on radial diffusion within the plasma. Preliminary analysis indicates that the emission is strongest in the region where ray tracing predicts maximum deposition of the injected power. The multi-chord SXR camera used is sensitive to 4-7 keV photons which is consistent with Fokker-Plank modeling of EBW injection. The enhanced SXR emission vanishes quickly when radial diffusion in the plasma is high (as indicated by m=0 magnetic activity); this is also consistent with Fokker-Plank modeling. An increase of boron emission (and presumably boron within the plasma) is also observed during EBW injection. This presents an alternative explanation to the enhanced SXR emission; recent efforts have been made to isolate the two effects.

  10. Synchronous fluorescence and excitation emission characteristics of transformer oil ageing.

    PubMed

    Deepa, Subbiah; Sarathi, R; Mishra, Ashok K

    2006-11-15

    This paper describes the evaluation of synchronous fluorescence spectroscopy (SFS) and excitation emission matrix fluorescence (EEMF) spectroscopy as means of monitoring transformer oil degradation. When accelerated thermal ageing method is used, the onset of degradation of transformer oil on 17th day and transformer oil with polypropylene and cellulosic paper on 23rd and 27th days is sensitively reflected in the SFS and EEMF fluorescence spectral characteristics.

  11. Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds.

    PubMed

    Pandey, Archana; Prasad, Abhishek; Moscatello, Jason P; Engelhard, Mark; Wang, Chongmin; Yap, Yoke Khin

    2013-01-22

    Novel PMMA-STO-CNT matrices were created by opened-tip vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coatings of strontium titanate (STO) and poly(methyl methacrylate) (PMMA). Emission threshold of 0.8 V/μm was demonstrated, about 5-fold lower than that of the as-grown VA-MWCNTs. This was obtained after considering the related band structures under the perspective of work functions and tunneling width as a function of the STO thickness. We showed that there is an optimum thickness of STO coatings to effectively reduce the work function of CNTs and yet minimize the tunneling width for electron emissions. Furthermore, simulation and modeling suggest that PMMA-STO-CNT matrices have suppressed screening effects and Coulombs' repulsion forces between electrons in adjacent CNTs, leading to low emission threshold, high emission density, and prolonged emission stability. These findings are important for practical application of VA-MWCNTs in field emission devices, X-ray generation, and wave amplification.

  12. Sharp Reduction of the Secondary Electron Emission Yield from Grooved Surfaces

    SciTech Connect

    Pivi, M.T.F.; King, F.K.; Kirby, R.E.; Ruabenheimer, T.O.; Stupakov, G.; Le Pimpec, F.; /PSI, Villigen

    2007-11-28

    The effect of an artificially-enhanced rough surface on the secondary electron emission yield (SEY) was investigated both theoretically and experimentally. Analytical studies on triangular and rectangular grooved surfaces show the connection between the characteristic parameters of a given geometry to the SEY reduction. The effect of a strong magnetic field is also discussed. SEY of grooved samples have been measured and the results agree with Monte-Carlo simulations.

  13. Calculations of the self-amplified spontaneous emission performance of a free-electron laser.

    SciTech Connect

    Dejus, R. J.

    1999-04-20

    The linear integral equation based computer code (RON: Roger Oleg Nikolai), which was recently developed at Argonne National Laboratory, was used to calculate the self-amplified spontaneous emission (SASE) performance of the free-electron laser (FEL) being built at Argonne. Signal growth calculations under different conditions are used for estimating tolerances of actual design parameters. The radiation characteristics are discussed, and calculations using an ideal undulator magnetic field and a real measured magnetic field will be compared and discussed.

  14. Electron emission in collisions between atoms and dressed projectiles

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Ghosh, T. K.; Mandal, C. R.; Purkait, M.

    2016-12-01

    We present theoretical results for electron emission in collisions between helium atoms and dressed projectiles at high energies. Double-differential cross sections (DDCSs) as a function of the emitted electron energies and angles are calculated. In our study we have applied the three-body formalism using the three-Coulomb wave (3CW-3B) model. The interaction between the dressed projectile and the active electron in the target has been approximated by a model potential having both a long-range Coulomb potential part and a short-range part. However, the active electron in the target has been treated as hydrogenic. We have also studied the projectile charge state dependence of the DDCS. Our theoretical results are compared with available experimental data as well as other theoretical calculations. The comparison shows a good agreement between the present calculations and the measurements. The obtained results are also compatible with other theoretical findings.

  15. Temperature enhancement of secondary electron emission from hydrogenated diamond films

    SciTech Connect

    Stacey, A.; Prawer, S.; Rubanov, S.; Akhvlediani, R.; Michaelson, Sh.; Hoffman, A.

    2009-09-15

    The effect of temperature on the stability of the secondary electron emission (SEE) yield from approx100-nm-thick continuous diamond films is reported. At room temperature, the SEE yield was found to decay as a function of electron irradiation dose. The SEE yield is observed to increase significantly upon heating of the diamond surface. Furthermore, by employing moderate temperatures, the decay of the SEE yield observed at room temperature is inhibited, showing a nearly constant yield with electron dose at 200 deg. C. The results are explained in terms of the temperature dependence of the electron beam-induced hydrogen desorption from the diamond surface and surface band bending. These findings demonstrate that the longevity of diamond films in practical applications of SEE can be increased by moderate heating.

  16. Electron emission and fragmentation of molecules in intense laser fields

    NASA Astrophysics Data System (ADS)

    Ueda, K.; Prümper, G.; Hatamoto, T.; Okunishi, M.; Mathur, D.

    2007-06-01

    We have constructed an apparatus for high-resolution electron spectroscopy and electron-ion coincidence experiments on gas-phase molecules in intense laser fields. The apparatus comprises an electron time-of-flight (TOF) spectrometer and an ion TOF spectrometer with a position detector, placed on either side of an effusive molecular beam. The ionizing radiation is either the fundamental (800 nm wavelength) of a Ti:sapphire laser or frequency doubled 400-nm light, with pulse durations of ~ 150 fs and the repetition rate of 1 kHz. We have investigated the electron emission and fragmentation of linear alcohol molecules, methanol, ethanol and 1-propanol, in laser fields with peak intensities up to ~ 1×10 14 W/cm2. Details of our apparatus are described along with an overview of some recent results.

  17. Electron emission from nickel-alloy surfaces in cesium vapor

    NASA Technical Reports Server (NTRS)

    Manda, M.; Jacobson, D.

    1978-01-01

    The cesiated electron emission was measured for three candidate electrodes for use as collectors in thermionic converters. Nickel, Inconel 600 and Hastelloy were tested with a 412 K cesium reservoir. Peak emission from the alloys was found to be comparable to that from pure nickel. Both the Inconel and the Hastelloy samples had work functions of 1.64 eV at peak emission. The minimum work functions were estimated to be 1.37 eV at a probe temperature of 750 K for Inconel and 1.40 eV for Hastelloy at 665 K. The bare work function for both alloys is estimated to be approximately the same as for pure nickel, 4.8 eV.

  18. Electron Field Emission Properties of Textured Platinum Surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, James S.

    2002-01-01

    During ground tests of electric microthrusters and space tests of electrodynamic tethers the electron emitters must successfully operate at environmental pressures possibly as high as 1x10(exp -4) Pa. High partial pressures of oxygen, nitrogen, and water vapor are expected in such environments. A textured platinum surface was used in this work for field emission cathode assessments because platinum does not form oxide films at low temperatures. Although a reproducible cathode conditioning process did not evolve from this work, some short term tests for periods of 1 to 4 hours showed no degradation of emission current at an electric field of 8 V/mm and background pressures of about 1x10(exp -6) Pa. Increases of background pressure by air flow to about 3x10(exp -4) Pa yield a hostile environment for the textured platinum field emission cathode.

  19. Electron cyclotron emission diagnostics on the large helical device

    NASA Astrophysics Data System (ADS)

    Nagayama, Y.; Kawahata, K.; England, A.; Ito, Y.; Bretz, N.; McCarthy, M.; Taylor, G.; Doane, J.; Ikezi, H.; Edlington, T.; Tomas, J.

    1999-01-01

    The electron cyclotron emission (ECE) diagnostic system is installed on the large helical device (LHD). The system includes the following instruments: a heterodyne radiometer, a Michelson spectrometer, and a grating polychromator. A 63.5 mm corrugated waveguide system is fully utilized. Large collection optics and notch filters at the frequency of the LHD electron cyclotron heating (ECH) were developed for this system. In addition to these filters, the rectangular waveguide notch filters, the ECE measurement with the radiometer has been successfully performed during the ECH.

  20. Optical Emission Spectroscopic Techniques for Low Electron Density Diagnostics

    SciTech Connect

    Ivkovic, M.

    2006-12-01

    This paper comprises an analysis of optical emission spectroscopy (OES) techniques and results of their application for diagnostics of middle and low electron densities in low temperature plasmas. The following OES diagnostic techniques based on: 1) line merging along spectral line series, 2) use of line shapes and Stark halfwidths of hydrogen Balmer lines, 3) line shape of helium lines with forbidden components and 4) use of molecular nitrogen bandhead intensities are studied, discussed, tested and applied and in some cases ugraded for electron density measurements. The overall comparative analysis is performed also.

  1. Performance of a carbon nanotube field emission electron gun

    NASA Astrophysics Data System (ADS)

    Getty, Stephanie A.; King, Todd T.; Bis, Rachael A.; Jones, Hollis H.; Herrero, Federico; Lynch, Bernard A.; Roman, Patrick; Mahaffy, Paul

    2007-04-01

    A cold cathode field emission electron gun (e-gun) based on a patterned carbon nanotube (CNT) film has been fabricated for use in a miniaturized reflectron time-of-flight mass spectrometer (RTOF MS), with future applications in other charged particle spectrometers, and performance of the CNT e-gun has been evaluated. A thermionic electron gun has also been fabricated and evaluated in parallel and its performance is used as a benchmark in the evaluation of our CNT e-gun. Implications for future improvements and integration into the RTOF MS are discussed.

  2. Measurement Of Gas Electron Multiplier (GEM) Detector Characteristics

    NASA Astrophysics Data System (ADS)

    Park, Seongtae; Baldelomar, Edwin; Park, Kwangjune; Sosebee, Mark; White, Andy; Yu, Jaehoon

    2011-06-01

    The High Energy Physics group of the University of Texas at Arlington has been developing gas electron multiplier detectors to use them as sensitive gap detectors in digital hadron calorimeters for the International Linear Collider, a future high energy particle accelerator. For this purpose, we constructed numerous GEM detectors that employ double GEM layers. In this study, two kinds of prototype GEM detectors were tested; one with 28×28 cm2 active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap and the other with two 3×3 cm2 GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. The detectors' characteristics from exposure to high-energy charged particles and other radiations were measured using cosmic rays and 55Fe radioactive source. From the 55Fe tests, we observed two well separated characteristic X-ray emission peaks and confirmed the detectors' functionality. We also measured chamber gains to be over 6000 at a high voltage of 395 V across each GEM electrode. The responses to cosmic rays show the spectra that fit well to Landau distributions as expected from minimum ionizing particles.

  3. Nonlinear electron magnetohydrodynamics physics. V. Triggered whistler emissions

    SciTech Connect

    Stenzel, R. L.; Strohmaier, K. D.; Urrutia, J. M.

    2008-06-15

    Laboratory experiments on whistler instabilities in the presence of small trigger waves have been performed. The instabilities arise from energizing electrons in magnetic null lines with time-varying magnetic fields. Such fields are created with loop antennas carrying large oscillating currents in the low-frequency whistler branch. X-type and O-type magnetic nulls are produced with electric fields along the toroidal separator. The magnetic field convects in the form of whistler spheromaks and whistler mirrors. Counterpropagating spheromaks merge and form field-reversed configurations (FRCs). Counterpropagating mirrors colliding with an FRC also energize electrons and produce high-frequency whistler emissions. The possibility that these emissions are triggered by incident waves from other null lines in the plasma has been investigated. A controlled experiment on triggered emissions where a test wave has been created with an independent antenna and propagated into the source region to investigate its amplification has also been performed. It is observed that the test wave does not grow but triggers a much larger instability in a spheromak. The enhanced emission has a different magnetic topology and a slightly different frequency from that of the test wave. Space-time measurements in the source region show both convective wave amplification occurs as well as an absolute instability in the current ring.

  4. Electron field emission from wide bandgap semiconductors under intervalley carrier redistribution

    NASA Astrophysics Data System (ADS)

    Litovchenko, V.; Grygoriev, A.; Evtukh, A.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2009-11-01

    Electron field emission phenomena from semiconductors (and, in particular, wide band gap materials) are analyzed theoretically for the general case, i.e., by taking into consideration aspects that have not been considered earlier such as two (or more) valleys of the energy band structure, nondegenerated statistics for the free electrons, heating of conduction band electrons, intervalley carrier redistribution under applied electrical fields, size quantization of electron band spectra, and change in the field emission characteristics. Comparisons with experiments performed on the highly structured (micro- and nano) surfaces of the GaN wide bandgap semiconductor have been made. The influence of the above factors on the current-voltage Fowler-Nordheim characteristics was demonstrated by theory and experiment. From theoretical and experimental results the intervalley energy difference (ΔE) for GaN quantum-sized cathodes was estimated to be 0.8 eV, which is considerably less than that predicted for bulk semiconductor (ΔE =1.2-1.5 eV). Furthermore the field emission currents were several orders higher than for bulk material. This is in good agreement with the prediction of the proposed theoretical model.

  5. Nanotube field electron emission: principles, development, and applications.

    PubMed

    Li, Yunhan; Sun, Yonghai; Yeow, J T W

    2015-06-19

    There is a growing trend to apply field emission (FE) electron sources in vacuum electronic devices due to their fast response, high efficiency and low energy consumption compared to thermionic emission ones. Carbon nanotubes (CNTs) have been regarded as a promising class of electron field emitters since the 1990s and have promoted the development of FE technology greatly because of their high electrical and thermal conductivity, chemical stability, high aspect ratio and small size. Recent studies have shown that FE from CNTs has the potential to replace conventional thermionic emission in many areas and that it exhibits advanced features in practical applications. Consequently, FE from nanotubes and applications thereof have attracted much attention. This paper provides a comprehensive review of both recent advances in CNT field emitters and issues related to applications of CNT based FE. FE theories and principles are introduced, and the early development of field emitters is related. CNT emitter types and their FE performance are discussed. The current situation for applications based on nanotube FE is reviewed. Although challenges remain, the tremendous progress made in CNT FE over the past ten years indicates the field's development potential.

  6. Nanotube field electron emission: principles, development, and applications

    NASA Astrophysics Data System (ADS)

    Li, Yunhan; Sun, Yonghai; Yeow, J. T. W.

    2015-06-01

    There is a growing trend to apply field emission (FE) electron sources in vacuum electronic devices due to their fast response, high efficiency and low energy consumption compared to thermionic emission ones. Carbon nanotubes (CNTs) have been regarded as a promising class of electron field emitters since the 1990s and have promoted the development of FE technology greatly because of their high electrical and thermal conductivity, chemical stability, high aspect ratio and small size. Recent studies have shown that FE from CNTs has the potential to replace conventional thermionic emission in many areas and that it exhibits advanced features in practical applications. Consequently, FE from nanotubes and applications thereof have attracted much attention. This paper provides a comprehensive review of both recent advances in CNT field emitters and issues related to applications of CNT based FE. FE theories and principles are introduced, and the early development of field emitters is related. CNT emitter types and their FE performance are discussed. The current situation for applications based on nanotube FE is reviewed. Although challenges remain, the tremendous progress made in CNT FE over the past ten years indicates the field’s development potential.

  7. Electron plasma oscillations associated with type 3 radio emissions and solar electrons

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1975-01-01

    An extensive study of the IMP-6 and IMP-8 plasma and radio wave data was performed to try to find electron plasma oscillations associated with type III radio noise bursts and low-energy solar electrons. It is shown that electron plasma oscillations are seldom observed in association with solar electron events and type III radio bursts at 1.0 AU. For the one case in which electron plasma oscillations are definitely produced by the electrons ejected by the solar flare the electric field strength is relatively small. Electromagnetic radiation, believed to be similar to the type III radio emission, is observed coming from the region of the more intense electron plasma oscillations upstream. Quantitative calculations of the rate of conversion of the plasma oscillation energy to electromagnetic radiation are presented for plasma oscillations excited by both solar electrons and electrons from the bow shock. These calculations show that neither the type III radio emissions nor the radiation from upstream of the bow shock can be adequately explained by a current theory for the coupling of electron plasma oscillations to electromagnetic radiation.

  8. Field emission of electrons by carbon nanotube twist-yarns

    NASA Astrophysics Data System (ADS)

    Zakhidov, Al. A.; Nanjundaswamy, R.; Obraztsov, A. N.; Zhang, M.; Fang, S.; Klesch, V. I.; Baughman, R. H.; Zakhidov, A. A.

    2007-09-01

    Field emission with high current density at low operating voltage was found for the yarns obtained by solid state spinning process from forest of vertically aligned multiwall carbon nanotubes. The nanotube forest was produced catalytically by CVD method. It is found that only a small fraction of carbon nanotubes from their total amount in the yarn yields to electron emission from its free end. This led to resistive heating of the emitting tubes and limiting of the emission current. The field emission microscopy pictures of MWNT yarn in free-end geometry appears to be very different from that of the conventional non-yarn carbon nanotube-based cathodes described in all previous studies. The FEM patterns are found to consist of the set of line and arc segments rather than a set of spots. Possible explanation of this effect is presented and discussed. The field emission from the lateral side of the yarns showed the self-enhanced currents increasing with operation time. We assume that this current increase may be due to untwisting and unwrapping of yarns resulted of application of the electric field. The lowest threshold field of about 0.7 V/μm was obtained after a few cycles of applied field increase. The prototypes of cathodoluminescent lamps and alphanumerical indicators based on MWNT twist-yarn cold cathodes are demonstrated.

  9. [Emission characteristics of fine particles from grate firing boilers].

    PubMed

    Wang, Shu-Xiao; Zhao, Xiu-Juan; Li, Xing-Hua; Wei, Wei; Hao, Ji-Ming

    2009-04-15

    Grate firing boilers are the main type of Chinese industrial boilers, which accounts for 85% of the industrial boilers and is one of the most important emission sources of primary air pollutants in China. In this study, five boilers in three cities were selected and tested to measure the emission characteristics of PM2.5, and gaseous pollutants were applied by a compact dilution sampling system, which was developed for this field study. Results showed that particles mass size distributions for the five industrial boilers presented single peak or double peak, former peaks near 0.14 microm and the later peaks after 1.0 microm; the cyclone dust remover and wet scrubber dust remover had effective removal efficiencies not only to PM2.5, but also to PM1.0; and under the condition of same control techniques, grate firing boiler with high capacity has less PM2.5 emission than the boiler with low capacity. In the PM2.5 collected from flue gases, SO4(2-) was the most abundant ion, accounted for 20%-40% of the PM2.5; and C was the most abundant element (7.5%-31.8%), followed by S (8.4%-18.7%). Carbon balance method was applied to calculate the emission factors of these pollutants. The emission factors of PM2.5, NO, and SO2 were in the range of 0.046-0.486 g x kg(-1), 1.63-2.47 g x kg(-1), 1.35-9.95 g x kg(-1) respectively. The results are useful for the emission inventory development of industrial boilers and the source analysis of PM2.5 in atmospheric environment.

  10. Radio Emissions from Plasma with Electron Kappa-Distributions

    NASA Astrophysics Data System (ADS)

    Fleishman, G. D.; Kuznetsov, A. A.

    2015-12-01

    Gregory Fleishman (New Jersey Institute of Technology, Newark, USA)Alexey Kuznetsov (Institute of Solar-Terrestrial Physics, Irkutsk, Russia), Currently there is a concern about the ability of the classical thermal (Maxwellian) distribution to describe quasisteady-state plasma in the solar atmosphere, including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remotely detecting these kappa distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa-distribution, and discuss their properties, which are in fact remarkably different from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth τ for kappa-distribution. This property has a remarkable consequence allowing a straightforward observational test: the GR radio emission from the non-Maxwellian distributions is supposed to be noticeably polarized even in the optically thick case, where the emission would have strictly zero polarization in the case of Maxwellian plasma. This offers a way of remote probing the plasma distribution in astrophysical sources, including solar active regions as a vivid example. In this report, we present analytical formulae and computer codes to calculate the emission parameters. We simulate the gyroresonance emission under the conditions typical of the solar active regions and compare the results for different electron distributions. We discuss the implications of our findings for interpretation of radio observations. This work was supported in part by NSF grants AGS-1250374 and AGS-1262772, NASA grant NNX14AC87G to New Jersey Institute of Technology

  11. Characterization of Secondary Electron Emission Properties of Plasma Facing Materials

    NASA Astrophysics Data System (ADS)

    Patino, Marlene I.; Capece, Angela M.; Raitses, Yevgeny; Koel, Bruce E.

    2015-11-01

    The behavior of wall-bounded plasmas is significantly affected by the plasma-wall interactions, including the emission of secondary electrons (SEE) from the wall materials due to bombardment by primary electrons. The importance of SEE has prompted previous investigations of SEE properties of materials especially with applications to magnetic fusion, plasma thrusters, and high power microwave devices. In this work, we present results of measurements of SEE properties of graphite and lithium materials relevant for the divertor region of magnetic fusion devices. Measurements of total SEE yield (defined as the number of emitted secondary electrons per incident primary electron) for lithium are extended up to 5 keV primary electron energy, and the energy distributions of secondary electrons are provided for graphite and lithium. Additionally, the effect of contamination on the total SEE yield of lithium was explored by exposing the material to water vapor. Auger electron spectroscopy (AES) was used to determine surface composition and temperature programmed desorption (TPD) was used to determine lithium film thickness. Results show an order of magnitude increase in total SEE yield for lithium exposed to water vapor. This work was supported by DOE contract DE-AC02-09CH11466; AFOSR grants FA9550-14-1-0053, FA9550-11-1-0282, and AF9550-09-1-0695; and DOE Office of Science Graduate Student Research Program.

  12. VUV Emission Characteristics of High-Pressure Microgap Discharge Excited by Microwave

    NASA Astrophysics Data System (ADS)

    Kono, A.; Kano, T.; Sugiyama, T.

    2002-10-01

    It was shown that a stable atmospheric-pressure nonthermal air plasma could be produced at a high density (>10^15cm-3) in the microgap ( ˜ 100 μm) between two knife edge electrodes by using microwave excitation [Jpn. J. Appl. Phys. 40 (2001) L238]. In the present work, Ar2 and Xe2 excimer emission characteristics of the microgap discharge were studied. The apparatus was installed in a pressure chamber and the total gas pressure was varied from 0.5 to 2.5 atm. Admixture of He with Ar or Xe was necessary to obtain a uniform discharge extending along the electrode length. The Ar2 emission ( ˜130 nm) or Xe2 emission ( ˜170 nm) dominated in the optical emission in the VUV region, but their intensities depended only weakly on the microwave power as well as on the total pressure. To understand the reasons for the results and to increase the VUV emission intensity, measurements of the gas temperature, electron temperature and electron density are in progress, as well as a modification of the apparatus for introducing gas flow through the microgap.

  13. A planar diode operating in the regime of limited electron emission

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. I.; Sazonov, R. V.

    2008-04-01

    The current-voltage characteristic of a planar diode with a graphite explosive-emission cathode has been experimentally studied at the initial stage of electron current formation. An analytical expression has been obtained for the total area of discrete emitting centers in the cellular structure approximation, assuming that the number of such emitting centers operative during the current pulse formation is constant. It is shown that the electron current buildup for a cathode surface with discrete emitting centers is satisfactorily described by a modified Child-Langmuir formula with the form factor decreasing from F = 6 to 1.

  14. Laser-initiated explosive electron emission from flat germanium crystals

    SciTech Connect

    Porshyn, V. Mingels, S.; Lützenkirchen-Hecht, D.; Müller, G.

    2016-07-28

    Flat Sb-doped germanium (100) crystals were investigated in the triode configuration under pulsed tunable laser illumination (pulse duration t{sub laser} = 3.5 ns and photon energy hν = 0.54–5.90 eV) and under DC voltages <10{sup 4} V. Large bunch charges up to ∼1 μC were extracted from the cathodes for laser pulses >1 MW/cm{sup 2} corresponding to a high quantum efficiency up to 3.3% and cathode currents up to 417 A. This laser-induced explosive electron emission (EEE) from Ge was characterized by its voltage-, laser power- and hν-sensitivity. The analysis of the macroscopic surface damage caused by the EEE is included as well. Moreover, we have carried out first direct measurements of electron energy distributions produced during the EEE from the Ge samples. The measured electron spectra hint for electron excitations to the vacuum level of the bulk and emission from the plasma plume with an average kinetic energy of ∼0.8 eV.

  15. Laser-initiated explosive electron emission from flat germanium crystals

    NASA Astrophysics Data System (ADS)

    Porshyn, V.; Mingels, S.; Lützenkirchen-Hecht, D.; Müller, G.

    2016-07-01

    Flat Sb-doped germanium (100) crystals were investigated in the triode configuration under pulsed tunable laser illumination (pulse duration tlaser = 3.5 ns and photon energy hν = 0.54-5.90 eV) and under DC voltages <104 V. Large bunch charges up to ˜1 μC were extracted from the cathodes for laser pulses >1 MW/cm2 corresponding to a high quantum efficiency up to 3.3% and cathode currents up to 417 A. This laser-induced explosive electron emission (EEE) from Ge was characterized by its voltage-, laser power- and hν-sensitivity. The analysis of the macroscopic surface damage caused by the EEE is included as well. Moreover, we have carried out first direct measurements of electron energy distributions produced during the EEE from the Ge samples. The measured electron spectra hint for electron excitations to the vacuum level of the bulk and emission from the plasma plume with an average kinetic energy of ˜0.8 eV.

  16. Free-electron laser emission architecture impact on EUV lithography

    NASA Astrophysics Data System (ADS)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.

    2017-03-01

    Laser-produced plasma (LPP) EUV sources have demonstrated approximately 125 W at customer sites, establishing confidence in EUV lithography as a viable manufacturing technology. However, beyond the 7 nm technology node existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multi-patterning (requiring increased wafer throughput proportional to the number of exposure passes. Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should free-electron lasers become the preferred next generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) selfamplified spontaneous emission (SASE), (2) regenerative amplification (RAFEL), or (3) self-seeding (SS-FEL). Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provide a framework for future FEL design and enablement for EUV lithography applications.

  17. Electron Bernstein Wave Emission and Mode Conversion Physics on NSTX

    SciTech Connect

    Diem, S J; Caughman, J B; Efthimion, P; Kugel, H; LeBlanc, B P; Preinhaelter, J; Sabbagh, S A; Urban, J; Wilgen, J

    2008-05-21

    NSTX is a spherical tokamak (ST) that operates with ne up to 1020 m-3 and BT less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for Te measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local Te measurements in the ST. Practically, a robust Te(R,t) EBE diagnostic requires EBW transmission efficiencies of > 90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While Te(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge ne scale length resulted in > 20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency 2 during H-modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H-modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when Te < 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H-modes have shown that evaporated lithium can increase Te inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  18. Photoelectron emission from metal surfaces induced by radiation emitted by a 14 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Laulainen, Janne; Kalvas, Taneli; Koivisto, Hannu; Komppula, Jani; Kronholm, Risto; Tarvainen, Olli

    2016-02-01

    Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma.

  19. Photoelectron emission from metal surfaces induced by radiation emitted by a 14 GHz electron cyclotron resonance ion source

    SciTech Connect

    Laulainen, Janne Kalvas, Taneli; Koivisto, Hannu; Komppula, Jani; Kronholm, Risto; Tarvainen, Olli

    2016-02-15

    Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma.

  20. Coherent electron emission beyond Young-type interference from diatomic molecules

    NASA Astrophysics Data System (ADS)

    Agueny, H.; Makhoute, A.; Dubois, A.; Hansen, J. P.

    2016-01-01

    It has been known for more than 15 years that the differential cross section of electrons emitted from diatomic molecules during interaction with energetic charged particles oscillates as a function of electron momentum. The origin of the phenomenon is two-center interference, which naturally relates it back to the Young double-slit experiment. In addition to a characteristic frequency which can be described by lowest-order perturbation theories, the observation and origin of higher-order harmonics of the basic oscillation frequency has been much discussed. Here, we show that high harmonics of the fundamental Young-type oscillation frequency observed in electron spectra in fast ion-molecule collisions can be clearly exposed in numerical solutions of the time-dependent Schrödinger equation within a one-dimensional model. Momentum distribution of the ejected electron is analyzed and shows that the phenomenon emerges when the charged particle beam collides with diatomic molecules with substantial large internuclear distance. Frequency spectra from nonperturbative calculations for electron emission from Rb2+ and Cs2+ exhibit a pronounced high-order oscillation in contrast to similar close-coupling calculations performed on H2 targets. The electron emission from these heavy molecules contains second- and third-order harmonics which are fully reproduced in an analytic model based on the Born series. Extending to triatomic molecular targets displays an increased range of harmonics. This suggests that electron emission spectra from new experiments on heavy diatomic and linear polyatomic molecular targets may provide a unique insight into competing coherent emission mechanisms and their relative strength.

  1. Electron field emission in nanostructures: A first-principles study

    NASA Astrophysics Data System (ADS)

    Driscoll, Joseph Andrew

    The objective of this work was to study electron field emission from several nanostructures using a first-principles framework. The systems studied were carbon nanowires, graphene nanoribbons, and nanotubes of varying composition. These particular structures were chosen because they have recently been identified as showing novel physical phenomena, as well as having tremendous industrial applications. We examined the field emission under a variety of conditions, including laser illumination and the presence of adsorbates. The goal was to explore how these conditions affect the field emission performance. In addition to the calculations, this dissertation has presented computational developments by the author that allowed these demanding calculations to be performed. There are many possible choices for basis when performing an electronic structure calculation. Examples are plane waves, atomic orbitals, and real-space grids. The best choice of basis depends on the structure of the system being analyzed and the physical processes involved (e.g., laser illumination). For this reason, it was important to conduct rigorous tests of basis set performance, in terms of accuracy and computational efficiency. There are no existing benchmark calculations for field emission, but transport calculations for nanostructures are similar, and so provide a useful reference for evaluating the performance of various basis sets. Based on the results, for the purposes of studying a non-periodic nanostructure under field emission conditions, we decided to use a real-space grid basis which incorporates the Lagrange function approach. Once a basis was chosen, in this case a real-space grid, the issue of boundary conditions arose. The problem is that with a non-periodic system, field emitted electron density can experience non-physical reflections from the boundaries of the calculation volume, leading to inaccuracies. To prevent this issue, we used complex absorbing potentials (CAPs) to absorb

  2. Instability of the Characteristic Emissions of Dopant Tb in ZnO Hexagonal Pyramids

    NASA Astrophysics Data System (ADS)

    Zhai, Bao-gai; Ma, Qing-lan; Huang, Yuan Ming

    2017-02-01

    Tb-doped ZnO hexagonal pyramids with the doping level of 0.1 mol.% were synthesized by thermal decomposing the mixture of zinc nitrate and terbium nitrate at 500°C in an air-filled furnace. The crystal structures and photoluminescent properties of Tb-doped ZnO hexagonal pyramids were analyzed with a scanning electron microscope, x-ray diffractometer, fluorescence spectrophotometer and photoluminescence excitation spectrophotometer. Four characteristic emission peaks of Tb3+ ions were recorded over the broad green luminescent band of ZnO, at 488 nm, 544 nm, 584 nm and 620 nm for Tb-doped ZnO hexagonal pyramids. The characteristic emissions of the rare-earth dopant in Tb-doped ZnO were found to be unstable when stored in air. The 544-nm emission of dopant Tb in ZnO lost 12%, 37%, 78%, and 100% of its original intensity after stored in air for 2 months, 4 months, 6 months, and 8 months, respectively. With the help of calculated band structures, our results suggest that the instability of the characteristic emissions of dopant Tb in ZnO can be attributed to the possible expulsion of Tb out of the ZnO host.

  3. Secondary electron emission from lithium and lithium compounds

    SciTech Connect

    Capece, A. M.; Patino, M. I.; Raitses, Y.; Koel, B. E.

    2016-07-06

    In this work, measurements of electron-induced secondary electron emission ( SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γe, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly depends on chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20-600 eV. The effect of Li composition was determined by introducing controlled amounts of O2 and H2O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γe = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls. Published by AIP Publishing.

  4. Secondary electron emission from lithium and lithium compounds

    SciTech Connect

    Capece, A. M.; Patino, M. I.; Raitses, Y.; Koel, B. E.

    2016-07-06

    In this work, measurements of electron-induced secondary electron emission ( SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γe, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly depends on chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20-600 eV. The effect of Li composition was determined by introducing controlled amounts of O2 and H2O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γe = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls. Published by AIP Publishing.

  5. Ballistic electron emission spectroscopy of magnetic multilayers (abstract)

    NASA Astrophysics Data System (ADS)

    First, P. N.; Bonetti, J. A.; Guthrie, D. K.; Harrell, L. E.; Parkin, S. S. P.

    1997-04-01

    The giant magnetoresistance observed in magnetic multilayers arises from spin-dependent scattering and transmission of electrons at the Fermi energy. We will describe a method for the measurement of these quantities in a "CPP" geometry at electron energies both above and below the Fermi energy. Initial results will also be presented. The measurements employ ballistic electron emission spectroscopy (BEES) to detect the ballistic electron current transmitted through a multilayer as a function of magnetic field and electron energy. The experiments are similar in concept to the "spin-valve transistor,"1 except that the injector is the tip of a scanning tunneling microscope. This allows the injection energy to be varied over a wide range, and spectra can be correlated with the local surface morphology on a nanometer scale. Spectral broadening due to sample inhomogeneities is also eliminated. We anticipate that BEES measurements and complementary scanning tunneling spectroscopy will provide information that is easily compared with calculations of the multilayer band structure and the electron transmittance versus energy.

  6. SPECE: a code for Electron Cyclotron Emission in tokamaks

    SciTech Connect

    Farina, D.; Figini, L.; Platania, P.; Sozzi, C.

    2008-03-12

    The code SPECE has been developed for the analysis of electron cyclotron emission (ECE) in a general tokamak equilibrium. The code solves the radiation transport equation along the ray trajectories in a tokamak plasma, in which magnetic equilibrium and plasma profiles are given either analytically or numerically, for a Maxwellian plasma or a non thermal plasma characterized by a distribution function that is the sum of drifting Maxwellian distributions. Ray trajectories are computed making use of the cold dispersion relation, while the absorption and emission coefficients are obtained solving the relevant fully relativistic dispersion relation valid at high electron temperature. The actual antenna pattern is simulated by means of a multi-rays calculation, and the spatial resolution of the ECE measurements is computed by means of an algorithm that takes properly into account the emission along each ray of the beam. Wall effects are introduced in the code by means of a heuristic model. Results of ECE simulations in a standard ITER scenario are presented.

  7. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas

    NASA Astrophysics Data System (ADS)

    Buret, Mickael; Uskov, Alexander V.; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V.; Protsenko, Igor E.; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-09-01

    Nanoscale electronics and photonics are among the most promising research areas providing functional nano-components for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically-driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale.

  8. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas.

    PubMed

    Buret, Mickael; Uskov, Alexander V; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V; Protsenko, Igor E; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-09-09

    Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale.

  9. Effect of Secondary Electron Emission on Electron Cross-Field Current in ExB Discharges

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Kaganovich, Igor D.; Khrabrov, Alex V.; Campanell, Michael D.; Tokluoglu, Erinc; Sydorenko, Dmytro; Smolyakov, Andrei

    2012-10-01

    This paper reviews recent experimental, theoretical, and numerical studies of plasma-wall interaction in a weakly collisional magnetized plasma bounded with channel walls made from different materials [1-3]. A low-pressure E x B plasma discharge of the Hall thruster was used to characterize the electron current across the magnetic field and its dependence on the applied voltage and the electron-induced secondary electron emission (SEE) from the channel wall [1]. The presence of a depleted anisotropic electron energy distribution function with beams of secondary electrons was predicted to explain the enhancement of the electron cross-field current observed in experiments. Without the SEE, the electron cross-field transport can be reduced from anomalously high to nearly classical collisional level. The suppression of the SEE was achieved using an engineered carbon-velvet material for the channel walls [3]. Both theoretically and experimentally, it is shown that the electron emission from the walls can limit the maximum achievable electric field in the magnetized plasma. [4pt] [1] Y. Raitses, et al, IEEE Trans. on Plasma Scie. 39, 995 (2011). [0pt] [2] M. D. Campanell, et al, Phys. Rev. Lett. 108, 235001 (2012). [0pt] [3] Y. Raitses, et al, J.Appl. Phys. 99, 036103 (2006).

  10. Effect of Secondary Electron Emission on Electron Cross-Field Current in E×B Discharges

    SciTech Connect

    Yevgeny Raitses, Igor D. Kaganovich, Alexander Khrabrov, Dmytro Sydorenko, Nathaniel J. Fisch and Andrei Smolyakov

    2011-02-10

    This paper reviews and discusses recent experimental, theoretical, and numerical studies of plasma-wall interaction in a weakly collisional magnetized plasma bounded with channel walls made from different materials. A lowpressure ExB plasma discharge of the Hall thruster was used to characterize the electron current across the magnetic field and its dependence on the applied voltage and electron-induced secondary electron emission (SEE) from the channel wall. The presence of a depleted, anisotropic electron energy distribution function with beams of secondary electrons was predicted to explain the enhancement of the electron cross-field current observed in experiments. Without the SEE, the electron crossfield transport can be reduced from anomalously high to nearly classical collisional level. The suppression of SEE was achieved using an engineered carbon velvet material for the channel walls. Both theoretically and experimentally, it is shown that the electron emission from the walls can limit the maximum achievable electric field in the magnetized plasma. With nonemitting walls, the maximum electric field in the thruster can approach a fundamental limit for a quasineutral plasma.

  11. An electron emission model for use with 3D electromagnetic finite element simulation

    NASA Astrophysics Data System (ADS)

    Knox, A. R.; Asenov, A.; Lowe, A. C.

    2001-06-01

    Using commercial 3D finite element (FE) simulation packages it is now possible to model the self-consistent behaviour of charged particle beams in electromagnetic fields within a complex problem geometry. However, in many cases the accuracy of the simulation is restricted by the accuracy of the particle emission models traditionally in use. Most such models date back to the time when problem complexity was limited by what could be solved. Artifacts of this early work in, for example, vacuum tubes, led to the development of simplified models like those by Child and Langmuir aiming to describe space charge limited electron emission from thermionic cathodes. Such models, which are still in use, have the twin disadvantages of their formulation being dependent on the problem geometry and their reliance on a "characteristic dimension" to specify the distance over which the space charge limited flow is to be computed. These disadvantages can make their application to general problem geometry in a FE simulation environment difficult and in some cases misleading. With the recent introduction of facilities to specify the initial particle dynamics in commercial space charge solvers there is no longer a need to rely on the above traditional but restricted emission models. This paper describes one method of implementing a completely general model for thermionic electron emission which utilizes the new facilities. The new methodology is applicable to any type of electron emission including thermionic, field and photoemission and depends only on the ability of the user to specify the starting conditions of the particle trajectories. The details of our approach are illustrated in the simulation of initial beam formation from a thermionic cathode in a thin CRT. In the example simulations, the use of a characteristic dimension is precluded. The emission characteristics are derived solely from the Maxwell-Boltzmann distribution which provides the electron velocities, and the

  12. Study of the electronic structures of high T c cuprate superconductors by electron energy loss and secondary electron emission spectroscopies

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Kulkarni, G. U.; Rao, C. N. R.

    1989-10-01

    Energy loss spectra of superconducting YBa 2Cu 3O 6.9' Bi 1.5Pb 0.5Ca 2.5Sr 1.5Cu 3O 10+δ and Tl 2CaBa 2Cu 3O 8 obtained at primary electron energies in the 170-310 eV range show features reflecting the commonalities in their electronic structures. The relative intensity of the plasmon peak shows a marked drop across the transition temperature. Secondary electron emission spectra of the cuprates also reveal some features of the electronic structure.

  13. Diffuse synchrotron emission from galactic cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Di Bernardo, G.; Grasso, D.; Evoli, C.; Gaggero, D.

    2015-09-01

    Synchrotron diffuse radiation (SDR) emission is one of the major Galactic components, in the 100 MHz up to 100 GHz frequency range. Its spectrum and sky map provide valuable measure of the galactic cosmic ray electrons (GCRE) in the relevant energy range, as well as of the strength and structure of the Galactic magnetic fields (GMF), both regular and random ones. This emission is an astrophysical sky foreground for the study of the Cosmic Microwave Background (CMB), and the extragalactic microwave measurements, and it needs to be modelled as better as possible. In this regard, in order to get an accurate description of the SDR in the Galaxy, we use - for the first time in this context - 3-dimensional GCRE models obtained by running the DRAGON code. This allows us to account for a realistic spiral arm pattern of the source distribution, demanded to get a self-consistent treatment of all relevant energy losses influencing the final synchrotron spectrum.

  14. Estimation of Photon Effects on Townsend Discharges for SecondaryElectronEmission Coefficient Measurements

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Tomokazu; Akashi, Haruaki

    2015-09-01

    A Monte Carlo simulation (MCS) is applied to investigate the secondary electron emission in Argon Townsend discharges. The influxes of ions, photons and metastable species onto the cathode surface are estimated simply from the number of inelastic collisions. The effect of photons becomes significant especially under higher pd conditions since the photon influx increases. This suggests the possibility of the estimation of the secondary electron emission coefficient of photons by examining breakdown voltage characteristics (Paschen curves). The effect of metastable species is much smaller than those of ions and photons and is negligible. The Paschen curves evaluated with MCS agrees well with the results of one-dimensional fluid model simulation when the photon effect is neglected, showing the necessity of further improvement. Supported by JSPS KAKENHI Grant Number 26820108.

  15. Experimental Studies on Grooved Surfaces to Suppress Secondary Electron Emission

    SciTech Connect

    Suetsugu, Y.; Fukuma, H.; Shibata, K.; Pivi, M.; Wang, L.; /SLAC

    2010-06-15

    Grooved surfaces are effective to suppress the secondary electron emission, and can be a promising technique to mitigate the electron cloud effect in positron/proton storage rings. Aiming for the application in a dipole-type magnetic field, various shapes of triangular grooved surfaces have been studied at KEK. The grooves tested here have vertex angles of 20-30{sup o}, depths of 2.5-5.0 mm, and vertex roundness of 0.05-0.2 mm. In a laboratory, the secondary electron yields (SEY) of small test pieces were measured using an electron beam in a magnetic-free condition. The grooved surfaces clearly had low SEY compared to flat surfaces of the same materials. The grooves with sharper vertexes had smaller SEY. A test chamber installed in a wiggler magnet of the KEKB positron ring was used to investigate the efficacy of the grooved surface in a strong magnetic field. In the chamber, a remarkable reduction in the electron density around the beam orbit was observed compared to the case of a flat surface with TiN coating.

  16. ELECTRON-BEAM-INDUCED RADIO EMISSION FROM ULTRACOOL DWARFS

    SciTech Connect

    Yu, S.; Doyle, J. G.; Kuznetsov, A.; Hallinan, G.; Antonova, A.; MacKinnon, A. L.; Golden, A.

    2012-06-10

    We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron-cyclotron maser (ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short timescale in an attempt to interpret the recent discovered intense radio emission from ultracool dwarfs. We find that a large amount of electromagnetic (EM) field energy can be effectively released from the beam-driven ECM, which rapidly heats the surrounding plasma. A rapidly developed high-energy tail of electrons in velocity space (resulting from the heating process of the ECM) may produce the radio continuum depending on the initial strength of the external magnetic field and the electron beam current. Both significant linear polarization and circular polarization of EM waves can be obtained from the simulations. The spectral energy distributions of the simulated radio waves show that harmonics may appear from 10 to 70{nu}{sub pe} ({nu}{sub pe} is the electron plasma frequency) in the non-relativistic case and from 10 to 600{nu}{sub pe} in the relativistic case, which makes it difficult to find the fundamental cyclotron frequency in the observed radio frequencies. A wide frequency band should therefore be covered by future radio observations.

  17. Compact Electron Gun Based on Secondary Emission Through Ionic Bombardment

    PubMed Central

    Diop, Babacar; Bonnet, Jean; Schmid, Thomas; Mohamed, Ajmal

    2011-01-01

    We present a new compact electron gun based on the secondary emission through ionic bombardment principle. The driving parameters to develop such a gun are to obtain a quite small electron gun for an in-flight instrument performing Electron Beam Fluorescence measurements (EBF) on board of a reentry vehicle in the upper atmosphere. These measurements are useful to characterize the gas flow around the vehicle in terms of gas chemical composition, temperatures and velocity of the flow which usually presents thermo-chemical non-equilibrium. Such an instrument can also be employed to characterize the upper atmosphere if placed on another carrier like a balloon. In ground facilities, it appears as a more practical tool to characterize flows in wind tunnel studies or as an alternative to complex electron guns in industrial processes requiring an electron beam. We describe in this paper the gun which has been developed as well as its different features which have been characterized in the laboratory. PMID:22163896

  18. Characteristics of Ions Emission from Ultrashort Laser Produced Plasma

    PubMed Central

    Elsied, Ahmed M.; Termini, Nicholas C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2016-01-01

    The dynamic characteristics of the ions emitted from ultrashort laser interaction with materials were studied. A series of successive experiments were conducted for six different elements (C, Al, Cu, Mo, Gd, and W) using 40 fs, 800 nm Ti: Sapphire laser. Time-of-flight (TOF) ion profile was analyzed and charge emission dependencies were investigated. The effects of incident laser interaction with each element were studied over a wide range of laser fluences (0.8 J/cm2 to 24 J/cm2) corresponding to laser intensities (2.0 × 1013 W/cm2 to 6.0 × 1014 W/cm2). The dependencies of the angular resolved ion flux and energy were also investigated. The TOF ion profile exhibits two peaks corresponding to a fast and a slow ion regime. The slow ions emission was the result of thermal vaporization while fast ions emission was due to time dependent ambipolar electric field. A theoretical model is proposed to predict the total ion flux emitted during femtosecond laser interaction that depends on laser parameters, material properties, and plume hydrodynamics. Incident laser fluence directly impacts average charge state and in turn affects the ion flux. Slow ions velocity exhibited different behavior from fast ions velocity. The fast ions energy and flux were found to be more collimated. PMID:27905553

  19. Characteristics of Ions Emission from Ultrashort Laser Produced Plasma

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Termini, Nicholas C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2016-12-01

    The dynamic characteristics of the ions emitted from ultrashort laser interaction with materials were studied. A series of successive experiments were conducted for six different elements (C, Al, Cu, Mo, Gd, and W) using 40 fs, 800 nm Ti: Sapphire laser. Time-of-flight (TOF) ion profile was analyzed and charge emission dependencies were investigated. The effects of incident laser interaction with each element were studied over a wide range of laser fluences (0.8 J/cm2 to 24 J/cm2) corresponding to laser intensities (2.0 × 1013 W/cm2 to 6.0 × 1014 W/cm2). The dependencies of the angular resolved ion flux and energy were also investigated. The TOF ion profile exhibits two peaks corresponding to a fast and a slow ion regime. The slow ions emission was the result of thermal vaporization while fast ions emission was due to time dependent ambipolar electric field. A theoretical model is proposed to predict the total ion flux emitted during femtosecond laser interaction that depends on laser parameters, material properties, and plume hydrodynamics. Incident laser fluence directly impacts average charge state and in turn affects the ion flux. Slow ions velocity exhibited different behavior from fast ions velocity. The fast ions energy and flux were found to be more collimated.

  20. Source characteristics of Jovian narrow-band kilometric radio emissions

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.; Kaiser, M. L.; Desch, M. D.; Manning, R.; Zarka, P.; Pedersen, B.-M.

    1993-07-01

    New observations of Jovian narrow-band kilometric (nKOM) radio emissions were made by the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. These observations have demonstrated the unique capability of the URAP instrument for determining both the direction and polarization of nKOM radio sources. An important result is the discovery that nKOM radio emission originates from a number of distinct sources located at different Jovian longitudes and at the inner and outermost regions of the Io plasma torus. These sources have been tracked for several Jovian rotations, yielding their corotational lags, their spatial and temporal evolution, and their radiation characteristics at both low latitudes far from Jupiter and at high latitudes near the planet. Both right-hand and left-hand circularly polarized nKOM sources were observed. The polarizations observed for sources in the outermost regions of the torus seem to favor extraordinary mode emission.

  1. Instability, Collapse and Oscillation of Sheaths Caused by Secondary Electron Emission

    SciTech Connect

    M.D. Campanell, A.V. Khrabrov and I.D. Kaganovich

    2013-01-03

    The Debye sheath is shown to be unstable under general conditions. For surface materials with sufficient secondary electron emission (SEE) yields, the surface's current-voltage characteristic has an unstable branch when the bulk plasma temperature (Te ) exceeds a critical value, or when there are fast electron populations present. The plasma-surface interaction becomes dynamic where the sheath may undergo spontaneous transitions or oscillations. Using particle-in-cell simulations, we analyze sheath instabilities occurring in a high Te plasma slab bounded by walls with SEE. As the plasma evolves, whenever the sheath enters an unstable state, its amplitude rapidly collapses, allowing a large flux of previously trapped electrons to hit the wall. These hot electrons induce more than one secondary on average, causing a net loss of electrons from the wall. The sheath collapse quenches when the surface charge becomes positive because the attractive field inhibits further electrons from escaping. Sheath instabilities influence the current balance, energy loss, cross-B-field transport and even the bulk plasma properties. Implications for discharges including Hall thrusters are discussed. More generally, the results show that common theories that treat emission as a fixed (time-independent) "coefficient" do not capture the full extent of SEE effects.

  2. From the physics of secondary electron emission to image contrasts in scanning electron microscopy.

    PubMed

    Cazaux, Jacques

    2012-01-01

    Image formation in scanning electron microscopy (SEM) is a combination of physical processes, electron emissions from the sample, and of a technical process related to the detection of a fraction of these electrons. For the present survey of image contrasts in SEM, simplified considerations in the physics of the secondary electron emission yield, δ, are combined with the effects of a partial collection of the emitted secondary electrons. Although some consideration is initially given to the architecture of modern SEM, the main attention is devoted to the material contrasts with the respective roles of the sub-surface and surface compositions of the sample, as well as with the roles of the field effects in the vacuum gap. The recent trends of energy filtering in normal SEM and the reduction of the incident energy to a few electron volts in very low-energy electron microscopy are also considered. For an understanding by the SEM community, the mathematical expressions are explained with simple physical arguments.

  3. Electron plasma oscillations associated with type III radio emissions and solar electrons

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1975-01-01

    Results of an extensive search for electron plasma oscillations associated with type III radio noise bursts are presented which were obtained by analyzing 87 type III bursts detected in plasma-wave and charged-particle measurements carried out by IMP 6, 7, and 8. Only one case is found for which plasma oscillations were associated with electrons of solar origin; at least eight events are identified in which no plasma oscillations were detected even though electrons from solar flares were clearly evident. The type III emissions are compared with similar radiation coming from upstream of earth's bow shock at the harmonic of the local electron plasma frequency, and quantitative calculations of the rate of conversion from plasma oscillatory energy to electromagnetic radiation are performed. The results show that electron plasma oscillations are seldom observed in association with solar electron events and type III radio bursts at 1.0 AU and that neither the type III emissions nor the radiation from upstream of the bow shock can be adequately explained by a current model for the coupling of electron plasma oscillations to electromagnetic radiation. Several possible explanations are considered for this discrepancy between theory and observations.

  4. Emission of an intense electron beam from a ceramic honeycomb

    NASA Astrophysics Data System (ADS)

    Friedman, M.; Myers, M.; Hegeler, F.; Swanekamp, S. B.; Sethian, J. D.; Ludeking, L.

    2003-01-01

    Inserting a slab of honeycomb ceramic in front of the emitting surface of a large-area cathode improves the electron beam emission uniformity, decreases the beam current rise and fall times, and maintains a more constant diode impedance. Moreover, changing the cathode material from velvet to carbon fiber achieved a more robust cathode that starts to emit at a higher electric field without a degradation in beam uniformity. In addition, an 80% reduction in the postshot diode pressure was also observed when gamma alumina was deposited on the ceramic. A possible explanation is that reabsorption and recycling of adsorbed gases takes place.

  5. Process Produces Low-Secondary-Electron-Emission Surfaces

    NASA Technical Reports Server (NTRS)

    Curren, A. N.; Jensen, K. A.; Roman, R. F.

    1986-01-01

    Textured carbon layer applied to copper by sputtering. Carbon surface characterized by dense, random array of needle-like spires or peaks that extend perpendicularly from local copper surface. Spires approximately 7 micrometers in height and spaced approximately 3 micrometers apart, on average. Copper substrate essentially completely covered by carbon layer, is tenacious and not damaged by vibration loadings representative of multistage depressed collector (MDC) applications. Process developed primarily to provide extremely low-secondary-electron-emission surface for copper for use as highefficiency electrodes in MDC's for microwave amplifier traveling-wave tubes (TWT's). Tubes widely used in space communications, aircraft, and terrestrial applications.

  6. Field emission characteristics of nano-structured carbon films deposited on differently pretreated Mo films

    NASA Astrophysics Data System (ADS)

    Wang, Longyang; Wang, Xiaoping; Wang, Lijun; Zhang, Lei

    2008-12-01

    Nano-structured carbon films (NCFs) were grown on Mo layers by microwave plasma chemical vapor deposition (MPCVD) system. The Mo layers were deposited on ceramic substrates by electron beam deposition method and were pretreated by different techniques, which include ultrasonically scratching and laser-grooving technology (10 line/mm). NCFs were characterized by a field emission type scanning electron microscope (FE-SEM), Raman spectra and field emission (FE) I- V measurements. Effects of process parameters on morphologies, structures and FE properties of NCFs were examined. The experimental results show that two kinds of NCFs deposited at the same parameters employed for the MPCVD process were respectively composed of carbon nano-balls and reticular carbon nano-tubes inlayed by carbon nano-balls with dissimilar disorder structures, both NCFs showed each merits and exhibited good field emission properties, especially shown in the uniformity of FE, the uniform field emission images with areas of 4 cm 2 were obtained. Growth mechanism influenced by different pretreated method was discussed and the possible FE mechanisms of the NCFs were also investigated. Finally, the process characteristics of laser-grooving technology were analyzed, and its potential applications were predicted.

  7. Spin-polarized electron transport and emission from strained superlattices

    NASA Astrophysics Data System (ADS)

    Mamaev, Yuri A.; Subashiev, Arsen V.; Yashin, Yuri P.; Ambrajei, Anton N.; Roschansky, Alexander V.

    2000-02-01

    We report the results on polarized electron emission from a new strained wide-gap AlxInyGa1-x-yAs/AlzGa1- zAs SL with tunable position of polarization maximum. These SL's were optimized to have a minimal conduction-band offset which comes from the band line-up between the semiconductor layers of the SL. The In layer content was chosen to give minimal conduction-band offset with large strain splitting of the V-band. Simultaneous changing of Al content in both SL layers provides variation of the structure band gap. We demonstrate that tuning of the SL to the excitation energy can be achieved without loss of the electron polarization. The polarization of up to 84% was measured at room temperature.

  8. Spin-polarized electron transport and emission from strained superlattices

    NASA Astrophysics Data System (ADS)

    Mamaev, Yuri A.; Subashiev, Arsen V.; Yashin, Yuri P.; Ambrajei, Anton N.; Roschansky, Alexander V.

    2001-02-01

    We report the results on polarized electron emission from a new strained wide-gap AlxInyGa1-x-yAs/AlzGa1- zAs SL with tunable position of polarization maximum. These SL's were optimized to have a minimal conduction-band offset which comes from the band line-up between the semiconductor layers of the SL. The In layer content was chosen to give minimal conduction-band offset with large strain splitting of the V-band. Simultaneous changing of Al content in both SL layers provides variation of the structure band gap. We demonstrate that tuning of the SL to the excitation energy can be achieved without loss of the electron polarization. The polarization of up to 84% was measured at room temperature.

  9. Radiation emission by electrons channeling in bent silicon crystals

    NASA Astrophysics Data System (ADS)

    Polozkov, Roman G.; Ivanov, Vadim K.; Sushko, Gennady B.; Korol, Andrei V.; Solov'yov, Andrey V.

    2014-09-01

    Results of numerical simulations of electron channeling and emission spectra are reported for straight and uniformly bent silicon crystals. The projectile trajectories are computed using the newly developed module [G.B. Sushko, V.G. Bezchastnov, I.A. Solov'yov, A.V. Korol, W. Greiner, A.V. Solov'yov, J. Comput. Phys. 252, 404 (2013)] of the MBN Explorer packageb [I.A. Solov'yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov'yov, J. Comput. Chem. 33, 2412 (2013)]. The electron channeling along Si(110) crystallographic planes is studied for the projectile energy 855 MeV.

  10. Underestimated role of the secondary electron emission in the space

    NASA Astrophysics Data System (ADS)

    Nemecek, Zdenek; Richterova, Ivana; Safrankova, Jana; Pavlu, Jiri; Vaverka, Jakub; Nouzak, Libor

    2016-07-01

    Secondary electron emission (SEE) is one of many processes that charges surfaces of bodies immersed into a plasma. Until present, a majority of considerations in theories and experiments is based on the sixty year old description of an interaction of planar metallic surfaces with electrons, thus the effects of a surface curvature, roughness, presence of clusters as well as an influence of the material conductance on different aspects of this interaction are neglected. Dust grains or their clusters can be frequently found in many space environments - interstellar clouds, atmospheres of planets, tails of comets or planetary rings are only typical examples. The grains are exposed to electrons of different energies and they can acquire positive or negative charge during this interaction. We review the progress in experimental investigations and computer simulations of the SEE from samples relevant to space that was achieved in course of the last decade. We present a systematic study of well-defined systems that starts from spherical grains of various diameters and materials, and it continues with clusters consisting of different numbers of small spherical grains that can be considered as examples of real irregularly shaped space grains. The charges acquired by investigated objects as well as their secondary emission yields are calculated using the SEE model. We show that (1) the charge and surface potential of clusters exposed to the electron beam are influenced by the number of grains and by their geometry within a particular cluster, (2) the model results are in an excellent agreement with the experiment, and (3) there is a large difference between charging of a cluster levitating in the free space and that attached to a planar surface. The calculation provides a reduction of the secondary electron emission yield of the surface covered by dust clusters by a factor up to 1.5 with respect to the yield of a smooth surface. (4) These results are applied on charging of

  11. Magnetic Trapping of Flare Electrons and Microwave Emission

    NASA Astrophysics Data System (ADS)

    Lee, J.; Gary, D. E.

    1999-05-01

    The topic of trapping of flare-produced electrons in magnetic loops and their evolution under Coulomb collision has received considerable attention in relation to interpreting hard X ray observations, since the first work by Melrose and Brown in 1976. However, application of the idea to the study of microwave radiation has been more limited. Petrosian in 1982 illustrated how the magnetic field affects the trapping and beaming of electrons to predict spatial morphology of microwave emission given magnetic structure and location of a flaring loop. Mel'nikov in 1994 used a model for trap and precipitation to study relative intensities and time delays between microwaves and hard X rays. We present a detailed modeling of microwave emission from electrons undergoing Coulomb interaction in magnetic traps, designed for quantitative analysis of spatially-resolved, multiwavelength microwave observations such as those of the Solar Arrays at Owens Valley Radio Observatory (OVRO). Our main concern is to properly relate the precipitation rate and pitch angle diffusion to magnetic quantities of the flaring loop and injection parameters. In this approach, we use coronal field extrapolation and overlays of soft X ray loops to provide the magnetic quantities so that the microwave spectrum can be used mainly as the electron diagnostic. We discuss the model capabilities and apply the results to a flare that occurred in AR 7515 on 1993 June 3. This flare showed spectral flattening in the decay phase along with morphological variation suggestive of a magnetic trap around the loop top, and the spectral flattening is interpreted as driven by Coulomb collision in the magnetic trap. The OVRO Solar Array is supported through NSF grants AST-9796238 and ATM-9796213, and NASA grant NAG5-6831 to New Jersey Institute of Technology.

  12. Space charge corrected electron emission from an aluminum surface under non-equilibrium conditions

    SciTech Connect

    Wendelen, W.; Bogaerts, A.; Mueller, B. Y.; Rethfeld, B.; Autrique, D.

    2012-06-01

    A theoretical study has been conducted of ultrashort pulsed laser induced electron emission from an aluminum surface. Electron emission fluxes retrieved from the commonly employed Fowler-DuBridge theory were compared to fluxes based on a laser-induced non-equilibrium electron distribution. As a result, the two- and three-photon photoelectron emission parameters for the Fowler-DuBridge theory have been approximated. We observe that at regimes where photoemission is important, laser-induced electron emission evolves in a more smooth manner than predicted by the Fowler-DuBridge theory. The importance of the actual electron distribution decreases at higher laser fluences, whereas the contribution of thermionic emission increases. Furthermore, the influence of a space charge effect on electron emission was evaluated by a one dimensional particle-in-cell model. Depending on the fluences, the space charge reduces the electron emission by several orders of magnitude. The influence of the electron emission flux profiles on the effective electron emission was found to be negligible. However, a non-equilibrium electron velocity distribution increases the effective electron emission significantly. Our results show that it is essential to consider the non-equilibrium electron distribution as well as the space charge effect for the description of laser-induced photoemission.

  13. Metal-Insulator Photocathode Heterojunction for Directed Electron Emission

    SciTech Connect

    Droubay, Timothy C.; Chambers, Scott A.; Joly, Alan G.; Hess, Wayne P.; Nemeth, Karoly; Harkay, Katherine C.; Spentzouris, Linda

    2014-02-14

    New photocathode materials capable of producing intense and directed electron pulses are needed for development of next generation light sources and dynamic transmission electron microscopy. Ideal photocathodes should have high photoemission quantum efficiency (QE) and be capable of delivering collimated and well-shaped pulses of consistent charge under high-field operating conditions. High-brightness and low-intrinsic emittance electron pulses have been predicted for hybrid metal-insulator photocathode designs constructed from three to four monolayer MgO films on atomically flat silver. Here we use angle-resolved photoelectron spectroscopy to confirm directional photoemission and a large increase in QE under ultraviolet laser excitation of an ultrathin MgO film on Ag(001). We observe new low-binding energy photoemission, not seen for Ag(001), and greater electron emission in the normal direction. Under 4.66 eV laser excitation, the photoemission quantum efficiency of the MgO/Ag(001) hybrid photocathode is a factor of seven greater than that for clean Ag(001).

  14. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    DOE PAGES

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-14

    Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lowermore » than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px« less

  15. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    NASA Astrophysics Data System (ADS)

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-01

    Recently, several researchers [e.g., Yang et al., Sci. Rep. 5, 10959 (2015)] have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports the direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40%-63% lower than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus, the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.

  16. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    SciTech Connect

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-14

    Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lower than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px

  17. Electron-cyclotron maser and solar microwave millisecond spike emission

    NASA Technical Reports Server (NTRS)

    Li, Hong-Wei; Li, Chun-Sheng; Fu, Qi-Jun

    1986-01-01

    An intense solar microwave millisecond spike emission (SMMSE) event was observed on May 16, 1981 by Zhao and Jin at Beijing Observatory. The peak flux density of the spikes is high to 5 x 100,000 s.f.u. and the corresponding brightness temperature (BT) reaches approx. 10 to the 15th K. In order to explain the observed properties of SMMSE, it is proposed that a beam of electrons with energy of tens KeV injected from the acceleration region downwards into an emerging magnetic arch forms so-called hollow beam distribution and causes electron-cyclotron maser (ECM) instability. The growth rate of second harmonic X-mode is calculated and its change with time is deduced. It is shown that the saturation time of ECM is t sub s approx. equals 0.42 ms and only at last short stage (delta t less than 0.2 t sub s) the growth rate decreases to zero rather rapidly. So a SMMSE with very high BT will be produced if the ratio of number density of nonthermal electrons to that of background electrons, n sub s/n sub e, is larger than 4 x .00001.

  18. A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Stefan, Schmuck; Zhao, Hailin; John, Fessey; Paul, Trimble; Liu, Xiang; Zhu, Zeying; Zang, Qing; Hu, Liqun

    2016-12-01

    A Michelson interferometer, on loan from EFDA-JET (Culham, United Kingdom) has recently been commissioned on the experimental advanced superconducting tokamak (EAST, ASIPP, Hefei, China). Following a successful in-situ absolute calibration the instrument is able to measure the electron cyclotron emission (ECE) spectrum, from 80 GHz to 350 GHz in extraordinary mode (X-mode) polarization, with high accuracy. This allows the independent determination of the electron temperature profile from observation of the second harmonic ECE and the possible identification of non-Maxwellian features by comparing higher harmonic emission with numerical simulations. The in-situ calibration results are presented together with the initial measured temperature profiles. These measurements are then discussed and compared with other independent temperature profile measurements. This paper also describes the main hardware features of the diagnostic and the associated commissioning test results. supported by National Natural Science Foundation of China (Nos. 11405211, 11275233), and the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106002, 2015GB101000), and the RCUK Energy Programme (No. EP/I501045), partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (NSFC: No. 11261140328)

  19. Measurements of volatile organic compound (VOC) emissions from wood stains using an electronic balance

    SciTech Connect

    Zhang, J.S.; Nong, G.; Shaw, C.Y.; Wang, J.

    1999-07-01

    An emissions test method using an electronic balance is introduced for measuring the TVOC emission rates of oil-based wood stains, with a detailed procedure for preparing test specimens. The emission characteristics of volatile organic compounds (VOC) from an artificial wood stain and an oil-based commercial wood stain were determined. Results showed that VOC emissions from both stains included a surface evaporation and an internal diffusion sub-process. With regard to time, the entire emission period could be divided into three periods: (1) an initial evaporation-controlled period that was characterized by a high and fast decaying emission rate, (2) a transition period (following the initial period) in which the emissions transited from an evaporation-controlled to an internal diffusion-controlled process, and (3) an internal diffusion-controlled period that was characterized by a low and slowly decaying emission rate. For the commercial wood stain tested, the length of the initial period was approximately three hours, and about 46% of the emittable VOC mass was emitted during this short period. The transition period was between 3 and 6.5 hours from the start of testing and only accounted for about 4% of VOC mass emitted. The rest (about 50%) of the VOC mass was emitted in the diffusion-controlled period over a long period of time. Comparison between the commercial wood stain and an artificial wood stain suggested that the pigments/solids in the wood stain had significant effect on the time scales and amount of mass emitted during each emission period. The presence of additional VOCs in the commercial wood stain might have also affected the emission profiles. These results are useful for developing better models for predicting the emission rates. The electronic balance method was also compared with those determined from the TVOC concentrations measured at the chamber exhaust (referred to as chamber method). Results show that the two methods agreed well with each

  20. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    NASA Technical Reports Server (NTRS)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  1. Secondary electron emission from sodium chloride, glass and aluminum oxide at various temperature

    NASA Technical Reports Server (NTRS)

    Shulman, A. R.; Makedonskiy, V. L.; Yaroshetskiy, I. D.

    1980-01-01

    The method of single impulses was used to measure the coefficients of the secondary electronic emission for 2 types of Al2O2, monocrystalline NaCl and glass at different temperatures and for different values of the energy of the primary electrons. The value of the secondary electron emission does not depend upon temperature. The effect of a gas film on the value of the secondary electron emission was detected.

  2. Photon, Electron and Secondary Ion Emission from Single C60 keV Impacts

    PubMed Central

    Fernandez-Lima, F. A.; Eller, M. J.; Verkhoturov, S. V.; Della-Negra, S.; Schweikert, E. A.

    2010-01-01

    This paper presents the first observation of coincidental emission of photons, electrons and secondary ions from individual C60 keV impacts. An increase in photon, electron and secondary ion yields is observed as a function of C60 projectile energy. The effect of target structure/composition on photon and electron emissions at the nanometer level is shown for a CsI target. The time-resolved photon emission may be characterized by a fast component emission in the UV-Vis range with a short decay time, while the electron and secondary ion emission follow a Poisson distribution. PMID:21218166

  3. Electron Thermionic Emission from Graphene and a Thermionic Energy Converter

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Jun; Ang, L. K.

    2015-01-01

    In this paper, we propose a model to investigate the electron thermionic emission from single-layer graphene (ignoring the effects of the substrate) and to explore its application as the emitter of a thermionic energy converter (TIC). An analytical formula is derived, which is a function of the temperature, work function, and Fermi energy level. The formula is significantly different from the traditional Richardson-Dushman (RD) law for which it is independent of mass to account for the supply function of the electrons in the graphene behaving like massless fermion quasiparticles. By comparing with a recent experiment [K. Jiang et al., Nano Res. 7, 553 (2014)] measuring electron thermionic emission from suspended single-layer graphene, our model predicts that the intrinsic work function of single-layer graphene is about 4.514 eV with a Fermi energy level of 0.083 eV. For a given work function, a scaling of T3 is predicted, which is different from the traditional RD scaling of T2. If the work function of the graphene is lowered to 2.5-3 eV and the Fermi energy level is increased to 0.8-0.9 eV, it is possible to design a graphene-cathode-based TIC operating at around 900 K or lower, as compared with the metal-based cathode TIC (operating at about 1500 K). With a graphene-based cathode (work function=4.514 eV ) at 900 K and a metallic-based anode (work function=2.5 eV ) like LaB6 at 425 K, the efficiency of our proposed TIC is about 45%.

  4. Gamma-ray emission and electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe; Mctiernan, James M.; Marschhauser, Holger

    1994-01-01

    Recent observations have extended the spectra of the impulsive phase of flares to the GeV range. Such high-energy photons can be produced either by electron bremsstrahlung or by decay of pions produced by accelerated protons. In this paper we investigate the effects of processes which become important at high energies. We examine the effects of synchrotron losses during the transport of electrons as they travel from the acceleration region in the corona to the gamma-ray emission sites deep in the chromosphere and photosphere, and the effects of scattering and absorption of gamma rays on their way from the photosphere to space instruments. These results are compared with the spectra from so-called electron-dominated flares, observed by GRS on the Solar Maximum Mission, which show negligible or no detectable contribution from accelerated protons. The spectra of these flares show a distinct steepening at energies below 100 keV and a rapid falloff at energies above 50 MeV. Following our earlier results based on lower energy gamma-ray flare emission we have modeled these spectra. We show that neither the radiative transfer effects, which are expected to become important at higher energies, nor the transport effects (Coulomb collisions, synchrotron losses, or magnetic field convergence) can explain such sharp spectral deviations from a simple power law. These spectral deviations from a power law are therefore attributed to the acceleration process. In a stochastic acceleration model the low-energy steepening can be attributed to Coulomb collision and the rapid high-energy steepening can result from synchrotron losses during the acceleration process.

  5. Secondary electron emission in the limit of low incident electron energies

    NASA Astrophysics Data System (ADS)

    Mustafaev, Aleksandr; Kaganovich, Igor; Soukhomlinov, Vladimir; Grabovskiy, Artiom

    2016-09-01

    A detailed review of experimental and theoretical studies of secondary electron emission (SEE) at low incident electron energies has been recently given in paper. In particularly, discussion of some authors' statement on increase of the SEE yield up to unity if the primary electron energy tends to zero was reviewed. Present paper considers a technique for measurements of SEE yield near a sample surface making use of a magnetic field parallel to the surface. Using this technique it was shown that the SEE yield can approach unity for a polycrystalline, but not for a monocrystalline sample. This result was explained by additional reflection of primary electrons from a potential barrier near the sample surface. Therefore for suppression of the deleterious effects of SEE, e.g, for better performance of accelerators, it is important to monitor and control micro electric-fields arising near a polycrystalline surface.

  6. Feasibility study for a correlation electron cyclotron emission turbulence diagnostic based on nonlinear gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    White, A. E.; Howard, N. T.; Mikkelsen, D. R.; Greenwald, M.; Candy, J.; Waltz, R. E.

    2011-11-01

    This paper describes the use of nonlinear gyrokinetic simulations to assess the feasibility of a new correlation electron cyclotron emission (CECE) diagnostic that has been proposed for the Alcator C-Mod tokamak (Marmar et al 2009 Nucl. Fusion 49 104014). This work is based on a series of simulations performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545). The simulations are used to predict ranges of fluctuation level, peak poloidal wavenumber and radial correlation length of electron temperature fluctuations in the core of the plasma. The impact of antenna pattern and poloidal viewing location on measurable turbulence characteristics is addressed using synthetic diagnostics. An upper limit on the CECE sample volume size is determined. The modeling results show that a CECE diagnostic capable of measuring transport-relevant, long-wavelength (kθρs < 0.5) electron temperature fluctuations is feasible at Alcator C-Mod.

  7. Emission characteristics of volatile compounds during sludges drying process.

    PubMed

    Deng, Wen-Yi; Yan, Jian-Hua; Li, Xiao-Dong; Wang, Fei; Zhu, Xiao-Wan; Lu, Sheng-Yong; Cen, Ke-Fa

    2009-02-15

    The emission characteristics of volatile compounds (VCs) during municipal sewage sludge (MSS) and paper mill sludge (PMS) drying process were investigated through experiments conducted on a lab-scale tubular drying furnace and a pilot-scale paddle dryer, respectively. The result indicated that five kinds of VCs, i.e. CO(2), NH(3), C(7)H(16) (n-heptane), volatile fatty acids (VFAs) and CH(4) were emitted during the drying process. It was found that the NH(3) and CO(2) were the primary compound released from the MSS drying process. In the case of the PMS, the VFAs and CO(2) were the main compounds released. The temperature and water content of sludge had great effects on the emission rates of NH(3), C(7)H(16), CO(2) and VFAs. The pH and chemical oxygen demand (COD) of condensate from the paddle dryer were also studied. It showed that pH and COD of condensate from MSS were much higher than that from the PMS, and that the higher COD value of the MSS condensate interrelated to the higher ammonium and sulfur content of it.

  8. First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength

    PubMed

    Saldin; Sandner; Sanok; Schlarb; Schmidt; Schmuser; Schneider; Schneidmiller; Schreiber; Schreiber; Schutt; Sekutowicz; Serafini; Sertore; Setzer; Simrock; Sonntag; Sparr; Stephan; Sytchev; Tazzari; Tazzioli; Tigner; Timm; Tonutti; Trakhtenberg

    2000-10-30

    We present the first observation of self-amplified spontaneous emission (SASE) in a free-electron laser (FEL) in the vacuum ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approximately 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width, and intensity fluctuations, are all consistent with the present models for SASE FELs.

  9. Emission distribution, brightness, and mechanical stability of the LaB6 triode electron gun

    NASA Astrophysics Data System (ADS)

    Gesley, Mark; Hohn, Fritz

    1988-10-01

    Experiments have characterized the operation of a LaB6 triode gun in a standard three-lens column of the type used for Gaussian electron-beam lithography and scanning electron microscopy. A series of images representing cross sections of the three-dimensional spatial distribution of current emitted from the gun is obtained by configuring the electron optics as a scanning confocal microscope. The gun acts as an immersion objective whose image is scanned by deflection coils and focused by the condenser lenses onto a pinhole transmission detector. Characteristics of the emission distribution include an emission image of the cathode surface situated between two distinct beam crossovers whose origin is either the apex (001) and {310} planes or the large {110} planes on the machined 90° cone angle of the cathode surface. Virtual objects are imaged when the back focal plane of the condensers falls inside the high-field region of the gun. The target axial brightness is dependent on gun excitation and angular acceptance angle. The temperature-dependent brightness of the cathode is used to determine its effective emission area, work function, and surface electric field. Beam positional stability of three-carbon-mounted LaB6 directly heated cathodes is measured. However, for measurement times ≤100 h the drift rate is found to be limited by thermal expansion of the movable anode assembly and not the particular cathode mounting technique.

  10. Possible application of carbon nanotubes to the field emission electron source for portable betatrons

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takehiro; Endo, Ichita; Hayashi, Kenji; Kohara, Akitsugu; Yoshida, Takuo; Lukyanovich Chakhlov, Gennady; Leonidovich Malikov, Evgeny; Petrovich Naydukov, Aleksey; Ekino, Toshikazu; Nishiyama, Fumitaka

    2005-02-01

    In order to study the feasibility of a carbon nanotube-based electron gun for small and portable betatrons, the characteristics of electron emission from carbon nanotubes were measured at around ≈1×10 -4 Pa, a typical pressure in the vacuum chamber of such betatrons. The sample cathodes were made from powders of single-walled nanotube (SWNT) and multi-walled nanotube (MWNT) that were fixed on the stainless steel plate with gold paste. We found that the emission was weaker at the lower vacuum for both MWNT and SWNT. However, when the vacuum level was restored to ≈1×10 -4 Pa after being kept at 4.0×10 -4 Pa for 15 minutes, the emission-current recovered to some extent but did not fully come back to the original value. The observed current densities from SWNT and MWNT are 550 and 540 μA/mm 2, respectively, at the high-voltage we tried: 2 kV for SWNT and 1.1 kV for MWNT across a 300 μm gap. It is likely that the carbon nanotube, under the pulsed operation, has advantages over the thermal cathode for the electron emitters of portable betatrons.

  11. Axial ion-electron emission microscopy of IC radiation hardness

    NASA Astrophysics Data System (ADS)

    Doyle, B. L.; Vizkelethy, G.; Walsh, D. S.; Swenson, D.

    2002-05-01

    A new system for performing radiation effects microscopy (REM) has been developed at Sandia National Laboratory in Albuquerque. This system combines two entirely new concepts in accelerator physics and nuclear microscopy. A radio frequency quadrupole (RFQ) linac is used to boost the energy of ions accelerated by a conventional Tandem Van de Graaff-Pelletron to velocities of 1.9 MeV/amu. The electronic stopping power for heavy ions is near a maximum at this velocity, and their range is ˜20 μm in Si. These ions therefore represent the most ionizing form of radiation in nature, and are nearly ideal for performing single event effects testing of integrated circuits. Unfortunately, the energy definition of the RFQ-boosted ions is rather poor (˜ a few %), which makes problematic the focussing of such ions to the submicron spots required for REM. To circumvent this problem, we have invented ion electron emission microscopy (IEEM). One can perform REM with the IEEM system without focussing or scanning the ion beam. This is because the position on the sample where each ion strikes is determined by projecting ion-induced secondary electrons at high magnification onto a single electron position sensitive detector. This position signal is then correlated with each REM event. The IEEM system is now mounted along the beam line in an axial geometry so that the ions pass right through the electron detector (which is annular), and all of the electrostatic lenses used for projection. The beam then strikes the sample at normal incidence which results in maximum ion penetration and removes a parallax problem experienced in an earlier system. Details of both the RFQ-booster and the new axial IEEM system are given together with some of the initial results of performing REM on Sandia-manufactured radiation hardened integrated circuits.

  12. Electron cyclotron emissions from an electron cyclotron heated discharge in ISX-B

    SciTech Connect

    Elder, G.B.

    1983-01-01

    Observation of the electron cyclotron emissions (ECE) is especially effective when studying the effects of electron cyclotron heating (ECH). Two detectors were built to observe the optically thin third harmonic radiation from ISX B during the recent 28 GHz ECH experiments carried on at Oak Ridge National Laboratory. These detectors supplemented existing detectors at the fundamental frequency and at the second harmonic frequency. Observations of the three frequencies during and after the ECH was pulsed into the plasma showed an unexpected rise in their intensity, occurring after the ECH pulse was over. This rise lasted for many tens of milliseconds, well beyond estimates of the electron energy confinement time. The rise in the third harmonic intensity was frequently to an intensity 100 times greater than the pre-ECH intensity. The fundamental frequency and the second harmonic had a much milder change in their intensities. The rises were seen to depend critically on the density of the plasma and the length of the ECH pulse but only weakly on the pre-ECH temperature. A computer code that predicts the ECE from an electron distribution in ISX-B, taking into a account the effect of the plasma's dielectric response to the emissions from a single electron, was developed.

  13. On the accuracy of thermionic electron emission models. I. Electron detachment from SF6(-).

    PubMed

    Troe, Jürgen; Miller, Thomas M; Viggiano, Albert A

    2009-06-28

    Detailed statistical rate calculations combined with electron capture theory and kinetic modeling for the electron attachment to SF(6) and detachment from SF(6)(-) [Troe et al., J. Chem. Phys. 127, 244303 (2007)] are used to test thermionic electron emission models. A new method to calculate the specific detachment rate constants k(det)(E) and the electron energy distributions f(E,epsilon) as functions of the total energy E of the anion and the energy epsilon of the emitted electrons is presented, which is computationally simple but neglects fine structures in the detailed k(det)(E). Reduced electron energy distributions f(E,epsilon/) were found to be of the form (epsilon/)(n) exp(-epsilon/) with n approximately = 0.15, whose shape corresponds to thermal distributions only to a limited extent. In contrast, the average energies can be roughly estimated within thermionic emission and finite heat bath concepts. An effective temperature T(d)(E) is determined from the relation E - EA = + kT(d), where denotes the thermal internal energy of the detachment product SF(6) at the temperature T(d) and EA is the electron affinity of SF(6). The average electron energy is then approximately given by = kT(d)(E), but dynamical details of the process are not accounted for by this approach. Simplified representations of k(det)(E) in terms of T(d)(E) from the literature are shown to lead to only semiquantitative agreement with the equally simple but more accurate calculations presented here. An effective "isokinetic" electron emission temperature T(e)(E) does not appear to be useful for the electron detachment system considered because it neither provides advantages over a representation of k(det)(E) as a function of T(d)(E), nor are recommended relations between T(e)(E) and T(d)(E) of sufficient accuracy.

  14. On the accuracy of thermionic electron emission models. I. Electron detachment from SF6-

    NASA Astrophysics Data System (ADS)

    Troe, Jürgen; Miller, Thomas M.; Viggiano, Albert A.

    2009-06-01

    Detailed statistical rate calculations combined with electron capture theory and kinetic modeling for the electron attachment to SF6 and detachment from SF6- [Troe et al., J. Chem. Phys. 127, 244303 (2007)] are used to test thermionic electron emission models. A new method to calculate the specific detachment rate constants kdet(E ) and the electron energy distributions f(E,ɛ) as functions of the total energy E of the anion and the energy ɛ of the emitted electrons is presented, which is computationally simple but neglects fine structures in the detailed kdet(E). Reduced electron energy distributions f(E,ɛ/⟨ɛ⟩) were found to be of the form (ɛ/⟨ɛ⟩)nexp(-ɛ/⟨ɛ⟩) with n ≈0.15, whose shape corresponds to thermal distributions only to a limited extent. In contrast, the average energies ⟨ɛ(E)⟩ can be roughly estimated within thermionic emission and finite heat bath concepts. An effective temperature Td(E) is determined from the relation E -EA=⟨ESF6(Td)⟩+kTd, where ⟨ESF6(Td)⟩ denotes the thermal internal energy of the detachment product SF6 at the temperature Td and EA is the electron affinity of SF6. The average electron energy is then approximately given by ⟨ɛ(E )⟩=kTd(E), but dynamical details of the process are not accounted for by this approach. Simplified representations of kdet(E) in terms of Td(E) from the literature are shown to lead to only semiquantitative agreement with the equally simple but more accurate calculations presented here. An effective "isokinetic" electron emission temperature Te(E) does not appear to be useful for the electron detachment system considered because it neither provides advantages over a representation of kdet(E) as a function of Td(E), nor are recommended relations between Te(E) and Td(E) of sufficient accuracy.

  15. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    SciTech Connect

    Basovic, Milos

    2016-05-01

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  16. Secondary electron emission from plasma processed accelerating cavity grade niobium

    NASA Astrophysics Data System (ADS)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  17. Monte Carlo simulation of bremsstrahlung emission by electrons

    NASA Astrophysics Data System (ADS)

    Salvat, F.; Fernández-Varea, J. M.; Sempau, J.; Llovet, X.

    2006-10-01

    The basic components of Monte Carlo simulation of bremsstrahlung emission by electrons are presented. Various theoretical cross-sections that have been used in Monte Carlo codes are described and the emphasis is on the more accurate partial-wave cross-sections for which numerical databases are available. Sampling algorithms for a combination of numerical scaled energy-loss cross-sections and various analytical approximations to the intrinsic angular distribution are presented. Analogue simulation of the energy spectra and angular distribution of X rays from targets irradiated by electron beams is very inefficient and a simple variance-reduction technique, which is easy to implement and has proven to be particularly effective in speeding up these simulations, is described. Results from simulations of X-ray spectra with the general-purpose Monte Carlo code PENELOPE are compared with experimental data for different materials and incident electrons with energies in the 20 keV to 1 GeV energy range.

  18. Coherent electron emission from O2 in collisions with fast electrons

    NASA Astrophysics Data System (ADS)

    Chowdhury, Madhusree Roy; Stia, Carlos R.; Tachino, Carmen A.; Fojón, Omar A.; Rivarola, Roberto D.; Tribedi, Lokesh C.

    2017-08-01

    Absolute double differential cross sections (DDCS) of secondary electrons emitted in ionization of O2 by fast electrons have been measured for different emission angles. Theoretical calculations of atomic DDCS were obtained using the first Born approximation with an asymptotic charge of Z T = 1. The measured molecular DDCS were divided by twice the theoretical atomic DDCS to detect the presence of interference effects which was the aim of the experiment. The experimental to theoretical DDCS ratios showed clear signature of first order interference oscillation for all emission angles. The ratios were fitted by a first order Cohen-Fano type model. The variation of the oscillation amplitudes as a function of the electron emission angle showed a parabolic behaviour which goes through a minimum at 90°. The single differential and total ionization cross sections have also been deduced, besides the KLL Auger cross sections. In order to make a comparative study, we have discussed these results along with our recent experimental data obtained for N2 molecule.

  19. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Emissions § 2.201 Emission, modulation... frequency emissions, continuous wave and pulse radars, etc. (1) No information transmitted N (2) Telegraphy... principles, damped waves are symbolized in the Commission's rules and regulations as type B emission. The...

  20. Mathematical model and software complex for computer simulation of field emission electron sources

    SciTech Connect

    Nikiforov, Konstantin

    2015-03-10

    The software complex developed in MATLAB allows modelling of function of diode and triode structures based on field emission electron sources with complex sub-micron geometry, their volt-ampere characteristics, calculating distribution of electric field for educational and research needs. The goal of this paper is describing the physical-mathematical model, calculation methods and algorithms the software complex is based on, demonstrating the principles of its function and showing results of its work. For getting to know the complex, a demo version with graphical user interface is presented.

  1. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control

    SciTech Connect

    Cochems, P.; Kirk, A. T.; Bunert, E.; Runge, M.; Goncalves, P.; Zimmermann, S.

    2015-06-15

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron current due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.

  2. Simulations of Surface Effects and Electron Emission from Diamond-Amplifier Cathodes

    SciTech Connect

    Dimitrov D. A.; Rao T.; Busby, R.; Smithe, D.; Cary, J.R.; Ben-Zvi, I.; Chang, X.; Smedley, J.; Wu, Q.; Wang, E.

    2011-09-30

    Emission of electrons in diamond experiments based on the promising diamond-amplifier concept was recently demonstrated. Transmission mode experiments have shown the potential to realize over two orders of magnitude charge amplification. However, the recent emission experiments indicate that surface effects should be understood in detail to build cathodes with optimal properties. We have made progress in understanding secondary electron generation and charge transport in diamond with models we implemented in the VORPAL particle-in-cell computational framework. We introduce models that we have been implementing for surface effects (band bending and electron affinity), charge trapping, and electron emission from diamond. Then, we present results from 3D VORPAL diamond-vacuum simulations with the integrated capabilities on generating electrons and holes, initiated by energetic primary electrons, charge transport, and then emission of electrons from diamond into vacuum. Finally, we discuss simulation results on the dependence of the electron emission on diamond surface properties.

  3. Monte Carlo modeling of secondary electron emission and its incorporation in particle simulations of electron-surface interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Guoxin; Liu, Lie

    2011-06-01

    Based on Vaughan's empirical formula of secondary emission yield and the assumption of mutual exclusion of each type of secondary electron, a mathematically self-consistent secondary emission model is proposed. It identifies each generated secondary electron as either elastic reflected, rediffused, or true secondary, hence, it allows the use of distinct emission energy and angular distributions of each type of electron. Monte Carlo modeling of the developed model is presented, and second-order algorithms for particle collection and ejection at the secondary-emission wall are developed in order to incorporate the secondary electron emission process in the standard leap-frog integrator. The accuracy of these algorithms is analyzed for general fields and is confirmed by comparing the numerically computed values with the exact solution under a homogeneous magnetic field. In particular, the phenomenon of multipactor electron discharge on a dielectric is simulated to verify the usefulness of the model developed in this paper.

  4. Comparative Study of Non-Thermal Emissions and Electron Transport in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Minoshima, Takashi; Yokoyama, Takaaki; Masuda, Satoshi

    It is well known that a large amount of non-thermal electrons are produced in a solar flare. To understand their acceleration and transport mechanisms, hard X-ray (HXR) and microwave observations are the most powerful means. HXRs are emitted primarily by electrons with energy below several hundred keV via bremsstrahlung (Brown 1971), while microwaves are by electrons with energy above several hundred keV via gyrosynchrotron radiation (e.g., Ramaty 1969). Therefore these two sources of emissions provide information on electrons in two different energy ranges. A comparative study by using both HXR and microwave observations is useful for understanding the physics of electrons over a wide range of energies. We observed a solar flare occurred on 2003 May 29 with HXRs taken by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and microwaves by the Nobeyama Radio Polarimeters (NoRP) and the Nobeyama Radioheliograph (NoRH). In particular, we focus on characteristics of higher energy (>100 keV) HXRs. They are emitted from both footpoints of the flare loop in the same manner as the lower energy (<100 keV) HXRs, while microwaves are emitted primarily at the top of the loop. On the other hand, we found that the time profile of the spectral index of the higher energy HXRs is more similar to that of the microwaves than to that of the lower energy HXRs. To understand the observed characteristics in terms of an energy-dependent transport effect of electrons, we develop a more general treatment of trap-plus-precipitation (TPP; Melrose and Brown, 1976) by using the gyro-averaged Fokker-Planck equation. We model the time evolution of the electron phase space distribution under the influence of Coulomb collisions and magnetic mirror, and then calculate the resulting HXR and microwave emissions for comparison with the observation. It is found that the TPP model in the weak diffusion regime well explains the observed characteristics. Further, we conclude from both the

  5. Neutrino emissivity from electron-positron annihilation in hot matter in a strong magnetic field

    SciTech Connect

    Amsterdamski, P.; Haensel, P. )

    1990-10-15

    The neutrino emissivity due to electron-positron annihilation in a strong magnetic field is computed. A strong magnetic field can significantly increase the neutrino emissivity at {ital T}{similar to}10{sup 9} K.

  6. Alternative optical concept for electron cyclotron emission imaging

    SciTech Connect

    Liu, J. X.; Milbourne, T.; Bitter, M.; Delgado-Aparicio, L.; Dominguez, A.; Efthimion, P. C.; Hill, K. W.; Kramer, G. J.; Kung, C.; Pablant, N. A.; Tobias, B.; Kubota, S.; Kasparek, W.; Lu, J.; Park, H.

    2014-11-15

    The implementation of advanced electron cyclotron emission imaging (ECEI) systems on tokamak experiments has revolutionized the diagnosis of magnetohydrodynamic (MHD) activities and improved our understanding of instabilities, which lead to disruptions. It is therefore desirable to have an ECEI system on the ITER tokamak. However, the large size of optical components in presently used ECEI systems have, up to now, precluded the implementation of an ECEI system on ITER. This paper describes a new optical ECEI concept that employs a single spherical mirror as the only optical component and exploits the astigmatism of such a mirror to produce an image with one-dimensional spatial resolution on the detector. Since this alternative approach would only require a thin slit as the viewing port to the plasma, it would make the implementation of an ECEI system on ITER feasible. The results obtained from proof-of-principle experiments with a 125 GHz microwave system are presented.

  7. Silicon-based metallic micro grid for electron field emission

    NASA Astrophysics Data System (ADS)

    Kim, Jaehong; Jeon, Seok-Gy; Kim, Jung-Il; Kim, Geun-Ju; Heo, Duchang; Shin, Dong Hoon; Sun, Yuning; Lee, Cheol Jin

    2012-10-01

    A micro-scale metal grid based on a silicon frame for application to electron field emission devices is introduced and experimentally demonstrated. A silicon lattice containing aperture holes with an area of 80 × 80 µm2 and a thickness of 10 µm is precisely manufactured by dry etching the silicon on one side of a double-polished silicon wafer and by wet etching the opposite side. Because a silicon lattice is more rigid than a pure metal lattice, a thin layer of Au/Ti deposited on the silicon lattice for voltage application can be more resistant to the geometric stress caused by the applied electric field. The micro-fabrication process, the images of the fabricated grid with 88% geometric transparency and the surface profile measurement after thermal feasibility testing up to 700 °C are presented.

  8. Thermal-field-emission electron optics for nanolithography

    NASA Astrophysics Data System (ADS)

    Gesley, Mark

    1989-02-01

    A new column design for the 25-kV vector-scan Gaussian beam lithography system is described. A field-emission gun, consisting of a three-element electrostatic lens and Zr/O/W<100> cathode operated in a thermal-field mode for current stability, is combined in a demagnifying optics with a magnetic objective lens to focus a high-current-density (1000-3000 A/cm2) electron beam at high resolution (100-300 Å) at the wafer plane without a severe reduction in field size. Optimum beam semiangle, focus mode, and column magnification are determined. The modified system retains the original deflection coils and pattern-generation system which allows immediate implementation of existing subfield stitching, chip registration, and proximity correction software.

  9. Optically Stimulated Electron Emission Contamination Monitor and Method

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S. (Inventor); Perey, Daniel F. (Inventor)

    2005-01-01

    An apparatus and method for performing quality inspections on a test surface based on optically stimulated emission of electrons. In one embodiment, the apparatus comprises a device for producing optical radiation having a plurality of different spectrum lines, selecting at least one of the spectrum lines, and directing the selected spectrum line to the test surface, and circuitry for detecting a current of photoelectrons emitted from the test surface, generating a signal indicative of photoelectron current, and for indicating a condition of quality based on the generated signal indicative of the photoelectron current. In one embodiment, the method comprises producing optical radiation having a plurality of different spectrum lines, selecting at least one of the spectrum lines and directing the selected spectrum line to the test surface, detecting a current of photoelectrons emitted from the test surface and generating a signal indicative of photoelectron current, and indicating a condition of quality based on the generated signal indicative of the photoelectron current.

  10. Carboxylate Counteranions in Electronic Cigarette Liquids: Influence on Nicotine Emissions.

    PubMed

    El-Hellani, Ahmad; El-Hage, Rachel; Salman, Rola; Talih, Soha; Shihadeh, Alan; Saliba, Najat A

    2017-08-21

    The wide pH range reported for electronic cigarette (ECIG) liquids indicates that nicotine may be present in one or more chemical forms. The nicotine form affects the bioavailability and delivery of nicotine from inhaled products. Protonated nicotine is normally associated with counteranions in tobacco products. The chemical and physical properties of counteranions may differently influence the nicotine form and emissions in ECIG aerosols. In this study, we examined how these anions influence nicotine emissions and their evaporation behavior and potential decomposition during ECIG operation. ECIG liquid solutions with equal nicotine concentration and pH but different counteranions (formate, acetate, and citrate) were prepared from analytical standards to assess the effect of the counteranion on nicotine partitioning. High performance liquid and gas chromatography methods were developed to determine the counteranions and the two protonated (NicH(+)) and free base (Nic) forms of nicotine in commercially available and standard solutions of ECIG liquids and aerosols. In commercial samples, acetate and citrate anions were detected. In standard solutions, both formate and acetate ions were found to evaporate intact, but citrate ion decomposed into formic acid and other products. This study also shows that the identity of the counteranion has no effect on total nicotine emission from ECIG in agreement with previous reports on tobacco cigarettes. However, the partitioning of aerosolized nicotine into NicH(+) and Nic is anion-dependent even when the parent liquid pH is held constant. These results indicate that the anions found in a given ECIG product may influence the nicotine delivery profile to the user by enriching aerosols with free-base nicotine as in the case of polycarboxylic acids such as citric acid.

  11. A new emissive-probe method for electron temperature measurement in radio-frequency plasmas

    SciTech Connect

    Kusaba, Kouta; Shindo, Haruo

    2007-12-15

    A new method to measure electron temperature by an emissive probe has been proposed. The method is based on measurement of the functional relationship between the floating potential and the heating voltage of emissive probe. From the measured data of the floating potential change as a function of the heating voltage, the electron temperature could be determined by comparing with the theoretical curve obtained under the assumption of Maxwellian distribution. The overall characteristic of the floating potential change could be explained as a function of the heating voltage. The electron temperatures obtained by the present method were consistent with those measured by the rf-compensated Langmuir probe within the error. These experimental verifications were made in the electron density range of 2.6x10{sup 11}-2.8x10{sup 12} cm{sup -3}. It was stressed that the present method is advantageous in that the probe is operated in a floating condition, hence applicable to plasmas produced in an insulated container.

  12. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature.

    PubMed

    Schmuck, S; Fessey, J; Gerbaud, T; Alper, B; Beurskens, M N A; de la Luna, E; Sirinelli, A; Zerbini, M

    2012-12-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The current state of the interferometer hardware, the calibration setup, and the analysis technique for calibration and plasma operation are described. A new, full-system, absolute calibration employing continuous data acquisition has been performed recently and the calibration method and results are presented. The noise level in the measurement is very low and as a result the electron cyclotron emission spectrum and thus the spatial profile of the electron temperature are determined to within ±5% and in the most relevant region to within ±2%. The new calibration shows that the absolute response of the system has decreased by about 15% compared to that measured previously and possible reasons for this change are presented. Temperature profiles measured with the Michelson interferometer are compared with profiles measured independently using Thomson scattering diagnostics, which have also been recently refurbished and recalibrated, and agreement within experimental uncertainties is obtained.

  13. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of

  14. Real-time measurement of electron beam weld penetration in uranium by acoustic emission monitoring

    SciTech Connect

    Whittaker, J.W.; Murphy, J.L.

    1991-07-01

    High quality electron beam (EB) welds are required in uranium test articles. Acoustic emission (AE) techniques are under development with the goal of measuring weld penetration in real-time. One technique, based on Average Signal Level (ASL) measurement was used to record weld AE signatures. Characteristic AE signatures were recorded for bead-on-plate (BOP) and butt joint (BJ) welds made under varied welding conditions. AE waveforms were sampled to determine what microscopic AE behavior led to the observed macroscopic signature features. Deformation twinning and weld expulsion are two of the main sources of emission. AE behavior was correlated with weld penetration as measured by standard metallographic techniques. The ASL value was found to increase approximately linearly with weld penetration in BJ welds. These results form the basis for a real-time monitoring technique for weld penetration. 5 refs.

  15. Vertically integrated optics for ballistic electron emission luminescence: Device and microscopy characterizations

    NASA Astrophysics Data System (ADS)

    Yi, Wei; Appelbaum, Ian; Russell, Kasey J.; Narayanamurti, Venkatesh; Schalek, Richard; Hanson, Micah P.; Gossard, Arthur C.

    2006-07-01

    By integrating a p-i-n photodiode photodetector directly into a ballistic electron emission luminescence (BEEL) heterostructure with GaAs quantum-well active region, we have obtained a photon detection efficiency of more than 10%. This is many orders of magnitude higher than conventional far-field detection scheme with the most sensitive single-photon counters, enabling BEEL microscopy in systems with no optical components. Detailed analysis shows found a parasitic bipolar injection in parallel with the desired optical coupling between the BEEL heterostructure and the integrated photodiode beyond a characteristic collector bias, which may be solved by improved device design or limiting the operating window of the collector bias. Preliminary BEEL microscopy images of a homogeneous GaAs quantum-well luminescent layer show lateral variations of photon emission correlated with the collector current injection level modulated by surface features or interface defects.

  16. Photoelectric charging of dust particles: Effect of spontaneous and light induced field emission of electrons

    SciTech Connect

    Sodha, M. S.; Dixit, A.

    2009-09-07

    The authors have analyzed the charging of dust particles in a plasma, taking into account the electron/ion currents to the particles, electron/ion generation and recombination, electric field emission, photoelectric emission and photoelectric field emission of electrons under the influence of light irradiation; the irradiance has been assumed to be at a level, which lets the particles retain the negative sign of the charge. Numerical results and discussion conclude the papers.

  17. An experimental study of secondary electron emission in the limit of low electron energy

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Kaganovich, I. D.; Koepke, M. E.

    2013-09-01

    Study of secondary electron emission (SEE) from solid surfaces is important for many areas of science and technology, including but not limited to the formation of electron clouds in particle accelerators, plasma measurements by electrostatic probes and operation of Hall plasma thrusters. The measurements at low incident electron energy below 2eV are very challenging. The goal of this work is to measure SEE coefficient for molybdenum surface in contact with plasmas. In this study nearly mono-energetic electrons arising in plasma-chemical reactions like pair collisions of metastable atoms have been used for the measurements. Variation of the target voltage and measurement of the corresponding electron current from the mono-energetic electrons allows us to obtain the SEE coefficient. It is experimentally demonstrated that the coefficient is close to zero (less than 0.1) for clean targets and may have much higher value for contaminated targets with some absorbed gas on the surface. This work has been supported by DoE contract No. DE-SC0001939 and SPbGU.

  18. Particulate electron beam weld emission hazards in space

    NASA Technical Reports Server (NTRS)

    Bunton, Patrick H.

    1996-01-01

    The electron-beam welding process is well adapted to function in the environment of space. The Soviets were the first to demonstrate welding in space in the mid-1980's. Under the auspices of the International Space Welding Experiment (ISWE), an on-orbit test of a Ukrainian designed electron-beam welder (the Universal Hand Tool or 'UHT') is scheduled for October of 1997. The potential for sustained presence in space with the development of the international space station raises the possibility of the need for construction and repair in space. While welding is not scheduled to be used in the assembly of the space station, repair of damage from orbiting debris or meteorites is a potential need. Furthermore, safe and successful welding in the space environment may open new avenues for design and construction. The safety issue has been raised with regard to hot particle emissions (spatter) sometimes observed from the weld during operations. On earth the hot particles pose no particular hazard, but in space there exists the possibility for burn-through of the space suit which could be potentially lethal. Contamination of the payload bay by emitted particles could also be a problem.

  19. A time-dependent embedding calculation of surface electron emission.

    PubMed

    Inglesfield, J E

    2011-08-03

    The Dirac-Frenkel variational principle is used to derive the embedding method for solving the time-dependent Schrödinger equation. Embedding allows the time evolution of the wavefunction to be calculated explicitly in a limited region of space, the region of physical interest, the embedding potential ensuring that the wavefunction satisfies the correct boundary conditions for matching on to the rest of the system. This is applied to a study of the excitation of electrons at a metal surface, represented by a one-dimensional model potential for Cu(111). Time-dependent embedding potentials are derived for replacing the bulk substrate, and the image potential and vacuum region outside the surface, so that the calculation of electron excitation by a surface perturbation can be restricted to the surface itself. The excitation of the Shockley surface state and a continuum bulk state is studied, and the time structure of the resulting currents analysed. There is a distinction between emission from the localized surface state, where the charge is steadily depleted, and the extended continuum state, where the current emitted into the vacuum is compensated by current approaching the surface from the bulk. The time taken for the current to arrive outside the surface is studied.

  20. A Technique for In Situ Ballistic Electron Emission Microscopy

    NASA Astrophysics Data System (ADS)

    Balsano, Robert; Garramone, John; Labella, Vincent

    2012-02-01

    Ballistic electron emission microscopy (BEEM) is a scanning tunneling microscopy (STM) technique that can measure transport of hot electrons through materials and interfaces with high spatial and energetic resolution. BEEM requires an additional contact to ground the metal base layer of a metal semiconductor junction. Performing BEEM in situ with the sample fabrication requires a custom built STM or modifying a commercial one to facilitate the extra contact, which leaves the technique to highly trained experts. This poster will describe our work to develop a special silicon substrate that has the extra contact built in to enable in situ BEEM without modifications to the STM. Electrically isolated contact traces are lithographically patterned ex situ onto the silicon substrate and connected to the BEEM sample plate which is then inserted into the ultra-high vacuum chamber. The metal is then deposited through a shadow mask and then mounted in situ onto the STM for BEEM measurements. BEEM measurements comparing both in situ and ex situ deposited films will be presented.

  1. Polarization of thermal bremsstrahlung emission due to electron pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Komarov, S. V.; Khabibullin, I. I.; Churazov, E. M.; Schekochihin, A. A.

    2016-09-01

    Astrophysical plasmas are typically magnetized, with the Larmor radii of the charged particles many orders of magnitude smaller than their collisional mean free paths. The fundamental properties of such plasmas, e.g. conduction and viscosity, may depend on the instabilities driven by the anisotropy of the particle distribution functions and operating at scales comparable to the Larmor scales. We discuss a possibility that the pressure anisotropy of thermal electrons could produce polarization of thermal bremsstrahlung emission. In particular, we consider coherent large-scale motions in galaxy clusters to estimate the level of anisotropy driven by stretching of the magnetic-field lines by plasma flow and by heat fluxes associated with thermal gradients. Our estimate of the degree of polarization is ˜0.1 per cent at energies ≳kT. While this value is too low for the forthcoming generation of X-ray polarimeters, it is potentially an important proxy for the processes taking place at extremely small scales, which are impossible to resolve spatially. The absence of the effect at the predicted level may set a lower limit on the electron collisionality in the ICM. At the same time, the small value of the effect implies that it does not preclude the use of clusters as (unpolarized) calibration sources for X-ray polarimeters at this level of accuracy.

  2. Effect of secondary electron emission on nonlinear dust acoustic wave propagation in a complex plasma with positive equilibrium dust charge

    NASA Astrophysics Data System (ADS)

    Bhakta, Subrata; Sarkar, Susmita

    2017-07-01

    In this paper, we have investigated the effect of secondary electron emission on nonlinear propagation of dust acoustic waves in a complex plasma considering equilibrium dust charge positive and compared the results with those obtained in our recently published paper [Bhakta et al., Phys. Plasmas 24, 023704 (2017)] where the equilibrium dust charge was negative. In both papers, primary and secondary electrons are assumed to follow Boltzmann distribution with separate electron temperatures, ions are also Boltzmann distributed, and charged dust grains are inertial. Change in the nature of dust charge (negative to positive) gives rise to some opposite behaviour of wave propagation characteristics in dusty plasma when dust grains are charged by secondary electron emission mechanism. Both adiabatic and nonadiabatic dust charge variations have been separately considered in both the papers. The investigation in this paper shows that compressive dust acoustic soliton propagates in case of adiabatic dust charge variation whose amplitude increases and width decreases with an increase in the strength of the secondary electron emission. This is in contrast to the case of negative equilibrium dust charge which confirms the existence of rarefied dust acoustic soliton with decreasing amplitude and increasing width for an increase in the strength of the secondary electron emission. Nonadiabaticity of dust charge variation in both cases generates dust acoustic shock wave which is oscillatory for weak nonadiabaticity and monotonic for strong nonadiabaticity. For positive equilibrium dust charge, the amplitude of both oscillatory and monotonic shocks increases and oscillation of the oscillatory shock persists longer for stronger secondary electron emission. On the other hand for negative equilibrium dust charge, the amplitude of both the oscillatory and monotonic shocks diminishes with increasing secondary electron emission.

  3. Electron cyclotron emission imaging and applications in magnetic fusion energy

    NASA Astrophysics Data System (ADS)

    Tobias, Benjamin John

    Energy production through the burning of fossil fuels is an unsustainable practice. Exponentially increasing energy consumption and dwindling natural resources ensure that coal and gas fueled power plants will someday be a thing of the past. However, even before fuel reserves are depleted, our planet may well succumb to disastrous side effects, namely the build up of carbon emissions in the environment triggering world-wide climate change and the countless industrial spills of pollutants that continue to this day. Many alternatives are currently being developed, but none has so much promise as fusion nuclear energy, the energy of the sun. The confinement of hot plasma at temperatures in excess of 100 million Kelvin by a carefully arranged magnetic field for the realization of a self-sustaining fusion power plant requires new technologies and improved understanding of fundamental physical phenomena. Imaging of electron cyclotron radiation lends insight into the spatial and temporal behavior of electron temperature fluctuations and instabilities, providing a powerful diagnostic for investigations into basic plasma physics and nuclear fusion reactor operation. This dissertation presents the design and implementation of a new generation of Electron Cyclotron Emission Imaging (ECEI) diagnostics on toroidal magnetic fusion confinement devices, or tokamaks, around the world. The underlying physics of cyclotron radiation in fusion plasmas is reviewed, and a thorough discussion of millimeter wave imaging techniques and heterodyne radiometry in ECEI follows. The imaging of turbulence and fluid flows has evolved over half a millennium since Leonardo da Vinci's first sketches of cascading water, and applications for ECEI in fusion research are broad ranging. Two areas of physical investigation are discussed in this dissertation: the identification of poloidal shearing in Alfven eigenmode structures predicted by hybrid gyrofluid-magnetohydrodynamic (gyrofluid-MHD) modeling, and

  4. Electron field emission from composite electrodes of carbon nanotubes-boron-doped diamond and carbon felts

    NASA Astrophysics Data System (ADS)

    Rosolen, J. Mauricio; Tronto, Simone; Marchesin, Marcel S.; Almeida, Erica C.; Ferreira, Neidenei G.; Patrick Poá, C. H.; Silva, S. Ravi P.

    2006-02-01

    The electron field emission of carbon nanotube (CNT)/boron-doped diamond (BDD)/carbon felt electrodes (CNT/BDD/felt) have been investigated. The composite electrode was initially prepared with the growth of BDD on carbon felt and the subsequent growth of CNT by chemical decomposition of methanol. The composite electrodes were characterised using scanning electron microscopy and transmission electron microscopy. For the CNT/BDD/felt samples, the electron field emission was observed at macroscopic fields as low as 1.1Vμm-1. The emission current versus time plot shows significant potential for future field emission applications.

  5. Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source

    NASA Astrophysics Data System (ADS)

    Christy, Larry

    Field emission (FE) properties of carbon nanotube (CNT) fibers from Rice University and the University of Cambridge have been studied for use within a high current electron source for a directed energy weapon. Upon reviewing the performance of these two prevalent CNT fibers, cathodes were designed with CNT fibers from the University of Cincinnati Nanoworld Laboratory. Cathodes composed of a single CNT fiber, an array of three CNT fibers, and a nonwoven CNT sheet were investigated for FE properties; the goal was to design a cathode with emission current in excess of 10 mA. Once the design phase was complete, the cathode samples were fabricated, characterized, and then analyzed to determine FE properties. Electrical conductivity of the CNT fibers was characterized with a 4-probe technique. FE characteristics were measured in an ultra-high vacuum chamber at Wright-Patterson Air Force Base. The arrayed CNT fiber and the enhanced nonwoven CNT sheet emitter design demonstrated the most promising FE properties. Future work will include further analysis and cathode design using this nonwoven CNT sheet material to increase peak current performance during electron emission.

  6. Electron-beam-sustained discharge revisited — light emission from combined electron beam and microwave excited argon at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Dandl, Thomas; Hagn, Hermann; Neumeier, Alexander; Wieser, Jochen; Ulrich, Andreas

    2014-09-01

    A novel kind of electron beam sustained discharge is presented in which a 12 keV electron beam is combined with a 2.45 GHz microwave power to excite argon gas at atmospheric pressure in a continuous mode of operation. Optical emission spectroscopy is performed over a wide wavelength range from the vacuum ultraviolet (VUV) to the near infrared (NIR). Several effects which modify the emission spectra compared to sole electron beam excitation are observed and interpreted by the changing plasma parameters such as electron density, electron temperature and gas temperature.

  7. Electron emission perpendicular to the polarization direction in laser-assisted XUV atomic ionization

    NASA Astrophysics Data System (ADS)

    Gramajo, A. A.; Della Picca, R.; Arbó, D. G.

    2017-08-01

    We present a theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser with both fields linearly polarized in the same direction. In particular, we study the energy distribution of photoelectrons emitted perpendicularly to the polarization direction. As we previously showed in Gramajo et al. [Phys. Rev. A 94, 053404 (2016), 10.1103/PhysRevA.94.053404] for parallel emission, by means of a very simple semiclassical model which considers electron trajectories born at different ionization times, the electron energy spectrum can be interpreted as the interplay of intra- and intercycle interferences. However, contrary to the case of parallel emission the intracycle interference pattern stems from the coherent superposition of four electron trajectories giving rise to (i) interference of electron trajectories born during the same half cycle (intra-half-cycle interference) and (ii) interference between electron trajectories born during the first half cycle with those born during the second half cycle (inter-half-cycle interference). The intercycle interference is responsible for the formation of the sidebands. We also show that the destructive inter-half-cycle interference for the absorption and emission of an even number of IR laser photons is responsible for the characteristic sidebands in the perpendicular direction separated by twice the IR photon energy. This contrasts with the emission along the polarization axis (all sideband orders are present) since intra-half-cycle interferences do not exist in that case. The intracycle interference pattern works as a modulation of the sidebands and, in the same way, it is modulated by the intra-half-cycle interference pattern. We analyze the dependence of the energy spectrum on the laser intensity and the time delay between the XUV pulse and the IR laser. Finally, we show that our semiclassical simulations are in very good agreement with quantum calculations within the

  8. Breakdown of Richardson's Law in Electron Emission from Individual Self-Joule-Heated Carbon Nanotubes

    PubMed Central

    Wei, Xianlong; Wang, Sheng; Chen, Qing; Peng, Lianmao

    2014-01-01

    Probing the validity of classical macroscopic physical laws at the nanoscale is important for nanoscience research. Herein, we report on experimental evidence that electron emission from individual hot carbon nanotubes (CNTs) heated by self-Joule-heating does not obey Richardson's law of thermionic emission. By using an in-situ multi-probe measurement technique, electron emission density (J) and temperature (T) of individual self-Joule-heated CNTs are simultaneously determined. Experimental ln(J/T2) − 1/T plots are found to exhibit an upward bending feature deviating from the straight lines in Richardson plots, and the measured electron emission density is more than one order of magnitude higher than that predicted by Richardson's law. The breakdown of Richardson's law implies a much better electron emission performance of individual CNTs as compared to their macroscopic allotropes and clusters, and the need of new theoretical descriptions of electron emission from individual low-dimensional nanostructures. PMID:24869719

  9. Breakdown of Richardson's law in electron emission from individual self-Joule-heated carbon nanotubes.

    PubMed

    Wei, Xianlong; Wang, Sheng; Chen, Qing; Peng, Lianmao

    2014-05-29

    Probing the validity of classical macroscopic physical laws at the nanoscale is important for nanoscience research. Herein, we report on experimental evidence that electron emission from individual hot carbon nanotubes (CNTs) heated by self-Joule-heating does not obey Richardson's law of thermionic emission. By using an in-situ multi-probe measurement technique, electron emission density (J) and temperature (T) of individual self-Joule-heated CNTs are simultaneously determined. Experimental ln(J/T(2)) - 1/T plots are found to exhibit an upward bending feature deviating from the straight lines in Richardson plots, and the measured electron emission density is more than one order of magnitude higher than that predicted by Richardson's law. The breakdown of Richardson's law implies a much better electron emission performance of individual CNTs as compared to their macroscopic allotropes and clusters, and the need of new theoretical descriptions of electron emission from individual low-dimensional nanostructures.

  10. Characteristic energy range of electron scattering due to plasmaspheric hiss

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.; Reeves, G. D.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Angelopoulos, V.

    2016-12-01

    We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4-200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L = 2-6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed energy range of electron decay. Using the previously developed statistical plasmaspheric hiss model during modestly disturbed periods, we perform a 2-D Fokker-Planck simulation of the electron phase space density evolution at L = 3.5 and demonstrate that plasmaspheric hiss causes the significant decay of 100 keV-1 MeV electrons with the largest decay rate occurring at around 340 keV, forming anisotropic pitch angle distributions at lower energies and more flattened distributions at higher energies. Our study provides reasonable estimates of the electron populations that can be most significantly affected by plasmaspheric hiss and the consequent electron decay profiles.

  11. Resonant electron emission of silver spheroids induced by laser surface plasmon excitation

    NASA Astrophysics Data System (ADS)

    Monchicourt, P.; Raynaud, M.; Saringar, H.; Kupersztych, J.

    1997-07-01

    Laser excitation of surface plasmons on a silver granular surface has been studied as a function of light frequency. Both light absorption and electron emission have been measured by varying continuously the wavelength between 275 and 700 nm. Resonance effects at the Fröhlich frequencies of the silver spheroids are displayed and a correlation between absorption and emission is clearly exhibited. The lux - ampere characteristics performed at selected increasing wavelengths display slopes with integer orders, indicating that the emission process remains a photoeffect even in the presence of a surface-plasmon resonance. The photoemission process shows net switches of these slopes that turn from linear into quadratic and then cubic integer values. The position of the first switch yields 0953-8984/9/27/008/img1 eV for the work function of the granular surface. The position of the second switch defines the threshold energy for the two-photon emission process, which is found to differ significantly from the expected photon minimum energy 0953-8984/9/27/008/img2.

  12. Characteristics of On-road Diesel Vehicles: Black Carbon Emissions in Chinese Cities Based on Portable Emissions Measurement.

    PubMed

    Zheng, Xuan; Wu, Ye; Jiang, Jingkun; Zhang, Shaojun; Liu, Huan; Song, Shaojie; Li, Zhenhua; Fan, Xiaoxiao; Fu, Lixin; Hao, Jiming

    2015-11-17

    Black carbon (BC) emissions from heavy-duty diesel vehicles (HDDVs) are rarely continuously measured using portable emission measurement systems (PEMSs). In this study, we utilize a PEMS to obtain real-world BC emission profiles for 25 HDDVs in China. The average fuel-based BC emissions of HDDVs certified according to Euro II, III, IV, and V standards are 2224 ± 251, 612 ± 740, 453 ± 584, and 152 ± 3 mg kg(-1), respectively. Notably, HDDVs adopting mechanical pump engines had significantly higher BC emissions than those equipped with electronic injection engines. Applying the useful features of PEMSs, we can relate instantaneous BC emissions to driving conditions using an operating mode binning methodology, and the average emission rates for Euro II to Euro IV diesel trucks can be constructed. From a macroscopic perspective, we observe that average speed is a significant factor affecting BC emissions and is well correlated with distance-based emissions (R(2) = 0.71). Therefore, the average fuel-based and distance-based BC emissions on congested roads are 40 and 125% higher than those on freeways. These results should be taken into consideration in future emission inventory studies.

  13. Enhanced flashover strength in polyethylene nanodielectrics by secondary electron emission modification

    SciTech Connect

    Wang, Weiwang; Li, Shengtao Min, Daomin

    2016-04-15

    This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al{sub 2}O{sub 3} nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al{sub 2}O{sub 3} nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al{sub 2}O{sub 3} nanodielectrics is improved.

  14. Photostimulation of conductivity and electronic properties of field-emission nanocarbon coatings on silicon

    NASA Astrophysics Data System (ADS)

    Arkhipov, A. V.; Gabdullin, P. G.; Gordeev, S. K.; Zhurkin, A. M.; Kvashenkina, O. E.

    2017-01-01

    The electronic structure of island carbon films on silicon, which are capable of low-voltage field electron emission (at the mean electric-field strength above several hundreds of V/mm), have been investigated. It has been shown by tunnel spectroscopy that islands of these coatings are characterized by a continuous spectrum of the allowed delocalized states near the Fermi level, i.e., they contain carbon in the sp 2 state. The photoconductivity of the coatings under study has been observed. Based on the current and spectral characteristics of this phenomenon, it has been shown that islands are separated from each other by tunnel barriers and from the substrate by a Schottky barrier.

  15. "Feathered" fractal surfaces to minimize secondary electron emission for a wide range of incident angles

    NASA Astrophysics Data System (ADS)

    Swanson, Charles; Kaganovich, Igor D.

    2017-07-01

    Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a "feathered" surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow angles of incidence more effectively than velvet. We find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.

  16. Study on the frequency characteristics of nanogap electron devices

    SciTech Connect

    Xu, Ji; Wang, Qilong E-mail: bell@seu.edu.cn; Qi, Zhiyang; Zhai, Yusheng; Zhang, Xiaobing E-mail: bell@seu.edu.cn

    2015-05-28

    Ballistic electron transport in the nanogap devices will make it practical to combine the advantages of solid-state devices and vacuum electron devices including high integration and high frequency characteristics. Although a number of experiments have been exploited on frequency characteristic in nanogap, less modeling or calculations were investigated at such scale yet. In this paper, the concept of mean flight time is proposed in order to theoretically determine the frequency in nanoscale. Traditionally, we have to first determine the frequency response diagram and then deduce the cut-off frequency. This work presents a new method for exploring the frequency characteristics of electron transport in a nanogap structure by calculations and numerical simulations. A double-gate structure was applied in the simulations, and the results suggest that the nanogap structure can perform in the THz range. Additionally, an equivalent circuit model was adopted to demonstrate the validity of this method. Our results provide a model for the intrinsic ballistic transportation of electrons inside the nanogap electron devices.

  17. Electronic structures of tungsten surfaces with barium overlayers by field emission and photofield emission

    NASA Astrophysics Data System (ADS)

    Ibrahim, Zahraa A. S. A.

    The total energy distributions (TEDs) in field emission (FE) and photofield emission (PFE) and the work functions have been measured at room temperature for the (100), (110) and (111) W facets with Ba overlayers in the range of coverage from 0 to 1 monolayer. In order to interpret the experimental data, the full-potential linear augmented plane wave method for calculating the electronic structures of periodic lattices within the LDA has been extended to obtain the TEDs in FE and PFE from W/vacuum and W/Ba/vacuum interfaces. A prominent peak observed experimentally at -1.90 eV in PFE from W(100) with a c(2x2) Ba overlayer is attributed, in contrast to previous work, to hybridization of dz2 -like surface states of clean W(100) with s -like states of the overlayer. It is suggested that a prominent asymmetrical peak observed at -0.65 eV in FE from W(111) is due to two bands of dz 2 -like surface resonances, and a prominent peak observed at about -2.0 eV in PFE from W(111) with a (1x1) Ba overlayer is attributed to hybridization of these same resonances with s -like states of the overlayer. It is shown that several of the peaks observed in PFE are induced by the reduced symmetry of the overlayer. It is found that when an isolated (31/2x3 1/2) Ba layer is adsorbed on W(111) it undergoes a nonmetal-to-metal transition and the surface electronic structure is dominated by inter-layer W-Ba interactions. The atomically-denser isolated (1x1) Ba layer is metallic, and when it is adsorbed on W(111) the surface electronic structure is dominated by intra-layer Ba-Ba interactions. These properties are also discussed for Ba overlayers on W(100) and W(110). A c(2x2) Ba overlayer on W(100) induces a strong electric dipole layer between the substrate and the overlayer and a weak oppositely-directed dipole layer outside the surface, which together account quantitatively for the observed reduction in work function. In view of the success of the present method in interpreting the TEDs in

  18. Chemical characteristics of Siberian boreal forest fire emissions

    NASA Astrophysics Data System (ADS)

    Engling, G.; Popovicheva, O.; Fan, T. S.; Eleftheriadis, K.; Diapouli, E.; Kozlov, V.

    2014-12-01

    Smoke emissions from Siberian boreal forest fires exert critical impacts on the aerosol/climate system of subarctic regions and the Arctic. It is, therefore, crucial to assess the ability of such particles to absorb/scatter incoming solar radiation as well as act as cloud condensation nuclei, which is closely linked to the physical and chemical aerosol properties. However, observations of Siberian wildfire emissions are limited, and no systematic database of smoke particle properties is available for this region to date. As part of this study, ambient aerosol samples were collected during two smoke episodes in Tomsk, Siberia, in the summers of 2012 and 2013. In addition, the chemical composition and optical properties of smoke particles derived from the combustion of typical Siberian fuels, including pine wood and debris, were determined during chamber burn experiments in a large aerosol/combustion chamber under controlled combustion conditions representative of wildfires and prescribed burns. Detailed multi-component characterization of individual particles and bulk properties was accomplished with a suite of techniques, including various types of chromatography, microscopy, spectroscopy, and thermo-optical analysis. Individual particle analysis by SEM-EDX combined with cluster analysis revealed characteristic smoke structural components and major types of particles, which allowed to discriminate between flaming and smoldering regimes, reflected in specific morphological and chemical microstructure. The physicochemical properties representing the combustion phase (smoldering versus flaming) and the degree of processing (fresh versus aged) were assessed in the ambient aerosol based on the chamber burn results. For instance, some chemical transformation (aging of smoke particles) was noticed over a period of two days in the absence of sun light in the combustion chamber for certain chemical species, while the molecular tracer levoglucosan appeared to be rather

  19. Development of wavelength-dispersive soft X-ray emission spectrometers for transmission electron microscopes--an introduction of valence electron spectroscopy for transmission electron microscopy.

    PubMed

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu(1-x)Zn(x) alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Malpha-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of pi- and sigma-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM.

  20. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    PubMed Central

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  1. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-10-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources.

  2. Effects Of Secondary Electron Emission On The Plasma Sheath Of A Copper Wall

    NASA Astrophysics Data System (ADS)

    Lopez, Adrian; Foster, John

    2016-09-01

    Secondary electron emissions (SEE) from surfaces immersed in plasma such as that found in Hall thruster channels has the potential to affect not only the sheath potential distribution and overall sheath voltage, but also influence the near plasma properties. Such changes can influence engine performance and lifetime. In order to better understand how SEE can bring about changes in the bulk plasma, Langmuir probe-derived electron energy distribution measurements are made outside the sheath of a target under electron beam irradiation. Rather than numerically differentiating the I-V characteristic, an AC superimposed signal is used to obtain the electron energy distribution function (EEDF). This approach allows for better resolution of the distribution function, in particular, the distribution tail. In this manner, numerical noise and artificial structure that arises due to numerical differentiation can be avoided. EEDF changes are correlated with observed changes in the sheath potential of a copper substrate irradiated with a monoenergetic electron beam. Work supported by US Air Force grant FA9550-09-1-0695.

  3. Characterization of helium/argon working gas systems in a radiofrequency glow discharge atomic emission source. Part I: Optical emission, sputtering and electrical characteristics

    NASA Astrophysics Data System (ADS)

    Christopher, Steven J.; Hartenstein, Matthew L.; Marcus, R. Kenneth; Belkin, Mikhail; Caruso, Joseph A.

    1998-08-01

    Studies are performed to determine the influence of discharge gas composition (helium/argon working gas mixtures) on the analyte emission signal intensities, sputtering rates, and DC-bias characteristics of an analytical radiofrequency glow discharge atomic emission spectroscopy (RF-GD-AES) source. As the partial pressure of He is increased from 0 to 15 torr, increased emission intensity is observed for a range of bulk and trace elements in NIST 1250 SRM (low alloy steel), regardless of the base pressure of Ar in the source (5 and 9 torr). In contrast to increases in analyte emission intensity of up to 300%, counterindicative decreases in the sputtering rates on the order of about 30-50% are observed. The magnitude of these effects depends on both the partial pressure of helium introduced to the source and the total pressure of the He and Ar gases. Use of relative emission yield (REY) to normalize changes in emission intensity to sputtering rates indicates that excitation efficiencies increase under these conditions. Increases in average electron energy and temperature appear to control this response. Decreases in both analyte emission intensities and sputter rates occur with increasing He partial pressure when the total pressure in the cell remains fixed (11 torr in these studies). Emission yields for the fixed pressure, mixed gas plasmas decrease as the partial pressure of He (He/Ar ratio) in the RF-GD source increases. In this case, decreases in electron number densities appear to dictate the lower REYs. Measurement of DC-bias values at the sample surface provide understanding with respect to the observed changes in sputtering rates as well as suggest the origins of changes in plasma electron energetics. Use of a diamond stylus profilometer provides both the quantitative sputter rate information as well as qualitative insights into the use of mixed gas plasmas for enhanced depth profiling capabilities. The analyte emission characteristics of these mixed gas

  4. The all-sky distribution of 511 keV electron-positron annihilation emission

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Jean, P.; Lonjou, V.; Weidenspointner, G.; Guessoum, N.; Gillard, W.; Skinner, G.; von Ballmoos, P.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Teegarden, B.; Schönfelder, V.; Winkler, C.

    2005-10-01

    We present a map of 511 keV electron-positron annihilation emission, based on data accumulated with the SPI spectrometer aboard ESA's INTEGRAL gamma-ray observatory, that covers approximately ~95% of the celestial sphere. Within the exposed sky area, 511 keV line emission is significantly detected towards the galactic bulge region and, at a very low level, from the galactic disk. The bulge emission is highly symmetric and is centred on the galactic centre with an extension of ~ 8° (FWHM). The emission is equally well described by models that represent the stellar bulge or halo populations. The detection significance of the bulge emission is ~ 50σ, that of the galactic disk is ~ 4σ. The disk morphology is only weakly constrained by the present data, being compatible with both the distribution of young and old stellar populations. The 511 keV line flux from the bulge and disk components is (1.05 ± 0.06) × 10-3 ph cm-2 s-1 and (0.7 ± 0.4) × 10-3 ph cm-2 s-1 respectively, corresponding to a bulge-to-disk flux ratio in the range 1-3. Assuming a positronium fraction of f_p=0.93 this translates into annihilation rates of (1.5 ± 0.1) × 1043 s-1and (0.3 ± 0.2) × 1043 s-1, respectively. The ratio of the bulge luminosity to that of the disk is in the range 3-9. We find no evidence for a point-like source in addition to the diffuse emission, down to a typical flux limit of ~10-4 ph cm-2 s-1. We also find no evidence for the positive latitude enhancement that has been reported from OSSE measurements; our 3σ upper flux limit for this feature is 1.5 × 10-4 ph cm-2 s-1. The disk emission can be attributed to the β^+-decay of the radioactive species 26 Al and 44Ti. The bulge emission arises from a different source which has only a weak or no disk component. We suggest that Type Ia supernovae and/or low-mass X-ray binaries are the prime candidates for the source of the galactic bulge positrons. Light dark matter annihilation could also explain the observed 511 ke

  5. Spectral and amplitude-time characteristics of radiation of plasma of a repetitively pulsed discharge initiated by runaway electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Beloplotov, D. V.; Sorokin, D. A.; Tarasenko, V. F.

    2016-02-01

    Spectral and amplitude-time characteristics of radiation of plasma of a repetitively pulsed discharge initiated by runaway electrons were studied experimentally in nitrogen. Intense emission lines of copper atoms, nitrogen atoms, and ions, as well as the first and the second positive systems of nitrogen, NO, and CN, were observed in the regime of repetitively pulsed excitation.

  6. Micrometeroid Flight in the Upper Atmosphere: Electron Emission and Charging

    NASA Astrophysics Data System (ADS)

    Mendis, A.; Rosenberg, M.; Wong, W.; Sorasio, G.

    2003-12-01

    Solving the simultaneous equations for the continuity of charge, mass, momentum and energy of a micrometeoroid entering the earth's atmosphere, we study its charging, ablation, deceleration and heating along its path. This analysis, which considers different initial entry speeds and angles, builds on an earlier study (G. Sorasio, D. A. Mendis and M. Rosenberg, 2001, Planet. Space Sci., 49, 1257) where only normal entry at a single speed was considered, while emphasizing the important role of thermionic emission of electrons from the frictionally heated micrometeoroid. While the main conclusions are qualitatively similar, the quantitative differences are significant. As before the micrometeoroid can change its charge polarity during flight and the altitude range of meteoric ionization is larger than in the case when ionization is due only to collisions between sublimating molecules and background atmospheric molecules. However, the present study shows that this range becomes larger, with earlier onset of ionization, as the initial entry speed becomes larger and the initial entry angle becomes smaller. Interestingly we also find that the residual mass of the ablated micrometeoroid is a minimum at a certain critical angle of entry, for a given initial speed. The implications of this study for atmospheric ionization by different meteor streams, as well as for radar observations of meteors (e.g., the head and trail echoes) will be discussed. The implications of this study for atmospheric ionization by different meteor streams, as well as for radar observations of meteors (e.g., the head and trail echoes) will be discussed.

  7. New Electron Cyclotron Emission Diagnostic Based Upon the Electron Bernstein Wave

    SciTech Connect

    P.C. Efthimion; J.C. Hosea; R. Kaita; R. Majeski; G. Taylor

    1999-05-01

    Most magnetically confined plasma devices cannot take advantage of standard Electron Cyclotron Emission (ECE) diagnostics to measure temperature. They either operate at high density relative to their magnetic field or they do not have sufficient density and temperature to reach the blackbody condition. The standard ECE technique measures the electromagnetic waves emanating from the plasma. Here we propose to measure electron Bernstein waves (EBW) to ascertain the local electron temperature in these plasmas. The optical thickness of EBW is extremely high because it is an electrostatic wave with a large k(subscript i). One can reach the blackbody condition with a plasma density approximately equal to 10(superscript 11) cm(superscript -3) and electron temperature approximately equal to 1 eV. This makes it attractive to most plasma devices. One serious issue with using EBW is the wave accessibility. EBW may be accessible by either direct coupling or mode conversion through an extremely narrow layer (approximately 1-2 mm) in low field devices.

  8. A Study on Field Emission Characteristics of Planar Graphene Layers Obtained from a Highly Oriented Pyrolyzed Graphite Block

    PubMed Central

    2009-01-01

    This paper describes an experimental study on field emission characteristics of individual graphene layers for vacuum nanoelectronics. Graphene layers were prepared by mechanical exfoliation from a highly oriented pyrolyzed graphite block and placed on an insulating substrate, with the resulting field emission behavior investigated using a nanomanipulator operating inside a scanning electron microscope. A pair of tungsten tips controlled by the nanomanipulator enabled electric connection with the graphene layers without postfabrication. The maximum emitted current from the graphene layers was 170 nA and the turn-on voltage was 12.1 V. PMID:20596315

  9. Characteristics of microinstabilities in electron cyclotron and ohmic heated discharges

    SciTech Connect

    Pusztai, I.; Moradi, S.; Fueloep, T.; Timchenko, N.

    2011-08-15

    Characteristics of microinstabilities in electron cyclotron (EC) and ohmic heated (OH) discharges in the T10 tokamak have been analyzed by linear electrostatic gyrokinetic simulations with gyro[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] aiming to find insights into the effect of auxiliary heating on the transport. Trapped electron modes are found to be unstable in both OH and the EC heated scenarios. In the OH case the main drive is from the density gradient and in the EC case from the electron temperature gradient. The growth rates and particle fluxes exhibit qualitatively different scaling with the electron-to-ion temperature ratios in the two cases. This is mainly due to the fact that the dominant drives and the collisionalities are different. The inward flow velocity of impurities and the impurity diffusion coefficient decreases when applying EC heating, which leads to lower impurity peaking, consistently with experimental observations.

  10. Characteristics of microinstabilities in electron cyclotron and ohmic heated discharges

    NASA Astrophysics Data System (ADS)

    Pusztai, I.; Moradi, S.; Fülöp, T.; Timchenko, N.

    2011-08-01

    Characteristics of microinstabilities in electron cyclotron (EC) and ohmic heated (OH) discharges in the T10 tokamak have been analyzed by linear electrostatic gyrokinetic simulations with gyro [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] aiming to find insights into the effect of auxiliary heating on the transport. Trapped electron modes are found to be unstable in both OH and the EC heated scenarios. In the OH case the main drive is from the density gradient and in the EC case from the electron temperature gradient. The growth rates and particle fluxes exhibit qualitatively different scaling with the electron-to-ion temperature ratios in the two cases. This is mainly due to the fact that the dominant drives and the collisionalities are different. The inward flow velocity of impurities and the impurity diffusion coefficient decreases when applying EC heating, which leads to lower impurity peaking, consistently with experimental observations.

  11. Measurements on wave propagation characteristics of spiraling electron beams

    NASA Technical Reports Server (NTRS)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  12. Electron and photon emissions from gold nanoparticles irradiated by X-ray photons

    NASA Astrophysics Data System (ADS)

    Casta, R.; Champeaux, J.-P.; Moretto-Capelle, P.; Sence, M.; Cafarelli, P.

    2015-01-01

    In this paper, we develop a totally new probabilistic model for the electron and photon emission of gold nanoparticles irradiated by X-ray photons. This model allows direct applications to recent researches about the radiotherapy enhancement by gold nanoparticles in the context of cancer treatment. Our model uses, in a complete original way, simulated Auger cascade and stopping power to compute electron emission spectra, photon emission spectra and released energy inside the material of gold nanoparticles. It allows us to present new results about the electron and photon emission of gold nanoparticle irradiated by hard X-rays.

  13. Optical emission characteristics of surface nanosecond pulsed dielectric barrier discharge plasma

    SciTech Connect

    Wu Yun; Li Yinghong; Jia Min; Song Huimin; Liang Hua

    2013-01-21

    This paper reports an experimental study of the optical emission characteristics of the surface dielectric barrier discharge plasma excited by nanosecond pulsed voltage. N{sub 2}(C{sup 3}{Pi}{sub u}) rotational and vibrational temperatures are almost the same with upper electrode powered with positive polarity and lower electrode grounded or upper electrode grounded and lower electrode powered with positive polarity. While the electron temperature is 12% higher with upper electrode powered with positive polarity and lower electrode grounded. When the frequency is below 2000 Hz, there is almost no influence of applied voltage amplitude and frequency on N{sub 2}(C{sup 3}{Pi}{sub u}) rotational, vibrational temperature and electron temperature. As the pressure decreases from 760 Torr to 5 Torr, N{sub 2}(C{sup 3}{Pi}{sub u}) rotational temperature remains almost unchanged, while its vibrational temperature decreases initially and then increases. The discharge mode changes from a filamentary type to a glow type around 80 Torr. In the filamentary mode, the electron temperature remains almost unchanged. In the glow mode, the electron temperature increases while the pressure decreases.

  14. Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics

    PubMed Central

    2013-01-01

    Vertically aligned single-crystal InSb nanowires were synthesized via the electrochemical method at room temperature. The characteristics of Fourier transform infrared spectrum revealed that in the syntheses of InSb nanowires, energy bandgap shifts towards the short wavelength with the occurrence of an electron accumulation layer. The current–voltage curve, based on the metal–semiconductor–metal model, showed a high electron carrier concentration of 2.0 × 1017 cm−3 and a high electron mobility of 446.42 cm2 V−1 s−1. Additionally, the high carrier concentration of the InSb semiconductor with the surface accumulation layer induced a downward band bending effect that reduces the electron tunneling barrier. Consequently, the InSb nanowires exhibit significant field emission properties with an extremely low turn-on field of 1.84 V μm−1 and an estimative threshold field of 3.36 V μm−1. PMID:23399075

  15. Characteristics of electron internal transport barrier in Heliotron J

    NASA Astrophysics Data System (ADS)

    Kenmochi, N.; Minami, T.; Takahashi, C.; Mochizuki, S.; Nishioka, K.; Kobayashi, S.; Nagasaki, K.; Nakamura, Y.; Okada, H.; Kado, S.; Yamamoto, S.; Ohshima, S.; Konoshima, S.; Weir, G. M.; Otani, Y.; Mizuuchi, T.

    2017-05-01

    The formation of an electron internal transport barrier (eITB) has been observed for the first time with centrally focused electron cyclotron heating (ECH) microwaves injected into plasma in Heliotron J. When the heating power per electron density ({P}{ECH}/{\\bar{n}}{{e}}) exceeds a threshold of 250× {10}-19 {kW} {{{m}}}3, transient increases of both the central T e and the core T e gradients are observed. A neoclassical (NC) calculation using the Sugama-Nishimura moment method predicts that the large positive radial electric field (E r) is formed in the core region. Heat transport analysis shows a significant reduction of the effective electron thermal diffusivity in the plasma with the eITB related to that without the eITB. The large gap between the experimentally obtained effective thermal diffusivity and the NC thermal diffusivity suggests that the suppression of anomalous transport contributes to the core improved confinement of the eITB plasma. The electron cyclotron emission measurement shows both the transient increase and the hysteresis phenomena during the eITB formation.

  16. Fine Structure in the Secondary Electron Emission Peak for Diamond Crystal with (100) Negative Electron Affinity Surface

    NASA Technical Reports Server (NTRS)

    Asnin, V. M.; Krainsky, I. L.

    1998-01-01

    A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.

  17. Evaluation of emission characteristics and compliance of emission standards for in-use petrol driven vehicles in Delhi.

    PubMed

    Sarin, S M; Singh, A; Sharma, N; Sharma, K; Shanmugum, P

    2001-01-01

    The tail pipe CO (carbon monoxide) and HC (hydrocarbon) emission characteristics of in-use petrol driven vehicles were evaluated between November 1996 through September 1997 in Delhi. A total of 4300 vehicles were checked at CRRI Pollution Checking Centre. Approximately 90% of the total vehicles meet the prescribed CO emission standards even without following routine I/M practices. The age of the vehicles appeared to have influence on the emission characteristics. The non-compliance level was found to be higher for older vehicles. Insignificant correlation was observed between CO and HC emissions for all categories of in-use petrol driven vehicles. The emission reduction (gain) in CO and HC emissions was observed for two wheelers equipped with four-stroke engines and four wheelers fitted with catalytic converters over their respective conventional vehicles. The observed high compliance levels indicate that existing tail pipe emission standards are lenient and need to be reviewed. The emission standards are proposed for different categories of in-use petrol driven vehicles.

  18. The emission characteristics of uranium hexafluoride at high temperatures

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1976-01-01

    Relative emission measurements were made for UF6/Argon mixtures heated in a plasma torch over a range of temperatures from 800 to about 3600 K over a wavelength range from 80 to 600 nm. Total pressures were varied from 1 to approximately 1.7 atm. Similarly absorption measurements were carried out in the visible region from 420 to 580 nm over a temperature range from about 1000 to 1800 K. Total pressure for these measurements was 1.0 atm. The emission results exhibited relatively no emission at wavelengths below 250 nm over the range of temperatures investigated. At temperatures in excess of 1800 K an additional emission band centered at 310 nm appears and becomes more well defined at higher temperatures. Essentially no pressure effect was observed with respect to emission at pressures up to 1.7 atm.

  19. The emission characteristics of uranium hexafluoride at high temperatures

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1976-01-01

    Relative emission measurements were made for UF6/Argon mixtures heated in a plasma torch over a range of temperatures from 800 to about 3600 K over a wavelength range from 80 to 600 nm. Total pressures were varied from 1 to approximately 1.7 atm. Similarly absorption measurements were carried out in the visible region from 420 to 580 nm over a temperature range from about 1000 to 1800 K. Total pressure for these measurements was 1.0 atm. The emission results exhibited relatively no emission at wavelengths below 250 nm over the range of temperatures investigated. At temperatures in excess of 1800 K an additional emission band centered at 310 nm appears and becomes more well defined at higher temperatures. Essentially no pressure effect was observed with respect to emission at pressures up to 1.7 atm.

  20. Influence of gas pressure on electron beam emission current of pulsed cathodic-arc-based forevacuum plasma electron source

    NASA Astrophysics Data System (ADS)

    Burdovitsin, Victor A.; Kazakov, Andrey V.; Medovnik, Alexander V.; Oks, Efim M.

    2017-09-01

    We describe our experimental investigation of the effect of background gas pressure on the emission parameters of a pulsed cathodic-arc-based forevacuum-pressure plasma-cathode electron source. We find that increased gas pressure over the range 4-16 Pa significantly reduces the beam current rise-time and significantly increases the emission current amplitude. For example, at a discharge current of 20 A, increasing the working gas pressure from 4 Pa to 16 Pa increases the emission current from 8 A to 18 A and shortens the beam rise-time from 50 μs to 20 μs. This influence of gas pressure on the electron beam parameters can be explained by the effect of arc discharge current switching from the anode to emission. In our case, the current switching effect is caused by increased working gas pressure. In the forevacuum pressure range, the increase of the electron emission current with the growth of gas pressure is due to a rise in the emission plasma potential which is caused by ion back-streaming from the plasma formed in the electron beam transport region. A model describing the influence of gas pressure on the electron emission from the plasma is presented.

  1. Spontaneous synchrotron emission from a plasma with an energetic runaway electron tail

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Dillenburg, D.; Wu, C. S.; Lee, L. C.

    1978-01-01

    The emissivity of spontaneous synchrotron radiation is computed for a plasma consisting of a background thermal plasma in addition to an energetic runaway electron component. The analysis is performed for both the ordinary and extraordinary modes, for frequencies in the vicinity of the electron plasma frequency and the higher harmonics of the electron gyrofrequency, and for the case when the electron plasma frequency is approximately the same as or smaller than the cyclotron frequency. The relativistic gyroresonance with the runaway electrons is found to result in a level of spontaneous emission which, for frequencies in the neighborhood of the electron plasma frequency, is significantly enhanced over the thermal radiation.

  2. Electron cyclotron emission at the fundamental harmonic in GDT magnetic mirror

    NASA Astrophysics Data System (ADS)

    Shalashov, A. G.; Solomakhin, A. L.; Gospodchikov, E. D.; Lubyako, L. V.; Yakovlev, D. V.; Bagryansky, P. A.

    2017-08-01

    New electron cyclotron emission (ECE) diagnostics has been installed to facilitate the successful experiment of electron cyclotron plasma heating (ECRH) in a large open magnetic trap GDT at Budker Institute. The particularities of ECE in the vicinity of the ECRH frequency were studied experimentally for a broad range of discharge scenarios. The measured thermal emission has partly validated the existing physical conceptions about microwave plasma heating in the machine. Besides the expected emission of thermal electrons, a clearly resolved non-thermal ECE was observed which unambiguously confirmed the presence of suprathermal electrons driven by high-power microwave heating.

  3. Electron emission from self-assembled quantum dots in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Schramm, A.; Schulz, S.; Schaefer, J.; Zander, T.; Heyn, Ch.; Hansen, W.

    2006-05-01

    We probe with deep level transient spectroscopy electron states in self-assembled InAs quantum dots. Two pronounced maxima are observed that we associate with emission from different quantum-dot orbital states. Fine structure clearly establishes distinct emission rates for quantum dots with one or two electrons in the s state and up to four electrons in the p-like states. In order to confirm these assignments spectra have been recorded in strong magnetic fields. The observed magnetic field dispersion of the emission energies is described with a harmonic oscillator model using an effective electron mass of m*=0.03me.

  4. Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals

    NASA Astrophysics Data System (ADS)

    Bourim, El Mostafa; Moon, Chang-Wook; Lee, Seung-Woon; Kyeong Yoo, In

    2006-09-01

    The behaviors of thermally stimulated electron emission from pyroelectric monodomain lithium niobate single crystal (LiNbO 3) were investigated by utilizing a Si p-n junction photodiode as electron detector and a receptive electron beam resist (E-beam resist) as electron collector. In high vacuum (10 -6 Torr), the pyroelectric electron emission (PEE) was found to depend on the exposed emitting polar crystal surface (+ Z face or - Z face) and was significantly influenced by the emitter-electron receiver gap distances. Thus, the PEE from + Z face was detected during heating and was activated, in small gaps (<2 mm), by field emission effect on which was superposed an intense field ionization effect that primed intermittent runway ionizations (plasma breakdown into a glow discharge). In large gaps (>2 mm) the emission was simply mastered by field emission effect. Whereas, The PEE from - Z face was detected during cooling and was solely due to the field ionization effect. Therewith, for small gaps (<2 mm) the emission was governed by intermittent runway ionization ignitions resulting from a high ionization degree leading to dense plasma formation, and for large gaps (>2 mm) PEE was governed by field ionization generating a soft and continuous plasma ambient atmosphere. Significant decrease of electron emission current was observed from + Z face after successive thermal cycles. A fast and fully emission recovery was established after a brief exposure of crystal to a poor air vacuum of 10 -1 Torr.

  5. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    NASA Astrophysics Data System (ADS)

    Tierno, S. P.; Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.

    2016-01-01

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.

  6. Existence of a virtual cathode close to a strongly electron emissive wall in low density plasmas

    SciTech Connect

    Tierno, S. P. Donoso, J. M.; Domenech-Garret, J. L.; Conde, L.

    2016-01-15

    The interaction between an electron emissive wall, electrically biased in a plasma, is revisited through a simple fluid model. We search for realistic conditions of the existence of a non-monotonic plasma potential profile with a virtual cathode as it is observed in several experiments. We mainly focus our attention on thermionic emission related to the operation of emissive probes for plasma diagnostics, although most conclusions also apply to other electron emission processes. An extended Bohm criterion is derived involving the ratio between the two different electron densities at the potential minimum and at the background plasma. The model allows a phase-diagram analysis, which confirms the existence of the non-monotonic potential profiles with a virtual cathode. This analysis shows that the formation of the potential well critically depends on the emitted electron current and on the velocity at the sheath edge of cold ions flowing from the bulk plasma. As a consequence, a threshold value of the governing parameter is required, in accordance to the physical nature of the electron emission process. The latter is a threshold wall temperature in the case of thermionic electrons. Experimental evidence supports our numerical calculations of this threshold temperature. Besides this, the potential well becomes deeper with increasing electron emission, retaining a fraction of the released current which limits the extent of the bulk plasma perturbation. This noninvasive property would explain the reliable measurements of plasma potential by using the floating potential method of emissive probes operating in the so-called strong emission regime.

  7. Infrared absorption and emission characteristics of interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Barker, J. R.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Barker, J. R.; Barker, J. R.

    1986-01-01

    The mid-infrared interstellar emission spectrum with features at 3.28, 6.2, 7.7, 8.7 and 11.3 microns is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis, which is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the IR and Raman properties are discussed. Interstellar IR band emission is due to relaxation from highly vibrationally excited PAHs excited by ultraviolet photons. The excitation/emission process is described and the IR fluorescence from one PAH, chrysene, is traced. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs contain between 20 and 30 carbon atoms are responsible for the emission.

  8. Lunar Dust Charging by Secondary Electron Emission and its Complex Role in the Lunar Environment

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A.; Dube, M. J.

    2008-01-01

    The lunar surface is covered with a thick layer of micron/sub-micron size dust grains formed by billions of years of meteoritic impact. With virtually no atmosphere and exposed to the solar wind plasma and solar electromagnetic radiation, the lunar surface and the dust grains are electrostatically charged. The dominant charging processes include: photoelectric emissions (UV, X-rays), impact of solar wind electrons and ions, and secondary electron emissions (SEE) induced by energetic solar wind electrons. During the Apollo missions, the astronauts found the lunar dust to be extraordinarily high in its adhesive characteristics, sticking to the suits and the mechanical equipment. Electrostatically charged lunar dust is believed to be transported over long distances by the induced electric fields, as indicated by the observed dust streamers and the horizon glow [e.g., 1-3]. The hazardous effects of dust in the lunar environment are recognized to be one of the major issues that must be addressed in planning the forthcoming missions for robotic and human exploration of the Moon. Theoretical studies are being performed along with the development of analytical models and a variety of experimental investigations, to better understand the lunar dust phenomena. [e.g., 4-6]. The lunar dust is believed to be charged negatively on the lunar night-side by interaction With solar wind electrons. However, rigorous theoretical expressions for calculation of SEE yields and the sticking efficiencies of individual micron size dust grains are not yet available, and the information has to be obtained by experiment. On theoretical considerations, however, it is well recognized that SEE yields, similar to the photoelectric yields for small-size grains, would be totally different from the corresponding bulk values [e.g., 7-9]. Some theoretical models for charging of individual small spherical particles have been developed [e.g., 10], and some limited measurements on individual metallic dust

  9. Measurement of turbulent electron temperature fluctuations on the ASDEX Upgrade tokamak using correlated Electron Cyclotron Emission

    NASA Astrophysics Data System (ADS)

    Freethy, S.; Conway, G. D.; Classen, I.; Creely, A. J.; Happel, T.; Vanovac, B.; White, A. E.; ASDEX Upgrade Team

    2016-10-01

    First measurements of core (r/a < 0.95) turbulent electron temperature fluctuations made on the ASDEX Upgrade (AUG) tokamak using a Correlation Electron Cyclotron Emission (CECE) technique are presented. Validation of gyro-kinetic models against measurements of the underlying turbulent micro-structure are essential for developing predictive capabilities for future devices. In tokamak plasmas, turbulent temperature fluctuations are sufficiently broadband ( 0.5 MHz) and low-amplitude ( 1%) that conventional radiometer techniques are fundamentally unable to detect them and a correlation technique is required to further extract the signals. An application of the spectral decorrelation method had been designed and built for AUG. This CECE radiometer shares an optical path with a reflectometer and is sensitive to wavenumbers perpendicular to the magnetic field k⊥ up to 0.76 cm-1 . An upgrade to the focusing mirror will increase this range to k⊥ up to 1.4 cm-1. Measurements in Helium plasmas have been made at three radial locations simultaneously, providing a profile of the temperature fluctuation amplitude in the outer core of Electron Cyclotron Resonance Heated heated L-mode plasmas. New results and future plans will be presented. This work is supported by the US DOE under Grant DE-SC0006419.

  10. Two-photon emission of an electron in the weak pulsed laser field for the resonant case

    NASA Astrophysics Data System (ADS)

    Nedoreshta, V. N.; Voroshilo, A. I.; Roshchupkin, S. P.; Dubov, V. V.

    2017-02-01

    Resonant two-photon emission of an electron in the weak field of a pulsed laser wave is studied theoretically. The assumption that a laser pulse duration is significantly greater than the characteristic oscillation time is used. It is shown that resonant conditions depend considerably on the energy and the angle of initial-electron incidence. These values determine the possible ranges of emission angles and frequencies of the first and second photon. An analytic expression for the resonant rate of the investigated process was obtained for a range of weak fields. The resonant rate decreases with increasing energy and decreases with the initial-electron incidence angle. It has order of magnitude {{10}-6}~{{\\text{s}}-1}~\\text{Me}{{\\text{V}}-1} for {{E}i}=500~\\text{MeV} and {{10}-5}~{{\\text{s}}-1}~\\text{Me}{{\\text{V}}-1} for {{E}i}=50~\\text{MeV} .

  11. Electron kinetic energy and plasma emission diagnosis from femtosecond laser produced air plasmas

    NASA Astrophysics Data System (ADS)

    Heins, A.; Singh, S. C.; Guo, C.

    2017-07-01

    The characteristics of a plasma formed by a focused ultrashort laser in atmospheric-pressure air are studied with linear and circular pulses. We show that the ionization threshold for circular pulses is 1.36 times higher than for that linear pulses. Using an intensified CCD camera, we study plasma emission over seven orders of magnitude in a dynamic range. In spite of possessing a lower total ion number, plasmas produced by circular pulses are found to be brighter visible-light emitters than those produced by linear pulses of the same energy. This indicates that circular pulses produce plasmas with more electron kinetic energy than linear pulses and that kinetic energy plays a role in the optical emission intensity. The presence of high energy electrons is verified by demonstrating that a high-ionization-potential gas can be made to radiate more brightly by the addition of a low-ionization-potential gas even though the second gas lowers the achievable focal intensity.

  12. Alternative Fuels Tests on a C-17 Aircraft: Emissions Characteristics

    DTIC Science & Technology

    2010-12-01

    Particle Mass Emission Index EPA Environmental Protection Agency FT Fischer-Tropsch FTIR Fourier Transform Infrared GC/MS Gas Chromatography...Particle Mass Concentration FTIR Analyzer (MKS 2030) CO2, CO, NOx, SOx, HC species NDIR Analyzer (CA 602P) Diluted Sample CO2 Smoke Sampler...Emissions Major gaseous species (i.e., CO, SO2, NOx) were quantified using an MKS Multi-Gas 2030 Fourier Transform Infrared ( FTIR )-based gas analyzer

  13. Effect of Vehicle Characteristics on Unpaved Road Dust Emissions

    DTIC Science & Technology

    2005-01-01

    monitoring system is shown in Fig. 1. Each downwind tower was instrumented with four DustTraks (Model 8520, TSI Inc., St. Paul , MN) configured to measure... Pitchford , M., 2003a. Vehicle based road dust emissions measurement (III): effect of speed, traffic volume, location, and season on PM10 road dust emissions...Atmospheric Environment 37, 4583–4593. Etyemezian, V., Kuhns, H., Gillies, J., Green, M., Pitchford , M., Watson, J., 2003b. Vehicle based road dust

  14. Effects of electron beam pinching on microwave emission in a vircator

    SciTech Connect

    Young, D.; Ishihara, O.; Yatsuzuka, M.

    1995-12-31

    Electron beam pinching in relativistic diodes has been widely observed. This pinching of electrons is understood to be caused by the flow of ions from the anode together with the flow of electrons from the cathode. The anode flow is created by the heating of the anode by the electron beam. Such a counter flow of electrons and ions is known as a bipolar flow. A vircator experiment at the Himeji Institute of Technology suggested that microwave emission in the vircator was due to a strongly pinched electron beam caused by bipolar flow. A MAGIC particle-in-cell simulation is being developed to study the effects of electron beam pinching on microwave emission in a vircator. Cathode emission from an annular cathode is modeled in the simulation by placing a plasma on the surface of the cathode and an electric field is applied to accelerate the electrons extracted from the plasma. To model the anode emission, the anode is divided into segments. The ion current is then taken to be a fraction of the electron current through each segment. Preliminary results suggest that the pinched electron beam would form a larger virtual cathode potential inside the waveguide behind the diode which should enhance microwave production. The effect of an axially applied magnetic field will also be studied to determine if the magnetic field would suppress electron pinching and microwave emission as was observed in the Himeji experiment.

  15. Emissions and Characteristics of Ice Nucleating Particles Associated with Laboratory Generated Nascent Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    McCluskey, C. S.; Hill, T. C. J.; Beall, C.; Sultana, C. M.; Moore, K.; Cornwell, G.; Lee, C.; Al-Mashat, H.; Laskina, O.; Trueblood, J.; Grassian, V. H.; Prather, K. A.; Kreidenweis, S. M.; DeMott, P. J.

    2015-12-01

    Accurate emission rates and activity spectra of atmospheric ice nucleating particles (INPs) are required for proper representation of aerosol-cloud interactions in atmospheric modeling studies. However, few investigations have quantified or characterized oceanic INP emissions. In conjunction with the Center for Aerosol Impacts on the Climate and the Environment, we have directly measured changes in INP emissions and properties of INPs from nascent sea spray aerosol (SSA) through the evolution of phytoplankton blooms. Multiple offline and online instruments were used to monitor aerosol chemistry and size, and bulk water characteristics during two phytoplankton bloom experiments. Two methods were utilized to monitor the number concentrations of INPs from 0 to -34 °C: The online CSU continuous flow diffusion chamber (CFDC) and collections processed offline using the CSU ice spectrometer. Single particle analyses were performed on ice crystal residuals downstream of the CFDC, presumed to be INPs, via scanning transmission electron microscopy (STEM) and Raman microspectroscopy. Preliminary results indicate that laboratory-generated nascent SSA corresponds to number concentrations of INPs that are generally consistent with open ocean regions, based on current knowledge. STEM analyses revealed that the sizes of ice crystal residuals that were associated with nascent SSA ranged from 0.3 to 2.5 μm. Raman microspectroscopy analysis of 1 μm sized residuals found a variety of INP identities, including long chain organics, diatom fragments and polysaccharides. Our data suggest that biological processes play a significant role in ocean INP emissions by generating the species and compounds that were identified during these studies.

  16. Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause

    NASA Astrophysics Data System (ADS)

    Kubota, Yuko; Omura, Yoshiharu

    2017-01-01

    By performing test particle simulations of relativistic electrons scattered by electromagnetic ion cyclotron (EMIC) rising tone emissions, we find a nonlinear scattering process named SLPA (Scattering at Low Pitch Angle) totally different from the nonlinear wave trapping. The nonlinear wave trapping, occurring for high pitch angles away from the loss cone, scatters some of resonant electrons to lower pitch angles, and a fraction of the electrons is further transported into the loss cone by SLPA after being released from the wave trapping. SLPA as well as the nonlinear wave trapping can work in any cases with proton band or helium band and inside or outside the plasmapause. We clarify that the combined scattering process causes significant depletion of the outer radiation belt. In the time evolution of an electron distribution observed locally in longitude, we find echoes of the electron depletion by the localized EMIC emissions. Monitoring fluxes of electrons being lost into the atmosphere in the wave generation region, we also find that efficient relativistic electron precipitation in several seconds. The characteristics of the precipitating electron flux as a function of kinetic energy vary significantly depending on the wave frequency range and the plasma density.

  17. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels

    NASA Astrophysics Data System (ADS)

    He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua

    The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.

  18. Diagnostic signature of low-energy secondary electron emission at the boundary of a partially-ionized plasma

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Adams, S. F.; Kaganovich, I. D.; Koepke, M. E.; Kurlyandskaya, I. P.

    2015-09-01

    Effects of secondary electron emission (SEE) from a solid surface in contact with plasma are important for conducting and interpreting plasma experiments and modeling. Those effects are especially strong for contaminated surfaces. Measurements of SEE reported here are conducted in a plasma having a nearly mono-energetic population of electrons that is energetically well resolved and separated from a broader-energy-range electron population. By performing the SEE measurement in an afterglow or afterglow-like plasma, we take advantage of the nearly mono-energetic electron population that arises in ionizing plasma-chemical reactions, such as binary like-particle collisions of metastable atoms. We demonstrate a diagnostic method for measuring the low-energy electron absorption coefficient across the broader energy range and the effects of contamination on the swept-bias probe characteristic trace. A part of this research was performed while VID held a National Research Council Research Associateship Award at AFRL.

  19. Secondary Electron Emission from Dielectric Materials of a Hall Thruster with Segmented Electrodes

    SciTech Connect

    A. Dunaevsky; Y. Raitses; N.J. Fisch

    2003-02-12

    The discharge parameters in Hall thrusters depend strongly on the yield of secondary electron emission from channel walls. Comparative measurements of the yield of secondary electron emission at low energies of primary electrons were performed for several dielectric materials used in Hall thrusters with segmented electrodes. The measurements showed that at low energies of primary electrons the actual energetic dependencies of the total yield of secondary electron emission could differ from fits, which are usually used in theoretical models. The observed differences might be caused by electron backscattering, which is dominant at lower energies and depends strongly on surface properties. Fits based on power or linear laws are relevant at higher energies of primary electrons, where the bulk material properties play a decisive role.

  20. The effect of impurities and incident angle on the secondary electron emission of Ni(110)

    NASA Astrophysics Data System (ADS)

    Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce E.; Gentile, Charles; Feibush, Eliot

    2015-11-01

    The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incident angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incident angles. Thank you to the Princeton Plasma Physics Laboratory and the Department of Energy for the opportunity to work on this project through the Science Undergraduate Laboratory Internships.

  1. The effects of impurities and incidence angle on the secondary electron emission of Ni(110)

    NASA Astrophysics Data System (ADS)

    Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce; Gentile, Charles; Feibush, Eliot

    The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incidence angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incidence angles. Thank you to the Princeton Plasma Physics Laboratory (PPPL) and the Department of Energy (DOE) for the opportunity to work on this project through the Science Undergraduate Laboratory Internships (SULI).

  2. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    NASA Technical Reports Server (NTRS)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  3. Generalized theory and simulation of spontaneous and super-radiant emissions in electron devices and free-electron lasers.

    PubMed

    Pinhasi, Y; Lurie, Yu

    2002-02-01

    A unified formulation of spontaneous (shot-noise) and super-radiant emissions in electron devices is presented. We consider an electron beam with an arbitrary temporal current modulation propagating through the interaction region of the electronic device. The total electromagnetic field is presented as a stochastic process and expanded in terms of transverse eigenmodes of the medium (free space or waveguide), in which the field is excited and propagates. Using the waveguide excitation equations, formulated in the frequency domain, an analytical expression for the power spectral density of the electromagnetic radiation is derived. The spectrum of the excited radiation is shown to be composed of two terms, which are the spontaneous and super-radiant emissions. For a continuous, unmodulated beam, the shot noise produces only incoherent spontaneous emission of a power proportional to the flux eI(0) (DC current) of the particles in the electron beam. When the beam is modulated or prebunched, a partially coherent super-radiant emission is also produced with power proportional to the current spectrum /I(omega)/(2). Based on a three-dimensional model, a numerical particle simulation code was developed. A set of coupled-mode excitation equations in the frequency domain are solved self-consistently with the equations of particles motion. The simulation considers random distributions of density and energy in the electron beam and takes into account the statistical and spectral features of the excited radiation. At present, the code can simulate free-electron lasers (FELs) operation in various modes: spontaneous and self-amplified spontaneous emission, super-radiance and stimulated emission, in the linear and nonlinear Compton or Raman regimes. We employed the code to demonstrate spontaneous and super-radiant emission excited when a prebunched electron beam passes through a wiggler of an FEL.

  4. Emission characteristics of volatile organic compounds from semiconductor manufacturing.

    PubMed

    Chein, HungMin; Chen, Tzu Ming

    2003-08-01

    A huge amount of volatile organic compounds (VOCs) is produced and emitted with waste gases from semiconductor manufacturing processes, such as cleaning, etching, and developing. VOC emissions from semiconductor factories located at Science-Based Industrial Park, Hsin-chu, Taiwan, were measured and characterized in this study. A total of nine typical semiconductor fabricators (fabs) were monitored over a 12-month period (October 2000-September 2001). A flame ionization analyzer was employed to measure the VOC emission rate continuously in a real-time fashion. The amount of chemical use was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County as per the regulation of the Taiwan Environmental Protection Administration. The VOC emission factor, defined as the emission rate (kg/month) divided by the amount of chemical use (L/month), was determined to be 0.038 +/- 0.016 kg/L. A linear regression equation is proposed to fit the data with the correlation coefficient (R2)=0.863. The emission profiles of VOCs, which were drawn using the gas chromatograph/mass spectrometer analysis method, show that isopropyl alcohol is the dominant compound in most of the fabs.

  5. Monte Carlo simulations of secondary electron emission due to ion beam milling

    DOE PAGES

    Mahady, Kyle; Tan, Shida; Greenzweig, Yuval; ...

    2017-07-01

    We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes thismore » study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.« less

  6. Hydrogen sensing characteristics from carbon nanotube field emissions

    NASA Astrophysics Data System (ADS)

    Dong, Changkun; Luo, Haijun; Cai, Jianqiu; Wang, Fuquan; Zhao, Yangyang; Li, Detian

    2016-03-01

    An innovative hydrogen sensing concept is demonstrated based on the field emission from multi-walled carbon nanotubes, where the low emission currents rise in proportion to hydrogen partial pressures above 10-9 Torr. Experimental and first principles studies reveal that the sensing mechanism is attributed to the effective work function reduction from dissociative hydrogen chemisorption. The embedded Ni catalyst would assist both the hydrogen dissociation and work function reduction. This technique is promising to build miniature low cost hydrogen sensors for multiple applications. This work is valuable for studies of nanocarbon-gas reaction mechanisms and the work function properties in adsorption related applications, including field emission, hydrogen storage, energy cells, and gas sensing.

  7. Size of the localized electron emission sites on a closed multiwalled carbon nanotube.

    PubMed

    Heeres, Erwin C; Oosterkamp, Tjerk H; de Jonge, Niels

    2012-01-20

    We have measured the size of the localized electron emission sites on multiwalled carbon nanotubes (MWNTs) with caps closed by a fullerenelike structure. MWNTs were individually mounted on tungsten support tips and imaged with a field emission microscope (FEM). The magnification of the FEM was calibrated using electron ray tracing and verified by comparing transmission electron microscope images. The FEM image was also tested for effects of the lateral energy spread. We found ring-shaped emission areas with three flattened sides, of a radius of 1.7±0.3 nm, and separated by 5±1 nm. © 2012 American Physical Society

  8. Fast ion induced shearing of 2D Alfvén eigenmodes measured by electron cyclotron emission imaging.

    PubMed

    Tobias, B J; Classen, I G J; Domier, C W; Heidbrink, W W; Luhmann, N C; Nazikian, R; Park, H K; Spong, D A; Van Zeeland, M A

    2011-02-18

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  9. Fast Ion Induced Shearing of 2D Alfvén Eigenmodes Measured by Electron Cyclotron Emission Imaging

    NASA Astrophysics Data System (ADS)

    Tobias, B. J.; Classen, I. G. J.; Domier, C. W.; Heidbrink, W. W.; Luhmann, N. C., Jr.; Nazikian, R.; Park, H. K.; Spong, D. A.; van Zeeland, M. A.

    2011-02-01

    Two-dimensional images of electron temperature perturbations are obtained with electron cyclotron emission imaging (ECEI) on the DIII-D tokamak and compared to Alfvén eigenmode structures obtained by numerical modeling using both ideal MHD and hybrid MHD-gyrofluid codes. While many features of the observations are found to be in excellent agreement with simulations using an ideal MHD code (NOVA), other characteristics distinctly reveal the influence of fast ions on the mode structures. These features are found to be well described by the nonperturbative hybrid MHD-gyrofluid model TAEFL.

  10. Emission characteristics of snow and ice in the microwave range

    NASA Technical Reports Server (NTRS)

    Meier, M. F.; Edgerton, A. T.

    1971-01-01

    Some results are presented of a two year investigation on microwave emissions from snow. Included in the investigation were: theoretical studies; laboratory measurements of electrical properties of snow and similar materials; numerical modelling of hypothetical and real snowpacks; analysis of microwave data obtained on everflights; and quantative measurements of natural and artificial snowpacks made in the field. Results indicate that a fairly simple combination of microwave polarizations and frequencies can ultimately be used to monitor the water equivalent and free-water content as well as the distribution of snow. This understanding may also shed light on the physics of microwave emission from other wet, granular, layered media.

  11. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  12. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  13. Electron transport in ultra-thin films and ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Claveau, Y.; Di Matteo, S.; de Andres, P. L.; Flores, F.

    2017-03-01

    We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh’s non-equilibrium Green’s function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space (\\overlineΓ ) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.

  14. Electron transport in ultra-thin films and ballistic electron emission microscopy.

    PubMed

    Claveau, Y; Di Matteo, S; de Andres, P L; Flores, F

    2017-03-22

    We have developed a calculation scheme for the elastic electron current in ultra-thin epitaxial heterostructures. Our model uses a Keldysh's non-equilibrium Green's function formalism and a layer-by-layer construction of the epitaxial film. Such an approach is appropriate to describe the current in a ballistic electron emission microscope (BEEM) where the metal base layer is ultra-thin and generalizes a previous one based on a decimation technique appropriated for thick slabs. This formalism allows a full quantum mechanical description of the transmission across the epitaxial heterostructure interface, including multiple scattering via the Dyson equation, which is deemed a crucial ingredient to describe interfaces of ultra-thin layers properly in the future. We introduce a theoretical formulation needed for ultra-thin layers and we compare with results obtained for thick Au(1 1 1) metal layers. An interesting effect takes place for a width of about ten layers: a BEEM current can propagate via the center of the reciprocal space ([Formula: see text]) along the Au(1 1 1) direction. We associate this current to a coherent interference finite-width effect that cannot be found using a decimation technique. Finally, we have tested the validity of the handy semiclassical formalism to describe the BEEM current.

  15. Observation of electron temperature turbulence with a correlation electron cyclotron emission radiometer on LHD

    NASA Astrophysics Data System (ADS)

    Kogi, Y.; Higashi, T.; Tamura, N.; Tsuchiya, H.; Kuwahara, D.; Nagayama, Y.; Mase, A.; Takehara, K.; Tokuzawa, T.

    2016-01-01

    Turbulence measurement is important in the study of plasma confinement. We developed a multi-channel correlation electron cyclotron emission (cECE) radiometer system, using an existing conventional ECE radiometer system (RADH) on a large helical device (LHD) . The signal received by the RADH was split and fed to our cECE system, and then electron temperatures at three separate radial positions were measured by resolving frequency component with three narrow (200 MHz) band-pass filters. Data taken by the cECE system were compared with those taken by the RADH system. Turbulence-like signals below 10 kHz were detected by the cECE measurement using coherence analysis, but were not detected by RADH measurement. We considered this to be due to differences in the radial separation length between the two channels and in the radial measurement depth of each channel. The cECE system was able to detect higher frequency turbulence because its separation length and measurement depth in the radial direction was shorter than the correlation length of the turbulence.

  16. A new electron spectroscopy system for measuring electron emission from fast ion interactions with atomic, molecular, and condensed phase targets

    NASA Astrophysics Data System (ADS)

    Hawkins, Wilson L.

    A new electron spectroscopy system has been developed for measuring electron emission from gas and solid targets induced by fast ion impact. This system uses an ultrahigh-vacuum compatible cylindrical deflector analyzer, designed and fabricated in the Department of Physics at East Carolina University, to measure electron yields as a function of electron energy and emission angle for fast ions interacting with materials. The new spectroscopy system was tested in a previously existing high-vacuum target chamber that has been installed on a new beam line in the ECU Accelerator Laboratory. In addition to the new analyzer, a new data acquisition and experimental control system, based on LabVIEW computer control software, was developed and tested using an existing cylindrical mirror analyzer. Data from this system was compared to previous results to confirm the functionality of the design. Subsequently, the new analyzer was installed in the high-vacuum target chamber and tested by measuring Auger electron emission from 2 MeV protons incident on an argon gas target and comparing to well-known emission spectra. Ultimately, the new electron spectroscopy system will be used for measuring electron yields from condensed phase targets in ultrahigh-vacuum conditions in future experiments.

  17. Complex role of secondary electron emissions in dust grain charging in space environments: measurements on Apollo 11 & 17 dust grains

    NASA Astrophysics Data System (ADS)

    Abbas, Mian; Tankosic, Dragana; Spann, James; Leclair, Andre C.

    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, by electron/ion collisions, and sec-ondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstel-lar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynam-ical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10-400 eV energy range. The charging rates of positively and negatively charged particles of 0.2 to 13 µm diam-eters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong parti-cle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.

  18. Enhanced electron-hole plasma stimulated emission in optically pumped gallium nitride nanopillars

    NASA Astrophysics Data System (ADS)

    Lo, M.-H.; Cheng, Y.-J.; Kuo, H.-C.; Wang, S.-C.

    2011-03-01

    An enhanced stimulated emission was observed in optically pumped GaN nanopillars. The nanopillars were fabricated from an epitaxial wafer by patterned pillar etching followed by crystalline regrowth. Under optical excitation, a strong redshifted stimulated emission peak emerged from a broad spontaneous emission background. The emission is attributed to the electron-hole plasma gain at high carrier density. The emission slope efficiency was greatly enhanced by 20 times compared with a GaN substrate under the same pumping condition. The enhancement is attributed to the better photon and gain interaction from the multiple scattering of photons among nanopillars.

  19. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    SciTech Connect

    Ummethala, Raghunandan; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd; Wenger, Daniela; Tedde, Sandro F.; Eckert, Jürgen

    2016-01-28

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  20. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Ummethala, Raghunandan; Wenger, Daniela; Tedde, Sandro F.; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd; Eckert, Jürgen

    2016-01-01

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  1. Spot Fumigation: Fumigant Gas Dispersion and Emission Characteristics

    USDA-ARS?s Scientific Manuscript database

    Reducing emissions of volatile organic compounds (VOCs) from fumigant pesticides is mandatory in California, especially in “nonattainment areas” that do not meet federal air quality standards such as in the San Joaquin Valley. A two-year field study was conducted to determine the feasibility of a s...

  2. The emission characteristics of a small D.I. diesel engine using biodiesel blended fuels.

    PubMed

    Lue, Y F; Yeh, Y Y; Wu, C H

    2001-05-01

    Biodiesel and biodiesel blends provide low emissions without modification on the fuel system of conventional diesel engines. This study aims to develop a new domestic biodiesel production procedure which makes use of waste fryer vegetable oil by transesterification method, and further investigates the emission characteristics of a small D.I. diesel engine using biodiesel blends and diesel fuels, respectively. The 20/80 and 30/70 blends of biodiesel to diesel fuel are used in this study. The emission characteristics include smoke emissions, gaseous emissions (CO, HC, NOx and SO2), particle size distributions and number concentrations at a variety of steady state engine speed points. We have found that diesel engine fueled with biodiesel blends emits more PM2 particle number concentrations than those with diesel fuel, and PM2 number concentration increases as biodiesel concentration increases. As for the smoke and gaseous emissions, such as CO, HC, NOx and SO2, the results favored biodiesel blends.

  3. Coumarin-Pyrazole Hybrid with Red Shifted ESIPT Emission and AIE Characteristics - a Comprehensive Study.

    PubMed

    Shreykar, Milind R; Sekar, Nagaiyan

    2017-05-13

    The newly synthesized three coumarin pyrazole hybrid excited state intramolecular proton transfer (ESIPT) dyes show efficient charge transfer from the pyrazole ring and the coumarin towards the electron withdrawing dicyanovinylene group as revealed from the frontier molecular orbitals. Aggregation induced emission enhancement (AIEE) studies with 2-((3-(4-hydroxy-2-oxo-2H-chromen-3-yl)-1-phenyl-1H-pyrazol-4-yl)methylene) malononitrile showed 9 fold increase in the emission enhancement in 90% DMF-H2O mixture. Lippert-Mataga theory explained the solvatochromic behavior of the dyes in various solvents. The charge transfer characteristics and non-linear optical (NLO) properties have been supported and correlated with bond length alternation, bond order alternation and vibrational spectrum. As values of bond order alternation (BOA) tend to be more towards negative and as the value of α increases β decreases while the values of γ depends on the values of α and β. The observed values of γ are positive which revealed that β contributes significantly. The dyes exhibit linear and NLO properties superior to urea. (E)-2-(3-(2-(3-(4-Hydroxy-2-oxo-2H-chromen-3-yl)-1-phenyl-1H-pyrazol-4-yl)vinyl)-5,5-dimethylcyclohex-2-en-1-ylidene) malononitrile shows enhanced linear and non-linear properties among the three dyes.

  4. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD

    NASA Astrophysics Data System (ADS)

    Kumar, Avshish; Khan, Sunny; Zulfequar, M.; Harsh; Husain, Mushahid

    2017-04-01

    In this work, high-quality graphene has successfully been synthesized on copper (Cu) coated Silicon (Si) substrate at very large-area by plasma enhanced chemical vapor deposition system. This method is low cost and highly effective for synthesizing graphene relatively at low temperature of 600 °C. Electron microscopy images have shown that surface morphology of the grown samples is quite uniform consisting of single layered graphene (SLG) to few layered graphene (FLG). Raman spectra reveal that graphene has been grown with high-quality having negligible defects and the observation of G and G' peaks is also an indicative of stokes phonon energy shift caused due to laser excitation. Scanning probe microscopy image also depicts the synthesis of single to few layered graphene. The field emission characteristics of as-grown graphene samples were studied in a planar diode configuration at room temperature. The graphene samples were observed to be a good field emitter having low turn-on field, higher field amplification factor and long term emission current stability.

  5. The PAH Emission Characteristics of the Reflection Nebula NGC 2023

    NASA Astrophysics Data System (ADS)

    Peeters, Els; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Ricca, Alessandra; Wolfire, Mark G.

    2017-02-01

    We present 5–20 μm spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C60, and H2 superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μm PAH bands and find that at least two spatially distinct components contribute to the 7–9 μm PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C66 to C210, determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7–9 μm components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7–9 μm emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.

  6. Electrostatic Charging of Lunar Dust by UV Photoelectric Emissions and Solar Wind Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James f.; LeClair, Andre C.; Dube, Michael J.

    2008-01-01

    The ubiquitous presence of dust in the lunar environment with its high adhesive characteristics has been recognized to be a major safety issue that must be addressed in view of its hazardous effects on robotic and human exploration of the Moon. The reported observations of a horizon glow and streamers at the lunar terminator during the Apollo missions are attributed to the sunlight scattered by the levitated lunar dust. The lunar surface and the dust grains are predominantly charged positively by the incident UV solar radiation on the dayside and negatively by the solar wind electrons on the night-side. The charged dust grains are levitated and transported over long distances by the established electric fields. A quantitative understanding of the lunar dust phenomena requires development of global dust distribution models, based on an accurate knowledge of lunar dust charging properties. Currently available data of lunar dust charging is based on bulk materials, although it is well recognized that measurements on individual dust grains are expected to be substantially different from the bulk measurements. In this paper we present laboratory measurements of charging properties of Apollo 11 & 17 dust grains by UV photoelectric emissions and by electron impact. These measurements indicate substantial differences of both qualitative and quantitative nature between dust charging properties of individual micron/submicron sized dust grains and of bulk materials. In addition, there are no viable theoretical models available as yet for calculation of dust charging properties of individual dust grains for both photoelectric emissions and electron impact. It is thus of paramount importance to conduct comprehensive measurements for charging properties of individual dust grains in order to develop realistic models of dust processes in the lunar atmosphere, and address the hazardous issues of dust on lunar robotic and human missions.

  7. Effects of grain boundary characteristics of steel on magnetoacoustic emission spectra

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Yost, W. T.; Utrata, D.; Grainger, J. L.; Kushnick, P. W.

    1989-01-01

    Consideration is given to the effects of grain boundary characteristics on the properties of a magnetoacoustic emission spectra obtained by external ac magnetic field-driven domain wall motions. In studies with HY80 steel samples, it is found that the domain wall-defect interaction enhances as more grain boundary is introduced. The enhancement of the domain wall-defect interaction generates high amplitude magnetoacoustic emission pulses and reduces the rate of magnetoacoustic emission events by limiting domain wall motions.

  8. Fault Tolerant Characteristics of Artificial Neural Network Electronic Hardware

    NASA Technical Reports Server (NTRS)

    Zee, Frank

    1995-01-01

    The fault tolerant characteristics of analog-VLSI artificial neural network (with 32 neurons and 532 synapses) chips are studied by exposing them to high energy electrons, high energy protons, and gamma ionizing radiations under biased and unbiased conditions. The biased chips became nonfunctional after receiving a cumulative dose of less than 20 krads, while the unbiased chips only started to show degradation with a cumulative dose of over 100 krads. As the total radiation dose increased, all the components demonstrated graceful degradation. The analog sigmoidal function of the neuron became steeper (increase in gain), current leakage from the synapses progressively shifted the sigmoidal curve, and the digital memory of the synapses and the memory addressing circuits began to gradually fail. From these radiation experiments, we can learn how to modify certain designs of the neural network electronic hardware without using radiation-hardening techniques to increase its reliability and fault tolerance.

  9. Fault Tolerant Characteristics of Artificial Neural Network Electronic Hardware

    NASA Technical Reports Server (NTRS)

    Zee, Frank

    1995-01-01

    The fault tolerant characteristics of analog-VLSI artificial neural network (with 32 neurons and 532 synapses) chips are studied by exposing them to high energy electrons, high energy protons, and gamma ionizing radiations under biased and unbiased conditions. The biased chips became nonfunctional after receiving a cumulative dose of less than 20 krads, while the unbiased chips only started to show degradation with a cumulative dose of over 100 krads. As the total radiation dose increased, all the components demonstrated graceful degradation. The analog sigmoidal function of the neuron became steeper (increase in gain), current leakage from the synapses progressively shifted the sigmoidal curve, and the digital memory of the synapses and the memory addressing circuits began to gradually fail. From these radiation experiments, we can learn how to modify certain designs of the neural network electronic hardware without using radiation-hardening techniques to increase its reliability and fault tolerance.

  10. Energy Spread of Field Emission Electrons from Single Pentagons in Individual Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Fujieda, Tadashi; Okai, Makoto; Tokumoto, Hiroshi

    2008-04-01

    We investigated the dependence of tip radius on the field emission energy spread of electrons emitted from clean single pentagons in individual multi-walled carbon nanotubes (MWNTs) in a wide range of total emission currents (10-2000 nA). We found that the full width at half maximum of the field emission energy distribution decreases in inverse proportion to the involution of the radius of curvature at a constant total emission current. This is because as the radius of curvature increases, the space between adjoining pentagons becomes wider, and therefore the stochastic Coulomb interactions between electrons emitted from adjoining pentagons become weaker. The full widths at half maximum of the field emission energy distributions of MWNTs with tip radii of 1.8-45.0 nm were 0.38-0.60 eV at a total emission current of 2000 nA.

  11. Characteristics of the MIT microwiggler for free electron laser applications

    SciTech Connect

    Catravas, P.; Stoner, R.; Bekefi, G.

    1995-12-31

    We report work on the development of microwiggler technology for free electron laser research. The MIT microwiggler is a pulsed electromagnet with 70 periods of 8.8 mm each which generates a peak on-axis field of 4.2 kG. The wiggler is characterized by extensive tunability. We developed a novel tuning regimen to control 140 degrees of freedom afforded by the individually tunable half periods and achieved an rms spread in the peak amplitudes of 0.08%. This is the lowest attained to date in any sub-cm period wiggler. The microwiggler design and comprehensive measurements of its characteristics will be described.

  12. A fast multichannel Martin-Puplett interferometer for electron cyclotron emission measurements on JET

    SciTech Connect

    Simonetto, A.; Sozzi, C.; Garavaglia, S.; Nowak, S.; Fessey, J. A.; Collaboration: JET-EFDA Contributors

    2011-11-15

    A Martin Puplett interferometer for electron cyclotron emission (ECE) measurements from JET tokamak plasmas was extended to multichannel operation for simultaneous radial and oblique ECE measurements. This paper describes the new optics and the instrument's performance.

  13. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    NASA Astrophysics Data System (ADS)

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin; Eun Lee, Song; Kwan Kim, Young; Hwa Yu, Hyeong; Turak, Ayse; Young Kim, Woo

    2015-06-01

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (-0.030, +0.001) shifting only from 1000 to 10 000 cd/m2. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq)3 as phosphorescent red dopant in electron transport layer.

  14. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    SciTech Connect

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin; Eun Lee, Song; Kwan Kim, Young; Hwa Yu, Hyeong; Turak, Ayse; Young Kim, Woo

    2015-06-28

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){sub 3} as phosphorescent red dopant in electron transport layer.

  15. Effect of metal nanoparticles decoration on electron field emission property of graphene sheets.

    PubMed

    Baby, Tessy Theres; Ramaprabhu, Sundara

    2011-10-05

    The electron field emission from metal nanoparticle decorated hydrogen exfoliated graphene (metal/HEG) occurs at low turn on and threshold fields due to its low work function and high field enhancement factor.

  16. Secondary Electron Emission Materials for Transmission Dynodes in Novel Photomultipliers: A Review

    PubMed Central

    Tao, Shu Xia; Chan, Hong Wah; van der Graaf, Harry

    2016-01-01

    Secondary electron emission materials are reviewed with the aim of providing guidelines for the future development of novel transmission dynodes. Materials with reflection secondary electron yield higher than three and transmission secondary electron yield higher than one are tabulated for easy reference. Generations of transmission dynodes are listed in the order of the invention time with a special focus on the most recent atomic-layer-deposition synthesized transmission dynodes. Based on the knowledge gained from the survey of secondary election emission materials with high secondary electron yield, an outlook of possible improvements upon the state-of-the-art transmission dynodes is provided. PMID:28774137

  17. Contribution of charge-transfer processes to ion-induced electron emission

    SciTech Connect

    Roesler, M.

    1996-12-01

    Charge changing events of ions moving inside metals are shown to contribute significantly to electron emission in the intermediate velocity regime via electrons coming from projectile ionization. Inclusion of equilibrium charge state fractions, together with two-electron Auger processes and resonant-coherent electron loss from the projectile, results in reasonable agreement with previous calculations for frozen protons, though a significant part of the emission is now interpreted in terms of charge exchange. The quantal character of the surface barrier transmission is shown to play an important role. The theory compares well with experimental observations for {ital H} projectiles. {copyright} {ital 1996 The American Physical Society.}

  18. Classical simulations of electron emissions from H2+ by circularly polarized laser pulses.

    PubMed

    Huang, Cheng; Li, Zhihua; Zhou, Yueming; Tang, Qingbin; Liao, Qing; Lu, Peixiang

    2012-05-21

    With the classical fermion molecular dynamics model (FMD), we investigated electron emissions from H(2)(+) by circularly polarized laser pulses. The obtained electron momentum distribution clearly shows an angular shift relative to the expected direction for H(2)(+) aligned parallel to the polarization plane, which is in good agreement with the recent experimental result. By tracing the classical trajectory, we provide direct evidence for the electron delayed emission with respect to the instant when the electric field is parallel to the molecular axis, which was regarded as the origin of the angular shift in the electron momentum distribution. Furthermore, we find that the angular shift decreases with increasing the laser wavelength.

  19. Electron field emission enhancement of carbon nanowalls by plasma surface nitridation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Wakana; Kondo, Hiroki; Obayashi, Tomomi; Hiramatsu, Mineo; Hori, Masaru

    2011-03-01

    Carbon nanowalls (CNWs) are two-dimensional carbon nanostructures consisting of stacked graphene sheets standing vertically on the substrate. The sharp edges of CNWs provide us with opportunities for applications as electron field emitter arrays. The effects of nitrogen plasma (NP) treatment on the surface of CNWs have been investigated in order to improve the electron field emission properties. The electron emission current from the edges of CNWs was drastically increased by the NP treatment. Morphological and chemical changes in the CNWs after the NP treatment were characterized using scanning electron microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy.

  20. Experimental Development of Low-emittance Field-emission Electron Sources

    SciTech Connect

    Lueangaranwong, A.; Buzzard, C.; Divan, R.; Korampally, V.; Piot, P.

    2016-10-10

    Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.

  1. Spot fumigation: fumigant gas dispersion and emission characteristics.

    PubMed

    Wang, D; Browne, G; Gao, S; Hanson, B; Gerik, J; Qin, R; Tharayil, N

    2009-08-01

    Reducing emissions of volatile organic compounds (VOCs) from fumigant pesticides is mandatory in California, especially in "nonattainment areas" like the San Joaquin Valley that do not meet federal air quality standards. A two-year field study was conducted to examine the feasibility of site-specific fumigant application only at future tree sites with dramatically reduced amounts of fumigant chemicals on an orchard basis. Soil gas distribution and atmospheric emission of 1,3-dichloropropene and chloropicrin were measured after applying InLine using subsurface drip irrigation. It was predicted that except in the surface 20 cm of soil, satisfactory pest control could be achieved within a 15 cm radius from the injection point. Also, at radial distances of 15-51 cm from the point of fumigant injection, effective nematode control may be achieved. Cumulative atmospheric emission of the fumigants was estimated to be 18-23% of the applied active ingredients in plots that had been cover cropped with Sudan grass and 2-6% in plots that had remained bare for several months before treatment. Considering the significantly small amount of fumigant used on an orchard basis, the spot drip fumigation may achieve a 10-fold reduction in atmospheric VOCs load from fumigant pesticides.

  2. Characteristics of the persistent emission of SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Sonobe, T.; Murakami, T.; Kulkarni, S. R.; Aoki, T.; Yoshida, A.

    1994-01-01

    Earlier, using the X-ray satellite ASCA, we had identified the soft gamma-ray burst repeater (SGR) 1806-20 with a persistent X-ray source, AX 1805.7-2025 which is located close to the center of the radio supernova remnant G10.0-0.3. A burst seen by Burst and Transient Source Experiment (BATSE) was shown to be centered on G10.0-0.3. Here we report detailed temporal and spectral analysis of the persistent source. We find that AX 1805.7-2025 is a very compact source, size less than 30 sec in diameter, with a power-law spectrum. The count rate from AX 1805.7-2025 is steady on timescales of minutes, days, and 1 week. Most supernova remnants have extended X-ray emission ascribed to shocked gas. We set an upper limit to an extended X-ray emission both in continuum and line emission. We conclude that an isolated neutron star, most likely a pulsar, powers the radio remnant G10.0-0.3. Finally, we note that the persistent spectrum appears to be less absorbed than the burst spectrum.

  3. Characteristics of the persistent emission of SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Sonobe, T.; Murakami, T.; Kulkarni, S. R.; Aoki, T.; Yoshida, A.

    1994-01-01

    Earlier, using the X-ray satellite ASCA, we had identified the soft gamma-ray burst repeater (SGR) 1806-20 with a persistent X-ray source, AX 1805.7-2025 which is located close to the center of the radio supernova remnant G10.0-0.3. A burst seen by Burst and Transient Source Experiment (BATSE) was shown to be centered on G10.0-0.3. Here we report detailed temporal and spectral analysis of the persistent source. We find that AX 1805.7-2025 is a very compact source, size less than 30 sec in diameter, with a power-law spectrum. The count rate from AX 1805.7-2025 is steady on timescales of minutes, days, and 1 week. Most supernova remnants have extended X-ray emission ascribed to shocked gas. We set an upper limit to an extended X-ray emission both in continuum and line emission. We conclude that an isolated neutron star, most likely a pulsar, powers the radio remnant G10.0-0.3. Finally, we note that the persistent spectrum appears to be less absorbed than the burst spectrum.

  4. Field-Emission from Chemically Functionalized Diamond Surfaces: Does Electron Affinity Picture Work?

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Takeuchi, Daisuke; Okushi, Hideyo; Yamasaki, Satoshi

    2014-03-01

    By means of the time-dependent density functional electron dynamics, we have revisited the field-emission efficiency of chemically functionalized diamond (100) surfaces. In order to achieve high efficiency and high (chemical) stability, proper chemical species are needed to terminate diamond surfaces. Hydrogen (H) termination is well known to achieve the negative electron affinity (NEA) of diamond surface which indeed enhances field emission performance than that of clean surface with positive electron affinity (PEA). Yet, the durability of H-terminated diamond surface was concerned for long-time operation of the field-emission. Meantime, oxidation, or hydroxyl (OH) termination was considered to achieve chemical stability of the surface but presence of oxygen (O) atom should reduce the emission efficiency. Recently, H- OH-co-terminated surface is reported as NEA and was expected to achieve both emission efficiency and chemical stability. However, our simulation showed that emission efficiency of the H- OH- co-terminated surface is much lower than clean surface with PEA, thus we note that the electron affinity cannot be a unique measure to determine the emission efficiency. In this talk, we introduce necessity of new concept to understand the emission efficiency which needs to know detailed potential profile from bulk to vacuum through surface, which is strongly dependent on the surface chemical functionalization. This work was supported by ALCA project conducted by Japan Science and Technology Agency.

  5. Volumes from which calcium and phosphorus X-rays arise in electron probe emission microanalysis of bone: Monte Carlo simulation.

    PubMed

    Howell, P G T; Boyde, A

    2003-06-01

    Monte Carlo simulations of trajectories for electrons with initial energy of 10 keV through 30 keV were used to map the 3D location of characteristic x-ray photon production for the elements C, P, and Ca until the electrons either escaped as backscattered electrons (BSE) or had insignificant energy. The x-ray production volumes for phosphorus slightly exceed those for calcium, but both greatly exceed the volume through which BSE travel prior to leaving the sample. The x-ray volumes are roughly hemispherical in shape, and the oblate spheroid from which BSE derive occupies only the upper third to half the volume of x-ray generation. Energy-dispersive x-ray emission microanalysis (EDX) may not be secure as a method for the quantitation of BSE images of bone in the scanning electron microscope (SEM). Ca:P elemental ratios from EDX analyses may also be imperfect.

  6. Effect of electron emission on solids heating by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Svirina, V. V.; Sergaeva, O. N.; Yakovlev, E. B.

    2011-02-01

    Ultrashort laser pulse interaction with material involves a number of specialities as compared to longer irradiations. We study laser heating of metal by femtosecond pulse with taking into account electron photo- and thermionic emission leading to accumulation of a high positive charge on the target surface and, thus, to the generation of the electric field which causes Coulomb explosion (an electronic mechanism of ablation). Also emission slightly influences the thermal and optical properties of solids.

  7. Effect of electron emission on solids heating by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Svirina, V. V.; Sergaeva, O. N.; Yakovlev, E. B.

    2010-07-01

    Ultrashort laser pulse interaction with material involves a number of specialities as compared to longer irradiations. We study laser heating of metal by femtosecond pulse with taking into account electron photo- and thermionic emission leading to accumulation of a high positive charge on the target surface and, thus, to the generation of the electric field which causes Coulomb explosion (an electronic mechanism of ablation). Also emission slightly influences the thermal and optical properties of solids.

  8. Electric-field-direction dependent spatial distribution of electron emission along electrically biased carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wei, X. L.; Golberg, D.; Chen, Q.; Bando, Y.; Peng, L.-M.

    2011-11-01

    The spatial distribution of lateral electron emission from individual electrically biased carbon nanotubes (CNTs) along the tube axis is resolved for the first time by combining multiprobe simultaneous emission current collection and electron trajectory simulations. The spatial distribution is found to be asymmetric along the tube axis and depends on the direction of the electric field in CNTs. The average emission density of the half tube with a higher electric potential is higher than that of the other half with a lower electric potential. The electric-field-direction dependent asymmetric spatial distribution of the electron emission is absent in all pre-existing well-established mechanisms but is well explained in terms of the recently proposed phonon-assisted electron emission (PAEE). This, together with a quantitative description of experimentally measured emission currents, provides solid evidence for the validity of the PAEE mechanism. PAEE from CNTs is predicted to take place near room temperature; thus, it opens up a new and promising route for fabricating cold electron emitters with a high emission density and a low working voltage.

  9. On-road emission characteristics of CNG-fueled bi-fuel taxis

    NASA Astrophysics Data System (ADS)

    Yao, Zhiliang; Cao, Xinyue; Shen, Xianbao; Zhang, Yingzhi; Wang, Xintong; He, Kebin

    2014-09-01

    To alleviate air pollution and lessen the petroleum demand from the motor vehicle sector in China, natural gas vehicles (NGVs) have been rapidly developed over the last several years. However, the understanding of the real-world emissions of NGVs is very limited. In this study, the emissions from 20 compressed-natural-gas-fueled bi-fuel taxis were measured using a portable emission measurement system (PEMS) under actual driving conditions in Yichang, China. The emission characteristics of the tested vehicles were analyzed, revealing that the average CO2, CO, HC and NOx emissions from the tested compressed-natural-gas (CNG) taxis under urban driving conditions were 1.6, 4.0, 2.0 and 0.98 times those under highway road conditions, respectively. The CO, HC and NOx emissions from Euro 3 CNG vehicles were approximately 40%, 55% and 44% lower than those from Euro 2 vehicles, respectively. Compared with the values for light-duty gasoline vehicles reported in the literature, the CO2 and CO emissions from the tested CNG taxis were clearly lower; however, significant increases in the HC and NOx emissions were observed. Finally, we normalized the emissions under the actual driving cycles of the entire test route to the New European Driving Cycle (NEDC)-based emissions using a VSP modes method developed by North Carolina State University. The simulated NEDC-based CO emissions from the tested CNG taxis were better than the corresponding emissions standards, whereas the simulated NEDC-based HC and NOx emissions greatly exceeded the standards. Thus, more attention should be paid to the emissions from CNG vehicles. As for the CNG-fueled bi-fuel taxis currently in use, the department of environmental protection should strengthen their inspection and supervision to reduce the emissions from these vehicles. The results of this study will be helpful in understanding and controlling emissions from CNG-fueled bi-fuel vehicles in China.

  10. Electronic emission spectroscopy of the 4-methyl-3-azabenzyl radical

    NASA Astrophysics Data System (ADS)

    Lightcap, Johnny; Butler, Joseph T.; Goebbert, Daniel J.

    2015-12-01

    The 4-methyl-3-azabenzyl radical was generated from 2,5-lutidine in a corona excited supersonic expansion, and its fluorescence emission spectrum was recorded. Two possible radical isomers could form by loss of an H atom from either methyl group in 2,5-lutidine. Theoretical studies of both isomers confirmed the only species observed was 4-methyl-3-azabenzyl. The emission spectrum corresponded to the D1 → D0 transition, with a strong origin peak and several vibronic bands. The origin transition is located at 21 401 cm-1, in good agreement with a previous assignment, and calculated vibrational energies were in good agreement experimental vibrational energies.

  11. Single impacts of keV fullerene ions on free standing graphene: Emission of ions and electrons from confined volume

    SciTech Connect

    Verkhoturov, Stanislav V.; Geng, Sheng; Schweikert, Emile A.; Czerwinski, Bartlomiej; Young, Amanda E.; Delcorte, Arnaud

    2015-10-28

    We present the first data from individual C{sub 60} impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for C{sub n}{sup −} clusters are above 10% for n ≤ 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimental yields of C{sub n}{sup −} with those of C{sub n}{sup 0} from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for C{sub n}{sup −} emission can also explain the emission of electrons. The interaction of C{sub 60} with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.

  12. Novel heterocyclic based blue and green emissive materials for opto-electronics

    NASA Astrophysics Data System (ADS)

    Ramkumar, V.; Kannan, P.

    2015-08-01

    Two different novel heterocyclic compounds namely 2,5-bis(1,3-diphenyl-4,5-dihydro-1H-pyrazol-5-yl)thiophene (Material I) and 2,5-bis(3-(naphthalen-1-yl)-1-phenyl-4,5-dihydro-1H-pyrazol-5-yl)thiophene (Material II) were designed, synthesized and characterized by spectral methods. The synthesized materials were confirmed by standard techniques such as FT-IR, 1H NMR and elemental analysis. Physical properties include thermal, surface morphology of the materials were explained from TGA, DSC and SEM analysis. Optical properties such as absorption, emission, solvent effect have been investigated by UV-Visible and fluorescence spectrophotometers. The blue and green emission of the materials was confirmed by using UV light as well as fluorescence spectrophotometers. Bandgap energies of these materials were obtained by both experimental and theoretical calculation from of cyclic voltammetry, UV-Visible spectrophotometer and DFT calculation. I-V characteristic analysis used to determine the threshold voltage (Von) of the two materials. The obtained results of the materials have promising to be applicable for opto-electronic applications.

  13. Erosion of carbon arc cathodes operating in the thermo-field electron emission mode

    NASA Astrophysics Data System (ADS)

    Meunier, Jean-Luc; Coulombe, Sylvain; Kandah, Munther

    2007-02-01

    Steady-state modelling and experimental results are given on the electric arc attachment on cold carbon cathodes working at low pressure. The modelling results are compared with the case of copper cathodes and with experimental data on vacuum arc erosion characteristics for graphite materials. A region of existence of a physically meaningful solution for self-sustained operation of the steady-state cathode spot is given in the electron temperature-cathode spot plasma pressure space. A solution domain comprised between Te ap 1.2-1.5 eV and pap 2-45 atm corresponding to carbon surface temperatures in the range 4200-4900 K is found. Values of the local heat flux to the cathode surface are evaluated in the range 1-20 × 1010 W m-2, and ratios of the various contributions to this flux and current density are given. Also given are the cathode spot radii and upper/lower limits for the erosion rate through vapourization, these being compared with experimental data. It is shown that the cathode spot pressure conditions can provide a mechanism for the control of macroparticle emission on carbon. This effect is used experimentally through cathode spot plasma confinement for the reduction of the microdroplet emission in arc sources used for diamondlike film deposition. Experimental data obtained on graphite materials are in agreement with the model-based design guidelines.

  14. Electron emission produced by photointeractions in a slab target

    NASA Technical Reports Server (NTRS)

    Thinger, B. E.; Dayton, J. A., Jr.

    1973-01-01

    The current density and energy spectrum of escaping electrons generated in a uniform plane slab target which is being irradiated by the gamma flux field of a nuclear reactor are calculated by using experimental gamma energy transfer coefficients, electron range and energy relations, and escape probability computations. The probability of escape and the average path length of escaping electrons are derived for an isotropic distribution of monoenergetic photons. The method of estimating the flux and energy distribution of electrons emerging from the surface is outlined, and a sample calculation is made for a 0.33-cm-thick tungsten target located next to the core of a nuclear reactor. The results are to be used as a guide in electron beam synthesis of reactor experiments.

  15. Nonlinear absorption of surface plasmons and emission of electrons from metallic targets

    SciTech Connect

    Singh, D. B.; Kumar, Gagan; Tripathi, V. K.

    2007-10-15

    A large-amplitude surface plasma wave (SPW) over a metal-vacuum interface Ohmically heats the electrons and undergoes nonlinear absorption. The attenuation rate increases with the local SPW amplitude. The enhanced electron temperature leads to stronger thermionic emission of electrons. At typical Nd:glass laser intensity I{sub L}=7 GW/cm{sup 2}, if one takes the amplitude of the SPW to be {approx_equal}6 times the amplitude of the laser, one obtains the thermionic electron emission current density J=200 A/cm{sup 2}. However, the emission current density decreases with propagation distance at a much faster rate than the SPW amplitude and electron temperature.

  16. Vertical-viewing electron cyclotron emission diagnostic for the DIII-D tokamak

    SciTech Connect

    James, R.; Janz, S.; Ellis, R.; Boyd, D.; Lohr, J.

    1988-08-01

    The vertical-viewing electron cyclotron emission diagnostic on DIII-D will be used to assess the nonthermal electron distributions resulting from electron cyclotron heating and electron cyclotron current drive experiments. Electron cyclotron emission along a vertical chord is collected using an ellipsoidal focusing mirror and retroreflector (the latter to minimize wall reflections). The emission is then transported approx.20 m using a quasioptical transport system composed of eight lenses and three mirrors, and detected between the 2nd and the 10th harmonics by a fast-scanning (40-Hz) Michelson interferometer. The entire system has been aligned using a Gaussian beam simulator and absolutely calibrated in situ using a cold liquid-nitrogen bath. Details of the design, installation, and calibration will be discussed.

  17. Secondary-electron-emission properties of conducting surfaces with application to multistage depressed collectors for microwave amplifiers

    NASA Technical Reports Server (NTRS)

    Forman, R.

    1977-01-01

    To improve the efficiency of high power microwave tubes, low secondary electron yield electrode surface for use in depressed collectors are needed. The secondary emission characteristics of a number of materials were investigated. The materials studied were beryllium, carbon (soot and pyrolytic graphite), copper, titanium carbide, and tantalum. Both total secondary yield delta and relative reflected primary yield were measured. These measurements were made in conjunction with Auger spectroscopy so that the secondary emission characteristics could be determined as a function of surface contamination or purity. The results show that low atomic weight elements, such as beryllium and carbon, have the lowest reflected primary yield and that roughening the surface of an electrode can markedly decrease secondary yield both for delta and reflected primaries. All factors considered, a roughened pyrolytic graphite surface showed the greatest potential for use as an electrode surface in depressed collectors.

  18. Electron Emission from Amorphous Solid Water Induced by Passage of Energetic Protons and Fluorine Ions

    PubMed Central

    Toburen, L. H.; McLawhorn, S. L.; McLawhorn, R. A.; Carnes, K. D.; Dingfelder, M.; Shinpaugh, J. L.

    2013-01-01

    Absolute doubly differential electron emission yields were measured from thin films of amorphous solid water (ASW) after the transmission of 6 MeV protons and 19 MeV (1 MeV/nucleon) fluorine ions. The ASW films were frozen on thin (1-μm) copper foils cooled to approximately 50 K. Electrons emitted from the films were detected as a function of angle in both the forward and backward direction and as a function of the film thickness. Electron energies were determined by measuring the ejected electron time of flight, a technique that optimizes the accuracy of measuring low-energy electron yields, where the effects of molecular environment on electron transport are expected to be most evident. Relative electron emission yields were normalized to an absolute scale by comparison of the integrated total yields for proton-induced electron emission from the copper substrate to values published previously. The absolute doubly differential yields from ASW are presented along with integrated values, providing single differential and total electron emission yields. These data may provide benchmark tests of Monte Carlo track structure codes commonly used for assessing the effects of radiation quality on biological effectiveness. PMID:20681805

  19. [Relationship between electron transfer capacity and fluorescence characteristics of dissolved organic matter].

    PubMed

    Tao, Ya; Yuan, Tian; Zhou, Shun-Gui; Yuan, Yong; Zhuang, Li; Wang, Hui-Xian

    2012-06-01

    This study demonstrated the relationship between redox activity and fluorescence characteristics of different dissolved organic matter (DOM) employing a combined method of electrochemistry and fluorescence spectroscopy. Chronoamperometry was used to quantitatively evaluate the electron transfer capacity (ETC) of DOM. Data showed that the electron accepting capacity of DOM ranged from 635.6 micromol x (g x C)(-1) to 1049.3 micromol x (g x C)(-1), and the electron donating capacity ranged from 27.3 micromol x (g x C)(-1) to 42.3 micromol x (g x C)(-1). For all DOM tested, the cyclic voltammetries (CVs) showed an evident pair of redox peak with the redox potentials in the range from -731 mV to -996 mV (vs. Ag/AgCl), suggesting their electrochemical activity. Using the multi-potential steps method, the ETC was measured to be 232.1-897.2 micromol x (g x C)(-1) and the electron recycling rates (ERRs) were 36.7%-78.2%, indicating the electron transfer of DOM has a reversible character. Using fluorescence excitation-emission spectroscopy (EEMs), the ERRs were found to be highly correlated with the fulvic-like fluorescence intensity of DOM with a correlation coefficient of 0. 92. This study can potentially provide a scientific base for understanding the roles of DOM in the elements cycles, pollutants degradation and biogeochemical cycles.

  20. Analysis of Optical Emissions Following Electron Impact on C2F6

    NASA Astrophysics Data System (ADS)

    Martus, K. E.; Kurunczi, P.; Becker, K.

    1999-10-01

    Low-temperature plasmas using gas mixtures which contain fluorocarbon species such as CF4, C2F6, or C3F8 are widely used in the semiconductor industry for the etching of silicon. Optical emissions from these plasmas can be used for diagnostics purposes. While the optical emissions from electron-impact excited CF4 have been studied extensively in the past for emissions from the vacuum ultraviolet (90 nm) to the near-infrared (900 nm) by several groups, no such studies have been carried out for C2F6 and C3F8. We report a comprehensive measurement of absolute photoemission cross sections and appearance energies for emissions produced by controlled electron impact on C2F6 from the VUV, where the F resonance lines around 95 nm are the most prominent emission features, to the 600 - 800 nm range, where F emissions resulting from transitions between excited atomic fluorine state occur. In general, we found that the intensity of the optical emissions from C2F6 was weaker than what was observed for the same emissions from CF4. In addition, we found no evidence in C2F6 of the prominent emission continuum from 200 to 500 nm that dominates the CF4 emission spectrum. *Work supported by the NSF.

  1. Nitrogen oxide emissions characteristics of augmented turbofan engines

    SciTech Connect

    Seto, S.P.; Lyon, T.F. )

    1994-07-01

    The exhaust plumes of modern military engines can be rendered visible at low augmentor power operation by the presence of nitrogen dioxide (NO[sub 2]). Visible plumes have also been observed from some industrial gas turbines that have duct burners downstream of the power turbines. In 1986, gaseous emissions measurements were taken behind two F101 turbofan engines to determine the effect of reheat level on the degree of conversion of nitric oxide (NO) to nitrogen dioxide and to relate the plume visibility to nitrogen dioxide concentration.

  2. Characteristics of extreme ultraviolet emission from high-Z plasmas

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  3. Electron emission from single-electron capture with simultaneous single-ionization reactions in 30-keV/u He{sup 2+}-on-argon collisions

    SciTech Connect

    Ma, X.; Zhang, S. F.; Zhu, X. L.; Feng, W. T.; Li, B.; Liu, H. P.; Zhang, R. T.; Guo, D. L.; Yan, S. C.; Zhang, P. J.; Wang, Q.; Li, C. Y.; Wang, J. G.

    2011-05-15

    Electron emission from the single-electron capture with simultaneous single ionization in 30 keV/u He{sup 2+} on argon was investigated using a reaction microscope, providing the electron energy spectra and momentum distributions. Intensive peaks for electrons with near-zero kinetic energies have been observed. It is demonstrated that mechanisms contributing to the electron emission include direct transfer ionization (DTI), double-electron capture with autoionization (DECA), and single-electron capture with autoionization (SECA) of target. Comparison of resonance energies shows that Ar{sup +} ions in SECA decay mainly through the 3s3p{sup 5}3d states by emitting Auger electrons, and He** in DECA decay through the 2l2l' states. The dependence of electron emission on the transverse momentum exchange has been studied. In the transfer ionization channel studied here, the DTI process dominates the electron emission, and no saddle point electron mechanism has been found.

  4. Electron emission from single-electron capture with simultaneous single-ionization reactions in 30-keV/u He2+-on-argon collisions

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zhang, R. T.; Zhang, S. F.; Zhu, X. L.; Feng, W. T.; Guo, D. L.; Li, B.; Liu, H. P.; Li, C. Y.; Wang, J. G.; Yan, S. C.; Zhang, P. J.; Wang, Q.

    2011-05-01

    Electron emission from the single-electron capture with simultaneous single ionization in 30 keV/u He2+ on argon was investigated using a reaction microscope, providing the electron energy spectra and momentum distributions. Intensive peaks for electrons with near-zero kinetic energies have been observed. It is demonstrated that mechanisms contributing to the electron emission include direct transfer ionization (DTI), double-electron capture with autoionization (DECA), and single-electron capture with autoionization (SECA) of target. Comparison of resonance energies shows that Ar+ ions in SECA decay mainly through the 3s3p53d states by emitting Auger electrons, and He** in DECA decay through the 2l2l' states. The dependence of electron emission on the transverse momentum exchange has been studied. In the transfer ionization channel studied here, the DTI process dominates the electron emission, and no saddle point electron mechanism has been found.

  5. Gas Desorption and Electron Emission from 1 MeV Potassium Ion Bombardment of Stainless Steel

    SciTech Connect

    Molvik, A W; Covo, M K; Bieniosek, F M; Prost, L; Seidl, P A; Baca, D; Coorey, A; Sakumi, A

    2004-07-19

    Gas desorption and electron emission coefficients were measured for 1 MeV potassium ions incident on stainless steel at grazing angles (between 80 and 88 from normal incidence) using a new gas-electron source diagnostic (GESD). Issues addressed in design and commissioning of the GESD include effects from backscattering of ions at the surface, space-charge limited emission current, and reproducibility of desorption measurements. We find that electron emission coefficients {gamma}{sub e} scale as 1/cos({theta}) up to angles of 86, where {gamma}{sub e} = 90. Nearer grazing incidence, {gamma}{sub e} is reduced below the 1/cos({theta}) scaling by nuclear scattering of ions through large angles, reaching {gamma}{sub e} = 135 at 88. Electrons were emitted with a measured temperature of {approx}30 eV. Gas desorption coefficients {gamma}{sub sigma} were much larger, of order {gamma}{sub sigma} = 104. They also varied with angle, but much more slowly than 1/cos({theta}). From this we conclude that the desorption was not entirely from adsorbed layers of gas on the surface. Two mitigation techniques were investigated: rough surfaces reduced electron emission by a factor of ten and gas desorption by a factor of two; a mild bake to 230 had no effect on electron emission, but decreased gas desorption by 15% near grazing incidence. We propose that gas desorption is due to electronic sputtering.

  6. Gas Desorption and Electron Emission from 1 MeV Potassium Iion Bombardment of Stainless Steel

    SciTech Connect

    Molvik, A; Covo, M K; Bieniosek, F; Prost, L; Seidl, P; Baca, D; Coorey, A; Sakumi, A

    2004-03-25

    Gas desorption and electron emission coefficients were measured for 1 MeV potassium ions incident on stainless steel at grazing angles (between 80 and 88 degrees from normal incidence) using a new gas-electron source diagnostic (GESD). Issues addressed in design and commissioning of the GESD include effects from backscattering of ions at the surface, space-charge limited emission current, and reproducibility of desorption measurements. We find that electron emission coefficients {gamma}{sub e} scale as 1/cos({theta}) up to angles of 86 degrees, where {gamma}{sub e} = 90. Nearer grazing incidence, {gamma}{sub e} is reduced below the 1/cos({theta}) scaling by nuclear scattering of ions through large angles, reaching {gamma}{sub e} = 135 at 88 degrees. Electrons were emitted with a measured temperature of {approx}30 eV. Gas desorption coefficients {gamma}{sub 0} were much larger, of order {gamma}{sub 0} = 10{sub 4}. They also varied with angle, but much more slowly than 1/cos({theta}). From this we conclude that the desorption was not entirely from adsorbed layers of gas on the surface. Two mitigation techniques were investigated: rough surfaces reduced electron emission by a factor of ten and gas desorption by a factor of two; a mild bake to {approx}220 degrees had no effect on electron emission, but decreased gas desorption by 15% near grazing incidence. We propose that gas desorption is due to electronic sputtering.

  7. Electron and ion heating characteristics during magnetic reconnection in MAST

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Yamada, Takuma; Watanabe, Takenori; Gi, Keii; Kadowaki, Kazutake; Inomoto, Michiaki; Imazawa, Ryota; Gryaznevich, Mikhail; Michael, Clive; Conway, Neil; Scannell, Rory; Crowley, Brendan; McClements, Ken; Ono, Yasushi; MAST Team

    2015-11-01

    Localized electron heating at X point and global ion heating in the downstream during merging/reconnection startup of ST in MAST have been studied in detail using 130 channel YAG- and 300 channel Ruby-Thomson scattering measurement and a new 32 chord ion Doppler tomography diagnostics. In addition to the previously achieved record heating of ~1keV, 2D profile of electron temperature revealed highly localized heating structure at X point with the characteristic scale length of 0.02-0.05m < c /ωpi , while the ion temperature increases in the downstream of outflow jet with the width of c /ωpi ~ 0 . 1 m where reconnected field forms thick layer of closed flux surface. The effect of Ti -Te energy relaxation also affects both heating profiles in MAST, finally the formation of triple peak structure for both profiles was observed with the delay of τeiE. The toroidal guide field mostly contributes to the formation of a localized electron heating structure at the X point but not to bulk ion heating downstream. This work is supported by JSPS KAKENHI Grant Number 15H05750 and 15K20921.

  8. Correlation of stress-wave-emission characteristics with fracture aluminum alloys

    NASA Technical Reports Server (NTRS)

    Hartbower, C. E.; Reuter, W. G.; Morais, C. F.; Crimmins, P. P.

    1972-01-01

    A study to correlate stress wave emission characteristics with fracture in welded and unwelded aluminum alloys tested at room and cryogenic temperature is reported. The stress wave emission characteristics investigated were those which serve to presage crack instability; viz., a marked increase in:(1) signal amplitude; (2) signal repetition rate; and (3) the slope of cumulative count plotted versus load. The alloys were 7075-T73, 2219-T87 and 2014-T651, welded with MIG and TIG using 2319 and 4043 filler wire. The testing was done with both unnotched and part-through-crack (PTC) tension specimens and with 18-in.-dia subscale pressure vessels. In the latter testing, a real time, acoustic emission, triangulation system was used to locate the source of each stress wave emission. With such a system, multiple emissions from a given location were correlated with defects found by conventional nondestructive inspection.

  9. A novel field emission microscopy method to study field emission characteristics of freestanding carbon nanotube arrays.

    PubMed

    Li, Yunhan; Sun, Yonghai; Jaffray, David A; Yeow, John T W

    2017-04-18

    Field emission (FE) uniformity and the mechanism of emitter failure of freestanding carbon nanotube (CNT) arrays have not been well studied due to the difficulty of observing and quantifying FE performance of each emitter in CNT arrays. Herein a field emission microscopy (FEM) method based on poly(methyl methacrylate) (PMMA) thin film is proposed to study the FE uniformity and CNT emitter failure of freestanding CNT arrays. FE uniformity of freestanding CNT arrays and different levels of FE current contributions from each emitter in the arrays are recorded and visualized. FEM patterns on the PMMA thin film contain the details of the CNT emitter tip shape and whether multiple CNT emitters occur at an emission site. Observation of real-time FE performance and the CNT emitter failure process in freestanding CNT arrays are successfully achieved using a microscopic camera. High emission currents through CNT emitters causes Joule heating and light emission followed by an explosion of the CNTs. The proposed approach is capable of resolving the major challenge of building the relationship between FE performance and CNT morphologies, which can significantly facilitate the study of FE non-uniformity, the emitter failure mechanism and the development of stable and reliable FE devices in practical applications.

  10. A novel field emission microscopy method to study field emission characteristics of freestanding carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Li, Yunhan; Sun, Yonghai; Jaffray, David A.; Yeow, John T. W.

    2017-04-01

    Field emission (FE) uniformity and the mechanism of emitter failure of freestanding carbon nanotube (CNT) arrays have not been well studied due to the difficulty of observing and quantifying FE performance of each emitter in CNT arrays. Herein a field emission microscopy (FEM) method based on poly(methyl methacrylate) (PMMA) thin film is proposed to study the FE uniformity and CNT emitter failure of freestanding CNT arrays. FE uniformity of freestanding CNT arrays and different levels of FE current contributions from each emitter in the arrays are recorded and visualized. FEM patterns on the PMMA thin film contain the details of the CNT emitter tip shape and whether multiple CNT emitters occur at an emission site. Observation of real-time FE performance and the CNT emitter failure process in freestanding CNT arrays are successfully achieved using a microscopic camera. High emission currents through CNT emitters causes Joule heating and light emission followed by an explosion of the CNTs. The proposed approach is capable of resolving the major challenge of building the relationship between FE performance and CNT morphologies, which can significantly facilitate the study of FE non-uniformity, the emitter failure mechanism and the development of stable and reliable FE devices in practical applications.

  11. Absence of Debye Sheaths Due to Secondary Electron Emission

    SciTech Connect

    M.D. Campanell, A. Khrabrov and I. D. Kaganovich

    2012-05-11

    A bounded plasma where the hot electrons impacting the walls produce more than one secondary on average is studied via particle-in-cell simulation. It is found that no classical Debye sheath or space-charge limited sheath exists. Ions are not drawn to the walls and electrons are not repelled. Hence the unconfined plasma electrons travel unobstructed to the walls, causing extreme particle and energy fluxes. Each wall has a positive charge, forming a small potential barrier or "inverse sheath" that pulls some secondaries back to the wall to maintain the zero current condition.

  12. Pyroelectric electron emissions and domain inversion of LiNbO 3 single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Wook; Bourim, E. M.; Jeong, Soo-Hwan; Yoo, In K.

    2004-10-01

    We investigated the electron emissions from a congruent LiNbO3 single crystal with variation in temperature. When there was a small gap between the crystal and detector (<2 mm), we observed abrupt drops in the emission current and polarization domain inversion of the crystal. The current burst was distributed in tree-like patterns that suggested plasma generation. A sufficient gap and a crystal with a high coercive field appear to be factors that allow reproducible electron emissions from pyroelectric materials.

  13. Simulation of secondary electron emission based on a phenomenological probabilistic model

    SciTech Connect

    Furman, M.A.; Pivi, M.T.F.

    2003-06-02

    We provide a detailed description of a model and its computational algorithm for the secondary electron emission process. The model is based on a broad phenomenological fit to data for the secondary emission yield (SEY) and the emitted-energy spectrum. We provide two sets of values for the parameters by fitting our model to two particular data sets, one for copper and the other one for stainless steel. We also present details of the electron-cloud simulation code POSINST that are relevant to the secondary emission process. This note expands on our previously published article.

  14. Characteristics of volatile organic compounds (VOCs) from the evaporative emissions of modern passenger cars

    NASA Astrophysics Data System (ADS)

    Yue, Tingting; Yue, Xin; Chai, Fahe; Hu, Jingnan; Lai, Yitu; He, Liqang; Zhu, Rencheng

    2017-02-01

    Volatile organic compounds (VOCs) from vehicle evaporative emissions contribute substantially to photochemical air pollution. Yet, few studies of the characteristics of VOCs emitted from vehicle evaporative emissions have been published. We investigate the characteristics of 57 VOCs in hot soak, 24 h diurnal and 48 h diurnal emissions by applying the Sealed Housing Evaporative Determination unit (SHED) test to three modern passenger cars (one US Tier 2 and two China IV vehicles) using two different types of gasoline. The characteristics of the VOCs from the hot soak, 24 h diurnal and 48 h diurnal emissions were different due to their different emission mechanisms. In the hot soak emissions, toluene, isopentane/n-pentane, and 2,2,4-trimethylpentane were dominant species. In the 24 h and 48 h diurnal emissions, isopentane and n-pentane were dominant species. Toluene was the third most dominant component in the 24 h diurnal emissions but decreased by a mass of 42%-80% in the 48 h diurnal emissions. In the hot soak, 24 h diurnal and 48 h diurnal emissions, alkanes were generally the dominant hydrocarbons, followed by aromatics and olefins. However, owing to different evaporative emission mechanisms, the weight percentages of the aromatic hydrocarbons decreased and the weight percentages of the alkanes increased from the hot soak test to the 24 h diurnal and 48 h diurnal tests for each vehicle. The dominant contributors to the ozone formation potentials (OFPs) were also different in the hot soak, 24 h diurnal and 48 h diurnal emissions. The OFPs (g O3/g VOC) of the hot soak emissions were higher than those of the 24 h and 48 h diurnal emissions. In addition, the combined effect of decreasing the olefin and aromatic contents of gasoline on vehicle evaporative emissions was investigated. The aromatics all decreased substantially in the hot soak, 24 h and 48 h diurnal emissions, and the total masses of the VOCs and OFPs decreased, with the greatest reduction occurring in

  15. The Effect of the Diesel Cetane Number on Exhaust Emissions Characteristics by Various Additives

    NASA Astrophysics Data System (ADS)

    Lim, Yunsung; Seo, Choongyeol; Lee, Jongtae; Kang, Daeil; Kim, Jeong Soo; Kim, Hyung Jun

    This paper described the effect of the diesel cetane number on exhaust emissions characteristics according to various additives. In addition, the emission characteristics of test fuels blended with three additives (GTL, biodiesel and additive for improving CN) were analyzed and the potential for uses of these additives were evaluated in this study. To achieve this purpose, the test diesel vehicle with a two-thousand cubic centimeter displacement was used to analyze the emission characteristics according to the CN. Also, the NEDC (New European Driving Cycle) was applied as the test mode which is widely used as the test method for environmental certification of diesel vehicles. To analyze the characteristics of HAPs, the VOCs and PAHs were analyzed from the BTEX and the particulate matter, respectively. The analysis results revealed that the CO emissions show the largest reduction rate while the NOx+THC emissions are reduced at a low as the CN got higher. In the NEDC mode, the PM emissions in the EUDC mode were found to be at a lower level than those in the UDC mode. As for the VOCs and PAHs characteristics, the VOCs of the CN 58 show the lowest amounts. Also, the PAHs of diesel blended with GTL show the highest level, followed by those of diesel blended with biodiesel and diesel blended with cetane additive.

  16. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    SciTech Connect

    Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V; Marklund, Mattias; Mourou, G; Sergeev, Aleksandr M

    2013-04-30

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)

  17. Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel

    PubMed Central

    Brand, Christian; Goodman, Anna; Rutter, Harry; Song, Yena; Ogilvie, David

    2013-01-01

    Carbon dioxide (CO2) emissions from motorised travel are hypothesised to be associated with individual, household, spatial and other environmental factors. Little robust evidence exists on who contributes most (and least) to travel CO2 and, in particular, the factors influencing commuting, business, shopping and social travel CO2. This paper examines whether and how demographic, socio-economic and other personal and environmental characteristics are associated with land-based passenger transport and associated CO2 emissions. Primary data were collected from 3474 adults using a newly developed survey instrument in the iConnect study in the UK. The participants reported their past-week travel activity and vehicle characteristics from which CO2 emissions were derived using an adapted travel emissions profiling method. Multivariable linear and logistic regression analyses were used to examine what characteristics predicted higher CO2 emissions. CO2 emissions from motorised travel were distributed highly unequally, with the top fifth of participants producing more than two fifth of emissions. Car travel dominated overall CO2 emissions, making up 90% of the total. The strongest independent predictors of CO2 emissions were owning at least one car, being in full-time employment and having a home-work distance of more than 10 km. Income, education and tenure were also strong univariable predictors of CO2 emissions, but seemed to be further back on the causal pathway than having a car. Male gender, late-middle age, living in a rural area and having access to a bicycle also showed significant but weaker associations with emissions production. The findings may help inform the development of climate change mitigation policies for the transport sector. Targeting individuals and households with high car ownership, focussing on providing viable alternatives to commuting by car, and supporting planning and other policies that reduce commuting distances may provide an equitable and

  18. Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel.

    PubMed

    Brand, Christian; Goodman, Anna; Rutter, Harry; Song, Yena; Ogilvie, David

    2013-04-01

    Carbon dioxide (CO2) emissions from motorised travel are hypothesised to be associated with individual, household, spatial and other environmental factors. Little robust evidence exists on who contributes most (and least) to travel CO2 and, in particular, the factors influencing commuting, business, shopping and social travel CO2. This paper examines whether and how demographic, socio-economic and other personal and environmental characteristics are associated with land-based passenger transport and associated CO2 emissions. Primary data were collected from 3474 adults using a newly developed survey instrument in the iConnect study in the UK. The participants reported their past-week travel activity and vehicle characteristics from which CO2 emissions were derived using an adapted travel emissions profiling method. Multivariable linear and logistic regression analyses were used to examine what characteristics predicted higher CO2 emissions. CO2 emissions from motorised travel were distributed highly unequally, with the top fifth of participants producing more than two fifth of emissions. Car travel dominated overall CO2 emissions, making up 90% of the total. The strongest independent predictors of CO2 emissions were owning at least one car, being in full-time employment and having a home-work distance of more than 10 km. Income, education and tenure were also strong univariable predictors of CO2 emissions, but seemed to be further back on the causal pathway than having a car. Male gender, late-middle age, living in a rural area and having access to a bicycle also showed significant but weaker associations with emissions production. The findings may help inform the development of climate change mitigation policies for the transport sector. Targeting individuals and households with high car ownership, focussing on providing viable alternatives to commuting by car, and supporting planning and other policies that reduce commuting distances may provide an equitable and

  19. Enhancement of electron field emission property with silver incorporation into diamondlike carbon matrix

    SciTech Connect

    Ahmed, Sk. Faruque; Moon, Myoung-Woon; Lee, Kwang-Ryeol

    2008-05-12

    Effects of silver doping on the electron field emission properties of diamondlike carbon films deposited on silicon substrates by the rf reactive sputtering technique were studied in detail. It was found that the threshold field and effective emission barrier were reduced by Ag doping and the emission current strongly depends on the Ag doping percentage. The threshold field was found to decrease from 6.8 to 2.6 V/{mu}m with a variation of Ag at. % from 0 to 12.5. The field enhancement factor was calculated and we have explained the emission mechanism.

  20. Diffuse galactic continuum emission measured by COMPTEL and the cosmic-ray electron spectrum

    NASA Technical Reports Server (NTRS)

    Strong, A. W.; Diehl, R.; Schoenfelder, V.; Varendorff, M.; Youssefi, G.; Bloemen, H.; Hermsen, W.; De Vries, C.; Morris, D.; Stacy, J. G.

    1994-01-01

    Diffuse galactic continuum gamma-ray emission in the 0.75-30 MeV range from the inner Galaxy has been studied using data from COMPTEL on the Compton Gamma-Ray Observatory. Observations of the inner Galaxy from the Sky Survey have been used. The imaging properties of COMPTEL enable spatial analysis of the gamma-ray distribution using model fitting. A model based on atomic and molecular gas distributions in the Galaxy has been used to derive the emissivity spectrum of the gamma-ray emission and this spectrum is compared with theoretical estimates of bremsstrahlung emission from cosmic-ray electrons.

  1. Electron emission mechanism during the nanosecond high-voltage pulsed discharge in pressurized air

    NASA Astrophysics Data System (ADS)

    Levko, D.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-02-01

    A comparison between the results of x-ray absorption spectroscopy of runaway electrons (RAEs) generated during nanosecond timescale high-voltage (HV) gas discharge and the simulated attenuation of the x-ray flux produced by the runaway electron spectrum calculated using particle-in-cell numerical modeling of such a type of discharge is presented. The particle-in-cell simulation considered the field and explosive emissions (EEs) of the electrons from the cathode. It is shown that the field emission is the dominant emission mechanism for the short-duration (<2.5 ns) high-voltage pulses, while for the long-duration (>5 ns) high-voltage pulses, the explosive emission is likely to play a significant role.

  2. Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring--An overview.

    PubMed

    Deshmukh, Sharvari; Bandyopadhyay, Rajib; Bhattacharyya, Nabarun; Pandey, R A; Jana, Arun

    2015-11-01

    The present review evaluates the key modules of the electronic nose, a biomimetic system, with specific examples of applications to industrial emissions monitoring and measurement. Regulations concerning the odor control are becoming very strict, due to ever mounting environmental pollution and its subsequent consequences and it is advantageous to employ real time measurement system. In this perspective, systems like the electronic nose are an improved substitute for assessing the complex industrial emissions over other analytical techniques (odorant concentration measurement) and olfactometry (odor concentration measurement). Compared to tools like gas chromatography, electronic nose systems are easy to develop, are non-destructive and useful for both laboratory and on field purposes. Although there has been immense development of more sensitive and selective sensor arrays and advanced data mining techniques, there have been limited reports on the application of electronic nose for the measurement of industrial emissions. The current study sheds light on the practical applicability of electronic nose for the effective industrial odor and gaseous emissions measurement. The applications categorization is based on gaseous pollutants released from the industries. Calibration and calibration transfer methodologies have been discussed to enhance the applicability of electronic nose system. Further, industrial gas grab sampling technique is reviewed. Lastly, the electronic mucosa system, which has the ability to overcome the flaws of electronic nose system, has been examined. The review ends with the concluding remarks describing the pros and cons of artificial olfaction technique for the industrial applications.

  3. Electron transport characteristics of silicon nanowires by metal-assisted chemical etching

    SciTech Connect

    Qi, Yangyang; Wang, Zhen; Zhang, Mingliang; Wang, Xiaodong Ji, An; Yang, Fuhua

    2014-03-15

    The electron transport characteristics of silicon nanowires (SiNWs) fabricated by metal-assisted chemical etching with different doping concentrations were studied. By increasing the doping concentration of the starting Si wafer, the resulting SiNWs were prone to have a rough surface, which had important effects on the contact and the electron transport. A metal-semiconductor-metal model and a thermionic field emission theory were used to analyse the current-voltage (I-V) characteristics. Asymmetric, rectifying and symmetric I-V curves were obtained. The diversity of the I-V curves originated from the different barrier heights at the two sides of the SiNWs. For heavily doped SiNWs, the critical voltage was one order of magnitude larger than that of the lightly doped, and the resistance obtained by differentiating the I-V curves at large bias was also higher. These were attributed to the lower electron tunnelling possibility and higher contact barrier, due to the rough surface and the reduced doping concentration during the etching process.

  4. Electron-emission yield under electron impact of ceramics used as channel materials in Hall-effect thrusters

    NASA Astrophysics Data System (ADS)

    Tondu, T.; Belhaj, M.; Inguimbert, V.

    2011-11-01

    We report measurement of electron-emission yield (EEY) under the impact of electrons on materials of Hall-effect-thruster (HET) interest: BN, BN-SiO2, and Al2O3. The effects of the material aging (under electron irradiation) on the yield of BN and Al2O3 are investigated. The EEY of BN grows with electron exposure, whereas that of Al2O3 reduces. A simple analysis of our experimental results indicates that these variations are most likely because of surface and near surface composition changes caused by the electron beam. The representativeness of EEY measurements on ceramics that have not suffered from the specific environment of a HET (ion and electron bombardment) is discussed.

  5. Analytical solution for phase space evolution of electrons operating in a self-amplified spontaneous emission free electron laser

    NASA Astrophysics Data System (ADS)

    Nishimori, Nobuyuki

    2005-10-01

    I present an analytical solution for the phase space evolution of electrons in a self-amplified spontaneous emission (SASE) free-electron laser (FEL) operating in the linear regime before saturation in the resonant case by solving the one dimensional FEL equation together with the solution of the cubic equation, which represents the evolution of the SASE FEL field. The electrons are shown to be bunched around π/6 ahead of a resonant electron every resonant FEL wavelength in the high gain regime. The phase relation is similar to that in a low gain FEL where an electron beam above resonance is injected, explaining the positive FEL gain. The analytical solutions agree well with numerical simulations and are applied to obtain the coherent optical transition radiation (OTR) intensity produced from electron microbunching at FEL wavelength. The coherent OTR intensity is shown to be proportional to FEL intensity.

  6. Measurements of the fast electron bremsstrahlung emission during electron cyclotron resonance heating in the HL-2A tokamak

    SciTech Connect

    Zhang, Y. P.; Liu, Yi; Song, X. Y.; Yuan, G. L.; Chen, W.; Ji, X. Q.; Ding, X. T.; Yang, J. W.; Zhou, J.; Li, X.; Yang, Q. W.; Duan, X. R.; Pan, C. H.; Liu, Y.

    2010-10-15

    A fast electron bremsstrahlung (FEB) diagnostic technique based on cadmium telluride (CdTe) detector has been developed recently in the HL-2A tokamak for measurements of the temporal evolution of FEB emission in the energy range of 10-200 keV. With a perpendicular viewing into the plasma on the equatorial plane, the hard x-ray spectra with eight different energy channels are measured. The discrimination of the spectra is implemented by an accurate spectrometry. The system also makes use of fast digitization and software signal processing technology. An ambient environment of neutrons, gammas, and magnetic disturbance requires careful shielding. During electron cyclotron resonance heating, the generation of fast electrons and the oscillations of electron fishbone (e-fishbone) have been found. Using the FEB measurement system, it has been experimentally identified that the mode strongly correlates with the electron cyclotron resonance heating produced fast electrons with 30-70 keV.

  7. Quantum interferences induced by multiple scattering paths of the electron prior to emission in large molecules

    NASA Astrophysics Data System (ADS)

    Agueny, H.; Makhoute, A.; Tökési, K.; Dubois, A.; Hansen, J. P.

    2017-09-01

    We theoretically investigate electron emission process from a dimer generated by swift highly charged ions. The process under consideration is dealt with a non-perturbative approach by solving the time-dependent Schrödinger equation on a two-dimensional spatial grid. Numerical calculations show rich structures related to the multiple scattering paths of the electron prior to emission. This manifests by the emergence of additional oscillations with high-frequency superimposed on the Young-type oscillatory structure in the observed electron-ejected spectrum. This is not the case when calculations are performed based on the superposition principle, in which the final wave function is just a coherent sum of component wave functions described the electron emission from two-independent atoms. Within this assumption, only a direct electron emission process is taken into account. We find that contributions arising from these multiple scattering paths modify the dynamic electron emission process, and therefore, show the incorrect applicability of the above-mentioned principle, in concordance with the recent findings based on a simple three-slit interference experiment, reported in Sawant et al. (2014).

  8. Temperature gradient scale length measurement: A high accuracy application of electron cyclotron emission without calibration

    NASA Astrophysics Data System (ADS)

    Houshmandyar, S.; Yang, Z. J.; Phillips, P. E.; Rowan, W. L.; Hubbard, A. E.; Rice, J. E.; Hughes, J. W.; Wolfe, S. M.

    2016-11-01

    Calibration is a crucial procedure in electron temperature (Te) inference from a typical electron cyclotron emission (ECE) diagnostic on tokamaks. Although the calibration provides an important multiplying factor for an individual ECE channel, the parameter ΔTe/Te is independent of any calibration. Since an ECE channel measures the cyclotron emission for a particular flux surface, a non-perturbing change in toroidal magnetic field changes the view of that channel. Hence the calibration-free parameter is a measure of Te gradient. BT-jog technique is presented here which employs the parameter and the raw ECE signals for direct measurement of electron temperature gradient scale length.

  9. How electron two-stream instability drives cyclic Langmuir collapse and continuous coherent emission

    NASA Astrophysics Data System (ADS)

    Che, Haihong; Goldstein, Melvyn L.; Diamond, Patrick H.; Sagdeev, Roald Z.

    2017-02-01

    Continuous plasma coherent emission is maintained by repetitive Langmuir collapse driven by the nonlinear evolution of a strong electron two-stream instability. The Langmuir waves are modulated by solitary waves in the linear stage and electrostatic whistler waves in the nonlinear stage. Modulational instability leads to Langmuir collapse and electron heating that fills in cavitons. The high pressure is released via excitation of a short-wavelength ion acoustic mode that is damped by electrons and reexcites small-scale Langmuir waves; this process closes a feedback loop that maintains the continuous coherent emission.

  10. Electron emission and energy loss in grazing collisions of protons with insulator surfaces

    SciTech Connect

    Gravielle, M. S.; Miraglia, J. E.; Aldazabal, I.; Aumayr, F.; Lederer, S.; Winter, H.

    2007-07-15

    Electron emission from LiF, KCl, and KI crystal surfaces during grazing collisions of swift protons is studied using a first-order distorted-wave formalism. Owing to the localized character of the electronic structure of these surfaces, we propose a model that allows us to describe the process as a sequence of atomic transitions from different target ions. Experimental results are presented for electron emission from LiF and KI and energy loss from KI surfaces. Calculations show reasonable agreement with these experimental data. The role played by the charge of the incident particle is also investigated.

  11. Spontaneous emission measurements from a low voltage pre-bunched electron beam

    SciTech Connect

    Dearden, G.; Mayhew, S.E.; Lucas, J.

    1995-12-31

    Recently we have carried out measurements on the spontaneous microwave (8.2 GHz) emission which results when a low-voltage (55kV) pre-punched electron beam is passed through a waveguide in a wiggler magnetic field. The variation of the spontaneous emission output power level with the average electron beam current and energy are reported and compared with the theory presented by Doria et al. The effect of the degree of bunching of the electron beam has also been observed and compared with theory.

  12. How electron two-stream instability drives cyclic Langmuir collapse and continuous coherent emission

    PubMed Central

    Goldstein, Melvyn L.; Diamond, Patrick H.; Sagdeev, Roald Z.

    2017-01-01

    Continuous plasma coherent emission is maintained by repetitive Langmuir collapse driven by the nonlinear evolution of a strong electron two-stream instability. The Langmuir waves are modulated by solitary waves in the linear stage and electrostatic whistler waves in the nonlinear stage. Modulational instability leads to Langmuir collapse and electron heating that fills in cavitons. The high pressure is released via excitation of a short-wavelength ion acoustic mode that is damped by electrons and reexcites small-scale Langmuir waves; this process closes a feedback loop that maintains the continuous coherent emission. PMID:28137887

  13. UV-radiation-induced electron emission by hormones. Hypothesis for specific communication mechanisms

    NASA Astrophysics Data System (ADS)

    Getoff, Nikola

    2009-11-01

    The highlights of recently observed electron emission from electronically excited sexual hormones (17β-estradiol, progesterone, testosterone) and the phytohormone genistein in polar media are briefly reviewed. The electron yield, Q(e aq-), dependence from substrate concentration, hormone structure, polarity of solvent, absorbed energy and temperature are discussed. The hormones reactivity with e aq- and efficiency in electron transfer ensure them the ability to communicate with other biological systems in an organism. A hypothesis is presented for the explanation of the mechanisms of the distinct recognition of signals transmitted by electrons, originating from different types of hormones to receiving centres. Biological consequences of the electron emission in respect to cancer are mentioned.

  14. Observation of electron emission in the nuclear reaction between protons and deuterons

    NASA Astrophysics Data System (ADS)

    Lipoglavšek, M.; Markelj, S.; Mihovilovič, M.; Petrovič, T.; Štajner, S.; Vencelj, M.; Vesić, J.

    2017-10-01

    Proton-deuteron fusion reaction has been studied using a proton beam with an energy of 260 keV and a deuterium-implanted graphite target. The reaction product, 3He, usually de-excites by γ-ray emission. However, instead of a γ ray, 3He can emit an electron with a discrete energy of 5.6 MeV, due to electron screening in graphite. Such electrons were identified with the ΔE-E technique. The emission of fast electrons shows that electron screening causes the electrons to approach the nuclei during the reaction very closely. Different behavior of nuclear reactions at low and high energies was also demonstrated.

  15. Ion-induced electron emission from cold metal targets covered by rare gases

    NASA Astrophysics Data System (ADS)

    Soszka, W.

    1990-03-01

    The energy and angular distributions of secondary electrons emitted upon ion bombardment of cold metal targets covered by rare gases in different states (two-dimensional gas layer, stationary adsorbed layer or solid film) are examined. The state of noble gas on the metal surface influences the yield of electrons from the metal (bulk electron emission) and from the adsorbed layer. A change of density of surface electrons which become localized near the positions of adsorbed particles is supposed to be responsible for the observed differences in electron emission from the targets covered by physi- or chemisorbed noble-gas layers. This is confirmed by analysis of the reflected ions which has been carried out additionally to the electron measurements.

  16. Probing 67P/Churyumov-Gerasimenko's Electron Environment Through Ultraviolet Emission by Rosetta Alice Observations

    NASA Astrophysics Data System (ADS)

    Schindhelm, Eric; Noonan, John; Keeney, Brian A.; Broiles, Thomas; Bieler, Andre; A'Hearn, Michael F.; Bertaux, Jean-Loup; Feaga, Lori M.; Feldman, Paul D.; Parker, Joel Wm.; Steffl, Andrew Joseph; Stern, S. Alan; Weaver, Harold A.

    2016-10-01

    The Alice Far-Ultraviolet (FUV) Spectrograph onboard ESA's Rosetta spacecraft has observed the coma of comet 67P/Churyumov-Gerasimenko from far approach in summer 2014 until the end of mission in September 2016. We present an overall perspective of the bright FUV emission lines (HI 1026 Å, OI 1302/1305/1306 Å multiplet, OI] 1356 Å, CO 1510 (1-0) Å, and CI 1657 Å) above the sunward hemisphere, detailing their spatial extent and brightness as a function of time and the heliocentric distance of the comet. We compare our observed gas column densities derived using electron temperatures and densities from the Ion Electron Sensor (IES) with those derived using the Inner Coma Environment Simulator (ICES) models in periods when electron-impact excited emission dominates over solar fluorescence emission. The electron population is characterized with 2 three-dimensional kappa functions, one dense and warm, one rarefied and hot.

  17. Electron emission properties of gated silicon field emitter arrays driven by laser pulses

    NASA Astrophysics Data System (ADS)

    Shimawaki, Hidetaka; Nagao, Masayoshi; Neo, Yoichiro; Mimura, Hidenori; Wakaya, Fujio; Takai, Mikio

    2016-10-01

    We report optically modulated electron emission from gated p-type silicon field emitter arrays (Si-FEAs). The device's "volcano" structure is designed to control the photoexcitation of electrons by transmitting light through the small gate aperture, thereby minimizing the photogeneration of slow diffusion carriers outside the depletion region in the tip. Compared to that in the dark, the emission current was enhanced by more than three orders of magnitude in the high field region when irradiated with blue laser pulses. Results from the time-resolved measurements of photoassisted electron emission showed that these possess the same response as the laser pulse with no discernible delay. These results indicate that the volcano device structure is effective at eliminating the generation of diffusion carriers and that a fully optimized FEA is promising as a photocathode for producing high-speed modulated electron beams.

  18. Characteristics of heat flux and electromagnetic electron-cyclotron instabilities driven by solar wind electrons

    NASA Astrophysics Data System (ADS)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Qureshi, M. N. S.

    2017-01-01

    In-situ observations reveal the existence of electron velocity distribution function in the solar wind, where the net distribution can be modeled by a combination of core, halo and strahl. These components often possess a relative drift and with respective temperature anisotropies. The relative drift between the core and halo components leads to heat flux (HF) instability, while temperature anisotropies drive electromagnetic electron-cyclotron (EMEC) instability. These instabilities have been separately studied in the literature, but for the first time, the present study combines both unstable modes in the presence of two free energy sources, namely, excessive parallel pressure and excessive perpendicular temperature. Heat flux instability (which is a left-hand circularly polarized mode) is effectively similar to electron firehose instability, except that the free energy is provided by net relative drift among two component electrons in the background of protons. The heat flux instability is discussed here along with (the right-hand polarized) EMEC instability driven by temperature anisotropy. The unstable heat flux mode is conventionally termed the "whistler" heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. Electromagnetic electron-cyclotron mode, on the other hand, reduces to the proper whistler wave in the absence of free energy source. The present combined analysis clarifies the polarization characteristics of these two modes in an unambiguous manner.

  19. Electronic characteristics of 'real' CdS surfaces.

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Balestra, C. L.; Gatos, H. C.

    1972-01-01

    Photovoltage spectroscopy (including photovoltage inversion and photovoltage quenching) was used to determine the electronic characteristics of real (basal and prismatic) surfaces of CdS. In room atmosphere, surface states with the following positions were found in the cadmium surfaces: Ec - Et equal to 0.05, 0.4, and 0.8 eV, and Ev - Et equal to 0.83 eV. The same surface states were present in the sulfur surfaces, with the exception of those at Ec - Et equal to 0.4 eV. In the prismatic and unetched basal surfaces, states at Ec - Et equal to 1.1 eV were found in addition to all of those found on the cadmium surfaces.

  20. Electron impact ionization of Io's sodium emission cloud

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Matson, D. L.; Johnson, T. V.

    1975-01-01

    The geometry of the sodium cloud associated with Io (Jupiter I) indicates that the lifetime of the neutral sodium atoms is an order of magnitude less than the photoionization lifetime. We suggest that ionization by thermal plasma electrons in the Jovian magnetosphere is the dominant Na loss process. Using plasma densities deduced from Pioneer 10 measurements, the lifetime and density distributions are calculated for Na and other species which may be present in the cloud around Io. Electron ionization of Na is found to be an order of magnitude faster than photoionization, in agreement with the lifetime deduced from Na cloud observations.

  1. Solid state effects in electron emission from atomic collisions near surfaces

    SciTech Connect

    Reinhold, C.O.; Burgdoerfer, J.; Minniti, R.; Elston, S.B.

    1996-10-01

    We present a brief progress report of recent studies of the ejected electron spectra arising from glancing-angle ion-surface scattering involving collision energies of hundreds of keV/u. A broad range of electron energies and emission angles is analyzed containing prominent structures such as the convoy electron peak and the binary ridge. Particular emphasis is placed on the search for signatures of dynamic image interactions and multiple scattering near surfaces. 30 refs., 8 figs.

  2. Cascade emission in electron beam ion trap plasma of W25+ ion

    NASA Astrophysics Data System (ADS)

    Jonauskas, V.; Pütterich, T.; Kučas, S.; Masys, Š.; Kynienė, A.; Gaigalas, G.; Kisielius, R.; Radžiūtė, L.; Rynkun, P.; Merkelis, G.

    2015-07-01

    Spectra of the W25+ ion are studied using the collisional-radiative model (CRM) with an ensuing cascade emission. It is determined that the cascade emission boosts intensities only of a few lines in the 10-30 nm range. The cascade emission is responsible for the disappearance of structure of lines at about 6 nm in the electron beam ion trap plasma. Emission band at 4.5-5.3 nm is also affected by the cascade emission. The strongest lines in the CRM spectrum correspond to 4d9 4f4 → 4f3 transitions, while 4f2 5 d → 4f3 transitions arise after the cascade emission is taken into account.

  3. Multi-scale simulation of electron emission from a triode-type electron source with a carbon-nanotube column array cathode.

    PubMed

    Becker, Joel; Hong, Nguyen Tuan; Berthelier, Jean-Jacques; Leblanc, Francois; Lee, Soonil; Cipriani, Fabrice

    2013-11-22

    We have designed and fabricated a new type of field electron source for a novel onboard mass spectrometer. The new electron source, which is a field effect emitter in a triode configuration, consists of a CNT-column array cathode and an extraction gate with holes that are aligned concentrically with respect to the cylindrical CNT columns. In triode mode operation, cathode currents as large as ~420 μA have been emitted with an anode-to-gate current ratio of ~1.5. To account for the observed emission characteristics of the new electron source, we have carried out multi-scale simulations that combine a three-dimensional (3D) microscopic model in the vicinity of an actual emission site with a two-dimensional (2D) macroscopic model that covers the whole device structure. Because the mesh size in the microscopic 3D model is as small as 100 nm, the contributions of the extruding CNT bundle at the top edge of an electron column can be examined in detail. Unlike the macroscopic 2D simulation that shows only small field enhancement at CNT column's top edge, the multi-scale simulation successfully reproduced the local electric field strongly enough to emit the measured cathode currents and the electric field distribution which is consistent with the measured anode-to-gate current ratio.

  4. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    SciTech Connect

    Oosterbeek, J. W.; Buerger, A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Bongers, W. A.; Graswinckel, M. F.; Hennen, B. A.; Kruijt, O. G.; Thoen, J.; Heidinger, R.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.

    2008-09-15

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam. ECE measurements are obtained during high power ECRH operation. This demonstrates the successful operation of the diagnostic and, in particular, a sufficient suppression of the gyrotron component preventing it from interfering with ECE measurements. When integrated into a feedback system for the control of plasma instabilities this line-of-sight ECE diagnostic removes the need to localize the instabilities in absolute coordinates.

  5. Modeling of reduced effective secondary electron emission yield from a velvet surface

    DOE PAGES

    Swanson, Charles; Kaganovich, Igor D.

    2016-12-05

    Complex structures on a material surface can significantly reduce total secondary electron emission from that surface. A velvet is a surface that consists of an array of vertically standing whiskers. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at the bottom of the structure and on the sides of the velvet whiskers. We performed numerical simulations and developed an approximate analytical model that calculates the net secondary electron emission yield from a velvet surface as a function of the velvet whisker length and packing density, and the angle of incidence of primary electrons. We foundmore » that to suppress secondary electrons, the following condition on dimensionless parameters must be met: (π/2) DΑ tan θ >> 1, where theta is the angle of incidence of the primary electron from the normal, D is the fraction of surface area taken up by the velvet whisker bases, and A is the aspect ratio, A = h/r, the ratio of height to radius of the velvet whiskers. We find that velvets available today can reduce the secondary electron yield by 90% from the value of a flat surface. As a result, the values of optimal velvet whisker packing density that maximally suppresses the secondary electron emission yield are determined as a function of velvet aspect ratio and the electron angle of incidence.« less

  6. Modeling of reduced effective secondary electron emission yield from a velvet surface

    SciTech Connect

    Swanson, Charles; Kaganovich, Igor D.

    2016-12-05

    Complex structures on a material surface can significantly reduce total secondary electron emission from that surface. A velvet is a surface that consists of an array of vertically standing whiskers. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at the bottom of the structure and on the sides of the velvet whiskers. We performed numerical simulations and developed an approximate analytical model that calculates the net secondary electron emission yield from a velvet surface as a function of the velvet whisker length and packing density, and the angle of incidence of primary electrons. We found that to suppress secondary electrons, the following condition on dimensionless parameters must be met: (π/2) DΑ tan θ >> 1, where theta is the angle of incidence of the primary electron from the normal, D is the fraction of surface area taken up by the velvet whisker bases, and A is the aspect ratio, A = h/r, the ratio of height to radius of the velvet whiskers. We find that velvets available today can reduce the secondary electron yield by 90% from the value of a flat surface. As a result, the values of optimal velvet whisker packing density that maximally suppresses the secondary electron emission yield are determined as a function of velvet aspect ratio and the electron angle of incidence.

  7. Modeling of reduced effective secondary electron emission yield from a velvet surface

    NASA Astrophysics Data System (ADS)

    Swanson, Charles; Kaganovich, Igor D.

    2016-12-01

    Complex structures on a material surface can significantly reduce total secondary electron emission from that surface. A velvet is a surface that consists of an array of vertically standing whiskers. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at the bottom of the structure and on the sides of the velvet whiskers. We performed numerical simulations and developed an approximate analytical model that calculates the net secondary electron emission yield from a velvet surface as a function of the velvet whisker length and packing density, and the angle of incidence of primary electrons. We found that to suppress secondary electrons, the following condition on dimensionless parameters must be met: (π/2 )D A tan θ≫1 , where θ is the angle of incidence of the primary electron from the normal, D is the fraction of surface area taken up by the velvet whisker bases, and A is the aspect ratio, A ≡ h/r, the ratio of height to radius of the velvet whiskers. We find that velvets available today can reduce the secondary electron yield by 90% from the value of a flat surface. The values of optimal velvet whisker packing density that maximally suppresses the secondary electron emission yield are determined as a function of velvet aspect ratio and the electron angle of incidence.

  8. Relativistic Electron Microburst Induced by Large Amplitude EMIC Rising-tone Emissions

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Omura, Y.

    2015-12-01

    We study dynamics of radiation belt electrons interacting with large amplitude EMIC rising-tone emissions by performing test particle simulations. Engebretson et al. [JGR, 2015] reported observation of large amplitude EMIC rising-tone emissions outside the plasmasphere and depletion of radiation belt electrons in response to these emissions. We make the two kinds of wave models; one is in low-density region based on the observation and the other is in the plasmasphere. To reproduce the large wave amplitude we include the convective wave growth, which are neglected through propagation of EMIC model waves in the previous studies [Omura and Zhao, JGR, 2012, 2013; Kubota et al., JGR, 2015]. Furthermore, we also include Landau damping in setting up the model waves. Comparing with a wave model ignoring the convective wave growth, it is found that the large wave amplitude contributes to rapid electron precipitation. Some of relativistic electrons change their equatorial pitch angles more than 15 degrees in a time scale of 0.1 s, precipitated into the atmosphere. We set up the EMIC model waves in a local longitude and distribute test electrons throughout all longitudinal direction initially. The electrons moving eastward encounter the localized EMIC waves and some of resonant electrons are precipitated into the atmosphere. We obtain distribution of radiation belt electrons with respect to their equatorial pitch angle and kinetic energy. We find that the frequency variation expands the resonant electron range of pitch angles and energies. For comparison with observation of precipitated electrons, we monitor fluxes of electrons lost into the atmosphere in a narrow longitudinal range. Furthermore, we find echo of electron depletion due to eastward drift around the Earth. Energy ranges of efficient precipitation are different depending on the regions of interaction inside and outside of the plasmapause. Inside the plasmapause, electrons with energy > 0.5 MeV are precipitated

  9. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations.

    PubMed

    White, A E; Schmitz, L; Peebles, W A; Carter, T A; Rhodes, T L; Doyle, E J; Gourdain, P A; Hillesheim, J C; Wang, G; Holland, C; Tynan, G R; Austin, M E; McKee, G R; Shafer, M W; Burrell, K H; Candy, J; DeBoo, J C; Prater, R; Staebler, G M; Waltz, R E; Makowski, M A

    2008-10-01

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w(o) approximately 1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k(theta) < or = 1.8 cm(-1) and k(r) < or = 4 cm(-1), relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5 < r/a < 0.9, increase with radius from approximately 0.5% to approximately 2%, similar to density fluctuations that are measured simultaneously with beam emission spectroscopy. After incorporating "synthetic diagnostics" to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a = 0.5, but not at a second location, r/a = 0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  10. A correlation electron cyclotron emission diagnostic and the importance of multifield fluctuation measurements for testing nonlinear gyrokinetic turbulence simulations

    SciTech Connect

    White, A. E.; Schmitz, L.; Peebles, W. A.; Carter, T. A.; Rhodes, T. L.; Doyle, E. J.; Gourdain, P. A.; Hillesheim, J. C.; Wang, G.; Holland, C.; Tynan, G. R.; Austin, M. E.; McKee, G. R.; Shafer, M. W.; Burrell, K. H.; Candy, J.; DeBoo, J. C.; Prater, R.; Staebler, G. M.; Waltz, R. E.

    2008-10-15

    A correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices. For the first time, the radial profiles of electron temperature and density fluctuations are compared to nonlinear gyrokinetic simulations. The CECE diagnostic at DIII-D uses correlation radiometry to measure the rms amplitude and spectrum of the electron temperature fluctuations. Gaussian optics are used to produce a poloidal spot size with w{sub o}{approx}1.75 cm in the plasma. The intermediate frequency filters and the natural linewidth of the EC emission determine the radial resolution of the CECE diagnostic, which can be less than 1 cm. Wavenumbers resolved by the CECE diagnostic are k{sub {theta}}{<=}1.8 cm{sup -1} and k{sub r}{<=}4 cm{sup -1}, relevant for studies of long-wavelength turbulence associated with the trapped electron mode and the ion temperature gradient mode. In neutral beam heated L-mode plasmas, core electron temperature fluctuations in the region 0.5emission spectroscopy. After incorporating 'synthetic diagnostics' to effectively filter the code output, the simulations reproduce the characteristics of the turbulence and transport at one radial location r/a=0.5, but not at a second location, r/a=0.75. These results illustrate that measurements of the profiles of multiple fluctuating fields can provide a significant constraint on the turbulence models employed by the code.

  11. Investigating the effect of electron emission pattern on RF gun beam quality

    NASA Astrophysics Data System (ADS)

    Rajabi, A.; Shokri, B.

    2016-05-01

    Thermionic radio frequency gun is one of the most promising choices to gain a high quality electron beam, used in the infrared free electron lasers and synchrotron radiation injectors. To study the quality of the beam in a compact electron source, the emission pattern effect on the beam dynamics should be investigated. In the presented work, we developed a 3D simulation code to model the real process of thermionic emission and to investigate the effect of emission pattern, by considering geometrical constraints, on the beam dynamics. According to the results, the electron bunch emittance varies considerably with the emission pattern. Simulation results have been validated via comparison with the well-known simulation codes such as ASTRA simulation code and CST microwave studio, as well as other simulation results in the literature. It was also demonstrated that by using a continuous wave laser beam for heating the cathode, the emission pattern full width at half maximum (FWHM) of the transverse emission distribution is proportional to FWHM of the Gaussian profile for the laser beam. Additionally, by using the developed code, the effect of wall structure around the cathode on the back bombardment effect has been studied. According to the results, for a stable operation of the RF gun, one should consider the nose cone in vicinity of the cathode surface to reduce the back-bombardment effect.

  12. Plasma-Wall Interaction with Strong Electron Emission Revisited

    NASA Astrophysics Data System (ADS)

    Campanell, Michael

    2016-10-01

    Half a century ago, Hobbs and Wesson derived a solution for the plasma sheath at a planar surface with emission coefficient γ. They predicted that the floating sheath potential remains negative when γ >1. Variations of their ``space-charge limited'' (SCL) sheath model have long been used to estimate the particle and energy fluxes at strongly emitting surfaces. Recent theory, simulation and experimental studies show that another plasma-wall equilibrium is possible when γ >1. In the ``inverse regime'', the sheath potential is positive, repelling ions from the wall. The quasineutral density gradient and force balance in the ``inverted presheath'' are much different from the Bohm presheaths contained in the SCL models. It turns out that a SCL plasma-wall equilibrium is only stable under the assumption of zero ionization inside the sheath. Otherwise, the cumulative trapping of new ions in the SCL's potential ``dip'' will force a transition to the inverse regime. It follows that only an inverse equilibrium should be possible in practice at floating surfaces with strong secondary, thermionic or photoelectron emissions. Applications will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  13. In situ Transmission Electron Microscopy Investigation of the Structural Changes in Carbon Nanotubes During Electron Emission at High Currents

    SciTech Connect

    Doytcheva, Maya; Kaiser, Monja; De Jonge, Niels

    2006-01-01

    The structural changes in carbon nanotubes under electron emission conditions were investigated in situ in a transmission electron microscope (TEM). The measurements were performed on individually mounted free-standing multi-walled carbon nanotubes (CNTs). It was found that the structure of the carbon nanotubes did not change gradually, as is the case with field emission electron sources made of sharp metal tips. Instead, changes occurred only above a current level of a few microamperes, which was different for each nanotube. Above the threshold current, carbon nanotubes underwent either structural damage, such as shortening and splitting of the apex of the nanotube, or closing of their open cap. The results are discussed on the basis of several models for degradation mechanisms.

  14. Electron emission from nanometer-size metallic clusters: Electronic states and structural stability of supported Au clusters

    SciTech Connect

    Lin, M.E.; Ramachandra, A.; Andres, R.P.; Reifenberger, R.

    1992-12-31

    Techniques developed to measure the thermodynamic and electronic properties of a single metallic cluster with nanometer-size dimensions are described. Using these techniques, experiments that resolve the quantized energy spectrum of electrons in a nanometer-size cluster of metallic atoms at room temperature have been performed. Studies on the stability of the electron emission current from an individual nanometer-size cluster supported on a tungsten tip have been performed to learn more about the intrinsic stability of these nanometer-size objects. The data show abrupt jumps between different emission states that are revisited as time progresses. This phenomenon is attributed to a rearrangement of the duster structure and/or orientation on the substrate and provides new evidence of multiple `isomeric` structures for small clusters of metallic atoms.

  15. Energetic electron propagation in the decay phase of non-thermal flare emission

    SciTech Connect

    Huang, Jing; Yan, Yihua; Tsap, Yuri T.

    2014-06-01

    On the basis of the trap-plus-precipitation model, the peculiarities of non-thermal emission in the decay phase of solar flares have been considered. The calculation formulas for the escape rate of trapped electrons into the loss cone in terms of time profiles of hard X-ray (HXR) and microwave (MW) emission have been obtained. It has been found that the evolution of the spectral indices of non-thermal emission depend on the regimes of the pitch angle diffusion of trapped particles into the loss cone. The properties of non-thermal electrons related to the HXR and MW emission of the solar flare on 2004 November 3 are studied with Nobeyama Radioheliograph, Nobeyama Radio Polarimeters, RHESSI, and Geostationary Operational Environmental Satellite observations. The spectral indices of non-thermal electrons related to MW and HXR emission remained constant or decreased, while the MW escape rate as distinguished from that of the HXRs increased. This may be associated with different diffusion regimes of trapped electrons into the loss cone. New arguments in favor of an important role of the superstrong diffusion for high-energy electrons in flare coronal loops have been obtained.

  16. Characteristics of krypton ion emission from a gas field ionization source with a single atom tip

    NASA Astrophysics Data System (ADS)

    Shichi, Hiroyasu; Matsubara, Shinichi; Hashizume, Tomihiro

    2017-06-01

    A scanning ion beam instrument equipped with a gas field ionization source (GFIS) has been commercialized, but only helium and neon are currently available as GFISs. The characteristics of krypton ion emission from a single atom tip (SAT) have not been reported yet. In this study, the characteristics of krypton ion emission were investigated by field ion microscopy. At 65 K, the krypton ion emission current reached approximately 40 pA, which is 1 order of magnitude higher than that at 130 K. As the krypton gas pressure was increased, the krypton ion current increased. At a pressure of 0.3 Pa, the emission current was anticipated to reach 200 pA, which may be high enough for nanofabrication. The variation of the krypton ion current was as low as 5% in one hour. We concluded that a krypton ion beam instrument equipped with a GFIS will be a powerful tool for nanofabrication.

  17. Resonant-cavity light-emitting diodes: quantum noise and spatial emission characteristics

    NASA Astrophysics Data System (ADS)

    Birkner, R. H.; Kaiser, J.; Elsässer, W.; Jung, C.

    2004-12-01

    We demonstrate the interplay between the intensity noise and the spatial emission characteristics of resonant-cavity light-emitting diodes. First, we find that the total aperture intensity noise exhibits a sub-shot noise behavior in a quite large pumping regime. Second, we investigate the angular, spectral, and spatial emission characteristics of the devices by controlling the shape and width of the angular intensity distribution via temperature detuning of the quantum well wavelength and the cavity resonance wavelength. Finally, the angular and aperture resolved intensity noise exhibit a super-shot noise behavior in contrast to that of the total emission. We explain this difference with anticorrelations between various radial components which increase with the temperature-tuned extension of the spatial emission.

  18. Observations of correlated broadband electrostatic noise and electron-cyclotron emissions in the plasma sheet. Technical report

    SciTech Connect

    Roeder, J.L.; Angelopoulos, V.; Baumjohann, W.; Anderson, R.R.

    1991-11-15

    Electric field wave observations in the central plasma sheet of the earth's magnetosphere show the correlated occurrence of broadband electrostatic noise and electrostatic electron cyclotron harmonic emissions. A model is proposed in which the broadband emissions are electron acoustic waves generated by an observed low energy electron beam, and the cyclotron emissions are generated by the hot electron loss cone instability. The high degree of correlation between the two emissions is provided in the model by the presence of the cold electron beam population, which allows both of the plasma instabilities to grow.

  19. The Angular Distribution of Electron and X-ray Emission from Triggered Lightning Leader Steps Using the Thunderstorm Energetic Radiation Array (TERA)

    NASA Astrophysics Data System (ADS)

    Schaal, M.; Dwyer, J. R.; Rassoul, H. K.; Uman, M. A.; Jordan, D. M.; Hill, J. D.

    2012-12-01

    Energetic radiation is known to be produced by thunderclouds and lightning. To investigate the characteristics of these emissions, ground-based observations are being conducted at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, FL. Measurements of the electric and magnetic fields, optical emissions, and energetic radiation from both natural and rocket-triggered lightning discharges are recorded at the ICLRT. Specifically, the Thunderstorm Energetic Radiation Array (TERA) is used to measure x-ray and gamma-ray emissions. In total, the ICLRT encompasses 36 NaI and two LaBr3 PMTs as part of TERA. Additionally, these measurements were compared with Monte Carlo simulations of runaway electron propagation and their x-ray emission with the goal of understanding the underlying mechanism of runaway electron production and their role in lightning initiation and propagation. In this study, we investigate individual leader steps to determine if electrons at the source (and hence x-rays) are emitted isotropically or with some degree of anisotropy. This study is motivated by the work of Saleh et al. 2009, which compared distributions of a beamed and an isotropic electron source to radial energy distributions using TERA and determined that the average electron source of emission was isotropic. The anisotropy of the runaway electrons is important because it may provide information on the electric fields near the lightning leader tip.

  20. Analysis of the electron temperature measurement in TCABR tokamak by Electron Cyclotron Emission and Infrared Thomson scattering diagnostics

    NASA Astrophysics Data System (ADS)

    Usuriaga, O. C.; Borges, F. O.; Elfimov, A. G.; da Silva, R. P.; Ono, M. H.; Puglia, P. G. P. P.; Alonso, M. P.; Severo, J. H. F.; Nascimento, I. C.; Sanada, E. K.; de Sá, W. P.; Galvão, R. M. O.; Elizondo, J. I.

    2014-05-01

    This work presents the experimental analysis of the central electron temperature measured by the electron cyclotron emission (ECE) radiometer and the infrared Thomson Scattering (ITS) diagnostic. The detection of the ECE radiation is done by a heterodyne scanning radiometer that works at the second harmonic extraordinary mode, in frequency range from 50 to 85GHz, which allows measurement of the radial profile of electron temperature with good spatial and temporal resolutions. The ITS diagnostic uses a Neodymium Glass laser (wavelength 1.054 μm). This ITS diagnostic measures the electron temperature in the center of plasma column one time during plasma shot. Results also show a discrepancy between the two diagnostics in the electron temperature measurement in the presence of Magnetohydrodynamics activity that gives an explanation for this apparent inconsistency.