Field emission chemical sensor
Panitz, J.A.
1983-11-22
A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.
Field emission chemical sensor for receptor/binder, such as antigen/antibody
Panitz, John A.
1986-01-01
A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.
Amplified Thermionic Cooling Using Arrays of Nanowires
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok; Choi, Daniel; Shcheglov, Kirill; Hishinuma, Yoshikazu
2007-01-01
A class of proposed thermionic cooling devices would incorporate precise arrays of metal nanowires as electron emitters. The proposed devices could be highly miniaturized, enabling removal of heat from locations, very close to electronic devices, that have previously been inaccessible for heat-removal purposes. The resulting enhancement of removal of heat would enable operation of the devices at higher power levels and higher clock speeds. Moreover, the mass, complexity, and bulk of electronic circuitry incorporating these highly miniaturized cooling devices could be considerably reduced, relative to otherwise equivalent circuitry cooled by conventional electromechanical, thermoelectric, and fluidic means. In thermionic cooling, one exploits the fact that because only the highest-energy electrons are thermionically emitted, collecting those electrons to prevent their return to the emitting electrode results in the net removal of heat from that electrode. Collection is effected by applying an appropriate positive bias potential to another electrode placed near the emitting electrode. The concept underlying the proposal is that the thermionic-emission current and, hence, the cooling effect attainable by use of an array of nanowires could be significantly greater than that attainable by use of a single emitting electrode or other electron- emitting surface. The wires in an array according to the proposal would protrude perpendicularly from a planar surface and their heights would be made uniform to within a sub-nanometer level of precision
Cylindrical electron beam diode
Bolduc, Paul E.
1976-01-01
A diode discharge device may include a tubular anode concentrically encircled by and spaced from a tubular cathode electrode with ends intermediate the ends of said anode electrode, and a metal conductive housing having a tubular wall disposed around the cathode electrode with end walls connected to the anode electrode. High energy electron current coupling is through an opening in the housing tubular wall to a portion of the cathode electrode intermediate its ends. Suitable utilization means may be within the anode electrode at positions to be irradiated by electrons emitted from the cathode electrode and transmitted through the anode walls.
Polymer and small molecule based hybrid light source
Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky
2010-03-16
An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.
Control of secondary electrons from ion beam impact using a positive potential electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J.
2016-11-15
Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.
Ballistic-Electron-Emission Microscope
NASA Technical Reports Server (NTRS)
Kaiser, William J.; Bell, L. Douglas
1990-01-01
Ballistic-electron-emission microscope (BEEM) employs scanning tunneling-microscopy (STM) methods for nondestructive, direct electrical investigation of buried interfaces, such as interface between semiconductor and thin metal film. In BEEM, there are at least three electrodes: emitting tip, biasing electrode, and collecting electrode, receiving current crossing interface under investigation. Signal-processing device amplifies electrode signals and converts them into form usable by computer. Produces spatial images of surface by scanning tip; in addition, provides high-resolution images of buried interface under investigation. Spectroscopic information extracted by measuring collecting-electrode current as function of one of interelectrode voltages.
Kunugi, Yoshihito; Mann, Kent R.; Miller, Larry L.; Exstrom, Christopher L.
2003-06-17
A sandwich device was prepared by electrodeposition of an insoluble layer of oligomerized tris(4-(2-thienyl)phenyl)amine onto conducting indium-tin oxide coated glass, spin coating the stacked platinum compound, tetrakis(p-decylphenylisocyano)platinum tetranitroplatinate, from toluene onto the oligomer layer, and then coating the platinum complex with aluminum by vapor deposition. This device showed rectification of current and gave electroluminescence. The electroluminescence spectrum (.lambda..sub.max =545 nm) corresponded to the photoluminescence spectrum of the platinum complex. Exposure of the device to acetone vapor caused the electroemission to shift to 575 nm. Exposure to toluene vapor caused a return to the original spectrum. These results demonstrate a new type of sensor that reports the arrival of organic vapors with an electroluminescent signal. The sensor comprises (a) a first electrode; (b) a hole transport layer formed on the first electrode; (c) a sensing/emitting layer formed on the hole transport layer, the sensing/emitting layer comprising a material that changes color upon exposure to the analyte vapors; (d) an electron conductor layer formed on the sensing layer; and (e) a second electrode formed on the electron conductor layer. The hole transport layer emits light at a shorter wavelength than the sensing/emitting layer and at least the first electrode comprises an optically transparent material.
Kunugi, Yoshihito; Mann, Kent R.; Miller, Larry L.; Exstrom, Christopher L.
2002-01-15
A sandwich device was prepared by electrodeposition of an insoluble layer of oligomerized tris(4-(2-thienyl)phenyl)amine onto conducting indium-tin oxide coated glass, spin coating the stacked platinum compound, tetrakis(p-decylphenylisocyano)platinum tetranitroplatinate, from toluene onto the oligomer layer, and then coating the platinum complex with aluminum by vapor deposition. This device showed rectification of current and gave electroluminescence. The electroluminescence spectrum (.mu..sub.max =545 nm) corresponded to the photoluminescence spectrum of the platinum complex. Exposure of the device to acetone vapor caused the electroemission to shift to 575 nm. Exposure to toluene vapor caused a return to the original spectrum. These results demonstrate a new type of sensor that reports the arrival of organic vapors with an electroluminescent signal. The sensor comprises (a) a first electrode; (b) a hole transport layer formed on the first electrode; (c) a sensing/emitting layer formed on the hole transport layer, the sensing/emitting layer comprising a material that changes color upon exposure to the analyte vapors; (d) an electron conductor layer formed on the sensing layer; and (e) a second electrode formed on the electron conductor layer. The hole transport layer emits light at a shorter wavelength than the sensing/emitting layer and at least the first electrode comprises an optically transparent material.
High-voltage testing of a 500-kV dc photocathode electron gun.
Nagai, Ryoji; Hajima, Ryoichi; Nishimori, Nobuyuki; Muto, Toshiya; Yamamoto, Masahiro; Honda, Yosuke; Miyajima, Tsukasa; Iijima, Hokuto; Kuriki, Masao; Kuwahara, Makoto; Okumi, Shoji; Nakanishi, Tsutomu
2010-03-01
A high-voltage dc photocathode electron gun was successfully conditioned up to a voltage of 550 kV and a long-time holding test for 8 h was demonstrated at an acceleration voltage of 500 kV. The dc photocathode electron gun is designed for future light sources based on energy-recovery linac and consists of a Cockcroft-Walton generator, a segmented cylindrical ceramic insulator, guard-ring electrodes, a support-rod electrode, a vacuum chamber, and a pressurized insulating gas tank. The segmented cylindrical ceramic insulator and the guard-ring electrodes were utilized to prevent any damage to the insulator from electrons emitted by the support-rod electrode.
Currents between tethered electrodes in a magnetized laboratory plasma
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Urrutia, J. M.
1989-01-01
Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.
Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode
Chang, Jung-Hung; Lin, Wei-Hsiang; Wang, Po-Chuan; Taur, Jieh-I; Ku, Ting-An; Chen, Wei-Ting; Yan, Shiang-Jiuan; Wu, Chih-I
2015-01-01
Graphene thin films have great potential to function as transparent electrodes in organic electronic devices, due to their excellent conductivity and high transparency. Recently, organic light-emitting diodes (OLEDs)have been successfully demonstrated to possess high luminous efficiencies with p-doped graphene anodes. However, reliable methods to fabricate n-doped graphene cathodes have been lacking, which would limit the application of graphene in flexible electronics. In this paper, we demonstrate fully solution-processed OLEDs with n-type doped multilayer graphene as the top electrode. The work function and sheet resistance of graphene are modified by an aqueous process which can also transfer graphene on organic devices as the top electrodes. With n-doped graphene layers used as the top cathode, all-solution processed transparent OLEDs can be fabricated without any vacuum process. PMID:25892370
Höfle, Stefan; Schienle, Alexander; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander
2014-05-01
Inverted device architectures for organic light-emitting diodes (OLEDs) require suitable interfaces or buffer layers to enhance electron injection from highwork-function transparent electrodes. A solution-processable combination of ZnO and PEI is reported, that facilitates electron injection and enables efficient and air-stable inverted devices. Replacing the metal anode by highly conductive polymers enables transparent OLEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rink, J.P.
1983-07-19
A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure. 3 figs.
Rink, John P.
1983-07-19
A coaxial high voltage, high current switch having a solid cylindrical cold cathode coaxially surrounded by a thin hollow cylindrical inner electrode and a larger hollow cylindrical outer electrode. A high voltage trigger between the cathode and the inner electrode causes electrons to be emitted from the cathode and flow to the inner electrode preferably through a vacuum. Some of the electrons penetrate the inner electrode and cause a volumetric discharge in the gas (which may be merely air) between the inner and outer electrodes. The discharge provides a low impedance path between a high voltage charge placed on the outer electrode and a load (which may be a high power laser) coupled to the inner electrode. For high repetition rate the gas between the inner and outer electrodes may be continuously exchanged or refreshed under pressure.
Material for electrodes of low temperature plasma generators
Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich
2008-12-09
Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.
Material for electrodes of low temperature plasma generators
Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich; Shiryaev, Vasili Nikolaevich
2010-03-02
Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron:3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.
Compton effect thermally activated depolarization dosimeter
Moran, Paul R.
1978-01-01
A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.
Poly (p-phenyleneneacetylene) light-emitting diodes
Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei; Barton, Thomas J.; Vardeny, Zeev V.
1994-10-04
Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.
Poly (p-phenyleneacetylene) light-emitting diodes
Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.
1994-10-04
Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.
Fabrication of poly(p-phenyleneacetylene) light-emitting diodes
Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.
1994-08-02
Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.
Fabrication of poly(p-phenyleneacetylene) light-emitting diodes
Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei
1994-08-02
Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.
NASA Astrophysics Data System (ADS)
Xia, Yingdong; Chen, Yonghua; Smith, Gregory M.; Li, Yuan; Huang, Wenxiao; Carroll, David L.
2013-06-01
In this work, the effects of electrode modification by calcium (Ca) on the performance of AC field induced polymer electroluminescence (FIPEL) devices are studied. The FIPEL device with Ca/Al electrode exhibits 550 cd m-2, which is 27.5 times higher than that of the device with only an Al electrode (20 cd m-2). Both holes and electrons are injected from one electrode in our FIPEL device. We found that the electron injection can be significantly enhanced by a Ca modification on the Al electrode without greatly affecting the hole injection. Therefore, the electrons and holes can be effectively recombined in the emissive layer to form more excitons under the AC voltage, leading to effective light emission. The device emitted much brighter light than other AC-based organic EL devices. This result provides an easy and effective way to improve FIPEL performance.
NASA Astrophysics Data System (ADS)
Kim, Dae-Kyu; Choi, Jong-Ho
2018-02-01
Herein is presented a comparative performance analysis of heterojunction organic-based light-emitting field-effect transistors (OLEFETs) with symmetric (Au only) and asymmetric (Au and LiF/Al) electrode contacts. The devices had a top source-drain contact with long-channel geometry and were produced by sequentially depositing p-type pentacene and n-type N,N‧-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) using a neutral cluster beam deposition apparatus. The spectroscopic, structural and morphological properties of the organic thin films were examined using photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) method, laser scanning confocal and atomic force microscopy (LSCM, AFM). Based upon the growth of high-quality, well-packed crystalline thin films, the devices demonstrated ambipolar field-effect characteristics, stress-free operational stability, and light emission under ambient conditions. Various device parameters were derived from the fits of the observed characteristics. The hole mobilities were nearly equal irrespective of the electrode contacts, whereas the electron mobilities of the transistors with LiF/Al drain electrodes were higher due to the low injection barrier. For the OLEFETs with symmetric electrodes, electroluminescence (EL) occurred only in the vicinity of the hole-injecting electrode, whereas for the OLEFETs with asymmetric electrodes, the emission occurred in the vicinity of both hole- and electron-injecting electrodes. By tuning the carrier injection and transport through high- and low-work function metals, the hole-electron recombination sites could be controlled. The operating conduction and light emission mechanism are discussed with the aid of EL images obtained using a charge-coupled device (CCD) camera.
Smooth ZnO:Al-AgNWs Composite Electrode for Flexible Organic Light-Emitting Device.
Wang, Hu; Li, Kun; Tao, Ye; Li, Jun; Li, Ye; Gao, Lan-Lan; Jin, Guang-Yong; Duan, Yu
2017-12-01
The high interest in organic light-emitting device (OLED) technology is largely due to their flexibility. Up to now, indium tin oxide (ITO) films have been widely used as transparent conductive electrodes (TCE) in organic opto-electronic devices. However, ITO films, typically deposited on glass are brittle and they make it difficult to produce flexible devices, restricting their use for flexible devices. In this study, we report on a nano-composite TCE, which is made of a silver nanowire (AgNW) network, combined with aluminum-doped zinc oxide (ZnO:Al, AZO) by atomic layer deposition. The AgNWs/AZO composite electrode on photopolymer substrate shows a low sheet resistance of only 8.6 Ω/sq and a high optical transmittance of about 83% at 550 nm. These values are even comparable to conventional ITO on glass. In addition, the electrodes also have a very smooth surface (0.31 nm root-mean-square roughness), which is flat enough to contact the OLED stack. Flexible OLED were built with AgNWs/AZO electrodes, which suggests that this approach can replace conventional ITO TCEs in organic electronic devices in the future.
Smooth ZnO:Al-AgNWs Composite Electrode for Flexible Organic Light-Emitting Device
NASA Astrophysics Data System (ADS)
Wang, Hu; Li, Kun; Tao, Ye; Li, Jun; Li, Ye; Gao, Lan-Lan; Jin, Guang-Yong; Duan, Yu
2017-01-01
The high interest in organic light-emitting device (OLED) technology is largely due to their flexibility. Up to now, indium tin oxide (ITO) films have been widely used as transparent conductive electrodes (TCE) in organic opto-electronic devices. However, ITO films, typically deposited on glass are brittle and they make it difficult to produce flexible devices, restricting their use for flexible devices. In this study, we report on a nano-composite TCE, which is made of a silver nanowire (AgNW) network, combined with aluminum-doped zinc oxide (ZnO:Al, AZO) by atomic layer deposition. The AgNWs/AZO composite electrode on photopolymer substrate shows a low sheet resistance of only 8.6 Ω/sq and a high optical transmittance of about 83% at 550 nm. These values are even comparable to conventional ITO on glass. In addition, the electrodes also have a very smooth surface (0.31 nm root-mean-square roughness), which is flat enough to contact the OLED stack. Flexible OLED were built with AgNWs/AZO electrodes, which suggests that this approach can replace conventional ITO TCEs in organic electronic devices in the future.
Direct measurement of the electric-field distribution in a light-emitting electrochemical cell
NASA Astrophysics Data System (ADS)
Slinker, Jason D.; Defranco, John A.; Jaquith, Michael J.; Silveira, William R.; Zhong, Yu-Wu; Moran-Mirabal, Jose M.; Craighead, Harold G.; Abruña, Héctor D.; Marohn, John A.; Malliaras, George G.
2007-11-01
The interplay between ionic and electronic charge carriers in mixed conductors offers rich physics and unique device potential. In light-emitting electrochemical cells (LEECs), for example, the redistribution of ions assists the injection of electronic carriers and leads to efficient light emission. The mechanism of operation of LEECs has been controversial, as there is no consensus regarding the distribution of electric field in these devices. Here, we probe the operation of LEECs using electric force microscopy on planar devices. We show that obtaining the appropriate boundary conditions is essential for capturing the underlying device physics. A patterning scheme that avoids overlap between the mixed-conductor layer and the metal electrodes enabled the accurate in situ measurement of the electric-field distribution. The results show that accumulation and depletion of mobile ions near the electrodes create high interfacial electric fields that enhance the injection of electronic carriers.
Gamma compensated, self powered neutron detector
Brown, Donald P.
1977-01-01
An improved, self-powered, gamma compensated, neutron detector having two electrically conductive concentric cylindrical electrodes and a central rod emitter formed from a material which emits beta particles when bombarded by neutrons. The outer electrode and emitter are maintained at a common potential and the neutron representative current is furnished at the inner cylindrical electrode which serves as a collector. The two concentric cylindrical electrodes are designed to exhibit substantially equal electron emission induced by Compton scattering under neutron bombardment to supply the desired gamma compensation.
Martina, E.F.
1958-10-14
An improved pulsed ion source of the type where the gas to be ionized is released within the source by momentary heating of an electrode occluded with the gas is presented. The other details of the ion source construction include an electron emitting filament and a positive reference grid, between which an electron discharge is set up, and electrode means for withdrawing the ions from the source. Due to the location of the gas source behind the electrode discharge region, and the positioning of the vacuum exhaust system on the opposite side of the discharge, the released gas is drawn into the electron discharge and ionized in accurately controlled amounts. Consequently, the output pulses of the ion source may be accurately controlled.
Ullah, Mujeeb; Armin, Ardalan; Tandy, Kristen; Yambem, Soniya D.; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.
2015-01-01
Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture. The dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area - a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350 cd/m2, ON/OFF ratio > 104 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (fcut-off = 2.6 kHz) compared to single layer LEFETs. The results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications. PMID:25743444
Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol
2017-05-17
To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (<3 Ω/sq) and high transparency (∼90%) simultaneously. A proper space between two metal films led to high transmittance by an optical phenomenon. The principle of parallel connection allowed the electrode to have high conductivity. In situ fabrication was possible because the only materials composing the electrode were silver and WO 3 , which can be deposited by thermal evaporation. The electrode was flexible enough to withstand 10 000 bending cycles with a 1 mm bending radius. Furthermore, a few μm scale patterning of the electrode was easily implemented by using photolithography, which is widely employed industrially for patterning. Flexible organic light-emitting diodes and a transparent flexible thin-film transistor were successfully fabricated with the proposed electrode. Various practical applications of this electrode to new transparent flexible electronics are expected.
Long-Life/Low-Power Ion-Gun Cathode
NASA Technical Reports Server (NTRS)
Fitzgerald, D. J.
1982-01-01
New cathode has form of hollow tube through which gas enters region of high electron density, produced by electric discharge with auxiliary electrode referred to as "keeper." Ion-gun cathode emits electrons that bombard gas in chamber. Ions accelerated out of source are used to dope semiconductor material.
The mechanism of explosive emission excitation in thermionic energy conversion processes
NASA Astrophysics Data System (ADS)
Bulyga, A. V.
A study has been made of the mechanism of explosive electron emission in vacuum thermionic converters induced by thermionic currents in the case of the anomalous Richardson effect. The latter is associated with a spotted emitting surface and temperature fluctuations. In order to account for one of the components of the electrode potential difference, it is proposed that allowance be made for the difference between the polarization signal velocity in a dense metal electron gas and that in the electron-ion gas of the electrode gap. Ways to achieve explosive emission in real thermionic converters are discussed.
Method of making organic light emitting devices
Shiang, Joseph John [Niskayuna, NY; Janora, Kevin Henry [Schenectady, NY; Parthasarathy, Gautam [Saratoga Springs, NY; Cella, James Anthony [Clifton Park, NY; Chichak, Kelly Scott [Clifton Park, NY
2011-03-22
The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.
Electron beam irradiated ITO films as highly transparent p-type electrodes for GaN-based LEDs.
Hong, C H; Wie, S M; Park, M J; Kwak, J S
2013-08-01
We have investigated the effect of electron beam irradiation on the electrical and optical properties of ITO film prepared by magnetron sputtering method at room temperature. Electron beam irradiation to the ITO films resulted in a significant decrease in sheet resistance from 1.28 x 10(-3) omega cm to 2.55 x 10(-4) omega cm and in a great increase in optical band gap from 3.72 eV to 4.16 eV, followed by improved crystallization and high transparency of 97.1% at a wavelength of 485 nm. The overall change in electrical, optical and structural properties of ITO films is related to annealing effect and energy transfer of electron by electron beam irradiation. We also fabricated GaN-based light-emitting diodes (LEDs) by using the ITO p-type electrode with/without electron beam irradiation. The results show that the LEDs having ITO p-electrode with electron beam irradiation produced higher output power due to the low absorption of light in the p-type electrode.
Polymer-metal hybrid transparent electrodes for flexible electronics
NASA Astrophysics Data System (ADS)
Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee
2015-03-01
Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq-1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.
Polymer-metal hybrid transparent electrodes for flexible electronics
Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee
2015-01-01
Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq−1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides. PMID:25790133
Operation of a gated field emitter using an individual carbon nanofiber cathode
NASA Astrophysics Data System (ADS)
Guillorn, M. A.; Melechko, A. V.; Merkulov, V. I.; Ellis, E. D.; Britton, C. L.; Simpson, M. L.; Lowndes, D. H.; Baylor, L. R.
2001-11-01
We report on the operation of an integrated gated cathode device using a single vertically aligned carbon nanofiber as the field emission element. This device is capable of operation in a moderate vacuum for extended periods of time without experiencing a degradation of performance. Less than 1% of the total emitted current is collected by the gate electrode, indicating that the emitted electron beam is highly collimated. As a consequence, this device is ideal for applications that require well-focused electron emission from a microscale structure.
Wang, C.L.
1981-05-14
Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.
Wang, Ching L.
1983-09-13
Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.
White light-emitting organic electroluminescent devices
Shiang, Joseph John; Duggal, Anil Raj; Parthasarathy, Gautam
2006-06-20
A light-emitting device comprises a light-emitting member, which comprises two electrodes, at least two organic electroluminescent ("EL") materials disposed between the electrodes, a charge blocking material disposed between the electrodes, and at least one photoluminescent ("PL") material. The light-emitting member emits electromagnetic ("EM") radiation having a first spectrum in response to a voltage applied across the two electrodes. The PL material absorbs a portion of the EM radiation emitted by the light-emitting member and emits EM radiation having second spectrum different than the first spectrum. Each of the organic EL materials emits EM radiation having a wavelength range selected from the group consisting of blue and red wavelength ranges.
Novel hole transport materials for organic light emitting devices
NASA Astrophysics Data System (ADS)
Shi, Jianmin; Forsythe, Eric; Morton, David
2008-08-01
Organic electronic devices generally have a layered structure with organic materials sandwiched between an anode and a cathode, such organic electronic devices of organic light-emitting diode (OLED), organic photovoltaic (OPV), organic thin-film transistor (OTFT). There are many advantages of these organic electronic devices as compared to silicon-based devices. However, one of key challenge for an organic electronic device is to minimize the charge injection barrier from electrodes to organic materials and improve the charge transport mobility. In order to overcome these circumstances, there are many approaches including, designing organic materials with minimum energy barriers and improving charge transport mobility. Ideally organic materials or complex with Ohmic contact will be the most desired.
Kireeff Covo, Michel
2013-07-09
A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.
Electrodes mitigating effects of defects in organic electronic devices
Heller, Christian Maria Anton [Albany, NY
2008-05-06
A compound electrode for organic electronic devices comprises a thin first layer of a first electrically conducting material and a second electrically conducting material disposed on the first layer. In one embodiment, the second electrically conducting material is formed into a plurality of elongated members. In another embodiment, the second material is formed into a second layer. The elongated members or the second layer has a thickness greater than that of the first layer. The second layer is separated from the first layer by a conducting material having conductivity less than at least the material of the first layer. The compound electrode is capable of mitigating adverse effects of defects, such as short circuits, in the construction of the organic electronic devices, and can be included in light-emitting or photovoltaic devices.
Bhaumik, Saikat; Pal, Amlan J
2014-07-23
We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.
Highly flexible transparent electrodes based on mesh-patterned rigid indium tin oxide.
Sakamoto, Kosuke; Kuwae, Hiroyuki; Kobayashi, Naofumi; Nobori, Atsuki; Shoji, Shuichi; Mizuno, Jun
2018-02-12
We developed highly bendable transparent indium tin oxide (ITO) electrodes with a mesh pattern for use in flexible electronic devices. The mesh patterns lowered tensile stress and hindered propagation of cracks. Simulations using the finite element method confirmed that the mesh patterns decreased tensile stress by over 10% because of the escaped strain to the flexible film when the electrodes were bent. The proposed patterned ITO electrodes were simply fabricated by photolithography and wet etching. The resistance increase ratio of a mesh-patterned ITO electrode after bending 1000 times was at least two orders of magnitude lower than that of a planar ITO electrode. In addition, crack propagation was stopped by the mesh pattern of the patterned ITO electrode. A mesh-patterned ITO electrode was used in a liquid-based organic light-emitting diode (OLED). The OLED displayed the same current density-voltage-luminance (J-V-L) curves before and after bending 100 times. These results indicate that the developed mesh-patterned ITO electrodes are attractive for use in flexible electronic devices.
Wang, C.L.
1983-09-13
Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.
Apparatus for in situ cleaning of carbon contaminated surfaces
Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel
2004-08-10
Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled.
Light-emitting device with organic electroluminescent material and photoluminescent materials
McNulty, Thomas Francis; Duggal, Anil Raj; Turner, Larry Gene; Shiang, Joseph John
2005-06-07
A light-emitting device comprises a light-emitting member, which comprises two electrodes and an organic electroluminescent material disposed between the electrodes, and at least one organic photoluminescent ("PL") material. The light-emitting member emits light having a first spectrum in response to a voltage applied across the two electrodes. The organic PL material absorbs a portion of the light emitted by the light-emitting member and emits light having second spectrum different than the first spectrum. The light-emitting device can include an inorganic PL material that absorbs another portion of the light emitted from the light-emitting member and emits light having a third spectrum different than both the first and the second spectra.
Electron current extraction from radio frequency excited micro-dielectric barrier discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun-Chieh; Kushner, Mark J.; Leoni, Napoleon
Micro dielectric barrier discharges (mDBDs) consist of micro-plasma devices (10-100 {mu}m diameter) in which the electrodes are fully or partially covered by dielectrics, and often operate at atmospheric pressure driven with radio frequency (rf) waveforms. In certain applications, it may be desirable to extract electron current out of the mDBD plasma, which necessitates a third electrode. As a result, the physical structure of the m-DBD and the electron emitting properties of its materials are important to its operation. In this paper, results from a two-dimensional computer simulation of current extraction from mDBDs sustained in atmospheric pressure N{sub 2} will bemore » discussed. The mDBDs are sandwich structures with an opening of tens-of-microns excited with rf voltage waveforms of up to 25 MHz. Following avalanche by electron impact ionization in the mDBD cavity, the plasma can be expelled from the cavity towards the extraction electrode during the part of the rf cycle when the extraction electrode appears anodic. The electron current extraction can be enhanced by biasing this electrode. The charge collection can be controlled by choice of rf frequency, rf driving voltage, and permittivity of the dielectric barrier.« less
Processing of materials for uniform field emission
Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.
1999-01-12
This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.
Processing of materials for uniform field emission
Pam, Lawrence S.; Felter, Thomas E.; Talin, Alec; Ohlberg, Douglas; Fox, Ciaran; Han, Sung
1999-01-01
This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.
Surface plasmon-mediated energy transfer of electrically-pumped excitons
An, Kwang Hyup; Shtein, Max; Pipe, Kevin P.
2015-08-25
An electrically pumped light emitting device emits a light when powered by a power source. The light emitting device includes a first electrode, a second electrode including an outer surface, and at least one active organic semiconductor disposed between the first and second electrodes. The device also includes a dye adjacent the outer surface of the second electrode such that the second electrode is disposed between the dye and the active organic semiconductor. A voltage applied by the power source across the first and second electrodes causes energy to couple from decaying dipoles into surface plasmon polariton modes, which then evanescently couple to the dye to cause the light to be emitted.
Organic light emitting diode with light extracting electrode
Bhandari, Abhinav; Buhay, Harry
2017-04-18
An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).
[Influence of MnO3 on Photoelectric Performance in Organic Light Emitting Diodes].
Guan, Yun-xia; Chen, Li-jia; Chen, Ping; Fu, Xiao-qiang; Niu, Lian-bin
2016-03-01
Organic Light Emitting Diodes (OLEDs) has been a promising new research point that has received much attention recently. Emission in a conventional OLED originates from the recombination of carriers (electrons and holes) that are injected from external electrodes. In the device, Electrons, on the other hand, are injected from the Al cathode to an electron-transporting layer and travel to the same emissive zone. Holes are injected from the transparent ITO anode to a hole-transporting layer and holes reach an emitting zone through the holetransporting layer. Electrons and holes recombine at the emissive film to formsinglet excited states, followed by emissive light. It is because OLED is basically an optical device and its structure consists of organic or inorganic layers of sub-wavelength thickness with different refractive indices. When the electron and holes are injected through the electrodes, they combine in the emission zone emitting the photons. These photons will have the reflection and transmission at each interface and the interference will determine the intensity profile. The emissive light reflected at the interfaces or the metallic electrode returns to the emissive layer and affects the radiation current efficiency. Microcavity OLED can produce saturated colors and narrow the emission spetrum as a new kind of technique. In the paper, we fabricate microcavity OLED using glass substrate. Ag film acts as the anode reflector mirror; NPB serves as the hole-transporting material; Alq3 is electron-transporting material and organic emissive material; Ag film acts as cathode reflector mirror. The microcavity OLED structures named as A, B, C and D are glass/Ag(15 nm)/MoO3 (x nm)/NPB(50 nm)/Alq3 (60 nm)/A1(100 nm). Here, A, x = 4 nm; B, x = 7 nm; C, x = 10 nm; D, x = 13 nm. The characteristic voltage, brightness and current of these devices are investigated in the electric field. The luminance from the Devices A, B, C and D reaches the luminance of 928, 1 369, 2 550 and 2 035 cd x m(-2), respectively at 13 V. At 60 mA x cm(-2), the current efficiency of the microcavity OLEDs using MnO3 are about 2.2, 2.6, 3.1 and 2.6 cd x A(-2) respectively. It is found that electrons are majority carriers and holes are minority carriers in this microcavity OLEDs. MnO3 film can improve hole injection ability from 4 to 10 nm. In addition, hole injection ability is increased with the increasing thickness of the MnO3 film.
Organic light emitting diode with surface modification layer
Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.
2017-09-12
An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).
High power microwave generator
Minich, Roger W.
1988-01-01
A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).
Organic light emitting diodes with structured electrodes
Mao, Samuel S.; Liu, Gao; Johnson, Stephen G.
2012-12-04
A cathode that contain nanostructures that extend into the organic layer of an OLED has been described. The cathode can have an array of nanotubes or a layer of nanoclusters extending out from its surface. In another arrangement, the cathode is patterned and etched to form protruding nanostructures using a standard lithographic process. Various methods for fabricating these structures are provided, all of which are compatible with large-scale manufacturing. OLEDs made with these novel electrodes have greatly enhanced electron injection, have good environmental stability.
Vasilopoulou, Maria; Douvas, Antonios M; Palilis, Leonidas C; Kennou, Stella; Argitis, Panagiotis
2015-06-03
The present study is aimed at investigating the solid state reduction of a representative series of Keggin and Dawson polyoxometalate (POM) films in contact with a metallic (aluminum) electrode and at introducing them as highly efficient cathode interlayers in organic optoelectronics. We show that, upon reduction, up to four electrons are transferred from the metallic electrode to the POM clusters of the Keggin series dependent on addenda substitution, whereas a six electron reduction was observed in the case of the Dawson type clusters. The high degree of their reduction by Al was found to be of vital importance in obtaining effective electron transport through the cathode interface. A large improvement in the operational characteristics of organic light emitting devices and organic photovoltaics based on a wide range of different organic semiconducting materials and incorporating reduced POM/Al cathode interfaces was achieved as a result of the large decrease of the electron injection/extraction barrier, the enhanced electron transport and the reduced recombination losses in our reduced POM modified devices.
Sim, Hwansu; Kim, Chanho; Bok, Shingyu; Kim, Min Ki; Oh, Hwisu; Lim, Guh-Hwan; Cho, Sung Min; Lim, Byungkwon
2018-06-18
Silver (Ag) nanowires (NWs) are promising building blocks for flexible transparent electrodes, which are key components in fabricating soft electronic devices such as flexible organic light emitting diodes (OLEDs). Typically, Ag NWs have been synthesized using a polyol method, but it still remains a challenge to produce high-aspect-ratio Ag NWs via a simple and rapid process. In this work, we developed a modified polyol method and newly found that the addition of propylene glycol to ethylene glycol-based polyol synthesis facilitated the growth of Ag NWs, allowing the rapid production of long Ag NWs with high aspect ratios of about 2000 in a high yield (∼90%) within 5 min. Transparent electrodes fabricated with our Ag NWs exhibited performance comparable to that of an indium tin oxide-based electrode. With these Ag NWs, we successfully demonstrated the fabrication of a large-area flexible OLED with dimensions of 30 cm × 15 cm using a roll-to-roll process.
An Underappreciated Radiation Hazard from High Voltage Electrodes in Vacuum.
West, Adam D; Lasner, Zack; DeMille, David; West, Elizabeth P; Panda, Cristian D; Doyle, John M; Gabrielse, Gerald; Kryskow, Adam; Mitchell, Corinne
2017-01-01
The use of high voltage (HV) electrodes in vacuum is commonplace in physics laboratories. In such systems, it has long been known that electron emission from an HV cathode can lead to bremsstrahlung x rays; indeed, this is the basic principle behind the operation of standard x-ray sources. However, in laboratory setups where x-ray production is not the goal and no electron source is deliberately introduced, field-emitted electrons accelerated by HV can produce x rays as an unintended hazardous byproduct. Both the level of hazard and the safe operating regimes for HV vacuum electrode systems are not widely appreciated, at least in university laboratories. A reinforced awareness of the radiation hazards associated with vacuum HV setups would be beneficial. The authors present a case study of a HV vacuum electrode device operated in a university atomic physics laboratory. They describe the characterization of the observed x-ray radiation, its relation to the observed leakage current in the device, the steps taken to contain and mitigate the radiation hazard, and suggested safety guidelines.
The Electrical Structure of Discharges Modified by Electron Beams
NASA Astrophysics Data System (ADS)
Haas, F. A.; Braithwaite, N. St. J.
1997-10-01
Injection of an electron beam into a low pressure plasma modifies both the electrical structure and the distributions of charged particle energies. The electrical structure is investigated here in a one-dimensional model by representing the discharge as two collisionless sheaths with a monenergetic electron beam, linked by a quasi-neutral collisional region. The latter is modelled by fluid equations in which the beam current decreases with position. Since the electrodes are connected by an external conductor this implies through Kirchoff's laws that the thermal electron current must correspondingly increase with position. Given the boundary conditions and beam input at the first electrode then the rest of the system is uniquely described. The model reveals the dependence of the sheath potentials at the emitting and absorbing surfaces on the beam current. The model is relevant to externally injected beams and to electron beams originating from secondary processes on surfaces exposed to the plasma.
NASA Astrophysics Data System (ADS)
Santoru, Joseph; Schumacher, Robert W.; Gregoire, Daniel J.
1994-11-01
The plasma-anode electron gun (PAG) is an electron source in which the thermionic cathode is replaced with a cold, secondary-electron-emitting electrode. Electron emission is stimulated by bombarding the cathode with high-energy ions. Ions are injected into the high-voltage gap through a gridded structure from a plasma source (gas pressure less than or equal to 50 mTorr) that is embedded in the anode electrode. The gridded structure serves as both a cathode for the plasma discharge and as an anode for the PAG. The beam current is modulated at near ground potential by modulating the plasma source, eliminating the need for a high-voltage modulator system. During laboratory tests, the PAG has demonstrated square-wave, 17-microsecond-long beam pulses at 100 kV and 10 A, and it has operated stably at 70 kV and 2.5 A for 210 microsecond pulse lengths without gap closure.
NASA Astrophysics Data System (ADS)
Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke
2016-07-01
As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton’s second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field.
P-doping-free III-nitride high electron mobility light-emitting diodes and transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk
2014-07-21
We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward andmore » seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.« less
Conductive nanomaterials for printed electronics.
Kamyshny, Alexander; Magdassi, Shlomo
2014-09-10
This is a review on recent developments in the field of conductive nanomaterials and their application in printed electronics, with particular emphasis on inkjet printing of ink formulations based on metal nanoparticles, carbon nanotubes, and graphene sheets. The review describes the basic properties of conductive nanomaterials suitable for printed electronics (metal nanoparticles, carbon nanotubes, and graphene), their stabilization in dispersions, formulations of conductive inks, and obtaining conductive patterns by using various sintering methods. Applications of conductive nanomaterials for electronic devices (transparent electrodes, metallization of solar cells, RFID antennas, TFTs, and light emitting devices) are also briefly reviewed.
Chemical Vapour Deposition of Graphene with Re-useable Pt and Cu substrates for Flexible Electronics
NASA Astrophysics Data System (ADS)
Karamat, Shumaila; Sonusen, Selda; Celik, Umit; Uysalli, Yigit; Oral, Ahmet
2015-03-01
Graphene has gained the attention of scientific world due to its outstanding physical properties. The future demand of flexible electronics such as solar cells, light emitting diodes, photo-detectors and touch screen technology requires more exploration of graphene properties on flexible substrates. The most interesting application of graphene is in organic light emitting diodes (OLED) where efforts are in progress to replace brittle indium tin oxide (ITO) electrode with a flexible graphene electrode because ITO raw materials are becoming increasingly expensive, and its brittle nature makes it unsuitable for flexible devices. In this work, we grow graphene on Pt and Cu substrates using chemical vapour deposition (CVD) and transferred it to a polymer material (PVA) using lamination technique. We used hydrogen bubbling method for separating graphene from Pt and Cu catalyst to reuse the substrates many times. After successful transfer of graphene on polymer samples, we checked the resistivity values of the graphene sheet which varies with growth conditions. Furthermore, Raman, atomic force microscopy (AFM), I-V and Force-displacement measurements will be presented for these samples.
Zhou, Huanyu; Cheong, Hahn-Gil; Park, Jin-Woo
2016-05-01
We investigated the electronic properties of composite-type hybrid transparent conductive electrodes (h-TCEs) based on Ag nanowire networks (AgNWs) and indium tin oxide (ITO). These h-TCEs were developed to replace ITO, and their mechanical flexibility is superior to that of ITO. However, the characteristics of charge carriers and the mechanism of charge-carrier transport through the interface between the h-TCE and an organic material are not well understood when the h-TCE is used as the anode in a flexible organic light-emitting diode (f-OLED). AgNWs were spin coated onto polymer substrates, and ITO was sputtered atop the AgNWs. The electronic energy structures of h-TCEs were investigated by ultraviolet photoelectron spectroscopy. f-OLEDs were fabricated on both h-TCEs and ITO for comparison. The chemical bond formation at the interface between the h-TCE and the organic layer in f-OLEDs was investigated by X-ray photoelectron spectroscopy. The performances of f-OLEDs were compared based on the analysis results.
Investigation of a quadrupole ultra-high vacuum ion pump
NASA Technical Reports Server (NTRS)
Schwarz, H. J.
1974-01-01
The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.
Robinson, Thomas N; Varosy, Paul D; Guillaume, Girard; Dunning, James E; Townsend, Nicole T; Jones, Edward L; Paniccia, Alessandro; Stiegmann, Greg V; Weyer, Christopher; Rozner, Marc A
2014-09-01
The monopolar "Bovie" instrument emits radiofrequency energy that can disrupt the function of other implanted electronic devices through a phenomenon termed electromagnetic interference. The purpose of this study was to quantify the electromagnetic interference occurring on cardiac implantable devices (CIEDs) resulting from monopolar instrument use in common, modifiable clinical scenarios. Three anesthetized pigs underwent CIED placement (1 pacemaker and 2 defibrillators). Electromagnetic interference was quantified when changing the monopolar instrument parameters of generator power, generator mode, surgical technique, orientation of active electrode cord, pathway of current vector, and proximity of active electrode to the CIED. Monopolar instrument parameters that decreased the electromagnetic interference occurring on the CIED included decreasing generator power from 60 W to 30 W (p < 0.001), using cut mode rather than coag mode (p < 0.001), using desiccation technique rather than fulguration technique (p < 0.001), orienting the active electrode cord from the feet rather than across the chest wall (p < 0.001), and avoiding the current vector from crossing the CIED system (p < 0.001). Increasing the distance between the active electrode tool and the CIED system decreased electromagnetic interference occurring on the CIED in a dose-response fashion up to a distance of 10 cm (ANOVA, p < 0.001), after which the magnitude of electromagnetic interference remained constant. Electromagnetic interference occurring on CIEDs resulting from monopolar instruments is minimized by decreasing generator power, using cut mode, using desiccation technique, orienting the active electrode cord from the feet, avoiding the current vector for crossing the CIED system, and increasing the distance between the active electrode and the CIED. Surgeons and operating room staff can minimize electromagnetic interference on CIEDs during monopolar instrument use by accounting for these modifiable clinical factors. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Spray Formation from a Charged Liquid Jet of a Dielectric Fluid
NASA Astrophysics Data System (ADS)
Doak, William; de Bellis, Victor; Chiarot, Paul; Microfluidics; Multiphase Flow Laboratory Team
2017-11-01
Atomization of a dielectric micro-jet is achieved via an electrohydrodynamic charge injection process. The atomizer is comprised of a grounded nozzle housing (ground electrode) and an internal probe (high voltage electrode) that is concentric with the emitting orifice. The internal probe is held at electric potentials ranging from 1-10 kV. A pressurized reservoir drives a dielectric fluid at a desired flow rate through the 100-micrometer diameter orifice. The fluid fills the cavity between the electrodes as it passes through the atomizer, impeding the transport of electrons. This process injects charge into the flowing fluid. Upon exiting the orifice, the emitted jet is highly charged and it deforms via a bending instability that is qualitatively similar to the behavior observed in the electrospinning of fibers. We observed bulging regions, or nodes, of highly charged fluid forming along the bent, rotating jet. These nodes separate into highly charged droplets that emit satellite droplets. The remaining ligaments break up due to capillarity in a process that produces additional satellites. All of the droplets possess a normal (inertial) and radial (electrically-driven) momentum component. The radial component is responsible for the formation of a conical spray envelope. Our research focuses on the jet, its break up, and the droplet dynamics of this system. This research supported by the American Chemical Society.
Polyazulene based materials for heavy metal ions detection
NASA Astrophysics Data System (ADS)
Oprisanu, A.; Ungureanu, E. M.; Isopescu, R.; Birzan, L.; Mihai, M.; Vasiliu, C.
2017-06-01
Azulene is a special monomer used to functionalize electrodes, due to its spontaneous electron drift from the seven-membered ring to the five-membered ring. The seven-membered ring of the molecule may act as electron acceptor, while the five-membered ring - as electron donor. This leads to very attractive properties for the synthesis of functional advanced materials like: materials with nonlinear optical and photorefractive properties, cathode materials for lithium batteries, or light emitting diodes based on organic materials. Azulene derivatives have been used rarely to the metal ions electroanalysis. Our study concerns the synthesis and electrochemical characterization of a new azulene based monomer 4-(azulen-1-yl)-2,6-bis((E)-2-(thiophen-3-yl)vinyl)pyridine (L). L has been used to obtain modified electrodes by electrochemical polymerization. PolyL films modified electrodes have been characterized by cyclic voltammetry in ferrocene solutions. The complexing properties of polyL based functional materials have been investigated towards heavy metals (Pb, Cd Hg, Cu) by preconcentration - anodic stripping technique in order to analyze the content of these cations from water samples.
An Analysis of High-Power Radar TR-Limited with Very Short Recovery Time,
1981-05-07
field in the gap will continuously grow stronger, until the space charge field cancels the accelerating effect of 19 the high frequency field on the...weak in the middle. 29 .,.a1 ,-t *’:.--’ ’ - - Clearly the space charge field has a repelling effect on the secondary electrons emitted by electrode...homogeneous. Therefore, the bias value in the space charge field induces an effect on the kinetic state of the electronic dissipation process. This is small
Park, So-Ra; Suh, Min Chul
2018-02-19
To improve the device performances of top-emitting organic light emitting diodes (TEOLEDs), we developed a new inverted TEOLEDs structure with silver (Ag) metal as a semi-transparent top electrode. Especially, we found that the use of relatively thick Ag electrode without using any carrier injection layer is beneficial to realize highly efficient device performances. Also, we could insert very thick overlying hole transport layer (HTL) on the emitting layer (EML) which could be very helpful to suppress the surface plasmon polariton (SPP) coupling if it is applied to the common bottom-emission OLEDs (BEOLEDs). As a result, we could realize noteworthy high current efficiency of approximately ~188.1 cd/A in our new inverted TEOLEDs with 25 nm thick Ag electrode.
Nanoscale discharge electrode for minimizing ozone emission from indoor corona devices.
Bo, Zheng; Yu, Kehan; Lu, Ganhua; Mao, Shun; Chen, Junhong; Fan, Fa-Gung
2010-08-15
Ground-level ozone emitted from indoor corona devices poses serious health risks to the human respiratory system and the lung function. Federal regulations call for effective techniques to minimize the indoor ozone production. In this work, stable atmospheric corona discharges from nanomaterials are demonstrated using horizontally suspended carbon nanotubes (CNTs) as the discharge electrode. Compared with the conventional discharges employing micro- or macroscale electrodes, the corona discharge from CNTs could initiate and operate at a much lower voltage due to the small electrode diameter, and is thus energy-efficient. Most importantly, the reported discharge is environmentally friendly since no ozone (below the detection limit of 0.5 ppb) was detected for area current densities up to 0.744 A/m(2) due to the significantly reduced number of electrons and plasma volume generated by CNT discharges. The resulting discharge current density depends on the CNT loading. Contrary to the conventional wisdom, negative CNT discharges should be used to enhance the current density owing to the efficient field emission of electrons from the CNT surface.
Novel organic LED structures based on a highly conductive polymeric photonic crystal electrode.
Petti, Lucia; Rippa, Massimo; Capasso, Rossella; Nenna, Giuseppe; Del Mauro, Anna De Girolamo; Maglione, Maria Grazia; Minarini, Carla
2013-08-09
In this work we demonstrate the possibility to realize a novel unconventional ITO-free organic light emitting diode (OLED) utilizing a photonic polymeric electrode. Combining electron beam lithography and a plasma etching process to partially structure the highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) it is possible to realize an embedded photonic crystal (PC) structure. The realized PC-anode drastically reduces the light trapped in the OLED, demonstrating the possibility to eliminate further process stages and making it easier to use this technology even on rollable and flexible substrates.
Novel organic LED structures based on a highly conductive polymeric photonic crystal electrode
NASA Astrophysics Data System (ADS)
Petti, Lucia; Rippa, Massimo; Capasso, Rossella; Nenna, Giuseppe; De Girolamo Del Mauro, Anna; Grazia Maglione, Maria; Minarini, Carla
2013-08-01
In this work we demonstrate the possibility to realize a novel unconventional ITO-free organic light emitting diode (OLED) utilizing a photonic polymeric electrode. Combining electron beam lithography and a plasma etching process to partially structure the highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) it is possible to realize an embedded photonic crystal (PC) structure. The realized PC-anode drastically reduces the light trapped in the OLED, demonstrating the possibility to eliminate further process stages and making it easier to use this technology even on rollable and flexible substrates.
Zhang, Jingjiao; Su, Xiaodong; Shen, Mingrong; Dai, Zhihua; Zhang, Lingjun; He, Xiyun; Cheng, Wenxiu; Cao, Mengyu; Zou, Guifu
2013-01-01
Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function could be photo-emitted into PLZT and form the dominant photocurrent in our devices. Under AM1.5 (100 mW/cm²) illumination, the short-circuit current and open-circuit voltage of Mg/PLZT/ITO are about 150 and 2 times of those of Pt/PLZT/ITO, respectively. The photovoltaic response of PLZT capacitor was expanded from ultraviolet to visible spectra, and it may have important impact on design and fabrication of high performance photovoltaic devices based on ferroelectric materials.
Method for in-situ cleaning of carbon contaminated surfaces
Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel
2006-12-12
Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.
Optics of ion beams for the neutral beam injection system on HL-2A Tokamak.
Zou, G Q; Lei, G J; Cao, J Y; Duan, X R
2012-07-01
The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage (∼100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.
Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard
2010-05-18
A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.
Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts.
Tang, Cindy G; Ang, Mervin C Y; Choo, Kim-Kian; Keerthi, Venu; Tan, Jun-Kai; Syafiqah, Mazlan Nur; Kugler, Thomas; Burroughes, Jeremy H; Png, Rui-Qi; Chua, Lay-Lay; Ho, Peter K H
2016-11-24
To make high-performance semiconductor devices, a good ohmic contact between the electrode and the semiconductor layer is required to inject the maximum current density across the contact. Achieving ohmic contacts requires electrodes with high and low work functions to inject holes and electrons respectively, where the work function is the minimum energy required to remove an electron from the Fermi level of the electrode to the vacuum level. However, it is challenging to produce electrically conducting films with sufficiently high or low work functions, especially for solution-processed semiconductor devices. Hole-doped polymer organic semiconductors are available in a limited work-function range, but hole-doped materials with ultrahigh work functions and, especially, electron-doped materials with low to ultralow work functions are not yet available. The key challenges are stabilizing the thin films against de-doping and suppressing dopant migration. Here we report a general strategy to overcome these limitations and achieve solution-processed doped films over a wide range of work functions (3.0-5.8 electronvolts), by charge-doping of conjugated polyelectrolytes and then internal ion-exchange to give self-compensated heavily doped polymers. Mobile carriers on the polymer backbone in these materials are compensated by covalently bonded counter-ions. Although our self-compensated doped polymers superficially resemble self-doped polymers, they are generated by separate charge-carrier doping and compensation steps, which enables the use of strong dopants to access extreme work functions. We demonstrate solution-processed ohmic contacts for high-performance organic light-emitting diodes, solar cells, photodiodes and transistors, including ohmic injection of both carrier types into polyfluorene-the benchmark wide-bandgap blue-light-emitting polymer organic semiconductor. We also show that metal electrodes can be transformed into highly efficient hole- and electron-injection contacts via the self-assembly of these doped polyelectrolytes. This consequently allows ambipolar field-effect transistors to be transformed into high-performance p- and n-channel transistors. Our strategy provides a method for producing ohmic contacts not only for organic semiconductors, but potentially for other advanced semiconductors as well, including perovskites, quantum dots, nanotubes and two-dimensional materials.
NASA Astrophysics Data System (ADS)
Sydorenko, Dmytro
2015-11-01
Electrons emitted by electrodes surrounding or immersed in the plasma are accelerated by the sheath electric field and become electron beams penetrating the plasma. In plasma applications where controlling the electron velocity distribution function (EVDF) is crucial, these beams are an important factor capable of modifying the EVDF and affecting the discharge properties. Recently, it was reported that an EVDF measured in a dc-rf discharge with 800 V dc voltage has not only a peak of 800 eV electrons emitted from the dc-biased electrode, but also a peak of suprathermal electrons with energy up to several hundred eV. Initial explanation of the suprathermal peak suggested that the fast long plasma waves excited by the beam decay parametrically into ion acoustic waves and short plasma waves with much lower phase velocity which accelerate bulk electrons to suprathermal energies. Particle-in-cell simulation of a dc beam-plasma system, however, reveals that the short waves appear not due to the parametric instability, but due to the plasma nonuniformity. Moreover, the acceleration may occur in two stages. Plasma waves excited by the beam in the middle of the system propagate towards the anode and enter the density gradient area where their wavelength and phase speed rapidly decrease. Acceleration of thermal electrons by these waves is the first stage. Some of the accelerated electrons reflect from the anode sheath, travel through the plasma, reflect near the cathode, and enter the accelerating area again but with the energy higher than before. The acceleration that occurs now is the second stage. The energy of a particle after the second acceleration exceeds the initial thermal energy by an order of magnitude. This two-stage mechanism plays a role in explaining previous observations of energetic suprathermal electrons in similar discharges. The study is performed in collaboration with I. D. Kaganovich (PPPL), P. L. G. Ventzek and L. Chen (Tokyo Electron America).
Switch device having a non-linear transmission line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo-Decanini, Juan M.
Switching devices are provided. The switching devices include an input electrode, having a main electrode and a trigger electrode, and an output electrode. The main electrode and the trigger electrode are separated from the output electrode by a main gap and a trigger gap, respectively. During operation, the trigger electrode compresses and amplifies a trigger voltage signal causing the trigger electrode to emit a pulse of energy. This pulse of energy form plasma near the trigger electrode, either by arcing across the trigger gap, or by arcing from the trigger electrode to the main electrode. This plasma decreases the breakdownmore » voltage of the main gap. Simultaneously, or near simultaneously, a main voltage signal propagates through the main electrode. The main voltage signal emits a main pulse of energy that arcs across the main gap while the plasma formed by the trigger pulse is still present.« less
Flexible organic light-emitting devices with a smooth and transparent silver nanowire electrode
NASA Astrophysics Data System (ADS)
Cui, Hai-Feng; Zhang, Yi-Fan; Li, Chuan-Nan
2014-07-01
We demonstrate a flexible organic light-emitting device (OLED) by using silver nanowire (AgNW) transparent electrode. A template stripping process has been employed to fabricate the AgNW electrode on a photopolymer substrate. From this approach, a random AgNW network electrode can be transferred to the flexible substrate and its roughness has been successfully decreased. As a result, the devices obtained by this method exhibit high efficiency. In addition, the flexible OLEDs keep good performance under a small bending radius.
Architectures for Improved Organic Semiconductor Devices
NASA Astrophysics Data System (ADS)
Beck, Jonathan H.
Advancements in the microelectronics industry have brought increasing performance and decreasing prices to a wide range of users. Conventional silicon-based electronics have followed Moore's law to provide an ever-increasing integrated circuit transistor density, which drives processing power, solid-state memory density, and sensor technologies. As shrinking conventional integrated circuits became more challenging, researchers began exploring electronics with the potential to penetrate new applications with a low price of entry: "Electronics everywhere." The new generation of electronics is thin, light, flexible, and inexpensive. Organic electronics are part of the new generation of thin-film electronics, relying on the synthetic flexibility of carbon molecules to create organic semiconductors, absorbers, and emitters which perform useful tasks. Organic electronics can be fabricated with low energy input on a variety of novel substrates, including inexpensive plastic sheets. The potential ease of synthesis and fabrication of organic-based devices means that organic electronics can be made at very low cost. Successfully demonstrated organic semiconductor devices include photovoltaics, photodetectors, transistors, and light emitting diodes. Several challenges that face organic semiconductor devices are low performance relative to conventional devices, long-term device stability, and development of new organic-compatible processes and materials. While the absorption and emission performance of organic materials in photovoltaics and light emitting diodes is extraordinarily high for thin films, the charge conduction mobilities are generally low. Building highly efficient devices with low-mobility materials is one challenge. Many organic semiconductor films are unstable during fabrication, storage, and operation due to reactions with water, oxygen and hydroxide. A final challenge facing organic electronics is the need for new processes and materials for electrodes, semiconductors and substrates compatible with low-temperature, flexible, and oxygenated and aromatic solvent-free fabrication. Materials and processes must be capable of future high volume production in order to enable low costs. In this thesis we explore several techniques to improve organic semiconductor device performance and enable new fabrication processes. In Chapter 2, I describe the integration of sub-optical-wavelength nanostructured electrodes that improve fill factor and power conversion efficiency in organic photovoltaic devices. Photovoltaic fill factor performance is one of the primary challenges facing organic photovoltaics because most organic semiconductors have poor charge mobility. Our electrical and optical measurements and simulations indicate that nanostructured electrodes improve charge extraction in organic photovoltaics. In Chapter 3, I describe a general method for maximizing the efficiency of organic photovoltaic devices by simultaneously optimizing light absorption and charge carrier collection. We analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of organic photovoltaic devices. This technique may be used to improve organic photovoltaic materials with low absorption, or short exciton diffusion and carrier-recombination lengths, opening up the device design space. In Chapter 4, I describe a process for high-quality graphene transfer onto chemically sensitive, weakly interacting organic semiconductor thin-films. Graphene is a promising flexible and highly transparent electrode for organic electronics; however, transferring graphene films onto organic semiconductor devices was previously impossible. We demonstrate a new transfer technique based on an elastomeric stamp coated with an fluorinated polymer release layer. We fabricate three classes of organic semiconductor devices: field effect transistors without high temperature annealing, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices.
Zhang, Jingjiao; Su, Xiaodong; Shen, Mingrong; Dai, Zhihua; Zhang, Lingjun; He, Xiyun; Cheng, Wenxiu; Cao, Mengyu; Zou, Guifu
2013-01-01
Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function could be photo-emitted into PLZT and form the dominant photocurrent in our devices. Under AM1.5 (100 mW/cm2) illumination, the short-circuit current and open-circuit voltage of Mg/PLZT/ITO are about 150 and 2 times of those of Pt/PLZT/ITO, respectively. The photovoltaic response of PLZT capacitor was expanded from ultraviolet to visible spectra, and it may have important impact on design and fabrication of high performance photovoltaic devices based on ferroelectric materials. PMID:23811832
Light emitting ceramic device and method for fabricating the same
Valentine, Paul; Edwards, Doreen D.; Walker Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard
2004-11-30
A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, and alternative methods of fabrication for the same are claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.
Wang, Rong; Zhang, Donglian; Xiong, You; Zhou, Xuehong; Liu, Cao; Chen, Weifeng; Wu, Weijing; Zhou, Lei; Xu, Miao; Wang, Lei; Liu, Linlin; Peng, Junbiao; Ma, Yuguang; Cao, Yong
2018-05-30
The thin-film transistor (TFT) driving circuit is a separate electronic component embedded within the panel itself to switch the current for each pixel in active-matrix organic light-emitting diode displays. We reported a TFT-directed dye electroplating method to fabricate pixels; this would be a new method to deposit films on prepatterned electrode for organic full-color display, where TFT driving circuit provide a switching current signal to drive and direct dye depositing on selected RGB pixels. A prototype patterned color pixel matrix was achieved, as high-quality light-emitting films with uniform morphology, pure RGB chromaticity, and stable output.
Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex
NASA Astrophysics Data System (ADS)
Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.
2004-07-01
In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.
Nanoparticle Selective Laser Processing for a Flexible Display Fabrication
NASA Astrophysics Data System (ADS)
Seung Hwan Ko,; Heng Pan,; Daeho Lee,; Costas P. Grigoropoulos,; Hee K. Park,
2010-05-01
To demonstrate a first step for a novel fabrication method of a flexible display, nanomaterial based laser processing schemes to demonstrate organic light emitting diode (OLED) pixel transfer and organic field effect transistor (OFET) fabrication on a polymer substrate without using any conventional vacuum or photolithography processes were developed. The unique properties of nanomaterials allow laser induced forward transfer of organic light emitting material at low laser energy while maintaining good fluorescence and also allow high resolution transistor electrode patterning at plastic compatible low temperature. These novel processes enable an environmentally friendly and cost effective process as well as a low temperature manufacturing sequence to realize inexpensive, large area, flexible electronics on polymer substrates.
Tae Lim, Jong; Lee, Hyunkoo; Cho, Hyunsu; Kwon, Byoung-Hwa; Sung Cho, Nam; Kuk Lee, Bong; Park, Jonghyurk; Kim, Jaesu; Han, Jun-Han; Yang, Jong-Heon; Yu, Byoung-Gon; Hwang, Chi-Sun; Chu Lim, Seong; Lee, Jeong-Ik
2015-01-01
Graphene has attracted considerable attention as a next-generation transparent conducting electrode, because of its high electrical conductivity and optical transparency. Various optoelectronic devices comprising graphene as a bottom electrode, such as organic light-emitting diodes (OLEDs), organic photovoltaics, quantum-dot LEDs, and light-emitting electrochemical cells, have recently been reported. However, performance of optoelectronic devices using graphene as top electrodes is limited, because the lamination process through which graphene is positioned as the top layer of these conventional OLEDs is a lack of control in the surface roughness, the gapless contact, and the flexion bonding between graphene and organic layer of the device. Here, a multilayered graphene (MLG) as a top electrode is successfully implanted, via dry bonding, onto the top organic layer of transparent OLED (TOLED) with flexion patterns. The performance of the TOLED with MLG electrode is comparable to that of a conventional TOLED with a semi-transparent thin-Ag top electrode, because the MLG electrode makes a contact with the TOLED with no residue. In addition, we successfully fabricate a large-size transparent segment panel using the developed MLG electrode. Therefore, we believe that the flexion bonding technology presented in this work is applicable to various optoelectronic devices. PMID:26626439
NASA Astrophysics Data System (ADS)
Oliva, Jorge; Papadimitratos, Alexios; Desirena, Haggeo; De la Rosa, Elder; Zakhidov, Anvar A.
2015-11-01
Parallel tandem organic light emitting devices (OLEDs) were fabricated with transparent multiwall carbon nanotube sheets (MWCNT) and thin metal films (Al, Ag) as interlayers. In parallel monolithic tandem architecture, the MWCNT (or metallic films) interlayers are an active electrode which injects similar charges into subunits. In the case of parallel tandems with common anode (C.A.) of this study, holes are injected into top and bottom subunits from the common interlayer electrode; whereas in the configuration of common cathode (C.C.), electrons are injected into the top and bottom subunits. Both subunits of the tandem can thus be monolithically connected functionally in an active structure in which each subunit can be electrically addressed separately. Our tandem OLEDs have a polymer as emitter in the bottom subunit and a small molecule emitter in the top subunit. We also compared the performance of the parallel tandem with that of in series and the additional advantages of the parallel architecture over the in-series were: tunable chromaticity, lower voltage operation, and higher brightness. Finally, we demonstrate that processing of the MWCNT sheets as a common anode in parallel tandems is an easy and low cost process, since their integration as electrodes in OLEDs is achieved by simple dry lamination process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guohong; Liu, Yong; Li, Baojun
2015-06-07
We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takesmore » parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.« less
Park, Minkyu; Lee, Sang-Hoon; Kim, Donghyuk; Kang, Juhoon; Lee, Jung-Yong; Han, Seung Min
2018-02-28
Herein, a new methodology for solution-processed ZnO fabrication on Ag nanowire network electrode via combustion reaction is reported, where the amount of heat emitted during combustion was minimized by controlling the reaction temperature to avoid damaging the underlying Ag nanowires. The degree of participation of acetylacetones, which are volatile fuels in the combustion reaction, was found to vary with the reaction temperature, as revealed by thermogravimetric and compositional analyses. An optimized processing temperature of 180 °C was chosen to successfully fabricate a combustion-reacted ZnO and Ag nanowire hybrid electrode with a sheet resistance of 30 Ω/sq and transmittance of 87%. A combustion-reacted ZnO on Ag nanowire hybrid structure was demonstrated as an efficient transparent electrode and electron transport layer for the PTB7-Th-based polymer solar cells. The superior electrical conductivity of combustion-reacted ZnO, compared to that of conventional sol-gel ZnO, increased the external quantum efficiency over the entire absorption range, whereas a unique light scattering effect due to the presence of nanopores in the combustion-derived ZnO further enhanced the external quantum efficiency in the 450-550 nm wavelength range. A power conversion efficiency of 8.48% was demonstrated for the PTB7-Th-based polymer solar cell with the use of a combustion-reacted ZnO/Ag NW hybrid transparent electrode.
NASA Astrophysics Data System (ADS)
Umar, Muhammad; Min, Kyungtaek; Kim, Sunghwan
2017-02-01
Transparent, flexible, and conducting films are of great interest for wearable electronics. For better biotic/abiotic interface, the films to integrate the electronics components requires the patterned surface conductors with optical transparency, smoothness, good electrical conductivity, along with the biofriendly traits of films. We focus on silk fibroin, a natural biopolymer extracted from the Bombyx mori cocoons, for this bioelectronics applications. Here we report an optically transparent, flexible, and patterned surface conductor on a silk film by burying a silver nanowires (AgNW) network below the surface of the silk film. The conducting silk film reveals high optical transparency of 80% and the excellent electronic conductivity of 15 Ω/sq, along with smooth surface. The integration of light emitting diode (LED) chip on the patterned electrodes confirms that the current can flow through the transparent and patterned electrodes on the silk film, and this result shows an application for integration of functional electronic/opto-electronic devices. Additionally, we fabricate a transparent and flexible radio frequency (RF) antenna and resistor on a silk film and apply these as a food sensor by monitoring the increasing resistance by the flow of gases from the spoiled food.
A Diamond Electron Tunneling Micro-Electromechanical Sensor
NASA Technical Reports Server (NTRS)
Albin, Sacharia
2000-01-01
A new pressure sensing device using field emission from diamond coated silicon tips has been developed. A high electric field applied between a nano-tip array and a diaphragm configured as electrodes produces electron emission governed by the Fowler Nordheim equation. The electron emission is very sensitive to the separation between the diaphragm and the tips, which is fixed at an initial spacing and bonded such that a cavity is created between them. Pressure applied to the diaphragm decreases the spacing between the electrodes, thereby increasing the number of electrons emitted. Silicon has been used as a substrate on which arrays of diamond coated sharp tips have been fabricated for electron emission. Also, a diaphragm has been made using wet orientation dependent etching. These two structures were bonded together using epoxy and tested. Current - voltage measurements were made at varying pressures for 1-5 V biasing conditions. The sensitivity was found to be 2.13 mV/V/psi for a 20 x 20 array, which is comparable to that of silicon piezoresistive transducers. Thinner diaphragms as well as alternative methods of bonding are expected to improve the electrical characteristics of the device. This transducer will find applications in many engineering fields for pressure measurement.
NASA Astrophysics Data System (ADS)
Nishizawa, Nozomi; Aoyama, Masaki; Roca, Ronel C.; Nishibayashi, Kazuhiro; Munekata, Hiro
2018-05-01
We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an antiparallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.
Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components.
Trung, Tran Quang; Lee, Nae-Eung
2017-01-01
Stretchable electronic devices with intrinsically stretchable components have significant inherent advantages, including simple fabrication processes, a high integrity of the stacked layers, and low cost in comparison with stretchable electronic devices based on non-stretchable components. The research in this field has focused on developing new intrinsically stretchable components for conductors, semiconductors, and insulators. New methodologies and fabrication processes have been developed to fabricate stretchable devices with intrinsically stretchable components. The latest successful examples of stretchable conductors for applications in interconnections, electrodes, and piezoresistive devices are reviewed here. Stretchable conductors can be used for electrode or sensor applications depending on the electrical properties of the stretchable conductors under mechanical strain. A detailed overview of the recent progress in stretchable semiconductors, stretchable insulators, and other novel stretchable materials is also given, along with a discussion of the associated technological innovations and challenges. Stretchable electronic devices with intrinsically stretchable components such as field-effect transistors (FETs), photodetectors, light-emitting diodes (LEDs), electronic skins, and energy harvesters are also described and a new strategy for development of stretchable electronic devices is discussed. Conclusions and future prospects for the development of stretchable electronic devices with intrinsically stretchable components are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Epitaxial-Growth-Induced Junction Welding of Silver Nanowire Network Electrodes.
Kang, Hyungseok; Song, Sol-Ji; Sul, Young Eun; An, Byeong-Seon; Yin, Zhenxing; Choi, Yongsuk; Pu, Lyongsun; Yang, Cheol-Woong; Kim, Youn Sang; Cho, Sung Min; Kim, Jung-Gu; Cho, Jeong Ho
2018-05-22
In this study, we developed a roll-to-roll Ag electroplating process for metallic nanowire electrodes using a galvanostatic mode. Electroplating is a low-cost and facile method for deposition of metal onto a target surface with precise control of both the composition and the thickness. Metallic nanowire networks [silver nanowires (AgNWs) and copper nanowires (CuNWs)] coated onto a polyethylene terephthalate (PET) film were immersed directly in an electroplating bath containing AgNO 3 . Solvated silver ions (Ag + ions) were deposited onto the nanowire surface through application of a constant current via an external circuit between the nanowire networks (cathode) and a Ag plate (anode). The amount of electroplated Ag was systematically controlled by changing both the applied current density and the electroplating time, which enabled precise control of the sheet resistance and optical transmittance of the metallic nanowire networks. The optimized Ag-electroplated AgNW (Ag-AgNW) films exhibited a sheet resistance of ∼19 Ω/sq at an optical transmittance of 90% (550 nm). A transmission electron microscopy study confirmed that Ag grew epitaxially on the AgNW surface, but a polycrystalline Ag structure was formed on the CuNW surface. The Ag-electroplated metallic nanowire electrodes were successfully applied to various electronic devices such as organic light-emitting diodes, triboelectric nanogenerators, and a resistive touch panel. The proposed roll-to-roll Ag electroplating process provides a simple, low-cost, and scalable method for the fabrication of enhanced transparent conductive electrode materials for next-generation electronic devices.
Electroluminescent device having improved light output
Tyan,; Yuan-Sheng, [Webster, NY; Preuss, Donald R [Rochester, NY; Farruggia, Giuseppe [Webster, NY; Kesel, Raymond A [Avon, NY; Cushman, Thomas R [Rochester, NY
2011-03-22
An OLED device including a transparent substrate having a first surface and a second surface, a transparent electrode layer disposed over the first surface of the substrate, a short reduction layer disposed over the transparent electrode layer, an organic light-emitting element disposed over the short reduction layer and including at least one light-emitting layer and a charge injection layer disposed over the light emitting layer, a reflective electrode layer disposed over the charge injection layer and a light extraction enhancement structure disposed over the first or second surface of the substrate; wherein the short reduction layer is a transparent film having a through-thickness resistivity of 10.sup.-9 to 10.sup.2 ohm-cm.sup.2; wherein the reflective electrode layer includes Ag or Ag alloy containing more than 80% of Ag; and the total device size is larger than 10 times the substrate thickness.
NASA Astrophysics Data System (ADS)
Ohmori, Yutaka; Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke
2013-03-01
Organic field effect transistors (OFETs) have been extensively studied for flexible electronics. The characteristics of poly(9,9-dioctylfluorenyl-2,7-dyl) (F8) modified by thermal or light are strongly dependent on the carrier transport and optical characteristics. We investigate all solution-processed OFETs with Ag nano-ink as gate electrodes patterned by Vacuum Ultraviolet (VUV) (172 nm). Bi-layer gate insulators of amorphous fluoro-polymer CYTOP (Asahi Glass Corp.) and poly(methylmethacrylate) (PMMA) were used. Top-gate-type OFETs with ITO source/drain electrode utilizing F8 or poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as an active layer were fabricated, and investigated the carrier conduction and emission characteristic. Without VUV irradiation, both OFETs showed the ambipolar and light-emitting characteristics. On the other hand, F8 devices with VUV exhibited only p-type conduction. The quenching centers were generated in F8 layer by VUV irradiation, which are related to the electron trap sites at the interface. OFETs with F8BT showed both p- and n-type conduction even after VUV. F8BT suffers less damage by VUV and maintain light emission. Light emitting transistors were realized utilizing F8BT patterned by VUV irradiation. This research was partially supported financially by MEXT. The authors thank Harima Chemicals Inc. for providing Ag nano-ink.
Organic Light-Emitting Diodes with a Perylene Interlayer Between the Electrode-Organic Interface
NASA Astrophysics Data System (ADS)
Saikia, Dhrubajyoti; Sarma, Ranjit
2018-01-01
The performance of an organic light-emitting diode (OLED) with a vacuum-deposited perylene layer over a fluorine-doped tin oxide (FTO) surface is reported. To investigate the effect of the perylene layer on OLED performance, different thicknesses of perylene are deposited on the FTO surface and their current density-voltages (J-V), luminance-voltages (L-V) and device efficiency characteristics at their respective thickness are studied. Further analysis is carried out with an UV-visible light double-beam spectrophotometer unit, a four-probe resistivity unit and a field emission scanning electron microscope set up to study the optical transmittance, sheet resistance and surface morphology of the bilayer anode film. We used N,N'-bis(3-methyl phenyl)- N,N'(phenyl)-benzidine (TPD) as the hole transport layer, Tris(8-hydroxyquinolinato)aluminum (Alq3) as a light-emitting layer and lithium fluoride as an electron injection layer. The luminance efficiency of an OLED structure with a 9-nm-thick perylene interlayer is increased by 2.08 times that of the single-layer FTO anode OLED. The maximum value of current efficiency is found to be 5.25 cd/A.
All-solution processed transparent organic light emitting diodes
NASA Astrophysics Data System (ADS)
Zhang, Min; Höfle, Stefan; Czolk, Jens; Mertens, Adrian; Colsmann, Alexander
2015-11-01
In this work, we report on indium tin oxide-free, all-solution processed transparent organic light emitting diodes (OLEDs) with inverted device architecture. Conductive polymer layers are employed as both transparent cathodes and transparent anodes, with the top anodes having enhanced conductivities from a supporting stochastic silver nanowire mesh. Both electrodes exhibit transmittances of 80-90% in the visible spectral regime. Upon the incorporation of either yellow- or blue-light emitting fluorescent polymers, the OLEDs show low onset voltages, demonstrating excellent charge carrier injection from the polymer electrodes into the emission layers. Overall luminances and current efficiencies equal the performance of opaque reference OLEDs with indium tin oxide and aluminium electrodes, proving excellent charge carrier-to-light conversion within the device.
Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes
NASA Astrophysics Data System (ADS)
Shan, Xin; Bade, Sri Ganesh R.; Geske, Thomas; Davis, Melissa; Smith, Rachel; Yu, Zhibin
2017-08-01
Organometal halide perovskite light-emitting diodes (LEDs) with laminated carbon nanotube (CNT) electrodes are reported. The LEDs have an indium tin oxide (ITO) bottom electrode, a screen printed methylammonium lead tribromide (MAPbBr3)/polymer composite thin film as the emissive layer, and laminated CNT as the top electrode. The devices can be turned on at 2.2 V, reaching a brightness of 4,960 cd m-2 and a current efficiency of 1.54 cd A-1 at 6.9 V. The greatly simplified fabrication process in this work can potentially lead to the scalable manufacturing of large size and low cost LED panels in the future.
Ultra-thin ohmic contacts for p-type nitride light emitting devices
Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting
2014-06-24
A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 .ANG.. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.
Cho, Hyunsu; Lee, Hyunkoo; Lee, Jonghee; Sung, Woo Jin; Kwon, Byoung-Hwa; Joo, Chul-Woong; Shin, Jin-Wook; Han, Jun-Han; Moon, Jaehyun; Lee, Jeong-Ik; Cho, Seungmin; Cho, Nam Sung
2017-05-01
In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.
Apparatus for detecting alpha radiation in difficult access areas
Steadman, Peter; MacArthur, Duncan W.
1997-09-02
An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure.
Liquid-phase deposition of thin Si films by ballistic electro-reduction
NASA Astrophysics Data System (ADS)
Ohta, T.; Gelloz, B.; Kojima, A.; Koshida, N.
2013-01-01
It is shown that the nanocryatalline silicon ballistic electron emitter operates in a SiCl4 solution without using any counter electrodes and that thin amorphous Si films are efficiently deposited on the emitting surface with no contaminations and by-products. Despite the large electrochemical window of the SiCl4 solution, electrons injected with sufficiently high energies preferentially reduce Si4+ ions at the interface. Using an emitter with patterned line emission windows, a Si-wires array can be formed in parallel. This low-temperature liquid-phase deposition technique provides an alternative clean process for power-effective fabrication of advanced thin Si film structures and devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chao; Cai, Yuefei; Liu, Zhaojun
2015-05-04
We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrownmore » n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.« less
A liquid-He cryostat for structural and thermal disorder studies by X-ray absorption.
Bouamrane, F; Ribbens, M; Fonda, E; Adjouri, C; Traverse, A
2003-07-01
A new device operating from 4.2 to 300 K is now installed on the hard X-ray station of the DCI ring in LURE in order to measure absorption coefficients. This liquid-He bath device has three optical windows. One allows the incident beam to impinge on the sample, one located at 180 degrees with respect to the sample allows transmitted beams to be detected, and another located at 90 degrees is used to detect emitted photons. Total electron yield detection mode is also possible thanks to a specific sample holder equipped with an electrode that collects the charges created by the emitted electrons in the He gas brought from the He bath around the sample. The performance of the cryostat is described by measurements of the absorption coefficients versus the temperature for Cu and Co foils. For comparison, the absorption coefficient is also measured for Cu clusters. As expected from dimension effects, the Debye temperature obtained for the clusters is lower than that of bulk Cu.
NASA Astrophysics Data System (ADS)
Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken
2007-01-01
A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.
Luo, Dongxiang; Xu, Hua; Zhao, Mingjie; Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao
2015-02-18
Amorphous indium-gallium-zinc-oxide thin film transistors (α-IGZO TFTs) with damage-free back channel wet-etch (BCE) process were achieved by introducing a carbon nanofilm as a barrier layer. We investigate the effects of different source-and-drain (S/D) materials on TFT performance. We find the TFT with Ti/C S/D electrodes exhibits a superior performance with higher output current, lower threshold voltage, and higher effective electron mobility compared to that of Mo/C S/D electrodes. Transmittance electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are employed to analysis the interfacial interaction between S/D metal/C/α-IGZO layers. The results indicate that the better performance of TFTs with Ti/C electrodes should be attributed to the formations of Ti-C and Ti-O at the Ti/C-contact regions, which lead to a lower contact resistance, whereas Mo film is relatively stable and does not react easily with C nanofilm, resulting in a nonohmic contact behavior between Mo/C and α-IGZO layer. However, both kinds of α-IGZO TFTs show good stability under thermal bias stress, indicating that the inserted C nanofilms could avoid the impact on the α-IGZO channel regions during S/D electrodes formation. Finally, we successfully fabricated a high-definition active-matrix organic lighting emitting diode prototype driven by α-IGZO TFTs with Ti/C electrodes in a pilot line.
Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics.
Xu, Xuezhu; Zhou, Jian; Jiang, Long; Lubineau, Gilles; Ng, Tienkhee; Ooi, Boon S; Liao, Hsien-Yu; Shen, Chao; Chen, Long; Zhu, J Y
2016-06-16
Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq(-1)) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays.
NASA Astrophysics Data System (ADS)
Liu, Mengling; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Ding, Xinghuo
2018-03-01
Experimental and simulation studies of high-power AlGaN-based 353 nm ultraviolet (UV) flip-chip (FC) and top-emitting (TE) light-emitting diodes (LEDs) are performed here. To improve the optical and electrical properties of ultraviolet LEDs, we fabricate high-power FC-UV LEDs with Ta2O5/SiO2 distributed Bragg reflectors (DBRs) and a strip-shaped SiO2 current blocking layer (CBL). The reflectance of fourteen pairs of Ta2O5/SiO2 DBRs is 96.4% at 353 nm. The strip-shaped SiO2 CBL underneath the strip-shaped p-electrode can prevent the current concentrating in regions immediately adjacent to the p-electrode where the overlying opaque p-electrode metal layer absorbs the emitted UV light. Moreover, two-level metallization electrodes are used to improve current spreading. Our numerical results show that FC-UV LED has a more favorable current spreading uniformity than TE-UV LED. The light output power of 353 nm FC-UV LED was 23.22 mW at 350 mA, which is 24.7% higher than that of TE-UV LED.
Anderson, C.E.; Ehlers, K.W.
1958-06-17
An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.
Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission.
Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia
2017-02-27
The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K -1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.
Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission
Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia
2017-01-01
The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential. PMID:28264427
Miniature Bipolar Electrostatic Ion Thruster
NASA Technical Reports Server (NTRS)
Hartley, Frank T.
2006-01-01
The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.
White organic light-emitting diodes with 4 nm metal electrode
NASA Astrophysics Data System (ADS)
Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian
2015-10-01
We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.
NASA Astrophysics Data System (ADS)
Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui; Liao, Liang-Sheng
2015-06-01
A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO2 film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.
Song, Jizhong; Li, Jianhai; Xu, Jiayue; Zeng, Haibo
2014-11-12
Low cost and high conductivity make copper (Cu) nanowire (NW) electrodes an attractive material to construct flexible and stretchable electronic skins, displays, organic light-emitting diodes (OLEDs), solar cells, and electrochromic windows. However, the vulnerabilities that Cu NW electrodes have to oxidation, bending, and stretching still present great challenges. This work demonstrates a new Cu@Cu4Ni NW conductive elastomer composite with ultrahigh stability for the first time. Cu@Cu4Ni NWs, facilely synthesized through a one-pot method, have highly crystalline alloyed shells, clear and abrupt interfaces, lengths more than 50 μm, and smooth surfaces. These virtues provide the NW-elastomer composites with a low resistance of 62.4 ohm/sq at 80% transparency, which is even better than the commercial ITO/PET flexible electrodes. In addition, the fluctuation amplitude of resistance is within 2 ohm/sq within 30 days, meaning that at ΔR/R0 = 1, the actual lifetime is estimated to be more than 1200 days. Neither the conductivity nor the performances of OLED with elastomers as conductive circuits show evident degradation during 600 cycles of bending, stretching, and twisting tests. These high-performance and extremely stable NW elastomeric electrodes could endow great chances for transparent, flexible, stretchable, and wearable electronic and optoelectronic devices.
Junction-Free Electrospun Ag Fiber Electrodes for Flexible Organic Light-Emitting Diodes.
Choi, Junhee; Shim, Yong Sub; Park, Cheol Hwee; Hwang, Ha; Kwack, Jin Ho; Lee, Dong Jun; Park, Young Wook; Ju, Byeong-Kwon
2018-02-01
Fabrication of junction-free Ag fiber electrodes for flexible organic light-emitting diodes (OLEDs) is demonstrated. The junction-free Ag fiber electrodes are fabricated by electrospun polymer fibers used as an etch mask and wet etching of Ag thin film. This process facilitates surface roughness control, which is important in transparent electrodes based on metal wires to prevent electrical instability of the OLEDs. The transmittance and resistance of Ag fiber electrodes can be independently adjusted by controlling spinning time and Ag deposition thickness. The Ag fiber electrode shows a transmittance of 91.8% (at 550 nm) at a sheet resistance of 22.3 Ω □ -1 , leading to the highest OLED efficiency. In addition, Ag fiber electrodes exhibit excellent mechanical durability, as shown by measuring the change in resistance under repeatable mechanical bending and various bending radii. The OLEDs with Ag fiber electrodes on a flexible substrate are successfully fabricated, and the OLEDs show an enhancement of EQE (≈19%) compared to commercial indium tin oxide electrodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell.
Gao, Jun; Chen, Shulun; AlTal, Faleh; Hu, Shiyu; Bouffier, Laurent; Wantz, Guillaume
2017-09-20
A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p-n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p-n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter's greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p-n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p-n junctions connected in series.
Efficient and bright organic light-emitting diodes on single-layer graphene electrodes
NASA Astrophysics Data System (ADS)
Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang
2013-08-01
Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.
The role of thin MgO(100) epilayer for polarized charge injection into top-emitting OLED
NASA Astrophysics Data System (ADS)
Kim, Tae Hee; Jong Lee, Nyun; Bae, Yu Jeong; Cho, Hyunduck; Lee, Changhee; Ito, Eisuke
2012-02-01
A new top-emitting OLED (TOLED) structure, which is formed on an Si(100) substrate and an epitaxial MgO(100)/Fe(100)/MgO(100) bottom electrode, was investigated. Our TOLED design included a semi-transparent cathode Al, a stack of conventional organic electroluminescent layers (α-NPD/Alq3/LiF) and a thin Cu-Phthalocyanine (CuPc) film to enhance the hole injection into the luminescent layers. At room temperature (RT), magnetoluminescence of ˜5 % was observed in low magnetic field up to 1 Tesla , which is obviously larger than that of the OLEDs with epitaxial and polycrystalline Fe anodes without MgO(100) covering layer. Our results indicate that the magnetic field effect on the electroluminescence could be strongly related to the magnetic properties of bottom electrode, more precisely the interfacial properties between CuPc layer and the anode. Therefore, we focused on understanding interface electronic states and energy alignment by using x-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy. Our results showed that the use of appropriate oxide layers could represent a new interface engineering technique for improving reliability and functionality in organic semiconductor devices.
Lambertian white top-emitting organic light emitting device with carbon nanotube cathode
NASA Astrophysics Data System (ADS)
Freitag, P.; Zakhidov, Al. A.; Luessem, B.; Zakhidov, A. A.; Leo, K.
2012-12-01
We demonstrate that white organic light emitting devices (OLEDs) with top carbon nanotube (CNT) electrodes show almost no microcavity effect and exhibit essentially Lambertian emission. CNT top electrodes were applied by direct lamination of multiwall CNT sheets onto white small molecule OLED stack. The devices show an external quantum efficiency of 1.5% and high color rendering index of 70. Due to elimination of the cavity effect, the devices show good color stability for different viewing angles. Thus, CNT electrodes are a viable alternative to thin semitransparent metallic films, where the strong cavity effect causes spectral shift and non-Lambertian angular dependence. Our method of the device fabrication is simple yet effective and compatible with virtually any small molecule organic semiconductor stack. It is also compatible with flexible substrates and roll-to-roll fabrication.
Apparatus for detecting alpha radiation in difficult access areas
Steadman, P.; MacArthur, D.W.
1997-09-02
An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure is disclosed. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure. 4 figs.
Improved Temperature Diagnostic for Non-Neutral Plasmas with Single-Electron Resolution
NASA Astrophysics Data System (ADS)
Shanman, Sabrina; Evans, Lenny; Fajans, Joel; Hunter, Eric; Nelson, Cheyenne; Sierra, Carlos; Wurtele, Jonathan
2016-10-01
Plasma temperature diagnostics in a Penning-Malmberg trap are essential for reliably obtaining cold, non-neutral plasmas. We have developed a setup for detecting the initial electrons that escape from a trapped pure electron plasma as the confining electrode potential is slowly reduced. The setup minimizes external noise by using a silicon photomultiplier to capture light emitted from an MCP-amplified phosphor screen. To take advantage of this enhanced resolution, we have developed a new plasma temperature diagnostic analysis procedure which takes discrete electron arrival times as input. We have run extensive simulations comparing this new discrete algorithm to our existing exponential fitting algorithm. These simulations are used to explore the behavior of these two temperature diagnostic procedures at low N and at high electronic noise. This work was supported by the DOE DE-FG02-06ER54904, and the NSF 1500538-PHY.
Miyoshi, S; Sakajiri, M; Ifukube, T; Matsushima, J
1997-01-01
We have proposed the Tripolar Electrode Stimulation Method (TESM) which may enable us to narrow the stimulation region and to move continuously the stimulation site for the cochlear implants. We evaluated whether or not TESM works according to a theory based on numerical analysis using the auditory nerve fiber model. In this simulation, the sum of the excited model fibers were compared with the compound actions potentials obtained from animal experiments. As a result, this experiment showed that TESM could narrow a stimulation region by controlling the sum of the currents emitted from the electrodes on both sides, and continuously move a stimulation site by changing the ratio of the currents emitted from the electrodes on both sides.
Investigation of ITO free transparent conducting polymer based electrode
NASA Astrophysics Data System (ADS)
Sharma, Vikas; Sapna, Sachdev, Kanupriya
2016-05-01
The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.
Effect of generation on the electronic properties of light-emitting dendrimers
NASA Astrophysics Data System (ADS)
Burn, Paul L.; Halim, Mounir; Pillow, Jonathan N. G.; Samuel, Ifor D. W.
1999-12-01
We have compared the optical and electronic properties of a series of porphyrin centered dendrimers containing stilbene dendrons. The first and second generation dendrimers could be spin-coated from solution to form good quality thin films. Incorporation into single layer light-emitting diodes gave red-light emission with maximum external quantum efficiencies of 0.02% and 0.04% for the first and second generation dendrimers respectively. We have determined by photoluminescence studies that energy can be transferred efficiently from the stilbene dendrons to the porphyrin core and that PL emission is from the core. Cyclic voltammetry studies on the dendrimers show that the reductions are porphyrin centered with the dendrons only affecting the rate of heterogeneous electron transfer between the electrode and the dendrimers. This suggests that charge mobility within a dendrimer film in an LED will be affected by the porphyrin edge to porphyrin edge distance. We have studied the hydrodynamic radii of the dendrimers by gel permeation chromatography and found as expected that the average porphyrin edge to dendron edge distance increases with generation. This is consistent with the slowing of heterogeneous electron transfer observed in the cyclic voltammetry on increasing the generation number and suggests that the dendrons are interleaved in the solid state to facilitate charge transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chen; Gao, Zhifei; Wang, Canxing
2015-09-28
We report on multicolor and near-infrared electroluminescence (EL) from the devices using rare-earth doped TiO{sub 2} (TiO{sub 2}:RE) films as light-emitting layers, which are ascribed to the impact excitation of RE{sup 3+} ions, with the EL onset voltages below 10 V. The devices are in the structure of ITO/TiO{sub 2}:RE/SiO{sub 2}/Si, in which the SiO{sub 2} layer is ∼10 nm thick and RE includes Eu, Er, Tm, Nd, and so on. With sufficiently high positive voltage applied on the ITO electrode, the conduction electrons in Si can tunnel into the conduction band of SiO{sub 2} layer via the trap-assisted tunneling mechanism, gainingmore » the potential energy ∼4 eV higher than the conduction band edge of TiO{sub 2}. Therefore, as the electrons in the SiO{sub 2} layer drift into the TiO{sub 2}:RE layer, they become hot electrons. Such hot electrons impact-excite the RE{sup 3+} ions incorporated into the TiO{sub 2} host, leading to the characteristic emissions.« less
A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron
Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi
2016-01-01
Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun. PMID:27609247
A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron.
Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi
2016-09-09
Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.
NASA Astrophysics Data System (ADS)
Deng, Lingling; Zhou, Hongwei; Chen, Shufen; Shi, Hongying; Liu, Bin; Wang, Lianhui; Huang, Wei
2015-02-01
Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Lingling; Zhou, Hongwei; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn
Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the usemore » of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.« less
NASA Astrophysics Data System (ADS)
Maeda, Noritoshi; Yun, Joosun; Jo, Masafumi; Hirayama, Hideki
2018-04-01
Improving the light-extraction efficiency (LEE) is a major issue for the development of deep-ultraviolet (DUV) light-emitting diodes (LEDs). For this improvement, we introduced a transparent p-AlGaN contact layer and a reflective p-type electrode. In this work, we investigated the improvements obtained by replacing conventional Ni/Au p-type electrodes with highly reflective Ni/Mg and Rh electrodes. The external quantum efficiencies (EQEs) of 279 nm DUV LEDs were increased from 4.2 to 6.6% and from 3.4 to 4.5% by introducing Ni/Mg and Rh p-type electrodes, respectively. The LEE enhancement factors for the Ni/Mg and Rh electrodes were 1.6 and 1.4, respectively. These results are explained by the fact that the measured reflectances of the Ni/Mg and Rh electrodes were approximately 80 and 55%, respectively. Moreover, it was concluded that a passivation layer is required for Ni/Mg electrodes to prevent the degradation of the LED properties by the oxidation of Mg.
Linear electronic field time-of-flight ion mass spectrometers
Funsten, Herbert O.
2010-08-24
Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.
Design and development of indirectly heated solid cathode for strip type electron gun.
Maiti, Namita; Mukherjee, S; Kumar, Bhunesh; Barve, U D; Suryawanshi, V B; Das, A K
2010-01-01
Design analysis of a high power indirectly heated solid cathode (for a 200 kW, 45 kV, and 270 degrees bent strip type electron gun) has been presented. The design approach consists of simulation followed by extensive experimentation with different cathode configurations. The preferred cathode is of trapezoidal section (8 x 4 x 2 mm(3)) with an emitting area of 110 x 4 mm(2) made up of tantalum operating at about 2500 K. The solid cathode at the operating temperature of 2500 K generated a well defined electron beam. Electromagnetic and thermomechanical simulation is used to optimize the shape of the beam. Thermal modeling has also been used to analyze the temperature and stress distribution on the electrodes. The simulation results are validated by experimental measurement.
Design of a LaB 6 gun using EGN2 and INTMAG
NASA Astrophysics Data System (ADS)
Becker, R.; Herrmannsfeldt, W. B.
1990-12-01
In order to launch a high-density electron beam to be focused in the 5 T superconducting solenoid of the Frankfurt EBIS [R. Becker et al., Nucl. Instr. and Meth. B24 (1987) 838], an electron gun has been designed, with a 0.5 mm diameter LaB 6 cathode (FEI Comp., Beaverton, USA) in a 70 mm diameter electrode geometry. The emitting surface is placed in the axial fringing field of the solenoid, modified by an axial shielding disk and a bucking coil, to provide either immersed flow or Brillouin flow conditions for the focused beam. Since the cathode diameter is small as compared to the electrodes, a new feature of EGN2 [W.B. Herrmannsfeldt, SLAC-331 (1988)] had to be used in order to have a sufficient number of meshes along the emitting surface. By starting a field line in the large geometry, a curved Neumann boundary is found for a subdivided part of the gun, which represents the influence of the larger part. EGN2 writes the coordinates of this field line on a file, which can be used by POLYGON [R. Becker, Nucl. Instr. and Meth. B42 (1989) 162] (a boundary setup program for EGN2) to define a curved Neumann boundary. By this procedure, it becomes possible to get a reliable simulation of the emission properties of a small cathode in large gun electrodes. The magnetostatic field calculations have been performed with INTMAG [R. Becker, Nucl. Instr. and Meth. B42 (1989) 303], which is a new program of the boundary element method type. Due to the integration calculus, the results do not need smoothing or "Maxwellisation" for the use in EGN2, where the off-axis fields are evaluated by radial expansion. INTMAG provides an output file, which is suitably formatted to be read in by EGN2. The gun design is based on space-charge-limited emission, but no Pierce-type electrode has been provided in the vicinity of the cathode; instead a Wehnelt electrode on negative bias with respect to the cathode is used to create the correct Pierce-type equipotential in free space, ending on the cathode edge with the correct angle. This gives an additional adjustment tool, if the axial position of the gun is not perfect and it relaxes the radial tolerance requirements considerably.
Chandramohan, S; Kang, Ji Hye; Ryu, Beo Deul; Yang, Jong Han; Kim, Seongjun; Kim, Hynsoo; Park, Jong Bae; Kim, Taek Yong; Cho, Byung Jin; Suh, Eun-Kyung; Hong, Chang-Hee
2013-02-01
This paper reports on the evaluation of the impact of introducing interlayers and postmetallization annealing on the graphene/p-GaN ohmic contact formation and performance of associated devices. Current-voltage characteristics of the graphene/p-GaN contacts with ultrathin Au, Ni, and NiO(x) interlayers were studied using transmission line model with circular contact geometry. Direct graphene/p-GaN interface was identified to be highly rectifying and postmetallization annealing improved the contact characteristics as a result of improved adhesion between the graphene and the p-GaN. Ohmic contact formation was realized when interlayer is introduced between the graphene and p-GaN followed by postmetallization annealing. Temperature-dependent I-V measurements revealed that the current transport was modified from thermionic field emission for the direct graphene/p-GaN contact to tunneling for the graphene/metal/p-GaN contacts. The tunneling mechanism results from the interfacial reactions that occur between the metal and p-GaN during the postmetallization annealing. InGaN/GaN light-emitting diodes with NiO(x)/graphene current spreading electrode offered a forward voltage of 3.16 V comparable to that of its Ni/Au counterpart, but ended up with relatively low light output power. X-ray photoelectron spectroscopy provided evidence for the occurrence of phase transformation in the graphene-encased NiO(x) during the postmetallization annealing. The observed low light output is therefore correlated to the phase change induced transmittance loss in the NiO(x)/graphene electrode. These findings provide new insights into the behavior of different interlayers under processing conditions that will be useful for the future development of opto-electronic devices with graphene-based electrodes.
NASA Astrophysics Data System (ADS)
Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng
2015-09-01
A facile one-pot solvothermal method has been developed to synthesize CoNiO2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO2 nanoparticles belong to cubic structure with narrow size-distribution (8-10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0-1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge-discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO2 nanoparticles possess the promising potential application in the field of high-performance energy storage.
NASA Astrophysics Data System (ADS)
Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan
2013-12-01
Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.
NASA Astrophysics Data System (ADS)
Lim, Jong-Wook; Jun Kang, Seong; Lee, Sunghun; Kim, Jang-Joo; Kim, Han-Ki
2012-07-01
We report on transparent Ti-In-Sn-O (TITO) multicomponent anodes prepared by co-sputtering anatase TiO2-x and ITO targets to produce highly efficient phosphorescent organic light emitting diodes (OLEDs). In spite of the incorporation of low cost TiO2, the crystalline TITO electrode annealed at temperature of 600 °C showed a sheet resistance of 18.06 Ω/sq, an optical transmittance of 87.96% at a wavelength of 550 nm, and a work function of 4.71 eV comparable to conventional ITO electrode. Both the quantum (21.69%) and power efficiencies (90.92 lm/W) of the phosphorescent OLED fabricated on the TITO anode were higher than those of the OLED with the reference ITO anode due to the high transparency of the TITO electrodes. This indicates that the TITO electrode is a promising indium-saving electrode that can replace high-cost ITO electrodes in the manufacture of low-cost, highly efficient phosphorescent OLEDs.
Electron emission and plasma generation in a modulator electron gun using ferroelectric cathode
NASA Astrophysics Data System (ADS)
Chen, Shutao; Zheng, Shuxin; Zhu, Ziqiu; Dong, Xianlin; Tang, Chuanxiang
2006-10-01
Strong electron emission and dense plasma generation have been observed in a modulator electron gun with a Ba 0.67Sr 0.33TiO 3 ferroelectric cathode. Parameter of the modulator electron gun and lifetime of the ferroelectric cathode were investigated. It was shown that electron emission from Ba 0.67Sr 0.33TiO 3 cathode with a positive triggering pulse is a sort of plasma emission. Electrons were emitted by the co-effect of surface plasma and non-compensated negative polarization charges at the surface of the ferroelectric. The element analyses of the graphite collector after emission process was performed to show the ingredient of the plasma consist of Ba, Ti and Cu heavy cations of the ceramic compound and electrode. It was demonstrated the validity of the Child-Langmuir law by introducing the decrease of vacuum gap and increase of emission area caused by the expansion of the surface plasma.
NASA Astrophysics Data System (ADS)
Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro
2016-06-01
The current crowding is an especially severe issue in AlGaN-based deep-ultraviolet (DUV) light-emitting diodes (LEDs) because of the low conductivity of the n-AlGaN cladding layer that has a high Al fraction. We theoretically investigated the improvement in internal quantum efficiency and total resistances in DUV-LEDs with an emission wavelength of 265 nm by a well-designed p-electrode geometry to produce uniform current spreading. As a result, the wall-plug efficiency was enhanced by a factor of 60% at an injection current of 350 mA in the designed uniform-current-spreading p-electrode LED when compared with an LED with a conventional cross-bar p-electrode pattern.
Effect of molecular properties on the performance of polymer light-emitting diodes
NASA Astrophysics Data System (ADS)
Ramos, Marta M. D.; Almeida, A. M.; Correia, Helena M. G.; Ribeiro, R. Mendes; Stoneham, A. M.
2004-11-01
The performance of a single layer polymer light-emitting diode depends on several interdependent factors, although recombination between electrons and holes within the polymer layer is believed to play an important role. Our aim is to carry out computer experiments in which bipolar charge carriers are injected in polymer networks made of poly(p-phenylene vinylene) chains randomly oriented. In these simulations, we follow the charge evolution in time from some initial state to the steady state. The intra-molecular properties of the polymer molecules obtained from self-consistent quantum molecular dynamics calculations are used in the mesoscopic model. The purpose of the present work is to clarify the effects of intra-molecular charge mobility and energy disorder on recombination efficiency. In particular, we find that charge mobility along the polymer chains has a serious influence on recombination within the polymer layer. Our results also show that energy disorder due to differences in ionization potential and electron affinity of neighbouring molecules affects mainly recombinations that occur near the electrodes at polymer chains parallel to them.
Spin-polarized light-emitting diodes based on organic bipolar spin valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham
Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.
NASA Astrophysics Data System (ADS)
Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C.
2016-05-01
The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability.The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability. Electronic supplementary information (ESI) available: XPS spectra, Raman spectra, sheet resistance and transmittance of graphene films with different numbers of layers and different ozone treatment times, doping effect of MoO3 on graphene and GO/G electrodes, performance of green OLEDs with different graphene anodes, a movie showing the flexibility of device. See DOI: 10.1039/c6nr01649a
Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.
Beck, Jonathan H; Barton, Robert A; Cox, Marshall P; Alexandrou, Konstantinos; Petrone, Nicholas; Olivieri, Giorgia; Yang, Shyuan; Hone, James; Kymissis, Ioannis
2015-04-08
Graphene is a promising flexible, highly transparent, and elementally abundant electrode for organic electronics. Typical methods utilized to transfer large-area films of graphene synthesized by chemical vapor deposition on metal catalysts are not compatible with organic thin-films, limiting the integration of graphene into organic optoelectronic devices. This article describes a graphene transfer process onto chemically sensitive organic semiconductor thin-films. The process incorporates an elastomeric stamp with a fluorinated polymer release layer that can be removed, post-transfer, via a fluorinated solvent; neither fluorinated material adversely affects the organic semiconductor materials. We used Raman spectroscopy, atomic force microscopy, and scanning electron microscopy to show that chemical vapor deposition graphene can be successfully transferred without inducing defects in the graphene film. To demonstrate our transfer method's compatibility with organic semiconductors, we fabricate three classes of organic thin-film devices: graphene field effect transistors without additional cleaning processes, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices. These experiments demonstrate the potential of hybrid graphene/organic devices in which graphene is deposited directly onto underlying organic thin-film structures.
Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.
2015-01-01
In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor–inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance. PMID:26080437
Zhou, Nanjia; Kim, Myung -Gil; Loser, Stephen; ...
2015-06-15
In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor– inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactivemore » materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Lastly, continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.« less
Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J
2015-06-30
In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.
Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper.
Zhang, Leicong; Zhu, Pengli; Zhou, Fengrui; Zeng, Wenjin; Su, Haibo; Li, Gang; Gao, Jihua; Sun, Rong; Wong, Ching-Ping
2016-01-26
In this study, a flexible asymmetrical all-solid-state supercapacitor with high electrochemical performance was fabricated with Ni/MnO2-filter paper (FP) as the positive electrode and Ni/active carbon (AC)-filter paper as negative electrode, separated with poly(vinyl alcohol) (PVA)-Na2SO4 electrolyte. A simple procedure, such as electroless plating, was introduced to prepare the Ni/MnO2-FP electrode on the conventional laboratory FP, combined with the subsequent step of electrodeposition. Electrochemical results show that the as-prepared electrodes display outstanding areal specific capacitance (1900 mF/cm(2) at 5 mV/s) and excellent cycling performance (85.1% retention after 1000 cycles at 20 mA/cm(2)). Such a flexible supercapacitor assembled asymmetrically in the solid state exhibits a large volume energy density (0.78 mWh/cm(3)) and superior flexibility under different bending conditions. It has been demonstrated that the supercapacitors could be used as a power source to drive a 3 V light-emitting diode indicator. This study may provide an available method for designing and fabricating flexible supercapacitors with high performance in the application of wearable and portable electronics based on easily available materials.
Stacked Device of Polymer Light-Emitting Diode Driven by Metal-Base Organic Transistor
NASA Astrophysics Data System (ADS)
Yoneda, Kazuhiro; Nakayama, Ken-ichi; Yokoyama, Masaaki
2008-02-01
We fabricated a new light-emitting device that combined a polymer light-emitting diode (PLED) and a vertical-type metal-base organic transistor (MBOT) through a floating electrode. By employing a layered floating electrode of Mg:Ag/Au, the MBOT on the PLED was operated successfully and a current amplification factor of approximately 20 was observed. The PLED luminescence exceeding 100 cd/m2 can be modulated using the MBOT with a low base voltage (2.8 V) and VCC (8 V). The emission contrast (on/off ratio) was improved with insertion of an insulating layer under the base, and the cut-off frequency was estimated to be 8 kHz. This device is expected to be a promising driving system of organic light-emitting diode (OLED), realizing low voltage and high numerical aperture.
Thermionic Emission of Single-Wall Carbon Nanotubes Measured
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.
2004-01-01
Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.
NASA Astrophysics Data System (ADS)
Sam, F. Laurent M.; Dabera, G. Dinesha M. R.; Lai, Khue T.; Mills, Christopher A.; Rozanski, Lynn J.; Silva, S. Ravi P.
2014-08-01
Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid TCE composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18 000 cd m-2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8260 cd m-2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics. For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed.
Organic emitters: Light-emitting fabrics
NASA Astrophysics Data System (ADS)
Ortí, Enrique; Bolink, Henk J.
2015-04-01
Light-emitting fibres that suit integration with textiles are prepared by dip-coating a steel wire with an electroluminescent material and then cleverly wrapping the structure with a carbon nanotube sheet that functions as a transparent electrode.
Polymer-based sensor array for phytochemical detection
NASA Astrophysics Data System (ADS)
Weerakoon, Kanchana A.; Hiremath, Nitilaksha; Chin, Bryan A.
2012-05-01
Monitoring for the appearance of volatile organic compounds emitted by plants which correspond to time of first insect attack can be used to detect the early stages of insect infestation. This paper reports a chemical sensor array consisting of polymer based chemiresistor sensors that could detect insect infestation effectively. The sensor array consists of sensors with micro electronically fabricated interdigitated electrodes, and twelve different types of electro active polymer layers. The sensor array was cheap, easy to fabricate, and could be used easily in agricultural fields. The polymer array was found to be sensitive to a variety of volatile organic compounds emitted by plants including γ-terpinene α-pinene, pcymene, farnesene, limonene and cis-hexenyl acetate. The sensor array was not only able to detect but also distinguish between these compounds. The twelve sensors produced a resistance change for each of the analytes detected, and each of these responses together produced a unique fingerprint, enabling to distinguish among these chemicals.
NASA Astrophysics Data System (ADS)
Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.
2009-10-01
The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.
NASA Astrophysics Data System (ADS)
Li, Kun; Wang, Hu; Li, Huiying; Li, Ye; Jin, Guangyong; Gao, Lanlan; Marco, Mazzeo; Duan, Yu
2017-08-01
Transparent conductive electrode (TCE) platforms are required in many optoelectronic devices, including organic light emitting diodes (OLEDs). To date, indium tin oxide based electrodes are widely used in TCEs but they still have few limitations in term of achieving flexible OLEDs and display techniques. In this paper, highly-flexible and ultra-thin TCEs were fabricated for use in OLEDs by combining single-layer graphene (SLG) with thin silver layers of only several nanometers in thickness. The as-prepared SLG + Ag (8 nm) composite electrodes showed low sheet resistances of 8.5 Ω/□, high stability over 500 bending cycles, and 74% transmittance at 550 nm wavelength. Furthermore, SLG + Ag composite electrodes employed as anodes in OLEDs delivered turn-on voltages of 2.4 V, with luminance exceeding 1300 cd m-2 at only 5 V, and maximum luminance reaching up 40 000 cd m-2 at 9 V. Also, the devices could work normally under less than the 1 cm bending radius.
Bender, III, Howard Albert
2003-11-25
Debris generation from an EUV electric discharge plasma source device can be significantly reduced or essentially eliminated by encasing the electrodes with dielectric or electrically insulating material so that the electrodes are shielded from the plasma, and additionally by providing a path for the radiation to exit wherein the electrodes are not exposed to the area where the radiation is collected. The device includes: (a) a body, which is made of an electrically insulating material, that defines a capillary bore that has a proximal end and a distal end and that defines at least one radiation exit; (b) a first electrode that defines a first channel that has a first inlet end that is connected to a source of gas and a first outlet end that is in communication with the capillary bore, wherein the first electrode is positioned at the distal end of the capillary bore; (c) a second electrode that defines a second channel that has a second inlet end that is in communication with the capillary bore and an outlet end, wherein the second electrode is positioned at the proximal end of the capillary bore; and (d) a source of electric potential that is connected across the first and second electrodes, wherein radiation generated within the capillary bore is emitted through the at least one radiation exit and wherein the first electrode and second electrode are shielded from the emitted radiation.
Magnetic assembly of transparent and conducting graphene-based functional composites
NASA Astrophysics Data System (ADS)
Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele
2016-06-01
Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balci, Soner; Czaplewski, David A.; Jung, Il Woong
Besides having perfect control on structural features, such as vertical alignment and uniform distribution by fabricating the wires via e-beam lithography and etching process, we also investigated the THz emission from these fabricated nanowires when they are applied DC bias voltage. To be able to apply a voltage bias, an interdigitated gold (Au) electrode was patterned on the high-quality InGaAs epilayer grown on InP substrate bymolecular beam epitaxy. Afterwards, perfect vertically aligned and uniformly distributed nanowires were fabricated in between the electrodes of this interdigitated pattern so that we could apply voltage bias to improve the THz emission. As amore » result, we achieved enhancement in the emitted THz radiation by ~four times, about 12 dB increase in power ratio at 0.25 THz with a DC biased electric field compared with unbiased NWs.« less
Investigation of ITO free transparent conducting polymer based electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vikas; Sapna,; Sachdev, Kanupriya
2016-05-23
The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coatedmore » polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10{sup −4}Ω-cm), high carrier concentration (2.9 x 10{sup 21} cm{sup −3}) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.« less
NASA Astrophysics Data System (ADS)
Balela, Mary Donnabelle L.; Tan, Michael
2017-07-01
Transparent conducting electrodes are key components of optoelectronic devices, such as touch screens, organic light emitting diodes (OLEDs) and solar cells. Recent market surveys have shown that the demands for these devices are rapidly growing at a tremendous rate. Semiconducting oxides, in particular indium tin oxide (ITO) are the material of choice for transparent conducting electrodes. However, these conventional oxides are typically brittle, which limits their applicability in flexible electronics. Metal nanowires, e.g. copper (Cu) nanowires, are considered as the best candidate as substitute for ITO due to their excellent mechanical and electrical properties. In this paper, ultralong copper (Cu) nanowires with were successfully prepared by hydrothermal growth at 50-80°C for 1 h. Ethylenediamine was employed as the structure-directing agents, while hydrazine was used as the reductant. In situ mixed potential measurement was also carried out to monitor Cu deposition. Higher temperature shifted the mixed potential negatively, leading to thicker Cu nanowires. Transparent conducting electrode, with a sheet resistance of 197 Ω sq-1 at an optical transmittance of around 61 %, was fabricated with the Cu nanowire ink.
Shin, Sangbaie; Park, Yun Sung; Cho, Sunghwan; You, Insang; Kang, In Seok
2018-01-01
Electro-generated chemiluminescence (ECL) has attracted increasing attention as a new platform for light-emitting devices; in particular, the use of mechanically stretchable ECL gels opens up the opportunity to achieve deformable displays. The movements of radical ions under an external electric field include short-range diffusion near the electrodes and long-distance migration between the electrodes. So far, only the diffusion of radical ions has been considered as the operating principle behind ECL. In this study, electrochemical and optical analysis was performed systematically to investigate the role of ion migration in ECL devices. This study reveals that long-distance migration of radical ions can be a key variable in ECL at low frequencies and that this effect depends on the type of ion species and the operating conditions (e.g. voltage and frequency). We also report that the emissions from the two electrodes are not identical, and the emission behaviors are different in the optimal operating conditions for the red, green, and blue ECL emissions. PMID:29732124
Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array.
Li, Huihua; Song, Juan; Wang, Linlin; Feng, Xiaomiao; Liu, Ruiqing; Zeng, Wenjin; Huang, Zhendong; Ma, Yanwen; Wang, Lianhui
2017-01-07
Flexible all-solid-state supercapacitors are crucial to meet the growing needs for portable electronic devices such as foldable phones and wearable electronics. As promising candidates for pseudocapacitor electrode materials, polyaniline (PANI) orderly nanotube arrays are prepared via a simple template electrodeposition method. The structures of the final product were characterized using various characterization techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The obtained PANI nanotube film could be directly used as a flexible all-solid-state supercapacitor electrode. Electrochemical results show that the areal capacitance of a PANI nanotube-based supercapacitor with the deposition cycle number of 100 can achieve a maximum areal capacitance of 237.5 mF cm -2 at a scan rate of 10 mV s -1 and maximum energy density of 24.31 mW h cm -2 at a power density of 2.74 mW cm -2 . In addition, the prepared supercapacitor exhibits excellent flexibility under different bending conditions. It retains 95.2% of its initial capacitance value after 2000 cycles at a current density of 1.0 mA cm -1 , which displays its superior cycling stability. Moreover, the prepared flexible all-solid-state supercapacitor can power a light-emitting-diode (LED), which meets the practical applications of micropower supplies.
Jirayupat, Chaiyanut; Wongwiriyapan, Winadda; Kasamechonchung, Panita; Wutikhun, Tuksadon; Tantisantisom, Kittipong; Rayanasukha, Yossawat; Jiemsakul, Thanakorn; Tansarawiput, Chookiat; Liangruksa, Monrudee; Khanchaitit, Paisan; Horprathum, Mati; Porntheeraphat, Supanit; Klamchuen, Annop
2018-02-21
Here, we demonstrate a novel device structure design to enhance the electrical conversion output of a triboelectric device through the piezoelectric effect called as the piezo-induced triboelectric (PIT) device. By utilizing the piezopotential of ZnO nanowires embedded into the polydimethylsiloxane (PDMS) layer attached on the top electrode of the conventional triboelectric device (Au/PDMS-Al), the PIT device exhibits an output power density of 50 μW/cm 2 , which is larger than that of the conventional triboelectric device by up to 100 folds under the external applied force of 8.5 N. We found that the effect of the external piezopotential on the top Au electrode of the triboelectric device not only enhances the electron transfer from the Al electrode to PDMS but also boosts the internal built-in potential of the triboelectric device through an external electric field of the piezoelectric layer. Furthermore, 100 light-emitting diodes (LEDs) could be lighted up via the PIT device, whereas the conventional device could illuminate less than 20 LED bulbs. Thus, our results highlight that the enhancement of the triboelectric output can be achieved by using a PIT device structure, which enables us to develop hybrid nanogenerators for various self-power electronics such as wearable and mobile devices.
Coherent properties of a tunable low-energy electron-matter-wave source
NASA Astrophysics Data System (ADS)
Pooch, A.; Seidling, M.; Kerker, N.; Röpke, R.; Rembold, A.; Chang, W. T.; Hwang, I. S.; Stibor, A.
2018-01-01
A general challenge in various quantum experiments and applications is to develop suitable sources for coherent particles. In particular, recent progress in microscopy, interferometry, metrology, decoherence measurements, and chip-based applications rely on intensive, tunable, coherent sources for free low-energy electron-matter waves. In most cases, the electrons get field emitted from a metal nanotip, where its radius and geometry toward a counter electrode determines the field distribution and the emission voltage. A higher emission is often connected to faster electrons with smaller de Broglie wavelengths, requiring larger pattern magnification after matter-wave diffraction or interferometry. This can be prevented with a well-known setup consisting of two counter electrodes that allow independent setting of the beam intensity and velocity. However, it needs to be tested if the coherent properties of such a source are preserved after the acceleration and deceleration of the electrons. Here, we study the coherence of the beam in a biprism interferometer with a single atom tip electron field emitter if the particle velocity and wavelength varies after emission. With a Wien filter measurement and a contrast correlation analysis we demonstrate that the intensity of the source at a certain particle wavelength can be enhanced up to a factor of 6.4 without changing the transverse and longitudinal coherence of the electron beam. In addition, the energy width of the single atom tip emitter was measured to be 377 meV, corresponding to a longitudinal coherence length of 82 nm. The design has potential applications in interferometry, microscopy, and sensor technology.
ERIC Educational Resources Information Center
Vollmer, M.; Mollmann, K-P.
2015-01-01
We present experiments giving new insights into the classical light-emitting pickle experiment. In particular, measurements of the spectra and temperatures, as well as high-speed recordings, reveal that light emission is connected to the polarity of the electrodes and the presence of hydrogen.
Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.
Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan
2012-01-01
Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.
Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu-Jung; Oh, Seung Kyu; You, Shin-Jae; Ryou, Jae-Hyun; Kwak, Joon Seop
2018-02-01
The origin of plasma-induced damage on a p -type wide-bandgap layer during the sputtering of tin-doped indium oxide (ITO) contact layers by using radiofrequency-superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light-emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p -GaN surface can reduce plasma-induced damage to the p -GaN. Furthermore, electron-beam irradiation on p -GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma-induced damage to the p -GaN. The plasma electrons can increase the effective barrier height at the ITO/deep-level defect (DLD) band of p -GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage-free sputtered-ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e-beam-evaporated ITO TCE.
Low Voltage, Low Power Organic Light Emitting Transistors for AMOLED Displays
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, M. A.; Liu, B.; Donoghue, E. P.
2011-01-01
Low voltage, low power dissipation, high aperture ratio organic light emitting transistors are demonstrated. The high level of performance is enabled by a carbon nanotube source electrode that permits integration of the drive transistor and the organic light emitting diode into an efficient single stacked device. Given the demonstrated performance, this technology could break the technical logjam holding back widespread deployment of active matrix organic light emitting displays at flat panel screen sizes.
Shimotsu, Rie; Takumi, Takahiro; Vohra, Varun
2017-07-31
Recent studies have demonstrated the advantage of developing pressure-sensitive devices with light-emitting properties for direct visualization of pressure distribution, potential application to next generation touch panels and human-machine interfaces. To ensure that this technology is available to everyone, its production cost should be kept as low as possible. Here, simple device concepts, namely, pressure sensitive flexible hybrid electrodes and OLED architecture, are used to produce low-cost resistive or light-emitting pressure sensors. Additionally, integrating solution-processed self-assembled micro-structures into the flexible hybrid electrodes composed of an elastomer and conductive materials results in enhanced device performances either in terms of pressure or spatial distribution sensitivity. For instance, based on the pressure applied, the measured values for the resistances of pressure sensors range from a few MΩ down to 500 Ω. On the other hand, unlike their evaporated equivalents, the combination of solution-processed flexible electrodes with an inverted OLED architectures display bright green emission when a pressure over 200 kPa is applied. At a bias of 3 V, their luminance can be tuned by applying a higher pressure of 500 kPa. Consequently, features such as fingernails and fingertips can be clearly distinguished from one another in these long-lasting low-cost devices.
Meng, Yan; Wu, Xiaoyan; Xiong, Ziyang; Lin, Chunyan; Xiong, Zuhong; Blount, Ethan; Chen, Ping
2018-04-27
Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr 3 ) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr 3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr 3 PeLEDs realized an improvement in maximum luminescence ranging from ∼2348 to ∼7660 cd m -2 (∼226% enhancement) and current efficiency from 1.65 to 3.08 cd A -1 (∼86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr 3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.
NASA Astrophysics Data System (ADS)
Meng, Yan; Wu, Xiaoyan; Xiong, Ziyang; Lin, Chunyan; Xiong, Zuhong; Blount, Ethan; Chen, Ping
2018-04-01
Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr3) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr3 PeLEDs realized an improvement in maximum luminescence ranging from ˜2348 to ˜7660 cd m-2 (˜226% enhancement) and current efficiency from 1.65 to 3.08 cd A-1 (˜86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.
NASA Astrophysics Data System (ADS)
Bilici, Mihai A.; Haase, John R.; Boyle, Calvin R.; Go, David B.; Sankaran, R. Mohan
2016-06-01
We report on the existence of a smooth transition from field emission to a self-sustained plasma in microscale electrode geometries at atmospheric pressure. This behavior, which is not found at macroscopic scales or low pressures, arises from the unique combination of large electric fields that are created in microscale dimensions to produce field-emitted electrons and the high pressures that lead to collisional ionization of the gas. Using a tip-to-plane electrode geometry, currents less than 10 μA are measured at onset voltages of ˜200 V for gaps less than 5 μm, and analysis of the current-voltage (I-V) relationship is found to follow Fowler-Nordheim behavior, confirming field emission. As the applied voltage is increased, gas breakdown occurs smoothly, initially resulting in the formation of a weak, partial-like glow and then a self-sustained glow discharge. Remarkably, this transition is essentially reversible, as no significant hysteresis is observed during forward and reverse voltage sweeps. In contrast, at larger electrode gaps, no field emission current is measured and gas breakdown occurs abruptly at higher voltages of ˜400 V, absent of any smooth transition from the pre-breakdown condition and is characterized only by glow discharge formation.
Reinforced Electrode Architecture for a Flexible Battery with Paperlike Characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaikwad, AM; Chu, HN; Qeraj, R
2013-02-10
Compliant energy storage has not kept pace with flexible electronics. Herein we demonstrate a technique to reinforce arbitrary battery electrodes by supporting them with mechanically tough, low-cost fibrous membranes, which also serve as the separator. The membranes were laminated to form a full cell, and this stacked membrane reinforcement bears the loads during flexing. This technique was used to make a high energy density, nontoxic Zn-MnO2 battery with printed current collectors. The Zn and MnO2 electrodes were prepared by using a solution-based embedding process. The cell had a nominal potential of 1.5 V and an effective capacity of approximately 3more » mA h cm(-2). We investigated the effect of bending and fatigue on the electrochemical performance and mechanical integrity of the battery. The battery was able to maintain its capacity even after 1000 flex cycles to a bend radius of 2.54 cm. The battery showed an improvement in discharge capacity (ca. 10%) if the MnO2 electrode was flexed to tension as a result of the improvement of particle-to-particle contact. In a demonstration, the flexible battery was used to power a light-emitting diode display integrated with a strain sensor and microcontroller.« less
High-resolution parallel-detection sensor array using piezo-phototronics effect
Wang, Zhong L.; Pan, Caofeng
2015-07-28
A pressure sensor element includes a substrate, a first type of semiconductor material layer and an array of elongated light-emitting piezoelectric nanostructures extending upwardly from the first type of semiconductor material layer. A p-n junction is formed between each nanostructure and the first type semiconductor layer. An insulative resilient medium layer is infused around each of the elongated light-emitting piezoelectric nanostructures. A transparent planar electrode, disposed on the resilient medium layer, is electrically coupled to the top of each nanostructure. A voltage source is coupled to the first type of semiconductor material layer and the transparent planar electrode and applies a biasing voltage across each of the nanostructures. Each nanostructure emits light in an intensity that is proportional to an amount of compressive strain applied thereto.
Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong
2016-01-01
This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs. PMID:27387274
NASA Astrophysics Data System (ADS)
Seo, Tae Hoon; Lee, Seula; Min, Kyung Hyun; Chandramohan, S.; Park, Ah Hyun; Lee, Gun Hee; Park, Min; Suh, Eun-Kyung; Kim, Myung Jong
2016-07-01
This paper reports a highly reliable transparent conductive electrode (TCE) that integrates silver nanowires (AgNWs) and high-quality graphene as a protecting layer. Graphene with minimized defects and large graphene domains has been successfully obtained through a facile two-step growth approach. Ultraviolet light emitting diodes (UV-LEDs) were fabricated with AgNWs or hybrid electrodes where AgNWs were combined with two-step grown graphene (A-2GE) or conventional one-step grown graphene (A-1GE). The device performance and reliability of the UV-LEDs with three different electrodes were compared. The A-2GE offered high figure of merit owing to the excellent UV transmittance and reduced sheet resistance. As a consequence, the UV-LEDs made with A-2GE demonstrated reduced forward voltage, enhanced electroluminescence (EL) intensity, and alleviated efficiency droop. The effects of joule heating and UV light illumination on the electrode stability were also studied. The present findings prove superior performance of the A-2GE under high current injection and continuous operation of UV LED, compared to other electrodes. From our observation, the A-2GE would be a reliable TCE for high power UV-LEDs.
Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin
2016-01-26
Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).
Control system adds to precipitator efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurrole, G.
1978-02-01
An electrostatic precipitator in use at Lion Oil Co., Martinez, Calif., in a fluid catalytic cracking and CO boiler application, was upgraded by mechanical sectionalization of the gas passage and a new electronic control system. The electrostatic precipitator is installed upstream of the CO boiler to handle gas flow up to 4.77 ft/sec, and pressure to 4.5 psi. The independent gas chambers in the electrostatic precipitator were divided by installing gas-tight partition walls to form a total of four electrostatic fields. The precipitator was also equipped with adjustable inlet gas flow-control baffles for even gas distribution. Rows of grounded collectingmore » electrodes are parallel with the flow of gas. The emitting electrode system, powered by separate high-energy transformers for each collecting field, uses silicon-controlled rectifiers and analog electronic networks for rapid response to changing gas and dust conditions. Regulatory requirements call for efficient collection of catalyst fines with no more than 40 lb/hr escaping through the boiler stack. Currently, stack losses average about 38 lb/hr. The installation of two additional control systems with transformers and rectifiers should reduce stack losses to 34 lb/hr.« less
Yang, Xia; Hu, Xiaotian; Wang, Qingxia; Xiong, Jian; Yang, Hanjun; Meng, Xiangchuan; Tan, Licheng; Chen, Lie; Chen, Yiwang
2017-08-09
With recent emergence of wearable electronic devices, flexible and stretchable transparent electrodes are the core components to realize innovative devices. The copper nanowire (CuNW) network is commonly chosen because of its high conductivity and transparency. However, the junction resistances and low aspect ratios still limit its further stretchable performance. Herein, a large-scale stretchable semiembedded CuNW transparent conductive film (TCF) was fabricated by electrolessly depositing Cu on the electrospun poly(4-vinylpyridine) polymer template semiembedded in polydimethylsiloxane. Compared with traditional CuNWs, which are as-coated on the flexible substrate, the semiembedded CuNW TCFs showed low sheet resistance (15.6 Ω·sq -1 at ∼82% transmittance) as well as outstanding stretchability and mechanical stability. The light-emitting diode connected the stretchable semiembedded CuNW TCFs in the electric circuit still lighted up even after stretching with 25% strain. Moreover, this semiembedded CuNW TCF was successfully applied in polymer solar cells as a stretchable conductive electrode, which yielded a power conversion efficiency of 4.6% with 0.1 cm 2 effective area. The large-scale stretchable CuNW TCFs show potential for the development of wearable electronic devices.
Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao
2014-01-01
A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Wang, Chunliang; Liu, Yichun
2016-08-01
In this paper, we prepared the silver nanowires (AgNWs)/aluminum-doped zinc oxide (AZO) composite transparent conducting electrodes for n-ZnO/p-GaN heterojunction light emitting-diodes (LEDs) by drop casting AgNW networks and subsequent atomic layer deposition (ALD) of AZO at 150 °C. The contact resistances between AgNWs were dramatically reduced by pre-annealing in the vacuum chamber before the ALD of AZO. In this case, AZO works not only as the conformal passivation layer that protects AgNWs from oxidation, but also as the binding material that improves AgNWs adhesion to substrates. Due to the localized surface plasmons (LSPs) of the AgNWs resonant coupling with the ultraviolet (UV) light emission from the LEDs, a higher UV light extracting efficiency is achieved from LEDs with the AgNWs/AZO composite electrodes in comparison with the conventional AZO electrodes. Additionally, the antireflective nature of random AgNW networks in the composite electrodes caused a broad output light angular distribution, which could be of benefit to certain optoelectronic devices like LEDs and solar cells.
Method of fabrication of display pixels driven by silicon thin film transistors
Carey, Paul G.; Smith, Patrick M.
1999-01-01
Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.
NASA Astrophysics Data System (ADS)
Reckziegel, S.; Kreye, D.; Puegner, T.; Vogel, U.; Scholles, M.; Grillberger, C.; Fehse, K.
2009-02-01
In this paper we present an optoelectronic integrated circuit (OEIC) based on monolithic integration of organic lightemitting diodes (OLEDs) and CMOS technology. By the use of integrated circuits, photodetectors and highly efficient OLEDs on the same silicon chip, novel OEICs with combined sensors and actuating elements can be realized. The OLEDs are directly deposited on the CMOS top metal. The metal layer serves as OLED bottom electrode and determines the bright area. Furthermore, the area below the OLED electrodes can be used for integrated circuits. The monolithic integration of actuators, sensors and electronics on a common silicon substrate brings significant advantages in most sensory applications. The developed OEIC combines three different types of sensors: a reflective sensor, a color sensor and a particle flow sensor and is configured with an orange (597nm) emitting p-i-n OLED. We describe the architecture of such a monolithic OEIC and demonstrate a method to determine the velocity of a fluid being conveyed pneumatically in a transparent capillary. The integrated OLEDs illuminate the capillary with the flowing fluid. The fluid has a random reflection profile. Depending on the velocity and a random contrast difference, more or less light is reflected back to the substrate. The integrated photodiodes located at different fixed points detect the reflected light and using crosscorrelation, the velocity is calculated from the time in which contrast differences move over a fixed distance.
NASA Astrophysics Data System (ADS)
Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo
2014-02-01
We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000 cd/m2 corresponding to a current efficiency of 110 cd/A, low efficiency roll-off with 21% at 10 000 cd/m2 and low turn on voltage of 2.4 V. Especially, the device showed very small color change with the variation of Δx = 0.02, Δy = 0.02 in the CIE 1931 coordinates as the viewing angle changes from 0° to 60°. The performance of the device is superior to that of the metal/metal cavity structured device.
NASA Astrophysics Data System (ADS)
Kim, Jong Min; Kim, Sung; Hwang, Sung Won; Kim, Chang Oh; Shin, Dong Hee; Kim, Ju Hwan; Jang, Chan Wook; Kang, Soo Seok; Hwang, Euyheon; Choi, Suk-Ho; El-Gohary, Sherif H.; Byun, Kyung Min
2018-02-01
Recently, we have demonstrated that excitation of plasmon-polaritons in a mechanically-derived graphene sheet on the top of a ZnO semiconductor considerably enhances its light emission efficiency. If this scheme is also applied to device structures, it is then expected that the energy efficiency of light-emitting diodes (LEDs) increases substantially and the commercial potential will be enormous. Here, we report that the plasmon-induced light coupling amplifies emitted light by ˜1.6 times in doped large-area chemical-vapor-deposition-grown graphene, which is useful for practical applications. This coupling behavior also appears in GaN-based LEDs. With AuCl3-doped graphene on Ga-doped ZnO films that is used as transparent conducting electrodes for the LEDs, the average electroluminescence intensity is 1.2-1.7 times enhanced depending on the injection current. The chemical doping of graphene may produce the inhomogeneity in charge densities (i.e., electron/hole puddles) or roughness, which can play a role as grating couplers, resulting in such strong plasmon-enhanced light amplification. Based on theoretical calculations, the plasmon-coupled behavior is rigorously explained and a method of controlling its resonance condition is proposed.
Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.
Zhang, Congcong; Chen, Penglei; Hu, Wenping
2016-03-09
Organic light-emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field-effect transistors (OFETs) and the light-generation capability of organic light-emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state-of-the-art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source-drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Son, Kwang Jeong; Kim, Tae Kyoung; Cha, Yu‐Jung; Oh, Seung Kyu; You, Shin‐Jae; Ryou, Jae‐Hyun
2017-01-01
Abstract The origin of plasma‐induced damage on a p‐type wide‐bandgap layer during the sputtering of tin‐doped indium oxide (ITO) contact layers by using radiofrequency‐superimposed direct current (DC) sputtering and its effects on the forward voltage and light output power (LOP) of light‐emitting diodes (LEDs) with sputtered ITO transparent conductive electrodes (TCE) is systematically studied. Changing the DC power voltage from negative to positive bias reduces the forward voltages and enhances the LOP of the LEDs. The positive DC power drastically decreases the electron flux in the plasma obtained by plasma diagnostics using a cutoff probe and a Langmuir probe, suggesting that the repulsion of plasma electrons from the p‐GaN surface can reduce plasma‐induced damage to the p‐GaN. Furthermore, electron‐beam irradiation on p‐GaN prior to ITO deposition significantly increases the forward voltages, showing that the plasma electrons play an important role in plasma‐induced damage to the p‐GaN. The plasma electrons can increase the effective barrier height at the ITO/deep‐level defect (DLD) band of p‐GaN by compensating DLDs, resulting in the deterioration of the forward voltage and LOP. Finally, the plasma damage‐free sputtered‐ITO TCE enhances the LOP of the LEDs by 20% with a low forward voltage of 2.9 V at 20 mA compared to LEDs with conventional e‐beam‐evaporated ITO TCE. PMID:29619312
Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup
2016-01-01
Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening. PMID:27250743
Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup
2016-06-02
Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashiwagi, Y., E-mail: kasiwagi@omtri.or.jp; Yamamoto, M.; Saitoh, M.
2014-12-01
Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.
NASA Astrophysics Data System (ADS)
Kashiwagi, Y.; Koizumi, A.; Takemura, Y.; Furuta, S.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Fujiwara, Y.; Murahashi, K.; Ohtsuka, K.; Nakamoto, M.
2014-12-01
Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.
Doss, James D.; Hutson, Richard L.
1982-01-01
The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.
NASA Astrophysics Data System (ADS)
Alahbakhshi, Masoud; Fallahi, Afsoon; Mohajerani, Ezeddin; Fathollahi, Mohammad-Reza; Taromi, Faramarz Afshar; Shahinpoor, Mohsen
2017-02-01
A novel and innovative approach to develop reduction of graphene oxide (GO) solution for fabrication of highly and truly transparent conductive electrode (TCE) has been presented. Thanks to outstanding mechanical and electronic properties of graphene which offer practical applications in synthesizing composites as well as fabricating various optoelectronic devices, in this study, conductive reduced graphene oxide (r-GO) thin films were prepared through sequential chemical and thermal reduction process of homogeneously dispersed GO solutions. The conductivity and transparency of r-GO thin film is regulated using hydroiodic acid (HI) as reducing agent following by vacuum thermal annealing. The prepared r-GO is characterized by XRD, AFM, UV-vis and Raman spectroscopy. the AFM topographic images reveal surface roughness almost ∼11 nm which became less than 2 nm for the 4 mg/mL solution. Moreover, XRD analysis and Raman spectra substantiate the interlayer spacing between rGO layers has been reduced dramatically and also electronic conjugation has been ameliorated after using HI chemical agent and 700 °C thermal annealing sequentially. Subsequently providing r-GO transparent electrode with decent and satisfactory transparency, acceptable conductivity and suitable work function, it has been exploited as the anode in organic light emitting diode (OLED). The maximum luminance efficiency and maximum power efficiency reached 4.2 cd/A and 0.83 lm/W, respectively. We believe that by optimizing the hole density, sheet resistance, transparency and surface morphology of the r-GO anodes, the device efficiencies can be remarkably increased further.
Contribution to the study of the electric arc: Erosion of metallic electrodes. Thesis
NASA Technical Reports Server (NTRS)
Castro, A.
1986-01-01
A procedure is described for determining the extent of arc electrode erosion (excluding erosion due to transfer of material) from measurements of emitted spectral beam intensity. The relation between emission intensity and plasma temperature is ascertained. Experimental study of several combinations of monometallic electrodes shows that the method is suitable for determining cathode erosion, although the anode metal affects the extent of erosion. Combinations of electrodes which lead to low erosion of silver are reported.
A Robust High Current Density Electron Gun
NASA Astrophysics Data System (ADS)
Mako, F.; Peter, W.; Shiloh, J.; Len, L. K.
1996-11-01
Proof-of-principle experiments are proposed to validate a new concept for a robust, high-current density Pierce electron gun (RPG) for use in klystrons and high brightness electron sources for accelerators. This rugged, long-life electron gun avoids the difficulties associated with plasma cathodes, thermionic emitters, and field emission cathodes. The RPG concept employs the emission of secondary electrons in a transmission mode as opposed to the conventional mode of reflection, i.e., electrons exit from the back face of a thin negative electron affinity (NEA) material, and in the same direction as the incident beam. Current amplification through one stage of a NEA material could be over 50 times. The amplification is accomplished in one or more stages consisting of one primary emitter and one or more secondary emitters. The primary emitter is a low current density robust emitter (e.g., thoriated tungsten). The secondary emitters are thin NEA electrodes which emit secondary electrons in the same direction as the incident beam. Specific application is targeted for a klystron gun to be used by SLAC with a cold cathode at 30-40 amps/cm^2 output from the secondary emission stage, a ~2 μs pulse length, and ~200 pulses/second.
Effect of annealing and In content on the properties of electron beam evaporated ZnO films
NASA Astrophysics Data System (ADS)
Mohamed, S. H.; Ali, H. M.; Mohamed, H. A.; Salem, A. M.
2005-08-01
The effect of both annealing and In content on the properties of ZnO films prepared by electron beam evaporation were investigated. The evaporation was carried out at room temperature from bulk samples prepared by sintering technique. X-ray diffraction showed that the structure of ZnO-In{2}O{3} films depends on both the In content and annealing temperature. Amorphous, highly transparent and relatively low resistive films which can be suitable for the usage as transparent electrode of organic light-emitting diode were obtained upon annealing at 300 circC. Partially crystalline, highly transparent and highly resistive films which can be used in piezoelectric applications were obtained upon annealing at 500 circC. For each composition the refractive index has no monotonic variation upon increasing annealing temperature.
Organic light-emitting diodes using novel embedded al gird transparent electrodes
NASA Astrophysics Data System (ADS)
Peng, Cuiyun; Chen, Changbo; Guo, Kunping; Tian, Zhenghao; Zhu, Wenqing; Xu, Tao; Wei, Bin
2017-03-01
This work demonstrates a novel transparent electrode using embedded Al grids fabricated by a simple and cost-effective approach using photolithography and wet etching. The optical and electrical properties of Al grids versus grid geometry have been systematically investigated, it was found that Al grids exhibited a low sheet resistance of 70 Ω □-1 and a light transmission of 69% at 550 nm with advantages in terms of processing conditions and material cost as well as potential to large scale fabrication. Indium Tin Oxide-free green organic light-emitting diodes (OLED) based on Al grids transparent electrodes was demonstrated, yielding a power efficiency >15 lm W-1 and current efficiency >39 cd A-1 at a brightness of 2396 cd m-2. Furthermore, a reduced efficiency roll-off and higher brightness have been achieved compared with ITO-base device.
A numerical study on the charge transport in TPD/Alq3-based organic light emitting diodes.
Kim, K S; Hwang, Y W; Lee, H G; Won, T Y
2014-08-01
We report our simulation study on the charge transport characteristic of the multi-layer structure for organic light emitting diodes (OLEDs). We performed a numerical simulation on a multilayer structure comprising a hole transport layer (HTL), an emission layer (EML), and an electron transport layer (ETL) between both electrodes. The material of the HTL is TPD (N,N'-Bis (3-methylphenyl)-N,N'-bis(phenyl) benzidine), and the ETL includes Alq3 (Tris (8-hyroxyquinolinato) aluminium). Here, we investigated the parameters such as recombination rates which influence the efficiency of the charge transport between layers in bilayer OLEDs. We also analyzed a transient response during the turn on/off period and the carrier transport in accordance with the variation of the injection barrier and applied voltage. In addition, our numerical simulation revealed that the insertion of the EML affects the photonic characteristics in bilayer structure and also the efficiency due to the difference in the internal barrier height.
Xuan, Jian-yong; Luo, Zhong-yang; Zhao, Lei; Jiang, Jian-ping; Gao, Xiang
2012-05-01
The spectrum of excited N2 molecules and ions was measured by optical emission spectroscopy in pulsed corona discharge with a wire-to-plate reactor. The ratio of emission intensities emitted by the excited molecules and ions of N2 was compared with numerical simulation to determine average electron energies and electric field distributions. Within 2 cm distance from wire electrode in horizontal and vertical directions, electric field and average electron energies appear to be in the ranges of 11.05 19.6 MV x m(-1) and 10.10-13.92 eV respectively; as the distance increases, average electron energies and electric field show a similar trend: first decrease and then increase. Chemically active species, such as OH, O and O3, can be generated through the energetic electron collisions with H2O and O2 directly or indirectly. For the NO oxidation, there is no coexistence of NO and O3, whereas there is a coexistence of NO and OH. NO is oxidized by O3 or O more efficiently than by OH radical.
Bellet, Daniel; Lagrange, Mélanie; Sannicolo, Thomas; Aghazadehchors, Sara; Nguyen, Viet Huong; Langley, Daniel P.; Muñoz-Rojas, David; Jiménez, Carmen; Bréchet, Yves; Nguyen, Ngoc Duy
2017-01-01
The past few years have seen a considerable amount of research devoted to nanostructured transparent conducting materials (TCM), which play a pivotal role in many modern devices such as solar cells, flexible light-emitting devices, touch screens, electromagnetic devices, and flexible transparent thin film heaters. Currently, the most commonly used TCM for such applications (ITO: Indium Tin oxide) suffers from two major drawbacks: brittleness and indium scarcity. Among emerging transparent electrodes, silver nanowire (AgNW) networks appear to be a promising substitute to ITO since such electrically percolating networks exhibit excellent properties with sheet resistance lower than 10 Ω/sq and optical transparency of 90%, fulfilling the requirements of most applications. In addition, AgNW networks also exhibit very good mechanical flexibility. The fabrication of these electrodes involves low-temperature processing steps and scalable methods, thus making them appropriate for future use as low-cost transparent electrodes in flexible electronic devices. This contribution aims to briefly present the main properties of AgNW based transparent electrodes as well as some considerations relating to their efficient integration in devices. The influence of network density, nanowire sizes, and post treatments on the properties of AgNW networks will also be evaluated. In addition to a general overview of AgNW networks, we focus on two important aspects: (i) network instabilities as well as an efficient Atomic Layer Deposition (ALD) coating which clearly enhances AgNW network stability and (ii) modelling to better understand the physical properties of these networks. PMID:28772931
NASA Astrophysics Data System (ADS)
Chen, Xi; He, Jian; Song, Linlin; Zhang, Zengxing; Tian, Zhumei; Wen, Tao; Zhai, Cong; Chen, Yi; Cho, Jundong; Chou, Xiujian; Xue, Chenyang
2018-04-01
Triboelectric nanogenerators are widely used because of low cost, simple manufacturing process and high output performance. In this work, a flexible one-structure arched triboelectric nanogenerator (FOAT), based on common electrode to combine the single-electrode mode and contact-separation, was designed using silicone rubber, epoxy resin and flexible electrode. The peak-to-peak short circuit current of 18μ A and the peak-to-peak open circuit voltage of 570V can be obtained from the FOAT with the size of 5×7 cm2 under the frequency of 3Hz and the pressure of 300N. The peak-to-peak short circuit current of FOAT is increased by 29% and 80%, and the peak-to-peak open circuit voltage is increased by 33% and 54% compared with single-electrode mode and contact-separation mode, respectively. FOAT realizes the combination of two generation modes, which improves the output performance of triboelectric nanogenerator (TENG). 62 light-emitting-diodes (LEDs) can be completely lit up and 2.2μ F capacitor can be easily charged to 1.2V in 9s. When the FOAT is placed at different parts of the human body, the human motion energy can be harvested and be the sensing signal for motion monitoring sensor. Based on the above characteristics, FOAT exhibits great potential in illumination, power supplies for wearable electronic devices and self-powered motion monitoring sensor via harvesting the energy of human motion.
NASA Astrophysics Data System (ADS)
Park, Jae-Seong; Kim, Jae-Ho; Kim, Jun-Yong; Kim, Dae-Hyun; Na, Jin-Young; Kim, Sun-Kyung; Kang, Daesung; Seong, Tae-Yeon
2017-01-01
Indium tin oxide (ITO) nanodots (NDs) were combined with Ag nanowires (Ag NWs) as a p-type electrode in near ultraviolet AlGaN-based light-emitting diodes (LEDs) to increase light output power. The Ag NWs were 30 ± 5 nm in diameter and 25 ± 5 μm in length. The transmittance of 10 nm-thick ITO-only was 98% at 385 nm, while the values for ITO ND/Ag NW were 83%-88%. ITO ND/Ag NW films showed lower sheet resistances (32-51 Ω sq-1) than the ITO-only film (950 Ω sq-1). LEDs (chip size: 300 × 800 μm2) fabricated using the ITO NDs/Ag NW electrodes exhibited higher forward-bias voltages (3.52-3.75 V at 20 mA) than the LEDs with the 10 nm-thick ITO-only electrode (3.5 V). The LEDs with ITO ND/Ag NW electrodes yielded a 24%-62% higher light output power (at 20 mA) than those with the 10 nm-thick ITO-only electrode. Furthermore, finite-difference time-domain (FDTD) simulations were performed to investigate the extraction efficiency. Based on the emission images and FDTD simulations, the enhanced light output with the ITO ND/Ag NW electrodes is attributed to improved current spreading and better extraction efficiency.
NASA Astrophysics Data System (ADS)
Jang, Seon-Ho; Jo, Yong-Ryun; Lee, Young-Woong; Kim, Sei-Min; Kim, Bong-Joong; Bae, Jae-Hyun; An, Huei-Chun; Jang, Ja-Soon
2015-05-01
We report a highly transparent conducting electrode (TCE) scheme of MgxZn1-xO:Ga/Au/NiOx which was deposited on p-GaN by e-beam for GaN-based light emitting diodes (LEDs). The optical and electrical properties of the electrode were optimized by thermal annealing at 500°C for 1 minute in N2 + O2 (5:3) ambient. The light transmittance at the optimal condition increased up to 84-97% from the UV-A to yellow region. The specific contact resistance decreased to 4.3(±0.3) × 10-5 Ωcm2. The improved properties of the electrode were attributed to the directionally elongated crystalline nanostructures formed in the MgxZn1-xO:Ga layer which is compositionally uniform. Interestingly, the Au alloy nano-clusters created in the MgxZn1-xO:Ga layer during annealing at 500°C may also enhance the properties of the electrode by acting as a conducting bridge and a nano-sized mirror. Based on studies of the external quantum efficiency of blue LED devices, the proposed electrode scheme combined with an optimized annealing treatment suggests a potential alternative to ITO. [Figure not available: see fulltext.
Eco-friendly graphene synthesis on Cu foil electroplated by reusing Cu etchants
Kwon, Ki Chang; Ham, Juyoung; Kim, Sungjun; Lee, Jong-Lam; Kim, Soo Young
2014-01-01
Graphene film grown by chemical vapor deposition using Cu substrate is promising for industrial applications. After etching the Cu substrate, which is essential step in graphene transfer process, the etchant solution must be chemically treated to prevent water pollution. Here we investigated that a method of reusing Cu etchant used to synthesize graphene, the synthesis of graphene on the resulting reused Cu films (R-G), and the application of R-G to organic light-emitting diodes (OLEDs) and organic photovoltaic cells (OPVs). The turn-on voltage of OLEDs based on the R-G electrode was 4.2 V, and the efficiencies of OPVs based on the R-G electrode were 5.9–5.95%, that are similar to or better than those of the indium-tin-oxide-based devices. These results suggest that the reusing of Cu foil by the electroplating method could reduce the cost of graphene synthesis, thus opening a wide range of applications in graphene electronics. PMID:24777344
Copper Nanowires as Fully Transparent Conductive Electrodes
Guo, Huizhang; Lin, Na; Chen, Yuanzhi; Wang, Zhenwei; Xie, Qingshui; Zheng, Tongchang; Gao, Na; Li, Shuping; Kang, Junyong; Cai, Duanjun; Peng, Dong-Liang
2013-01-01
In pondering of new promising transparent conductors to replace the cost rising tin-doped indium oxide (ITO), metal nanowires have been widely concerned. Herein, we demonstrate an approach for successful synthesis of long and fine Cu nanowires (NWs) through a novel catalytic scheme involving nickel ions. Such Cu NWs in high aspect ratio (diameter of 16.2 ± 2 nm and length up to 40 μm) provide long distance for electron transport and, meanwhile, large space for light transmission. Transparent electrodes fabricated using the Cu NW ink achieve a low sheet resistance of 1.4 Ohm/sq at 14% transmittance and a high transparency of 93.1% at 51.5 Ohm/sq. The flexibility and stability were tested with 100-timebending by 180°and no resistance change occurred. Ohmic contact was achieved to the p- and n-GaN on blue light emitting diode chip and bright electroluminescence from the front face confirmed the excellent transparency. PMID:23900572
Magnetic assembly of transparent and conducting graphene-based functional composites
Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele
2016-01-01
Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol–gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices. PMID:27354243
Lee, Inhwa; Kim, Gun Woo; Yang, Minyang; Kim, Taek-Soo
2016-01-13
Conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) has attracted significant attention as a hole transport and electrode layer that substitutes metal electrodes in flexible organic devices. However, its weak cohesion critically limits the reliable integration of PSS in flexible electronics, which highlights the importance of further investigation of the cohesion of PSS. Furthermore, the electrical conductivity of PSS is insufficient for high current-carrying devices such as organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). In this study, we improve the cohesion and electrical conductivity through adding dimethyl sulfoxide (DMSO), and we demonstrate the significant changes in the properties that are dependent on the wt % of DMSO. In particular, with the addition of 3 wt % DMSO, the maximum enhancements for cohesion and electrical conductivity are observed where the values increase by 470% and 6050%, respectively, due to the inter-PEDOT bridging mechanism. Furthermore, when OLED devices using the PSS films are fabricated using the 3 wt % DMSO, the display exhibits 18% increased current efficiency.
NASA Astrophysics Data System (ADS)
Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; Zhibinyu; Pei, Qibing
2014-03-01
Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.
Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing
2014-03-17
Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m(2) with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.
Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; ZhibinYu; Pei, Qibing
2014-01-01
Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost. PMID:24632742
Lee, Tae Ho; Kim, Kyeong Heon; Lee, Byeong Ryong; Park, Ju Hyun; Schubert, E Fred; Kim, Tae Geun
2016-12-28
Nitride-based ultraviolet light-emitting diodes (UV LEDs) are promising replacements for conventional UV lamps. However, the external quantum efficiency of UV LEDs is much lower than for visible LEDs due to light absorption in the p-GaN contact and electrode layers, along with p-AlGaN growth and doping issues. To minimize such absorption, we should obtain direct ohmic contact to p-AlGaN using UV-transparent ohmic electrodes and not use p-GaN as a contact layer. Here, we propose a glass-based transparent conductive electrode (TCE) produced using electrical breakdown (EBD) of an AlN thin film, and we apply the thin film to four (Al)GaN-based visible and UV LEDs with thin buffer layers for current spreading and damage protection. Compared to LEDs with optimal ITO contacts, our LEDs with AlN TCEs exhibit a lower forward voltage, higher light output power, and brighter light emission for all samples. The ohmic transport mechanism for current injection and spreading from the metal electrode to p-(Al)GaN layer via AlN TCE is also investigated by analyzing the p-(Al)GaN surface before and after EBD.
Flexible top-emitting OLEDs for lighting: bending limits
NASA Astrophysics Data System (ADS)
Schwamb, Philipp; Reusch, Thilo C.; Brabec, Christoph J.
2013-09-01
Flexible OLED light sources have great appeal due to new design options, being unbreakable and their low weight. Top-emitting OLED device architectures offer the broadest choice of substrate materials including metals which are robust, impermeable to humidity, and good thermal conductors making them promising candidates for flexible OLED device substrates. In this study, we investigate the bending limits of flexible top-emitting OLED lighting devices with transparent metal electrode and thin film encapsulation on a variety of both metal and plastic foils. The samples were subjected to concave and convex bending and inspected by different testing methods for the onset of breakdown for example visible defects and encapsulation failures. The critical failure modes were identified as rupture of the transparent thin metal top electrode and encapsulation for convex bending and buckling of the transparent metal top electrode for concave bending. We investigated influences from substrate material and thickness and top coating thickness. The substrate thickness is found to dominate bending limits as expected by neutral layer modeling. Coating shows strong improvements for all substrates. Bending radii <15mm are achieved for both convex and concave testing without damage to devices including their encapsulation.
Low-energy plasma-cathode electron gun with a perforated emission electrode
NASA Astrophysics Data System (ADS)
Burdovitsin, Victor; Kazakov, Andrey; Medovnik, Alexander; Oks, Efim; Tyunkov, Andrey
2017-11-01
We describe research of influence of the geometric parameters of perforated electrode on emission parameters of a plasma cathode electron gun generating continuous electron beams at gas pressure 5-6 Pa. It is shown, that the emission current increases with increasing the hole diameters and decreasing the thickness of the perforated emission electrode. Plasma-cathode gun with perforated electron can provide electron extraction with an efficiency of up to 72 %. It is shown, that the current-voltage characteristic of the electron gun with a perforated emission electrode differs from that of similar guns with fine mesh grid electrode. The plasma-cathode electron gun with perforated emission electrode is used for electron beam welding and sintering.
Laser Processed Silver Nanowire Network Transparent Electrodes for Novel Electronic Devices
NASA Astrophysics Data System (ADS)
Spechler, Joshua Allen
Silver nanowire network transparent conducting layers are poised to make headway into a space previously dominated by transparent conducting oxides due to the promise of a flexible, scaleable, lab-atmosphere processable alternative. However, there are many challenges standing in the way between research scale use and consumer technology scale adaptation of this technology. In this thesis we will explore many, and overcome a few of these challenges. We will address the poor conductivity at the narrow nanowire-nanowire junction points in the network by developing a laser based process to weld nanowires together on a microscopic scale. We address the need for a comparative metric for transparent conductors in general, by taking a device level rather than a component level view of these layers. We also address the mechanical, physical, and thermal limitations to the silver nanowire networks by making composites from materials including a colorless polyimide and titania sol-gel. Additionally, we verify our findings by integrating these processes into devices. Studying a hybrid organic/inorganic heterojunction photovoltaic device we show the benefits of a laser processed electrode. Green phosphorescent organic light emitting diodes fabricated on a solution phase processed silver nanowire based electrode show favorable device metrics compared to a conductive oxide electrode based control. The work in this thesis is intended to push the adoption of silver nanowire networks to further allow new device architectures, and thereby new device applications.
Zujewski, Mateusz; Thienpont, Hugo; Panajotov, Krassimir
2012-11-19
We present a novel design of an electro-optically modulated coupled-cavity vertical-cavity surface-emitting laser (CC-VCSEL) with traveling wave electrodes of the modulator cavity, which allows to overcome the RC time constant of a traditional lumped electrode structures. The CC-VCSEL optical design is based on longitudinal mode switching which has recently experimentally demonstrated a record modulation speed. We carry out segmented transmission line electrical design of the modulator cavity in order to compensate for the low impedance of the modulator section and to match the 50 Ω electrical network. We have optimized two types of highly efficient modulator structures reaching -3 dB electrical cut-off frequency of f(cut-off) = 330 GHz with maximum reflection of -22 dB in the range from f(LF) = 100 MHz to f(cut-off) and 77 - 89% modulation efficiency.
Shape-Tailorable Graphene-Based Ultra-High-Rate Supercapacitor for Wearable Electronics.
Xie, Binghe; Yang, Cheng; Zhang, Zhexu; Zou, Peichao; Lin, Ziyin; Shi, Gaoquan; Yang, Quanhong; Kang, Feiyu; Wong, Ching-Ping
2015-06-23
With the bloom of wearable electronics, it is becoming necessary to develop energy storage units, e.g., supercapacitors that can be arbitrarily tailored at the device level. Although gel electrolytes have been applied in supercapacitors for decades, no report has studied the shape-tailorable capability of a supercapacitor, for instance, where the device still works after being cut. Here we report a tailorable gel-based supercapacitor with symmetric electrodes prepared by combining electrochemically reduced graphene oxide deposited on a nickel nanocone array current collector with a unique packaging method. This supercapacitor with good flexibility and consistency showed excellent rate performance, cycling stability, and mechanical properties. As a demonstration, these tailorable supercapacitors connected in series can be used to drive small gadgets, e.g., a light-emitting diode (LED) and a minimotor propeller. As simple as it is (electrochemical deposition, stencil printing, etc.), this technique can be used in wearable electronics and miniaturized device applications that require arbitrarily shaped energy storage units.
Lu, Xihong; Zeng, Yinxiang; Yu, Minghao; Zhai, Teng; Liang, Chaolun; Xie, Shilei; Balogun, Muhammad-Sadeeq; Tong, Yexiang
2014-05-21
Oxygen-deficient α-Fe2 O3 nanorods with outstanding capacitive performance are developed and demonstrated as novel negative electrodes for flexible asymmetric supercapacitors. The asymmetric-supercapacitor device based on the oxygen-deficient α-Fe2 O3 nanorod negative electrode and a MnO2 positive electrode achieves a maximum energy density of 0.41 mW·h/cm(3) ; it is also capable of charging a mobile phone and powering a light-emitting diode indicator. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ge, Hai-Liang; Xu, Chen; Xu, Kun; Xun, Meng; Wang, Jun; Liu, Jie
2015-03-01
The two-dimensional (2D) triangle lattice air hole photonic crystal (PC) GaN-based light-emitting diodes (LED) with double-layer graphene transparent electrodes (DGTE) have been produced. The current spreading effect of the double-layer graphene (GR) on the surface of the PC structure of the LED has been researched. Specially, we found that the part of the graphene suspending over the air hole of the PC structure was of much higher conductivity, which reduced the average sheet resistance of the graphene transparent conducting electrode and improved the current spreading of the PC LED. Therefore, the work voltage of the DGTE-PC LED was obviously decreased, and the output power was greatly enhanced. The COMSOL software was used to simulate the current density distribution of the samples. The results show that the etching of PC structure results in the degradation of the current spreading and that the graphene transparent conducting electrode can offer an uniform current spreading in the DGTE-PC LED. PACS: 85.60.Jb; 68.65.Pq; 42.70.Qs
Kim, Jin Hee; Joo, Chul Woong; Lee, Jonghee; Seo, Yoon Kyung; Han, Joo Won; Oh, Ji Yoon; Kim, Jong Su; Yu, Seunggun; Lee, Jae Hyun; Lee, Jeong-Ik; Yun, Changhun; Choi, Bum Ho; Kim, Yong Hyun
2016-09-01
Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) films as transparent electrodes for organic light-emitting diodes (OLEDs) are doped with a new solvent 1,3-dimethyl-2-imidazolidinone (DMI) and are optimized using solvent post-treatment. The DMI doped PSS films show significantly enhanced conductivities up to 812.1 S cm(-1) . The sheet resistance of the PSS films doped with DMI is further reduced by various solvent post-treatment. The effect of solvent post-treatment on DMI doped PSS films is investigated and is shown to reduce insulating PSS in the conductive films. The solvent posttreated PSS films are successfully employed as transparent electrodes in white OLEDs. It is shown that the efficiency of OLEDs with the optimized DMI doped PSS films is higher than that of reference OLEDs doped with a conventional solvent (ethylene glycol). The results present that the optimized PSS films with the new solvent of DMI can be a promising transparent electrode for low-cost, efficient ITO-free white OLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Oh, Min-Suk; Seo, Inseok
2014-04-01
Ga-doped ZnO (GZO) transparent conducting oxide was grown by oxygen plasma-enhanced pulsed laser deposition. GZO grown in the presence of oxygen radicals had resistivity of 1 × 10-3 Ω cm and average visible (500-700 nm) transmittance of 92.5%. A low specific contact resistance of 6.5 × 10-4 Ω cm2 of GZO on p-GaN was achieved by excimer laser annealing (ELA) treatment of p-GaN before GZO electrode deposition. The ELA-treated light emitting diode (LED) fabricated with the GZO electrode as a current-spreading layer resulted in light-output power enhanced by 56.2% at 100 mA compared with that fabricated with a conventional Ni/Au metal electrode. The high-light output and low degradation of light-output power were attributed to the decrease in contact resistance between the p-GaN layer and the GZO electrode and uniform current spreading over the p-GaN layer. In addition, low contact resistance results in a decrease of self-heat generation during current drive.
Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Dai, Shuge; Xi, Yi; Hu, Chenguo; Yue, Xule; Cheng, Lu; Wang, Guo
2014-10-01
KCu7S4 has the channel structure and minor resistance. Its double larger channels ensure that the ions can well exchange with other's, at the same time, can shorten the ionic diffusion path and improve the ionic and electronic transport. So KCu7S4 shows good electrochemical property. The paper reports a novel and high performance supercapacitor based on hybrid carbon particles and KCu7S4 (C/KCu7S4) electrode. For the hybrid structure with different proportions of C and KCu7S4, the C/KCu7S4 (1:10) hybrid supercapacitor shows preferable electrochemical performance and large specific capacitance (469 mF cm-2) at high charge-discharge rate (2 mA), still retaining ∼95% of the capacitance over 5000 cycles by charge-discharge process at a fixed current of 10 mA. Three supercapacitor units in series can light 50 light-emitting diodes (LEDs) for 2.5 min, 10 LEDs for 4 min, one LED for 5.5 min. The much-increased capacity, rate capability, and cycling stability may be attributed to the superionic conductive KCu7S4 nanowires and C/KCu7S4 hybrid structure, which improve ionic and electronic transport, enhance the kinetics of redox reactions through the electrode system.
Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.
Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei
2016-02-10
Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.
NASA Astrophysics Data System (ADS)
Mironovich, K. V.; Mankelevich, Yu. A.; Voloshin, D. G.; Dagesyan, S. A.; Krivchenko, V. A.
2017-08-01
Two-dimensional numerical simulations of a dc discharge in a CH4/H2/N2 mixture in the regime of deposition of nanostructured carbon films are carried out with account of the cathode electron beam effects. The distributions of the gas temperature and species number densities are calculated, and the main plasmachemical kinetic processes governing the distribution of methyl radicals above the substrate are analyzed. It is shown that the number density of methyl radicals above the substrate is several orders of magnitude higher than the number densities of other hydrocarbon radicals, which indicates that the former play a dominant role in the growth of nanostructured carbon films. The model is verified by comparing the measured optical emission profiles of the H( n ≡ 3), C 2 * , CH*, and CN* species and the calculated number densities of excited species, as well as the measured and calculated values of the discharge voltage and heat fluxes onto the electrodes and reactor walls. The key role of ion-electron recombination and dissociative excitation of H2, C2H2, CH4, and HCN molecules in the generation of emitting species (first of all, in the cold regions adjacent to the electrodes) is revealed.
Laser patterning of highly conductive flexible circuits
NASA Astrophysics Data System (ADS)
Ji, Seok Young; Muhammed Ajmal, C.; Kim, Taehun; Chang, Won Seok; Baik, Seunghyun
2017-04-01
There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 μm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s-1). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm-1. The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.
Laser patterning of highly conductive flexible circuits.
Ji, Seok Young; Ajmal, C Muhammed; Kim, Taehun; Chang, Won Seok; Baik, Seunghyun
2017-04-21
There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 μm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s -1 ). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm -1 . The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.
Why do aged fluorescent tubes flicker?
NASA Astrophysics Data System (ADS)
Plihon, Nicolas; Ferrand, Jérémy; Guyomar, Tristan; Museur, Flavien; Taberlet, Nicolas
2017-11-01
Our everyday experience of aged and defective fluorescent tubes or bulbs informs us that they may flicker and emit a clicking sound while struggling to light up. In this article, the physical mechanisms controlling the initial illumination of a functioning fluorescent tube are investigated using a simple and affordable experimental setup. Thermionic emission from the electrodes of the tube controls the startup of fluorescent tubes. The origin of the faulty startup of aged fluorescent tubes is discussed and flickering regimes using functional tubes are artificially produced using a dedicated setup that decreases electron emission by the thermionic effect in a controlled manner. The physical parameters controlling the occurrence of flickering light are discussed, and their temporal statistics are reported.
Bernheim, M
2006-03-01
This study aims to evaluate the spatial resolution achievable with photoelectrons in order to perform localised UPS or XPS analyses on various heterogeneous samples. This investigation is intentionally restricted to direct image acquisition by immersion objective lenses, involving electrons ejected with initial energies of several tenths of an electron-volt. In order to characterise the contribution of all optical elements, analytical investigations were associated to numerical simulations based on SIMION 7 software. The acquisition of high-quality images implies a simultaneous reduction in spherical and chromatic aberrations by a narrow aperture stop placed at the output pupil of the objective. With such limitations in useful emission angles, it is shown that monochromatic electron beams build images with a resolution of about 1 nm, especially for the acceleration bias mode where the focussing electrode is biased at a positive high voltage. Even energy dispersed electron beams, limited by a 4 eV band pass spectrometer, can produce images convenient for highly localised ESCA analyses (resolution 3 nm), where the objective lens is associated with an aperture stop of 30 microm in diameter without using acceleration voltages above 5000 V.
High performance organic transistor active-matrix driver developed on paper substrate
NASA Astrophysics Data System (ADS)
Peng, Boyu; Ren, Xiaochen; Wang, Zongrong; Wang, Xinyu; Roberts, Robert C.; Chan, Paddy K. L.
2014-09-01
The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we combine screen-printing, high precision laser drilling and thermal evaporation, to fabricate organic field effect transistor (OFET) active-matrix (AM) arrays onto standard printer paper. The devices show a mobility and on/off ratio as high as 0.56 cm2V-1s-1 and 109 respectively. Small electrode overlap gives rise to a cut-off frequency of 39 kHz, which supports that our AM array is suitable for novel practical applications. We demonstrate an 8 × 8 AM light emitting diode (LED) driver with programmable scanning and information display functions. The AM array structure has excellent potential for scaling up.
Sb2O3/Ag/Sb2O3 Multilayer Transparent Conducting Films For Ultraviolet Organic Light-emitting Diode
NASA Astrophysics Data System (ADS)
Song, Chunyan; Zhang, Nan; Lin, Jie; Guo, Xiaoyang; Liu, Xingyuan
2017-01-01
A novel UV transparent conducting films based on Sb2O3/Ag/Sb2O3 (SAS) structure, which were prepared by an electron-beam thermal evaporation at room temperature. This SAS exhibits excellent electrical, optical and stable properties. Especially for UV region, the SAS has high transmittance of 80% at 306 nm and 92% at 335 nm, meanwhile achieving low sheet resistance ( ≤ 10 Ω sq-1). The UV OLED based on the SAS show competitive device performance. The UV OLED obtains the peak of UV electroluminescence at 376 nm and shows a very high maximum EQE of 4.1% with the maximum output power density of 5.18 mW cm-2. These results indicate that the potential of SAS applications in deep UV transparent electrodes and large-scale flexible transparent electronics.
Sb2O3/Ag/Sb2O3 Multilayer Transparent Conducting Films For Ultraviolet Organic Light-emitting Diode.
Song, Chunyan; Zhang, Nan; Lin, Jie; Guo, Xiaoyang; Liu, Xingyuan
2017-01-25
A novel UV transparent conducting films based on Sb 2 O 3 /Ag/Sb 2 O 3 (SAS) structure, which were prepared by an electron-beam thermal evaporation at room temperature. This SAS exhibits excellent electrical, optical and stable properties. Especially for UV region, the SAS has high transmittance of 80% at 306 nm and 92% at 335 nm, meanwhile achieving low sheet resistance ( ≤ 10 Ω sq -1 ). The UV OLED based on the SAS show competitive device performance. The UV OLED obtains the peak of UV electroluminescence at 376 nm and shows a very high maximum EQE of 4.1% with the maximum output power density of 5.18 mW cm -2 . These results indicate that the potential of SAS applications in deep UV transparent electrodes and large-scale flexible transparent electronics.
Sb2O3/Ag/Sb2O3 Multilayer Transparent Conducting Films For Ultraviolet Organic Light-emitting Diode
Song, Chunyan; Zhang, Nan; Lin, Jie; Guo, Xiaoyang; Liu, Xingyuan
2017-01-01
A novel UV transparent conducting films based on Sb2O3/Ag/Sb2O3 (SAS) structure, which were prepared by an electron-beam thermal evaporation at room temperature. This SAS exhibits excellent electrical, optical and stable properties. Especially for UV region, the SAS has high transmittance of 80% at 306 nm and 92% at 335 nm, meanwhile achieving low sheet resistance ( ≤ 10 Ω sq−1). The UV OLED based on the SAS show competitive device performance. The UV OLED obtains the peak of UV electroluminescence at 376 nm and shows a very high maximum EQE of 4.1% with the maximum output power density of 5.18 mW cm−2. These results indicate that the potential of SAS applications in deep UV transparent electrodes and large-scale flexible transparent electronics. PMID:28120888
Development of medical electronic devices in the APL space department
NASA Technical Reports Server (NTRS)
Newman, A. L.
1985-01-01
Several electronic devices for automatically correcting specific defects in a body's physiologic regulation and allowing approximately normal functioning are described. A self-injurious behavior inhibiting system (SIBIS) is fastened to the arm of a person with chronic self-injurious behavior patterns. An electric shock is delivered into the arm whenever the device senses above-threshold acceleration of the head such as occur with head-bangers. Sounding a buzzer tone with the shock eventually allows transference of the aversive stimulus to the buzzer so shocks are no longer necessary. A programmable implantable medication system features a solenoid pump placed beneath the skin and refueled by hypodermic needle. The pump functions are programmable and can deliver insulin, chemotherapy mixes and/or pain killers according to a preset schedule or on patient demand. Finally, an automatic implantible defibrillator has four electrodes attached directly to the heart for sensing electrical impulses or emitting them in response to cardiac fibrillation.
High performance organic transistor active-matrix driver developed on paper substrate
Peng, Boyu; Ren, Xiaochen; Wang, Zongrong; Wang, Xinyu; Roberts, Robert C.; Chan, Paddy K. L.
2014-01-01
The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we combine screen-printing, high precision laser drilling and thermal evaporation, to fabricate organic field effect transistor (OFET) active-matrix (AM) arrays onto standard printer paper. The devices show a mobility and on/off ratio as high as 0.56 cm2V−1s−1 and 109 respectively. Small electrode overlap gives rise to a cut-off frequency of 39 kHz, which supports that our AM array is suitable for novel practical applications. We demonstrate an 8 × 8 AM light emitting diode (LED) driver with programmable scanning and information display functions. The AM array structure has excellent potential for scaling up. PMID:25234244
Ion source with corner cathode
NASA Technical Reports Server (NTRS)
Herrero, Federico A. (Inventor); Roman, Patrick A. (Inventor)
2012-01-01
An ion source may include first, second, and third electrodes. The first electrode may be a repeller having a V-shaped groove. The second electrode may be an electron emitter filament disposed adjacent the base of the V-shaped groove. The third electrode may be an anode that defines an enclosed volume with an aperture formed therein adjacent the electron emitter filament. A potential of the first electrode may be less than a potential of the second electrode, and the potential of the second electrode may be less than a potential of the third electrode. A fourth electrode that is disposed between the electron emitter filament and the anode may be used to produce a more collimated electron beam.
Effects of the guard electrode on the photoelectron distribution around an electric field sensor
NASA Astrophysics Data System (ADS)
Miyake, Y.; Usui, H.; Kojima, H.
2011-05-01
We have developed a numerical model of a double-probe electric field sensor equipped with a photoelectron guard electrode for the particle-in-cell simulation. The model includes typical elements of modern double-probe sensors on, e.g., BepiColombo/MMO, Cluster, and THEMIS spacecraft, such as a conducting boom and a preamplifier housing called a puck. The puck is also used for the guard electrode, and its potential is negatively biased by reference to the floating spacecraft potential. We apply the proposed model to an analysis of an equilibrium plasma environment around the sensor by assuming that the sun illuminates the spacecraft from the direction perpendicular to the sensor deployment axis. As a simulation result, it is confirmed that a substantial number of spacecraft-originating photoelectrons are once emitted sunward and then fall onto the puck and sensing element positions. In order to effectively repel such photoelectrons coming from the sun direction, a potential hump for electrons, i.e., a negative potential region, should be created in a plasma region around the sunlit side of the guard electrode surface. The simulation results reveal the significance of the guard electrode potential being not only lower than the spacecraft body but also lower than the background plasma potential of the region surrounding the puck and the sensing element. One solution for realizing such an operational condition is to bias the guard potential negatively by reference to the sensor potential because the sensor is usually operated nearly at the background plasma potential.
Conjugated Polymer Zwitterions: Efficient Interlayer Materials in Organic Electronics.
Liu, Yao; Duzhko, Volodimyr V; Page, Zachariah A; Emrick, Todd; Russell, Thomas P
2016-11-15
Conjugated polymer zwitterions (CPZs) are neutral, hydrophilic, polymer semiconductors. The pendent zwitterions, viewed as side chain dipoles, impart solubility in polar solvents for solution processing, and open opportunities as interfacial components of optoelectronic devices, for example, between metal electrodes and organic semiconductor active layers. Such interlayers are crucial for defining the performance of organic electronic devices, e.g., field-effect transistors (OFETs), light-emitting diodes (OLEDs), and photovoltaics (OPVs), all of which consist of multilayer structures. The interlayers reduce the Schottky barrier height and thus improve charge injection in OFETs and OLEDs. In OPVs, the interlayers serve to increase the built-in electric potential difference (V bi ) across the active layer, ensuring efficient extraction of photogenerated charge carriers. In general, polar and even charged electronically active polymers have gained recognition for their ability to modify metal/semiconductor interfaces to the benefit of organic electronics. While conjugated polyelectrolytes (CPEs) as interlayer materials are well-documented, open questions remain about the role of mobile counterions in CPE-containing devices. CPZs possess the processing advantages of CPEs, but as neutral molecules lack any potential complications associated with counterions. The electronic implications of CPZs on metal electrodes stem from the orientation of the zwitterion dipole moment in close proximity to the metal surface, and the resultant surface-induced polarization. This generates an interfacial dipole (Δ) at the CPZ/metal interface, altering the work function of the electrode, as confirmed by ultraviolet photoelectron spectroscopy (UPS), and improving device performance. An ideal cathode interlayer would reduce electrode work function, have orthogonal processability to the active layer, exhibit good film forming properties (i.e., wettability/uniformity), prevent exciton quenching, possess optimal electron affinity that neither limits the work function reduction nor impedes the charge extraction, transport electrons selectively, and exhibit long-term stability. Our recent discoveries show that CPZs achieve many of these attributes, and are poised for further expansion and development in the interfacial science of organic electronics. This Account reviews a recent collaboration that began with the synthesis of CPZs and a study of their structural and electronic properties on metals, then extended to their application as interlayer materials for OPVs. We discuss CPZ structure-property relationships based on several material platforms, ranging from homopolymers to copolymers, and from materials with intrinsic p-type conjugated backbones to those with intrinsic n-type conjugated backbones. We discuss key components of such interlayers, including (i) the origin of work function reduction of CPZ interlayers on metals; (ii) the role of the frontier molecular orbital energy levels and their trade-offs in optimizing electronic and device properties; and (iii) the role of polymer conductivity type and the magnitude of charge carrier mobility. Our motivation is to present our prior use and current understanding of CPZs as interlayer materials in organic electronics, and describe outstanding issues and future potential directions.
NASA Astrophysics Data System (ADS)
Wang, Xue-yan; Bao, Jun; Li, Lu; Cui, Shao-li; Du, Xiao-qing
2017-10-01
The flexible electrodes based on CVD-graphene/ AgNWs hybrid transparent films were prepared by the vacuum filtration and substrate transferring method, and several performances of the films including sheet resistance, optical transmittance, work function, surface roughness and flexibility were further researched. The results suggested that the hybrid films which were obtained by vacuum filtration and substrate transferring method have the advantages such as uniform distribution of AgNWs, high work function, low roughness and small sheet resistance and good flexibility. The sheet resistance of the hybrid films would decrease with the increasing of the concentration of AgNWs, while the surface roughness would increase and the optical transmittance at 550nm of the films decrease linearly. Organic light emitting devices (OLED) devices based on CVD-graphene/AgNWs hybrid films were fabricated, and characteristics of voltage-current density, luminance, current efficiency were tested. It's found that CVD-graphene/AgNWs hybrid films were better than CVD-graphene films when they were used as anodes for organic light emitting devices. It can be seen that CVD-graphene/AgNWs hybrid transparent films have great potential in applications of flexible electrodes, and are of great significance for promoting the development of organic light emitting devices.
Sharma, Rahul K; Katiyar, Monica; Rao, I V Kameshwar; Unni, K N Narayanan; Deepak
2016-01-28
If an organic light emitting diode is to be used as part of a matrix addressed array, it should exhibit low reverse leakage current. In this paper we present a method to improve the on/off ratio of such a diode by simultaneous application of heat and electric field post device fabrication. A green OLED with excellent current efficiency was seen to be suffering from a poor on/off ratio of 10(2). After examining several combinations of annealing along with the application of a reverse bias voltage, the on/off ratio of the same device could be increased by three orders of magnitude, specifically when the device was annealed at 80 °C under reverse bias (-15 V) followed by slow cooling also under the same bias. Simultaneously, the forward characteristics of the device were relatively unaffected. The reverse leakage in the OLED is mainly due to the injection of minority carriers in the hole transport layer (HTL) and the electron transport layer (ETL), in this case, of holes in tris-(8-hydroxyquinoline)aluminum(Alq3) and electrons in 4,4',4''-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA). Hence, to investigate these layers adjacent to the electrodes, we fabricated their single layer devices. The possibility of bulk traps present adjacent to electrodes providing states for injection was ruled out after estimating the trap density both before and after the reverse biased annealing. The temperature independent current in reverse bias ruled out the possibility of thermionic injection. The origin of the reverse bias current is attributed to the availability of interfacial hole levels in Alq3 at the cathode work function level in the as-fabricated device; the suppression of the same being attributed to the fact that these levels in Alq3 are partly removed after annealing under an electric field.
NASA Astrophysics Data System (ADS)
Kasparek, Christian; Rörich, Irina; Blom, Paul W. M.; Wetzelaer, Gert-Jan A. H.
2018-01-01
By blending semiconducting polymers with the cross-linkable matrix ethoxylated-(4)-bisphenol-a-dimethacrylate (SR540), an insoluble layer is acquired after UV-illumination. Following this approach, a trilayer polymer light-emitting diode (PLED) consisting of a blend of poly[N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)-benzidine] (poly-TPD) and SR540 as an electron-blocking layer, Super Yellow-Poly(p-phenylene vinylene) (SY-PPV) blended with SR540 as an emissive layer, and poly(9,9-di-n-octylfluorenyl-2,7-diyl) as a hole-blocking layer is fabricated from solution. The trilayer PLED shows a 23% increase in efficiency at low voltage as compared to a single layer SY-PPV PLED. However, at higher voltage, the advantage in current efficiency gradually decreases. A combined experimental and modelling study shows that the increased efficiency is not only due to the elimination of exciton quenching at the electrodes but also due to suppressed nonradiative trap-assisted recombination due to carrier confinement. At high voltages, holes can overcome the hole-blocking barrier, which explains the efficiency roll-off.
NASA Astrophysics Data System (ADS)
Kim, Hwankyo; Kim, Dae-Hyun; Seong, Tae-Yeon
2017-11-01
We investigated the electrical performance of near ultraviolet (NUV) (390 nm) light-emitting diodes (LEDs) fabricated with various semi-transparent Cr/ITO n-type contacts. It was shown that after annealing at 400 °C, Cr/ITO (10 nm/40 nm) contact was ohmic with a specific contact resistance of 9.8 × 10-4 Ωcm2. NUV AlGaN-based LEDs fabricated with different Cr/ITO (6-12 nm/40 nm) electrodes exhibited forward-bias voltages of 3.27-3.30 V at an injection current of 20 mA, which are similar to that of reference LED with Cr/Ni/Au (20 nm/25 nm/200 nm) electrode (3.29 V). The LEDs with the Cr/ITO electrodes gave series resistances of 10.69-11.98 Ω, while the series resistance is 10.84 Ohm for the reference LED. The transmittance of the Cr/ITO samples significantly improved when annealed at 400 °C. The transmittance (25.8-45.2% at 390 nm) of the annealed samples decreased with increasing Cr layer thickness. The LEDs with the Cr/ITO electrodes exhibited higher light output power than reference LED (with Cr/Ni/Au electrode). In particular, the LED with the Cr/ITO (12 nm/40 nm) electrode showed 9.3% higher light output power at 100 mA than reference LED. Based on the X-ray photoemission spectroscopy (XPS) and electrical results, the ohmic formation mechanism is described and discussed.
Theory and Simulation of Electron Sheaths and Anode Spots in Low Pressure Laboratory Plasmas
NASA Astrophysics Data System (ADS)
Scheiner, Brett Stanford
Electrodes in low pressure laboratory plasmas have a multitude of possible sheath structures when biased at a large positive potential. When the size of the electrode is small enough the electrode bias can be above the plasma potential. When this occurs an electron-rich sheath called an electron sheath is present at the electrode. Electron sheaths are most commonly found near Langmuir probes and other electrodes collecting the electron saturation current. Such electrodes have applications in the control of plasma parameters, dust confinement and circulation, control of scrape off layer plasmas, RF plasmas, and in plasma contactors and tethered space probes. The electron sheaths in these various systems most directly influence the plasma by determining how electron current is lost from the system. An understanding of how the electron sheath interfaces with the bulk plasma is necessary for understanding the behavior induced by positively biased electrodes in these plasmas. This thesis provides a dedicated theory of electron sheaths. Motivated by electron velocity distribution functions (EVDFs) observed in particle-in-cell (PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the presheath model, an electron pressure gradient accelerates electrons to near the electron thermal speed by the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. Using PIC simulations, the form of a sheath near a small electrode with bias near the plasma potential is also studied. When the electrode is biased near the plasma potential, the EVDFs exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, instead the plasma remains quasineutral up to the electrode. Once the bias exceeds the plasma potential an electron sheath is present. In this case, 2D EVDFs indicate that the flow moment has comparable contributions from the flow shift and loss-cone truncation. The case of an electrode at large positive bias relative to the plasma potential is also studied. Here, the rate of electron impact ionization of neutrals increases near the electrode. If this ionization rate is great enough a double layer forms. This double layer can move outward separating a high potential plasma at the electrode surface from the bulk plasma. This phenomenon is known as an anode spot. Informed by observations from the first PIC simulations of an anode spot, a model has been developed describing the onset in which ionization leads to the buildup of positive space charge and the formation of a potential well that traps electrons near the electrode surface. A model for steady-state properties based on current loss, power, and particle balance of the anode spot plasma is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Yun; Wang, Bo; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn
2016-04-11
The authors develop a facile and effective method to produce the chlorinated indium tin oxide (Cl-ITO) treated by InCl{sub 3} aqueous solution and UV/ozone. The work function of the Cl-ITO achieved by this treatment is as high as 5.69 eV, which is increased by 1.09 eV compared with that of the regular ITO without any treatment. Further investigation proved that the enhancement of the work function is attributed to the formation of In-Cl bonds on the Cl-ITO surface. Green phosphorescent organic light-emitting devices based on the Cl-ITO electrodes exhibit excellent electroluminescence performance, elongating lifetime due to the improvement in hole injection.
NASA Astrophysics Data System (ADS)
Kang, Chun Hong; Shen, Chao; M. Saheed, M. Shuaib; Mohamed, Norani Muti; Ng, Tien Khee; Ooi, Boon S.; Burhanudin, Zainal Arif
2016-08-01
Transparent conductive electrodes (TCE) made of carbon nanotube (CNT) and graphene composite for GaN-based light emitting diodes (LED) are presented. The TCE with 533-Ω/□ sheet resistance and 88% transmittance were obtained when chemical-vapor-deposition grown graphene was fused across CNT networks. With an additional 2-nm thin NiOx interlayer between the TCE and top p-GaN layer of the LED, the forward voltage was reduced to 5.12 V at 20-mA injection current. Four-fold improvement in terms of light output power was observed. The improvement can be ascribed to the enhanced lateral current spreading across the hybrid CNT-graphene TCE before injection into the p-GaN layer.
NASA Astrophysics Data System (ADS)
Chen, Charlene; Abe, Katsumi; Fung, Tze-Ching; Kumomi, Hideya; Kanicki, Jerzy
2009-03-01
In this paper, we analyze application of amorphous In-Ga-Zn-O thin film transistors (a-InGaZnO TFTs) to current-scaling pixel electrode circuit that could be used for 3-in. quarter video graphics array (QVGA) full color active-matrix organic light-emitting displays (AM-OLEDs). Simulation results, based on a-InGaZnO TFT and OLED experimental data, show that both device sizes and operational voltages can be reduced when compare to the same circuit using hydrogenated amorphous silicon (a-Si:H) TFTs. Moreover, the a-InGaZnO TFT pixel circuit can compensate for the drive TFT threshold voltage variation (ΔVT) within acceptable operating error range.
NASA Astrophysics Data System (ADS)
Liang, Junqing; Guo, Xiaoyang; Song, Li; Lin, Jie; Hu, Yongsheng; Zhang, Nan; Liu, Xingyuan
2017-11-01
Perovskite light-emitting diodes (PeLEDs) have attracted much attention in the past two years due to their high photoluminescence quantum efficiencies and wavelength tuneable characteristics. In this work, transparent PeLEDs (TPeLEDs) have been reported with organic-inorganic multilayer transparent top electrodes that have more convenient control of the organic/electrode interface. By optimizing the thickness of the MoO3 layer in the top electrode, the best average transmittance of 47.21% has been obtained in the TPeLED in the wavelength range of 380-780 nm. In addition, the TPeLED exhibits a maximum luminance of 6380 cd/m2, a maximum current efficiency (CE) of 3.50 cd/A, and a maximum external quantum efficiency (EQE) of 0.85% from the bottom side together with a maximum luminance of 3380 cd/m2, a maximum CE of 1.47 cd/A, and a maximum EQE of 0.36% from the top side. The total EQE of the TPeLED is about 86% of that of the reference device, indicating efficient TPeLED achieved in this work, which could have significant contribution to PeLEDs for see-through displays.
A charge inverter for III-nitride light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zi-Hui, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn; Zhang, Yonghui; Bi, Wengang, E-mail: zh.zhang@hebut.edu.cn, E-mail: wbi@hebut.edu.cn, E-mail: volkan@stanfordalumni.org, E-mail: sunxw@sustc.edu.cn
In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO{sub 2} insulator layer on the p{sup +}-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p{sup +}-GaN and SiO{sub 2} insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constantmore » of the thin SiO{sub 2} layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p{sup +}-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm{sup 2} LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.« less
AZO/Ag/AZO anode for resonant cavity red, blue, and yellow organic light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentle, A. R., E-mail: angus.gentle@uts.edu.au; Smith, G. B.; Yambem, S. D.
Indium tin oxide (ITO) is the transparent electrode of choice for organic light-emitting diodes (OLEDs). Replacing ITO for cost and performance reasons is a major drive across optoelectronics. In this work, we show that changing the transparent electrode on red, blue, and yellow OLEDs from ITO to a multilayer buffered aluminium zinc oxide/silver/aluminium zinc oxide (AZO/Ag/AZO) substantially enhances total output intensity, with better control of colour, its constancy, and intensity over the full exit hemisphere. The thin Ag containing layer induces a resonant cavity optical response of the complete device. This is tuned to the emission spectra of the emissivemore » material while minimizing internally trapped light. A complete set of spectral intensity data is presented across the full exit hemisphere for each electrode type and each OLED colour. Emission zone modelling of output spectra at a wide range of exit angles to the normal was in excellent agreement with the experimental data and hence could, in principle, be used to check and adjust production settings. These multilayer transparent electrodes show significant potential for both eliminating indium from OLEDs and spectrally shaping the emission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Dan; Zhao Wei
2008-07-15
An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less
LOW VOLTAGE 14 Mev NEUTRON SOURCE
Little, R.N. Jr.; Graves, E.R.
1959-09-29
An apparatus yielding high-energy neutrons at the rate of 10/sup 8/ or more per second by the D,T or D,D reactions is described. The deuterium gas filling is ionized by electrons emitted from a filament, and the resulting ions are focused into a beam and accelerated against a fixed target. The apparatus is built in accordance with the relationship V/sub s/ = A--B log pd, where V/sub s/ is the sparking voltage, p the gas pressure, and d the gap length between the high voltage electrodes. Typical parameters to obtain the high neutron yields are 55 to 80 kv, 0.5 to 7.0 ma beam current, 5 to 12 microns D/sub 2/, and a gap length of 1 centimeter.
NASA Astrophysics Data System (ADS)
Sekimoto, K.; Takayama, M.
2008-12-01
The dependence of negative ion formation on the inhomogeneous electric field strength in atmospheric pressure negative corona discharge with point-to-plane electrodes has been described. The distribution of negative ions HO-, NOx - and COx - and their abundances on the plane electrode was obtained with a mass spectrometer. The ion distribution on the plane was divided into two regions, the center region on the needle axis and peripheral region occurring the dominant NOx - and COx - ions and HO- ion, respectively. The calculated electric field strength in inhomogeneous electric field established on the needle tip surface suggested that the abundant formation of NOx - and COx - ions and HO- ion is attributed to the high field strength at the tip apex region over 108 Vm-1 and the low field strength at the tip peripheral region of the order of 107 Vm-1, respectively. The formation of HO-, NOx - and COx - has been discussed from the standpoint of negative ion evolution based on the thermochemical reaction and the kinetic energy of electron emitted from the needle tip.
Positron cooling of antiprotons: precursor of recombination
NASA Astrophysics Data System (ADS)
Tan, J. N.; Estrada, J.; Yesley, P.; Bowden, N.; Oxley, P.; Storry, C.; Wessels, M.; Tan, J.; Gabrielse, G.; Oelert, W.; Scheppers, G.; Gronzonka, D.; Sefsick, T.; Fermann, H.; Zmeskal, H.; Breunlich, W.; Kalinowsky, H.; Wesdorp, C.
2001-05-01
The quest for cold antihydrogen, interrupted with the shut-down of LEAR, resumed with the operation of the newest antiproton decelerator (AD) at CERN.[See G.Gabrielse,Adv. in AMO Physics,vol.45,pp.1-38(2001).] Antiprotons injected into the AD with 2.75 GeV of kinetic energy slow to 5.31 MeV before extraction into the ATRAP apparatus, built for antihydrogen recombination experiments. Antiprotons extracted from the AD and positrons emitted from a 112 mCi ^22Na source are simultaneously accumulated in the ultra-high vacuum and 6 T field of a prototype Penning trap incorporating a miniature rotatable electrode. Preloaded electrons are used to thermalize ~ 10^5 antiprotons with the LHe-cooled trap (4.2K). Over 10^6 positrons/hr can be loaded with a new mechanism involving Rydberg positronium. After accumulation, the positrons are moved through the rotatable electrode into close proximity with the antiprotons to study their interactions. We report the first observation of positron cooling of antiprotons in a nested trap configuration suited for three-body recombination and other mechanisms.
Methods and devices for measuring orbital angular momentum states of electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMorran, Benjamin J.; Harvey, Tyler R.
A device for measuring electron orbital angular momentum states in an electron microscope includes the following components aligned sequentially in the following order along an electron beam axis: a phase unwrapper (U) that is a first electrostatic refractive optical element comprising an electrode and a conductive plate, where the electrode is aligned perpendicular to the conductive plate; a first electron lens system (L1); a phase corrector (C) that is a second electrostatic refractive optical element comprising an array of electrodes with alternating electrostatic bias; and a second electron lens system (L2). The phase unwrapper may be a needle electrode ormore » knife edge electrode.« less
NASA Astrophysics Data System (ADS)
Horike, Shohei; Nagaki, Hiroto; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Fukushima, Tatsuya; Ishida, Kenji
2018-03-01
This paper describes an evaluation of ionic liquids (ILs) as potential electrolytes for single-layered light-emitting devices with good emission performance. As optoelectronic devices continue to grow in abundance, high-performance light-emitting devices with a single emission layer are becoming increasingly important for low-cost production. We show that a simple technique of osmosing IL into the polymer layer can result in high luminous efficiency and good response times of single-layered light-emitting polymers, even without the additional stacking of charge carrier injection and transport layers. The IL contributions to the light-emission of the polymer are discussed from the perspectives of energy diagrams and of the electric double layers on the electrodes. Our findings enable a faster, cheaper, and lower-in-waste production of light-emitting devices.
Advantages and Limits of 4H-SIC Detectors for High- and Low-Flux Radiations
NASA Astrophysics Data System (ADS)
Sciuto, A.; Torrisi, L.; Cannavò, A.; Mazzillo, M.; Calcagno, L.
2017-11-01
Silicon carbide (SiC) detectors based on Schottky diodes were used to monitor low and high fluxes of photons and ions. An appropriate choice of the epilayer thickness and geometry of the surface Schottky contact allows the tailoring and optimizing the detector efficiency. SiC detectors with a continuous front electrode were employed to monitor alpha particles in a low-flux regime emitted by a radioactive source with high energy (>5.0 MeV) or generated in an ion implanter with sub-MeV energy. An energy resolution value of 0.5% was measured in the high energy range, while, at energy below 1.0 MeV, the resolution becomes 10%; these values are close to those measured with a traditional silicon detector. The same SiC devices were used in a high-flux regime to monitor high-energy ions, x-rays and electrons of the plasma generated by a high-intensity (1016 W/cm2) pulsed laser. Furthermore, SiC devices with an interdigit Schottky front electrode were proposed and studied to overcome the limits of the such SiC detectors in the detection of low-energy (˜1.0 keV) ions and photons of the plasmas generated by a low-intensity (1010 W/cm2) pulsed laser. SiC detectors are expected to be a powerful tool for the monitoring of radioactive sources and ion beams produced by accelerators, for a complete characterization of radiations emitted from laser-generated plasmas at high and low temperatures, and for dosimetry in a radioprotection field.
Marsili, Enrico; Rollefson, Janet B.; Baron, Daniel B.; Hozalski, Raymond M.; Bond, Daniel R.
2008-01-01
While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. PMID:18849456
NASA Astrophysics Data System (ADS)
Mazarakis, M. G.; Poukey, J. W.; Maenchen, J. E.; Rovang, D. C.; Menge, P. R.; Lash, J. S.; Smith, D. L.; Halbleib, J. A.; Cordova, S. R.; Mikkelson, K.; Gustwiller, J.; Stygar, W. A.; Welch, D. R.; Smith, I.; Corcoran, P.
1997-05-01
We present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 8-12 MeV, current 35-50 kA, rms radius 0.5 mm, and pulse duration 30-60 ns FWHM. The accelerators utilized are SABRE and Hermes-III. Both are linear inductive voltage adders (IVA) modified to higher impedance and fitted with magnetically immersed foilless electron diodes. In the strong 20-50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrode and is contained in a similar size envelope by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30 kA, 1.5-2.5 FWHM electron beams, while the Hermes-III experiments are currently under way. Results and analysis of the SABRE experimentation and a progress report on Hermes-III experiments will be presented.
NASA Astrophysics Data System (ADS)
Kikuchi, Yusuke; Maegawa, Takuya; Otsubo, Akira; Nishimura, Yoshimi; Nagata, Masayoshi; Yatsuzuka, Mitsuyasu
2018-05-01
Two discharge modes, α and γ, of a repetitive nanosecond pulsed helium glow discharge at a gas pressure of 10 kPa in the repetition frequency range from 20 to 600 kHz are reported for the first time. The pulsed glow discharge is produced in a pair of parallel plate metal electrodes without insertion of dielectrics. The α mode discharge is volumetrically produced in the electrode gap at a low-repetition frequency, whereas the γ mode discharge is localized at the cathode surface at a high-repetition frequency. At high-repetition frequency, the time interval between voltage pulses is shorter than the lifetime of the afterglow produced by the preceding discharge. Then, the γ mode discharge is maintained by a large number of secondary electrons emitted from the cathode exposed to high-density ions and metastable helium atoms in the afterglow. In the α mode discharge with a low-repetition frequency operation, primary electrons due to gas ionization dominate the ionization process. Thus, a large discharge voltage is needed for the excitation of the α mode discharge. It is established that the bifurcation of α-γ discharge mode, accompanied by a decrease in the discharge voltage, occurs at the high-repetition frequency of ∼120 kHz.
Simulations of Gaussian electron guns for RHIC electron lens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, A.
Simulations of two versions of the electron gun for RHIC electron lens are presented. The electron guns have to generate an electron beam with Gaussian radial profile of the electron beam density. To achieve the Gaussian electron emission profile on the cathode we used a combination of the gun electrodes and shaping of the cathode surface. Dependence of electron gun performance parameters on the geometry of electrodes and the margins for electrodes positioning are presented.
NASA Astrophysics Data System (ADS)
Chen, Xiangyu; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei
2015-09-01
A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm2, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiangyu, E-mail: chenxiangyu@binn.cas.cn, E-mail: ouyangwei@phy.ecnu.edu.cn; Jiang, Tao; Sun, Zhuo
A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current.more » The minimum contact area for the TENG to generate field emission is about 9 cm{sup 2}, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.« less
James, Conrad D; Galambos, Paul C; Derzon, Mark S; Graf, Darin C; Pohl, Kenneth R; Bourdon, Chris J
2012-10-23
Systems and methods for combining dielectrophoresis, magnetic forces, and hydrodynamic forces to manipulate particles in channels formed on top of an electrode substrate are discussed. A magnet placed in contact under the electrode substrate while particles are flowing within the channel above the electrode substrate allows these three forces to be balanced when the system is in operation. An optical detection scheme using near-confocal microscopy for simultaneously detecting two wavelengths of light emitted from the flowing particles is also discussed.
Miniaturized High-Speed Modulated X-Ray Source
NASA Technical Reports Server (NTRS)
Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)
2015-01-01
A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.
Promising applications of graphene and graphene-based nanostructures
NASA Astrophysics Data System (ADS)
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-06-01
The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of molecules, vapors and gases through nanopores in graphene membranes, experimental works investigating selective transport of different molecules through nanopores in single-layer graphene and graphene-based membranes toward the water desalination, chemical mixture separation and gas control. Various applications of graphene in bio-medicine are the contents of the fourth scientific subject of the review. They include the DNA translocations through nanopores in graphene membranes toward the fabrication of devices for genomic screening, in particular DNA sequencing; subnanometre trans-electrode membranes with potential applications to the fabrication of very high resolution, high throughput nanopore-based single-molecule detectors; antibacterial activity of graphene, graphite oxide, graphene oxide and reduced graphene oxide; nanopore sensors for nucleic acid analysis; utilization of graphene multilayers as the gates for sequential release of proteins from surface; utilization of graphene-based electroresponsive scaffolds as implants for on-demand drug delivery etc. The fifth scientific subject of the review is the research on the utilization of graphene in energy storage devices: ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage; self-assembled graphene/carbon nanotube hybrid films for supercapacitors; carbon-based supercapacitors fabricated by activation of graphene; functionalized graphene sheet-sulfure nanocomposite for using as cathode material in rechargeable lithium batteries; tunable three-dimensional pillared carbon nanotube-graphene networks for high-performance capacitance; fabrications of electrochemical micro-capacitors using thin films of carbon nanotubes and chemically reduced graphenes; laser scribing of high-performance and flexible graphene-based electrochemical capacitors; emergence of next-generation safe batteries featuring graphene-supported Li metal anode with exceptionally high energy or power densities; fabrication of anodes for lithium ion batteries from crumpled graphene-encapsulated Si nanoparticles; liquid-mediated dense integration of graphene materials for compact capacitive energy storage; scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage; superior micro-supercapacitors based on graphene quantum dots; all-graphene core-sheat microfibres for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles; micro-supercapacitors with high electrochemical performance based on three-dimensional graphene-carbon nanotube carpets; macroscopic nitrogen-doped graphene hydrogels for ultrafast capacitors; manufacture of scalable ultra-thin and high power density graphene electrochemical capacitor electrodes by aqueous exfoliation and spray deposition; scalable synthesis of hierarchically structured carbon nanotube-graphene fibers for capacitive energy storage; phosphorene-graphene hybrid material as a high-capacity anode material for sodium-ion batteries. Beside above-presented promising applications of graphene and graphene-based nanostructures, other less widespread, but perhaps not less important, applications of graphene and graphene-based nanomaterials, are also briefly discussed.
Response of the plasma to the size of an anode electrode biased near the plasma potential
Barnat, E. V.; Laity, G. R.; Baalrud, S. D.
2014-10-01
As the size of a positively biased electrode increases, the nature of the interface formed between the electrode and the host plasma undergoes a transition from an electron-rich structure (electron sheath) to an intermediate structure containing both ion and electron rich regions (double layer) and ultimately forms an electron-depleted structure (ion sheath). In this study, measurements are performed to further test how the size of an electron-collecting electrode impacts the plasma discharge the electrode is immersed in. This is accomplished using a segmented disk electrode in which individual segments are individually biased to change the effective surface area of themore » anode. Measurements of bulk plasma parameters such as the collected current density, plasma potential, electron density, electron temperature and optical emission are made as both the size and the bias placed on the electrode are varied. Abrupt transitions in the plasma parameters resulting from changing the electrode surface area are identified in both argon and helium discharges and are compared to the interface transitions predicted by global current balance [S. D. Baalrud, N. Hershkowitz, and B. Longmier, Phys. Plasmas 14, 042109 (2007)]. While the size-dependent transitions in argon agree, the size-dependent transitions observed in helium systematically occur at lower electrode sizes than those nominally derived from prediction. Thus, the discrepancy in helium is anticipated to be caused by the finite size of the interface that increases the effective area offered to the plasma for electron loss to the electrode.« less
Composite electrode/electrolyte structure
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2004-01-27
Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.
Effect of annealing over optoelectronic properties of graphene based transparent electrodes
NASA Astrophysics Data System (ADS)
Yadav, Shriniwas; Kaur, Inderpreet
2016-04-01
Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.
Electron gun for a multiple beam klystron with magnetic compression of the electron beams
Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael
2013-10-01
A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.
NASA Astrophysics Data System (ADS)
Suda, Ryutaro; Yagi, Mamiko; Kojima, Akira; Mentek, Romain; Mori, Nobuya; Shirakashi, Jun-ichi; Koshida, Nobuyoshi
2015-04-01
To enhance the usefulness of ballistic hot electron injection into solutions for depositing thin group-IV films, a dripping scheme is proposed. A very small amount of SiCl4 or GeCl4 solution was dripped onto the surface of a nanocrystalline Si (nc-Si) electron emitter, and then the emitter is driven without using any counter electrodes. It is shown that thin Si and Ge films are deposited onto the emitting surface. Spectroscopic surface and compositional analyses showed no extrinsic carbon contaminations in deposited thin films, in contrast to the results of a previous study using the dipping scheme. The availability of this technique for depositing thin SiGe films is also demonstrated using a mixture SiCl4+GeCl4 solution. Ballistic hot electrons injected into solutions with appropriate kinetic energies promote preferential reduction of target ions with no by-products leading to nuclei formation for the thin film growth. Specific advantageous features of this clean, room-temperature, and power-effective process is discussed in comparison with the conventional dry and wet processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maness, K.M.; Terrill, R.H.; Meyer, T.J.
The electronic conductivity and electrogenerated chemiluminescence (ECL) of thin, electropolymerized films of the fixed-site redox polymer poly[Ru(vbpy){sub 3}](PF{sub 6}){sub 2} (vbpy = 4-vinyl-4`-methyl-2,2`-bipyridine) on Pt interdigitated array electrodes were examined for both solvent-swollen and dry films. In both cases emission arose from {sup *}Ru{sup 2+} produced via the electron-transfer reaction between Ru{sup 3+} and Ru{sup 1+} states within the film (Ru = Ru-(vbpy){sub 3}). Dry films contained fixed concentration gradients of Ru{sup 3+}, Ru{sup 2+}, and Ru{sup 1+} states which were first introduced in an acetonitrile-swollen film via the constant potential oxidation and reduction of Ru{sup 2+} at opposing IDAmore » fingers. The gradients were then immobilized by drying and cooling the film while retaining the inter-electrode bias (2.6V). The resulting dried and cooled films responded rapidly to changes in voltage bias and exhibited diode-like characteristics, conducting and emitting light at biases >2.6 V and undergoing a reverse bias breakdown current, unassociated with light emission, at ca. -5.5 V. At 0{degree}C the optimum quantum efficiency of solid-state ECL emission ({phi}{sub ECL}) was similar to that in solvent-swollen films: 0.0003 photon/electron. In contrast to the dry films, solvent-swollen films were slow to respond to changes in voltage bias and did not exhibit diode-like behavior. 18 refs., 7 figs.« less
Influence of the electrode gap separation on the pseudospark-sourced electron beam generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland
Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less
Tunnel and field effect carrier ballistics
NASA Technical Reports Server (NTRS)
Kaiser, William J. (Inventor); Bell, L. Douglas (Inventor)
1989-01-01
Methods and apparatus for interacting carriers with a structure of matter employ an electrode for emitting said carriers at a distance from a surface of that structure, and cause such carriers to travel along ballistic trajectories inside that structure by providing along the mentioned distance a gap for performance of a process selected from the group of carrier tunneling and field emission and injecting carriers emitted by the mentioned electrode and that process ballistically into the structure through the gap and the mentioned surface. The carriers are collected or analyzed after their travel along ballistic trajectories in the structure of matter. Pertinent information on the inside of the structure is obtained by conducting inside that structure what conventionally would have been considered external ballistics, while performing the carrier-propelling internal ballistics conversely outside that structure.
Kostenbauder, Adnah G.
1988-01-01
A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode.
Kostenbauder, A.G.
1988-06-28
A photodetector for detecting signal pulses transmitted in an optical carrier signal relies on the generation of electron-hole pairs and the diffusion of the generated electrons and holes to the electrodes on the surface of the semiconductor detector body for generating photovoltaic pulses. The detector utilizes the interference of optical waves for generating an electron-hole grating within the semiconductor body, and, by establishing an electron-hole pair maximum at one electrode and a minimum at the other electrode, a detectable voltaic pulse is generated across the electrode. 4 figs.
Li, Jie; Nomura, Hiroko; Miyazaki, Hiroshi; Adachi, Chihaya
2014-06-11
Highly efficient exciplex systems incorporating a heptazine derivative () as an electron acceptor and 1,3-di(9H-carbazol-9-yl)benzene () as an electron donor are developed. An organic light-emitting diode containing 8 wt% : as an emitting layer exhibits a maximum external quantum efficiency of 11.3%.
METHOD AND APPARATUS FOR PRODUCING INTENSE ENERGETIC GAS DISCHARGES
Bell, P.R.; Luce, J.S.
1960-01-01
A device for producing an energetic gas arc discharge employing the use of gas-fed hollow cathode and anode electrodes is reported. The rate of feed of the gas to the electrodes is regulated to cause complete space charge neutralization to occur within the electrodes. The arc discharge is closely fitted within at least one of the electrodes so tint the gas fed to this electrode is substantially completely ionized before it is emitted into the vacuum chamber. It is this electrode design and the axial potential gradient that exists in the arc which permits the arc to be operated in low pressures and at volthges and currents that permit the arc to be energetic. The use of the large number of energetic ions that are accelerated toward the cathode as a propulsion device for a space vehicle is set forth.
Srinivasan-Rao, Triveni
2002-01-01
A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.
Composite electrode for use in electrochemical cells
Vanderborgh, N.E.; Huff, J.R.; Leddy, J.
1987-10-16
A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode. 4 figs., 1 tab.
Composite electrode for use in electrochemical cells
Vanderborgh, Nicholas E.; Huff, James R.; Leddy, Johna
1989-01-01
A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode.
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Zheng, Chenju; Lv, Jiajiang; Gao, Yilin; Wang, Ruiqing; Liu, Sheng
2017-07-01
We demonstrate GaN-based double-layer electrode flip-chip light-emitting diodes (DLE-FCLED) with highly reflective indium-tin oxide (ITO)/distributed bragg reflector (DBR) p-type contact and via hole-based n-type contacts. Transparent thin ITO in combination with TiO2/SiO2 DBR is used for reflective p-type ohmic contact, resulting in a significant reduction in absorption of light by opaque metal electrodes. The finely distributed via hole-based n-type contacts are formed on the n-GaN layer by etching via holes through p-GaN and multiple quantum well (MQW) active layer, leading to reduced lateral current spreading length, and hence alleviated current crowding effect. The forward voltage of the DLE-FCLED is 0.31 V lower than that of the top-emitting LED at 90 mA. The light output power of DLE-FCLED is 15.7% and 80.8% higher than that of top-emitting LED at 90 mA and 300 mA, respectively. Compared to top- emitting LED, the external quantum efficiency (EQE) of DLE-FCLED is enhanced by 15.4% and 132% at 90 mA and 300 mA, respectively. The maximum light output power of the DLE-FCLED obtained at 195.6 A/cm2 is 1.33 times larger than that of the top-emitting LED obtained at 93 A/cm2.
Comparative study of graphene and its derivative materials as an electrode in OLEDs
NASA Astrophysics Data System (ADS)
Srivastava, Anshika; Kumar, Brijesh
2018-04-01
In current scenario, the organic materials have given a revolutionary evolution in the electronics industry. As, the organic light emitting diodes (OLEDs) have almost replaced the conventional technologies due to the use of organic based materials. However, the next generations OLEDs are intensively desired nowadays for high definition display technology. There are various concern involved in the successful design of OLEDs. Electrodes are one of the electrical conductors, which play a vital role in the construction of OLEDs. The performance of OLED is majorly affected by the material used for electrodes. Due to the requirement of transparent, flexible and inexpensive anodes in bottom emissive OLEDs, ITO was replaced by graphene material. Graphene is a single layer 2-dimensional transparent carbon allotrope which showed prodigious potential to escalate the device performance. Although graphene demonstrated impressive characteristics in various applications, it showed unfavorable work function for many other devices. Thus, derivative materials of graphene such as graphene oxide, graphane and β - graphdiyne were synthesized by several researchers. By comparing graphene and its derivatives as an anode of OLEDs, it has been found that graphene oxide showed the preeminent performance among all. In this paper, all the comparisons are investigated by using a standard device constructed by piling layers of anode/ m_MTDATA/ NPB/ Alq3: QAD/ Alq3/ cathode in TCAD ATLAS device simulator.
Im, Hyeon-Gyun; Jung, Soo-Ho; Jin, Jungho; Lee, Dasom; Lee, Jaemin; Lee, Daewon; Lee, Jung-Yong; Kim, Il-Doo; Bae, Byeong-Soo
2014-10-28
We report a flexible high-performance conducting film using an embedded copper nanowire transparent conducting electrode; this material can be used as a transparent electrode platform for typical flexible optoelectronic devices. The monolithic composite structure of our transparent conducting film enables simultaneously an outstanding oxidation stability of the copper nanowire network (14 d at 80 °C), an exceptionally smooth surface topography (R(rms) < 2 nm), and an excellent opto-electrical performances (Rsh = 25 Ω sq(-1) and T = 82%). A flexible organic light emitting diode device is fabricated on the transparent conducting film to demonstrate its potential as a flexible copper nanowire electrode platform.
InGaN light-emitting diodes with highly transparent ZnO:Ga electrodes
NASA Astrophysics Data System (ADS)
Liu, H. Y.; Li, X.; Ni, X.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.
2010-03-01
InGaN light-emitting diodes (LEDs) utilizing ZnO layers heavily doped with Ga (GZO) as transparent p-electrodes were fabricated and their characteristics were demonstrated to be superior to those of LEDs with metal Ni/Au electrodes. Highly conductive and highly transparent GZO films were grown on p-GaN contact layers of the LED structures by plasma-assisted molecular beam epitaxy under metal-rich conditions. The c and a lattice constants of GZO were found to be close to the bulk values, indicating small lattice distortion of GZO. The as-grown GZO films showed resistivities as low as 2.2-2.9×10-4 Ω cm. Upon rapid thermal annealing at the optimum temperature of 675 °C, the resistivity decreased reaching a value of ~1.9×10-4 Ω cm. Unlike the LEDs with Ni/Au contacts, the LEDs with GZO electrodes showed no filamentation and very uniform light emission at high current densities. The peak value of the relative external quantum efficiency for the LEDs with GZO contacts has substantial improvement compared with that for the LEDs with Ni/Au contacts. Under pulsed excitation mode, GZO-LEDs withstood current densities up to 5000 A/cm2.
Guo, Xiaoyang; Liu, Xingyuan; Lin, Fengyuan; Li, Hailing; Fan, Yi; Zhang, Nan
2015-05-27
Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative transparent electrodes with excellent opto-electrical performance and mechanical flexibility will be greatly demanded. Here, organics are introduced into dielectric-metal-dielectric structures to construct the transparent electrodes on rigid and flexible substrates. We show that organic-metal-organic (OMO) electrodes have excellent opto-electrical properties (sheet resistance of below 10 Ω sq(-1) at 85% transmission), mechanical flexibility, thermal and environmental stabilities. The OMO-based polymer photovoltaic cells show performance comparable to that of devices based on ITO electrodes. This OMO multilayer structure can therefore be used to produce transparent electrodes suitable for use in a wide range of optoelectronic devices.
Tao, Jiayou; Liu, Nishuang; Li, Luying; Su, Jun; Gao, Yihua
2014-03-07
A solid-state high performance flexible asymmetric supercapacitor (ASC) was fabricated. Its anode is based on organic-inorganic materials, where polypyrrole (PPy) is uniformly wrapped on MnO2 nanoflowers grown on carbon cloth (CC), and its cathode is made of activated carbon (AC) on CC. The ASC has an areal capacitance of 1.41 F cm(-2) and an energy density of 0.63 mW h cm(-2) at a power density of 0.9 mW cm(-2). An energy storage unit fabricated using multiple ASCs can drive a light-emitting diode (LED) segment display, a mini motor and even a toy car after full charging. The high-performance ASCs have significant potential applications in flexible electronics and electrical vehicles.
Sanders, Simon; Cabrero-Vilatela, Andrea; Kidambi, Piran R; Alexander-Webber, Jack A; Weijtens, Christ; Braeuninger-Weimer, Philipp; Aria, Adrianus I; Qasim, Malik M; Wilkinson, Timothy D; Robertson, John; Hofmann, Stephan; Meyer, Jens
2015-08-14
Using thermally evaporated cesium carbonate (Cs2CO3) in an organic matrix, we present a novel strategy for efficient n-doping of monolayer graphene and a ∼90% reduction in its sheet resistance to ∼250 Ohm sq(-1). Photoemission spectroscopy confirms the presence of a large interface dipole of ∼0.9 eV between graphene and the Cs2CO3/organic matrix. This leads to a strong charge transfer based doping of graphene with a Fermi level shift of ∼1.0 eV. Using this approach we demonstrate efficient, standard industrial manufacturing process compatible graphene-based inverted organic light emitting diodes on glass and flexible substrates with efficiencies comparable to those of state-of-the-art ITO based devices.
Sampayan, Stephen E.
1998-01-01
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.
Sampayan, S.E.
1998-03-03
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.
NASA Astrophysics Data System (ADS)
Park, Young-Ju; Seok, Su-Jeong; Park, Sang-Ho; Kim, Ohyun
2011-03-01
We propose and simulate an embedded touch sensing circuit for active-matrix organic light-emitting diode (AMOLED) displays. The circuit consists of three thin-film transistors (TFTs), one fixed capacitor, and one variable capacitor. AMOLED displays do not have a variable capacitance characteristic, so we realized a variable capacitor to detect touches in the sensing pixel by exploiting the change in the mutual capacitance between two electrodes that is caused by touch. When a dielectric substance approaches two electrodes, the electric field is shunted so that the mutual capacitance decreases. We use the existing TFT process to form the variable capacitor, so no additional process is needed. We use advanced solid-phase-crystallization TFTs because of their stability and uniformity. The proposed circuit detects multi-touch points by a scanning process.
Design and fabrication of AlGaInP-based micro-light-emitting-diode array devices
NASA Astrophysics Data System (ADS)
Bao, Xingzhen; Liang, Jingqiu; Liang, Zhongzhu; Wang, Weibiao; Tian, Chao; Qin, Yuxin; Lü, Jinguang
2016-04-01
An integrated high-resolution (individual pixel size 80 μm×80 μm) solid-state self-emissive active matrix programmed with 320×240 micro-light-emitting-diode arrays structure was designed and fabricated on an AlGaInP semiconductor chip using micro electro-mechanical systems, microstructure and semiconductor fabricating techniques. Row pixels share a p-electrode and line pixels share an n-electrode. We experimentally investigated GaAs substrate thickness affects the electrical and optical characteristics of the pixels. For a 150-μm-thick GaAs substrate, the single pixel output power was 167.4 μW at 5 mA, and increased to 326.4 μW when current increase to 10 mA. The device investigated potentially plays an important role in many fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin
2015-06-28
We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){submore » 3} as phosphorescent red dopant in electron transport layer.« less
A new electrode design for ambipolar injection in organic semiconductors.
Kanagasekaran, Thangavel; Shimotani, Hidekazu; Shimizu, Ryota; Hitosugi, Taro; Tanigaki, Katsumi
2017-10-17
Organic semiconductors have attracted much attention for low-cost, flexible and human-friendly optoelectronics. However, achieving high electron-injection efficiency is difficult from air-stable electrodes and cannot be equivalent to that of holes. Here, we present a novel concept of electrode composed of a bilayer of tetratetracontane (TTC) and polycrystalline organic semiconductors (pc-OSC) covered by a metal layer. Field-effect transistors of single-crystal organic semiconductors with the new electrodes of M/pc-OSC/TTC (M: Ca or Au) show both highly efficient electron and hole injection. Contact resistance for electron injection from Au/pc-OSC/TTC and hole injection from Ca/pc-OSC/TTC are comparable to those for electron injection from Ca and hole injection from Au, respectively. Furthermore, the highest field-effect mobilities of holes (22 cm 2 V -1 s -1 ) and electrons (5.0 cm 2 V -1 s -1 ) are observed in rubrene among field-effect transistors with electrodes so far proposed by employing Ca/pc-OSC/TTC and Au/pc-OSC/TTC electrodes for electron and hole injection, respectively.One of technological challenges building organic electronics is efficient injection of electrons at metal-semiconductor interfaces compared to that of holes. The authors show an air-stable electrode design with induced gap states, which support Fermi level pinning and thus ambipolar carrier injection.
Standard electrode potential, Tafel equation, and the solvation thermodynamics.
Matyushov, Dmitry V
2009-06-21
Equilibrium in the electronic subsystem across the solution-metal interface is considered to connect the standard electrode potential to the statistics of localized electronic states in solution. We argue that a correct derivation of the Nernst equation for the electrode potential requires a careful separation of the relevant time scales. An equation for the standard metal potential is derived linking it to the thermodynamics of solvation. The Anderson-Newns model for electronic delocalization between the solution and the electrode is combined with a bilinear model of solute-solvent coupling introducing nonlinear solvation into the theory of heterogeneous electron transfer. We therefore are capable of addressing the question of how nonlinear solvation affects electrochemical observables. The transfer coefficient of electrode kinetics is shown to be equal to the derivative of the free energy, or generalized force, required to shift the unoccupied electronic level in the bulk. The transfer coefficient thus directly quantifies the extent of nonlinear solvation of the redox couple. The current model allows the transfer coefficient to deviate from the value of 0.5 of the linear solvation models at zero electrode overpotential. The electrode current curves become asymmetric in respect to the change in the sign of the electrode overpotential.
NASA Astrophysics Data System (ADS)
Hu, Sujun; Zhu, Minrong; Zou, Qinghua; Wu, Hongbin; Yang, Chuluo; Wong, Wai-Yeung; Yang, Wei; Peng, Junbiao; Cao, Yong
2012-02-01
We report efficient hybrid white polymer light emitting devices (WPLEDs) fabricated via simple solution-proceeded process from a newly synthesized wide band-gap fluorene-co-dibenzothiophene-S,S-dioxide copolymer, which dually function as fluorescent blue emitter and host material for electrophosphorescent sky-blue, yellow, and saturated-red dyes. The Commission Internationale d'Énclairage coordinates of the best devices are (0.356, 0.334), with electroluminescence covered the entire visible light spectrum from 400 to 780 nm, resulting in a high color rendering index of 90. Incorporation of a bilayer electrode consisting of water/alcohol-soluble conjugated polymer and Al as electron-injection cathode boosts an enhancement of 50% in device efficiency, leading to external quantum efficiency of 12.6%, and peak power efficiency of 21.4 l m W-1 as measured in an integrating sphere. Both the efficiency and the color quality of the obtained device are ranking among one of the highest values for WPLEDs reported to date. Furthermore, as compared with those all-phosphorescent WPLEDs, the hybrid WPLEDs studied here exhibit a significantly reduced efficiency roll-off due to the very low doping concentration.
Simplified efficient phosphorescent organic light-emitting diodes by organic vapor phase deposition
NASA Astrophysics Data System (ADS)
Pfeiffer, P.; Beckmann, C.; Stümmler, D.; Sanders, S.; Simkus, G.; Heuken, M.; Vescan, A.; Kalisch, H.
2017-12-01
The most efficient phosphorescent organic light-emitting diodes (OLEDs) are comprised of complex stacks with numerous organic layers. State-of-the-art phosphorescent OLEDs make use of blocking layers to confine charge carriers and excitons. On the other hand, simplified OLEDs consisting of only three organic materials have shown unexpectedly high efficiency when first introduced. This was attributed to superior energy level matching and suppressed external quantum efficiency (EQE) roll-off. In this work, we study simplified OLED stacks, manufactured by organic vapor phase deposition, with a focus on charge balance, turn-on voltage (Von), and efficiency. To prevent electrons from leaking through the device, we implemented a compositionally graded emission layer. By grading the emitter with the hole transport material, charge confinement is enabled without additional blocking layers. Our best performing organic stack is composed of only three organic materials in two layers including the emitter Ir(ppy)3 and yields a Von of 2.5 V (>1 cd/m2) and an EQE of 13% at 3000 cd/m2 without the use of any additional light extraction techniques. Changes in the charge balance, due to barrier tuning or adjustments in the grading parameters and layer thicknesses, are clearly visible in the current density-voltage-luminance (J-V-L) measurements. As charge injection at the electrodes and organic interfaces is of great interest but difficult to investigate in complex device structures, we believe that our simplified organic stack is not only a potent alternative to complex state-of-the-art OLEDs but also a well suited test vehicle for experimental studies focusing on the modification of the electrode-organic semiconductor interface.
Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu
2016-05-19
Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.
Gamma radiation field intensity meter
Thacker, Louis H.
1994-01-01
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.
Gamma radiation field intensity meter
Thacker, Louis H.
1995-01-01
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.
Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles
Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.
2011-01-01
Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685
Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles.
Tvrdy, Kevin; Frantsuzov, Pavel A; Kamat, Prashant V
2011-01-04
Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO(2), TiO(2), and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO(2)) were not the same as those which showed the highest photocurrent (TiO(2)). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.
A solvated electron lithium electrode for secondary batteries
NASA Astrophysics Data System (ADS)
Sammells, A. F.; Semkow, K. W.
1986-09-01
Attention is given to a novel method for the achievement of high electro-chemical reversibility in Li-based nonaqueous cells, using a liquid negative electrode that consists of Li dissolved in liquid ammonia as a solvated electron Li electrode. The containment of this liquid negative active material from direct contact to a liquid nonaqueous electrolyte in the positive electrode compartment was realized through the use of a Li-intercalated, electronically conducting ceramic membrane.
Chen, Po-Chiang; Shen, Guozhen; Chen, Haitian; Ha, Young-geun; Wu, Chao; Sukcharoenchoke, Saowalak; Fu, Yue; Liu, Jun; Facchetti, Antonio; Marks, Tobin J; Thompson, Mark E; Zhou, Chongwu
2009-11-24
We report high-performance arsenic (As)-doped indium oxide (In(2)O(3)) nanowires for transparent electronics, including their implementation in transparent thin-film transistors (TTFTs) and transparent active-matrix organic light-emitting diode (AMOLED) displays. The As-doped In(2)O(3) nanowires were synthesized using a laser ablation process and then fabricated into TTFTs with indium-tin oxide (ITO) as the source, drain, and gate electrodes. The nanowire TTFTs on glass substrates exhibit very high device mobilities (approximately 1490 cm(2) V(-1) s(-1)), current on/off ratios (5.7 x 10(6)), steep subthreshold slopes (88 mV/dec), and a saturation current of 60 microA for a single nanowire. By using a self-assembled nanodielectric (SAND) as the gate dielectric, the device mobilities and saturation current can be further improved up to 2560 cm(2) V(-1) s(-1) and 160 microA, respectively. All devices exhibit good optical transparency (approximately 81% on average) in the visible spectral range. In addition, the nanowire TTFTs were utilized to control green OLEDs with varied intensities. Furthermore, a fully integrated seven-segment AMOLED display was fabricated with a good transparency of 40% and with each pixel controlled by two nanowire transistors. This work demonstrates that the performance enhancement possible by combining nanowire doping and self-assembled nanodielectrics enables silicon-free electronic circuitry for low power consumption, optically transparent, high-frequency devices assembled near room temperature.
NASA Astrophysics Data System (ADS)
Yao, Li; Li, Lei; Qin, Laixiang; Ma, Yaoguang; Wang, Wei; Meng, Hu; Jin, Weifeng; Wang, Yilun; Xu, Wanjin; Ran, Guangzhao; You, Liping; Qin, Guogang
2017-03-01
Graphene is a favorable candidate for electrodes of organic light emitting diodes (OLEDs). Graphene has quite a high work function of ˜4.5 eV, and has been extensively studied when used as anodes of OLEDs. In order to use graphene as a cathode, the electron injection barrier between the graphene cathode and the electron transport layer has to be low enough. Using 4,7-diphenyl-1,10-phenanthroline (Bphen):Cs2CO3 to n-dope graphene is a very good method, but the electron injection barrier between the n-doped graphene and Bphen:Cs2CO3 is still too high to be ˜1.0 eV. In this work, in order to further reduce the electron injection barrier, a novel method is suggested. On the graphene cathode, a Sm layer with a lot of nano-hollows, and subsequently a layer of Bphen:Cs2CO3, are deposited. The Bphen:Cs2CO3 can n-dope graphene in the nano-hollows, and the Fermi level of the graphene rises. The nano Sm layer is very easily oxidized. Oxygen adsorbed on the surface of graphene may react with Sm to form an O--Sm+ dipole layer. On the areas of the Sm oxide dipole layer without nano-hollows, the electron injection barrier can be further lowered by the dipole layer. Electrons tend to mainly inject through the lower electron barrier where the dipole layer exists. Based on this idea, an effective inverted small molecular OLED with the structure of graphene/1 nm Sm layer with a lot of nano-hollows/Bphen:Cs2CO3/Alq3:C545T/NPB/MoO3/Al is presented. The maximum current efficiency and maximum power efficiency of the OLED with a 1 nm Sm layer are about two and three times of those of the reference OLED without any Sm layer, respectively.
NASA Astrophysics Data System (ADS)
Itoh, Eiji; Kurami, Kazuhiko
2016-02-01
In this study, we fabricated multilayered polymer-based light-emitting diodes (pLEDs) with various solution-processed electron-injection layers (EILs), and investigated the influence of the EILs on the electrical properties of pLEDs in indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDOT:PSS)/poly[(9,9-dioctylfluorene-alt-(1,4-phenylene((4-sec-butylphenyl)amino)-1,4-phenylene))] (TFB) (HTL)/poly(9,9-dioctylfluorene-alt-1,4-benzothiadiazole) (F8BT) (EML)/EIL/Al structures. We have used the quaternized ammonium π-conjugated polyelectrolyte derivative (poly[(9,9-di(3,3‧-N,N‧-trimethylammonium)propylfluorenyl-2,7-diyl)-co-(1,4-phenylene)]diiodide salt) (PF-PDTA), a mixture of PF-PDTA and CS2CO3, and the aliphatic-amine-based polymer poly(ethylene imine) (PEI) as solution-processed EILs, and compared them with LiF as a solvent-free EIL. The EILs enhanced the electron injection and improve the pLED performance. High external quantum efficiencies of nearly 4% were obtained in the pLEDs with the combination of a multilayered structure fabricated by a transfer printing technique and EILs of a PF-PDTA:CS2CO3 mixture and PEI. On the other hand, the device with PF-PDTA exhibited lower efficiency, higher driving voltage, and larger leakage current at lower voltage. The migration of ionic charges was suggested from the abnormal dielectric behaviors, and serious damage on the electrode material occurred when both an acid hole-injection layer (PEDOT:PSS) and PF-PDTA were used. On the other hand, the pLEDs with ultrathin PEI showed high performance and stable device operation in terms of the influence of ionic charges.
Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X. F.; Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585; Yu, Q.
2016-03-15
In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser–plasma interaction by using the Lienard–Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser–plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electronsmore » is significant, especially to the peak photon energy.« less
Electrochemically active biofilms: facts and fiction. A review
Babauta, Jerome; Renslow, Ryan; Lewandowski, Zbigniew; Beyenal, Haluk
2014-01-01
This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelec-trochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices. PMID:22856464
ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor
NASA Astrophysics Data System (ADS)
Zhao, Yu; Li, Wenbo; Pan, Lijia; Zhai, Dongyuan; Wang, Yu; Li, Lanlan; Cheng, Wen; Yin, Wei; Wang, Xinran; Xu, Jian-Bin; Shi, Yi
2016-08-01
ZnO-nanorods/graphene heterostructure was synthesized by hydrothermal growth of ZnO nanorods on chemically reduced graphene (CRG) film. The hybrid structure was demonstrated as a biosensor, where direct electron transfer between glucose oxidase (GOD) and electrode was observed. The charge transfer was attributed to the ZnO nanorod wiring between the redox center of GOD and electrode, and the ZnO/graphene heterostructure facilitated the transport of electrons on the hybride electrode. The glucose sensor based on the GOD-ZnO/CRG/Pt electrode had a high sensitivity of 17.64 μA mM-1, which is higher than most of the previously reported values for direct electron transfer based glucose biosensors. Moreover, this biosensor is linearly proportional to the concentration of glucose in the range of 0.2-1.6 mM. The study revealed that the band structure of electrode could affect the detection of direct electron transfer of GOD, which would be helpful for the design of the biosensor electrodes in the future.
NASA Astrophysics Data System (ADS)
Dong, Jinyang; Lu, Gang; Wu, Fan; Xu, Chenxi; Kang, Xiaohong; Cheng, Zhiming
2018-01-01
A flower-like MnO2 nanocomposite embedded in nitrogen-doped graphene (NG-MnO2) is fabricated by a hydrothermal method. It is a mesoporous nanomaterial with a pore size of approximately 0.765 cm3 g-1 and specific surface area of 201.8 m2 g-1. NG-MnO2 exhibits a superior average specific capacitance of 220 F g-1 at 0.5 A g-1 and a preferable capacitance of 189.1 F g-1, even at 10 A g-1. After 1000 cycles, over 98.3% of the original specific capacitance retention of the NG-MnO2 electrode is maintained, and it can even activate a red light emitting diode (LED) after being charged, which indicates that it has excellent cycling stability as an electrode material. This prominent electrochemical performance is primarily attributed to the nitrogen doping and mesoporous structures of NG-MnO2, which can be attributed to its numerous electroactive sites as well as faster ion and electron transfer for redox reactions than general graphene-MnO2 nanocomposites (G-MnO2).
Mechanically stable ternary heterogeneous electrodes for energy storage and conversion.
Gao, Libo; Zhang, Hongti; Surjadi, James Utama; Li, Peifeng; Han, Ying; Sun, Dong; Lu, Yang
2018-02-01
Recently, solid asymmetric supercapacitor (ASC) has been deemed as an emerging portable power storage or backup device for harvesting natural resources. Here we rationally engineered a hierarchical, mechanically stable heterostructured FeCo@NiCo layered double hydroxide (LDH) with superior capacitive performance by a simple two-step electrodeposition route for energy storage and conversion. In situ scanning electron microscope (SEM) nanoindentation and electrochemical tests demonstrated the mechanical robustness and good conductivity of FeCo-LDH. This serves as a reliable backbone for supporting the NiCo-LDH nanosheets. When employed as the positive electrode in the solid ASC, the assembly presents high energy density of 36.6 W h kg -1 at a corresponding power density of 783 W kg -1 and durable cycling stability (87.3% after 5000 cycles) as well as robust mechanical stability without obvious capacitance fading when subjected to bending deformation. To demonstrate its promising capability for practical energy storage applications, the ASC has been employed as a portable energy source to power a commercially available digital watch, mini motor car, or household lamp bulb as well as an energy storage reservoir, coupled with a wind energy harvester to power patterned light-emitting diodes (LEDs).
Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers.
Qian, Lei; Yang, Xiurong
2006-08-24
Novel Au-Pt bimetallic flower nanostructures fabricated on a polyamidoamine dendrimers-modified surface by electrodeposition are reported. These polyamidoamine dendrimers were stable, and they assisted the formation of Au-Pt bimetallic nanoflowers during the electrodeposition process. These nanoflowers were characterized by field-emitted scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and electrochemical methods. FE-SEM images showed that the bimetallic nanoflower included two parts: the "light" and the "pale" part. The two parts consisted of many small bimetallic nanoparticles, which was attributed to the progressive nucleation process. Moreover, the "light" part contained more bimetallic nanoparticles. The morphologies of bimetallic nanoflowers depended on the electrodeposition time and potential and the layer number of assembled dendrimers. The average size of nanoflowers increased with the increase in electrodeposition time. The layer number of assembled dendrimers obviously affected the size and morphologies of the "pale" parts of deposited nanoflowers. EDS and XPS indicated that the content of Au element was higher than that of Pt element in the nanoflowers. The bimetallic nanoflowers-modified electrode had electrochemical properties similar to those of bare gold and platinum electrodes. It also exhibited significant electrocatalytic activities toward oxygen reduction.
Two-dimensional CdS nanosheet-based TFT and LED nanodevices.
Ye, Yu; Yu, Bin; Gao, Zhiwei; Meng, Hu; Zhang, Hui; Dai, Lun; Qin, Guogang
2012-05-17
Semiconductor nanosheets have several unique applications in electronic and optoelectronic nanodevices. We have successfully synthesized single-crystalline n-type CdS nanosheets via a chemical vapor deposition (CVD) method in a Cd-enriched ambient. The as-synthesized nanosheets are typically 40-100 nm thick, 10-300 µm wide, and up to several millimeters long. Using the nanosheets, we fabricated for the first time (to our knowledge), nano thin-film transistors (nano-TFTs) based on individual CdS nanosheets. A typical unit of such nanosheet TFTs has a high on-off ratio (∼1.7 ×10(9)) and peak transconductance (∼14.1µS), which to our knowledge are the best values reported so far for semiconductor nano-TFTs. In addition, we fabricated n-CdS nanosheet/p(+)-Si heterojunction light emitting diodes (LEDs) with a top electrode structure. This structure, where the n-type electrode is directly above the junction, has the advantage of a large active region and injection current favorable for high-efficiency electroluminescence (EL) and lasing. Room-temperature spectra of the LEDs consist of only an intense CdS band-edge emission peak (∼507.7 nm) with a full width at half-maximum of about 14 nm.
Controlling the electric charge of gold nanoplatelets on an insulator by field emission nc-AFM
NASA Astrophysics Data System (ADS)
Baris, Bulent; Alchaar, Mohanad; Prasad, Janak; Gauthier, Sébastien; Dujardin, Erik; Martrou, David
2018-03-01
Charging of 2D Au nanoplatelets deposited on an insulating SiO2 substrate to or from the tip of a non-contact atomic force microscope (nc-AFM) is demonstrated. Charge transfer is controlled by monitoring the resonance frequency shift Δf(V) during the bias voltage ramp V applied to the tip-back electrode junction. The onset of charge transfer is revealed by a transition from a capacitive parabolic behavior to a constant Δf(V) region for both polarities. An analytical model, based on charging by electron field emission, shows that the field-emitted current saturates shortly after the onset of the charging, due to the limiting effect of the charge-induced rise of the Au platelet potential. The value of this current plateau depends only on the rate of the bias voltage ramp and on the value of the platelet/SiO2/back electrode capacitance. This analysis is confirmed by numerical simulations based on a virtual nc-AFM model that faithfully matches the experimental data. Our charging protocol could be used to tune the potential of the platelets at the single charge level.
NASA Astrophysics Data System (ADS)
Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei
2017-09-01
More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.
NASA Astrophysics Data System (ADS)
Zhang, Xuetao; Zhou, Jinyuan; Dou, Wei; Wang, Junya; Mu, Xuemei; Zhang, Yue; Abas, Asim; Su, Qing; Lan, Wei; Xie, Erqing; Zhang, Chuanfang (John)
2018-04-01
The fast growing of portable electronics has greatly stimulated the development of energy storage materials, such as transition metal oxides (TMOs). However, TMOs usually involve harsh synthesis conditions, such as high temperature. Here we take advantage of the metastable nature of Cu(OH)2 and grow CuO nanoblades (NBs) on Cu foam under the electric field at room temperature. The electrochemical polarization accelerates the dissolution of Cu(OH)2 nanorods, guides the deposition of the as-dissolved Cu(OH)42- species and eventually leads to the phase transformation of CuO NBs. The unique materials architecture render the vertically-aligned CuO NBs with enhanced electronic and ionic diffusion kinetics, high charge storage (∼779 mC cm-2 at 1 mA cm-2), excellent rate capability and long-term cycling performances. Further matching with activated carbon electrode results in high-performance hybrid device, which displays a wide voltage window (1.7 V) in aqueous electrolyte, high energy density (0.17 mWh cm-2) and power density (34 mW cm-2) coupled with long lifetime, surpassing the best CuO based device known. The hybrid device can be randomly connected and power several light-emitting diodes. Importantly, such an electrochemical restructuring approach is cost-effective, environmentally green and universal, and can be extended to synthesize other metastable hydroxides to in-situ grow corresponding oxides.
Nanoparticle embedded p-type electrodes for GaN-based flip-chip light emitting diodes.
Kwak, Joon Seop; Song, J O; Seong, T Y; Kim, B I; Cho, J; Sone, C; Park, Y
2006-11-01
We have investigated high-quality ohmic contacts for flip-chip light emitting diodes using Zn-Ni nanoparticles/Ag schemes. The Zn-Ni nanoparticles/Ag contacts produce specific contact resistances of 10(-5)-10(-6) omegacm2 when annealed at temperatures of 330-530 degrees C for 1 min in air ambient, which are much better than those obtained from the Ag contacts. It is shown that blue InGaN/GaN multi-quantum well light emitting diodes fabricated with the annealed Zn-Ni nanoparticles/Ag contacts give much lower forward-bias voltages at 20 mA compared with those of the multi-quantum well light emitting diodes made with the as-deposited Ag contacts. It is further presented that the multi-quantum well light emitting diodes made with the Zn-Ni nanoparticles/Ag contacts show similar output power compared to those fabricated with the Ag contact layers.
Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu
2016-01-01
Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448
Rational design of metal-organic electronic devices: A computational perspective
NASA Astrophysics Data System (ADS)
Chilukuri, Bhaskar
Organic and organometallic electronic materials continue to attract considerable attention among researchers due to their cost effectiveness, high flexibility, low temperature processing conditions and the continuous emergence of new semiconducting materials with tailored electronic properties. In addition, organic semiconductors can be used in a variety of important technological devices such as solar cells, field-effect transistors (FETs), flash memory, radio frequency identification (RFID) tags, light emitting diodes (LEDs), etc. However, organic materials have thus far not achieved the reliability and carrier mobility obtainable with inorganic silicon-based devices. Hence, there is a need for finding alternative electronic materials other than organic semiconductors to overcome the problems of inferior stability and performance. In this dissertation, I research the development of new transition metal based electronic materials which due to the presence of metal-metal, metal-pi, and pi-pi interactions may give rise to superior electronic and chemical properties versus their organic counterparts. Specifically, I performed computational modeling studies on platinum based charge transfer complexes and d 10 cyclo-[M(mu-L)]3 trimers (M = Ag, Au and L = monoanionic bidentate bridging (C/N~C/N) ligand). The research done is aimed to guide experimental chemists to make rational choices of metals, ligands, substituents in synthesizing novel organometallic electronic materials. Furthermore, the calculations presented here propose novel ways to tune the geometric, electronic, spectroscopic, and conduction properties in semiconducting materials. In addition to novel material development, electronic device performance can be improved by making a judicious choice of device components. I have studied the interfaces of a p-type metal-organic semiconductor viz cyclo-[Au(mu-Pz)] 3 trimer with metal electrodes at atomic and surface levels. This work was aimed to guide the device engineers to choose the appropriate metal electrodes considering the chemical interactions at the interface. Additionally, the calculations performed on the interfaces provided valuable insight into binding energies, charge redistribution, change in the energy levels, dipole formation, etc., which are important parameters to consider while fabricating an electronic device. The research described in this dissertation highlights the application of unique computational modeling methods at different levels of theory to guide the experimental chemists and device engineers toward a rational design of transition metal based electronic devices with low cost and high performance.
Gamma radiation field intensity meter
Thacker, L.H.
1995-10-17
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.
Gamma radiation field intensity meter
Thacker, L.H.
1994-08-16
A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.
Ok, Ki-Hun; Kim, Jiwan; Park, So-Ra; Kim, Youngmin; Lee, Chan-Jae; Hong, Sung-Jei; Kwak, Min-Gi; Kim, Namsu; Han, Chul Jong; Kim, Jong-Woong
2015-01-01
A smooth, ultra-flexible, and transparent electrode was developed from silver nanowires (AgNWs) embedded in a colorless polyimide (cPI) by utilizing an inverted film-processing method. The resulting AgNW-cPI composite electrode had a transparency of >80%, a low sheet resistance of 8 Ω/□, and ultra-smooth surfaces comparable to glass. Leveraging the robust mechanical properties and flexibility of cPI, the thickness of the composite film was reduced to less than 10 μm, which is conducive to extreme flexibility. This film exhibited mechanical durability, for both outward and inward bending tests, up to a bending radius of 30 μm, while maintaining its electrical performance under cyclic bending (bending radius: 500 μm) for 100,000 iterations. Phosphorescent, blue organic light-emitting diodes (OLEDs) were fabricated using these composites as bottom electrodes (anodes). Hole-injection was poor, because AgNWs were largely buried beneath the composite's surface. Thus, we used a simple plasma treatment to remove the thin cPI layer overlaying the nanowires without introducing other conductive materials. As a result, we were able to finely control the flexible OLEDs' electroluminescent properties using the enlarged conductive pathways. The fabricated flexible devices showed only slight performance reductions of <3% even after repeated foldings with a 30 μm bending radius. PMID:25824143
Development and characterization of a high-reliability, extended-lifetime H- ion source
NASA Astrophysics Data System (ADS)
Becerra, Gabriel; Barrows, Preston; Sherman, Joseph
2015-11-01
Phoenix Nuclear Labs (PNL) has designed and constructed a long-lifetime, negative hydrogen (H-) ion source, in partnership with Fermilab for an ion beam injector servicing future Intensity Frontier particle accelerators. The specifications for the low-energy beam transport (LEBT) section are 5-10 mA of continuous H- ion current at 30 keV with <0.2 π-mm-mrad emittance. Existing ion sources at Fermilab rely on plasma-facing electrodes, limiting their lifetime to a few hundred hours, while requiring relatively high gas loads on downstream components. PNL's design features an electron cyclotron resonance (ECR) microwave plasma driver which has been extensively developed in positive ion source systems, having demonstrated 1000+ hours of operation and >99% continuous uptime at PNL. Positive ions and hyperthermal neutrals drift toward a low-work-function surface, where a fraction is converted into H- hydrogen ions, which are subsequently extracted into a low-energy beam using electrostatic lenses. A magnetic filter preferentially removes high-energy electrons emitted by the source plasma, in order to mitigate H- ion destruction via electron-impact detachment. The design of the source subsystems and preliminary diagnostic results will be presented.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Kang, Zhixin
2018-01-01
We reported an approach of preparing highly conductive, anticorrosion, flexible Ag hybrid films enhanced by multi-walled carbon nanotubes (CNTs) and nanodaimonds (NDs) on molecular-grafted PET substrate by spin-spray for flexible electronics. we studied in this paper and found that even an outstanding enhancement on conductivity of Ag films, CNTs have a negative effect on anticorrosion property. Meanwhile, NDs decreased the conductivity of Ag/CNTs hybrids, but it remained a relatively high conductivity property and even was affirmed a distinctly boost improvement on anticorrosion, microhardness and tensile strength, which meant a better mechanical chemical stabilization and practicability in real flexible electronics. To obtain the strong adhesive strength of films/substrate, molecular-grafting technology was applied, which was affirmed by XPS and cross-cut test. What's more, we evaluated anticorrosion property by electrochemistry test, including Tafel measurements and electrochemical impedance spectroscopy measurements, proving the positive effect of NDs on Ag/CNTs hybrid films. For practical application, a flexible light-emitting diode (LED) circuit was successfully structured and remained steady under bending, folding and twisting. Besides, after 1000000 cycles inner/outer bending deformation, the hybrid films showed a mechanical compliance, fatigue stability and practicability in real flexible electronics.
Lee, Ho Won; Park, Jaehoon; Yang, Hyung Jin; Lee, Song Eun; Lee, Seok Jae; Koo, Ja Ryong; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan
2015-03-01
In this paper, we demonstrated thin film semitransparent anode electrode using Ni/Ag/Ni (3/6/3 nm) on green and red phosphorescent OLEDs, which have basically high efficiency and good optical characteristics. Moreover, we applied this semitransparent anode on flexible green and red phosphorescent OLEDs, which were then optimized for possible applications on flexible substrates. First, we studied optimization using various conditions of Ni/Ag/Ni electrodes via transmittance and sheet resistance. We then fabricated the devices on a glass substrate with ITO or Ni/Ag/Ni electrodes as well as on a flexible substrate with a Ni/Ag/Ni electrode for green and red phosphorescent OLEDs. Consequently, we could be proposed that the potential of our semitransparent anode electrode is demonstrated. Green phosphorescent OLEDs characteristics using ITO or Ni/Ag/Ni anode electrodes were coincided and those of the red phosphorescent OLEDs were improved by semitransparent electrodes at 10,000 cd/m2 criterion. Therefore, this research suggests for additional studies to be conducted on flexible and high-performance phosphorescent OLED displays and light applications for ITO-free processes.
Dong, Hua; Wu, Zhaoxin; Jiang, Yaqiu; Liu, Weihua; Li, Xin; Jiao, Bo; Abbas, Waseem; Hou, Xun
2016-11-16
A typical thin and fully flexible hybrid electrode was developed by integrating the encapsulation of silver nanowires (AgNWs) network between a monolayer graphene and polymer film as a sandwich structure. Compared with the reported flexible electrodes based on PET or PEN substrate, this unique electrode exhibits the superior optoelectronic characteristics (sheet resistance of 8.06 Ω/□ at 88.3% light transmittance). Meanwhile, the specific up-to-bottom fabrication process could achieve the superflat surface (RMS = 2.58 nm), superthin thickness (∼8 μm thickness), high mechanical robustness, and lightweight. In addition, the strong corrosion resistance and stability for the hybrid electrode were proved. With these advantages, we employ this electrode to fabricate the simple flexible organic light-emitting device (OLED) and perovskite solar cell device (PSC), which exhibit the considerable performance (best PCE of OLED = 2.11 cd/A 2 ; best PCE of PSC = 10.419%). All the characteristics of the unique hybrid electrode demonstrate its potential as a high-performance transparent electrode candidate for flexible optoelectronics.
High frequency modulation circuits based on photoconductive wide bandgap switches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampayan, Stephen
Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP materialmore » conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.« less
Vertical pillar-superlattice array and graphene hybrid light emitting diodes.
Lee, Jung Min; Choung, Jae Woong; Yi, Jaeseok; Lee, Dong Hyun; Samal, Monica; Yi, Dong Kee; Lee, Chul-Ho; Yi, Gyu-Chul; Paik, Ungyu; Rogers, John A; Park, Won Il
2010-08-11
We report a type of device that combines vertical arrays of one-dimensional (1D) pillar-superlattice (PSL) structures with 2D graphene sheets to yield a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics. In this application, graphene sheets coated with very thin metal layers exhibit good mechanical and electrical properties and an ability to mount, in a freely suspended configuration, on the PSL arrays as a top window electrode. Optical characterization demonstrates that graphene exhibits excellent optical transparency even after deposition of the thin metal films. Thermal annealing of the graphene/metal (Gr/M) contact to the GaAs decreases the contact resistance, to provide enhanced carrier injection. The resulting PSL-Gr/M LEDs exhibit bright light emission over large areas. The result suggests the utility of graphene-based materials as electrodes in devices with unusual, nonplanar 3D architectures.
Apparatus for atmospheric pressure pin-to-hole spark discharge and uses thereof
Dobrynin, Danil V.; Fridman, Alexander; Cho, Young I.; Fridman, Gregory; Friedman, Gennady
2016-12-06
Disclosed herein are atmospheric pressure pin-to-hole pulsed spark discharge devices and methods for creating plasma. The devices include a conduit for fluidically communicating a gas, a plasma, or both, therethrough, portion of the conduit capable of being connected to a gas supply, and a second portion of the conduit capable of emitting a plasma; a positive electrode comprising a sharp tip; and a ground plate electrode. Disclosed are methods for treating a skin ulcer using non-thermal plasma include flowing a gas through a cold spark discharge zone simultaneously with the creation of a pulsed spark discharge to give rise to a non-thermal plasma emitted from a conduit, the non-thermal plasma comprising NO; and contacting a skin ulcer with said non-thermal plasma for sufficient time and intensity to give rise to treatment of the skin ulcer.
NASA Astrophysics Data System (ADS)
Lee, Sangyeob; Koo, Hyun; Cho, Sunghwan
2015-04-01
Wet process of soluble organic light emitting diode (OLED) materials has attracted much attention due to its potential as a large-area manufacturing process with high productivity. Electrospray (ES) deposition is one of candidates of organic thin film formation process for OLED. However, to fabricate red, green, and blue emitters for color display, a fine metal mask is required during spraying emitter materials. We demonstrate a mask-less color pixel patterning process using ES of soluble OLED materials and selective biasing on pixel electrodes and a spray nozzle. We show red and green line patterns of OLED materials. It was found that selective patterning can be allowed by coulomb repulsion between nozzle and pixel. Furthermore, we fabricated blue fluorescent OLED devices by vacuum evaporation and ES processes. The device performance of ES processed OLED showed nearly identical current-voltage characteristics and slightly lower current efficiency compared to vacuum processed OLED.
Observation of copper atoms behavior in a vacuum arc discharge using laser spectroscopy
NASA Astrophysics Data System (ADS)
Sung, Y. M.; Hayashi, Y.; Okraku-Yirenkyi, Y.; Otsubo, M.; Honda, C.; Sakoda, T.
2003-01-01
In order to investigate the most important parameters influencing the breaking characteristic of a vacuum circuit breaker (VCB), the behavior of copper (Cu) particles emitted from electrodes designed as an imitation of a vacuum valve of the VCB was observed. The temporal-spatial intensity distributions due to Cu particles in an excited state or a neutral state were measured using the laser induced fluorescence (LIF) technique and a charge coupled device camera attached with a special filter. The diffusion velocity of a Cu atom was also investigated by evaluating a Doppler shift of the LIF signal. The results showed that most Cu particles were emitted from the anode and were in an excited state or an ionized state during an arc discharge. Also, Cu particles were distributed between electrodes even after the discharge chocked, and its diffusion velocity in the direction of the cathode from the anode was about 2.6 km/s.
NASA Astrophysics Data System (ADS)
Fou, A. C.; Onitsuka, O.; Ferreira, M.; Rubner, M. F.; Hsieh, B. R.
1996-05-01
Light-emitting diodes have been fabricated from self-assembled multilayers of poly(p-phenylene vinylene) (PPV) and two different polyanions; polystyrene sulfonic acid (SPS) and polymethacrylic acid (PMA). The type of polyanion used to assemble the multilayer thin films was found to dramatically influence the behavior and performance of devices fabricated with indium tin oxide and aluminum electrodes. Light-emitting devices fabricated from PMA/PPV multilayers were found to exhibit luminance levels in the range of 20-60 cd/m2, a thickness dependent turn-on voltage and classical rectifying behavior with rectification ratios greater than 105. In sharp contrast, the devices based on SPS/PPV exhibited near symmetric current-voltage curves, thickness independent turn-on voltages and much lower luminance levels. The significant difference in device behavior observed between these two systems is primarily due to a doping effect induced either chemically or electrochemically by the sulfonic acid groups of SPS. It was also found that the performance of these devices depends on the type of layer that is in contact with the Al top electrode thereby making it possible to manipulate device efficiency at the molecular level.
Surface Flashover on Epoxy-Resin Printed Circuit Boards in Vacuum under Electron Irradiation
NASA Astrophysics Data System (ADS)
Fujii, Haruhisa; Hasegawa, Taketoshi; Osuga, Hiroyuki; Matsui, Katsuaki
This paper deals with the surface flashover characteristics of dielectric material in vacuum during electron beam irradiation in order to design adequately the conductive patterns on printed circuit boards used inside a spacecraft. The dielectric material, glass-fiber reinforced epoxy resin, and the electrodes printed on it were irradiated with electrons of the energy of 3-10 keV. DC high voltage was applied between the two electrodes during electron irradiation. The voltage was increased stepwise until the surface flashover occurred on the dielectric material. We obtained the results that the surface flashover voltage increased with the insulation distance between the electrodes but electron irradiation made the flashover voltage lower. The flashover voltage characteristics were obtained as parameters of the electrode distance and the energy of the electron beam.
Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress.
Darus, Libertus; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano
2016-03-01
This work studies how extracellular electron transfer (EET) from cyanobacteria-dominated marine microbial biofilms to solid electrodes is affected by the availability of inorganic carbon (Ci). The EET was recorded chronoamperometrically in the form of electrical current by a potentiostat in two identical photo-electrochemical cells using carbon electrodes poised at a potential of +0.6 V versus standard hydrogen electrode under 12/12 h illumination/dark cycles. The Ci was supplied by the addition of NaHCO3 to the medium and/or by sparging CO2 gas. At high Ci conditions, EET from the microbial biofilm to the electrodes was observed only during the dark phase, indicating the occurrence of a form of night-time respiration that can use insoluble electrodes as the terminal electron acceptor. At low or no Ci conditions, however, EET also occurred during illumination suggesting that, in the absence of their natural electron acceptor, some cyanobacteria are able to utilise solid electrodes as an electron sink. This may be a natural survival mechanism for cyanobacteria to maintain redox balance in environments with limiting CO2 and/or high light intensity.
40 CFR 98.92 - GHGs to report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.92 GHGs to report. (a) You must report emissions of...). The fluorinated GHGs and fluorinated heat transfer fluids that are emitted from electronics... emitted from chemical vapor deposition and other electronics manufacturing processes. (5) Emissions of...
40 CFR 98.92 - GHGs to report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.92 GHGs to report. (a) You must report emissions of...). The fluorinated GHGs and fluorinated heat transfer fluids that are emitted from electronics... emitted from chemical vapor deposition and other electronics manufacturing processes. (5) Emissions of...
40 CFR 98.92 - GHGs to report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.92 GHGs to report. (a) You must report emissions of...). The fluorinated GHGs and fluorinated heat transfer fluids that are emitted from electronics... emitted from chemical vapor deposition and other electronics manufacturing processes. (5) Emissions of...
Biomedical Implementation of Liquid Metal Ink as Drawable ECG Electrode and Skin Circuit
Yu, Yang; Zhang, Jie; Liu, Jing
2013-01-01
Background Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Methods Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. Results With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as −0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. Conclusions The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit manufacturing technique in a large extent. PMID:23472220
Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.
Yu, Yang; Zhang, Jie; Liu, Jing
2013-01-01
Conventional ways of making bio-electrodes are generally complicated, expensive and unconformable. Here we describe for the first time the method of applying Ga-based liquid metal ink as drawable electrocardiogram (ECG) electrodes. Such material owns unique merits in both liquid phase conformability and high electrical conductivity, which provides flexible ways for making electrical circuits on skin surface and a prospective substitution of conventional rigid printed circuit boards (PCBs). Fundamental measurements of impedance and polarization voltage of the liquid metal ink were carried out to evaluate its basic electrical properties. Conceptual experiments were performed to draw the alloy as bio-electrodes to acquire ECG signals from both rabbit and human via a wireless module developed on the mobile phone. Further, a typical electrical circuit was drawn in the palm with the ink to demonstrate its potential of implementing more sophisticated skin circuits. With an oxide concentration of 0.34%, the resistivity of the liquid metal ink was measured as 44.1 µΩ·cm with quite low reactance in the form of straight line. Its peak polarization voltage with the physiological saline was detected as -0.73 V. The quality of ECG wave detected from the liquid metal electrodes was found as good as that of conventional electrodes, from both rabbit and human experiments. In addition, the circuit drawn with the liquid metal ink in the palm also runs efficiently. When the loop was switched on, all the light emitting diodes (LEDs) were lit and emitted colorful lights. The liquid metal ink promises unique printable electrical properties as both bio-electrodes and electrical wires. The implemented ECG measurement on biological surface and the successfully run skin circuit demonstrated the conformability and attachment of the liquid metal. The present method is expected to innovate future physiological measurement and biological circuit manufacturing technique in a large extent.
II-VI Semiconductor Superlattices
1992-12-01
N. Otsuka, H. icon, J. Ding, and A.V. Nurmikko, " Blue /Green Injection Lasers and Light Emitting Diodes" J. Vac. Sci. Technology B, 10(2) March/April...34Indium tin oxide as transparent electrode material for ZnSe-based blue quantum well light emitters" AppI. Phys. Lett. 60(23) 8 June 1992, p. 2825...characteristics of this contact scheme have been demon- strated tI)gether with their use Jn both blue ,/groen light lip emitting diodes and diode laser:- The
Seo, Hong-Kyu; Kim, Hobeom; Lee, Jaeho; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Kwon, Sung-Joo; Han, Tae-Hee; Yoo, Seunghyup; Lee, Tae-Woo
2017-03-01
Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-auditory, electrophysiological potentials preceding dolphin biosonar click production.
Finneran, James J; Mulsow, Jason; Jones, Ryan; Houser, Dorian S; Accomando, Alyssa W; Ridgway, Sam H
2018-03-01
The auditory brainstem response to a dolphin's own emitted biosonar click can be measured by averaging epochs of the instantaneous electroencephalogram (EEG) that are time-locked to the emitted click. In this study, averaged EEGs were measured using surface electrodes placed on the head in six different configurations while dolphins performed an echolocation task. Simultaneously, biosonar click emissions were measured using contact hydrophones on the melon and a hydrophone in the farfield. The averaged EEGs revealed an electrophysiological potential (the pre-auditory wave, PAW) that preceded the production of each biosonar click. The largest PAW amplitudes occurred with the non-inverting electrode just right of the midline-the apparent side of biosonar click generation-and posterior of the blowhole. Although the source of the PAW is unknown, the temporal and spatial properties rule out an auditory source. The PAW may be a neural or myogenic potential associated with click production; however, it is not known if muscles within the dolphin nasal system can be actuated at the high rates reported for dolphin click production, or if sufficiently coordinated and fast motor endplates of nasal muscles exist to produce a PAW detectable with surface electrodes.
Chen, Xiaolian; Guo, Wenrui; Xie, Liming; Wei, Changting; Zhuang, Jinyong; Su, Wenming; Cui, Zheng
2017-10-25
Metal-mesh is one of the contenders to replace indium tin oxide (ITO) as transparent conductive electrodes (TCEs) for optoelectronic applications. However, considerable surface roughness accompanying metal-mesh type of transparent electrodes has been the root cause of electrical short-circuiting for optoelectronic devices, such as organic light-emitting diode (OLED) and organic photovoltaic (OPV). In this work, a novel approach to making metal-mesh TCE has been proposed that is based on hybrid printing of silver (Ag) nanoparticle ink and electroplating of nickel (Ni). By polishing back the electroplated Ni, an extremely smooth surface was achieved. The fabricated Ag/Ni metal-mesh TCE has a surface roughness of 0.17 nm, a low sheet resistance of 2.1 Ω/□, and a high transmittance of 88.6%. The figure of merit is 1450, which is 30 times better than ITO. In addition, the Ag/Ni metal-mesh TCE shows outstanding mechanical flexibility and environmental stability at high temperature and humidity. Using the polished Ag/Ni metal-mesh TCE, a flexible quantum dot light-emitting diode (QLED) was fabricated with an efficiency of 10.4 cd/A and 3.2 lm/W at 1000 cd/m 2 .
Use of vacuum arc plasma guns for a metal puff Z-pinch system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rousskikh, A. G.; Zhigalin, A. S.; Oreshkin, V. I.
The performance of a metal puff Z-pinch system has been studied experimentally. In this type of system, the initial cylindrical shell 4 cm in diameter was produced by ten plasma guns. Each gun initiates a vacuum arc operating between magnesium electrodes. The net current of the guns was 80 kA. The arc-produced plasma shell was compressed by using a 450-kA, 450-ns driver, and as a result, a plasma column 0.3 cm in diameter was formed. The electron temperature of the plasma reached 400 eV at an average ion concentration of 1.85 {center_dot} 10{sup 18} cm{sup -3}. The power of themore » Mg K-line radiation emitted by the plasma for 15-30 ns was 300 MW/cm.« less
Microfabricated ion frequency standard
Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.
2010-12-28
A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.
NASA Astrophysics Data System (ADS)
Kim, Jin-Hoon; Triambulo, Ross E.; Park, Jin-Woo
2017-03-01
We investigated the charge injection properties of silver nanowire networks (AgNWs) in a composite-like structure with poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS). The composite films acted as the anodes and hole transport layers (HTLs) in organic light-emitting diodes (OLEDs). The current density (J)-voltage (V)-luminance (L) characteristics and power efficiency (ɛ) of the OLEDs were measured to determine their electrical and optical properties. The charge injection properties of the AgNWs in the OLEDs during operation were characterized via impedance spectroscopy (IS) by determining the variations in the capacitances (C) of the devices with respect to the applied V and the corresponding frequency (f). All measured results were compared with results for OLEDs fabricated on indium tin oxide (ITO) anodes. The OLEDs on AgNWs showed lower L and ɛ values than the OLEDs on ITO. It was also observed that AgNWs exhibit excellent charge injection properties and that the interfaces between the AgNWs and the HTL have very small charge injection barriers, resulting in an absence of charge carrier traps when charges move across these interfaces. However, in the AgNW-based OLED, there was a large mismatch in the number of injected holes and electrons. Furthermore, the highly conductive electrical paths of the AgNWs in the composite-like AgNW and PEDOT:PSS structure allowed a large leakage current of holes that did not participate in radiative recombination with the electrons; consequently, a lower ɛ was observed for the AgNW-based OLEDs than for the ITO-based OLEDs. To match the injection of electrons by the electron transport layer (ETL) in the AgNW-based OLED with that of holes by the AgNW/PEDOT:PSS composite anode, the electron injection barrier of the ETL was decreased by using the low work function polyethylenimine ethoxylated (PEIE) doped with n-type cesium carbonate (Cs2CO3). With the doped-PEIE, the performance of the AgNW-based OLED was significantly enhanced through the balanced injection of holes and electrons, which clearly verified our analysis results by IS.
Tao, Kai; Han, Xue; Cheng, Qiuhui; Yang, Yujing; Yang, Zheng; Ma, Qingxiang; Han, Lei
2018-04-19
Porous ternary metal sulfide integrated electrode materials with abundant electroactive sites and redox reactions are very promising for supercapacitors. Here, porous zinc cobalt sulfide nanosheets array on Ni foam (Zn-Co-S/NF) has been successfully constructed by a facile growth of 2D bimetallic zinc/cobalt-based metal-organic frameworks (Zn/Co-MOF) nanosheets with leaf-like morphology on Ni foam, followed by additional sulfurization. The Zn-Co-S/NF nanosheets array is directly acted as an electrode for supercapacitor, showing much better electrochemical performance (2354.3 F g-1 and 88.6% retention over 1000 cycles) when compared with zinc cobalt sulfide powder (355.3 F g-1 and 75.8% retention over 1000 cycles), which is originated from good electric conductivity and mechanical stability, abundant electroactive sites, and facilitated transportation of electron and electrolyte ion endowed by the unique nanosheets array structure. The asymmetric supercapacitor (ASC) device assembled from Zn-Co-S/NF and activated carbon electrodes can deliver the highest energy density of 31.9 Wh kg-1 and the maximum power density of 8.5 kW kg-1. Most importantly, this ASC also presents good cycling stability (97% retention over 1000 cycles). Furthermore, a red light-emitting diode (LED) can be illuminated by two connected ASCs, indicating that as-synthesized Zn-Co-S/NF hold great potential for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Particle in cell simulation of peaking switch for breakdown evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.
2014-07-01
Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (withoutmore » peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)« less
Optically pulsed electron accelerator
Fraser, John S.; Sheffield, Richard L.
1987-01-01
An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.
Optically pulsed electron accelerator
Fraser, J.S.; Sheffield, R.L.
1985-05-20
An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.
NASA Astrophysics Data System (ADS)
Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.
2018-01-01
While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.
ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor
Zhao, Yu; Li, Wenbo; Pan, Lijia; Zhai, Dongyuan; Wang, Yu; Li, Lanlan; Cheng, Wen; Yin, Wei; Wang, Xinran; Xu, Jian-Bin; Shi, Yi
2016-01-01
ZnO-nanorods/graphene heterostructure was synthesized by hydrothermal growth of ZnO nanorods on chemically reduced graphene (CRG) film. The hybrid structure was demonstrated as a biosensor, where direct electron transfer between glucose oxidase (GOD) and electrode was observed. The charge transfer was attributed to the ZnO nanorod wiring between the redox center of GOD and electrode, and the ZnO/graphene heterostructure facilitated the transport of electrons on the hybride electrode. The glucose sensor based on the GOD-ZnO/CRG/Pt electrode had a high sensitivity of 17.64 μA mM−1, which is higher than most of the previously reported values for direct electron transfer based glucose biosensors. Moreover, this biosensor is linearly proportional to the concentration of glucose in the range of 0.2–1.6 mM. The study revealed that the band structure of electrode could affect the detection of direct electron transfer of GOD, which would be helpful for the design of the biosensor electrodes in the future. PMID:27572675
Effect of segmented electrode length on the performances of Hall thruster
NASA Astrophysics Data System (ADS)
Duan, Ping; Chen, Long; Liu, Guangrui; Bian, Xingyu; Yin, Yan
2016-09-01
The influences of the low-emissive graphite segmented electrode placed near the channel exit on the discharge characteristics of Hall thruster are studied using the particle-in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configuration. The effects of electrode length on potential, ion density, electron temperature, ionization rate and discharge current are investigated. It is found that, with the increasing of segmented electrode length, the equipotential lines bend towards the channel exit, and approximately parallel to the wall at the channel surface, radial velocity and radial flow of ions are increased, and the electron temperature is also enhanced. Due to the conductive characteristic of electrodes, the radial electric field and the axial electron conductivity near the wall are enhanced, and the probability of the electron-atom ionization is reduced, which leads to the degradation of ionization rate in discharge channel. However, the interaction between electrons and the wall enhances the near wall conductivity, therefore the discharge current grows along with the segmented electrode length, and the performance of the thruster is also affected.
Chen, Ren-Ai; Wang, Cong; Li, Sheng; George, Thomas F.
2013-01-01
With the development of experimental techniques, effective injection and transportation of electrons is proven as a way to obtain polymer light-emitting diodes (PLEDs) with high quantum efficiency. This paper reveals a valid mechanism for the enhancement of quantum efficiency in PLEDs. When an external electric field is applied, the interaction between a negative polaron and triplet exciton leads to an electronic two-transition process, which induces the exciton to emit light and thus improve the emission efficiency of PLEDs. PMID:28809346
NASA Astrophysics Data System (ADS)
Gacemi, Yahia; Cheknane, Ali; Hilal, Hikmat S.
2018-02-01
Physiochemical processes at the photo-electrode and the counter electrode of dye sensitized solar cells (DSSCs) involving having carbon nanotubes (CNTs) instead of the TiO2 layer, within the working electrode, are simulated in this work. Attention is paid to find the effect of CNT layer thickness on photo-electrochemical (PEC) characteristics of the CNT-DSSCs. Comparison with other conventional TiO2-DSSC systems, taking into account the working electrode film thickness, is also described here. To achieve these goals, a model is presented to explain charge transport and electron recombination which involve electron photo-excitation in dye molecules, injection of electrons from the excited dye to CNT working electrode conduction band, diffusion of electrons inside the CNT electrode, charge transfer between oxidized dye and (I-) and recombination of electrons. The simulation is based on solving non-linear equations using the Newton-Raphson numerical method. This concept is proposed for modelling numerical Faradaic impedance at the photo-electrode and the platinum counter electrode. It then simulates the cell impedance spectrum describing the locus of the three semicircles in the Nyquist diagram. The transient equivalent circuit model is also presented based on optimizing current-voltage curves of CNT-DSSCs so as to optimize the fill factor (FF) and conversion efficiency (η). The results show that the simulated characteristics of CNT-DSSCs, with different active CNT layer thicknesses, are superior to conventional TiO2-DSSCs.
Three-dimensional architecture for solid state radiation detectors
Parker, S.
1999-03-30
A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals. 45 figs.
Three-dimensional architecture for solid state radiation detectors
Parker, Sherwood
1999-01-01
A radiation-damage resistant radiation detector is formed on a substrate formed of a material doped with a first conductivity type dopant. The detector includes at least one first electrode formed of first conductivity type dopant, and at least one second electrode that is spaced-apart from the first electrode and formed of a second conductivity type dopant. Each first and second electrode penetrates into the substrate from a substrate surface, and one or more electrodes may penetrate entirely through the substrate, that is traversing from one surface to the other surface. Particulate and/or electromagnetic radiation penetrating at least a surface of the substrate releases electrons and holes in substrate regions. Because the electrodes may be formed entirely through the substrate thickness, the released charges will be a relatively small distance from at least a portion of such an electrode, e.g., a distance less than the substrate thickness. The electrons and/or holes traverse the small distance and are collected by said electrodes, thus promoting rapid detection of the radiation. By providing one or more electrodes with a dopant profile radially graded in a direction parallel to a substrate surface, an electric field results that promotes rapid collection of released electrons and said holes. Monolithic combinations of such detectors may be fabricated including CMOS electronics to process radiation signals.
High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers
NASA Astrophysics Data System (ADS)
Cai, Jie; Niu, Haitao; Wang, Hongxia; Shao, Hao; Fang, Jian; He, Jingren; Xiong, Hanguo; Ma, Chengjie; Lin, Tong
2016-08-01
Carbon nanofibers with inter-bonded fibrous structure show high supercapacitor performance when being used as electrode materials. Their preparation is highly desirable from cellulose through a pyrolysis technique, because cellulose is an abundant, low cost natural material and its carbonization does not emit toxic substance. However, interconnected carbon nanofibers prepared from electrospun cellulose nanofibers and their capacitive behaviors have not been reported in the research literature. Here we report a facile one-step strategy to prepare inter-bonded carbon nanofibers from partially hydrolyzed cellulose acetate nanofibers, for making high-performance supercapacitors as electrode materials. The inter-fiber connection shows considerable improvement in electrode electrochemical performances. The supercapacitor electrode has a specific capacitance of ∼241.4 F g-1 at 1 A g-1 current density. It maintains high cycling stability (negligible 0.1% capacitance reduction after 10,000 cycles) with a maximum power density of ∼84.1 kW kg-1. They may find applications in the development of efficient supercapacitor electrodes for energy storage applications.
Method of fabricating an optoelectronic device having a bulk heterojunction
Shtein, Max [Princeton, NJ; Yang, Fan [Princeton, NJ; Forrest, Stephen R [Princeton, NJ
2008-09-02
A method of fabricating an organic optoelectronic device having a bulk heterojunction comprises the steps of: depositing a first layer over a first electrode by organic vapor phase deposition, wherein the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer, wherein the interface of the second layer on the first layer forms a bulk heterojunction; and depositing a second electrode over the second layer to form the optoelectronic device. In another embodiment, a first layer having protrusions is deposited over the first electrode, wherein the first layer comprises a first organic small molecule material. For example, when the first layer is an electron donor layer, the first electrode is an anode, the second layer is an electron acceptor layer, and the second electrode is a cathode. As a further example, when the first layer is an electron acceptor layer, the first electrode is a cathode, the second layer is an electron donor layer, and the second electrode is an anode.
NASA Astrophysics Data System (ADS)
Ok, Jung-Woo; Pooyodying, Pattarapon; Anuntahirunrat, Jirapat; Sung, Youl-Moon
2018-04-01
In this paper, we investigate electrochemical luminescent (ECL) device with a new structure and the ECL cell device with proposed electrode configuration works reliably at AC voltage. In particular, the conventional ECL cell has counter electrodes in which a cathode and an anode are opposed to each other, whereas the proposed structure has parallel electrodes in which a cathode and an anode are arranged on a single substrate. The proposed electrode configuration has a structural feature that electric short-circuiting is less likely to occur during bending than the conventional electrode configuration. The electro-optical characteristics of the new electrode configuration such as the current density, the light emission intensity, and the time evolution of the emission are investigated. The proposed ECL device exhibited higher light emitting efficiency than the conventional structure. Especially, at AC operation mode, the new structure showed the distinctive luminescence characteristic which is combined the first luminescence near the surface of electrode with the delayed second luminescence near the center of between electrodes. It was closely related to the behavior of luminescent particles. The proposed the ECL cell structure is expected to be utilized as a flexible display device by taking advantage of its characteristics and practicality.
Photon enhanced thermionic emission
Schwede, Jared; Melosh, Nicholas; Shen, Zhixun
2014-10-07
Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.
Shiiba, Takuro; Kuga, Naoya; Kuroiwa, Yasuyoshi; Sato, Tatsuhiko
2017-10-01
We assessed the accuracy of mono-energetic electron and beta-emitting isotope dose-point kernels (DPKs) calculated using the particle and heavy ion transport code system (PHITS) for patient-specific dosimetry in targeted radionuclide treatment (TRT) and compared our data with published data. All mono-energetic and beta-emitting isotope DPKs calculated using PHITS, both in water and compact bone, were in good agreement with those in literature using other MC codes. PHITS provided reliable mono-energetic electron and beta-emitting isotope scaled DPKs for patient-specific dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Powering microbes with electricity: direct electron transfer from electrodes to microbes.
Lovley, Derek R
2011-02-01
The discovery of electrotrophs, microorganisms that can directly accept electrons from electrodes for the reduction of terminal electron acceptors, has spurred the investigation of a wide range of potential applications. To date, only a handful of pure cultures have been shown to be capable of electrotrophy, but this process has also been inferred in many studies with undefined consortia. Potential electron acceptors include: carbon dioxide, nitrate, metals, chlorinated compounds, organic acids, protons and oxygen. Direct electron transfer from electrodes to cells has many advantages over indirect electrical stimulation of microbial metabolism via electron shuttles or hydrogen production. Supplying electrons with electrodes for the bioremediation of chlorinated compounds, nitrate or toxic metals may be preferable to adding organic electron donors or hydrogen to the subsurface or bioreactors. The most transformative application of electrotrophy may be microbial electrosynthesis in which carbon dioxide and water are converted to multi-carbon organic compounds that are released extracellularly. Coupling photovoltaic technology with microbial electrosynthesis represents a novel photosynthesis strategy that avoids many of the drawbacks of biomass-based strategies for the production of transportation fuels and other organic chemicals. The mechanisms for direct electron transfer from electrodes to microorganisms warrant further investigation in order to optimize envisioned applications. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Hot ion plasma production in HIP-1 using water-cooled hollow cathodes
NASA Technical Reports Server (NTRS)
Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.
1975-01-01
A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.
40 CFR 98.92 - GHGs to report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.92 GHGs to report. (a) You must report emissions of fluorinated GHGs (as defined in § 98.6) and N2O. The fluorinated GHGs that are emitted from electronics... emitted from chemical vapor deposition and other electronics manufacturing processes. (5) Fluorinated GHGs...
Method of making a layered composite electrode/electrolyte
Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.
2005-01-25
An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.
NASA Astrophysics Data System (ADS)
He, Yi
2000-10-01
Organic light-emitting devices (OLEDs) made of single-layer and double-layer polymer thin films have been fabricated and studied. The hole transporting (polymer A) and emissive (polymer B) polymers were poly(9,9' -dioctyl fluorene-2,7-diyl)-co-poly(diphenyl-p-tolyl-amine-4,4 '-diyl) and poly(9,9'-dioctyl fluorene-2,7-diyl)-co-poly(benzothiadiazole 2,5-diyl), respectively. The optical bandgaps of polymer A and B were 2.72 and 2.82 eV, respectively. The photoluminescence (PL) peaks for polymer A and B were 502 and 546 nm, respectively. The electroluminescence (EL) peak for polymer B was 547 nm. No EL has been observed from polymer A single layer OLEDs. To obtain the spectral distribution of the emission properties of the light-emitting devices, a new light-output measurement technique was developed. Using this technique, the spectral distribution of the luminance, radiance, photon density emission can be obtained. Moreover, the device external quantum efficiency calculated using this technique is accurate and insensitive to the light emission spectrum shape. Organic light-emitting devices have been fabricated and studied on both glass and flexible plastic substrates. The OLEDs showed a near-linear relationship between the luminance and the applied current density over four orders of magnitude. For the OLEDs fabricated on the glass substrate, luminance ˜9,300 cd/m2, emission efficiency ˜14.5 cd/A, luminescence power efficiency ˜2.26 lm/W, and external quantum efficiency ˜3.85% have been achieved. For the OLEDs fabricated on the flexible plastic substrates, both aluminum and calcium were used as cathode materials. The achieved maximum OLED luminance, emission efficiency, luminescence power efficiency, and external quantum efficiency were ˜13,000 cd/m2, ˜66.1 cd/A, ˜17.2 lm/W, and 16.7%, respectively. To make an active-matrix organic light-emitting display (AM-OLED), a two-TFT pixel electrode circuit was designed and fabricated based on amorphous silicon TFT technology. This circuit was capable of providing continuous pixel excitation and a simple driving scheme. However, it showed an output current variation of ˜40% to 80% due to the drive TFT threshold voltage (V th) shift after long-term operation. To improve the pixel circuit electrical reliability, a four-TFT pixel electrode circuit was proposed and fabricated. This circuit only showed an output current variation <1% for the high currents (>0.5muA) even when a TFT Vth shift as large as 3V was present. This four-TFT pixel electrode circuit was used to fabricate small size active-matrix monochrome organic light-emitting display.
The microbe electric: conversion of organic matter to electricity.
Lovley, Derek R
2008-12-01
Broad application of microbial fuel cells will require substantial increases in current density. A better understanding of the microbiology of these systems may help. Recent studies have greatly expanded the range of microorganisms known to function either as electrode-reducing microorganisms at the anode or as electrode-oxidizing microorganisms at the cathode. Microorganisms that can completely oxidize organic compounds with an electrode serving as the sole electron acceptor are expected to be the primary contributors to power production. Several mechanisms for electron transfer to anodes have been proposed including: direct electron transfer via outer-surface c-type cytochromes, long-range electron transfer via microbial nanowires, electron flow through a conductive biofilm matrix containing cytochromes, and soluble electron shuttles. Which mechanisms are most important depend on the microorganisms and the thickness of the anode biofilm. Emerging systems biology approaches to the study, design, and evolution of microorganisms interacting with electrodes are expected to contribute to improved microbial fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollmann, E. M.; Yu, J. H.; Doerner, R. P.
2015-09-14
The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.
Beam based measurement of beam position monitor electrode gains
NASA Astrophysics Data System (ADS)
Rubin, D. L.; Billing, M.; Meller, R.; Palmer, M.; Rendina, M.; Rider, N.; Sagan, D.; Shanks, J.; Strohman, C.
2010-09-01
Low emittance tuning at the Cornell Electron Storage Ring (CESR) test accelerator depends on precision measurement of vertical dispersion and transverse coupling. The CESR beam position monitors (BPMs) consist of four button electrodes, instrumented with electronics that allow acquisition of turn-by-turn data. The response to the beam will vary among the four electrodes due to differences in electronic gain and/or misalignment. This variation in the response of the BPM electrodes will couple real horizontal offset to apparent vertical position, and introduce spurious measurements of coupling and vertical dispersion. To alleviate this systematic effect, a beam based technique to measure the relative response of the four electrodes has been developed. With typical CESR parameters, simulations show that turn-by-turn BPM data can be used to determine electrode gains to within ˜0.1%.
Alotiby, M; Greguric, I; Kibédi, T; Lee, B Q; Roberts, M; Stuchbery, A E; Tee, Pi; Tornyi, T; Vos, M
2018-03-21
Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125 I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125 I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.
NASA Astrophysics Data System (ADS)
Alotiby, M.; Greguric, I.; Kibédi, T.; Lee, B. Q.; Roberts, M.; Stuchbery, A. E.; Tee, Pi; Tornyi, T.; Vos, M.
2018-03-01
Auger electrons emitted after nuclear decay have potential application in targeted cancer therapy. For this purpose it is important to know the Auger electron yield per nuclear decay. In this work we describe a measurement of the ratio of the number of conversion electrons (emitted as part of the nuclear decay process) to the number of Auger electrons (emitted as part of the atomic relaxation process after the nuclear decay) for the case of 125I. Results are compared with Monte-Carlo type simulations of the relaxation cascade using the BrIccEmis code. Our results indicate that for 125I the calculations based on rates from the Evaluated Atomic Data Library underestimate the K Auger yields by 20%.
Single-electron detection and spectroscopy via relativistic cyclotron radiation
Asner, D. M.; Bradley, R. F.; de Viveiros, L.; ...
2015-04-20
Since 1897, we've understood that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. We demonstrate single-electron detection in a novel radiofrequency spec- trometer. Here, we observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precisemore » electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.« less
Tsai, Candace S. J.; Dysart, Arthur D.; Beltz, Jay H.; ...
2015-12-30
A scalable, solid-state elevated temperature process was developed to produce high capacity carbonaceous electrode materials for energy storage devices via decomposition of starch-based precursor in an inert atmosphere. The fabricated carbon-based architectures are useful as an excellent electrode material for lithium-ion, sodium-ion and lithium-sulfur batteries. This article focuses on the study and analysis of the formed nanometer-sized byproducts during the lab-scale production of carbonaceous electrode materials in the process design phase. The complete material production process was studied by operation, namely during heating, holding the reaction at elevated temperature, followed by cooling. The unknown downstream particles in the process exhaustmore » were collected and characterized via aerosol and liquid suspensions, and they were quantified using direct-reading instruments for number and mass concentrations. The airborne emissions were collected on polycarbonate filters and TEM grids using the Tsai diffusion sampler (TDS) for characterization and further analysis. Released byproduct aerosols collected in a deionized (DI) water trap were analyzed using a Nanosight real time nanoparticle characterization system and the aerosols emitted post water suspension were collected and characterized. Individual particles in the nanometer size range were found in exhaust aerosols, however, crystal structured aggregates were formed on the sampling substrate after a long-term sampling of emitted exhaust. After characterizing the released aerosol byproducts, methods were also identified to mitigate possible human and environmental exposures upon the industrial implementation of such a process.« less
RF driven sulfur lamp having driving electrodes arranged to cool the lamp
Gabor, George; Orr, Thomas Robert; Greene, Charles Maurice; Crawford, Douglas Gordon; Berman, Samuel Maurice
1998-01-01
A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance.
RF driven sulfur lamp having driving electrodes arranged to cool the lamp
Gabor, G.; Orr, T.R.; Greene, C.M.; Crawford, D.G.; Berman, S.M.
1998-10-20
A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance. 17 figs.
RF driven sulfur lamp having driving electrodes which face each other
Gabor, G.; Orr, T.R.; Greene, C.M.; Crawford, D.G.; Berman, S.M.
1999-06-22
A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance. 17 figs.
RF driven sulfur lamp having driving electrodes which face each other
Gabor, George; Orr, Thomas Robert; Greene, Charles Maurice; Crawford, Douglas Gordon; Berman, Samuel Maurice
1999-01-01
A high intensity discharge lamp without mercury is disclosed radiating a selected spectrum of which can be almost entirely in the visible range from an envelope that contains a sulfur containing substance. The lamp utilizes a signal source that generates an excitation signal that is externally coupled to the exterior surface of the envelope to excite the enclosed sulfur containing substance. Various embodiments of the lamp use electrodes adjacent the envelope to couple the excitation signal thereto with the face of the electrodes shaped to complement the shape of the exterior surface of the envelope. Two shapes discussed are spherical and cylindrical. To minimize filamentary discharges each envelope may include an elongated stem affixed to the exterior thereof whereby a rotational subsystem spins the envelope. In yet another embodiment the envelope has a Dewar configuration with two electrodes, one positioned near the external curved side surface of the body, and a second to the inner surface of the hole through the envelope. Further, the envelope may contain a backfill of a selected inert gas to assist in the excitation of lamp with that backfill at a pressure of less than 1 atmosphere, wherein the backfill pressure is directly related to the increase or decrease of peak output and inversely related to the increase and decrease of the emitted spectrum from the envelope. The emitting fill can be less than 6 mg/cc, or at least 2 mg/cc of the envelope of a sulfur containing substance.
Injectable 3-D Fabrication of Medical Electronics at the Target Biological Tissues
NASA Astrophysics Data System (ADS)
Jin, Chao; Zhang, Jie; Li, Xiaokang; Yang, Xueyao; Li, Jingjing; Liu, Jing
2013-12-01
Conventional transplantable biomedical devices generally request sophisticated surgery which however often causes big trauma and serious pain to the patients. Here, we show an alternative way of directly making three-dimensional (3-D) medical electronics inside the biological body through sequential injections of biocompatible packaging material and liquid metal ink. As the most typical electronics, a variety of medical electrodes with different embedded structures were demonstrated to be easily formed at the target tissues. Conceptual in vitro experiments provide strong evidences for the excellent performances of the injectable electrodes. Further in vivo animal experiments disclosed that the formed electrode could serve as both highly efficient ECG (Electrocardiograph) electrode and stimulator electrode. These findings clarified the unique features and practicability of the liquid metal based injectable 3-D fabrication of medical electronics. The present strategy opens the way for directly manufacturing electrophysiological sensors or therapeutic devices in situ via a truly minimally invasive approach.
Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.
Suroviec, Alice H
2017-01-01
The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.
Robert, Donatien; Douillard, Thierry; Boulineau, Adrien; Brunetti, Guillaume; Nowakowski, Pawel; Venet, Denis; Bayle-Guillemaud, Pascale; Cayron, Cyril
2013-12-23
LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 μm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.
Schlager, Stefanie; Dumitru, Liviu Mihai; Haberbauer, Marianne; Fuchsbauer, Anita; Neugebauer, Helmut; Hiemetsberger, Daniela; Wagner, Annika; Portenkirchner, Engelbert; Sariciftci, Niyazi Serdar
2016-03-21
We present results for direct bio-electrocatalytic reduction of CO2 to C1 products using electrodes with immobilized enzymes. Enzymatic reduction reactions are well known from biological systems where CO2 is selectively reduced to formate, formaldehyde, or methanol at room temperature and ambient pressure. In the past, the use of such enzymatic reductions for CO2 was limited due to the necessity of a sacrificial co-enzyme, such as nicotinamide adenine dinucleotide (NADH), to supply electrons and the hydrogen equivalent. The method reported here in this paper operates without the co-enzyme NADH by directly injecting electrons from electrodes into immobilized enzymes. We demonstrate the immobilization of formate, formaldehyde, and alcohol dehydrogenases on one-and-the-same electrode for direct CO2 reduction. Carbon felt is used as working electrode material. An alginate-silicate hybrid gel matrix is used for the immobilization of the enzymes on the electrode. Generation of methanol is observed for the six-electron reduction with Faradaic efficiencies of around 10%. This method of immobilization of enzymes on electrodes offers the opportunity for electrochemical application of enzymatic electrodes to many reactions in which a substitution of the expensive sacrificial co-enzyme NADH is desired. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Cheolho; Moon, Jun Hyuk
2018-06-13
Micro-supercapacitors (MSCs) are attractive for applications in next-generation mobile and wearable devices and have the potential to complement or even replace lithium batteries. However, many previous MSCs have often exhibited a low volumetric energy density with high-loading electrodes because of the nonuniform pore structure of the electrodes. To address this issue, we introduced a uniform-pore carbon electrode fabricated by 3D interference lithography. Furthermore, a hierarchical pore-patterned carbon (hPC) electrode was formed by introducing a micropore by chemical etching into the macropore carbon skeleton. The hPC electrodes were applied to solid-state MSCs. We achieved a constant volumetric capacitance and a corresponding volumetric energy density for electrodes of various thicknesses. The hPC MSC reached a volumetric energy density of approximately 1.43 mW h/cm 3 . The power density of the hPC MSC was 1.69 W/cm 3 . We could control the capacitance and voltage additionally by connecting the unit MSC cells in series or parallel, and we confirmed the operation of a light-emitting diode. We believe that our pore-patterned electrodes will provide a new platform for compact but high-performance energy storage devices.
Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G.
2013-08-15
In this article, the plasma is created in a Pyrex tube (L = 27 cm, φ= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ∼0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. Whilemore » their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions emigration to a preferred electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.« less
Kim, Lae Ho; Jeong, Yong Jin; An, Tae Kyu; Park, Seonuk; Jang, Jin Hyuk; Nam, Sooji; Jang, Jaeyoung; Kim, Se Hyun; Park, Chan Eon
2016-01-14
Encapsulation is essential for protecting the air-sensitive components of organic light-emitting diodes (OLEDs), such as the active layers and cathode electrodes. Thin film encapsulation approaches based on an oxide layer are suitable for flexible electronics, including OLEDs, because they provide mechanical flexibility, the layers are thin, and they are easy to prepare. This study examined the effects of the oxide ratio on the water permeation barrier properties of Al2O3/TiO2 nanolaminate films prepared by plasma-enhanced atomic layer deposition. We found that the Al2O3/TiO2 nanolaminate film exhibited optimal properties for a 1 : 1 atomic ratio of Al2O3/TiO2 with the lowest water vapor transmission rate of 9.16 × 10(-5) g m(-2) day(-1) at 60 °C and 90% RH. OLED devices that incorporated Al2O3/TiO2 nanolaminate films prepared with a 1 : 1 atomic ratio showed the longest shelf-life, in excess of 2000 hours under 60 °C and 90% RH conditions, without forming dark spots or displaying edge shrinkage.
Improving the performance of doped pi-conjugated polymers for use in organic light-emitting diodes
Gross; Muller; Nothofer; Scherf; Neher; Brauchle; Meerholz
2000-06-08
Organic light-emitting diodes (OLEDs) represent a promising technology for large, flexible, lightweight, flat-panel displays. Such devices consist of one or several semiconducting organic layer(s) sandwiched between two electrodes. When an electric field is applied, electrons are injected by the cathode into the lowest unoccupied molecular orbital of the adjacent molecules (simultaneously, holes are injected by the anode into the highest occupied molecular orbital). The two types of carriers migrate towards each other and a fraction of them recombine to form excitons, some of which decay radiatively to the ground state by spontaneous emission. Doped pi-conjugated polymer layers improve the injection of holes in OLED devices; this is thought to result from the more favourable work function of these injection layers compared with the more commonly used layer material (indium tin oxide). Here we demonstrate that by increasing the doping level of such polymers, the barrier to hole injection can be continuously reduced. The use of combinatorial devices allows us to quickly screen for the optimum doping level. We apply this concept in OLED devices with hole-limited electroluminescence (such as polyfluorene-based systems), finding that it is possible to significantly reduce the operating voltage while improving the light output and efficiency.
Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery
Du, Zhijia; Janke, C. J.; Li, Jianlin; ...
2016-10-12
We have successfully used electron beam cured acrylated polyurethanes as novel binders for positive electrodes for Li-ion batteries. Furthermore, the cross-linked polymer after electron beam curing coheres active materials and carbon black together onto Al foil. Electrochemical tests demonstrate the stability of the polymer at a potential window of 2.0 V–4.6 V. The electrode is found to have similar voltage profiles and charge-transfer resistance compared to the conventional electrode using polyvinylidene fluoride as the binder. Finally, when the electrode is tested in full Li-ion cells, they exhibit excellent cycling performance, indicating promising use for this new type of binder inmore » commercial Li-ion batteries in the future.« less
Field-Induced and Thermal Electron Currents from Earthed Spherical Emitters
NASA Astrophysics Data System (ADS)
Holgate, J. T.; Coppins, M.
2017-04-01
The theories of electron emission from planar surfaces are well understood, but they are not suitable for describing emission from spherical surfaces; their incorrect application to highly curved, nanometer-scale surfaces can overestimate the emitted current by several orders of magnitude. This inaccuracy is of particular concern for describing modern nanoscale electron sources, which continue to be modeled using the planar equations. In this paper, the field-induced and thermal currents are treated in a unified way to produce Fowler-Nordheim-type and Richardson-Schottky-type equations for the emitted current density from earthed nanoscale spherical surfaces. The limits of applicability of these derived expressions are considered along with the energy spectra of the emitted electrons. Within the relevant limits of validity, these equations are shown to reproduce the results of precise numerical calculations of the emitted current densities. The methods used here are adaptable to other one-dimensional emission problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qing; Gerhardt, Michael R.; Aziz, Michael J.
We measure the polarization characteristics of a quinone-bromide redox flow battery with interdigitated flow fields, using electrochemical impedance spectroscopy and voltammetry of a full cell and of a half cell against a reference electrode. We find linear polarization behavior at 50% state of charge all the way to the short-circuit current density of 2.5 A/cm 2. We uniquely identify the polarization area-specific resistance (ASR) of each electrode, the membrane ASR to ionic current, and the electronic contact ASR. We use voltage probes to deduce the electronic current density through each sheet of carbon paper in the quinone-bearing electrode. By alsomore » interpreting the results using the Newman 1-D porous electrode model, we deduce the volumetric exchange current density of the porous electrode. We uniquely evaluate the power dissipation and identify a correspondence to the contributions to the electrode ASR from the faradaic, electronic, and ionic transport processes. We find that, within the electrode, more power is dissipated in the faradaic process than in the electronic and ionic conduction processes combined, despite the observed linear polarization behavior. We examine the sensitivity of the ASR to the values of the model parameters. The greatest performance improvement is anticipated from increasing the volumetric exchange current density.« less
NASA Astrophysics Data System (ADS)
Siegel, David; El Gabaly, Farid; Bartelt, Norman; McCarty, Kevin
2014-03-01
Novel electrochemical solutions to problems in energy storage and transportation can drive renewable energy to become an economically viable alternative to fossil fuels. In many electrochemical systems, the behavior of a device can be fundamentally limited by the surface area of a triple phase boundary, the boundary region where a gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator the triple phase boundary is typically a one-dimensional boundary with nanometer-scale thickness: ions cannot transport through the electrode, while electrons cannot be transported through the electrolyte. Here we present direct experimental measurements of a novel electrolyte-to-electrode transition with photoemission electron microscopy, and observe that the surface of an ionically conductive, electronically insulative solid oxide electrolyte undergoes a transition into a mixed electron-ion conductor in the vicinity of a metal electrode. Our direct experimental measurements allow us to characterize this system and address the mechanisms of ionic reactions and transport through comparisons with theoretical modeling to provide us with a physical picture of the processes involved. Our results provide insight into one of the mechanisms of ion transport in an electrochemical cell that may be generalizable to other systems.
Muguruma, Hitoshi; Hoshino, Tatsuya; Nowaki, Kohei
2015-01-14
An electrochemical enzyme biosensor with electronically type-sorted (metallic and semiconducting) single-walled carbon nanotubes (SWNTs) for use in aqueous media is presented. This research investigates how the electronic types of SWNTs influence the amperometric response of enzyme biosensors. To conduct a clear evaluation, a simple layer-by-layer process based on a plasma-polymerized nano thin film (PPF) was adopted because a PPF is an inactive matrix that can form a well-defined nanostructure composed of SWNTs and enzyme. For a biosensor with the glucose oxidase (GOx) enzyme in the presence of oxygen, the response of a metallic SWNT-GOx electrode was 2 times larger than that of a semiconducting SWNT-GOx electrode. In contrast, in the absence of oxygen, the response of the semiconducting SWNT-GOx electrode was retained, whereas that of the metallic SWNT-GOx electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting SWNT-GOx electrode, whereas the metallic SWNT-GOx electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. For a biosensor with the glucose dehydrogenase (GDH; oxygen-independent catalysis) enzyme, the response of the semiconducting SWNT-GDH electrode was 4 times larger than that of the metallic SWNT-GDH electrode. Electrochemical impedance spectroscopy was used to show that the semiconducting SWNT network has less resistance for electron transfer than the metallic SWNT network. Therefore, it was concluded that semiconducting SWNTs are more suitable than metallic SWNTs for electrochemical enzyme biosensors in terms of direct electron transfer as a detection mechanism. This study makes a valuable contribution toward the development of electrochemical biosensors that employ sorted SWNTs and various enzymes.
Solid state photosensitive devices which employ isolated photosynthetic complexes
Peumans, Peter; Forrest, Stephen R.
2009-09-22
Solid state photosensitive devices including photovoltaic devices are provided which comprise a first electrode and a second electrode in superposed relation; and at least one isolated Light Harvesting Complex (LHC) between the electrodes. Preferred photosensitive devices comprise an electron transport layer formed of a first photoconductive organic semiconductor material, adjacent to the LHC, disposed between the first electrode and the LHC; and a hole transport layer formed of a second photoconductive organic semiconductor material, adjacent to the LHC, disposed between the second electrode and the LHC. Solid state photosensitive devices of the present invention may comprise at least one additional layer of photoconductive organic semiconductor material disposed between the first electrode and the electron transport layer; and at least one additional layer of photoconductive organic semiconductor material, disposed between the second electrode and the hole transport layer. Methods of generating photocurrent are provided which comprise exposing a photovoltaic device of the present invention to light. Electronic devices are provided which comprise a solid state photosensitive device of the present invention.
Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes.
Barik, Avijit; Chen, Xiaoshu; Oh, Sang-Hyun
2016-10-12
We demonstrate nanogap electrodes for rapid, parallel, and ultralow-power trapping of nanoparticles. Our device pushes the limit of dielectrophoresis by shrinking the separation between gold electrodes to sub-10 nm, thereby creating strong trapping forces at biases as low as the 100 mV ranges. Using high-throughput atomic layer lithography, we manufacture sub-10 nm gaps between 0.8 mm long gold electrodes and pattern them into individually addressable parallel electronic traps. Unlike pointlike junctions made by electron-beam lithography or larger micron-gap electrodes that are used for conventional dielectrophoresis, our sub-10 nm gold nanogap electrodes provide strong trapping forces over a mm-scale trapping zone. Importantly, our technology solves the key challenges associated with traditional dielectrophoresis experiments, such as high voltages that cause heat generation, bubble formation, and unwanted electrochemical reactions. The strongly enhanced fields around the nanogap induce particle-transport speed exceeding 10 μm/s and enable the trapping of 30 nm polystyrene nanoparticles using an ultralow bias of 200 mV. We also demonstrate rapid electronic trapping of quantum dots and nanodiamond particles on arrays of parallel traps. Our sub-10 nm gold nanogap electrodes can be combined with plasmonic sensors or nanophotonic circuitry, and their low-power electronic operation can potentially enable high-density integration on a chip as well as portable biosensing.
Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes.
Martins, Marccus V A; Pereira, Andressa R; Luz, Roberto A S; Iost, Rodrigo M; Crespilho, Frank N
2014-09-07
Direct electron transfer (DET) between redox enzymes and electrode surfaces is of growing interest and an important strategy in the development of biofuel cells and biosensors. Among the nanomaterials utilized at electrode/enzyme interfaces to enhance the electronic communication, graphene oxide (GO) has been identified as a highly promising candidate. It is postulated that GO layers decrease the distance between the flavin cofactor (FAD/FADH2) of the glucose oxidase enzyme (GOx) and the electrode surface, though experimental evidence concerning the distance dependence of the rate constant for heterogeneous electron-transfer (k(het)) has not yet been observed. In this work, we report the experimentally observed DET of the GOx enzyme adsorbed on flexible carbon fiber (FCF) electrodes modified with GO (FCF-GO), where the k(het) between GO and electroactive GOx has been measured at a structurally well-defined interface. The curves obtained from the Marcus theory were used to obtain k(het), by using the model proposed by Chidsey. In agreement with experimental data, this model proved to be useful to systematically probe the dependence of electron transfer rates on distance, in order to provide an empirical basis to understand the origin of interfacial DET between GO and GOx. We also demonstrate that the presence of GO at the enzyme/electrode interface diminishes the activation energy by decreasing the distance between the electrode surface and FAD/FADH2.
Organic electronic devices with multiple solution-processed layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.
2016-07-05
A method for fabricating an organic light emitting device stack involves depositing a first conductive electrode layer over a substrate; depositing a first set of one or more organic layers, wherein at least one of the first set of organic layers is a first emissive layer and one of the first set of organic layers is deposited by a solution-based process that utilizes a first solvent; depositing a first conductive interlayer by a dry deposition process; and depositing a second set of one or more organic layers, wherein at least one of the second set of organic layers is amore » second emissive layer and one of the second set of organic layers is deposited by a solution-based process that utilizes a second solvent, wherein all layers that precede the layer deposited using the second solvent are insoluble in the second solvent.« less
Strategy to overcome recombination limited photocurrent generation in CsPbX3 nanocrystal arrays
NASA Astrophysics Data System (ADS)
Mir, Wasim J.; Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Chu, Audrey; Coutard, Nathan; Cruguel, Hervé; Barisien, Thierry; Ithurria, Sandrine; Nag, Angshuman; Dubertret, Benoit; Ouerghi, Abdelkarim; Silly, Mathieu G.; Lhuillier, Emmanuel
2018-03-01
We discuss the transport properties of CsPbBrxI3-x perovskite nanocrystal arrays as a model ensemble system of caesium lead halide-based perovskite nanocrystal arrays. While this material is very promising for the design of light emitting diodes, laser, and solar cells, very little work has been devoted to the basic understanding of their (photo)conductive properties in an ensemble system. By combining DC and time-resolved photocurrent measurements, we demonstrate fast photodetection with time response below 2 ns. The photocurrent generation in perovskite nanocrystal-based arrays is limited by fast bimolecular recombination of the material, which limits the lifetime of the photogenerated electron-hole pairs. We propose to use nanotrench electrodes as a strategy to ensure that the device size fits within the obtained diffusion length of the material in order to boost the transport efficiency and thus observe an enhancement of the photoresponse by a factor of 1000.
Electrochemical DNA hybridization sensors based on conducting polymers.
Rahman, Md Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon
2015-02-05
Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.
Electron beam pumped semiconductor laser
NASA Technical Reports Server (NTRS)
Hug, William F. (Inventor); Reid, Ray D. (Inventor)
2009-01-01
Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.
Fabrication of resistively-coupled single-electron device using an array of gold nanoparticles
NASA Astrophysics Data System (ADS)
Huong, Tran Thi Thu; Matsumoto, Kazuhiko; Moriya, Masataka; Shimada, Hiroshi; Kimura, Yasuo; Hirano-Iwata, Ayumi; Mizugaki, Yoshinao
2017-08-01
We demonstrated one type of single-electron device that exhibited electrical characteristics similar to those of resistively-coupled SE transistor (R-SET) at 77 K and room temperature (287 K). Three Au electrodes on an oxidized Si chip served as drain, source, and gate electrodes were formed using electron-beam lithography and evaporation techniques. A narrow (70-nm-wide) gate electrode was patterned using thermal evaporation, whereas wide (800-nm-wide) drain and source electrodes were made using shadow evaporation. Subsequently, aqueous solution of citric acid and 15-nm-diameter gold nanoparticles (Au NPs) and toluene solution of 3-nm-diameter Au NPs chemisorbed via decanethiol were dropped on the chip to make the connections between the electrodes. Current-voltage characteristics between the drain and source electrodes exhibited Coulomb blockade (CB) at both 77 and 287 K. Dependence of the CB region on the gate voltage was similar to that of an R-SET. Simulation results of the model based on the scanning electron microscopy image of the device could reproduce the characteristics like the R-SET.
Chiu, Cheng-Ting; Chen, Dong-Hwang
2018-04-27
Three-dimensional (3D) porous Ni-Co sulfide/reduced graphene oxide composite with the appropriate incorporation of carbon nanotubes (NCS/rGO/CNT) was fabricated as a promising material for supercapacitor electrodes. It combined the high pseudo-capacitance of Ni-Co sulfide as well as the large specific surface area and electrical double layer capacitance of reduced graphene oxide (rGO). Carbon nanotubes (CNTs) were incorporated to act as the spacer for hindering the restacking of rGO and to construct a conductive network for enhancing the electron transport. The 3D porous NCS/rGO/CNT composite was fabricated by a facile one-step hydrothermal process in which Ni-Co sulfide nanosheets were synthesized and graphene oxide was reduced simultaneously. It was shown that the capacitance and cyclic performance indeed could be effectively improved via the appropriate addition of CNTs. In addition, a flexible all-solid-state asymmetric supercapacitor based on the NCS/rGO/CNT electrode was fabricated and exhibited the same capacitive electrochemical performance under bending. Also, it could successfully turn on a light-emitting diode light, revealing its feasibility in practical application. All results demonstrated that the developed NCS/rGO/CNT composite has potential application in supercapacitors.
Variable Emittance Electrochromic Devices for Satellite Thermal Control
NASA Astrophysics Data System (ADS)
Demiryont, Hulya; Shannon, Kenneth C.
2007-01-01
An all-solid-state electrochromic device (ECD) was designed for electronic variable emissivity (VE) control. In this paper, a low weight (5g/m2) electrochromic thermal control device, the EclipseVEECD™, is detailed as a viable thermal control system for spacecraft outer surface temperatures. Discussion includes the technology's performance, satellite applications, and preparations for space based testing. This EclipseVEECD™ system comprises substrate/mirror electrode/active element/IR transparent electrode layers. This system tunes and modulates reflection/emittance from 5 μm to 15 μm region. Average reflectance/emittance modulation of the system from the 400 K to 250 K region is about 75%, while at room temperature (9.5 micron) reflectance/emittance is around 90%. Activation voltage of the EclipseVEECD™ is around ±1 Volt. The EclipseVEECD™ can be used as a smart thermal modulator for the thermal control of satellites and spacecraft by monitoring and adjusting the amount of energy emitted from the outer surfaces. The functionality of the EclipseVEECD™ was successfully demonstrated in vacuum using a multi-purpose heat dissipation/absorption test module, the EclipseHEAT™. The EclipseHEAT™ has been successfully flight checked and integrated onto the United States Naval Alchemy MidSTAR satellite, scheduled to launch December 2006.
NASA Astrophysics Data System (ADS)
Chiu, Cheng-Ting; Chen, Dong-Hwang
2018-04-01
Three-dimensional (3D) porous Ni-Co sulfide/reduced graphene oxide composite with the appropriate incorporation of carbon nanotubes (NCS/rGO/CNT) was fabricated as a promising material for supercapacitor electrodes. It combined the high pseudo-capacitance of Ni-Co sulfide as well as the large specific surface area and electrical double layer capacitance of reduced graphene oxide (rGO). Carbon nanotubes (CNTs) were incorporated to act as the spacer for hindering the restacking of rGO and to construct a conductive network for enhancing the electron transport. The 3D porous NCS/rGO/CNT composite was fabricated by a facile one-step hydrothermal process in which Ni-Co sulfide nanosheets were synthesized and graphene oxide was reduced simultaneously. It was shown that the capacitance and cyclic performance indeed could be effectively improved via the appropriate addition of CNTs. In addition, a flexible all-solid-state asymmetric supercapacitor based on the NCS/rGO/CNT electrode was fabricated and exhibited the same capacitive electrochemical performance under bending. Also, it could successfully turn on a light-emitting diode light, revealing its feasibility in practical application. All results demonstrated that the developed NCS/rGO/CNT composite has potential application in supercapacitors.
Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode
Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su
2014-01-01
Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode. PMID:24763248
Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode.
Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su
2014-04-25
Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode.
Aulenta, Federico; Catervi, Alessandro; Majone, Mauro; Panero, Stefania; Reale, Priscilla; Rossetti, Simona
2007-04-01
The ability to transfer electrons, via an extracellular path, to solid surfaces is typically exploited by microorganisms which use insoluble electron acceptors, such as iron-or manganese-oxides or inert electrodes in microbial fuel cells. The reverse process, i.e., the use of solid surfaces or electrodes as electron donors in microbial respirations, although largely unexplored, could potentially have important environmental applications, particularly for the removal of oxidized pollutants from contaminated groundwater or waste streams. Here we show, for the first time, that an electrochemical cell with a solid-state electrode polarized at -500 mV (vs standard hydrogen electrode), in combination with a low-potential redox mediator (methyl viologen), can efficiently transfer electrochemical reducing equivalents to microorganisms which respire using chlorinated solvents. By this approach, the reductive transformation of trichloroethene, a toxic yet common groundwater contaminant, to harmless end-products such as ethene and ethane could be performed. Furthermore, using a methyl-viologen-modified electrode we could even demonstrate that dechlorinating bacteria were able to accept reducing equivalents directly from the modified electrode surface. The innovative concept, based on the stimulation of dechlorination reactions through the use of solid-state electrodes (we propose for this process the acronym BEARD: Bio-Electrochemically Assisted Reductive Dechlorination), holds promise for in situ bioremediation of chlorinated-solvent-contaminated groundwater, and has several potential advantages over traditional approaches based on the subsurface injection of organic compounds. The results of this study raise the possibility that immobilization of selected redox mediators may be a general strategy for stimulating and controlling a range of microbial reactions using insoluble electrodes as electron donors.
Electrochemical Measurement of Electron Transfer Kinetics by Shewanella oneidensis MR-1*
Baron, Daniel; LaBelle, Edward; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.
2009-01-01
Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at ∼0 V (versus standard hydrogen electrode), and was altered in single (ΔomcA, ΔmtrC) and double deletion (ΔomcA/ΔmtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (−0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (∼1 s−1). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. PMID:19661057
NASA Astrophysics Data System (ADS)
Lu, Hsin-Wei; Kao, Po-Ching; Chu, Sheng-Yuan
2016-09-01
In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3 film as an ultra-thin buffer layer between the ITO and NPB hole transport layer, with the structure configuration ITO/CeF3 (1 nm)/NPB (40 nm)/Alq3 (60 nm)/LiF (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The work function increased from 4.8 eV (standard ITO electrode) to 5.2 eV (1-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The turn-on voltage decreased from 4.2 V to 4.0 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 10820 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.5 cd/A when the 1-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.
NASA Astrophysics Data System (ADS)
Kajii, Hirotake; Terashima, Daiki; Kusumoto, Yusuke; Ikezoe, Ikuya; Ohmori, Yutaka
2013-04-01
We investigated the fabrication and electrical and optical properties of top-gate-type polymer light-emitting transistors with the surfaces of amorphous fluoropolymer insulators, CYTOP (Asahi Glass) modified by vacuum ultraviolet light (VUV) treatment. The surface energy of CYTOP, which has a good solution barrier property was increased by VUV irradiation, and the gate electrode was fabricated by solution processing on the CYTOP film using the Ag nano-ink. The influence of VUV irradiation on the optical properties of poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) films with various gate insulators was investigated to clarify the passivation effect of gate insulators. It was found that the poly(methyl methacrylate) (PMMA) film prevented the degradation of the F8BT layer under VUV irradiation because the PMMA film can absorb VUV. The solution-processed F8BT device with multilayer PMMA/CYTOP insulators utilizing a gate electrode fabricated using the Ag nano-ink exhibited both the ambipolar characteristics and yellow-green emission.
NASA Astrophysics Data System (ADS)
Jung, Eui Dae; Nam, Yun Seok; Seo, Houn; Lee, Bo Ram; Yu, Jae Choul; Lee, Sang Yun; Kim, Ju-Young; Park, Jang-Ung; Song, Myoung Hoon
2015-09-01
Here, we report a comprehensive analysis of the electrical, optical, mechanical, and surface morphological properties of composite nanostrutures based on silver nanowires (AgNW) and PEDOT:PSS conducting polymer for the use as flexible and transparent electrodes. Compared to ITO or the single material of AgNW or PEDOT:PSS, the AgNW/PEDOT:PSS composite electrode showed high electrical conductivity with a low sheet resistance of 26.8 Ω/sq at 91% transmittance (at 550 nm), improves surface smoothness, and enhances mechanical properties assisted by an amphiphilic fluoro-surfactant. The polymeric light-emitting diodes (PLEDs) and organic solar cells (OSCs) using the AgNW/PEDOT:PSS composite electrode showed higher device performances than those with AgNW and PEDOT:PSS electrodes and excellent flexibility under bending test. These results indicates that the AgNW/PEDOT:PSS composite presented is a good candidate as next-generation transparent elelctrodes for applications into flexible optoelectronic devices. [Figure not available: see fulltext.
Pre-microscope tunnelling — Inspiration or constraint?
NASA Astrophysics Data System (ADS)
Walmsley, D. G.
1987-03-01
Before the microscope burst upon the scene, tunnelling had established for itself a substantial niche in the repertoire of the solid state physicist. Over a period of 20 years it has contributed importantly to our understanding of many systems. It elucidated the superconducting state, first by a direct display of the energy gap then by providing detailed information on the phonon spectra and electron-phonon coupling strength in junction electrodes. Its use as a phonon spectrometer was subsequently extended to semiconductors and to the oxides of insulating barriers. Eventually the vibrational spectra of monolayer organic and inorganic adsorbates became amenable with rich scientific rewards. In a few cases electronic transitions have been observed. Plasmon excitation by tunnelling electrons led to insights on the electron loss function in metals at visible frequencies and provided along the way an intriguing light emitting device. With the advent of the microscope it is now appropriate to enquire how much of this experience can profitably be carried over to the new environment. Are we constrained just to repeat the experiments in a new configuration? Happily no. The microscope offers us topographical and spectroscopic information of a new order. One might next ask how great is the contact between the two disciplines? We explore this question and seek to establish where the pre-microscope experience can be helpful in inspiring our use of this marvellous new facility that we know as the scanning tunnelling microscope.
Molecular Electronic Devices Based On Electrooptical Behavior Of Heme-Like Molecules
NASA Astrophysics Data System (ADS)
Simic-Glavaski, B.
1986-02-01
This paper discusses application of the electrically modulated and unusually strong Raman emitted light produced by an adsorbed monolayer of phthalocyanine molecules on silver electrode or silver bromide substrates and on neural membranes. The analysis of electronic energy levels in semiconducting silver bromide and the adsorbed phthalocyanine molecules suggests a lasing mechanism as a possible origin of the high enhancement factor in surface enhanced Raman scattering. Electrically modulated Raman scattering may be used as a carrier of information which is drawn fran the fast intramolecular electron transfer aN,the multiplicity of quantum wells in phthalocyanine molecules. Fast switching times on the order of 10-13 seconds have been measured at room temperature. Multilevel and multioutput optical signals have also been obtained fran such an electrically modulated adsorbed monolayer of phthalocyanine molecules which can be precisely addressed and interrogated. This may be of practical use to develop Nlecular electronic devices with high density memory and fast parallel processing systems with a typical 1020 gate Hz/cm2 capacity at room temperature for use in optical computers. The paper also discusses the electrooptical modulation of Raman signals obtained from adsorbed bio-compatible phthalocyanine molecules on nerve membranes. This optical probe of neural systems can be used in studies of complex information processing in neural nets and provides a possible method for interfacing natural and man-made information processing devices.
NASA Astrophysics Data System (ADS)
Furman, Edvin G.; Isakov, Petr Y.; Sulakshin, Alexander S.; Vasil'ev, Vasilii V.
1995-09-01
The results of numercial modeling and experimental investigations of the linear induction accelerator operation where relativistic clystron is applied as a load are presented. The electron gun with the dielectric emitter (DE) is employed as the injector for this system. As a result of this investigation, the electro-optical system has been successfully realized allowing us to form electron beams sufficiently homogeneous in cross-section with current level of no less than 150 A. Compression of the beam from DE at the first stage of moving is supported, essentially, due to a system of focusing electrodes, similar to Pierce optics. Then, compression of the beam to the size required for its free motion in the anode tract and clystron's drift tube occurs in increasing external magnetic field. In this purpose, the configuration of tracking magnetic field was calculated and suitable magnetic system has been made. The results obtained experimentally are in good agreement with calculated data. With emitting dielectric surface of 50mm in diameter the laminar electron beam of 8mm in diameter was obtained. At accelerating voltage of 400kV and pulse duration of 120ns, required for the excitation of the X-band clystron amplifier the value of current was of the order of 200 A. Prints of the beam on targets allow us to make the same findings.
NASA Astrophysics Data System (ADS)
Xu, Weilin; Li, Songtao; Zhou, Xiaochun; Xing, Wei; Huang, Mingyou; Lu, Tianhong; Liu, Changpeng
2006-05-01
In the present work a nonmonotonic dependence of standard rate constant (k0) on reorganization energy (λ) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k0 on λ is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of λ, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the λ dependence of k0 for Process I is monotonic thoroughly, while for Process II on electrode surface the λ dependence of k0 could show a nonmonotonicity.
Electron energy recovery system for negative ion sources
Dagenhart, William K.; Stirling, William L.
1982-01-01
An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.
Electrofluorescence polarity in a molecular diode
NASA Astrophysics Data System (ADS)
Petrov, E. G.; Leonov, V. A.; Shevchenko, E. V.
2017-11-01
The kinetic equations describing the transmission of an electron in the molecular compound "electrode 1-molecule-electrode 2" (1M2 system) are derived using the method of a nonequilibrium density matrix. The steady-state transmission regime is considered, for which detailed analysis of the kinetics of electrofluorescence formation in systems with symmetric and asymmetric couplings between the molecule and the electrodes is carried out. It is shown that the optically active state of the molecule is formed as a result of electron hops between the molecule and each of the electrodes, as well as due to inelastic interelectrode tunneling of the electron. The electrofluorescence power for a molecular diode (asymmetric 1M2 system) depends on the polarity of the voltage bias applied to the electrodes. The polarity is explained using a model in which the optically active part of the molecule (chromophore group) is represented by the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Two mechanisms of the emergence of polarity are revealed. One mechanism is associated with nonidentical Stark shifts of the HOMO and LUMO levels relative to the Fermi levels of the electrodes. The second mechanism is associated with the fact that the rates of an electron hopping between HOMO (LUMO) and one of the electrodes are much higher than the rates of such a hopping with the other electrode. The conditions in which each mechanism can be implemented experimentally are indicated.
Mechanism of amperometric biosensor with electronic-type-controlled carbon nanotube
NASA Astrophysics Data System (ADS)
Hidaka, Hiroki; Nowaki, Kohei; Muguruma, Hitoshi
2016-03-01
An amperometric enzyme biosensor with electronic-type-controlled (metallic and semiconducting) single-walled carbon nanotubes (CNTs) is presented. In this research, we investigate how the electronic types of CNTs influence the amperometric response of enzyme biosensors and what their working mechanisms are. The biosensor of interest is for glucose detection using enzyme glucose oxidase (GOD). In the presence of oxygen, the response of a metallic CNT-GOD electrode was 2.5 times more sensitive than that of a semiconducting CNT-GOD electrode. In contrast, in the absence of oxygen, the response of the semiconducting CNT-GOD electrode was retained, whereas that of the metallic CNT-GOD electrode was significantly reduced. This indicates that direct electron transfer occurred with the semiconducting CNT-GOD electrode, whereas the metallic CNT-GOD electrode was dominated by a hydrogen peroxide pathway caused by an enzymatic reaction. Electrochemical impedance spectroscopy was used to show that the semiconducting CNT network has less resistance for electron transfer than the metallic CNT network. The optimized glucose biosensor revealed a sensitivity of 5.6 µA mM-1 cm-2 at +0.6 V vs Ag/AgCl, a linear dynamic range of 0.025-1.4 mM, and a response time of 8 s.
Carbon Nano-particle Synthesized by Pulsed Arc Discharge Method as a Light Emitting Device
NASA Astrophysics Data System (ADS)
Ahmadi, Ramin; Ahmadi, Mohamad Taghi; Ismail, Razali
2018-07-01
Owing to the specific properties such as high mobility, ballistic carrier transport and light emission, carbon nano-particles (CNPs) have been employed in nanotechnology applications. In the presented work, the CNPs are synthesized by using the pulsed arc discharge method between two copper electrodes. The rectifying behaviour of produced CNPs is explored by assuming an Ohmic contact between the CNPs and the electrodes. The synthesized sample is characterized by electrical investigation and modelling. The current-voltage ( I- V) relationship is investigated and bright visible light emission from the produced CNPs was measured. The electroluminescence (EL) intensity was explored by changing the distance between two electrodes. An incremental behaviour on EL by a resistance gradient and distance reduction is identified.
Carbon Nano-particle Synthesized by Pulsed Arc Discharge Method as a Light Emitting Device
NASA Astrophysics Data System (ADS)
Ahmadi, Ramin; Ahmadi, Mohamad Taghi; Ismail, Razali
2018-04-01
Owing to the specific properties such as high mobility, ballistic carrier transport and light emission, carbon nano-particles (CNPs) have been employed in nanotechnology applications. In the presented work, the CNPs are synthesized by using the pulsed arc discharge method between two copper electrodes. The rectifying behaviour of produced CNPs is explored by assuming an Ohmic contact between the CNPs and the electrodes. The synthesized sample is characterized by electrical investigation and modelling. The current-voltage (I-V) relationship is investigated and bright visible light emission from the produced CNPs was measured. The electroluminescence (EL) intensity was explored by changing the distance between two electrodes. An incremental behaviour on EL by a resistance gradient and distance reduction is identified.
Control of wave propagation in a biological excitable medium by an external electric field.
Sebestikova, Lenka; Slamova, Elena; Sevcikova, Hana
2005-03-01
We present an experimental evidence of effects of external electric fields (EFs) on the velocity of pulse waves propagating in a biological excitable medium. The excitable medium used is formed by a layer of starving cells of Dictyostelium discoideum through which the waves of increased concentration of cAMP propagate by reaction-diffusion mechanism. External dc EFs of low intensities (up to 5 V/cm) are shown to speed up the propagation of cAMP waves towards the positive electrode and slow it down towards the negative electrode. Electric fields were also found to support an emergence of new centers, emitting cAMP waves, in front of cAMP waves propagating towards the negative electrode.
Means and method for calibrating a photon detector utilizing electron-photon coincidence
NASA Technical Reports Server (NTRS)
Srivastava, S. K. (Inventor)
1984-01-01
An arrangement for calibrating a photon detector particularly applicable for the ultraviolet and vacuum ultraviolet regions is based on electron photon coincidence utilizing crossed electron beam atom beam collisions. Atoms are excited by electrons which lose a known amount of energy and scatter with a known remaining energy, while the excited atoms emit photons of known radiation. Electrons of the known remaining energy are separated from other electrons and are counted. Photons emitted in a direction related to the particular direction of scattered electrons are detected to serve as a standard. Each of the electrons is used to initiate the measurements of a time interval which terminates with the arrival of a photon exciting the photon detector. Only the number of time intervals related to the coincidence correlation and of electrons scattered in the particular direction with the known remaining energy and photons of a particular radiation level emitted due to the collisions of such scattered electrons are counted. The detector calibration is related to the number of counted electrons and photons.
Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application
NASA Astrophysics Data System (ADS)
Wang, Dingrun; Mei, Yongfeng; Huang, Gaoshan
2018-01-01
Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skin-like pressure sensors, and radio frequency identification tags in our daily life. As the most-fundamental component of electronics, electrodes are made of conductive materials that play a key role in flexible and printed electronic devices. In this review, various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated. Applications of printed electrodes fabricated via these strategies are also described. Nevertheless, there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes. Project supported by the National Natural Science Foundation of China (Nos. 51475093, U1632115), the Science and Technology Commission of Shanghai Municipality (No. 14JC1400200), the National Key Technologies R&D Program of China (No. 2015ZX02102-003), and the Changjiang Young Scholars Programme of China.
Suga, Hiroshi; Sumiya, Touru; Furuta, Shigeo; Ueki, Ryuichi; Miyazawa, Yosuke; Nishijima, Takuya; Fujita, Jun-ichi; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa
2012-10-24
A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces.
Dissection of the Voltage Losses of an Acidic Quinone Redox Flow Battery
Chen, Qing; Gerhardt, Michael R.; Aziz, Michael J.
2017-03-28
We measure the polarization characteristics of a quinone-bromide redox flow battery with interdigitated flow fields, using electrochemical impedance spectroscopy and voltammetry of a full cell and of a half cell against a reference electrode. We find linear polarization behavior at 50% state of charge all the way to the short-circuit current density of 2.5 A/cm 2. We uniquely identify the polarization area-specific resistance (ASR) of each electrode, the membrane ASR to ionic current, and the electronic contact ASR. We use voltage probes to deduce the electronic current density through each sheet of carbon paper in the quinone-bearing electrode. By alsomore » interpreting the results using the Newman 1-D porous electrode model, we deduce the volumetric exchange current density of the porous electrode. We uniquely evaluate the power dissipation and identify a correspondence to the contributions to the electrode ASR from the faradaic, electronic, and ionic transport processes. We find that, within the electrode, more power is dissipated in the faradaic process than in the electronic and ionic conduction processes combined, despite the observed linear polarization behavior. We examine the sensitivity of the ASR to the values of the model parameters. The greatest performance improvement is anticipated from increasing the volumetric exchange current density.« less
Miniaturized magnet-less RF electron trap. II. Experimental verification
Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.; ...
2017-06-15
Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less
NASA Astrophysics Data System (ADS)
Ulla, Hidayath; Kiran, M. Raveendra; Garudachari, B.; Ahipa, T. N.; Tarafder, Kartick; Adhikari, Airody Vasudeva; Umesh, G.; Satyanarayan, M. N.
2017-09-01
In this article, the synthesis, characterization and use of two novel naphthalimides as electron-transporting emitter materials for organic light emitting diode (OLED) applications are reported. The molecules were obtained by substituting electron donating chloro-phenoxy group at the C-4 position. A detailed optical, thermal, electrochemical and related properties were systematically studied. Furthermore, theoretical calculations (DFT) were performed to get a better understanding of the electronic structures. The synthesized molecules were used as electron transporters and emitters in OLEDs with three different device configurations. The devices with the molecules showed blue emission with efficiencies of 1.89 cdA-1, 0.98 lmW-1, 0.71% at 100 cdm-2. The phosphorescent devices with naphthalimides as electron transport materials displayed better performance in comparison to the device without any electron transporting material and were analogous with the device using standard electron transporting material, Alq3. The results demonstrate that the naphthalimides could play a significant part in the progress of OLEDs.
Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.
Simeone, Felice Carlo; Rampi, Maria Anita
2010-01-01
Junctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.7 microm2). The high versatility of the system allows a series of both electrical and electrochemical junctions to be assembled and characterized: (i) The compliant nature of the Hg electrodes allows incorporation into the junction and measurement of the electrical behavior of a large number of molecular systems and correlation of their electronic structure to the electrical behavior; (ii) by functionalizing both electrodes with SAMs exposing different functional groups, X and Y, it is possible to compare the rate of electron transfer through different X...Y molecular interactions; (iii) when the junction incorporates one of the electrode formed by a semitransparent film of Au, it allows electrical measurements under irradiation of the sandwiched SAMs. In this case the junction behaves as a photoswitch; iv) incorporation of redox centres with low lying, easily reachable energy levels, provides electron stations as indicated by the hopping mechanism dominating the current flow; (v) electrochemical junctions incorporating redox centres by both covalent and electrostatic interactions permit control of the potential of the electrodes with respect to that of the redox state by means of an external reference electrode. Both these junctions show an electrical behavior similar to that of conventional diodes, even though the mechanism generating the current flow is different. These systems, demonstrating high mechanical stability and reproducibility, easy assembly, and a wide variety of produced results, are convenient test-beds for molecular electronics and represent a useful complement to physics-based experimental methods.
Flat panel ferroelectric electron emission display system
Sampayan, Stephen E.; Orvis, William J.; Caporaso, George J.; Wieskamp, Ted F.
1996-01-01
A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.
NASA Technical Reports Server (NTRS)
Southard, Adrian E.; Getty, Stephanie A.; Costen, Nicholas P.; Hidrobo, Gregory B.; Glavin, Daniel P.
2013-01-01
Simulations of field emission of electrons from an electron gun are used to determine the angular distribution of the emitted electron beam and the percentage of charge transmitted through the grid. The simulations are a first step towards understanding the spherical aberration present after focusing the electron beam. The effect of offset of the cathode with respect to the grid and the separation between cathode and grid on the angular distributions of emitted electrons and transmission of the grid are explored.
Electron gun controlled smart structure
Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.
2001-01-01
Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.
A long way to the electrode: how do Geobacter cells transport their electrons?
Bonanni, Pablo Sebastián; Schrott, Germán David; Busalmen, Juan Pablo
2012-12-01
The mechanism of electron transport in Geobacter sulfurreducens biofilms is a topic under intense study and debate. Although some proteins were found to be essential for current production, the specific role that each one plays in electron transport to the electrode remains to be elucidated and a consensus on the mechanism of electron transport has not been reached. In the present paper, to understand the state of the art in the topic, electron transport from inside of the cell to the electrode in Geobacter sulfurreducens biofilms is analysed, reviewing genetic studies, biofilm conductivity assays and electrochemical and spectro-electrochemical experiments. Furthermore, crucial data still required to achieve a deeper understanding are highlighted.
Memory operations in Au nanoparticle single-electron transistors with floating gate electrodes
NASA Astrophysics Data System (ADS)
Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka
2016-11-01
Floating gate memory operations are demonstrated in a single-electron transistor (SET) fabricated by a chemical assembly using the Au nanogap electrodes and the chemisorbed Au nanoparticles. By applying pulse voltages to the control gate, phase shifts were clearly and stably observed both in the Coulomb oscillations and in the Coulomb diamonds. Writing and erasing operations on the floating gate memory were reproducibly observed, and the charges on the floating gate electrodes were maintained for at least 12 h. By considering the capacitance of the floating gate electrode, the number of electrons in the floating gate electrode was estimated as 260. Owing to the stability of the fabricated SET, these writing and erasing operations on the floating gate memory can be applied to reconfigurable SET circuits fabricated by a chemically assembled technique.
A flexible plasma-treated silver-nanowire electrode for organic light-emitting devices.
Li, Jun; Tao, Ye; Chen, Shufen; Li, Huiying; Chen, Ping; Wei, Meng-Zhu; Wang, Hu; Li, Kun; Mazzeo, Marco; Duan, Yu
2017-11-28
Silver nanowires (AgNWs) are a promising candidate to replace indium tin oxide (ITO) as transparent electrode material. However, the loose contact at the junction of the AgNWs and residual surfactant polyvinylpyrrolidone (PVP) increase the sheet resistance of the AgNWs. In this paper, an argon (Ar) plasma treatment method is applied to pristine AgNWs to remove the PVP layer and enhance the contact between AgNWs. By adjusting the processing time, we obtained AgNWs with a sheet resistance of 7.2Ω/□ and a transmittance of 78% at 550 nm. To reduce the surface roughness of the AgNWs, a peel-off process was used to transfer the AgNWs to a flexible NOA63 substrate. Then, an OLED was fabricated with the plasma-treated AgNWs electrode as anode. The highest brightness (27000 cd/m 2 ) and current efficiency (11.8 cd/A) was achieved with a 30 nm thick light emitting layer of tris-(8-hydroxyquinoline) aluminum doped with 1% 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5 H,11H-(1)-benzopyropyrano(6,7-8-I,j)quinolizin-11-one. Compared to thermal annealing, the plasma-treated AgNW film has a lower sheet resistance, a shorter processing time, and a better hole-injection. Our results indicate that plasma treatment is an effective and efficient method to enhance the conductivity of AgNW films, and the plasma-treated AgNW electrode is suitable to manufacture flexible organic optoelectronic devices.
NASA Astrophysics Data System (ADS)
Miyake, Y.; Usui, H.; Kojima, H.
2010-12-01
In tenuous space plasma environment, photoelectrons emitted due to solar illumination produce a high-density photoelectron cloud localized in the vicinity of a spacecraft body and an electric field sensor. The photoelectron current emitted from the sensor has also received considerable attention because it becomes a primary factor in determining floating potentials of the sunlit spacecraft and sensor bodies. Considering the fact that asymmetric photoelectron distribution between sunlit and sunless sides of the spacecraft occasionally causes a spurious sunward electric field, we require quantitative evaluation of the photoelectron distribution around the spacecraft and its influence on electric field measurements by means of a numerical approach. In the current study, we applied the Particle-in-Cell plasma simulation to the analysis of the photoelectron environment around spacecraft. By using the PIC modeling, we can self-consistently consider the plasma kinetics. This enables us to simulate the formation of the photoelectron cloud as well as the spacecraft and sensor charging in a self-consistent manner. We report the progress of an analysis on photoelectron environment around MEFISTO, which is an electric field instrument for the BepiColombo/MMO spacecraft to Mercury’s magnetosphere. The photoelectron guard electrode is a key technology for ensuring an optimum photoelectron environment. We show some simulation results on the guard electrode effects on surrounding photoelectrons and discuss a guard operation condition for producing the optimum photoelectron environment. We also deal with another important issue, that is, how the guard electrode can mitigate an undesirable influence of an asymmetric photoelectron distribution on electric field measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.
Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less
Song, Xinbo; Chen, Yuanfu; Li, Pingjian; Liu, Jingbo; Qi, Fei; Zheng, Binjie; Zhou, Jinhao; Hao, Xin; Zhang, Wanli
2016-07-29
The reported flexible and transparent triboelectric generator (FTTG) can only output ultralow power density (∼2 μW cm(-2)), which has seriously hindered its further development and application. The low power density of FTTG is mainly limited by the transparent material and the electrode structure. Herein, for the first time, a FTTG with a superior power density of 60.7 μW cm(-2) has been fabricated by designing asymmetric electrodes where graphene and indium tin oxide (ITO) act as top and bottom electrodes respectively. Moreover, the performance of FTTG with graphene/ITO (G/I) asymmetric electrodes (GI-FTTG) almost remains unchanged even after 700 cycles, indicating excellent mechanical stability. The excellent performance of GI-FTTG can be attributed to the suitable materials and unique asymmetric electrode structure: the extraordinary flexibility of the graphene top electrode ensures the GI-FTTG excellent mechanical robustness and stability even after longer cycles, and the bottom electrode with very low sheet resistance guarantees lower internal resistance and higher production rate of induction charges to obtain higher output power density. It shows that light-emitting diodes (LED) can be easily powered by GI-FTTG, which demonstrates that the GI-FTTG is very promising for harvesting electrical energy from human activities by using flexible and transparent devices.
Iida, Kenji; Noda, Masashi; Nobusada, Katsuyuki
2017-02-28
We have developed a theoretical approach for describing the electronic properties of hetero-interface systems under an applied electrode bias. The finite-temperature density functional theory is employed for controlling the chemical potential in their interfacial region, and thereby the electronic charge of the system is obtained. The electric field generated by the electronic charging is described as a saw-tooth-like electrostatic potential. Because of the continuum approximation of dielectrics sandwiched between electrodes, we treat dielectrics with thicknesses in a wide range from a few nanometers to more than several meters. Furthermore, the approach is implemented in our original computational program named grid-based coupled electron and electromagnetic field dynamics (GCEED), facilitating its application to nanostructures. Thus, the approach is capable of comprehensively revealing electronic structure changes in hetero-interface systems with an applied bias that are practically useful for experimental studies. We calculate the electronic structure of a SiO 2 -graphene-boron nitride (BN) system in which an electrode bias is applied between the graphene layer and an electrode attached on the SiO 2 film. The electronic energy barrier between graphene and BN is varied with an applied bias, and the energy variation depends on the thickness of the BN film. This is because the density of states of graphene is so low that the graphene layer cannot fully screen the electric field generated by the electrodes. We have demonstrated that the electronic properties of hetero-interface systems are well controlled by the combination of the electronic charging and the generated electric field.
Aerosol jet printed silver nanowire transparent electrode for flexible electronic application
NASA Astrophysics Data System (ADS)
Tu, Li; Yuan, Sijian; Zhang, Huotian; Wang, Pengfei; Cui, Xiaolei; Wang, Jiao; Zhan, Yi-Qiang; Zheng, Li-Rong
2018-05-01
Aerosol jet printing technology enables fine feature deposition of electronic materials onto low-temperature, non-planar substrates without masks. In this work, silver nanowires (AgNWs) are proposed to be printed into transparent flexible electrodes using a Maskless Mesoscale Material Deposition Aerosol Jet® printing system on a glass substrate. The influence of the most significant process parameters, including printing cycles, printing speed, and nozzle size, on the performance of AgNW electrodes was systematically studied. The morphologies of printed patterns were characterized by scanning electron microscopy, and the transmittance was evaluated using an ultraviolet-visible spectrophotometer. Under optimum conditions, high transparent AgNW electrodes with a sheet resistance of 57.68 Ω/sq and a linewidth of 50.9 μm were obtained, which is an important step towards a higher performance goal for flexible electronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Weilin; Li Songtao; Zhou Xiaochun
2006-05-07
In the present work a nonmonotonic dependence of standard rate constant (k{sup 0}) on reorganization energy ({lambda}) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k{sup 0} on {lambda} is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of {lambda}, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the {lambda} dependence of k{sup 0} for Process Imore » is monotonic thoroughly, while for Process II on electrode surface the {lambda} dependence of k{sup 0} could show a nonmonotonicity.« less
NASA Astrophysics Data System (ADS)
Lee, Jiun-Haw; Chen, Chia-Hsun; Lin, Bo-Yen; Shih, Yen-Chen; Lin, King-Fu; Wang, Leeyih; Chiu, Tien-Lung; Lin, Chi-Feng
2018-04-01
Transient current density and luminance from an organic light-emitting diode (OLED) driven by voltage pulses were investigated. Waveforms with different repetition rate, duty cycle, off-period, and on-period were used to study the injection and transport characteristics of electron and holes in an OLED under pulse operation. It was found that trapped electrons inside the emitting layer (EML) and the electron transporting layer (ETL) material, tris(8-hydroxyquinolate)aluminum (Alq3) helped for attracting the holes into the EML/ETL and reducing the driving voltage, which was further confirmed from the analysis of capacitance-voltage and displacement current measurement. The relaxation time and trapped filling time of the trapped electrons in Alq3 layer were ~200 µs and ~600 µs with 6 V pulse operation, respectively.
NASA Astrophysics Data System (ADS)
Zhong, Zhaoyang; Woo, Kyoohee; Kim, Inhyuk; Hwang, Hyewon; Kwon, Sin; Choi, Young-Man; Lee, Youngu; Lee, Taik-Min; Kim, Kwangyoung; Moon, Jooho
2016-04-01
Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs.Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00444j
Kwon, Yo Han; Park, Jung Jin; Housel, Lisa M; Minnici, Krysten; Zhang, Guoyan; Lee, Sujin R; Lee, Seung Woo; Chen, Zhongming; Noda, Suguru; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C; Reichmanis, Elsa
2018-04-24
A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe 3 O 4 (sFe 3 O 4 ) for uniform Li + diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe 3 O 4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe 3 O 4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe 3 O 4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe 3 O 4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.
Short-range contacts govern the performance of industry-relevant battery cathodes
NASA Astrophysics Data System (ADS)
Morelly, Samantha L.; Alvarez, Nicolas J.; Tang, Maureen H.
2018-05-01
Fundamental understanding of how processing affects composite battery electrode structure and performance is still lacking, especially for industry-relevant electrodes with low fractions of inactive material. This work combines rheology, electronic conductivity measurements, and battery rate capability tests to prove that short-range electronic contacts are more important to cathode rate capability than either ion transport or long-range electronic conductivity. LiNi0.33Mn0.33Co0.33O2, carbon black, and polyvinylidene difluoride in 1-methyl-2-pyrrolidinone represent a typical commercial electrode with <5.5 wt% inactive material. Dry-mixing carbon black with active material decreases the relative fraction of bulk (free) carbon, as shown by small angle oscillatory shear and microscopy. More free carbon leads to a stronger gel network (more long-range particle contacts) and higher electronic conductivity of the dried films. Improvements in battery rate capability at constant electrode porosity do not correlate to electronic conductivity, but rather show an optimum fraction of free carbon. Simple comparison of rate capability in electrodes with increased total carbon loading (3 wt%) shows improvement for all fractions of free carbon. These results clearly indicate that ion transport cannot be limiting and highlight the critical importance of short-range electronic contacts for controlling battery performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, John A.; Nuzzo, Ralph; Kim, Hoon-sik
Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.
Rogers, John A; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan
2014-10-21
Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.
Flat panel ferroelectric electron emission display system
Sampayan, S.E.; Orvis, W.J.; Caporaso, G.J.; Wieskamp, T.F.
1996-04-16
A device is disclosed which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density. 6 figs.
Alivisatos, A. Paul; Colvin, Vickie
1996-01-01
An electroluminescent device is described, as well as a method of making same, wherein the device is characterized by a semiconductor nanocrystal electron transport layer capable of emitting visible light in response to a voltage applied to the device. The wavelength of the light emitted by the device may be changed by changing either the size or the type of semiconductor nanocrystals used in forming the electron transport layer. In a preferred embodiment the device is further characterized by the capability of emitting visible light of varying wavelengths in response to changes in the voltage applied to the device. The device comprises a hole processing structure capable of injecting and transporting holes, and usually comprising a hole injecting layer and a hole transporting layer; an electron transport layer in contact with the hole processing structure and comprising one or more layers of semiconductor nanocrystals; and an electron injecting layer in contact with the electron transport layer for injecting electrons into the electron transport layer. The capability of emitting visible light of various wavelengths is principally based on the variations in voltage applied thereto, but the type of semiconductor nanocrystals used and the size of the semiconductor nanocrystals in the layers of semiconductor nanometer crystals may also play a role in color change, in combination with the change in voltage.
Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla
2015-09-30
The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassanein, Ahmed; Konkashbaev, Isak
A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.
Ferrocene-Modified Linear Poly(ethylenimine) for Enzymatic Immobilization and Electron Mediation.
Hickey, David P
2017-01-01
Enzymatic glucose biosensors and biofuel cells make use of the electrochemical transduction between an oxidoreductase enzyme, such as glucose oxidase (GOx), and an electrode to either quantify the amount of glucose in a solution or generate electrical energy. However, many enzymes including GOx are not able to electrochemically interact with an electrode surface directly, but require an external electrochemical relay to shuttle electrons to the electrode. Ferrocene-modified linear poly(ethylenimine) (Fc-LPEI) redox polymers have been designed to simultaneously immobilize glucose oxidase (GOx) at an electrode and mediate electron transfer from their flavin adenine dinucleotide (FAD) active site to the electrode surface. Cross-linked films of Fc-LPEI create hydrogel networks that allow for rapid transport of glucose, while the covalently bound ferrocene moieties are able to facilitate rapid electron transfer due to the ability of ferrocene to exchange electrons between adjacent ferrocene residues. For these reasons, Fc-LPEI films have been widely used in the development of high current density bioanode materials. This chapter describes the synthesis of a commonly used dimethylferrocene-modified linear poly(ethylenimine), as well as the subsequent preparation and electrochemical characterization of a GOx bioanode film utilizing the synthesized polymer.
Regulation of electron transfer processes affects phototrophic mat structure and activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan
Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that variation in the electrochemical conditions under which mats were generated significantly impacted the relative abundances of mat members and mat metabolism.« less
Regulation of electron transfer processes affects phototrophic mat structure and activity
Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; ...
2015-09-03
Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that variation in the electrochemical conditions under which mats were generated significantly impacted the relative abundances of mat members and mat metabolism.« less
Three-Dimensional Electrodes for High-Performance Bioelectrochemical Systems
Yu, Yang-Yang; Zhai, Dan-Dan; Si, Rong-Wei; Sun, Jian-Zhong; Liu, Xiang; Yong, Yang-Chun
2017-01-01
Bioelectrochemical systems (BES) are groups of bioelectrochemical technologies and platforms that could facilitate versatile environmental and biological applications. The performance of BES is mainly determined by the key process of electron transfer at the bacteria and electrode interface, which is known as extracellular electron transfer (EET). Thus, developing novel electrodes to encourage bacteria attachment and enhance EET efficiency is of great significance. Recently, three-dimensional (3D) electrodes, which provide large specific area for bacteria attachment and macroporous structures for substrate diffusion, have emerged as a promising electrode for high-performance BES. Herein, a comprehensive review of versatile methodology developed for 3D electrode fabrication is presented. This review article is organized based on the categorization of 3D electrode fabrication strategy and BES performance comparison. In particular, the advantages and shortcomings of these 3D electrodes are presented and their future development is discussed. PMID:28054970
Stolz, Sebastian; Lemmer, Uli; Hernandez-Sosa, Gerardo; Mankel, Eric
2018-03-14
We investigate three amine-based polymers, polyethylenimine and two amino-functionalized polyfluorenes, as electron injection layers (EILs) in organic light-emitting diodes (OLEDs) and find correlations between the molecular structure of the polymers, the electronic alignment at the emitter/EIL interface, and the resulting device performance. X-ray photoelectron spectroscopy measurements of the emitter/EIL interface indicate that all three EIL polymers induce an upward shift of the Fermi level in the emitting layer close to the interface similar to n-type doping. The absolute value of this Fermi level shift, which can be explained by an electron transfer from the EIL polymers into the emitting layer, correlates with the number of nitrogen-containing groups in the side chains of the polymers. Whereas polyethylenimine (PEI) and one of the investigated polyfluorenes (PFCON-C) have six such groups per monomer unit, the second investigated polyfluorene (PFN) only possesses two. Consequently, we measure Fermi level shifts of 0.5-0.7 eV for PEI and PFCON-C and only 0.2 eV for PFN. As a result of these Fermi level shifts, the energetic barrier for electron injection is significantly lowered and OLEDs which comprise PEI or PFCON-C as an EIL exhibit a more than twofold higher luminous efficacy than OLEDs with PFN.
Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster
NASA Astrophysics Data System (ADS)
Duan, Ping; Bian, Xingyu; Cao, Anning; Liu, Guangrui; Chen, Long; Yin, Yan
2016-05-01
The influences of the low-emissive graphite segmented electrode placed near the channel exit on the discharge characteristics of a Hall thruster are studied using the particle-in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configuration. The effects of electrode length on the potential, ion density, electron temperature, ionization rate and discharge current are investigated. It is found that, with the increasing of the segmented electrode length, the equipotential lines bend towards the channel exit, and approximately parallel to the wall at the channel surface, the radial velocity and radial flow of ions are increased, and the electron temperature is also enhanced. Due to the conductive characteristic of electrodes, the radial electric field and the axial electron conductivity near the wall are enhanced, and the probability of the electron-atom ionization is reduced, which leads to the degradation of the ionization rate in the discharge channel. However, the interaction between electrons and the wall enhances the near wall conductivity, therefore the discharge current grows along with the segmented electrode length, and the performance of the thruster is also affected. supported by National Natural Science Foundation of China (Nos. 11375039 and 11275034) and the Key Project of Science and Technology of Liaoning Province, China (No. 2011224007) and the Fundamental Research Funds for the Central Universities, China (No. 3132014328)
Kisacik, Izzet; Stefanova, Ana; Ernst, Siegfried; Baltruschat, Helmut
2013-04-07
Boron doped diamond (BDD) electrodes have an extremely high over-voltage for oxygen evolution from water, which favours its use in oxidation processes of other compounds at high potentials. We used a rotating ring disc (RRDE) assembly and differential electrochemical mass spectrometry (DEMS) in order to monitor the consumption or the production of species in the course of the electrode processes. By intercepting the intermediate of the electrochemical water oxidation with chemical reactions we demonstrate clearly, albeit indirectly, that in the water oxidation process at BDD above 2.5 V the first step is the formation of ˙OH radicals. The electro-oxidation of CO to CO2 at BDD electrodes proceeds only via a first attack by ˙OH radicals followed by a further electron transfer to the electrode. At potentials below the onset of oxygen evolution from water, H2O2 is oxidised by a direct electron transfer to the BDD electrode, while at higher potentials, two different reactions paths compete for the ˙OH radicals formed in the first electron transfer from water: one, where these ˙OH radicals react with each other followed by further electron transfers leading to O2 on the one hand and one, where ˙OH radicals react with other species like H2O2 or CO with subsequent electron transfers on the other hand.
Small Aperture BPM to Quadrupole Assembly Tolerance Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, K. W.
2010-12-07
The LCLS injector and linac systems utilize a series of quadrupole magnets with a beam position monitor (BPM) captured in the magnet pole tips. The BPM measures the electron beam position by comparing the electrical signal from 4 electrodes and interpolating beam position from these signals. The manufacturing tolerances of the magnet and BPM are critical in determining the mechanical precision of the electrodes relative to the nominal electron beam Z-axis. This study evaluates the statistical uncertainty of the electrodes center axis relative to the nominal electron beam axis.
Secor, Ethan B; Smith, Jeremy; Marks, Tobin J; Hersam, Mark C
2016-07-13
Recent developments in solution-processed amorphous oxide semiconductors have established indium-gallium-zinc-oxide (IGZO) as a promising candidate for printed electronics. A key challenge for this vision is the integration of IGZO thin-film transistor (TFT) channels with compatible source/drain electrodes using low-temperature, solution-phase patterning methods. Here we demonstrate the suitability of inkjet-printed graphene electrodes for this purpose. In contrast to common inkjet-printed silver-based conductive inks, graphene provides a chemically stable electrode-channel interface. Furthermore, by embedding the graphene electrode between two consecutive IGZO printing passes, high-performance IGZO TFTs are achieved with an electron mobility of ∼6 cm(2)/V·s and current on/off ratio of ∼10(5). The resulting printed devices exhibit robust stability to aging in ambient as well as excellent resilience to thermal stress, thereby offering a promising platform for future printed electronics applications.
Low circumferential voltage gradient self supporting electrode for solid oxide fuel cells
Reichner, Philip
1989-01-01
The porous, self-supporting, elongated electrode is made, having at least two chambers through its axial length, the chambers separated by an electronically conductive member. This electrode can be an air electrode of a fuel cell, having a superimposed solid electrolyte and fuel electrode.
NASA Astrophysics Data System (ADS)
Bacci, A.; Maroli, C.; Petrillo, V.; Serafini, L.
2006-08-01
Collective effects in the radiation emission via Thomson back-scattering of an intense optical laser pulse by high brightness electron beams are analyzed. The micro-bunching of the electron beam on the scale of the wavelength of the emitted radiation and the consequent free-electron-laser instability may significantly enhance the number of photons emitted. Scaling-laws of the radiation properties, both in the collective and incoherent spontaneous regimes versus laser and electron beam parameters are discussed in the framework of the one-dimensional model.
Flexible probe for measuring local conductivity variations in Li-ion electrode films
NASA Astrophysics Data System (ADS)
Hardy, Emilee; Clement, Derek; Vogel, John; Wheeler, Dean; Mazzeo, Brian
2018-04-01
Li-ion battery performance is governed by electronic and ionic properties of the battery. A key metric that characterizes Li-ion battery cell performance is the electronic conductivity of the electrodes, which are metal foils with thin coatings of electrochemically active materials. To accurately measure the spatial variation of electronic conductivity of these electrodes, a micro-four-line probe (μ4LP) was designed and used to non-destructively measure the properties of commercial-quality Li-ion battery films. This previous research established that the electronic conductivity of film electrodes is not homogeneous throughout the entirety of the deposited film area. In this work, a micro-N-line probe (μNLP) and a flexible micro-flex-line probe (μFLP) were developed to improve the non-destructive micro-scale conductivity measurements that we can take. These devices were validated by comparing test results to that of the predecessor, the micro-four-line probe (μ4LP), on various commercial-quality Li-ion battery electrodes. Results show that there is significant variation in conductivity on a millimeter and even micrometer length scale through the electrode film. Compared to the μ4LP, the μNLP and μFLP also introduce additional measurement configuration possibilities, while providing a more robust design. Researchers and manufacturers can use these probes to identify heterogeneity in their electrodes during the fabrication process, which will lead to the development of better batteries.
On the interplay of morphology and electronic conductivity of rotationally spun carbon fiber mats
NASA Astrophysics Data System (ADS)
Opitz, Martin; Go, Dennis; Lott, Philipp; Müller, Sandra; Stollenwerk, Jochen; Kuehne, Alexander J. C.; Roling, Bernhard
2017-09-01
Carbon-based materials are used as electrode materials in a wide range of electrochemical applications, e.g., in batteries, supercapacitors, and fuel cells. For these applications, the electronic conductivity of the materials plays an important role. Currently, porous carbon materials with complex morphologies and hierarchical pore structures are in the focus of research. The complex morphologies influence the electronic transport and may lead to an anisotropic electronic conductivity. In this paper, we unravel the influence of the morphology of rotationally spun carbon fiber mats on their electronic conductivity. By combining experiments with finite-element simulations, we compare and evaluate different electrode setups for conductivity measurements. While the "bar-type method" with two parallel electrodes on the same face of the sample yields information about the intrinsic conductivity of the carbon fibers, the "parallel-plate method" with two electrodes on opposite faces gives information about the electronic transport orthogonal to the faces. Results obtained for the van-der-Pauw method suggest that this method is not well suited for understanding morphology-transport relations in these materials.
Direct Imaging of Radionuclide-Produced Electrons and Positrons with an Ultrathin Phosphor
Chen, Liying; Gobar, Lisa S.; Knowles, Negar G.; Liu, Zhonglin; Gmitro, Arthur F.; Barrett, Harrison H.
2008-01-01
Current electron detectors are either unable to image in vivo or lack sufficient spatial resolution because of electron scattering in thick detector materials. This study was aimed at developing a sensitive high-resolution system capable of detecting electron-emitting isotopes in vivo. Methods The system uses a lens-coupled charge-coupled-device camera to capture the scintillation light excited by an electron-emitting object near an ultrathin phosphor. The spatial resolution and sensitivity of the system were measured with a 3.7-kBq 90Y/90Sr β-source and a 70-µm resin bead labeled with 99mTc. Finally, we imaged the 99mTc-pertechnetate concentration in the mandibular gland of a mouse in vivo. Results Useful images were obtained with only a few hundred emitted β particles from the 90Y/90Sr source or conversion electrons from the 99mTc bead source. The in vivo image showed a clear profile of the mandibular gland and many fine details with exposures of as low as 30 s. All measurements were consistent with a spatial resolution of about 50 µm, corresponding to 2.5 detector pixels with the current camera. Conclusion Our new electron-imaging system can image electron-emitting isotope distributions at high resolution and sensitivity. The system is useful for in vivo imaging of small animals and small, exposed regions on humans. The ability to image β particles, positrons, and conversion electrons makes the system applicable to most isotopes. PMID:18552136
Salt-Doped Polymer Light-Emitting Devices
NASA Astrophysics Data System (ADS)
Gautier, Bathilde
Polymer Light-Emitting Electrochemical Cells (PLECs) are solid state devices based on the in situ electrochemical doping of the luminescent polymer and the formation of a p-n junction where light is emitted upon the application of a bias current or voltage. PLECs answer the drawbacks of polymer light-emitting diodes as they do not require an ultra-thin active layer nor are they reliant on low work function cathode materials that are air unstable. However, because of the dynamic nature of the doping, they suffer from slow response times and poor stability over time. Frozen-junction PLECs offer a solution to these drawbacks, yet they are impractical due to their sub-ambient operation temperature requirement. Our work presented henceforth aims to achieve room temperature frozen-junction PLECS. In order to do that we removed the ion solvating/transporting polymer from the active layer, resulting in a luminescent polymer combined solely with a salt sandwiched between an ITO electrode and an aluminum electrode. The resulting device was not expected to operate like a PLEC due to the absence of an ion-solvating and ion-transporting medium. However, we discovered that the polymer/salt devices could be activated by applying a large voltage bias, resulting in much higher current and luminance. More important, the activated state is quasi static. Devices based on the well-known orange-emitting polymer MEH-PPV displayed a luminance storage half-life of 150 hours when activated by forward bias (ITO biased positively with respect to the aluminum) and 200 hours when activated by reverse bias. More remarkable yet, devices based on a green co-polymer displayed no notable decay in current density or luminance even after being stored for 1200 hours at room temperature! PL imaging under UV excitation demonstrates the presence of doping. These devices are described herein along with an explanation of their operating mechanisms.
Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
Isenberg, Arnold O.
1987-01-01
An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.
Growth Stimulation of Biological Cells and Tissue by Electromagnetic Fields and Uses Thereof
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)
2002-01-01
The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells, and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.
Growth stimulation of biological cells and tissue by electromagnetic fields and uses thereof
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)
2004-01-01
The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.
Ciniciato, Gustavo P. M. K.; Ng, Fong-Lee; Phang, Siew-Moi; Jaafar, Muhammad Musoddiq; Fisher, Adrian C.; Yunus, Kamran; Periasamy, Vengadesh
2016-01-01
Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed. PMID:27502051
NASA Astrophysics Data System (ADS)
Ciniciato, Gustavo P. M. K.; Ng, Fong-Lee; Phang, Siew-Moi; Jaafar, Muhammad Musoddiq; Fisher, Adrian C.; Yunus, Kamran; Periasamy, Vengadesh
2016-08-01
Microbial fuel cells operating with autotrophic microorganisms are known as biophotovoltaic devices. It represents a great opportunity for environmentally-friendly power generation using the energy of the sunlight. The efficiency of electricity generation in this novel system is however low. This is partially reflected by the poor understanding of the bioelectrochemical mechanisms behind the electron transfer from these microorganisms to the electrode surface. In this work, we propose a combination of electrochemical and fluorescence techniques, giving emphasis to the pulse amplitude modulation fluorescence. The combination of these two techniques allow us to obtain information that can assist in understanding the electrical response obtained from the generation of electricity through the intrinsic properties related to the photosynthetic efficiency that can be obtained from the fluorescence emitted. These were achieved quantitatively by means of observed changes in four photosynthetic parameters with the bioanode generating electricity. These are the maximum quantum yield (Fv/Fm), alpha (α), light saturation coefficient (Ek) and maximum rate of electron transfer (rETRm). The relationship between the increases in the current density collected by the bioanode to the decrease of the rETRm values in the photosynthetic pathway for the two microorganisms was also discussed.
Opitz, Andreas
2017-04-05
Planar organic heterojunctions are widely used in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. The energy level alignment in the devices plays an important role in obtaining the aspired gap arrangement. Additionally, the π-orbital overlap between the involved molecules defines e.g. the charge-separation efficiency in solar cells due to charge-transfer effects. To account for both aspects, direct/inverse photoemission spectroscopy and near edge x-ray absorption fine structure spectroscopy were used to determine the energy level landscape and the molecular orientation at prototypical planar organic heterojunctions. The combined experimental approach results in a comprehensive model for the electronic and morphological characteristics of the interface between the two investigated molecular semiconductors. Following an introduction on heterojunctions used in devices and on energy levels of organic materials, the energy level alignment of planar organic heterojunctions will be discussed. The observed energy landscape is always determined by the individual arrangement between the energy levels of the molecules and the work function of the electrode. This might result in contact doping due to Fermi level pinning at the electrode for donor/acceptor heterojunctions, which also improves the solar cell efficiency. This pinning behaviour can be observed across an unpinned interlayer and results in charge accumulation at the donor/acceptor interface, depending on the transport levels of the respective organic semiconductors. Moreover, molecular orientation will affect the energy levels because of the anisotropy in ionisation energy and electron affinity and is influenced by the structural compatibility of the involved molecules at the heterojunction. High structural compatibility leads to π-orbital stacking between different molecules at a heterojunction, which is of additional interest for photovoltaic active interfaces and for ground-state charge-transfer.
Muzakir, Saifful Kamaluddin; Alias, Nabilah; Yusoff, Mashitah M; Jose, Rajan
2013-10-14
The possibility of achieving many electrons per absorbed photon of sufficient energy by quantum dots (QDs) drives the motivation to build high performance quantum dot solar cells (QDSCs). Although performance of dye-sensitized solar cells (DSCs), with similar device configuration as that of QDSCs, has significantly improved in the last two decades QDSCs are yet to demonstrate impressive device performances despite the remarkable features of QDs as light harvesters. We investigated the fundamental differences in the optical properties of QDs and dyes using DFT calculations to get insights on the inferior performance of QDSCs. The CdSe QDs and the ruthenium bipyridyl dicarboxylic acid dye (N3) were used as typical examples in this study. Based on a generalized equation of state correlating material properties and photoconversion efficiency, we calculated ground and excited state properties of these absorbers at the B3LYP/lanl2dz level of DFT and analyzed them on the basis of the device performance. Five missing links have been identified in the study which provides numerous insights into building high efficiency QDSCs. They are (i) fundamental differences in the emitting states of the QDs in the strong and weak confinement regimes were observed, which explained successfully the performance differences; (ii) the crucial role of bifunctional ligands that bind the QDs and the photo-electrode was identified; in most cases use of bifunctional ligands does not lead to a QD enabled widening of the absorption of the photo-electrode; (iii) wide QDs size distribution further hinders efficient electron injections; (iv) wide absorption cross-section of QDs favours photon harvesting; and (v) the role of redox potential of the electrolyte in the QD reduction process.
Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P
2013-07-23
Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σe,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, σe,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.
NASA Astrophysics Data System (ADS)
Faulkner, Ankita Shah
As the demand for clean energy sources increases, large investments have supported R&D programs aimed at developing high power lithium ion batteries for electric vehicles, military, grid storage and space applications. State of the art lithium ion technology cannot meet power demands for these applications due to high internal resistances in the cell. These resistances are mainly comprised of ionic and electronic resistance in the electrode and electrolyte. Recently, much attention has been focused on the use of nanoscale lithium ion active materials on the premise that these materials shorten the diffusion length of lithium ions and increase the surface area for electrochemical charge transfer. While, nanomaterials have allowed significant improvements in the power density of the cell, they are not a complete solution for commercial batteries. Due to their large surface area, they introduce new challenges such as a poor electrode packing densities, high electrolyte reactivity, and expensive synthesis procedures. Since greater than 70% of the cost of the electric vehicle is due to the cost of the battery, a cost-efficient battery design is most critical. To address the limitations of nanomaterials, efficient transport pathways must be engineered in the bulk electrode. As a part of nanomanufacturing research being conducted the Center for High-rate Nanomanufacturing at Northeastern University, the first aim of the proposed work is to develop electrode architectures that enhance electronic and ionic transport pathways in large and small area lithium ion electrodes. These architectures will utilize the unique electronic and mechanical properties of carbon nanotubes to create robust electrode scaffolding that improves electrochemical charge transfer. Using extensive physical and electrochemical characterization, the second aim is to investigate the effect of electrode parameters on electrochemical performance and evaluate the performance against standard commercial electrodes. These parameters include surface morphology, electrode composition, electrode density, and operating temperature. Finally, the third aim is to investigate commercial viability of the electrode architecture. This will be accomplished by developing pouch cell prototypes using a high-rate and low cost scale-up process. Through this work, we aim to realize a commercially viable high-power electrode technology.
Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature.
Hui, Zhuang; Liu, Yangai; Guo, Wei; Li, Lihang; Mu, Nan; Jin, Chao; Zhu, Ying; Peng, Peng
2017-07-14
Transparent and flexible electrodes on cost effective plastic substrates for wearable electronics have attract great attention recently. Due to the conductivity and flexibility in network form, metal nanowire is regarded as one of the most promising candidates for flexible electrode fabrication. Prior to application, low temperature joining of nanowire processes are required to reduce the resistance of electrodes and simultaneously maintain the dimensionality and uniformity of those nanowires. In the present work, we presented an innovative, robust and cost effective method to minimize the heat effect to plastic substrate and silver nanowires which allows silver nanowire electrodes been directly written on polycarbonate substrate and sintered by different electrolyte solutions at room temperature or near. It has been rigorously demonstrated that the resistance of silver nanowire electrodes has been reduced by 90% after chemical sintering at room temperature due to the joining of silver nanowires at junction areas. After ∼1000 bending cycles, the measured resistance of silver nanowire electrode was stable during both up-bending and down-bending states. The changes of silver nanowires after sintering were characterized using x-ray photoelectron spectroscopy and transmission electron microscopy and a sintering mechanism was proposed and validated. This direct-written silver nanowire electrode with good performance has broad applications in flexible electronics fabrication and packaging.
Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4
NASA Astrophysics Data System (ADS)
Liu, Zhao; Verhallen, Tomas W.; Singh, Deepak P.; Wang, Hongqian; Wagemaker, Marnix; Barnett, Scott
2016-08-01
One of the main goals in lithium ion battery electrode design is to increase the power density. This requires insight in the relation between the complex heterogeneous microstructure existing of active material, conductive additive and electrolyte providing the required electronic and Li-ion transport. FIB-SEM is used to determine the three phase 3D morphology, and Li-ion concentration profiles obtained with Neutron Depth Profiling (NDP) are compared for two cases, conventional LiFePO4 electrodes and better performing carbonate templated LiFePO4 electrodes. This provides detailed understanding of the impact of key parameters such as the tortuosity for electron and Li-ion transport though the electrodes. The created hierarchical pore network of the templated electrodes, containing micron sized pores, appears to be effective only at high rate charge where electrolyte depletion is hindering fast discharge. Surprisingly the carbonate templating method results in a better electronic conductive CB network, enhancing the activity of LiFePO4 near the electrolyte-electrode interface as directly observed with NDP, which in a large part is responsible for the improved rate performance both during charge and discharge. The results demonstrate that standard electrodes have a far from optimal charge transport network and that significantly improved electrode performance should be possible by engineering the microstructure.
2011-01-01
One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm−2 at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. PMID:21417322
Tasca, Federico; Harreither, Wolfgang; Ludwig, Roland; Gooding, John Justin; Gorton, Lo
2011-04-15
One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm(-2) at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. © 2011 American Chemical Society
Solution processible MoOx-incorporated graphene anode for efficient polymer light-emitting diodes
NASA Astrophysics Data System (ADS)
Lee, Dongchan; Kim, Donghyuk; Lee, Yonghee; Jeon, Duk Young
2017-06-01
Graphene has attracted great attention owing to its superb properties as an anode of organic or polymer light-emitting diodes (OLEDs or PLEDs). However, there are still barriers for graphene to replace existing indium tin oxide (ITO) due to relatively high sheet resistance and work function mismatch. In this study, PLEDs using molybdenum oxide (MoOx) nanoparticle-doped graphene are demonstrated on a plastic substrate to have a low sheet resistance and high work function. Also, this work shows how the doping amount influences the electronic properties of the graphene anode and the PLED performance. A facile and scalable spin coating process was used for doping graphene with MoOx. After doping, the sheet resistance and the optical transmittance of five-layer graphene were ˜180 Ω sq-1 and ˜88%, respectively. Moreover, the surface roughness of MoOx-doped graphene becomes smoother than that of pristine graphene. Furthermore, a nonlinear relationship was observed between the MoOx doping level and device performance. Therefore, a modified stacking structure of graphene electrode is presented to further enhance device performance. The maximum external quantum efficiency (EQE) and power efficiency of the PLED using the MoOx-doped graphene anode were 4.7% and 13.3 lm W-1, respectively. The MoOx-doped graphene anode showed enhanced device performance (261% for maximum EQE, 255% for maximum power efficiency) compared with the pristine graphene.
Wu, Bian; Zhang, Xingfei; Huang, Beiju; Zhao, Yutong; Cheng, Chuantong; Chen, Hongda
2017-09-09
Reduced graphene oxide (rGO) has been studied as a resistive ammonia gas sensor at room temperature. The sensitive hybrid material composed of rGO and nano-silver ink (Ag-ink) was loaded on a microstrip patch antenna to realize high-performance wireless ammonia sensors. The material was investigated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Firstly, interdigital electrodes (IDEs) printed on the polyethylene terephthalate (PET) by direct printing were employed to measure the variation of resistance of the sensitive material with the ammonia concentration. The results indicated the response of sensor varied from 4.25% to 14.7% under 15-200 ppm ammonia concentrations. Furthermore, the hybrid material was loaded on a microstrip patch antenna fabricated by a conventional printed circuit board (PCB) process, and a 10 MHz frequency shift of the sensor antenna could be observed for 200 ppm ammonia gas. Finally, the wireless sensing property of the sensor antenna was successfully tested using the same emitted antenna outside the gas chamber with a high gain of 5.48 dBi, and an increased reflection magnitude of the emitted antenna due to the frequency mismatch of the sensor antenna was observed. Therefore, wireless ammonia gas sensors loaded on a patch antenna have significant application prospects in the field of Internet of Things (IoTs).
Zhang, Xingfei; Huang, Beiju; Zhao, Yutong; Cheng, Chuantong; Chen, Hongda
2017-01-01
Reduced graphene oxide (rGO) has been studied as a resistive ammonia gas sensor at room temperature. The sensitive hybrid material composed of rGO and nano-silver ink (Ag-ink) was loaded on a microstrip patch antenna to realize high-performance wireless ammonia sensors. The material was investigated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Firstly, interdigital electrodes (IDEs) printed on the polyethylene terephthalate (PET) by direct printing were employed to measure the variation of resistance of the sensitive material with the ammonia concentration. The results indicated the response of sensor varied from 4.25% to 14.7% under 15–200 ppm ammonia concentrations. Furthermore, the hybrid material was loaded on a microstrip patch antenna fabricated by a conventional printed circuit board (PCB) process, and a 10 MHz frequency shift of the sensor antenna could be observed for 200 ppm ammonia gas. Finally, the wireless sensing property of the sensor antenna was successfully tested using the same emitted antenna outside the gas chamber with a high gain of 5.48 dBi, and an increased reflection magnitude of the emitted antenna due to the frequency mismatch of the sensor antenna was observed. Therefore, wireless ammonia gas sensors loaded on a patch antenna have significant application prospects in the field of Internet of Things (IoTs). PMID:28891928
NASA Astrophysics Data System (ADS)
Wang, Wei; Wang, Liang; Dai, Gaole; Deng, Wei; Zhang, Xiujuan; Jie, Jiansheng; Zhang, Xiaohong
2017-10-01
Organic field-effect transistors (OFETs) based on organic micro-/nanocrystals have been widely reported with charge carrier mobility exceeding 1.0 cm2 V-1 s-1, demonstrating great potential for high-performance, low-cost organic electronic applications. However, fabrication of large-area organic micro-/nanocrystal arrays with consistent crystal growth direction has posed a significant technical challenge. Here, we describe a solution-processed dip-coating technique to grow large-area, aligned 9,10-bis(phenylethynyl) anthracene (BPEA) and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) single-crystalline nanoribbon arrays. The method is scalable to a 5 × 10 cm2 wafer substrate, with around 60% of the wafer surface covered by aligned crystals. The quality of crystals can be easily controlled by tuning the dip-coating speed. Furthermore, OFETs based on well-aligned BPEA and TIPS-PEN single-crystalline nanoribbons were constructed. By optimizing channel lengths and using appropriate metallic electrodes, the BPEA and TIPS-PEN-based OFETs showed hole mobility exceeding 2.0 cm2 V-1 s-1 (average mobility 1.2 cm2 V-1 s-1) and 3.0 cm2 V-1 s-1 (average mobility 2.0 cm2 V-1 s-1), respectively. They both have a high on/off ratio ( I on/ I off) > 109. The performance can well satisfy the requirements for light-emitting diodes driving.
NASA Astrophysics Data System (ADS)
Kaçar, Rifat; Pıravadılı Mucur, Selin; Yıldız, Fikret; Dabak, Salih; Tekin, Emine
2017-06-01
The electrode/organic interface is one of the key factors in attaining superior device performance in organic electronics, and inserting a tailor-made layer can dramatically modify its properties. The use of nano-composite (NC) materials leads to many advantages by combining materials with the objective of obtaining a desirable combination of properties. In this context, zinc oxide/polyethyleneimine (ZnO:PEI) NC film was incorporated as an interfacial layer into inverted bottom-emission organic light emitting diodes (IBOLEDs) and fully optimized. For orange-red emissive MEH-PPV based IBOLEDs, a high power efficiency of 6.1 lm W-1 at a luminance of 1000 cd m-2 has been achieved. Notably, the external quantum efficiency (EQE) increased from 0.1 to 4.8% and the current efficiency (CE) increased from 0.2 to 8.7 cd A-1 with rise in luminance (L) from 1000 to above 10 000 cd m-2 levels when compared to that of pristine ZnO-based devices. An identical device architecture containing a ZnO:PEI NC layer has also been used to successfully fabricate green and blue emissive IBOLEDs. The significant enhancement in the inverted device performance, in terms of luminance and efficiency, is attributed to a good energy-level alignment between the cathode/organic interface which leads to effective carrier balance, resulting in efficient radiative-recombination.
NASA Astrophysics Data System (ADS)
Wang, Xuelin; Zhang, Yuxin; Guo, Rui; Wang, Hongzhang; Yuan, Bo; Liu, Jing
2018-03-01
Conformable epidermal printed electronics enabled from gallium-based liquid metals (LMs), highly conductive and low-melting-point alloys, are proposed as the core to achieving immediate contact between skin surface and electrodes, which can avoid the skin deformation often caused by conventional rigid electrodes. When measuring signals, LMs can eliminate resonance problems with shorter time to reach steady state than Pt and gelled Pt electrodes. By comparing the contact resistance under different working conditions, it is demonstrated that both ex vivo and in vivo LM electrode-skin models have the virtues of direct and immediate contact with skin surface without the deformation encountered with conventional rigid electrodes. In addition, electrocardio electrodes composed of conformable LM printed epidermal electronics are adopted as smart devices to monitor electrocardiogram signals of rabbits. Furthermore, simulation treatment for smart defibrillation offers a feasible way to demonstrate the effect of liquid metal electrodes (LMEs) on the human body with less energy loss. The remarkable features of soft epidermal LMEs such as high conformability, good conductivity, better signal stability, and fine biocompatibility represent a critical step towards accurate medical monitoring and future smart treatments.
Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer
NASA Astrophysics Data System (ADS)
Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob
2015-07-01
We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq)2(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq)2(acac). The lifetime of device (t95: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.
NASA Astrophysics Data System (ADS)
Petrovic, K.
2015-10-01
Light emitting electron beam generated in a vacuum chamber is used as a medium for visualizing Jupiter's electromagnetic radiation. Dual dipole array antenna is receiving HF radio signals that are next amplified to radiate a strong electromagnetic field capable of influencing the propagation of electron beam in plasma. Installation aims to provide a platform for observing the characteristics of light emitting beam in 3D, as opposed to the experiments with cathode ray tubes in 2-dimensional television screens. Gas giant 'speaking' to us by radio waves bends the light in the tube, allowing us to see and hear the messages of Jupiter - God of light and sky.
Kang, Saewon; Kim, Taehyo; Cho, Seungse; Lee, Youngoh; Choe, Ayoung; Walker, Bright; Ko, Seo-Jin; Kim, Jin Young; Ko, Hyunhyub
2015-12-09
Percolation networks of silver nanowires (AgNWs) are commonly used as transparent conductive electrodes (TCEs) for a variety of optoelectronic applications, but there have been no attempts to precisely control the percolation networks of AgNWs that critically affect the performances of TCEs. Here, we introduce a capillary printing technique to precisely control the NW alignment and the percolation behavior of AgNW networks. Notably, partially aligned AgNW networks exhibit a greatly lower percolation threshold, which leads to the substantial improvement of optical transmittance (96.7%) at a similar sheet resistance (19.5 Ω sq(-1)) as compared to random AgNW networks (92.9%, 20 Ω sq(-1)). Polymer light-emitting diodes (PLEDs) using aligned AgNW electrodes show a 30% enhanced maximum luminance (33068 cd m(-2)) compared to that with random AgNWs and a high luminance efficiency (14.25 cd A(-1)), which is the highest value reported so far using indium-free transparent electrodes for fluorescent PLEDs. In addition, polymer solar cells (PSCs) using aligned AgNW electrodes exhibit a power conversion efficiency (PCE) of 8.57%, the highest value ever reported to date for PSCs using AgNW electrodes.
Hong, Kihyon; Kim, Se Hyun; Mahajan, Ankit; Frisbie, C Daniel
2014-11-12
Printing electrically functional liquid inks is a promising approach for achieving low-cost, large-area, additive manufacturing of flexible electronic circuits. To print thin-film transistors, a basic building block of thin-film electronics, it is important to have several options for printable electrode materials that exhibit high conductivity, high stability, and low-cost. Here we report completely aerosol jet printed (AJP) p- and n-type electrolyte-gated transistors (EGTs) using a variety of different electrode materials including highly conductive metal nanoparticles (Ag), conducting polymers (polystyrenesulfonate doped poly(3,4-ethylendedioxythiophene, PEDOT:PSS), transparent conducting oxides (indium tin oxide), and carbon-based materials (reduced graphene oxide). Using these source-drain electrode materials and a PEDOT:PSS/ion gel gate stack, we demonstrated all-printed p- and n-type EGTs in combination with poly(3-hexythiophene) and ZnO semiconductors. All transistor components (including electrodes, semiconductors, and gate insulators) were printed by AJP. Both kinds of devices showed typical p- and n-type transistor characteristics, and exhibited both low-threshold voltages (<2 V) and high hole and electron mobilities. Our assessment suggests Ag electrodes may be the best option in terms of overall performance for both types of EGTs.
Electrode redox reactions with polarizable molecules.
Matyushov, Dmitry V
2018-04-21
A theory of redox reactions involving electron transfer between a metal electrode and a polarizable molecule in solution is formulated. Both the existence of molecular polarizability and its ability to change due to electron transfer distinguish this problem from classical theories of interfacial electrochemistry. When the polarizability is different between the oxidized and reduced states, the statistics of thermal fluctuations driving the reactant over the activation barrier becomes non-Gaussian. The problem of electron transfer is formulated as crossing of two non-parabolic free energy surfaces. An analytical solution for these free energy surfaces is provided and the activation barrier of electrode electron transfer is given in terms of two reorganization energies corresponding to the oxidized and reduced states of the molecule in solution. The new non-Gaussian theory is, therefore, based on two theory parameters in contrast to one-parameter Marcus formulation for electrode reactions. The theory, which is consistent with the Nernst equation, predicts asymmetry between the cathodic and anodic branches of the electrode current. They show different slopes at small electrode overpotentials and become curved at larger overpotentials. However, the curvature of the Tafel plot is reduced compared to the Marcus-Hush model and approaches the empirical Butler-Volmer form with different transfer coefficients for the anodic and cathodic currents.
Electrode redox reactions with polarizable molecules
NASA Astrophysics Data System (ADS)
Matyushov, Dmitry V.
2018-04-01
A theory of redox reactions involving electron transfer between a metal electrode and a polarizable molecule in solution is formulated. Both the existence of molecular polarizability and its ability to change due to electron transfer distinguish this problem from classical theories of interfacial electrochemistry. When the polarizability is different between the oxidized and reduced states, the statistics of thermal fluctuations driving the reactant over the activation barrier becomes non-Gaussian. The problem of electron transfer is formulated as crossing of two non-parabolic free energy surfaces. An analytical solution for these free energy surfaces is provided and the activation barrier of electrode electron transfer is given in terms of two reorganization energies corresponding to the oxidized and reduced states of the molecule in solution. The new non-Gaussian theory is, therefore, based on two theory parameters in contrast to one-parameter Marcus formulation for electrode reactions. The theory, which is consistent with the Nernst equation, predicts asymmetry between the cathodic and anodic branches of the electrode current. They show different slopes at small electrode overpotentials and become curved at larger overpotentials. However, the curvature of the Tafel plot is reduced compared to the Marcus-Hush model and approaches the empirical Butler-Volmer form with different transfer coefficients for the anodic and cathodic currents.
DAΦNE operation with electron-cloud-clearing electrodes.
Alesini, D; Drago, A; Gallo, A; Guiducci, S; Milardi, C; Stella, A; Zobov, M; De Santis, S; Demma, T; Raimondi, P
2013-03-22
The effects of an electron cloud (e-cloud) on beam dynamics are one of the major factors limiting performances of high intensity positron, proton, and ion storage rings. In the electron-positron collider DAΦNE, namely, a horizontal beam instability due to the electron-cloud effect has been identified as one of the main limitations on the maximum stored positron beam current and as a source of beam quality deterioration. During the last machine shutdown in order to mitigate such instability, special electrodes have been inserted in all dipole and wiggler magnets of the positron ring. It has been the first installation all over the world of this type since long metallic electrodes have been installed in all arcs of the collider positron ring and are currently used during the machine operation in collision. This has allowed a number of unprecedented measurements (e-cloud instabilities growth rate, transverse beam size variation, tune shifts along the bunch train) where the e-cloud contribution is clearly evidenced by turning the electrodes on and off. In this Letter we briefly describe a novel design of the electrodes, while the main focus is on experimental measurements. Here we report all results that clearly indicate the effectiveness of the electrodes for e-cloud suppression.
Stable glow discharge detector
Koo, Jackson C.; Yu, Conrad M.
2004-05-18
A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.
Auger Emitting Radiopharmaceuticals for Cancer Therapy
NASA Astrophysics Data System (ADS)
Falzone, Nadia; Cornelissen, Bart; Vallis, Katherine A.
Radionuclides that emit Auger electrons have been of particular interest as therapeutic agents. This is primarily due to the short range in tissue, controlled linear paths and high linear energy transfer of these particles. Taking into consideration that ionizations are clustered within several cubic nanometers around the point of decay the possibility of incorporating an Auger emitter in close proximity to the cancer cell DNA has immense therapeutic potential thus making nuclear targeted Auger-electron emitters ideal for precise targeting of cancer cells. Furthermore, many Auger-electron emitters also emit γ-radiation, this property makes Auger emitting radionuclides a very attractive option as therapeutic and diagnostic agents in the molecular imaging and management of tumors. The first requirement for the delivery of Auger emitting nuclides is the definition of suitable tumor-selective delivery vehicles to avoid normal tissue toxicity. One of the main challenges of targeted radionuclide therapy remains in matching the physical and chemical characteristics of the radionuclide and targeting moiety with the clinical character of the tumor. Molecules and molecular targets that have been used in the past can be classified according to the carrier molecule used to deliver the Auger-electron-emitting radionuclide. These include (1) antibodies, (2) peptides, (3) small molecules, (4) oligonucleotides and peptide nucleic acids (PNAs), (5) proteins, and (6) nanoparticles. The efficacy of targeted radionuclide therapy depends greatly on the ability to increase intranuclear incorporation of the radiopharmaceutical without compromising toxicity. Several strategies to achieve this goal have been proposed in literature. The possibility of transferring tumor therapy based on the emission of Auger electrons from experimental models to patients has vast therapeutic potential, and remains a field of intense research.
Nanoscale electromechanical parametric amplifier
Aleman, Benjamin Jose; Zettl, Alexander
2016-09-20
This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.
Microscale ion trap mass spectrometer
Ramsey, J. Michael; Witten, William B.; Kornienko, Oleg
2002-01-01
An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.
Picture of the Week: Hacking the bio-nano interface for better biofuels
) influence electron transfer between the enzyme and the electrode to determine the best placement of enzymes compounds) influence electron transfer between the enzyme and the electrode to determine the best placement studied how three quinones (a class of organic compounds) influence electron transfer between the enzyme
Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.
Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G
2017-08-17
We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.
NASA Astrophysics Data System (ADS)
Ji, Chang-Yan; Gu, Zheng-Tian; Kou, Zhi-Qi
2016-10-01
The electrical and optical properties of the blue phosphorescent organic light-emitting diodes (PHOLEDs) can be affected by the various structure of confinement layer in the emitting layer (EML). A series of devices with different electron or hole confinement layer (TCTA or Bphen) are fabricated, it is more effective to balance charge carriers injection for the device with the double electron confinement layers structure, the power efficiency and luminance can reach 17.7 lm/W (at 103 cd/m2) and 3536 cd/m2 (at 8 V). In case of the same double electron confinement layers, another series of devices with different profile of EML are fabricated by changing the confinement layers position, the power efficiency and luminance can be improved to 21.7 lm/W (at 103 cd/m2) and 7674 cd/m2 (at 8 V) when the thickness of EML separated by confinement layers increases gradually from the hole injection side to the electron injection side, the driving voltage can also be reduced.