Sample records for electron flow assembly

  1. Photoinitated charge separation in a hybrid titanium dioxide metalloporphyrin peptide material

    NASA Astrophysics Data System (ADS)

    Fry, H. Christopher; Liu, Yuzi; Dimitrijevic, Nada M.; Rajh, Tijana

    2014-08-01

    In natural systems, electron flow is mediated by proteins that spatially organize donor and acceptor molecules with great precision. Achieving this guided, directional flow of information is a desirable feature in photovoltaic media. Here, we design self-assembled peptide materials that organize multiple electronic components capable of performing photoinduced charge separation. Two peptides, c16-AHL3K3-CO2H and c16-AHL3K9-CO2H, self-assemble into fibres and provide a scaffold capable of binding a metalloporphyrin via histidine axial ligation and mineralize titanium dioxide (TiO2) on the lysine-rich surface of the resulting fibrous structures. Electron paramagnetic resonance studies of this self-assembled material under continuous light excitation demonstrate charge separation induced by excitation of the metalloporphyrin and mediated by the peptide assembly structure. This approach to dye-sensitized semiconducting materials offers a means to spatially control the dye molecule with respect to the semiconducting material through careful, strategic peptide design.

  2. Cold plate

    DOEpatents

    Marroquin, Christopher M.; O'Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  3. Computational and theoretical modeling of pH and flow effects on the early-stage non-equilibrium self-assembly of optoelectronic peptides

    NASA Astrophysics Data System (ADS)

    Mansbach, Rachael; Ferguson, Andrew

    Self-assembling π-conjugated peptides are attractive candidates for the fabrication of bioelectronic materials possessing optoelectronic properties due to electron delocalization over the conjugated peptide groups. We present a computational and theoretical study of an experimentally-realized optoelectronic peptide that displays triggerable assembly in low pH to resolve the microscopic effects of flow and pH on the non-equilibrium morphology and kinetics of assembly. Using a combination of molecular dynamics simulations and hydrodynamic modeling, we quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to influence assembly. We also show that there is a critical pH below which aggregation proceeds irreversibly, and quantify the relationship between pH, charge density, and aggregate size. Our work provides new fundamental understanding of pH and flow of non-equilibrium π-conjugated peptide assembly, and lays the groundwork for the rational manipulation of environmental conditions and peptide chemistry to control assembly and the attendant emergent optoelectronic properties. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0011847, and by the Computational Science and Engineering Fellowship from the University of Illinois at Urbana-Champaign.

  4. Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansbach, Rachael A.; Ferguson, Andrew L.

    Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less

  5. Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow

    DOE PAGES

    Mansbach, Rachael A.; Ferguson, Andrew L.

    2017-01-01

    Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less

  6. Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers.

    PubMed

    Lee, Song-Woo; Jo, Gunho; Lee, Takhee; Lee, Yong-Gu

    2009-09-28

    In(2)O(3) nanowires can be used effectively as building blocks in the production of electronic circuits used in transparent and flexible electronic devices. The fabrication of these devices requires a controlled assembly of nanowires at crucial places and times. However, this kind of controlled assembly, which results in the fusion of nanowires to circuits, is still very difficult to execute. In this study, we demonstrate the benefits of using various lengths of In(2)O(3) nanowires by using non-contact mechanisms, such as scanning optical tweezers, to place them on designated targets during the fabrication process. Furthermore, these nanowires can be stabilized at both ends of the conducting wires using a focused laser, and later in the process, the annealed technique, so that proper flow of electrons is affected.

  7. Templated electrokinetic directed chemical assembly for the fabrication of close-packed plasmonic metamolecules

    NASA Astrophysics Data System (ADS)

    Thrift, W. J.; Darvishzadeh-Varcheie, M.; Capolino, F.; Ragan, R.

    2017-08-01

    Colloidal self-assembly combined with templated surfaces holds the promise of fabricating large area devices in a low cost facile manner. This directed assembly approach improves the complexity of assemblies that can be achieved with self-assembly while maintaining advantages of molecular scale control. In this work, electrokinetic driving forces, i.e., electrohydrodynamic flow, are paired with chemical crosslinking between colloidal particles to form close-packed plasmonic metamolecules. This method addresses challenges of obtaining uniformity in nanostructure geometry and nanometer scale gap spacings in structures. Electrohydrodynamic flows yield robust driving forces between the template and nanoparticles as well as between nanoparticles on the surface promoting the assembly of close-packed metamolecules. Here, electron beam lithography defined Au pillars are used as seed structures that generate electrohydrodynamic flows. Chemical crosslinking between Au surfaces enables molecular control over gap spacings between nanoparticles and Au pillars. An as-fabricated structure is analyzed via full wave electromagnetic simulations and shown to produce large magnetic field enhancements on the order of 3.5 at optical frequencies. This novel method for directed self-assembly demonstrates the synergy between colloidal driving forces and chemical crosslinking for the fabrication of plasmonic metamolecules with unique electromagnetic properties.

  8. Direct Visualization of Planar Assembly of Plasmonic Nanoparticles Adjacent to Electrodes in Oscillatory Electric Fields.

    PubMed

    Ferrick, Adam; Wang, Mei; Woehl, Taylor J

    2018-05-29

    Electric field-directed assembly of colloidal nanoparticles (NPs) has been widely adopted for fabricating functional thin films and nanostructured surfaces. While first-order electrokinetic effects on NPs are well-understood in terms of classical models, effects of second-order electrokinetics that involve induced surface charge are still poorly understood. Induced charge electroosmotic phenomena, such as electrohydrodynamic (EHD) flow, have long been implicated in electric field-directed NP assembly with little experimental basis. Here, we use in situ dark-field optical microscopy and plasmonic NPs to directly observe the dynamics of planar assembly of colloidal NPs adjacent to a planar electrode in low-frequency (<1 kHz) oscillatory electric fields. We exploit the change in plasmonic NP color resulting from interparticle plasmonic coupling to visualize the assembly dynamics and assembly structure of silver NPs. Planar assembly of NPs is unexpected because of strong electrostatic repulsion between NPs and indicates that there are strong attractive interparticle forces oriented perpendicular to the electric field direction. A parametric investigation of the voltage- and frequency-dependent phase behavior reveals that planar NP assembly occurs over a narrow frequency range below which irreversible ballistic deposition occurs. Two key experimental observations are consistent with EHD flow-induced NP assembly: (1) NPs remain mobile during assembly and (2) electron microscopy observations reveal randomly close-packed planar assemblies, consistent with strong interparticle attraction. We interpret planar assembly in terms of EHD fluid flow and develop a scaling model that qualitatively agrees with the measured phase regions. Our results are the first direct in situ observations of EHD flow-induced NP assembly and shed light on long-standing unresolved questions concerning the formation of NP superlattices during electric field-induced NP deposition.

  9. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  10. Photoinduced electron transfer through peptide-based self-assembled monolayers chemisorbed on gold electrodes: directing the flow-in and flow-out of electrons through peptide helices.

    PubMed

    Venanzi, Mariano; Gatto, Emanuela; Caruso, Mario; Porchetta, Alessandro; Formaggio, Fernando; Toniolo, Claudio

    2014-08-21

    Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.

  11. New leak assembly based on fluidic nanochannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Aiqing; Zhao, Yongheng; Wang, Xudi, E-mail: wxudi@hfut.edu.cn

    2016-09-15

    Fluidic nanochannels with a characteristic dimension of ∼280 nm were fabricated and designed as a leak assembly, where the nanochannels were formed on silicon wafers and enclosed with Pyrex{sup ®} glass. The geometric dimensions were characterized by scanning electron microscopy, and the gas flow conductance of He and other heavy gases (N{sub 2}, O{sub 2}, and Ar) was measured, and its uncertainty estimated, by the difference method. The results indicated that the measured flow conductance values were 45% less than the calculated flow conductance values. For helium, molecular flow was shown to occur at pressures ranging from vacuum to atmospheric pressure.more » As a consequence of the well-defined geometry, the prediction of flow conductance could be achieved for various gas species.« less

  12. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.

    PubMed

    Long, Yun-Ze; Yu, Miao; Sun, Bin; Gu, Chang-Zhi; Fan, Zhiyong

    2012-06-21

    Semiconducting inorganic nanowires (NWs), nanotubes and nanofibers have been extensively explored in recent years as potential building blocks for nanoscale electronics, optoelectronics, chemical/biological/optical sensing, and energy harvesting, storage and conversion, etc. Besides the top-down approaches such as conventional lithography technologies, nanowires are commonly grown by the bottom-up approaches such as solution growth, template-guided synthesis, and vapor-liquid-solid process at a relatively low cost. Superior performance has been demonstrated using nanowires devices. However, most of the nanowire devices are limited to the demonstration of single devices, an initial step toward nanoelectronic circuits, not adequate for production on a large scale at low cost. Controlled and uniform assembly of nanowires with high scalability is still one of the major bottleneck challenges towards the materials and device integration for electronics. In this review, we aim to present recent progress toward nanowire device assembly technologies, including flow-assisted alignment, Langmuir-Blodgett assembly, bubble-blown technique, electric/magnetic- field-directed assembly, contact/roll printing, planar growth, bridging method, and electrospinning, etc. And their applications in high-performance, flexible electronics, sensors, photovoltaics, bioelectronic interfaces and nano-resonators are also presented.

  13. Bi-continuous Multi-component Nanocrystal Superlattices for Solar Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Cherie; Murray, Christopher; Kikkawa, James

    2017-06-14

    Our SISGR program studied an emerging class of nanomaterials wherein different combinations of semiconductor or semiconductor and plasmonic nanocrystals (NCs) are self-assembled into three-dimensional multi-component superlattices. The NC assemblies were designed to form bicontinuous semiconductor NC sublattices with type-II energy offsets to drive charge separation onto electron and hole transporting sublattices for collection and introduce plasmonic NCs to increase solar absorption and charge separation. Our group is expert in synthesizing and assembling an extraordinary variety of artificial systems by tailoring the NC building blocks and the superlattice unit cell geometry. Under this DOE BES Materials Chemistry program, we introduced chemicalmore » methods to control inter-particle distance and to dope NC assemblies, which enabled our demonstration of strong electronic communication between NCs and the use of NC thin films as electronic materials. We synthesized, assembled and structurally, spectroscopically, and electrically probed NC superlattices to understand and manipulate the flow of energy and charge toward discovering the design rules and optimizing these complex architectures to create materials that efficiently convert solar radiation into electricity.« less

  14. Magnetic fluorescent lamp

    DOEpatents

    Berman, S.M.; Richardson R.W.

    1983-12-29

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  15. Field free, directly heated lanthanum boride cathode

    DOEpatents

    Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.

    1987-02-02

    A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.

  16. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    DOEpatents

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  17. AVIRIS onboard data handling and control

    NASA Technical Reports Server (NTRS)

    Steinkraus, Ronald E.; Hickok, Roger W.

    1987-01-01

    The timing and flow of detector and ancillary data for the Airborne Visible/Infrared imaging spectrometer (AVIRIS) are controlled within the instrument by its digital electronics assembly. In addition to providing detector and signal chain timing, the digital electronics receives, formats, and rate-buffers digitized science data; collects and formats ancillary (calibration and engineering) data; and merges both into a single tape record. Overall AVIRIS data handling is effected by a combination of dedicated digital electronics to control instrument timing, image data flow, and data rate buffering and a microcomputer programmed to handle real-time control of instrument mechanisms and the coordinated preparation of ancillary data.

  18. Magnetic fluorescent lamp having reduced ultraviolet self-absorption

    DOEpatents

    Berman, Samuel M.; Richardson, Robert W.

    1985-01-01

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  19. Hybrid integration of III-V semiconductor lasers on silicon waveguides using optofluidic microbubble manipulation

    PubMed Central

    Jung, Youngho; Shim, Jaeho; Kwon, Kyungmook; You, Jong-Bum; Choi, Kyunghan; Yu, Kyoungsik

    2016-01-01

    Optofluidic manipulation mechanisms have been successfully applied to micro/nano-scale assembly and handling applications in biophysics, electronics, and photonics. Here, we extend the laser-based optofluidic microbubble manipulation technique to achieve hybrid integration of compound semiconductor microdisk lasers on the silicon photonic circuit platform. The microscale compound semiconductor block trapped on the microbubble surface can be precisely assembled on a desired position using photothermocapillary convective flows induced by focused laser beam illumination. Strong light absorption within the micro-scale compound semiconductor object allows real-time and on-demand microbubble generation. After the assembly process, we verify that electromagnetic radiation from the optically-pumped InGaAsP microdisk laser can be efficiently coupled to the single-mode silicon waveguide through vertical evanescent coupling. Our simple and accurate microbubble-based manipulation technique may provide a new pathway for realizing high precision fluidic assembly schemes for heterogeneously integrated photonic/electronic platforms as well as microelectromechanical systems. PMID:27431769

  20. 75 FR 31430 - Transcontinental Gas Pipe Line Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... operate one 30-inch by 16-inch hot tap fitting with one 16-inch tap assembly, flow and pressure control..., protests and interventions may be filed electronically via the Internet in lieu of paper. See, 18 CFR 385...

  1. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  2. Real time analysis of self-assembled InAs/GaAs quantum dot growth by probing reflection high-energy electron diffraction chevron image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudo, Takuya; Inoue, Tomoya; Kita, Takashi

    2008-10-01

    Self-assembling process of InAs/GaAs quantum dots has been investigated by analyzing reflection high-energy electron diffraction chevron images reflecting the crystal facet structure surrounding the island. The chevron image shows dramatic changes during the island formation. From the temporal evolution of the chevron tail structure, the self-assembling process has been found to consist of four steps. The initial islands do not show distinct facet structures. Then, the island surface is covered by high-index facets, and this is followed by the formation of stable low-index facets. Finally, the flow of In atoms from the islands occurs, which contributes to flatten the wettingmore » layer. Furthermore, we have investigated the island shape evolution during the GaAs capping layer growth by using the same real-time analysis technique.« less

  3. Assembly of opto-electronic module with improved heat sink

    DOEpatents

    Chan, Benson; Fortier, Paul Francis; Freitag, Ladd William; Galli, Gary T.; Guindon, Francois; Johnson, Glen Walden; Letourneau, Martial; Sherman, John H.; Tetreault, Real

    2004-11-23

    A heat sink for a transceiver optoelectronic module including dual direct heat paths and a structure which encloses a number of chips having a central web which electrically isolates transmitter and receiver chips from each other. A retainer for an optical coupler having a port into which epoxy is poured. An overmolded base for an optoelectronic module having epoxy flow controller members built thereon. Assembly methods for an optoelectronic module including gap setting and variation of a TAB bonding process.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Yet-Ming; Carter, Craig W.; Ho, Bryan Y.

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). Highmore » energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.« less

  5. Probing temperature-driven flow lines in a gated two-dimensional electron gas with tunable spin-splitting.

    PubMed

    Wang, Yi-Ting; Kim, Gil-Ho; Huang, C F; Lo, Shun-Tsung; Chen, Wei-Jen; Nicholls, J T; Lin, Li-Hung; Ritchie, D A; Chang, Y H; Liang, C-T; Dolan, B P

    2012-10-10

    We study the temperature flow of conductivities in a gated GaAs two-dimensional electron gas (2DEG) containing self-assembled InAs dots and compare the results with recent theoretical predictions. By changing the gate voltage, we are able to tune the 2DEG density and thus vary disorder and spin-splitting. Data for both the spin-resolved and spin-degenerate phase transitions are presented, the former collapsing to the latter with decreasing gate voltage and/or decreasing spin-splitting. The experimental results support a recent theory, based on modular symmetry, which predicts how the critical Hall conductivity varies with spin-splitting.

  6. General-Purpose Electronic System Tests Aircraft

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1989-01-01

    Versatile digital equipment supports research, development, and maintenance. Extended aircraft interrogation and display system is general-purpose assembly of digital electronic equipment on ground for testing of digital electronic systems on advanced aircraft. Many advanced features, including multiple 16-bit microprocessors, pipeline data-flow architecture, advanced operating system, and resident software-development tools. Basic collection of software includes program for handling many types of data and for displays in various formats. User easily extends basic software library. Hardware and software interfaces to subsystems provided by user designed for flexibility in configuration to meet user's requirements.

  7. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zhan, Guangming; Yu, Ying; Zhang, Lizhi

    2016-05-01

    Although photocatalytic hydrogen evolution (PHE) is ideal for solar-to-fuel conversion, it remains challenging to construct a highly efficient PHE system by steering the charge flow in a precise manner. Here we tackle this challenge by assembling 1T MoS2 monolayers selectively and chemically onto (Bi12O17) end-faces of Bi12O17Cl2 monolayers to craft two-dimensional (2D) Janus (Cl2)-(Bi12O17)-(MoS2) bilayer junctions, a new 2D motif different from van der Waals heterostructure. Electrons and holes from visible light-irradiated Bi12O17Cl2 are directionally separated by the internal electric field to (Bi12O17) and (Cl2) end-faces, respectively. The separated electrons can further migrate to MoS2 via Bi-S bonds formed between (Bi12O17) and MoS2 monolayers. This atomic-level directional charge separation endows the Janus bilayers with ultralong carrier lifetime of 3,446 ns and hence a superior visible-light PHE rate of 33 mmol h-1 g-1. Our delineated Janus bilayer junctions on the basis of the oriented assembly of monolayers presents a new design concept to effectively steer the charge flow for PHE.

  8. Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.

    PubMed

    Simeone, Felice Carlo; Rampi, Maria Anita

    2010-01-01

    Junctions based on mesoscopic Hg electrodes are used to characterize the electrical properties of the organic molecules organized in self-assembled monolayers (SAMs). The junctions M-SAM//SAM-Hg are formed by one electrode based on metals (M) such as Hg, Ag, Au, covered by a SAM, and by a second electrode always formed by a Hg drop carrying also a SAM. The electrodes, brought together by using a micromanipulator, sandwich SAMs of different nature at the contact area (approximately = 0.7 microm2). The high versatility of the system allows a series of both electrical and electrochemical junctions to be assembled and characterized: (i) The compliant nature of the Hg electrodes allows incorporation into the junction and measurement of the electrical behavior of a large number of molecular systems and correlation of their electronic structure to the electrical behavior; (ii) by functionalizing both electrodes with SAMs exposing different functional groups, X and Y, it is possible to compare the rate of electron transfer through different X...Y molecular interactions; (iii) when the junction incorporates one of the electrode formed by a semitransparent film of Au, it allows electrical measurements under irradiation of the sandwiched SAMs. In this case the junction behaves as a photoswitch; iv) incorporation of redox centres with low lying, easily reachable energy levels, provides electron stations as indicated by the hopping mechanism dominating the current flow; (v) electrochemical junctions incorporating redox centres by both covalent and electrostatic interactions permit control of the potential of the electrodes with respect to that of the redox state by means of an external reference electrode. Both these junctions show an electrical behavior similar to that of conventional diodes, even though the mechanism generating the current flow is different. These systems, demonstrating high mechanical stability and reproducibility, easy assembly, and a wide variety of produced results, are convenient test-beds for molecular electronics and represent a useful complement to physics-based experimental methods.

  9. An artificial elementary eye with optic flow detection and compositional properties.

    PubMed

    Pericet-Camara, Ramon; Dobrzynski, Michal K; Juston, Raphaël; Viollet, Stéphane; Leitel, Robert; Mallot, Hanspeter A; Floreano, Dario

    2015-08-06

    We describe a 2 mg artificial elementary eye whose structure and functionality is inspired by compound eye ommatidia. Its optical sensitivity and electronic architecture are sufficient to generate the required signals for the measurement of local optic flow vectors in multiple directions. Multiple elementary eyes can be assembled to create a compound vision system of desired shape and curvature spanning large fields of view. The system configurability is validated with the fabrication of a flexible linear array of artificial elementary eyes capable of extracting optic flow over multiple visual directions. © 2015 The Author(s).

  10. Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, M. Y. A; Sofu, T.; Zhong, Z.

    2008-10-30

    A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed viamore » the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten and uranium are very similar allowing the use of either material in the subcritical assembly without changing its characteristics. However, the uranium target has a higher neutron yield, which increases the neutron flux of the subcritical assembly. Based on the considered dimensions and heat generation profiles, the commercial CFD software Star-CD is used for the thermal-hydraulic analysis of each target design to satisfy a set of thermal criteria, the most limiting of which being to maintain the water temperature 50 below the boiling point. It is found that the turbulence in the inlet channels dissipates quickly in narrow gaps between the target plates and, as a result, the heat transfer is limited by the laminar flow conditions. On average, 3-D CFD analyses of target assemblies agree well with 1-D calculations using RELAP (performed by KIPT). However, the recirculation and stagnation zones predicted with the CFD models prove the importance of a 3-D analysis to avoid the resulting hotspots. The calculated temperatures are subsequently used for the structural analysis of each target configuration to satisfy the other engineering design requirements. The thermo-structural calculations are performed mostly with NASTRAN and the results occasionally compared with the results from MARC. Both, NASTRAN and MARC are commercially available structural-mechanics analysis software. Although, a significant thermal gradient forms in target elements along the beam direction, the high thermal stresses are generally observed peripherally around the edge of thin target disks/plates. Due to its high thermal conductivity, temperatures and thermal stresses in tungsten target are estimated to be significantly lower than in uranium target. The deformations of the target disks/plates are found to be insignificant, which eliminate concerns for flow blockages in narrow coolant channels. Consistent with the specifications of the KIPT accelerator to be used in this facility, the electron beam power is 100-kW with electron energy in the range of 100 to 200 MeV. As expected, the 100 MeV electrons deposit their energy faster while the 200-MeV electrons spread their energy deposition further along the beam direction. However in that electron energy range, the energy deposition profiles near the beam window require very thin target plates/disks to limit the temperatures and thermal stresses.« less

  11. Directionally asymmetric self-assembly of cadmium sulfide nanotubes using porous alumina nanoreactors: need for chemohydrodynamic instability at the nanoscale.

    PubMed

    Varghese, Arthur; Datta, Shouvik

    2012-05-01

    We explore nanoscale hydrodynamical effects on synthesis and self-assembly of cadmium sulfide nanotubes oriented along one direction. These nanotubes are synthesized by horizontal capillary flow of two different chemical reagents from opposite directions through nanochannels of porous anodic alumina which are used primarily as nanoreactors. We show that uneven flow of different chemical precursors is responsible for directionally asymmetric growth of these nanotubes. On the basis of structural observations using scanning electron microscopy, we argue that chemohydrodynamic convective interfacial instability of multicomponent liquid-liquid reactive interface is necessary for sustained nucleation of these CdS nanotubes at the edges of these porous nanochannels over several hours. However, our estimates clearly suggest that classical hydrodynamics cannot account for the occurrence of such instabilities at these small length scales. Therefore, we present a case which necessitates further investigation and understanding of chemohydrodynamic fluid flow through nanoconfined channels in order to explain the occurrence of such interfacial instabilities at nanometer length scales.

  12. Batch Scheduling for Hybrid Assembly Differentiation Flow Shop to Minimize Total Actual Flow Time

    NASA Astrophysics Data System (ADS)

    Maulidya, R.; Suprayogi; Wangsaputra, R.; Halim, A. H.

    2018-03-01

    A hybrid assembly differentiation flow shop is a three-stage flow shop consisting of Machining, Assembly and Differentiation Stages and producing different types of products. In the machining stage, parts are processed in batches on different (unrelated) machines. In the assembly stage, each part of the different parts is assembled into an assembly product. Finally, the assembled products will further be processed into different types of final products in the differentiation stage. In this paper, we develop a batch scheduling model for a hybrid assembly differentiation flow shop to minimize the total actual flow time defined as the total times part spent in the shop floor from the arrival times until its due date. We also proposed a heuristic algorithm for solving the problems. The proposed algorithm is tested using a set of hypothetic data. The solution shows that the algorithm can solve the problems effectively.

  13. Self-actuated nuclear reactor shutdown system using induction pump to facilitate sensing of core coolant temperature

    DOEpatents

    Sievers, Robert K.; Cooper, Martin H.; Tupper, Robert B.

    1987-01-01

    A self-actuated shutdown system incorporated into a reactivity control assembly in a nuclear reactor includes pumping means for creating an auxiliary downward flow of a portion of the heated coolant exiting from the fuel assemblies disposed adjacent to the control assembly. The shutdown system includes a hollow tubular member which extends through the outlet of the control assembly top nozzle so as to define an outer annular flow channel through the top nozzle outlet separate from an inner flow channel for primary coolant flow through the control assembly. Also, a latching mechanism is disposed in an inner duct of the control assembly and is operable for holding absorber bundles in a raised position in the control assembly and for releasing them to drop them into the core of the reactor for shutdown purposes. The latching mechanism has an inner flow passage extending between and in flow communication with the absorber bundles and the inner flow channel of the top nozzle for accommodating primary coolant flow upwardly through the control assembly. Also, an outer flow passage separate from the inner flow passage extends through the latching mechanism between and in flow communication with the inner duct and the outer flow channel of the top nozzle for accommodating inflow of a portion of the heated coolant from the adjacent fuel assemblies. The latching mechanism contains a magnetic material sensitive to temperature and operable to cause mating or latching together of the components of the latching mechanism when the temperature sensed is below a known temperature and unmating or unlatching thereof when the temperature sensed is above a given temperature. The temperature sensitive magnetic material is positioned in communication with the heated coolant flow through the outer flow passage for directly sensing the temperature thereof. Finally, the pumping means includes a jet induction pump nozzle and diffuser disposed adjacent the bottom nozzle of the control assembly and in flow communication with the inlet thereof. The pump nozzle is operable to create an upward driving flow of primary coolant through the pump diffuser and then to the absorber bundles. The upward driving flow of primary coolant, in turn, creates a suction head within the outer flow channel of the top nozzle and thereby an auxiliary downward flow of the heated coolant portion exiting from the upper end of the adjacent fuel assemblies through the outer flow channel to the pump nozzle via the outer flow passage of the latching mechanism and an annular space between the outer and inner spaced ducts of the control assembly housing. The temperature of the heated coolant exiting from the adjacent fuel assemblies can thereby be sensed directly by the temperature sensitive magnetic material in the latching mechanism.

  14. Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)

    DTIC Science & Technology

    2007-04-01

    weight will be reduced by replacing heavy harness assemblies and FADECs , with distributed processing elements interconnected. This paper reviews...Digital Electronic Controls ( FADECs ), with distributed processing elements interconnected through a serial bus. Efficient data flow throughout the...because intelligence is embedded in components while overall control is maintained in the FADEC . The need for Distributed Control Systems in

  15. System for Cooling of Electronic Components

    NASA Astrophysics Data System (ADS)

    Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.

    2017-01-01

    Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.

  16. Production and cross-sectional characterization of aligned co-electrospun hollow microfibrous bulk assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Feng-Lei; The School of Materials, The University of Manchester, Manchester M13 9PL; CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester

    2015-11-15

    The development of co-electrospun (co-ES) hollow microfibrous assemblies of an appreciable thickness is critical for many practical applications, including filtration membranes and tissue-mimicking scaffolds. In this study, thick uniaxially aligned hollow microfibrous assemblies forming fiber bundles and strips were prepared by co-ES of polycaprolactone (PCL) and polyethylene oxide (PEO) as shell and core materials, respectively. Hollow microfiber bundles were deposited on a fixed rotating disc, which resulted in non-controllable cross-sectional shapes on a macroscopic scale. In comparison, fiber strips were produced with tuneable thickness and width by additionally employing an x–y translation stage in co-ES. Scanning electron microscopy (SEM) imagesmore » of cross-sections of fiber assemblies were analyzed to investigate the effects of production time (from 0.5 h to 12 h), core flow rate (from 0.8 mL/h to 2.0 mL/h) and/or translation speed (from 0.2 mm/s to 5 mm/s) on the pores and porosity. We observed significant changes in pore size and shape with core flow rate but the influence of production time varied; five strips produced under the same conditions had reasonably good size and porosity reproducibility; pore sizes didn't vary significantly from strip bottom to surface, although the porosity gradually decreased and then returned to the initial level. - Highlights: • Hollow microfibrous assemblies based on co-electrospinning are demonstrated. • The thickness and width of co-electrospun strips were controllable. • Cross-sections of fibres had non-normally distributed pore sizes and shapes. • Cross-sections were significantly influenced by production time and flow rate. • Co-electrospun strips had reasonably good reproducible cross-sections.« less

  17. Fuel injection assembly for gas turbine engine combustor

    NASA Technical Reports Server (NTRS)

    Candy, Anthony J. (Inventor); Glynn, Christopher C. (Inventor); Barrett, John E. (Inventor)

    2002-01-01

    A fuel injection assembly for a gas turbine engine combustor, including at least one fuel stem, a plurality of concentrically disposed tubes positioned within each fuel stem, wherein a cooling supply flow passage, a cooling return flow passage, and a tip fuel flow passage are defined thereby, and at least one fuel tip assembly connected to each fuel stem so as to be in flow communication with the flow passages, wherein an active cooling circuit for each fuel stem and fuel tip assembly is maintained by providing all active fuel through the cooling supply flow passage and the cooling return flow passage during each stage of combustor operation. The fuel flowing through the active cooling circuit is then collected so that a predetermined portion thereof is provided to the tip fuel flow passage for injection by the fuel tip assembly.

  18. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOEpatents

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  19. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    NASA Technical Reports Server (NTRS)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  20. Flow Cage Assemblies

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor)

    2017-01-01

    Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.

  1. TOPICAL REVIEW: Self-assembly from milli- to nanoscales: methods and applications

    NASA Astrophysics Data System (ADS)

    Mastrangeli, M.; Abbasi, S.; Varel, C.; Van Hoof, C.; Celis, J.-P.; Böhringer, K. F.

    2009-08-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed.

  2. Self-assembly from milli- to nanoscales: methods and applications

    PubMed Central

    Mastrangeli, M; Abbasi, S; Varel, C; Van Hoof, C; Celis, J-P; Böhringer, K F

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. PMID:20209016

  3. Biosensor Based on Self-Assembling Acetylcholinesterase on Carbon Nanotubes for Flow injection/Amperometric Detection of Organophosphate Pesticides and Nerve Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Lin, Yuehe

    A highly sensitive flow-injection amperometric biosensor for organophosphate pesticides and nerve agents based on self-assembly of acetylcholinesterase (AChE) on carbon nanotube (CNT)-modified glassy carbon (GC) electrode is described. AChE is immobilized on the negatively-charged CNT surface by alternatively assembling a cationic polydiallyldimethylammonium chloride (PDDA) layer and an AChE layer. Transmission electron microscopy images confirm the formation of layer-by-layer nanostructures on carboxyl functionalized CNTs. The unique sandwich-like structure (PDDA/AChE/PDDA) on the CNT surface formed by self-assembly provides a favorable microenvironment to keep the bioactivity of AChE and to prevent enzyme molecule leakage. The electrocatalytic activity of CNT leads to a greatlymore » improved electrochemical detection of the enzymatically generated thiocholine product, including a low oxidation overvoltage (+150 mV), higher sensitivity, and stability. The developed PDDA/AChE/PDDA/CNT/GC biosensor integrated into a flow injection system was used to monitor organophosphate pesticides and nerve agents, such as paraoxon. The sensor performance, including inhibition time and regeneration conditions, was optimized with respect to operating conditions. Under the optimal conditions, the biosensor was used to measure as low as 0.4 pM paraoxon with a 6-min inhibition time. The biosensor had excellent operational lifetime stability with no decrease in the activity of enzymes for more than 20 repeated measurements over a 1-week period. The developed biosensor system is an ideal tool for online monitoring of organophosphate pesticides and nerve agents.« less

  4. Adult Competency Education Kit. Basic Skills in Speaking, Math, and Reading for Employment. Part P: ACE Competency Based Job Descriptions: #77--Secretary; #78--Keypunch Operator; Assembly Worker Core Job Description; #82--Electronics Assembler; #83--Printed Circuit Assembler; #84--Micro Electronics Assembler; #85--Chassis Assembler; #87--Machinist Apprentice.

    ERIC Educational Resources Information Center

    San Mateo County Office of Education, Redwood City, CA. Career Preparation Centers.

    This thirteenth of fifteen sets of Adult Competency Education (ACE) Competency Based Job Descriptions in the ACE kit contains job descriptions for Secretary, Keypunch Operator, Electronics Assembler, Printed Circuit Assembler, Micro Electronincs Assembler, Chassis Assembler, and Machinist Apprentice. Each begins with a fact sheet that includes…

  5. 76 FR 41669 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006... to prevent the in-line flow indicators of the oxygen mask assembly from fracturing and separating, which could inhibit oxygen flow to the masks. This condition could consequently result in occupants...

  6. Visualizing Current Flow at the Mesoscale in Disordered Assemblies of Touching Semiconductor Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qinyi; Guest, Jeffrey R.; Thimsen, Elijah

    2017-07-12

    The transport of electrons through assemblies of nanocrystals is important to performance in optoelectronic applications for these materials. Previous work has primarily focused on single nanocrystals or transitions between pairs of nanocrystals. There is a gap in knowledge of how large numbers of nanocrystals in an assembly behave collectively, and how this collective behavior manifests at the mesoscale. In this work, the variable range hopping (VRH) transport of electrons in disordered assemblies of touching, heavily doped ZnO nanocrystals was visualized at the mesoscale as a function of temperature both theoretically, using the model of Skinner, Chen and Shklovskii (SCS), andmore » experimentally, with conductive atomic force microscopy on ultrathin films only a few particle layers thick. Agreement was obtained between the model and experiments, with a few notable exceptions. The SCS model predicts that a single network within the nanocrystal assembly, comprised of sites connected by small resistances, dominates conduction - namely the optimum band from variable range hopping theory. However, our experiments revealed that in addition to the optimum band, there are subnetworks that appear as additional peaks in the resistance histogram of conductive atomic force microscopy (CAFM) maps. Furthermore, the connections of these subnetworks to the optimum band change in time, such that some subnetworks become connected to the optimum band while others become disconnected and isolated from the optimum band; this observation appears to be an experimental manifestation of the ‘blinking’ phenomenon in our images of mesoscale transport.« less

  7. An easy-to-prepare mini-scaffold for DNA origami

    NASA Astrophysics Data System (ADS)

    Brown, S.; Majikes, J.; Martínez, A.; Girón, T. M.; Fennell, H.; Samano, E. C.; Labean, T. H.

    2015-10-01

    The DNA origami strategy for assembling designed supramolecular complexes requires ssDNA as a scaffold strand. A system is described that was designed approximately one third the length of the M13 bacteriophage genome for ease of ssDNA production. Folding of the 2404-base ssDNA scaffold into a variety of origami shapes with high assembly yields is demonstrated.The DNA origami strategy for assembling designed supramolecular complexes requires ssDNA as a scaffold strand. A system is described that was designed approximately one third the length of the M13 bacteriophage genome for ease of ssDNA production. Folding of the 2404-base ssDNA scaffold into a variety of origami shapes with high assembly yields is demonstrated. Electronic supplementary information (ESI) available: Flow chart of the production process, base sequences of the scaffold strand, and synthetic staple strands, as well as caDNAnao files for all three mini-M13 origami structures. See DOI: 10.1039/c5nr04921k

  8. Wettability of graphene-laminated micropillar structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bong, Jihye; Seo, Keumyoung; Ju, Sanghyun, E-mail: jrahn@skku.edu, E-mail: shju@kgu.ac.kr

    2014-12-21

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues.

  9. Neuronal Dynamics and Axonal Flow, V. The Semisolid State of the Moving Axonal Column

    PubMed Central

    Weiss, Paul A.

    1972-01-01

    Evidence assembled since the first comprehensive description of “axonal flow”, by deformation analysis, electron microscopy, cinemicrography, and microrheology, has confirmed that the axon of the mature neuron is (a) a semisolid column; (b) in cellulifugal motion at about 1 μm/min (1 mm per day); (c) continuously reproduced at its perikaryal base; (d) propelled by a microperistaltic pulse wave in its surface; and (e) undergoing internal dissolution at the nerve ending. The axon thus “flows” as a structural entity (“axonal flow”), in contradistinction to fast “intraaxonal transport” of molecules and molecular assemblies along internal routes and by mechanisms that are still unknown. Images PMID:4111049

  10. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.

    PubMed

    Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang

    2015-10-01

    Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.

  11. The assembly and use of continuous flow systems for chemical synthesis.

    PubMed

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  12. Assembly flow simulation of a radar

    NASA Technical Reports Server (NTRS)

    Rutherford, W. C.; Biggs, P. M.

    1994-01-01

    A discrete event simulation model has been developed to predict the assembly flow time of a new radar product. The simulation was the key tool employed to identify flow constraints. The radar, production facility, and equipment complement were designed, arranged, and selected to provide the most manufacturable assembly possible. A goal was to reduce the assembly and testing cycle time from twenty-six weeks. A computer software simulation package (SLAM 2) was utilized as the foundation for simulating the assembly flow time. FORTRAN subroutines were incorporated into the software to deal with unique flow circumstances that were not accommodated by the software. Detailed information relating to the assembly operations was provided by a team selected from the engineering, manufacturing management, inspection, and production assembly staff. The simulation verified that it would be possible to achieve the cycle time goal of six weeks. Equipment and manpower constraints were identified during the simulation process and adjusted as required to achieve the flow with a given monthly production requirement. The simulation is being maintained as a planning tool to be used to identify constraints in the event that monthly output is increased. 'What-if' studies have been conducted to identify the cost of reducing constraints caused by increases in output requirement.

  13. Replacing ODCs in a Critical Hand Cleaning Manual Electronics Assembly Operation

    NASA Technical Reports Server (NTRS)

    Bonner, J. K.; Walton, Sharon

    1997-01-01

    The manufacture of high reliability electronics assemblies for spacecraft and ground support equipment still often involves manual assembly processes. In addition, rework and repair of critical assemblies aslo often entails manual assembly processes.

  14. Ultrafast dynamics of photogenerated electrons in CdS nanocluster multilayers assembled on solid substrates: effects of assembly and electrode potential.

    PubMed

    Yagi, Ichizo; Mikami, Kensuke; Okamura, Masayuki; Uosaki, Kohei

    2013-07-22

    The ultrafast dynamics of photogenerated electrons in multilayer assemblies of CdS nanoparticles prepared on quartz and indium-tin oxide (ITO) substrates were followed by femtosecond (fs) visible-pump/mid-IR probe spectroscopy. Based on the observation of the photoinduced transient absorption spectra in the broad mid-IR range at the multilayer assembly of CdS nanoparticles, the occupation and fast relaxation of higher electronic states (1P(e)) were clarified. As compared with the electron dynamics of isolated (dispersed in solution) nanoparticles, the decay of photoexcited electrons in the multilayer assembly was clearly accelerated probably due to both electron hopping and scattering during interparticle electron tunneling. By using an ITO electrode as a substrate, the effect of the electric field on the photoelectron dynamics in the multilayer assembly was also investigated in situ. Both the amplitude and lifetime of photoexcited electrons gradually reduced as the potential became more positive. This result was explained by considering the reduction of the interparticle tunneling probability and the increase in the electron-transfer rate from the CdS nanoparticle assembly to the ITO electrode. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fluidic self-actuating control assembly

    DOEpatents

    Grantz, Alan L.

    1979-01-01

    A fluidic self-actuating control assembly for use in a reactor wherein no external control inputs are required to actuate (scram) the system. The assembly is constructed to scram upon sensing either a sudden depressurization of reactor inlet flow or a sudden increase in core neutron flux. A fluidic control system senses abnormal flow or neutron flux transients and actuates the system, whereupon assembly coolant flow reverses, forcing absorber balls into the reactor core region.

  16. Coolant mass flow equalizer for nuclear fuel

    DOEpatents

    Betten, Paul R.

    1978-01-01

    The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.

  17. 76 FR 9984 - Airworthiness Directives; B/E Aerospace, Continuous Flow Passenger Oxygen Mask Assembly, Part...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ..., Continuous Flow Passenger Oxygen Mask Assembly, Part Numbers 174006-(), 174080-(), 174085-(), 174095... manufacturer and part number of the oxygen mask assemblies installed, an inspection to determine the manufacturing date and modification status if certain oxygen mask assemblies are installed, and corrective...

  18. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S. K.; Lustbader, J.; Musselman, M.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  19. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new ormore » updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.« less

  20. Water quality monitor. [spacecraft potable water

    NASA Technical Reports Server (NTRS)

    West, S.; Crisos, J.; Baxter, W.

    1979-01-01

    The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.

  1. Characterization of protein immobilization on nanoporous gold using atomic force microscopy and scanning electron microscopy†

    PubMed Central

    Tan, Yih Horng; Schallom, John R.; Ganesh, N. Vijaya; Fujikawa, Kohki; Demchenko, Alexei V.

    2011-01-01

    Nanoporous gold (NPG), made by dealloying low carat gold alloys, is a relatively new nanomaterial finding application in catalysis, sensing, and as a support for biomolecules. NPG has attracted considerable interest due to its open bicontinuous structure, high surface-to-volume ratio, tunable porosity, chemical stability and biocompatibility. NPG also has the attractive feature of being able to be modified by self-assembled monolayers. Here we use scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize a highly efficient approach for protein immobilization on NPG using N-hydroxysuccinimide (NHS) ester functionalized self-assembled monolayers on NPG with pore sizes in the range of tens of nanometres. Comparison of coupling under static versus flow conditions suggests that BSA (Bovine Serum Albumin) and IgG (Immunoglobulin G) can only be immobilized onto the interior surfaces of free standing NPG monoliths with good coverage under flow conditions. AFM is used to examine protein coverage on both the exterior and interior of protein modified NPG. Access to the interior surface of NPG for AFM imaging is achieved using a special procedure for cleaving NPG. AFM is also used to examine BSA immobilized on rough gold surfaces as a comparative study. In principle, the general approach described should be applicable to many enzymes, proteins and protein complexes since both pore sizes and functional groups present on the NPG surfaces are controllable. PMID:21750834

  2. Fuel cell assembly unit for promoting fluid service and electrical conductivity

    DOEpatents

    Jones, Daniel O.

    1999-01-01

    Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.

  3. Automatic coolant flow control device for a nuclear reactor assembly

    DOEpatents

    Hutter, E.

    1984-01-27

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  4. Automatic coolant flow control device for a nuclear reactor assembly

    DOEpatents

    Hutter, Ernest

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  5. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  6. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  7. Design of a High Voltage Power Supply Providing a Force Field for a Fluid Experiment

    NASA Astrophysics Data System (ADS)

    Herty, Frank

    2005-05-01

    As part of the GeoFlow fluid experiment an ac high voltage power supply (HVPS) is used to establish high electrical fields on fluids based on silicon oil. The non- conductive fluid is encapsulated between two spherical electrodes. This experiment cell assembly acts essentially as a capacitive load.The GeoFlow HVPS is an integrated ac high voltage source capable to provide up to 10kVRMS on capacitive loads up to 100pF.This paper presents major design challenges and solutions regarding the high voltage transformer and its driver electronics. Particular high voltage problems like corona effects and dielectric losses are discussed and countermeasures are presented.

  8. Apparatus and method of direct water cooling several parallel circuit cards each containing several chip packages

    DOEpatents

    Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY

    2011-12-20

    A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.

  9. Core microstructure, morphology and chain arrangement of block copolymer self-assemblies as investigated by thermal field-flow fractionation.

    PubMed

    Muza, U L; Greyling, G; Pasch, H

    2018-08-10

    The self-assembly of block copolymers (BCPs), as a result of solvent selectivity for one block, has recently received significant attention due to novel applications of BCPs in pharmaceuticals, biomedicine, cosmetics, electronics and nanotechnology. The correlation of BCP microstructure and the structure of the resulting self-assemblies requires advanced analytical methods. However, traditional bulk characterization techniques are limited in the quest of providing detailed information regarding molar mass (M w ), hydrodynamic size (D h ), chemical composition, and morphology for these self-assemblies. In the present study, thermal field-flow fractionation (ThFFF) is utilised to investigate the impact of core microstructure on the resultant solution properties of vesicles prepared from polystyrene-polybutadiene block copolymers (PS-b-PBd) with 1.2- and 1.4-polybutadiene blocks, respectively. As compared to investigations on the impact of the corona microstructure, the impact of core microstructure on micellar properties has largely been neglected in previous work. In N,N-dimethylacetamide (DMAc) these BCPs form vesicles having PS shells and PBd cores. D h , M w , aggregation number, and critical micelle concentration of these micelles are shown to be sensitive to the core microstructure, therefore, demonstrating the potential of microstructural differences to be used for providing tuneable pathways to specific self-assemblies. It is shown that micelles prepared from BCPs of similar PS and PBd block sizes are successfully separated by ThFFF. It is further demonstrated in this study that PS-b-PBd vesicles and PS homopolymers of identical surface chemistry (PS) and comparable D h in DMAc, can be separated by ThFFF. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Numerical simulation and experimental research of the flow force and forced vibration in the nozzle-flapper valve

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yan, Hao; Zhang, Hengxuan; Li, Jing

    2018-01-01

    In the pilot stage of nozzle-flapper servo valve, the flow force on the flapper is the key reason that leads to forced vibration of the armature assembly, which may result in the fatigue of the flexure tube in torque motor. To master the principles and features of the flow force and the source of the forced vibration of the armature assembly, mathematical models of flow force and the forced vibration are deduced in this paper. For validating the model, a three-dimensional model is built and a finite element analysis of the flow force with different inlet pressure and deflections is presented and an innovative and experimental rig for measuring the steady and dynamic frequency of flow force is also designed. The characteristic of the main flow force, minor flow force and total flow force are analyzed contrastively, and the experimental results agree well with the CFD results and mathematical model analysis. To find the source of forced vibration of the armature assembly, a knocking method is proposed to measure the natural frequency of armature assembly. By comparing the spectrum of the pressure and vibration movement through experiments, a conclusion can be drawn that the inlet pressure fluctuation near the natural frequency of armature assembly and the asymmetric structure of pilot stage are the necessary and sufficient conditions to make the armature assembly yield forced vibration. In the end, some suggestions have been made to decrease the intensity of forced vibration of the pilot stage according to the findings.

  11. Cryogenic and thermal design for the Superfluid Helium On-Orbit Transfer (SHOOT) experiment

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Maa, S.; Brooks, W. F.; Ng, Y. S.

    1988-01-01

    The analysis and trade-offs of the external thermal design of the two 200-liter dewars required in the SHOOT experiment to extend space mission life by superfluid helium replenishment are discussed. Also considered are the support electronics and the optimization and prediction of the performance of the dewar and cryostat assemblies. Particular attention is given to the ground-hold and standby performance of the dewars, along with the temperature of the helium bath during high-flow-rate helium transfers.

  12. Programs for Testing an SSME-Monitoring System

    NASA Technical Reports Server (NTRS)

    Lang, Andre; Cecil, Jimmie; Heusinger, Ralph; Freestone, Kathleen; Blue, Lisa; Wilkerson, DeLisa; McMahon, Leigh Anne; Hall, Richard B.; Varnavas, Kosta; Smith, Keary; hide

    2007-01-01

    A suite of computer programs has been developed for special test equipment (STE) that is used in verification testing of the Health Management Computer Integrated Rack Assembly (HMCIRA), a ground-based system of analog and digital electronic hardware and software for "flight-like" testing for development of components of an advanced health-management system for the space shuttle main engine (SSME). The STE software enables the STE to simulate the analog input and the data flow of an SSME test firing from start to finish.

  13. Microelectrode-based technology for the detection of low levels of bacteria

    NASA Technical Reports Server (NTRS)

    Rogers, Tom D.; Hitchens, G. D.; Mishra, S. K.; Pierson, D. L.

    1992-01-01

    A microelectrode-based electrochemical detection method was used for quantitation of bacteria in water samples. The redox mediator, benzoquinone, was used to accept electrons from the bacterial metabolic pathway to create a flow of electrons by reducing the mediator. Electrochemical monitoring electrodes detected the reduced mediator as it diffused out of the cells and produced a small electrical current. By using a combination of microelectrodes and monitoring instrumentation, the cumulative current generated by a particular bacterial population could be monitored. Using commercially available components, an electrochemical detection system was assembled and tested to evaluate its potential as an emerging technology for rapid detection and quantitation of bacteria in water samples.

  14. Flow Distribution Around the SSME Main Injector Assembly Using Porosity Formulation

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Yen-Sen; Wang, Ten-See

    1995-01-01

    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and Liquid Oxidizer (LOX) flow distribution through the LOX posts have a great effect on the combustion phenomena inside the main combustion chamber. In order to design a CFD model to be an effective engineering analysis tool with good computational turn- around time (especially for 3-D flow problems) and still maintain good accuracy in describing the flow features, the concept of porosity was employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. 2-D numerical studies were conducted to identify the drag coefficients of the flows both through tube banks and around the shielded posts over a wide range of Reynolds numbers. Empirical, analytical expressions of the drag coefficient as a function of local flow Reynolds number were then deduced. The porosity model was applied to the turbulent flow around the main injector assembly of the SSME, and analyses were performed. The 3-D CFD analysis was divided into three parts, LOX dome, hot gas injector assembly, and hydrogen cavity. The numerical results indicate that the mixture ratio at the downstream of injector face was close to stoichiometric around baffle elements.

  15. Flow Distribution Around the SSME Main Injector Assembly Using Porosity Formulation

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Yen-Sen; Wang, Ten-See

    1995-01-01

    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and Liquid Oxidizer (LOX) flow distribution through the LOX posts have a great effect on the combustion phenomena inside the main combustion chamber. In order to design a CFD model to be an effective engineering analysis tool with good computational turn-around time (especially for 3-D flow problems) and still maintain good accuracy in describing the flow features, the concept of porosity was employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. 2-D numerical studies were conducted to identify the drag coefficients of the flows both through tube banks and around the shielded posts over a wide range of Reynolds numbers. Empirical, analytical expressions of the drag coefficient as a function of local flow Reynolds number were then deduced. The porosity model was applied to the turbulent flow around the main injector assembly of the SSME, and analyses were performed. The 3-D CFD analysis was divided into three parts, LOX dome, hot gas injector assembly, and hydrogen cavity. The numerical results indicate that the mixture ratio at the downstream of injector face was close to stoichiometric around baffle elements.

  16. Connector and electronic circuit assembly for improved wet insulation resistance

    DOEpatents

    Reese, Jason A.; Teli, Samar R.; Keenihan, James R.; Langmaid, Joseph A.; Maak, Kevin D.; Mills, Michael E.; Plum, Timothy C.; Ramesh, Narayan

    2016-07-19

    The present invention is premised upon a connector and electronic circuit assembly (130) at least partially encased in a polymeric frame (200). The assembly including at least: a connector housing (230); at least one electrical connector (330); at least one electronic circuit component (430); and at least one barrier element (530).

  17. Guided flows in coronal magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Petralia, A.; Reale, F.; Testa, P.

    2018-01-01

    Context. There is evidence that coronal plasma flows break down into fragments and become laminar. Aims: We investigate this effect by modelling flows confined along magnetic channels. Methods: We consider a full magnetohydrodynamic (MHD) model of a solar atmosphere box with a dipole magnetic field. We compare the propagation of a cylindrical flow perfectly aligned with the field to that of another flow with a slight misalignment. We assume a flow speed of 200 km s-1 and an ambient magnetic field of 30 G. Results: We find that although the aligned flow maintains its cylindrical symmetry while it travels along the magnetic tube, the misaligned one is rapidly squashed on one side, becoming laminar and eventually fragmented because of the interaction and back-reaction of the magnetic field. This model could explain an observation made by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory of erupted fragments that fall back onto the solar surface as thin and elongated strands and end up in a hedge-like configuration. Conclusions: The initial alignment of plasma flow plays an important role in determining the possible laminar structure and fragmentation of flows while they travel along magnetic channels. Movies are available in electronic form at http://www.aanda.org

  18. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electricmore » field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.« less

  19. Flow-driven alignment of carbon nanotubes during floating evaporative self assembly

    NASA Astrophysics Data System (ADS)

    Berson, Arganthael; Jinkins, Katherine; Chan, Jason; Brady, Gerald; Gronski, Kjerstin; Gopalan, Padma; Evensen, Harold; Arnold, Michael

    2017-11-01

    Individual semi-conducting single-wall carbon nanotubes (s-SWCNTs) exhibit exceptional electronic properties, which makes them promising candidates for the next generation of semi-conductor electronics. In practice, field-effect transistors (FETs) are fabricated from arrays of s-SWCNTs deposited onto a substrate. In order to achieve high electronic performance, the s-SWCNTs in these arrays must be densely packed and well aligned. Floating Evaporative Self Assembly (FESA) is a new deposition technique developed at the UW-Madison that can achieve such high-quality s-SWCNT alignment. For example, it was used to fabricate the first s-SWCNT-based FETs to outperform gallium arsenide and silicon FETs. In FESA, a droplet of ink containing the s-SWCNTs is deposited onto a pool of water. The ink spreads on the water surface towards a substrate that is vertically pulled out of the water. A band of aligned s-SWCNTs is deposited with each drop of ink. High-speed imaging is combined with cross-polarized microscopy to elucidate the mechanisms behind the exceptional alignment of s-SWCNTs. Two key mechanisms are 1) the collection of s-SWCNTs at the ink-water interface and 2) the depinning of the air-ink-substrate contact line. Avenues for scaling up FESA will be presented.

  20. Dynamic self-assembly of charged colloidal strings and walls in simple fluid flows.

    PubMed

    Abe, Yu; Zhang, Bo; Gordillo, Leonardo; Karim, Alireza Mohammad; Francis, Lorraine F; Cheng, Xiang

    2017-02-22

    Colloidal particles can self-assemble into various ordered structures in fluid flows that have potential applications in biomedicine, materials synthesis and encryption. These dynamic processes are also of fundamental interest for probing the general principles of self-assembly under non-equilibrium conditions. Here, we report a simple microfluidic experiment, where charged colloidal particles self-assemble into flow-aligned 1D strings with regular particle spacing near a solid boundary. Using high-speed confocal microscopy, we systematically investigate the influence of flow rates, electrostatics and particle polydispersity on the observed string structures. By studying the detailed dynamics of stable flow-driven particle pairs, we quantitatively characterize interparticle interactions. Based on the results, we construct a simple model that explains the intriguing non-equilibrium self-assembly process. Our study shows that the colloidal strings arise from a delicate balance between attractive hydrodynamic coupling and repulsive electrostatic interaction between particles. Finally, we demonstrate that, with the assistance of transverse electric fields, a similar mechanism also leads to the formation of 2D colloidal walls.

  1. Work at the Uddevalla Volvo Plant from the Perspective of the Demand-Control Model

    ERIC Educational Resources Information Center

    Lottridge, Danielle

    2004-01-01

    The Uddevalla Volvo plant represents a different paradigm for automotive assembly. In parallel-flow work, self-managed work groups assemble entire automobiles with comparable productivity as conventional series-flow assembly lines. From the perspective of the demand-control model, operators at the Uddevalla plant have low physical and timing…

  2. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  3. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  4. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  5. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  6. Pressure compensated flow control valve

    DOEpatents

    Minteer, Daniel J.

    1999-01-01

    The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.

  7. Development and Application of Novel Diagnostics for Arc-Jet Characterization

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.

    2002-01-01

    This NASA-Ames University Consortium Project has focused on the design and demonstration of optical absorption sensors using tunable diode laser to target atomic copper impurities from electrode erosion in thc arc-heater metastable electronic excited states of molecular nitrogen, atomic argon, aid atomic oxygen in the arcjet plume. Accomplishments during this project include: 1. Design, construction, and assembly of optical access to the arc-heater gas flow. 2. Design of diode laser sensor for copper impurities in the arc-heater flow. 3 . Diode laser sensor design and test in laboratory plasmas for metastable Ar(3P), O(5S), N(4P), and N2(A). 4. Diode laser sensor demonstration measurements in the test cell to monitor species in the arc-jet plume.

  8. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  9. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, Michael W.; Cole, Jack H.

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  10. Effect of internal flow and evaporation on hydrogel assembly process at droplet interface

    NASA Astrophysics Data System (ADS)

    Kang, Giho; Seong, Baekhoon; Gim, Yeonghyeon; Ko, Han Seo; Byun, Doyoung

    2017-11-01

    Recently, controlling the behavior of nanoparticles inside liquid droplet has been widely studied. There have been many reports about the mechanism of the nanoparticles assembly and fabrication of a thin film on a substrate. However, the assembly mechanism at a liquid-air interface has not been clearly understood to form polymer chains into films. Herein, we investigated the role of internal flow on the thin film assembly process at the interface of the hydrogel droplet. The internal fluid flow during the formation of the hydrogel film was visualized systematically using micro-PIV (Particle image velocimetry) technique at various temperatures. We show that the buoyancy effect and convection flow induced by heat can affect the film morphology and its mechanical characteristics. Due to the accelerated fluid flow inside the droplet and evaporation flux, densely assembled hydrogel film was able to be formed. Film strength was increased 24% with temperature increase from 40 to 80 degrees Celsius. We expect our investigations could be applied to many applications such as self-assembly of planar structures at the interface in coating and printing process. The support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1A2A1A05001829) is acknowledged.

  11. Heat exchanger with ceramic elements

    DOEpatents

    Corey, John A.

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  12. Dynamic Diglyme-Mediated Self-Assembly of Gold Nanoclusters.

    PubMed

    Compel, W Scott; Wong, O Andrea; Chen, Xi; Yi, Chongyue; Geiss, Roy; Häkkinen, Hannu; Knappenberger, Kenneth L; Ackerson, Christopher J

    2015-12-22

    We report the assembly of gold nanoclusters by the nonthiolate ligand diglyme into discrete and dynamic assemblies. To understand this surprising phenomenon, the assembly of Au20(SC2H4Ph)15-diglyme into Au20(SC2H4Ph)15-diglyme-Au20(SC2H4Ph)15 is explored in detail. The assembly is examined by high-angle annular dark field scanning transmission electron microscopy, size exclusion chromatography, mass spectrometry, IR spectroscopy, and calorimetry. We establish a dissociation constant for dimer to monomer conversion of 20.4 μM. Theoretical models validated by transient absorption spectroscopy predict a low-spin monomer and a high-spin dimer, with assembly enabled through weak diglyme oxygen-gold interactions. Close spatial coupling allows electron delocalization between the nanoparticle cores. The resulting assemblies thus possess optical and electronic properties that emerge as a result of assembly.

  13. Design and Fabrication of Cryostat Interface and Electronics for High Performance Antimatter Trap (HI-PAT)

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1999-01-01

    Included in Appendix I to this report is a complete set of design and assembly schematics for the high vacuum inner trap assembly, cryostat interfaces and electronic components for the MSFC HI-PAT. Also included in the final report are summaries of vacuum tests, and electronic tests performed upon completion of the assembly.

  14. Self-assembly patterning of organic molecules on a surface

    DOEpatents

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  15. A Motor Drive Electronics Assembly for Mars Curiosity Rover: An Example of Assembly Qualification for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Kolawa, Elizabeth; Chen, Yuan; Mojarradi, Mohammad M.; Weber, Carissa Tudryn; Hunter, Don J.

    2013-01-01

    This paper describes the technology development and infusion of a motor drive electronics assembly for Mars Curiosity Rover under space extreme environments. The technology evaluation and qualification as well as space qualification of the assembly are detailed and summarized. Because of the uncertainty of the technologies operating under the extreme space environments and that a high level reliability was required for this assembly application, both component and assembly board level qualifications were performed.

  16. Molecular Self-Assembly in a Poorly Screened Environment: F4TCNQ on Graphene/BN

    PubMed Central

    2015-01-01

    We report a scanning tunneling microscopy and noncontact atomic force microscopy study of close-packed 2D islands of tetrafluorotetracyanoquinodimethane (F4TCNQ) molecules at the surface of a graphene layer supported by boron nitride. While F4TCNQ molecules are known to form cohesive 3D solids, the intermolecular interactions that are attractive for F4TCNQ in 3D are repulsive in 2D. Our experimental observation of cohesive molecular behavior for F4TCNQ on graphene is thus unexpected. This self-assembly behavior can be explained by a novel solid formation mechanism that occurs when charged molecules are placed in a poorly screened environment. As negatively charged molecules coalesce, the local work function increases, causing electrons to flow into the coalescing molecular island and increase its cohesive binding energy. PMID:26482218

  17. Large scale ZnTe nanostructures on polymer micro patterns via capillary force photolithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florence, S. Sasi, E-mail: sshanmugaraj@jazanu.edu.sa; Can, N.; Adam, H.

    2016-06-10

    A novel approach to prepare micro patterns ZnTe nanostructures on Si (100) substrate using thermal evaporation is proposed by capillary Force Lithography (CFL) technique on a self-assembled sacrificial Polystyrene mask. Polystyrene thin films on Si substrates are used to fabricate surface micro-relief patterns. ZnTe nanoparticles have been deposited by thermal evaporation method. The deposited ZnTe nanoparticles properties were assessed by Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM). SEM studies indicated that the particles are uniform in size and shape, well dispersed and spherical in shape. This study reports the micro-arrays of ZnTe nanoparticles on a self-assembled sacrificial PS maskmore » using a capillary flow photolithography process which showed excellent, morphological properties which can be used in photovoltaic devices for anti-reflection applications.« less

  18. A BPTTF-based self-assembled electron-donating triangle capable of C60 binding.

    PubMed

    Goeb, Sébastien; Bivaud, Sébastien; Dron, Paul Ionut; Balandier, Jean-Yves; Chas, Marcos; Sallé, Marc

    2012-03-25

    A kinetically stable self-assembled redox-active triangle is isolated. The resulting electron-donating cavity, which incorporates three BPTTF units, exhibits a remarkable binding ability for electron-deficient C(60), supported by a favorable combination of structural and electronic features.

  19. Proceedings of the Electronics Manufacturing Seminar (14th Annual) Held in China Lake, California on 21-22 February 1990

    DTIC Science & Technology

    1990-02-01

    Aging effects Aging of metalic surfaces Aqueous cleaning Circuit- card assembly Cleanability Closed-loop soldering Conformal coating Defect...5 Standard Electronic Circuit Card Assembly System ....................................... 7 Douglas Green Lockheed-Sanders Corp. Nashua, New...Facility Naval Weapons Center NAVIRSA Detachment 5 NWC TP 7066 EMPF TR 0010 STANDARD ELECTRONIC CIRCUTT CARD ASSEMBLY SYSTEM (SECAS PROJECT) by Douglas

  20. Light-Induced Conversion of Chemical Permeability to Enhance Electron and Molecular Transfer in Nanoscale Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balgley, Renata; de Ruiter, Graham; Evmenenko, Guennadi

    In this paper, we demonstrate how photochemically enhancing the permeability of metal–organic assemblies results in a significant enhancement of the electrochemical activity of metal complexes located within the assembly. The molecular assemblies consist of different layers of redox-active metal complexes ([M(mbpy-py)3][PF6]2; M = Ru or Os) that are separated by redox-inactive spacers consisting of 1,4-bis[2-(4-pyridyl)ethenyl]benzene (BPEB) and PdCl2 of variable thicknesses (0–13.4 nm). UV-irradiation (λ = 254 nm) of our assemblies induces a photochemical reaction in the redox-inactive spacer increasing the permeability of the assembly. The observed increase was evident by trapping organic (nBu4NBF4) and inorganic (NiCl2) salts inside themore » assemblies, and by evaluating the electrochemical response of quinones absorbed inside the molecular assemblies before and after UV irradiation. The increase in permeability is reflected by higher currents and a change in the directionality of electron transfer, i.e., from mono- to bidirectional, between the redox-active metal complexes and the electrode surface. The supramolecular structure of the assemblies dominates the overall electron transfer properties and overrules possible electron transfer mediated by the extensive π-conjugation of its individual organic components.« less

  1. Shape Memory Actuated Normally Open Permanent Isolation Valve

    NASA Technical Reports Server (NTRS)

    Ramspacher, Daniel J. (Inventor); Bacha, Caitlin E. (Inventor)

    2017-01-01

    A valve assembly for an in-space propulsion system includes an inlet tube, an outlet tube, a valve body coupling the inlet tube to the outlet tube and defining a propellant flow path, a valve stem assembly disposed within the valve body, an actuator body coupled to the valve body, the valve stem assembly extending from an interior of the valve body to an interior of the actuator body, and an actuator assembly disposed within the actuator body and coupled to the valve stem assembly, the actuator assembly including a shape memory actuator member that when heated to a transition temperature is configured to enable the valve stem assembly to engage the outlet tube and seal the propellant flow path.

  2. A flow study in radial inflow turbine scroll-nozzle assembly

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Baskharone, E.; Tabakoff, W.

    1978-01-01

    The present analysis describes the flow behavior in the combined scroll-nozzle assembly of a radial inflow turbine. This model was chosen to provide a better understanding of the mutual interaction effects of these two components on the flow. The finite element method is used in the solution of the flow field in this multiply connected domain. The mass flow rates in the different nozzle channels is not presumed constant, but is determined from the solution.

  3. Flow-Based Assembly of Layer-by-Layer Capsules through Tangential Flow Filtration.

    PubMed

    Björnmalm, Mattias; Roozmand, Ali; Noi, Ka Fung; Guo, Junling; Cui, Jiwei; Richardson, Joseph J; Caruso, Frank

    2015-08-25

    Layer-by-layer (LbL) assembly on nano- and microparticles is of interest for a range of applications, including catalysis, optics, sensors, and drug delivery. One current limitation is the standard use of manual, centrifugation-based (pellet/resuspension) methods to perform the layering steps, which can make scalable, highly controllable, and automatable production difficult to achieve. Here, we develop a fully flow-based technique using tangential flow filtration (TFF) for LbL assembly on particles. We demonstrate that multilayered particles and capsules with different sizes (from micrometers to submicrometers in diameter) can be assembled on different templates (e.g., silica and calcium carbonate) using several polymers (e.g., poly(allylamine hydrochloride), poly(styrenesulfonate), and poly(diallyldimethylammonium chloride)). The full system only contains fluidic components routinely used (and automated) in industry, such as pumps, tanks, valves, and tubing in addition to the TFF filter modules. Using the TFF LbL system, we also demonstrate the centrifugation-free assembly, including core dissolution, of drug-loaded capsules. The well-controlled, integrated, and automatable nature of the TFF LbL system provides scientific, engineering, and practical processing benefits, making it valuable for research environments and potentially useful for translating LbL assembled particles into diverse applications.

  4. A simple approach to characterizing block copolymer assemblies: graphene oxide supports for high contrast multi-technique imaging†

    PubMed Central

    Patterson, Joseph P.; Sanchez, Ana M.; Petzetakis, Nikos; Smart, Thomas P.; Epps, Thomas H.; Portman, Ian

    2013-01-01

    Block copolymers are well-known to self-assemble into a range of 3-dimensional morphologies. However, due to their nanoscale dimensions, resolving their exact structure can be a challenge. Transmission electron microscopy (TEM) is a powerful technique for achieving this, but for polymeric assemblies chemical fixing/staining techniques are usually required to increase image contrast and protect specimens from electron beam damage. Graphene oxide (GO) is a robust, water-dispersable, and nearly electron transparent membrane: an ideal support for TEM. We show that when using GO supports no stains are required to acquire high contrast TEM images and that the specimens remain stable under the electron beam for long periods, allowing sample analysis by a range of electron microscopy techniques. GO supports are also used for further characterization of assemblies by atomic force microscopy. The simplicity of sample preparation and analysis, as well as the potential for significantly increased contrast background, make GO supports an attractive alternative for the analysis of block copolymer assemblies. PMID:24049544

  5. Design of a high-pressure circulating pump for viscous liquids.

    PubMed

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 degrees C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 degrees C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 degrees C on a daily basis for a total of more than 1500 h of operation functioning trouble free.

  6. A NEUTRONIC REACTOR

    DOEpatents

    Luebke, E.A.; Vandenberg, L.B.

    1959-09-01

    A nuclear reactor for producing thermoelectric power is described. The reactor core comprises a series of thermoelectric assemblies, each assembly including fissionable fuel as an active element to form a hot junction and a thermocouple. The assemblies are disposed parallel to each other to form spaces and means are included for Introducing an electrically conductive coolant between the assemblies to form cold junctions of the thermocouples. An electromotive force is developed across the entire series of the thermoelectric assemblies due to fission heat generated in the fuel causing a current to flow perpendicular to the flow of coolant and is distributed to a load outside of the reactor by means of bus bars electrically connected to the outermost thermoelectric assembly.

  7. A Motor Drive Electronics Assembly for Mars Curiosity Rover: An Example of Assembly Qualification for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Kolawa, Elizabeth; Chen, Yuan; Mojarradi, Mohammad M.; Tudryn Weber, Carissa

    2013-01-01

    In this paper, the technology development and infusion of the motor drive electronics assembly, along with the technology qualification and space qualification, is described and detailed. The process is an example of the qualification methodology for extreme environmen

  8. The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility.

    PubMed

    Frank, Kerstin J; Westedt, Ulrich; Rosenblatt, Karin M; Hölig, Peter; Rosenberg, Jörg; Mägerlein, Markus; Fricker, Gert; Brandl, Martin

    2012-01-01

    Amorphous solid dispersions (ASDs) are a promising formulation approach for poorly soluble active pharmaceutical ingredients (APIs), because they ideally enhance both dissolution rate and solubility. However, the mechanism behind this is not understood in detail. In the present study, we investigated the supramolecular and the nano/microparticulate structures that emerge spontaneously upon dispersion of an ASD in aqueous medium and elucidated their influence on solubility. The ASD, prepared by hot melt extrusion, contained the poorly soluble ABT-102 (solubility in buffer, 0.05 μg/mL), a hydrophilic polymer, and three surfactants. The apparent solubility of ABT-102 from the ASD-formulation was enhanced up to 200 times in comparison to crystalline ABT-102. At the same time, the molecular solubility, as assessed by inverse equilibrium dialysis, was enhanced two times. Asymmetrical flow field-flow fractionation in combination with a multiangle light-scattering detector, an ultraviolet detector, and a refractometer enabled us to separate and identify the various supramolecular assemblies that were present in the aqueous dispersions of the API-free ASD (placebo) and of binary/ternary blends of the ingredients. Thus, the supramolecular assemblies with a molar mass between 20,000 and 90,000 could be assigned to the polyvinylpyrrolidone/vinyl acetate 64, while two other kinds of assemblies were assigned to different surfactant assemblies (micelles). The amount of ABT-102 remaining associated with each of the assemblies upon fractionation was quantified offline with high-performance liquid chromatography-ultraviolet-visible. The polymeric and the micellar fraction contributed to the substantial increase in apparent solubility of ABT-102. Furthermore, a microparticulate fraction was isolated by centrifugation and analyzed by scanning electron microscopy, X-ray scattering, and infrared spectroscopy. The microparticles were found to be amorphous and to contain two of the surfactants besides ABT-102 as the main component. The amorphous microparticles are assumed to be the origin of the observed increase in molecular solubility ("true" supersaturation).

  9. Device for measuring the fluid density of a two-phase mixture

    DOEpatents

    Cole, Jack H.

    1980-01-01

    A device for measuring the fluid density of a two-phase mixture flowing through a tubular member. A rotor assembly is rotatively supported within the tubular member so that it can also move axially within the tubular member. The rotor assembly is balanced against a pair of springs which exert an axial force in the opposite direction upon the rotor assembly. As a two-phase mixture flows through the tubular member it contacts the rotor assembly causing it to rotate about its axis. The rotor assembly is forced against and partially compresses the springs. Means are provided to measure the rotational speed of the rotor assembly and the linear displacement of the rotor assembly. From these measurements the fluid density of the two-phase mixture is calculated.

  10. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition

    NASA Astrophysics Data System (ADS)

    D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.

    2012-05-01

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e

  11. Electron Spin Dephasing and Decoherence by Interaction with Nuclear Spins in Self-Assembled Quantum Dots

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul; Oyafuso, Fabiano; Klimeck, Gerhard; Whale, K. Birgitta

    2004-01-01

    Electron spin dephasing and decoherence by its interaction with nuclear spins in self-assembled quantum dots are investigated in the framework of the empirical tight-binding model. Electron spin dephasing in an ensemble of dots is induced by the inhomogeneous precession frequencies of the electron among dots, while electron spin decoherence in a single dot arises from the inhomogeneous precession frequencies of nuclear spins in the dot. For In(x)Ga(1-x) As self-assembled dots containing 30000 nuclei, the dephasing and decoherence times are predicted to be on the order of 100 ps and 1 (micro)s.

  12. Molecular Self-Assembly in a Poorly Screened Environment: F 4TCNQ on Graphene/BN

    DOE PAGES

    Tsai, Hsin-Zon; Omrani, Arash A.; Coh, Sinisa; ...

    2015-10-20

    Here we report a scanning tunneling microscopy and noncontact atomic force microscopy study of close-packed 2D islands of tetrafluoro-tetracyanoquinodimethane (F 4TCNQ) molecules at the surface of a graphene layer supported by boron nitride. While F 4TCNQ molecules are known to form cohesive 3D solids, the intermolecular interactions that are attractive for F 4TCNQ in 3D are repulsive in 2D. Our experimental observation of cohesive molecular behavior for F 4TCNQ on graphene is thus unexpected. This self-assembly behavior can be explained by a novel solid formation mechanism that occurs when charged molecules are placed in a poorly screened environment. As negativelymore » charged molecules coalesce, the local work function increases, causing electrons to flow into the coalescing molecular island and increase its cohesive binding energy.« less

  13. Elongational Flow Assists with the Assembly of Protein Nanofibrils

    NASA Astrophysics Data System (ADS)

    Mittal, Nitesh; Kamada, Ayaka; Lendel, Christofer; Lundell, Fredrik; Soderberg, Daniel

    2016-11-01

    Controlling the aggregation process of protein-based macromolecular structures in a confined environment using small-scale flow devices and understanding their assembly mechanisms is essential to develop bio-based materials. Whey protein, a protein mixture with β-lactoglobulin as main component, is able to self-assemble into amyloid-like protein nanofibers which are stabilized by hydrogen bonds. The conditions at which the fibrillation process occurs can affect the properties and morphology of the fibrils. Here, we show that the morphology of protein nanofibers greatly affects their assembly. We used elongational flow based double flow-focusing device for this study. In-situ behavior of the straight and flexible fibrils in the flow channel is determined using small-angle X-ray scattering (SAXS) technique. Our process combines hydrodynamic alignment with dispersion to gel-transition that produces homogeneous and smooth fibers. Moreover, successful alignment before gelation demands a proper separation of the time-scales involved, which we tried to identify in the current study. The presented approach combining small scale flow devices with in-situ synchrotron X-ray studies and protein engineering is a promising route to design high performance protein-based materials with controlled physical and chemical properties. We acknowledge the support from Wallenberg Wood Science Center.

  14. Nanowire nanocomputer as a finite-state machine.

    PubMed

    Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F; Ellenbogen, James C; Lieber, Charles M

    2014-02-18

    Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom-up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future.

  15. Nanowire nanocomputer as a finite-state machine

    PubMed Central

    Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F.; Ellenbogen, James C.; Lieber, Charles M.

    2014-01-01

    Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom–up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future. PMID:24469812

  16. Low-dimensional materials for organic electronic applications

    NASA Astrophysics Data System (ADS)

    Beniwal, Sumit

    This thesis explores the self-assembly, surface interactions and electronic properties of functional molecules that have potential applications in electronics. Three classes of molecules - organic ferroelectric, spin-crossover complex, and molecules that assemble into a 2D semiconductor, have been studied through scanning tunneling microscopy and surfacesensitive spectroscopic methods. The scientific goal of this thesis is to understand the self-assembly of these molecules in low-dimensional (2D) configurations and the influence of substrate on their properties.

  17. Optoelectronics of organic nanofibers formed by co-assembly of porphyrin and perylenediimide.

    PubMed

    Li, Yuangang; Wang, Weina; Leow, Wan Ru; Zhu, Bowen; Meng, Fanben; Zheng, Liyan; Zhu, Jia; Chen, Xiaodong

    2014-07-23

    Organic nanofibers are formed by simple ionic co-assembly of positively charged porphyrin (electron donor) and negatively charged perylenediimide (electron acceptor) derivatives in aqueous solution. Two kinds of electron transfer routes between electron donor and electron acceptor under light excitation in nanofibers are confirmed by DFT calculations and experimental data. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 75 FR 65023 - Notice of Issuance of Final Determination Concerning Certain Heating Boilers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ... of the heat exchanger, the gas train, electronics and controls, and the combustion fan. Assembly of... the heat exchanger are of U.S. origin. The gas train assembly requires fitting the components together... stage. The sub-assembly stage has three processes: the gas train, electronics and controls, and the...

  19. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOEpatents

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  20. Direct-Write Printing on Three-Dimensional Geometries for Miniaturized Detector and Electronic Assemblies

    NASA Technical Reports Server (NTRS)

    Paquette, Beth; Samuels, Margaret; Chen, Peng

    2017-01-01

    Direct-write printing techniques will enable new detector assemblies that were not previously possible with traditional assembly processes. Detector concepts were manufactured using this technology to validate repeatability. Additional detector applications and printed wires on a 3-dimensional magnetometer bobbin will be designed for print. This effort focuses on evaluating performance for direct-write manufacturing techniques on 3-dimensional surfaces. Direct-write manufacturing has the potential to reduce mass and volume for fabrication and assembly of advanced detector concepts by reducing trace widths down to 10 microns, printing on complex geometries, allowing new electronic concept production, and reduced production times of complex those electronics.

  1. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Nuzzo, Ralph; Kim, Hoon-sik

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  2. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOEpatents

    Rogers, John A; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2014-10-21

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  3. Attenuation of encrustation by self-assembled inorganic fullerene-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Ron, Racheli; Zbaida, David; Kafka, Ilan Z.; Rosentsveig, Rita; Leibovitch, Ilan; Tenne, Reshef

    2014-04-01

    Ureteral stents and urethral catheters are commonly used medical devices for maintaining urinary flow. However, long-term placement (>30 days) of these devices in the urinary tracts is limited by the development of encrustation, a phenomenon that holds a prevalence of 50% within this patient population, resulting in a great deal of morbidity to the patients. Here we report the influence of surface coating of an all-silicone catheter with rhenium-doped fullerene-like molybdenum disulfide (Re:IF-MoS2) nanoparticles on the growth and attachment of in vitro encrustation stones. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) analyses indicated a remarkable attenuation in encrustation occupation on the Re:IF-MoS2-coated catheter surfaces compared to neat catheters. The doped nanoparticles displayed a unique tendency to self-assemble into mosaic-like arrangements, modifying the surface to be encrustation-repellent. The mechanism of encrustation retardation on the surface coated catheters is discussed in some detail. The ramification of these results for the clogging of other body indwelling devices is briefly discussed.Ureteral stents and urethral catheters are commonly used medical devices for maintaining urinary flow. However, long-term placement (>30 days) of these devices in the urinary tracts is limited by the development of encrustation, a phenomenon that holds a prevalence of 50% within this patient population, resulting in a great deal of morbidity to the patients. Here we report the influence of surface coating of an all-silicone catheter with rhenium-doped fullerene-like molybdenum disulfide (Re:IF-MoS2) nanoparticles on the growth and attachment of in vitro encrustation stones. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) analyses indicated a remarkable attenuation in encrustation occupation on the Re:IF-MoS2-coated catheter surfaces compared to neat catheters. The doped nanoparticles displayed a unique tendency to self-assemble into mosaic-like arrangements, modifying the surface to be encrustation-repellent. The mechanism of encrustation retardation on the surface coated catheters is discussed in some detail. The ramification of these results for the clogging of other body indwelling devices is briefly discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06231g

  4. Self-assembly of pi-conjugated peptides in aqueous environments leading to energy-transporting bioelectronic nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavor, John

    The realization of new supramolecular pi-conjugated organic structures inspired and driven by peptide-based self-assembly will offer a new approach to interface with the biotic environment in a way that will help to meet many DOE-recognized grand challenges. Previously, we developed pi-conjugated peptides that undergo supramolecular self-assembly into one-dimensional (1-D) organic electronic nanomaterials under benign aqueous conditions. The intermolecular interactions among the pi-conjugated organic segments within these nanomaterials lead to defined perturbations of their optoelectronic properties and yield nanoscale conduits that support energy transport within individual nanostructures and throughout bulk macroscopic collections of nanomaterials. Our objectives for future research are tomore » construct and study biomimetic electronic materials for energy-related technology optimized for harsher non-biological environments where peptide-driven self-assembly enhances pi-stacking within nanostructured biomaterials, as detailed in the following specific tasks: (1) synthesis and detailed optoelectronic characterization of new pi-electron units to embed within homogeneous self assembling peptides, (2) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (3) development of new hierarchical assembly paradigms to organize multiple electronic subunits within the nanomaterials leading to heterogeneous electronic properties (i.e. gradients and localized electric fields). These intertwined research tasks will lead to the continued development and fundamental mechanistic understanding of a powerful bioinspired materials set capable of making connections between nanoscale electronic materials and macroscopic bulk interfaces, be they those of a cell, a protein or a device.« less

  5. Heat exchanger with transpired, highly porous fins

    DOEpatents

    Kutscher, Charles F.; Gawlik, Keith

    2002-01-01

    The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

  6. Single electron counting using a dual MCP assembly

    NASA Astrophysics Data System (ADS)

    Yang, Yuzhen; Liu, Shulin; Zhao, Tianchi; Yan, Baojun; Wang, Peiliang; Yu, Yang; Lei, Xiangcui; Yang, Luping; Wen, Kaile; Qi, Ming; Heng, Yuekun

    2016-09-01

    The gain, pulse height resolution and peak-to-valley ratio of single electrons detected by using a Chevron configured Microchannel Plate (MCP) assembly are studied. The two MCPs are separated by a 280 μm gap and are biased by four electrodes. The purpose of the study is to determine the optimum bias voltage arrangements for single electron counting. By comparing the results of various bias voltage combinations, we conclude that good performance for the electron counting can be achieved by operating the MCP assembly in saturation mode. In addition, by applying a small reverse bias voltage across the gap while adjusting the bias voltages of the MCPs, optimum performance of electron counting can be obtained.

  7. Optimal Assembly of Psychological and Educational Tests.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    1998-01-01

    Reviews optimal test-assembly literature and introduces the contributions to this special issue. Discusses four approaches to computerized test assembly: (1) heuristic-based test assembly; (2) 0-1 linear programming; (3) network-flow programming; and (4) an optimal design approach. Contains a bibliography of 90 sources on test assembly.…

  8. Emergency core cooling system

    DOEpatents

    Schenewerk, William E.; Glasgow, Lyle E.

    1983-01-01

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  9. Power electronics cooling apparatus

    DOEpatents

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  10. Motor Controller

    NASA Technical Reports Server (NTRS)

    1988-01-01

    M.H. Marks Enterprises' Power Factor Controller (PFC) matches voltage with motor's actual need. Plugged into a motor, PFC continuously determines motor load by sensing shifts between voltage and current flow. When it senses a light load, it cuts voltage to the minimum needed. It offers potential energy savings ranging from eight percent up to 65 percent depending on the application. Myles Marks started out with the notion of writing an article for Popular Electronics magazine at the same time offering to furnish kits to readers interested in assembling PFC's. Within two weeks from publication he had orders for 500 kits and orders are still coming three years later.

  11. Electrohydrodynamically patterned colloidal crystals

    NASA Technical Reports Server (NTRS)

    Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)

    2003-01-01

    A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.

  12. Three-dimensional fit-to-flow microfluidic assembly.

    PubMed

    Chen, Arnold; Pan, Tingrui

    2011-12-01

    Three-dimensional microfluidics holds great promise for large-scale integration of versatile, digitalized, and multitasking fluidic manipulations for biological and clinical applications. Successful translation of microfluidic toolsets to these purposes faces persistent technical challenges, such as reliable system-level packaging, device assembly and alignment, and world-to-chip interface. In this paper, we extended our previously established fit-to-flow (F2F) world-to-chip interconnection scheme to a complete system-level assembly strategy that addresses the three-dimensional microfluidic integration on demand. The modular F2F assembly consists of an interfacial chip, pluggable alignment modules, and multiple monolithic layers of microfluidic channels, through which convoluted three-dimensional microfluidic networks can be easily assembled and readily sealed with the capability of reconfigurable fluid flow. The monolithic laser-micromachining process simplifies and standardizes the fabrication of single-layer pluggable polymeric modules, which can be mass-produced as the renowned Lego(®) building blocks. In addition, interlocking features are implemented between the plug-and-play microfluidic chips and the complementary alignment modules through the F2F assembly, resulting in facile and secure alignment with average misalignment of 45 μm. Importantly, the 3D multilayer microfluidic assembly has a comparable sealing performance as the conventional single-layer devices, providing an average leakage pressure of 38.47 kPa. The modular reconfigurability of the system-level reversible packaging concept has been demonstrated by re-routing microfluidic flows through interchangeable modular microchannel layers.

  13. System and method for injecting fuel

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward

    2012-12-04

    According to various embodiments, a system includes a staggered multi-nozzle assembly. The staggered multi-nozzle assembly includes a first fuel nozzle having a first axis and a first flow path extending to a first downstream end portion, wherein the first fuel nozzle has a first non-circular perimeter at the first downstream end portion. The staggered multi-nozzle assembly also includes a second fuel nozzle having a second axis and a second flow path extending to a second downstream end portion, wherein the first and second downstream end portions are axially offset from one another relative to the first and second axes. The staggered multi-nozzle assembly further includes a cap member disposed circumferentially about at least the first and second fuel nozzles to assemble the staggered multi-nozzle assembly.

  14. Flow field survey near the rotational plane of an advanced design propeller on a JetStar airplane

    NASA Technical Reports Server (NTRS)

    Walsh, K. R.

    1985-01-01

    An investigation was conducted to obtain upper fuselage surface static pressures and boundary layer velocity profiles below the centerline of an advanced design propeller. This investigation documents the upper fuselage velocity flow field in support of the in-flight acoustic tests conducted on a JetStar airplane. Initial results of the boundary layer survey show evidence of an unusual flow disturbance, which is attributed to the two windshield wiper assemblies on the aircraft. The assemblies were removed, eliminating the disturbances from the flow field. This report presents boundary layer velocity profiles at altitudes of 6096 and 9144 m (20,000 and 30,000 ft) and Mach numbers from 0.6 to 0.8, and it investigated the effects of windshield wiper assemblies on these profiles. Because of the unconventional velocity profiles that were obtained with the assemblies mounted, classical boundary layer parameters, such as momentum and displacement thicknesses, are not presented. The effects of flight test variables (Mach number and angles of attack and sideslip) and an advanced design propeller on boundary layer profiles - with the wiper assemblies mounted and removed - are presented.

  15. Self-Assembly of Nanostructured Electronic Devices (454th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Charles

    2009-12-16

    Given suitable atmospheric conditions, water vapor from the air will crystallize into beautiful structures: snowflakes. Nature provides many other examples of spontaneous organization of materials into regular patterns, which is a process known as self-assembly. Since self-assembly works at all levels, it can be a useful tool for organizing materials on the nanometer scale. In particular, self-assembly provides a precise method for designing materials with improved electronic properties, thereby enabling advances in semiconductor electronics and solar devices. On Wednesday, December 16, at 4 p.m. in Berkner Hall, Charles Black of the Center for Functional Nanomaterials (CFN) will explore this topicmore » during the 454th Brookhaven Lecture, entitled “Self-Assembly of Nanostructured Electronic Devices.” Refreshments will be offered before and after the lecture. To attend this open-to-the-public event, visitors to the Lab ages 16 and older must present photo ID at the Main Gate. During this talk, Dr. Black will discuss examples of how self-assembly is being integrated into semiconductor microelectronics, as advances in the ability to define circuit elements at higher resolution have fueled more than 40 years of performance improvements. Self-assembly also promises advances in the performance of solar devices; thus he will describe his group’s recent results with nanostructured photovoltaic devices.« less

  16. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  17. Dependency of the Reynolds number on the water flow through the perforated tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Závodný, Zdenko, E-mail: zdenko.zavodny@stuba.sk; Bereznai, Jozef, E-mail: jozef.bereznai@stuba.sk; Urban, František

    Safe and effective loading of nuclear reactor fuel assemblies demands qualitative and quantitative analysis of the relationship between the coolant temperature in the fuel assembly outlet, measured by the thermocouple, and the mean coolant temperature profile in the thermocouple plane position. It is not possible to perform the analysis directly in the reactor, so it is carried out using measurements on the physical model, and the CFD fuel assembly coolant flow models. The CFD models have to be verified and validated in line with the temperature and velocity profile obtained from the measurements of the cooling water flowing in themore » physical model of the fuel assembly. Simplified physical model with perforated central tube and its validated CFD model serve to design of the second physical model of the fuel assembly of the nuclear reactor VVER 440. Physical model will be manufactured and installed in the laboratory of the Institute of Energy Machines, Faculty of Mechanical Engineering of the Slovak University of Technology in Bratislava.« less

  18. Radial blanket assembly orificing arrangement

    DOEpatents

    Patterson, J.F.

    1975-07-01

    A nuclear reactor core for a liquid metal cooled fast breeder reactor is described in which means are provided for increasing the coolant flow through the reactor fuel assemblies as the reactor ages by varying the coolant flow rate with the changing coolant requirements during the core operating lifetime. (auth)

  19. An assembly system based on industrial robot with binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Xiao, Nanfeng

    2017-01-01

    This paper proposes an electronic part and component assembly system based on an industrial robot with binocular stereo vision. Firstly, binocular stereo vision with a visual attention mechanism model is used to get quickly the image regions which contain the electronic parts and components. Secondly, a deep neural network is adopted to recognize the features of the electronic parts and components. Thirdly, in order to control the end-effector of the industrial robot to grasp the electronic parts and components, a genetic algorithm (GA) is proposed to compute the transition matrix and the inverse kinematics of the industrial robot (end-effector), which plays a key role in bridging the binocular stereo vision and the industrial robot. Finally, the proposed assembly system is tested in LED component assembly experiments, and the results denote that it has high efficiency and good applicability.

  20. Light shielding apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Richard Dean; Thom, Robert Anthony

    A light shielding apparatus for blocking light from reaching an electronic device, the light shielding apparatus including left and right support assemblies, a cross member, and an opaque shroud. The support assemblies each include primary support structure, a mounting element for removably connecting the apparatus to the electronic device, and a support member depending from the primary support structure for retaining the apparatus in an upright orientation. The cross member couples the left and right support assemblies together and spaces them apart according to the size and shape of the electronic device. The shroud may be removably and adjustably connectablemore » to the left and right support assemblies and configured to take a cylindrical dome shape so as to form a central space covered from above. The opaque shroud prevents light from entering the central space and contacting sensitive elements of the electronic device.« less

  1. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery

    NASA Astrophysics Data System (ADS)

    Beyerlein, K. R.; Adriano, L.; Heymann, M.; Kirian, R.; Knoška, J.; Wilde, F.; Chapman, H. N.; Bajt, S.

    2015-12-01

    Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.

  2. A 3-component laser-Doppler velocimeter data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Bell, J. H.; Mehta, R. D.

    1985-01-01

    A laser doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows is described. All the mean velocities, Reynolds stresses, and higher-order products can be evaluated. The approach followed is to split one of the two colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. The laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and ASSEMBLY languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.

  3. Microelectromechanical flow control apparatus

    DOEpatents

    Okandan, Murat [NE Albuquerque, NM

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  4. Artificial photosynthetic systems: assemblies of slipped cofacial porphyrins and phthalocyanines showing strong electronic coupling.

    PubMed

    Satake, Akiharu; Kobuke, Yoshiaki

    2007-06-07

    This paper reviews selected types of structurally well defined assemblies of porphyrins and phthalocyanines with strong electronic coupling. Face-to-face, head-to-tail, slipped cofacial, and non-parallel dimeric motifs constructed by covalent and non-covalent bonds are compared in the earlier sections. Their molecular orientation, electronic overlap, and absorption and fluorescence properties are discussed with a view towards the development of artificial photosynthetic systems and molecular electronics. Complementary coordination dimers are fully satisfactory in terms of structural stability, orientation factor, pi-electronic overlap, and zero fluorescence quenching. In later sections, several polymeric and macrocyclic porphyrin assemblies constructed by a combination of covalent bonds and complementary coordination bonds are discussed from the viewpoint of light-harvesting antenna functions.

  5. Watching Nanoscale Self-Assembly Kinetics of Gold Prisms in Liquids

    NASA Astrophysics Data System (ADS)

    Kim, Juyeong; Ou, Zihao; Jones, Matthew R.; Chen, Qian

    We use liquid-phase transmission electron microscopy to watch self-assembly of gold triangular prisms into polymer-like structures. The in situ dynamics monitoring enabled by liquid-phase transmission electron microscopy, single nanoparticle tracking, and the marked conceptual similarity between molecular reactions and nanoparticle self-assembly combined elucidate the following mechanistic understanding: a step-growth polymerization based assembly statistics, kinetic pathways sampling particle curvature dependent energy minima and their interconversions, and directed assembly into polymorphs (linear or cyclic chains) through in situ modulation of the prism bonding geometry. Our study bridges the constituent kinetics on the molecular and nanoparticle length scales, which enriches the design rules in directed self-assembly of anisotropic nanoparticles.

  6. Bismuth Propellant Feed System Development at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    NASA-MSFC has been developing liquid metal propellant feed systems capable of delivering molten bismuth at a prescribed mass flow rate to the vaporizer of an electric thruster. The first such system was delivered to NASA-JPL as part of the Very High Isp Thruster with Anode Layer (VHITAL) program. In this system, the components pictured were placed in a vacuum chamber and heated while the control electronics were located outside the chamber. The system was successfully operated at JPL in conjunction with a propellant vaporizer, and data was obtained demonstrating a new liquid bismuth flow sensing technique developed at MSFC. The present effort is aimed at producing a feed-system for use in conjunction with a bismuth-fed Hall thruster developed by Busek Co. Developing this system is more ambitious, however, in that it is designed to self-contain all the control electronics inside the same vacuum chamber as an operating bismuth-fed thruster. Consequently, the entire system, including an on-board computer, DC-output power supplies, and a gas-pressurization electro-pneumatic regulator, must be designed to survive a vacuum environment and shielded to keep bismuth plasma from intruding on the electronics and causing a shortcircuit. In addition, the hot portions of the feed system must be thermally isolated from the electronics to avoid failure due to high heat loads. This is accomplished using a thermal protection system (TPS) consisting of multiple layers of aluminum foil. The only penetrations into the vacuum chamber are an electrically isolated (floating) 48 VDC line and a fiberoptic line. The 48 VDC provides power for operation of the power supplies and electronics co-located with the system in the vacuum chamber. The fiberoptic Ethernet connection is used to communicate user-input control commands to the on-board computer and transmit real-time data back to the external computer. The partially assembled second-generation system is shown. Before testing at Busek, a more detailed flow sensor calibration will be performed to accurately quantify the flow monitoring capabilities. This effort is funded under a Technology Innovation Program (TIP) award from NASA-MSFC's Technology Transfer office and performed under SAA8-061060.

  7. Membrane module assembly

    DOEpatents

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  8. Charge neutralization apparatus for ion implantation system

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.

    1992-01-01

    Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.

  9. Hierarchical self-assembly of a bow-shaped molecule bearing self-complementary hydrogen bonding sites into extended supramolecular assemblies.

    PubMed

    Ikeda, Masato; Nobori, Tadahito; Schmutz, Marc; Lehn, Jean-Marie

    2005-01-07

    The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.

  10. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng

    2018-04-01

    Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.

  11. Inlet nozzle assembly

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  12. Inlet nozzle assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

    1985-09-09

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  13. 3-D Packaging: A Technology Review

    NASA Technical Reports Server (NTRS)

    Strickland, Mark; Johnson, R. Wayne; Gerke, David

    2005-01-01

    Traditional electronics are assembled as a planar arrangement of components on a printed circuit board (PCB) or other type of substrate. These planar assemblies may then be plugged into a motherboard or card cage creating a volume of electronics. This architecture is common in many military and space electronic systems as well as large computer and telecommunications systems and industrial electronics. The individual PCB assemblies can be replaced if defective or for system upgrade. Some applications are constrained by the volume or the shape of the system and are not compatible with the motherboard or card cage architecture. Examples include missiles, camcorders, and digital cameras. In these systems, planar rigid-flex substrates are folded to create complex 3-D shapes. The flex circuit serves the role of motherboard, providing interconnection between the rigid boards. An example of a planar rigid - flex assembly prior to folding is shown. In both architectures, the interconnection is effectively 2-D.

  14. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  15. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  16. LMFBR fuel assembly design for HCDA fuel dispersal

    DOEpatents

    Lacko, Robert E.; Tilbrook, Roger W.

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  17. Electrolyte creepage barrier for liquid electrolyte fuel cells

    DOEpatents

    Li, Jian [Alberta, CA; Farooque, Mohammad [Danbury, CT; Yuh, Chao-Yi [New Milford, CT

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  18. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Eric Richard; Durbin, Samuel G

    2007-04-01

    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program providedmore » data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.« less

  19. Combustor assembly for use in a turbine engine and methods of assembling same

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward

    2013-05-14

    A fuel nozzle assembly for use with a turbine engine is described herein. The fuel nozzle assembly includes a plurality of fuel nozzles positioned within an air plenum defined by a casing. Each of the plurality of fuel nozzles is coupled to a combustion liner defining a combustion chamber. Each of the plurality of fuel nozzles includes a housing that includes an inner surface that defines a cooling fluid plenum and a fuel plenum therein, and a plurality of mixing tubes extending through the housing. Each of the mixing tubes includes an inner surface defining a flow channel extending between the air plenum and the combustion chamber. At least one mixing tube of the plurality of mixing tubes including at least one cooling fluid aperture for channeling a flow of cooling fluid from the cooling fluid plenum to the flow channel.

  20. Thermal behavior of an active electronic dome contained in a tilted hemispherical enclosure and subjected to nanofluidic Cu-water free convection

    NASA Astrophysics Data System (ADS)

    Baïri, A.; Laraqi, N.; Adeyeye, K.

    2018-03-01

    This study examines the thermal behavior of a hemispherical electronic component subjected to a natural nanofluidic convective flow. During its operation, this active dome generates a high power, leading to Rayleigh number values reaching 4.56×109 . It is contained in a hemispherical enclosure and the space between the dome and the cupola is filled with a monophasic water-based copper nanofluid whose volume fraction varies between 0 (pure water) and 10%. According to the intended application, the disc of the enclosure may be tilted at an angle ranging from 0° to 180° (horizontal disc with dome facing upwards and downwards, respectively). The numerical solution has been obtained by means of the volume control method. The surface average temperature of the dome has been determined for many configurations obtained by combining the Rayleigh number, the cavity's tilt angle and the nanofluid volume fraction which vary in wide ranges. The temperature fields presented for several configurations confirm the effects of natural convection. The results clearly highlight the effects of these influence parameters on the thermal state of the assembly. The study shows that some combinations of the Rayleigh-tilt angle-volume fraction are incompatible with a normal operating system at steady state and that a thermoregulation is required. The correlation of the temperature-Rayleigh-Prandtl-angle type proposed in this work allows to easily carry out the thermal dimensioning of the considered electronic assembly.

  1. One-Step Laser Patterned Highly Uniform Reduced Graphene Oxide Thin Films for Circuit-Enabled Tattoo and Flexible Humidity Sensor Application.

    PubMed

    Park, Rowoon; Kim, Hyesu; Lone, Saifullah; Jeon, Sangheon; Kwon, Young Woo; Shin, Bosung; Hong, Suck Won

    2018-06-06

    The conversion of graphene oxide (GO) into reduced graphene oxide (rGO) is imperative for the electronic device applications of graphene-based materials. Efficient and cost-effective fabrication of highly uniform GO films and the successive reduction into rGO on a large area is still a cumbersome task through conventional protocols. Improved film casting of GO sheets on a polymeric substrate with quick and green reduction processes has a potential that may establish a path to the practical flexible electronics. Herein, we report a facile deposition process of GO on flexible polymer substrates to create highly uniform thin films over a large area by a flow-enabled self-assembly approach. The self-assembly of GO sheets was successfully performed by dragging the trapped solution of GO in confined geometry, which consisted of an upper stationary blade and a lower moving substrate on a motorized translational stage. The prepared GO thin films could be selectively reduced and facilitated from the simple laser direct writing process for programmable circuit printing with the desired configuration and less sample damage due to the non-contact mode operation without the use of photolithography, toxic chemistry, or high-temperature reduction methods. Furthermore, two different modes of the laser operating system for the reduction of GO films turned out to be valuable for the construction of novel graphene-based high-throughput electrical circuit boards compatible with integrating electronic module chips and flexible humidity sensors.

  2. Micelle-assisted fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres

    NASA Astrophysics Data System (ADS)

    Xiong, Yujie; Xie, Yi; Li, Zhengquan; Li, Xiaoxu; Zhang, Rong

    2003-11-01

    The fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres via a micelle-assisted route is reported, in which necklace-shaped assembly of amorphous MoS 3 nanospheres is driven by the aggregation transformation of surfactants at low temperatures and then is transformed to the assembly of target fullerene-like MoS 2 by annealing. This nanostructure is a type of oriented assembly of inorganic fullerene-like structures, which is confirmed by the transmission electron microscopy and high-resolution transmission electron microscopy analysis. The optical absorption property is investigated to show their inorganic fullerene-like structure and uniform shape.

  3. Measurements of hot electrons in the Extrap T1 reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Welander, A.; Bergsåker, H.

    1998-02-01

    The presence of an anisotropic energetic electron population in the edge region is a characteristic feature of reversed-field pinch (RFP) plasmas. In the Extrap T1 RFP, the anisotropic, parallel heat flux in the edge region measured by calorimetry was typically several hundred 0741-3335/40/2/011/img1. To gain more insight into the origin of the hot electron component and to achieve time resolution of the hot electron flow during the discharge, a target probe with a soft x-ray monitor was designed, calibrated and implemented. The x-ray emission from the target was measured with a surface barrier detector covered with a set of different x-ray filters to achieve energy resolution. A calibration in the range 0.5-2 keV electron energy was performed on the same target and detector assembly using a 0741-3335/40/2/011/img2 cathode electron gun. The calibration data are interpolated and extrapolated numerically. A directional asymmetry of more than a factor of 100 for the higher energy electrons is observed. The hot electrons are estimated to constitute 10% of the total electron density at the edge and their energy distribution is approximated by a half-Maxwellian with a temperature slightly higher than the central electron temperature. Scalings with plasma current, as well as correlations with local 0741-3335/40/2/011/img3 measurements and radial dependences, are presented.

  4. High-Rate Assembly of Nanomaterials on Insulating Surfaces Using Electro-Fluidic Directed Assembly.

    PubMed

    Yilmaz, Cihan; Sirman, Asli; Halder, Aditi; Busnaina, Ahmed

    2017-08-22

    Conductive or semiconducting nanomaterials-based applications such as electronics and sensors often require direct placement of such nanomaterials on insulating surfaces. Most fluidic-based directed assembly techniques on insulating surfaces utilize capillary force and evaporation but are diffusion limited and slow. Electrophoretic-based assembly, on the other hand, is fast but can only be utilized for assembly on a conductive surface. Here, we present a directed assembly technique that enables rapid assembly of nanomaterials on insulating surfaces. The approach leverages and combines fluidic and electrophoretic assembly by applying the electric field through an insulating surface via a conductive film underneath. The approach (called electro-fluidic) yields an assembly process that is 2 orders of magnitude faster compared to fluidic assembly. By understanding the forces on the assembly process, we have demonstrated the controlled assembly of various types of nanomaterials that are conducting, semiconducting, and insulating including nanoparticles and single-walled carbon nanotubes on insulating rigid and flexible substrates. The presented approach shows great promise for making practical devices in miniaturized sensors and flexible electronics.

  5. Membrane module assembly

    DOEpatents

    Kaschemekat, J.

    1994-03-15

    A membrane module assembly is described which is adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation. 2 figures.

  6. Elucidating the role of methyl viologen as a scavenger of photoactivated electrons from photosystem I under aerobic and anaerobic conditions.

    PubMed

    Bennett, Tyler; Niroomand, Hanieh; Pamu, Ravi; Ivanov, Ilia; Mukherjee, Dibyendu; Khomami, Bamin

    2016-03-28

    We present detailed electrochemical investigations into the role of dissolved O2 in electrolyte solutions in scavenging photoactivated electrons from a uniform photosystem I (PS I) monolayer assembled on alkanethiolate SAM (self-assembled monolayer)/Au surfaces while using methyl viologen (MV(2+)) as the redox mediator. To this end, we report results for direct measurements of light induced photocurrent from uniform monolayer assemblies of PS I on C9 alkanethiolate SAM/Au surfaces. These measurements, apart from demonstrating the ability of dissolved O2 in the electrolyte medium to act as an electron scavenger, also reveal its essential role in driving the solution-phase methyl viologen to initiate light-induced directional electron transfer from an electron donor surface (Au) via surface assembled PS I trimers. Specifically, our systematic electrochemical measurements have revealed that the dissolved O2 in aqueous electrolyte solutions form a complex intermediate species with MV that plays the essential role in mediating redox pathways for unidirectional electron transfer processes. This critical insight into the redox-mediated electron transfer pathways allows for rational design of electron scavengers through systematic tuning of mediator combinations that promote such intermediate formation. Our current findings facilitate the incorporation of PS I-based bio-hybrid constructs as photo-anodes in future photoelectrochemical cells and bio-electronic devices.

  7. Chemical and charge transfer studies on interfaces of a conjugated polymer and ITO

    NASA Astrophysics Data System (ADS)

    David, Tanya M. S.; Arasho, Wondwosson; Smith, O'Neil; Hong, Kunlun; Bonner, Carl; Sun, Sam-Shajing

    2017-08-01

    Conjugated oligomers and polymers are very attractive for potential future plastic electronic and opto-electronic device applications such as plastic photo detectors and solar cells, thermoelectric devices, field effect transistors, and light emitting diodes. Understanding and optimizing charge transport between an active polymer layer and conductive substrate is critical to the optimization of polymer based electronic and opto-electronic devices. This study focused on the design, synthesis, self-assembly, and electron transfers and transports of a phosphonic acid end-functionalized polyphenylenevinylene (PPV) that was covalently attached and self-assembled onto an Indium Tin Oxide (ITO) substrate. This study demonstrated how atomic force microscopy (AFM) can be an effective characterization technique in conjunction with conventional electron transfer methods, including cyclic voltammetry (CV), towards determining electron transfer rates in polymer and polymer/conductor interface systems. This study found that the electron transfer rates of covalently attached and self-assembled films were much faster than the spin coated films. The knowledge from this study can be very useful for designing potential polymer based electronic and opto-electronic thin film devices.

  8. Flow visualization techniques in the Airborne Laser Laboratory program

    NASA Technical Reports Server (NTRS)

    Walterick, R. E.; Vankuren, J. T.

    1980-01-01

    A turret/fairing assembly for laser applications was designed and tested. Wind tunnel testing was conducted using flow visualization techniques. The techniques used have included the methods of tufting, encapsulated liquid crystals, oil flow, sublimation and schlieren and shadowgraph photography. The results were directly applied to the design of fairing shapes for minimum drag and reduced turret buffet. In addition, the results are of primary importance to the study of light propagation paths in the near flow field of the turret cavity. Results indicate that the flow in the vicinity of the turret is an important factor for consideration in the design of suitable turret/fairing or aero-optic assemblies.

  9. Long-life leak standard assembly

    DOEpatents

    Basford, James A.; Mathis, John E.; Wright, Harlan C.

    1982-01-01

    The present invention is directed to a portable leak standard assembly which is capable of providing a stream of high-purity reference gas at a virtually constant flow rate over an extensive period of time. The leak assembly comprises a high pressure reservoir coupled to a metal leak valve through a valve-controlled conduit. A reproducible leak valve useful in this assembly is provided by a metal tube crimped with a selected pressure loading for forming an orifice in the tube with this orifice being of a sufficient size to provide the selected flow rate. The leak valve assembly is formed of metal so that it can be "baked-out" in a vacuum furnace to rid the reservoir and attendent components of volatile impurities which reduce the efficiency of the leak standard.

  10. Long-life leak standard assembly. [Patent application

    DOEpatents

    Basford, J.A.; Mathis, J.E.; Wright, H.C.

    1980-11-12

    The present invention is directed to a portable leak standard assembly which is capable of providing a stream of high-purity reference gas at a virtually constant flow rate over an extensive period of time. The leak assembly comprises a high pressure reservoir coupled to a metal leak valve through a valve-controlled conduit. A reproducible leak valve useful in this assembly is provided by a metal tube crimped with a selected pressure loading for forming an orifice in the tube with this orifice being of a sufficient size to provide the selected flow rate. The leak valve assembly is formed of metal so that it can be baked-out in a vacuum furnace to rid the reservoir and attendent components of volatile impurities which reduce the efficiency of the leak standard.

  11. Change the Collective Behaviors of Colloidal Motors by Tuning Electrohydrodynamic Flow at the Subparticle Level.

    PubMed

    Yang, Xingfu; Wu, Ning

    2018-01-23

    As demonstrated in biological systems, breaking the symmetry of surrounding hydrodynamic flow is the key to achieve autonomous locomotion of microscopic objects. In recent years, a variety of synthetic motors have been developed based on different propulsion mechanisms. Most work, however, focuses on the propulsion of individual motors. Here, we study the collective behaviors of colloidal dimers actuated by a perpendicularly applied AC electric field, which controls the electrohydrodynamic flow at subparticle levels. Although these motors experience strong dipolar repulsion from each other and are highly active, surprisingly, they assemble into a family of stable planar clusters with handedness. We show that this type of unusual structure arises from the contractile hydrodynamic flow around small lobes but extensile flow around the large lobes. We further reveal that the collective behavior, assembled structure, and assembly dynamics of these motors all depend on the specific directions of electrohydrodynamic flow surrounding each lobe of the dimers. By fine-tuning the surface charge asymmetry on particles and salt concentration in solution, we demonstrate the ability to control their collective behaviors on demand. This novel type of active assembly via hydrodynamic interactions has the potential to grow monodisperse clusters in a self-limiting fashion. The underlying concept revealed in this work should also apply to other types of active and asymmetric particles.

  12. Active turbulence in a gas of self-assembled spinners

    PubMed Central

    Kokot, Gašper; Das, Shibananda; Winkler, Roland G.; Aranson, Igor S.; Snezhko, Alexey

    2017-01-01

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air–liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale. PMID:29158382

  13. Electron microscopic analysis of rotavirus assembly-replication intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M., E-mail: mcdonaldsa@vtc.vt.edu

    2015-03-15

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally,more » using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy.« less

  14. Magneto-optical response of InAs lens-shaped self-assembled quantum dots

    NASA Technical Reports Server (NTRS)

    Klimeck, G.; Oyafuso, F.; Lee, S.; Allmen, P. von

    2003-01-01

    In this work, we demonstrate a realistic modeling of the electronic structure for InAs self-assembled quantum dots and investigate the magneto-optical response, i.e., Zeeman splitting and transition rates between electron and hole levels.

  15. Lipogels: surface-adherent composite hydrogels assembled from poly(vinyl alcohol) and liposomes

    NASA Astrophysics Data System (ADS)

    Jensen, Bettina E. B.; Hosta-Rigau, Leticia; Spycher, Philipp R.; Reimhult, Erik; Städler, Brigitte; Zelikin, Alexander N.

    2013-07-01

    Drug-eluting engineered surface coatings are of paramount importance for many biomedical applications from implantable devices to tissue engineering. Herein, we present the assembly of lipogels, composite physical hydrogels assembled from poly(vinyl alcohol) and liposomes using thiol-disulfide exchange between end group modified PVA and thiocholesterol containing liposomes, and the response of adhering cells to these coatings. We demonstrate the controlled loading of liposomes into the polymer matrix and the preserved mechanical properties of the lipogels. Furthermore, the lipogels are successfully rendered cell adhesive by incorporation of poly(l-lysine) into the PVA polymer matrix or by poly(dopamine) coating of the lipogels. The successful lipid uptake from the lipogels by macrophages, hepatocytes, and myoblasts was monitored by flow cytometry. Finally, the delivery of active cargo, paclitaxel, to adherent myoblasts is shown, thus illustrating the potential of the lipogels as a drug eluting interface for biomedical applications.Drug-eluting engineered surface coatings are of paramount importance for many biomedical applications from implantable devices to tissue engineering. Herein, we present the assembly of lipogels, composite physical hydrogels assembled from poly(vinyl alcohol) and liposomes using thiol-disulfide exchange between end group modified PVA and thiocholesterol containing liposomes, and the response of adhering cells to these coatings. We demonstrate the controlled loading of liposomes into the polymer matrix and the preserved mechanical properties of the lipogels. Furthermore, the lipogels are successfully rendered cell adhesive by incorporation of poly(l-lysine) into the PVA polymer matrix or by poly(dopamine) coating of the lipogels. The successful lipid uptake from the lipogels by macrophages, hepatocytes, and myoblasts was monitored by flow cytometry. Finally, the delivery of active cargo, paclitaxel, to adherent myoblasts is shown, thus illustrating the potential of the lipogels as a drug eluting interface for biomedical applications. Electronic supplementary information (ESI) available: Paclitaxel calibration curve and images of DIC of PLL blended PVA physical hydrogels, lipogel FRAP, and different cell lines attached to lipogels are available. See DOI: 10.1039/c3nr01662e

  16. Photogeneration of Charge Carriers in Bilayer Assemblies of Conjugated Rigid-Rod Polymers

    DTIC Science & Technology

    1994-07-08

    photoinduced electron transfer and exciplex formation at the bilayer interface. Thus photocarrier generation on photoexcitation of the conjugated rigid...rod polymers in the bilayer occurs by photoinduced electron transfer, forming intermolecular exciplexes which dissociate efficiently in electric field...photogeneration, conjugated rigid-rod polymers, is. MACI COD bilayer assemblies, electron transfer, exciplexes . 11. SEOJUTY CLASUICA 10. 51(11MIE CLASSIMIAVION

  17. A 3-component laser-Doppler velocimeter data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Bell, J. H.; Mehta, R. D.

    1986-01-01

    This report describes a laser Doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows. All the mean velocities, Reynolds stresses, and higher-order products can then be evaluated. The approach followed is to split one of the colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. In this report, the laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and assembly languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.

  18. Photoinduced triplet-triplet energy transfer in a 2-ureido-4(1H)-pyrimidinone-bridged, quadruply hydrogen-bonded ferrocene-fullerene assembly.

    PubMed

    Feng, Ke; Yu, Mao-Lin; Wang, Su-Min; Wang, Ge-Xia; Tung, Chen-Ho; Wu, Li-Zhu

    2013-01-14

    2-Ureido-4(1H)-pyrimidinone-bridged ferrocene-fullerene assembly I is designed and synthesized for elaborating the photoinduced electron-transfer processes in self-complementary quadruply hydrogen-bonded modules. Unexpectedly, steady-state and time-resolved spectroscopy reveal an inefficient electron-transfer process from the ferrocene to the singlet or triplet excited state of the fullerene, although the electron-transfer reactions are thermodynamically feasible. Instead, an effective intra-assembly triplet-triplet energy-transfer process is found to be operative in assembly I with a rate constant of 9.2×10(5) s(-1) and an efficiency of 73% in CH(2)Cl(2) at room temperature. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-11-07

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  20. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-01-01

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  1. Automotive Power Flow System; Auto Mechanics I: 9043.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive power flow system course sets the foundation in the theory of operation of the standard and automatic transmission, clutch assemblies, drive-line and rear axle assemblies. This is a one or two quinmester credit course covering 45 clock hours. In the fourth quinmester course in the tenth year, instruction consists of lectures,…

  2. Harnessing Thin-Film Continuous-Flow Assembly Lines.

    PubMed

    Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L

    2016-07-25

    Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebe, David J; Fox, Timothy A

    A fuel nozzle assembly for use in a combustor apparatus of a gas turbine engine. An outer housing of the fuel nozzle assembly includes an inner volume and provides a direct structural connection between a duct structure and a fuel manifold. The duct structure defines a flow passage for combustion gases flowing within the combustor apparatus. The fuel manifold defines a fuel supply channel therein in fluid communication with a source of fuel. A fuel injector of the fuel nozzle assembly is provided in the inner volume of the outer housing and defines a fuel passage therein. The fuel passagemore » is in fluid communication with the fuel supply channel of the fuel manifold for distributing the fuel from the fuel supply channel into the flow passage of the duct structure.« less

  4. Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanne, A.; Movva, H. C. P.; Kang, S.

    We investigate poly(methyl methacrylate) (PMMA) as a low thermal budget organic gate dielectric for graphene field effect-transistors (GFETs) based on a simple process flow. We show that high temperature baking steps above the glass transition temperature (∼130 °C) can leave a self-assembled, thin PMMA film on graphene, where we get a gate dielectric almost for “free” without additional atomic layer deposition type steps. Electrical characterization of GFETs with PMMA as a gate dielectric yields a dielectric constant of k = 3.0. GFETs with thinner PMMA dielectrics have a lower dielectric constant due to decreased polarization arising from neutralization of dipoles and charged carriersmore » as baking temperatures increase. The leakage through PMMA gate dielectric increases with decreasing dielectric thickness and increasing electric field. Unlike conventional high-k gate dielectrics, such low-k organic gate dielectrics are potentially attractive for devices such as the proposed Bilayer pseudoSpin Field-Effect Transistor or flexible high speed graphene electronics.« less

  5. A simple counter-flow cooling system for a supersonic free-jet beam source assembly

    NASA Astrophysics Data System (ADS)

    Barr, M.; Fahy, A.; Martens, J.; Dastoor, P. C.

    2016-05-01

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  6. A simple counter-flow cooling system for a supersonic free-jet beam source assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barr, M.; Fahy, A.; Martens, J.

    2016-05-15

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  7. Self-assembly of an electronically conductive network through microporous scaffolds.

    PubMed

    Sebastian, H Bri; Bryant, Steven L

    2017-06-15

    Electron transfer spanning significant distances through a microporous structure was established via the self-assembly of an electronically conductive iridium oxide nanowire matrix enveloping the pore walls. Microporous formations were simulated using two scaffold materials of varying physical and chemical properties; paraffin wax beads, and agar gel. Following infiltration into the micropores, iridium nanoparticles self-assembled at the pore wall/ethanol interface. Subsequently, cyclic voltammetry was employed to electrochemically crosslink the metal, erecting an interconnected, and electronically conductive metal oxide nanowire matrix. Electrochemical and spectral characterization techniques confirmed the formation of oxide nanowire matrices encompassing lengths of at least 1.6mm, 400× distances previously achieved using iridium nanoparticles. Nanowire matrices were engaged as biofuel cell anodes, where electrons were donated to the nanowires by a glucose oxidizing enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Variable flow control for a nuclear reactor control rod

    DOEpatents

    Carleton, Richard D.; Bhattacharyya, Ajay

    1978-01-01

    A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.

  9. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    PubMed

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Co-Flow Hollow Cathode Technology

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Goebel, Dan M.

    2011-01-01

    Hall thrusters utilize identical hollow cathode technology as ion thrusters, yet must operate at much higher mass flow rates in order to efficiently couple to the bulk plasma discharge. Higher flow rates are necessary in order to provide enough neutral collisions to transport electrons across magnetic fields so that they can reach the discharge. This higher flow rate, however, has potential life-limiting implications for the operation of the cathode. A solution to the problem involves splitting the mass flow into the hollow cathode into two streams, the internal and external flows. The internal flow is fixed and set such that the neutral pressure in the cathode allows for a high utilization of the emitter surface area. The external flow is variable depending on the flow rate through the anode of the Hall thruster, but also has a minimum in order to suppress high-energy ion generation. In the co-flow hollow cathode, the cathode assembly is mounted on thruster centerline, inside the inner magnetic core of the thruster. An annular gas plenum is placed at the base of the cathode and propellant is fed throughout to produce an azimuthally symmetric flow of gas that evenly expands around the cathode keeper. This configuration maximizes propellant utilization and is not subject to erosion processes. External gas feeds have been considered in the past for ion thruster applications, but usually in the context of eliminating high energy ion production. This approach is adapted specifically for the Hall thruster and exploits the geometry of a Hall thruster to feed and focus the external flow without introducing significant new complexity to the thruster design.

  11. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    NASA Astrophysics Data System (ADS)

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  12. Cell-free protein synthesis and assembly on a biochip

    NASA Astrophysics Data System (ADS)

    Heyman, Yael; Buxboim, Amnon; Wolf, Sharon G.; Daube, Shirley S.; Bar-Ziv, Roy H.

    2012-06-01

    Biologically active complexes such as ribosomes and bacteriophages are formed through the self-assembly of proteins and nucleic acids. Recapitulating these biological self-assembly processes in a cell-free environment offers a way to develop synthetic biodevices. To visualize and understand the assembly process, a platform is required that enables simultaneous synthesis, assembly and imaging at the nanoscale. Here, we show that a silicon dioxide grid, used to support samples in transmission electron microscopy, can be modified into a biochip to combine in situ protein synthesis, assembly and imaging. Light is used to pattern the biochip surface with genes that encode specific proteins, and antibody traps that bind and assemble the nascent proteins. Using transmission electron microscopy imaging we show that protein nanotubes synthesized on the biochip surface in the presence of antibody traps efficiently assembled on these traps, but pre-assembled nanotubes were not effectively captured. Moreover, synthesis of green fluorescent protein from its immobilized gene generated a gradient of captured proteins decreasing in concentration away from the gene source. This biochip could be used to create spatial patterns of proteins assembled on surfaces.

  13. Crafting threads of diblock copolymer micelles via flow-enabled self-assembly.

    PubMed

    Li, Bo; Han, Wei; Jiang, Beibei; Lin, Zhiqun

    2014-03-25

    Hierarchically assembled amphiphilic diblock copolymer micelles were exquisitely crafted over large areas by capitalizing on two concurrent self-assembling processes at different length scales, namely, the periodic threads composed of a monolayer or a bilayer of diblock copolymer micelles precisely positioned by flow-enabled self-assembly (FESA) on the microscopic scale and the self-assembly of amphiphilic diblock copolymer micelles into ordered arrays within an individual thread on the nanometer scale. A minimum spacing between two adjacent threads λmin was observed. A model was proposed to rationalize the relationship between the thread width and λmin. Such FESA of diblock copolymer micelles is remarkably controllable and easy to implement. It opens up possibilities for lithography-free positioning and patterning of diblock copolymer micelles for various applications in template fabrication of periodic inorganic nanostructures, nanoelectronics, optoelectronics, magnetic devices, and biotechnology.

  14. Electronic simulation of a barometric pressure sensor for the meteorological monitor assembly

    NASA Technical Reports Server (NTRS)

    Guiar, C. N.; Duff, L. W.

    1982-01-01

    An analysis of the electronic simulation of barometric pressure used to self-test the counter electronics of the digital barometer is presented. The barometer is part of the Meteorological Monitor Assembly that supports navigation in deep space communication. The theory of operation of the digital barometer, the design details, and the verification procedure used with the barometric pressure simulator are presented.

  15. Molecular Basis for Electron Flow Within Metal-and Electrode-Reducing Biofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Daniel R.

    2016-11-01

    Electrochemical, spectral, genetic, and biochemical techniques were developed to reveal that a diverse suite of redox proteins and structural macromolecules outside the cell work together to move electrons long distances between Geobacter cells to metals and electrodes. In this project, we greatly expanded the known participants in the electron transfer pathway of Geobacter. For example, in addition to well-studied pili, polysaccharides contribute to anchoring, different cytochromes are required under different conditions, strategies change with redox potential, and the localization of these components can change depending on where cells are located in a biofilm. By inventing new electrodes compatible with real-timemore » spectral measurements, we were able to visualize the redox status of biofilms in action, leading to a hypothesis that long-distance electron transfer is ultimately limiting in these systems and redox potentials change within biofilms. The goals of this project were met, as we were able to 1) identify new elements crucial to the expression, assembly and function of the extracellular electron transfer phenotype 2) expand spectral and electrochemical techniques to define the mechanism and route of electron transfer through the matrix, and 3) combine this knowledge to build the next generation of genetic tools for study of this complex process.« less

  16. Cross-flow-assembled ultrathin and robust graphene oxide membranes for efficient molecule separation

    NASA Astrophysics Data System (ADS)

    Ying, Yulong; Ying, Wen; Guo, Yi; Peng, Xinsheng

    2018-04-01

    A graphene oxide (GO) membrane is promising for molecule separation. However, it is still a big challenge to achieve highly stable pristine GO membranes, especially in water. In this work, an ultrathin and robust GO membrane is assembled via the cross-flow method. The as-prepared 12 nm thick GO membrane (GOCF membrane) presents high stability with water permeance of 1505 ± 65 litres per hour per square meter per bar (LHM bar-1) and Evans Blue (EB) rejection of 98.7 ± 0.4%, 21-fold enhancement in water permeance compared with that of a pristine GO membrane (50-70 LHM bar-1) and 100 times higher than that of commercial ultrafiltration membranes (15 LHM.bar-1, GE2540F30, MWCO 1000, GE Co., Ltd) with similar rejection. Attributed to the surface cross-flow, the GO nanosheets will be refolded, crumpled, or wrinkled, resulting in a very strong inter-locking structure among the GO membrane, which significantly enhances the stability and facilitates their separation performance. This cross-flow assembling technique is also easily extended to assemble GO membranes onto other various backing filter supports. Based on the Donnan effect and size sieving mechanism, selective membrane separation of dyes with a similar molecular structure from their mixture (such as Rhodamine B (RhB) and Rose Bengal, and RhB and EB) are achieved with a selectivity of 133 ± 10 and 227 ± 15, respectively. Assembly of this ultrathin GO membrane with high stability and separation performance, via a simple cross-flow method, shows great potential for water purification.

  17. Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.

    PubMed

    Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J

    2010-02-02

    Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.

  18. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery.

    PubMed

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-02-06

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on.

  19. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery

    PubMed Central

    Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin

    2014-01-01

    In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on. PMID:24500376

  20. Recent advances in self-assembled monolayers based biomolecular electronic devices.

    PubMed

    Arya, Sunil K; Solanki, Pratima R; Datta, Monika; Malhotra, Bansi D

    2009-05-15

    Self-assembled monolayers (SAMs) have aroused much interest due to their potential applications in biosensors, biomolecular electronics and nanotechnology. This has been largely attributed to their inherent ordered arrangement and controllable properties. SAMs can be formed by chemisorption of organic molecules containing groups like thiols, disulphides, amines, acids or silanes, on desired surfaces and can be used to fabricate biomolecular electronic devices. We focus on recent applications of organosulphur compounds (thiols) based SAMs to biomolecular electronic devices in the last about 3 years.

  1. Controlled surface-induced flows from the motion of self-assembled colloidal walkers.

    PubMed

    Sing, Charles E; Schmid, Lothar; Schneider, Matthias F; Franke, Thomas; Alexander-Katz, Alfredo

    2010-01-12

    Biological flows at the microscopic scale are important for the transport of nutrients, locomotion, and differentiation. Here, we present a unique approach for creating controlled, surface-induced flows inspired by a ubiquitous biological system, cilia. Our design is based on a collection of self-assembled colloidal rotors that "walk" along surfaces in the presence of a rotating magnetic field. These rotors are held together solely by magnetic forces that allow for reversible assembly and disassembly of the chains. Furthermore, rotation of the magnetic field allows for straightforward manipulation of the shape and motion of these chains. This system offers a simple and versatile approach for designing microfluidic devices as well as for studying fundamental questions in cooperative-driven motion and transport at the microscopic level.

  2. Regenerator cross arm seal assembly

    DOEpatents

    Jackman, Anthony V.

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  3. Decorating multi-walled carbon nanotubes with quantum dots for construction of multi-color fluorescent nanoprobes.

    PubMed

    Jia, Nengqin; Lian, Qiong; Tian, Zhong; Duan, Xin; Yin, Min; Jing, Lihong; Chen, Shouhui; Shen, Hebai; Gao, Mingyuan

    2010-01-29

    Novel multi-color fluorescent nanoprobes were prepared by electrostatically assembling differently sized CdTe quantum dots on polyethylenimine (PEI) functionalized multi-walled carbon nanotubes (MWNTs). The structural and optical properties of the nano-assemblies (MWNTs-PEI-CdTe) were characterized by transmission electron microscopy (TEM), electron diffraction spectra (EDS), Raman spectroscopy, confocal microscopy and photoluminescence spectroscopy (PL), respectively. Electrochemical impedance spectroscopy (EIS) was also applied to investigate the electrostatic assembling among oxidized MWNTs, PEI and CdTe. Furthermore, confocal fluorescence microscopy was used to monitor the nano-assemblies' delivery into tumor cells. It was found that the nano-assemblies exhibit efficient intracellular transporting and strong intracellular tracking. These properties would make this luminescent nano-assembly an excellent building block for the construction of intracellular nanoprobes, which could hold great promise for biomedical applications.

  4. VETA-1 x ray detection system

    NASA Technical Reports Server (NTRS)

    Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.

    1992-01-01

    The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.

  5. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyerlein, K. R.; Heymann, M.; Kirian, R.

    Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injectionmore » molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.« less

  6. Active turbulence in a gas of self-assembled spinners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  7. Active turbulence in a gas of self-assembled spinners

    DOE PAGES

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.; ...

    2017-11-20

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  8. Occupational Education for Students with Special Needs: Electronic Assembly.

    ERIC Educational Resources Information Center

    Nassau County Board of Cooperative Educational Services, Westbury, NY.

    This curriculum resource guide on electronic assembly is one of a series of seventeen specialized curriculum guides for occupational education of the marginal, handicapped, or special needs occupational education student. The guide begins with six behavior clusters that contain a series of forty-two instructional topics designed to teach…

  9. Water driven turbine/brush pipe cleaner

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J. (Inventor)

    1995-01-01

    Assemblies are disclosed for cleaning the inside walls of pipes and tubes. A first embodiment includes a small turbine with angled blades axially mounted on one end of a standoff support. An O-ring for stabilizing the assembly within the pipe is mounted in a groove within the outer ring. A replaceable circular brush is fixedly mounted on the opposite end of the standoff support and can be used for cleaning tubes and pipes of various diameters, lengths and configurations. The turbine, standoff support, and brush spin in unison relative to a hub bearing that is fixedly attached to a wire upstream of the assembly. The nonrotating wire is for retaining the assembly in tension and enabling return of the assembly to the pipe entrance. The assembly is initially placed in the pipe or tube to be cleaned. A pressurized water or solution source is provided at a required flow-rate to propel the assembly through the pipe or tube. The upstream water pressure propels and spins the turbine, standoff support and brush. The rotating brush combined with the solution cleans the inside of the pipe. The solution flows out of the other end of the pipe with the brush rotation controlled by the flow-rate. A second embodiment is similar to the first embodiment but instead includes a circular shaped brush with ring backing mounted in the groove of the exterior ring of the turbine, and also reduces the size of the standoff support or eliminates the standoff support.

  10. System Regulates the Water Contents of Fuel-Cell Streams

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Lazaroff, Scott

    2005-01-01

    An assembly of devices provides for both humidification of the reactant gas streams of a fuel cell and removal of the product water (the water generated by operation of the fuel cell). The assembly includes externally-sensing forward-pressure regulators that supply reactant gases (fuel and oxygen) at variable pressures to ejector reactant pumps. The ejector supply pressures depend on the consumption flows. The ejectors develop differential pressures approximately proportional to the consumption flow rates at constant system pressure and with constant flow restriction between the mixer-outlet and suction ports of the ejectors. For removal of product water from the circulating oxygen stream, the assembly includes a water/gas separator that contains hydrophobic and hydrophilic membranes. The water separator imposes an approximately constant flow restriction, regardless of the quality of the two-phase flow that enters it from the fuel cell. The gas leaving the water separator is nearly 100 percent humid. This gas is returned to the inlet of the fuel cell along with a quantity of dry incoming oxygen, via the oxygen ejector, thereby providing some humidification.

  11. Shaft seal assembly and method

    NASA Technical Reports Server (NTRS)

    Keba, John E. (Inventor)

    2007-01-01

    A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.

  12. Power module assembly with reduced inductance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Terence G.; Stancu, Constantin C.; Jaksic, Marko

    A power module assembly has a plurality of electrically conducting layers, including a first layer and a third layer. One or more electrically insulating layers are operatively connected to each of the plurality of electrically conducting layers. The electrically insulating layers include a second layer positioned between and configured to electrically isolate the first and the third layers. The first layer is configured to carry a first current flowing in a first direction. The third layer is configured to carry a second current flowing in a second direction opposite to the first direction, thereby reducing an inductance of the assembly.more » The electrically insulating layers may include a fourth layer positioned between and configured to electrically isolate the third layer and a fifth layer. The assembly results in a combined substrate and heat sink structure. The assembly eliminates the requirements for connections between separate substrate and heat sink structures.« less

  13. Packed rod neutron shield for fast nuclear reactors

    DOEpatents

    Eck, John E.; Kasberg, Alvin H.

    1978-01-01

    A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.

  14. Flow-oriented dynamic assembly algorithm in TCP over OBS networks

    NASA Astrophysics Data System (ADS)

    Peng, Shuping; Li, Zhengbin; He, Yongqi; Xu, Anshi

    2008-11-01

    OBS is envisioned as a promising infrastructure for the next generation optical network, and TCP is likely to be the dominant transport protocol in the next generation network. Therefore, it is necessary to evaluate the performance of TCP over OBS networks. The assembly at the ingress edge nodes will impact the network performance. There have been several Fixed Assembly Period (FAP) algorithms proposed. However, the assembly period in FAP is fixed, and it can not be adjusted according to the network condition. Moreover, in FAP, the packets from different TCP sources are assembled into one burst. In that case, if such a burst is dropped, the TCP windows of the corresponding sources will shrink and the throughput will be reduced. In this paper, we introduced a flow-oriented Dynamic Assembly Period (DAP) algorithm for TCP over OBS networks. Through comparing the previous and current burst lengths, DAP can track the variation of TCP window, and update the assembly period dynamically for the next assembly. The performance of DAP is evaluated over a single TCP connection and multiple connections, respectively. The simulation results show that DAP performs better than FAP at almost the whole range of burst dropping probability.

  15. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  16. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  17. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    1998-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  18. An Electronic Cigarette Vaping Machine for the Characterization of Aerosol Delivery and Composition.

    PubMed

    Havel, Christopher M; Benowitz, Neal L; Jacob, Peyton; St Helen, Gideon

    2017-10-01

    Characterization of aerosols generated by electronic cigarettes (e-cigarettes) is one method used to evaluate the safety of e-cigarettes. While some researchers have modified smoking machines for e-cigarette aerosol generation, these machines are either not readily available, not automated for e-cigarette testing or have not been adequately described. The objective of this study was to build an e-cigarette vaping machine that can be used to test, under standard conditions, e-liquid aerosolization and nicotine and toxicant delivery. The vaping machine was assembled from commercially available parts, including a puff controller, vacuum pump, power supply, switch to control current flow to the atomizer, three-way value to direct air flow to the atomizer, and three gas dispersion tubes for aerosol trapping. To validate and illustrate its use, the variation in aerosol generation was assessed within and between KangerTech Mini ProTank 3 clearomizers, and the effect of voltage on aerosolization and toxic aldehyde generation were assessed. When using one ProTank 3 clearomizer and different e-liquid flavors, the coefficient of variation (CV) of aerosol generated ranged between 11.5% and 19.3%. The variation in aerosol generated between ProTank 3 clearomizers with different e-liquid flavors and voltage settings ranged between 8.3% and 16.3% CV. Aerosol generation increased linearly at 3-6V across e-liquids and clearomizer brands. Acetaldehyde, acrolein, and formaldehyde generation increased markedly at voltages at or above 5V. The vaping machine that we describe reproducibly aerosolizes e-liquids from e-cigarette atomizers under controlled conditions and is useful for testing of nicotine and toxicant delivery. This study describes an electronic cigarette vaping machine that was assembled from commercially available parts. The vaping machine can be replicated by researchers and used under standard conditions to generate e-cigarette aerosols and characterize nicotine and toxicant delivery. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Chiao holds an Electronic Box Assembly from the TVIS in the SM during Expedition 10

    NASA Image and Video Library

    2005-02-17

    ISS010-E-18164 (17 February 2005) --- Astronaut Leroy Chiao, Expedition 10 commander and NASA ISS science officer, holds an Electronic Box Assembly, and Violation Isolation and Stabilization (VIS) Controller Assembly, which is part of the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station (ISS). Also in view is a VIS/TM data cable and VIS/TM power cable. This box receives power and distributes it between the treadmill and the VIS subassemblies.

  20. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers

    PubMed Central

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Abstract Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlOx), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers. PMID:28634499

  1. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers.

    PubMed

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.

  2. Fuel and oxidizer valve assembly employs single solenoid actuator

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Valve assembly simultaneously starts or stops the flow of oxidizer and fuel from separate inlet channels to reaction control motors. The assembly combines an oxidizer shutoff valve and a fuel shutoff valve which are mechanically linked and operated by a single high-speed solenoid actuator.

  3. Dissecting the Structure-Function Relationship of a Fungicidal Peptide Derived from the Constant Region of Human Immunoglobulins.

    PubMed

    Ciociola, Tecla; Pertinhez, Thelma A; Giovati, Laura; Sperindè, Martina; Magliani, Walter; Ferrari, Elena; Gatti, Rita; D'Adda, Tiziana; Spisni, Alberto; Conti, Stefania; Polonelli, Luciano

    2016-04-01

    Synthetic peptides encompassing sequences related to the complementarity-determining regions of antibodies or derived from their constant region (Fc peptides) were proven to exert differential antimicrobial, antiviral, antitumor, and/or immunomodulatory activitiesin vitroand/orin vivo, regardless of the specificity and isotype of the parental antibody. Alanine substitution derivatives of these peptides exhibited unaltered, increased, or decreased candidacidal activitiesin vitro The bioactive IgG-derived Fc N10K peptide (NQVSLTCLVK) spontaneously self-assembles, a feature previously recognized as relevant for the therapeutic activity of another antibody-derived peptide. We evaluated the contribution of each residue to the peptide self-assembling capability by circular-dichroism spectroscopy. The interaction of the N10K peptide and its derivatives withCandida albicanscells was studied by confocal, transmission, and scanning electron microscopy. The apoptosis and autophagy induction profiles in yeast cells treated with the peptides were evaluated by flow cytometry, and the therapeutic efficacy against candidal infection was studied in aGalleria mellonellamodel. Overall, the results indicate a critical role for some residues in the self-assembly process and a correlation of that capability with the candidacidal activities of the peptidesin vitroand their therapeutic effectsin vivo. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Position Sensor with Integrated Signal-Conditioning Electronics on a Printed Wiring Board

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2001-01-01

    A position sensor, such as a rotary position sensor, includes the signal-conditioning electronics in the housing. The signal-conditioning electronics are disposed on a printed wiring board, which is assembled with another printed wiring board including the sensor windings to provide a sub-assembly. A mu-metal shield is interposed between the printed wiring boards to prevent magnetic interference. The sub-assembly is disposed in the sensor housing adjacent to an inductor board which turns on a shaft. The inductor board emanates an internally or externally generated excitation signal that induces a signal in the sensor windings. The induced signal represents the rotary position of the inductor board relative to the sensor winding board.

  5. Core protein cleavage by signal peptide peptidase is required for hepatitis C virus-like particle assembly

    PubMed Central

    Ait-Goughoulte, Malika; Hourioux, Christophe; Patient, Romuald; Trassard, Sylvie; Brand, Denys; Roingeard, Philippe

    2006-01-01

    SUMMARY Hepatitis C virus (HCV) core protein, expressed with a Semliki forest virus (SFV) replicon, self-assembles into HCV-like particles (HCV-LP) at the endoplasmic reticulum (ER) membrane, providing an opportunity to study HCV assembly and morphogenesis by electron microscopy. We used this model to investigate whether the processing of the HCV core protein by the signal peptide peptidase (SPP) is required for the HCV-LP assembly. We designed several mutants as there are conflicting reports concerning the cleavage of mutant proteins by SPP. Production of the only core mutant protein that escaped SPP processing led to the formation of multiple layers of electron-dense ER membrane, with no evidence of HCV-LP assembly. Our data shed light on the HCV core residues involved in SPP cleavage and suggest that this cleavage is essential for HCV assembly. PMID:16528035

  6. Characterization of conductive nanobiomaterials derived from viral assemblies by low-voltage STEM imaging and Raman scattering

    NASA Astrophysics Data System (ADS)

    Plascencia-Villa, Germán; Carreño-Fuentes, Liliana; Bahena, Daniel; José-Yacamán, Miguel; Palomares, Laura A.; Ramírez, Octavio T.

    2014-09-01

    New technologies require the development of novel nanomaterials that need to be fully characterized to achieve their potential. High-resolution low-voltage scanning transmission electron microscopy (STEM) has proven to be a very powerful technique in nanotechnology, but its use for the characterization of nanobiomaterials has been limited. Rotavirus VP6 self-assembles into nanotubular assemblies that possess an intrinsic affinity for Au ions. This property was exploited to produce hybrid nanobiomaterials by the in situ functionalization of recombinant VP6 nanotubes with gold nanoparticles. In this work, Raman spectroscopy and advanced analytical electron microscopy imaging with spherical aberration-corrected (Cs) STEM and nanodiffraction at low-voltage doses were employed to characterize nanobiomaterials. STEM imaging revealed the precise structure and arrangement of the protein templates, as well as the nanostructure and atomic arrangement of gold nanoparticles with high spatial sub-Angstrom resolution and avoided radiation damage. The imaging was coupled with backscattered electron imaging, ultra-high resolution scanning electron microscopy and x-ray spectroscopy. The hybrid nanobiomaterials that were obtained showed unique properties as bioelectronic conductive devices and showed enhanced Raman scattering by their precise arrangement into superlattices, displaying the utility of viral assemblies as functional integrative self-assembled nanomaterials for novel applications.

  7. A User’s Guide to the PLTEMP/ANL Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, A. P.; Kalimullah, M.; Feldman, E. E.

    2016-07-25

    PLTEMP/ANL V4.2 is a program that obtains a steady-state flow and temperature solution for a nuclear reactor core, or for a single fuel assembly. It is based on an evolutionary sequence of codes originally used for plate temperatures, hence “PLTEMP”, developed at Argonne National Laboratory over several decades. Fueled and non-fueled regions are modeled. Each fuel assembly consists of one or more plates or tubes separated by coolant channels. The fuel plates may have one to five layers of different materials, each with heat generation. The width of a fuel plate may be divided into multiple longitudinal stripes, each withmore » its own axial power shape. The temperature solution is effectively 2-dimensional. It begins with a one-dimensional solution across all coolant channels and fuel plates or tubes within a given fuel assembly, at the entrance to the assembly. The temperature solution is repeated for each axial node along the length of the fuel assembly. The geometry may be either slab or radial, corresponding to fuel assemblies made of a series of flat (or slightly curved) plates, or of nested tubes. A variety of thermal-hydraulic correlations are available with which to determine safety margins such as onset-of-nucleate boiling ratio(ONBR), departure from nucleate boiling ratio (DNBR), and onset of flow instability ratio (OFIR). Coolant properties for either light or heavy water are obtained from FORTRAN functions rather than from tables. The code is intended for thermal-hydraulic analysis of research reactor performance in the sub-cooled boiling regime. Both turbulent and laminar flow regimes can be modeled. Options to calculate both forced flow and natural circulation are available. A general search capability is available (Appendix XII) to greatly reduce the reactor analyst’s time.« less

  8. Design and development of a 40 kV pierce electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D., E-mail: dhruva.bhattacharjee@gmail.com

    A 40 kV electron gun is designed and developed using the Pierce configuration for the focusing electrode. Simulations were carried out using CST Particle Studio. The Gun is a thermionic type electron gun with indirect heating of the LaB6 cathode. The gun is capable of delivering a beam current of more than 500 mA at 40 kV with a beam size of less than 5 mm. The cathode assembly consists of cups and heat shields made out of Tantalum and Rhenium sheets. The cathode assembly and the electron gun was fabricated, assembled and tested on test bench for cathode conditioning,more » HV conditioning and beam characterization. This paper presents the gun design, particle simulations study, testing of the gun on test bench. (author)« less

  9. Multiple-channel ultra-violet absorbance detector for two-dimensional chromatographic separations.

    PubMed

    Lynch, Kyle B; Yang, Yu; Ren, Jiangtao; Liu, Shaorong

    2018-05-01

    In recent years, much research has gone into developing online comprehensive two-dimensional liquid chromatographic systems allowing for high peak capacities in comparable separation times to that of one-dimensional liquid chromatographic systems. However, the speed requirements in the second dimension (2nd-D) still remain one challenge for complex biological samples due to the current configuration of two column/two detector systems. Utilization of multiple 2nd-D columns can mitigate this challenge. To adapt this approach, we need a multiple channel detector. Here we develop a versatile multichannel ultraviolet (UV) light absorbance detector that is capable of simultaneously monitoring separations in 12 columns. The detector consists of a deuterium lighthouse, a flow cell assembly (a 13-channel flow cell fitted with a 13-photodiode-detection system), and a data acquisition and monitoring terminal. Through the use of a custom high optical quality furcated fiber to improve light transmission, precise machining of a flow cell to reduce background stray light through precision alignment, and sensitive electronic circuitry to reduce electronic noise through an active low pass filter, the background noise level is measured in the tens of µAU. We obtain a linear dynamic range of close to three orders of magnitude. Compared to a commercialized multichannel UV light absorbance detector like the Waters 2488 UV/Vis, our device provides an increase in channel detection while residing within the same noise region and linear range. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Extremely strong self-assembly of a bimetallic salen complex visualized at the single-molecule level.

    PubMed

    Salassa, Giovanni; Coenen, Michiel J J; Wezenberg, Sander J; Hendriksen, Bas L M; Speller, Sylvia; Elemans, Johannes A A W; Kleij, Arjan W

    2012-04-25

    A bis-Zn(salphen) structure shows extremely strong self-assembly both in solution as well as at the solid-liquid interface as evidenced by scanning tunneling microscopy, competitive UV-vis and fluorescence titrations, dynamic light scattering, and transmission electron microscopy. Density functional theory analysis on the Zn(2) complex rationalizes the very high stability of the self-assembled structures provoked by unusual oligomeric (Zn-O)(n) coordination motifs within the assembly. This coordination mode is strikingly different when compared with mononuclear Zn(salphen) analogues that form dimeric structures having a typical Zn(2)O(2) central unit. The high stability of the multinuclear structure therefore holds great promise for the development of stable self-assembled monolayers with potential for new opto-electronic materials.

  11. Electron cryo-microscopy structure of Ebola nucleoprotein reveals a mechanism for nucleocapsid-like assembly

    PubMed Central

    Su, Zhaoming; Wu, Chao; Shi, Liuqing; Luthra, Priya; Pintilie, Grigore D.; Johnson, Britney; Porter, Justin R.; Ge, Peng; Chen, Muyuan; Liu, Gai; Frederick, Thomas E.; Binning, Jennifer M.; Bowman, Gregory R.; Zhou, Z. Hong; Basler, Christopher F.; Gross, Michael L.; Leung, Daisy W.

    2018-01-01

    Summary Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22–α23. Biochemical, biophysical, and mutational analysis revealed inter-eNP contacts within α22–α23 are critical for viral NC-assembly and regulate viral RNA synthesis. These observations suggest that the N-terminus and α22–α23 of eNP function as context dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target. PMID:29474922

  12. Studying Dynamic Processes of Nano-sized Objects in Liquid using Scanning Transmission Electron Microscopy.

    PubMed

    Hermannsdörfer, Justus; de Jonge, Niels

    2017-02-05

    Samples fully embedded in liquid can be studied at a nanoscale spatial resolution with Scanning Transmission Electron Microscopy (STEM) using a microfluidic chamber assembled in the specimen holder for Transmission Electron Microscopy (TEM) and STEM. The microfluidic system consists of two silicon microchips supporting thin Silicon Nitride (SiN) membrane windows. This article describes the basic steps of sample loading and data acquisition. Most important of all is to ensure that the liquid compartment is correctly assembled, thus providing a thin liquid layer and a vacuum seal. This protocol also includes a number of tests necessary to perform during sample loading in order to ensure correct assembly. Once the sample is loaded in the electron microscope, the liquid thickness needs to be measured. Incorrect assembly may result in a too-thick liquid, while a too-thin liquid may indicate the absence of liquid, such as when a bubble is formed. Finally, the protocol explains how images are taken and how dynamic processes can be studied. A sample containing AuNPs is imaged both in pure water and in saline.

  13. Studying Dynamic Processes of Nano-sized Objects in Liquid using Scanning Transmission Electron Microscopy

    PubMed Central

    Hermannsdörfer, Justus; de Jonge, Niels

    2017-01-01

    Samples fully embedded in liquid can be studied at a nanoscale spatial resolution with Scanning Transmission Electron Microscopy (STEM) using a microfluidic chamber assembled in the specimen holder for Transmission Electron Microscopy (TEM) and STEM. The microfluidic system consists of two silicon microchips supporting thin Silicon Nitride (SiN) membrane windows. This article describes the basic steps of sample loading and data acquisition. Most important of all is to ensure that the liquid compartment is correctly assembled, thus providing a thin liquid layer and a vacuum seal. This protocol also includes a number of tests necessary to perform during sample loading in order to ensure correct assembly. Once the sample is loaded in the electron microscope, the liquid thickness needs to be measured. Incorrect assembly may result in a too-thick liquid, while a too-thin liquid may indicate the absence of liquid, such as when a bubble is formed. Finally, the protocol explains how images are taken and how dynamic processes can be studied. A sample containing AuNPs is imaged both in pure water and in saline. PMID:28190028

  14. A catalytic chiral gel microfluidic reactor assembled via dynamic covalent chemistry† †Electronic supplementary information (ESI) available: Experimental details, additional characterization and catalytic data. See DOI: 10.1039/c5sc00314h Click here for additional data file.

    PubMed Central

    Liu, Haoliang; Feng, Juan; Chen, Liuping

    2015-01-01

    A novel dynamic covalent gel strategy is reported to immobilize an asymmetric catalyst within the channels of a microfluidic flow reactor. A layer of a catalytically active Mn–salen dynamic covalent imine gel matrix was coated onto a functionalized capillary. Mn–salen active moiety was incorporated into dynamic covalent imine gel matrix via the reaction of a chiral Mn–salen dialdehyde unit with a tetraamine linker. The catalytic activity of the capillary reactor has been demonstrated in enantioselective kinetic resolution of secondary alcohols. PMID:28706652

  15. Mechanistic basis of otolith formation during teleost inner ear development

    PubMed Central

    Wu, David; Freund, Jonathan B.; Fraser, Scott E.; Vermot, Julien

    2011-01-01

    Otoliths, which are connected to stereociliary bundles in the inner ear, serve as inertial sensors for balance. In teleostei, otolith development is critically dependant on flow forces generated by beating cilia; however, the mechanism by which flow controls otolith formation remains unclear. Here, we have developed a non-invasive flow probe using optical tweezers and a viscous flow model in order to demonstrate how the observed hydrodynamics influence otolith assembly. We show that rotational flow stirs and suppresses precursor agglomeration in the core of the cilia-driven vortex. The velocity field correlates with the shape of the otolith and we provide evidence that hydrodynamics is actively involved in controlling otolith morphogenesis. An implication of this hydrodynamic effect is that otolith self-assembly is mediated by the balance between Brownian motion and cilia-driven flow. More generally, this flow feature highlights an alternative biological strategy for controlling particle localization in solution. PMID:21316594

  16. Continuous pressure letdown system

    DOEpatents

    Sprouse, Kenneth M.; Matthews, David R.; Langowski, Terry

    2010-06-08

    A continuous pressure letdown system connected to a hopper decreases a pressure of a 2-phase (gas and solid) dusty gas stream flowing through the system. The system includes a discharge line for receiving the dusty gas from the hopper, a valve, a cascade nozzle assembly positioned downstream of the discharge line, a purge ring, an inert gas supply connected to the purge ring, an inert gas throttle, and a filter. The valve connects the hopper to the discharge line and controls introduction of the dusty gas stream into the discharge line. The purge ring is connected between the discharge line and the cascade nozzle assembly. The inert gas throttle controls a flow rate of an inert gas into the cascade nozzle assembly. The filter is connected downstream of the cascade nozzle assembly.

  17. Bubble-driven light-absorbing hydrogel microrobot for the assembly of bio-objects.

    PubMed

    Hu, Wenqi; Fan, Qihui; Tonaki, Wade; Ohta, Aaron T

    2013-01-01

    Microrobots made of light-absorbing hydrogel material were actuated by optically induced thermocapillary flow and move at up to 700 µm/s. The micro-assembly capabilities of the microrobots were demonstrated by assembling polystyrene beads and yeast cells into various patterns on standard glass microscope slides. Two microrobots operating independently in parallel were also used to assemble micro-hydrogel structures.

  18. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    DOEpatents

    Woolley, R.D.

    1998-09-08

    A method and apparatus are disclosed for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators. 6 figs.

  19. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    DOEpatents

    Woolley, Robert D.

    1998-01-01

    A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

  20. Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, Michael R.

    In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised ofmore » chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the dependencies of electron transfer rate constants on donor?acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular 'wires' that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems. In this Account, we explore how self-assembly strategies involving ?-stacking can be used to integrate light harvesting with charge separation and transport.« less

  1. Interconnect assembly for an electronic assembly and assembly method therefor

    DOEpatents

    Gerbsch, Erich William

    2003-06-10

    An interconnect assembly and method for a semiconductor device, in which the interconnect assembly can be used in lieu of wirebond connections to form an electronic assembly. The interconnect assembly includes first and second interconnect members. The first interconnect member has a first surface with a first contact and a second surface with a second contact electrically connected to the first contact, while the second interconnect member has a flexible finger contacting the second contact of the first interconnect member. The first interconnect member is adapted to be aligned and registered with a semiconductor device having a contact on a first surface thereof, so that the first contact of the first interconnect member electrically contacts the contact of the semiconductor device. Consequently, the assembly method does not require any wirebonds, but instead merely entails aligning and registering the first interconnect member with the semiconductor device so that the contacts of the first interconnect member and the semiconductor device make electrically contact, and then contacting the second contact of the first interconnect member with the flexible finger of the second interconnect member.

  2. Electron Processing at 50 eV of Terphenylthiol Self-Assembled Monolayers: Contributions of Primary and Secondary Electrons.

    PubMed

    Houplin, Justine; Dablemont, Céline; Sala, Leo; Lafosse, Anne; Amiaud, Lionel

    2015-12-22

    Aromatic self-assembled monolayers (SAMs) can serve as platforms for development of supramolecular assemblies driven by surface templates. For many applications, electron processing is used to locally reinforce the layer. To achieve better control of the irradiation step, chemical transformations induced by electron impact at 50 eV of terphenylthiol SAMs are studied, with these SAMs serving as model aromatic SAMs. High-resolution electron energy loss spectroscopy (HREELS) and electron-stimulated desorption (ESD) of neutral fragment measurements are combined to investigate electron-induced chemical transformation of the layer. The decrease of the CH stretching HREELS signature is mainly attributed to dehydrogenation, without a noticeable hybridization change of the hydrogenated carbon centers. Its evolution as a function of the irradiation dose gives an estimate of the effective hydrogen content loss cross-section, σ = 2.7-4.7 × 10(-17) cm(2). Electron impact ionization is the major primary mechanism involved, with the impact electronic excitation contributing only marginally. Therefore, special attention is given to the contribution of the low-energy secondary electrons to the induced chemistry. The effective cross-section related to dissociative secondary electron attachment at 6 eV is estimated to be 1 order of magnitude smaller. The 1 eV electrons do not induce significant chemical modification for a 2.5 mC cm(-2) dose, excluding their contribution.

  3. An intercomparison of NEL and DHL water flow facilities using a twin orifice plate flowmeter assembly

    NASA Technical Reports Server (NTRS)

    Dejong, J.; Spencer, E. A.

    1983-01-01

    A 205 mm transfer standard orifice plate meter assembly, consisting of two orifice plates in series separated by a length of pipe containing a flow straightener, was calibrated in two water flow facilities. Results show that the agreement in the characteristics of such a differential pressure transfer standard package is within 0.17% over a 10:1 range from flow rates of approximately 8 to 80 l/sec. When the range over which the comparison was made was limited to that for which the calibration graphs gave straight lines, the agreement is 0.1% in 3 of the 4 calibrations (0.17% in the fourth).

  4. Photoelectrochemically driven self-assembly method

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat

    2017-01-17

    Various technologies described herein pertain to assembling electronic devices into a microsystem. The electronic devices are disposed in a solution. Light can be applied to the electronic devices in the solution. The electronic devices can generate currents responsive to the light applied to the electronic devices in the solution, and the currents can cause electrochemical reactions that functionalize regions on surfaces of the electronic devices. Additionally or alternatively, the light applied to the electronic devices in the solution can cause the electronic devices to generate electric fields, which can orient the electronic devices and/or induce movement of the electronic devices with respect to a receiving substrate. Further, electrodes on a receiving substrate can be biased to attract and form connections with the electronic devices having the functionalized regions on the surfaces. The microsystem can include the receiving substrate and the electronic devices connected to the receiving substrate.

  5. Interface electronic structures of reversible double-docking self-assembled monolayers on an Au(111) surface

    PubMed Central

    Zhang, Tian; Ma, Zhongyun; Wang, Linjun; Xi, Jinyang; Shuai, Zhigang

    2014-01-01

    Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states. The two possible conformations of one type of DDSAM on a metal surface reveal a strong difference in the work-function modification and the electron/hole tunnelling barriers. Fermi-level pinning is found to be a key factor to understand the interface electronic properties. PMID:24615153

  6. In vitro Method to Observe E-selectin-mediated Interactions Between Prostate Circulating Tumor Cells Derived From Patients and Human Endothelial Cells

    PubMed Central

    Gakhar, Gunjan; Bander, Neil H.; Nanus, David M.

    2014-01-01

    Metastasis is a process in which tumor cells shed from the primary tumor intravasate blood vascular and lymphatic system, thereby, gaining access to extravasate and form a secondary niche. The extravasation of tumor cells from the blood vascular system can be studied using endothelial cells (ECs) and tumor cells obtained from different cell lines. Initial studies were conducted using static conditions but it has been well documented that ECs behave differently under physiological flow conditions. Therefore, different flow chamber assemblies are currently being used to studying cancer cell interactions with ECs. Current flow chamber assemblies offer reproducible results using either different cell lines or fluid at different shear stress conditions. However, to observe and study interactions with rare cells such as circulating tumor cells (CTCs), certain changes are required to be made to the conventional flow chamber assembly. CTCs are a rare cell population among millions of blood cells. Consequently, it is difficult to obtain a pure population of CTCs. Contamination of CTCs with different types of cells normally found in the circulation is inevitable using present enrichment or depletion techniques. In the present report, we describe a unique method to fluorescently label circulating prostate cancer cells and study their interactions with ECs in a self-assembled flow chamber system. This technique can be further applied to observe interactions between prostate CTCs and any protein of interest. PMID:24894373

  7. Sharipov holds an Electronic Box Assembly from the TVIS in the SM during Expedition 10

    NASA Image and Video Library

    2005-02-17

    ISS010-E-18167 (17 February 2005) --- Cosmonaut Salizhan S. Sharipov, Expedition 10 flight engineer representing Russia's Federal Space Agency, holds an Electronic Box Assembly, and Violation Isolation and Stabilization (VIS) Controller Assembly, which is part of the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station (ISS). Also in view is a VIS/TM data cable and VIS/TM power cable. This box receives power and distributes it between the treadmill and the VIS subassemblies.

  8. Thermal analysis of the FSP-1 fuel pin irradiation test. [for SP-100 space power reactor

    NASA Technical Reports Server (NTRS)

    Lyon, William F., III

    1991-01-01

    Thermal analysis of a pin from the FSP-1 fuels irradiation test has been completed. The purpose of the analysis was to provide predictions of fuel pin temperatures, determine the flow regime within the lithium annulus of the test assembly, and provide a standardized model for a consistent basis of comparison between pins within the test assembly. The calculations have predicted that the pin is operating at slightly above the test design temperatures and that the flow regime within the lithium annulus is a laminar buoyancy driven flow.

  9. System for controlling the flow of gas into and out of a gas laser

    DOEpatents

    Alger, Terry; Uhlich, Dennis M.; Benett, William J.; Ault, Earl R.

    1994-01-01

    A modularized system for controlling the gas pressure within a copper vapor or like laser is described herein. This system includes a gas input assembly which serves to direct gas into the laser in a controlled manner in response to the pressure therein for maintaining the laser pressure at a particular value, for example 40 torr. The system also includes a gas output assembly including a vacuum pump and a capillary tube arrangement which operates within both a viscous flow region and a molecular flow region for drawing gas out of the laser in a controlled manner.

  10. Kinetically driven self-assembly of a binary solute mixture with controlled phase separation via electro-hydrodynamic flow of corona discharge.

    PubMed

    Jung, Hee Joon; Huh, June; Park, Cheolmin

    2012-10-21

    This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm(-1)). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.

  11. Kinetically driven self-assembly of a binary solute mixture with controlled phase separation via electro-hydrodynamic flow of corona discharge

    NASA Astrophysics Data System (ADS)

    Jung, Hee Joon; Huh, June; Park, Cheolmin

    2012-09-01

    This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm-1). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.

  12. 32. View of relay assembly group and interconnecting group electronic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. View of relay assembly group and interconnecting group electronic modules located on second floor of transmitter building no. 102 in MIP area. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  13. Turbine disc sealing assembly

    DOEpatents

    Diakunchak, Ihor S.

    2013-03-05

    A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.

  14. Infrared spectroscopy of organic semiconductors modified by self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Khatib, O.; Lee, B.; Podzorov, V.; Yuen, J.; Heeger, A. J.; Li, Z. Q.; di Ventra, M.; Basov, D. N.

    2009-03-01

    Recently, self-assembled monolayers (SAMs) were used to modify electronic surface properties of organic single crystals, leading to several orders of magnitude increase in the electrical conductivity^1. Motivated by this discovery, the same technique was applied to polymers. Here we present a thorough spectroscopic investigation of organic semiconductors based on poly(3-hexlthiophene) (P3HT) that have been treated with a fluorinated trichlorosilane SAM. Infrared spectroscopy offers access to details of charge injection, electrostatic doping, and the electronic structure that are not always available from transport measurements, which can be dominated by defects and contact effects. In polymer films, the SAM molecules penetrate into the bulk, leading to a rich spectrum of electronic excitations in the mid-infrared energy range. ^1 M. F. Calhoun, J. Sanchez, D. Olaya, M. E. Gershenson, V. Podzorov, Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers, Nature Mater. 7, 84--89 (2008)

  15. Random telegraph signals by alkanethiol-protected Au nanoparticles in chemically assembled single-electron transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kano, Shinya; CREST, Japan Science and Technology Agency, Yokohama 226-8503; Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE

    2013-12-14

    We have studied random telegraph signals (RTSs) in a chemically assembled single-electron transistor (SET) at temperatures as low as 300 mK. The RTSs in the chemically assembled SET were investigated by measuring the source–drain current, using a histogram of the RTS dwell time, and calculating the power spectrum density of the drain current–time characteristics. It was found that the dwell time of the RTS was dependent on the drain voltage of the SET, but was independent of the gate voltage. Considering the spatial structure of the chemically assembled SET, the origin of the RTS is attributed to the trapped chargesmore » on an alkanethiol-protected Au nanoparticle positioned near the SET. These results are important as they will help to realize stable chemically assembled SETs in practical applications.« less

  16. Gas block mechanism for water removal in fuel cells

    DOEpatents

    Issacci, Farrokh; Rehg, Timothy J.

    2004-02-03

    The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.

  17. Force measuring valve assemblies, systems including such valve assemblies and related methods

    DOEpatents

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  18. Combustor assembly in a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2013-02-19

    A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

  19. Study of strain boundary conditions and GaAs buffer sizes in InGaAs quantum dots

    NASA Technical Reports Server (NTRS)

    Oyafuso, F.; Klimeck, G.; Boykin, T. B.; Bowen, R. C.; Allmen, P. von

    2003-01-01

    NEMO 3-D has been developed for the simulation of electronic structure in self-assembled InGaAs quantum dots on GaAs substrates. Typical self-assembled quantum dots in that material system contain about 0.5 to 1 million atoms. Effects of strain by the surrounding GaAs buffer modify the electronic structure inside the quantum dot significantly and a large GaAs buffer must be included in the strain and electronic structure.

  20. Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses

    PubMed Central

    Yu, Cheng-han; Wu, Hung-Jen; Kaizuka, Yoshihisa; Vale, Ronald D.; Groves, Jay T.

    2010-01-01

    Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3ε on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network. PMID:20686692

  1. Dynamical simulation of electron transfer processes in self-assembled monolayers at metal surfaces using a density matrix approach.

    PubMed

    Prucker, V; Bockstedte, M; Thoss, M; Coto, P B

    2018-03-28

    A single-particle density matrix approach is introduced to simulate the dynamics of heterogeneous electron transfer (ET) processes at interfaces. The characterization of the systems is based on a model Hamiltonian parametrized by electronic structure calculations and a partitioning method. The method is applied to investigate ET in a series of nitrile-substituted (poly)(p-phenylene)thiolate self-assembled monolayers adsorbed at the Au(111) surface. The results show a significant dependence of the ET on the orbital symmetry of the donor state and on the molecular and electronic structure of the spacer.

  2. Flow chemistry: A light touch to a deadly problem

    NASA Astrophysics Data System (ADS)

    Booker-Milburn, Kevin

    2012-06-01

    Flow chemistry has grown in stature as a technique with the potential to deliver synthetic complexity with assembly-line-like efficiency. Application of flow technology to the front-line antimalarial drug artemisinin promises to revolutionalize treatment.

  3. Fluid flow plate for decreased density of fuel cell assembly

    DOEpatents

    Vitale, Nicholas G.

    1999-01-01

    A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.

  4. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapormore » leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.« less

  5. Optical monitoring system for a turbine engine

    DOEpatents

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  6. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L; Schroeder, John E; Kalsi, Manmohan S; Alvarez, Patricio D

    2013-08-13

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  7. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  8. Attenuation of encrustation by self-assembled inorganic fullerene-like nanoparticles.

    PubMed

    Ron, Racheli; Zbaida, David; Kafka, Ilan Z; Rosentsveig, Rita; Leibovitch, Ilan; Tenne, Reshef

    2014-05-21

    Ureteral stents and urethral catheters are commonly used medical devices for maintaining urinary flow. However, long-term placement (>30 days) of these devices in the urinary tracts is limited by the development of encrustation, a phenomenon that holds a prevalence of 50% within this patient population, resulting in a great deal of morbidity to the patients. Here we report the influence of surface coating of an all-silicone catheter with rhenium-doped fullerene-like molybdenum disulfide (Re:IF-MoS2) nanoparticles on the growth and attachment of in vitro encrustation stones. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) analyses indicated a remarkable attenuation in encrustation occupation on the Re:IF-MoS2-coated catheter surfaces compared to neat catheters. The doped nanoparticles displayed a unique tendency to self-assemble into mosaic-like arrangements, modifying the surface to be encrustation-repellent. The mechanism of encrustation retardation on the surface coated catheters is discussed in some detail. The ramification of these results for the clogging of other body indwelling devices is briefly discussed.

  9. Three Component Velocity and Acceleration Measurement Using FLEET

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett F.; Calvert, Nathan; Dogariu, Arthur; Miles, Richard P.

    2014-01-01

    The femtosecond laser electronic excitation and tagging (FLEET) method has been used to measure three components of velocity and acceleration for the first time. A jet of pure N2 issuing into atmospheric pressure air was probed by the FLEET system. The femtosecond laser was focused down to a point to create a small measurement volume in the flow. The long-lived lifetime of this fluorescence was used to measure the location of the tagged particles at different times. Simultaneous images of the flow were taken from two orthogonal views using a mirror assembly and a single intensified CCD camera, allowing two components of velocity to be measured in each view. These different velocity components were combined to determine three orthogonal velocity components. The differences between subsequent velocity components could be used to measure the acceleration. Velocity accuracy and precision were roughly estimated to be +/-4 m/s and +/-10 m/s respectively. These errors were small compared to the approx. 100 m/s velocity of the subsonic jet studied.

  10. Shear Flow Instabilities and Droplet Size Effects on Aerosol Jet Printing Resolution

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Gu, Yuan; Hines, Daniel; Das, Siddhartha; LaboratoryPhysical Science Collaboration; Soft Matter, Interfaces, Energy Laboratory Collaboration

    2017-11-01

    Aerosol Jet printing (AJP) is an additive technology utilizing aerodynamic focusing to produce fine feature down to 10 micrometers that can be used in the manufacture of wearable electronics and biosensors. The main concern of the current technology is related to unstable printing resolution, which is usually assessed by effective line width, edge smoothness, overspray and connectivity. In this work, we perform a 3D CFD model to study the aerodynamic instabilities induced by the annular shear flow (sheath gas flow or ShGF) trapped with the aerosol jet (carried gas flow or CGF) with ink droplets. Extensive experiments on line morphology have shown that by increasing ShGF, one can first obtain thinner line width, and then massive overspray is witnessed at very large ShGF/ CGF ratio. Besides the fact that shear-layer instabilities usually trigger eddy currents at comparatively low Reynolds number 600, the tolerance of deposition components assembling will also propagate large offsets of the deposited feather. We also carried out detailed analysis on droplet size and deposition range on the printing resolution. This study is intended to come up with a solution on controlling the operating parameters for finer printed features, and offer an improvement strategy on next generation.

  11. Gold nanoparticle assemblies stabilized by bis(phthalocyaninato)lanthanide(III) complexes through van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Noda, Yuki; Noro, Shin-Ichiro; Akutagawa, Tomoyuki; Nakamura, Takayoshi

    2014-01-01

    Gold nanoparticle assemblies possess diverse application potential, ranging from industrial nanotechnology to medical biotechnology. Because the structures and properties of assemblies are directly affected by the stabilization mechanism between the organic molecules serving as protecting ligands and the gold nanoparticle surface, it is crucial to find and investigate new stabilization mechanisms. Here, we report that π-conjugated phthalocyanine rings can serve as stabilizing ligands for gold nanoparticles. Bis(phthalocyaninato)lutetium(III) (LuPc2) or bis(phthalocyaninato)terbium(III) (TbPc2), even though complex, do not have specific binding units and stabilize gold nanoparticles through van der Waals interaction between parallel adsorbed phthalocyanine ligands and the gold nanoparticle surface. AC magnetic measurements and the electron-transport properties of the assemblies give direct evidence that the phthalocyanines are isolated from each other. Each nanoparticle shows weak electronic coupling despite the short internanoparticle distance (~1 nm), suggesting Efros-Shklovskii-type variable-range hopping and collective single-electron tunnelling behaviours.

  12. Formation of Nanoparticle Stripe Patterns via Flexible-Blade Flow Coating

    NASA Astrophysics Data System (ADS)

    Lee, Dong Yun; Kim, Hyun Suk; Parkos, Cassandra; Lee, Cheol Hee; Emrick, Todd; Crosby, Alfred

    2011-03-01

    We present the controlled formation of nanostripe patterns of nanoparticles on underlying substrates by flexible-blade flow coating. This technique exploits the combination of convective flow of confined nanoparticle solutions and programmed translation of a substrate to fabricate nanoparticle-polymer line assemblies with width below 300 nm, thickness of a single nanoparticle, and lengths exceeding 10 cm. We demonstrate how the incorporation of a flexible blade into this technique allows capillary forces to self-regulate the uniformity of convective flow processes across large lateral lengths. Furthermore, we exploit solvent mixture dynamics to enhance intra-assembly particle packing and dimensional range. This facile technique opens up a new paradigm for integration of nanoscale patterns over large areas for various applications.

  13. Superconducting cable-in-conduit low resistance splice

    DOEpatents

    Artman, Thomas A.

    2003-06-24

    A low resistance splice connects two cable-in-conduit superconductors to each other. Dividing collars for arranging sub-cable units from each conduit are provided, along with clamping collars for mating each sub-cable wire assembly to form mated assemblies. The mated assemblies ideally can be accomplished by way of splicing collar. The mated assemblies are cooled by way of a flow of coolant, preferably helium. A method for implementing such a splicing is also described.

  14. Miniature housing with standard addressable interface for smart sensors and drive electronics

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Smith, Dennis A. (Inventor); Alhorn, Dean C. (Inventor)

    2006-01-01

    A miniature assembly is disclosed which includes a housing assembly with a cover configured to be sealably secured to a box-like receptacle. The receptacle comprises openings on opposing sides for the seating therein of communications connectors. Enclosed within housing is custom-sized circuit board for supporting, at least, a standard communications interface and at least one electronic device.

  15. Dimension-controlled assemblies of anion-responsive π-electronic systems bearing aryl substituents with fan-shaped geometries.

    PubMed

    Lakshmi, Vellanki; Haketa, Yohei; Yamakado, Ryohei; Yasuda, Nobuhiro; Maeda, Hiromitsu

    2017-03-30

    Pyrrole-4-aryl-substituted dipyrrolyldiketone BF 2 complexes as anion-responsive π-electronic molecules were synthesized via a 3,5-dimethylpyrrole precursor. Mesophases were observed in derivatives that possessed long alkyl chains on the pyrrole-4-aryl groups along with their anion complexes as ion-pairing assemblies in combination with appropriate cations.

  16. Visual and x-ray inspection characteristics of eutectic and lead free assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    2003-01-01

    For high reliability applications, visual inspection has been the key technique for most conventional electronic package assemblies. Now, the use of x-ray technique has become an additional inspection requirement for quality control and detection of unique defects due to manufacturing of advanced electronic array packages such as ball grid array (BGAs) and chip scale packages (CSPs).

  17. Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xu-Bing; Gao, Yu-Ji; Wang, Yang

    Colloidal quantum dots (QDs) have demonstrated great promise in artificial photosynthesis. However, the ultrasmall size hinders its controllable and effective interaction with cocatalysts. To improve the poor interparticle electronic communication between free QD and cocatalyst, we design here a self-assembled architecture of nanoparticles, QDs and Ptnanoparticles, simply jointed together by molecular polyacrylate to greatly enhance the rate and efficiency of interfacial electron transfer (ET). The enhanced interparticle electronic communication is confirmed by femtosecond transient absorption spectroscopy and X-ray transient absorption. Taking advantage of the enhanced interparticle ET with a time scale of ~65 ps, 5.0 mL assembled CdSe/CdS QDs/cocatalysts solutionmore » produces 94 ± 1.5 mL (4183 ± 67 µmol) molecular H 2 in 8 h, giving rise to an internal quantum yield of ~65% in the first 30 min and a total turnover number of >16,400,000 per Pt-nanoparticle. This study demonstrates that self-assembly is a promising way to improve the sluggish kinetics of interparticle ET process, which is the key step for advanced H 2 photosynthesis.« less

  18. Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution

    DOE PAGES

    Li, Xu-Bing; Gao, Yu-Ji; Wang, Yang; ...

    2017-03-10

    Colloidal quantum dots (QDs) have demonstrated great promise in artificial photosynthesis. However, the ultrasmall size hinders its controllable and effective interaction with cocatalysts. To improve the poor interparticle electronic communication between free QD and cocatalyst, we design here a self-assembled architecture of nanoparticles, QDs and Ptnanoparticles, simply jointed together by molecular polyacrylate to greatly enhance the rate and efficiency of interfacial electron transfer (ET). The enhanced interparticle electronic communication is confirmed by femtosecond transient absorption spectroscopy and X-ray transient absorption. Taking advantage of the enhanced interparticle ET with a time scale of ~65 ps, 5.0 mL assembled CdSe/CdS QDs/cocatalysts solutionmore » produces 94 ± 1.5 mL (4183 ± 67 µmol) molecular H 2 in 8 h, giving rise to an internal quantum yield of ~65% in the first 30 min and a total turnover number of >16,400,000 per Pt-nanoparticle. This study demonstrates that self-assembly is a promising way to improve the sluggish kinetics of interparticle ET process, which is the key step for advanced H 2 photosynthesis.« less

  19. Carbon dot-Au(i)Ag(0) assembly for the construction of an artificial light harvesting system.

    PubMed

    Jana, Jayasmita; Aditya, Teresa; Pal, Tarasankar

    2018-03-06

    Artificial light harvesting systems (LHS) with inorganic counterparts are considered to be robust as well as mechanistically simple, where the system follows the donor-acceptor principle with an unchanged structural pattern. Plasmonic gold or silver nanoparticles are mostly chosen as inorganic counterparts to design artificial LHS. To capitalize on its electron accepting capability, Au(i) has been considered in this work for the synergistic stabilization of a system with intriguingly fluorescing silver(0) clusters produced in situ. Thus a stable fluorescent Au(i)Ag(0) assembly is generated with electron accepting capabilities. On the other hand, carbon dots have evolved as new fluorescent probes due to their unique physicochemical properties. Utilizing the simple electronic behavior of carbon dots, an electronic interaction between the fluorescent Au(i)Ag(0) and a carbon dot has been investigated for the construction of a new artificial light harvesting system. This coinage metal assembly allows surface energy transfer where it acts as an acceptor, while the carbon dot behaves as a good donor. The energy transfer efficiency has been calculated experimentally to be significant (81.3%) and the Au(i)Ag(0)-carbon dot assembly paves the way for efficient artificial LHS.

  20. OSIRIS-REx OCAMS detector assembly characterization

    NASA Astrophysics Data System (ADS)

    Hancock, J.; Crowther, B.; Whiteley, M.; Burt, R.; Watson, M.; Nelson, J.; Fellows, C.; Rizk, B.; Kinney-Spano, E.; Perry, M.; Hunten, M.

    2013-09-01

    The OSIRIS-REx asteroid sample return mission carries a suite of three cameras referred to as OCAMS. The Space Dynamics Laboratory (SDL) at Utah State University is providing the CCD-based detector assemblies for OCAMS to the Lunar Planetary Lab (LPL) at the University of Arizona. Working with the LPL, SDL has designed the electronics to operate a 1K by 1K frame transfer Teledyne DALSA Multi-Pinned Phase (MPP) CCD. The detector assembly electronics provides the CCD clocking, biasing, and digital interface with the OCAMS payload Command Control Module (CCM). A prototype system was built to verify the functionality of the detector assembly design and to characterize the detector system performance at the intended operating temperatures. The characterization results are described in this paper.

  1. Laser bottom hole assembly

    DOEpatents

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  2. Modular space station, phase B extension. Information management advanced development. Volume 4: Data processing assembly

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The computation and logical functions which are performed by the data processing assembly of the modular space station are defined. The subjects discussed are: (1) requirements analysis, (2) baseline data processing assembly configuration, (3) information flow study, (4) throughput simulation, (5) redundancy study, (6) memory studies, and (7) design requirements specification.

  3. Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver

    NASA Technical Reports Server (NTRS)

    Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W.

    2005-01-01

    A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability.

  4. 3D assembly of carbon nanotubes for fabrication of field-effect transistors through nanomanipulation and electron-beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Yu, Ning; Shi, Qing; Nakajima, Masahiro; Wang, Huaping; Yang, Zhan; Sun, Lining; Huang, Qiang; Fukuda, Toshio

    2017-10-01

    Three-dimensional carbon nanotube field-effect transistors (3D CNTFETs) possess predictable characteristics that rival those of planar CNTFETs and Si-based MOSFETs. However, due to the lack of a reliable assembly technology, they are rarely reported on, despite the amount of attention they receive. To address this problem, we propose the novel concept of a 3D CNTFET and develop its assembly strategy based on nanomanipulation and the electron-beam-induced deposition (EBID) technique inside a scanning electron microscope (SEM). In particular, the electrodes in our transistor design are three metallic cuboids of the same size, and their front, top and back surfaces are all wrapped up in CNTs. The assembly strategy is employed to build the structure through a repeated basic process of pick-up, placement, fixing and cutting of CNTs. The pick-up and placement is performed through one nanomanipulator with four degrees of freedom. Fixing is carried out through the EBID technique so as to improve the mechanical and electrical characteristics of the CNT/electrodes connection. CNT cutting is undertaken using the typical method of electrical breakdown. Experimental results showed that two CNTs were successfully assembled on the front sides of the cubic electrodes. This validates our assembly method for the 3D CNTFET. Also, when contact resistance was measured, tens of kilohms of resistance was observed at the CNT-EBID deposition-FET electrodes junction.. This manifests the electrical reliability of our assembly strategy.

  5. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    PubMed Central

    Goldsbury, Claire; Baxa, Ulrich; Simon, Martha N.; Steven, Alasdair C.; Engel, Andreas; Wall, Joseph S.; Aebi, Ueli; Müller, Shirley A.

    2010-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases like Alzheimer’s disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies like Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). PMID:20868754

  6. Dump assembly

    DOEpatents

    Goldmann, Louis H.

    1986-01-01

    A dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough.

  7. Hierarchical nanoparticle assemblies formed by decorating breath figures.

    PubMed

    Böker, Alexander; Lin, Yao; Chiapperini, Kristen; Horowitz, Reina; Thompson, Mike; Carreon, Vincent; Xu, Ting; Abetz, Clarissa; Skaff, Habib; Dinsmore, A D; Emrick, Todd; Russell, Thomas P

    2004-05-01

    The combination of two self-assembly processes on different length scales leads to the formation of hierarchically structured nanoparticle arrays. Here, the formation of spherical cavities, or 'breath figures'-made by the condensation of micrometre-sized water droplets on the surface of a polymer solution-that self-assemble into a well-ordered hexagonal array, is combined with the self-assembly of CdSe nanoparticles at the polymer solution-water droplet interface. Complete evaporation of the solvent and water confines the particle assembly to an array of spherical cavities and allows for ex situ investigation. Fluorescence confocal, transmission electron and scanning electron microscope images show the preferential segregation of the CdSe nanoparticles to the polymer solution-water interface where they form a 5-7-nm-thick layer, thus functionalizing the walls of the holes. This process opens a new route to fabricating highly functionalized ordered microarrays of nanoparticles, potentially useful in sensory, separation membrane or catalytic applications.

  8. Gas Control System for HEAO-B

    NASA Technical Reports Server (NTRS)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  9. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  10. Aging of D-limonene-cleaned assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somer, T.A.

    1994-04-01

    The performance of 2000 electronic circuit variables was monitored throughout a 5000-hour exposure to + 160{degrees}F. the 2000 variables involve 36 electronic assemblies, cleaned with various solvents, including d-limonene, as a replacement for TCE. The assemblies were divided into four groups, including a TCE-cleaned control group at room temperature. Of the three groups exposed at + 160{degrees}F, one was cleaned in TCE, one was cleaned in d-limonene, and one was kept in a saturated d-limonene atmosphere. No performance degradation was observed with any of the groups, including the worst case exposure in a saturated d-limonene atmosphere.

  11. Non-Traditional Aromatic Topologies and Biomimetic Assembly Motifs as Components of Functional Pi-Conjugated Oligomers

    PubMed Central

    Tovar, John D.; Diegelmann, Stephen R.; Peart, Patricia A.

    2010-01-01

    This article will highlight our recent work using conjugated oligomers as precursors to electroactive polymer films and self-assembling nanomaterials. One area of investigation has focused on nonbenzenoid aromaticity in the context of charge delocalization in conjugated polymers. In these studies, polymerizable pi-conjugated units were coupled onto unusual aromatic cores such as methano[10]annulene. This article will also show how biologically-inspired assembly of molecularly well-defined oligopeptides that flank pi-conjugated oligomers has resulted in the aqueous construction of 1-dimensional nanomaterials that encourage electronic delocalization among the pi-electron systems.

  12. Gas Flow Detection System

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at thermal equilibrium with the test flow of GN2. The temperature drop of each branch from its "no flow" stable temperature peak to its stable "with flow" temperature will allow the operator to determine whether a minimum level of flow exists. An alternative operation has the operator turning on the software only long enough to record the ambient temperature of the tubing before turning on the heaters and initiating GN2 flow. The stable temperature of the heated tubing with GN2 flow is then compared with the ambient tubing temperature to determine if flow is present in each branch. To help quantify the level of flow in the manifolds, each branch will be bench calibrated to establish its thermal properties using the flow detection system and different flow rates. These calibration values can then be incorporated into the software application to provide more detailed flow rate information.

  13. Heater head for stirling engine

    DOEpatents

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  14. Afterburning control of internal combustion engine exhaust gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Y.; Hayashi, Y.; Nagumo, S.I.

    1976-08-17

    Flow of secondary air into the exhaust system is regulated by diaphragm assembly controlled valves between an air supply and the exhaust system. The diaphragm assemblies respond to vacuum in the intake air system of the engine.

  15. Embodiment design for a multipropellant resistojet

    NASA Technical Reports Server (NTRS)

    Bao, Johnny; Chilosi, Thierry; Goodwin, Jason; Mocio, Jim; Yeh, Bruce

    1993-01-01

    This document presents the design of a multipropellant resistojet to use as an auxiliary propulsion system on the Space Station. Such a system is necessary to counteract atmospheric drag effects encountered by the Station in its orbit. NASA specifications are strictly followed with emphasis on reliability, operating life, multipropellant capability, and exhaust emission control. Several design variants are considered, and the final solution is a resistojet with an electronic pressure regulator, variable control, an internal flow heater, and a conical nozzle. To construct the resistojet, the important components are resolved independently and then integrated with secondary units. The document also includes engineering drawings of the final design with assembly instructions. Before final utilization, a prototype testing is recommended to uncover possible problems.

  16. Sensor fusion of phase measuring profilometry and stereo vision for three-dimensional inspection of electronic components assembled on printed circuit boards.

    PubMed

    Hong, Deokhwa; Lee, Hyunki; Kim, Min Young; Cho, Hyungsuck; Moon, Jeon Il

    2009-07-20

    Automatic optical inspection (AOI) for printed circuit board (PCB) assembly plays a very important role in modern electronics manufacturing industries. Well-developed inspection machines in each assembly process are required to ensure the manufacturing quality of the electronics products. However, generally almost all AOI machines are based on 2D image-analysis technology. In this paper, a 3D-measurement-method-based AOI system is proposed consisting of a phase shifting profilometer and a stereo vision system for assembled electronic components on a PCB after component mounting and the reflow process. In this system information from two visual systems is fused to extend the shape measurement range limited by 2pi phase ambiguity of the phase shifting profilometer, and finally to maintain fine measurement resolution and high accuracy of the phase shifting profilometer with the measurement range extended by the stereo vision. The main purpose is to overcome the low inspection reliability problem of 2D-based inspection machines by using 3D information of components. The 3D shape measurement results on PCB-mounted electronic components are shown and compared with results from contact and noncontact 3D measuring machines. Based on a series of experiments, the usefulness of the proposed sensor system and its fusion technique are discussed and analyzed in detail.

  17. Container for radioactive materials

    DOEpatents

    Fields, Stanley R.

    1985-01-01

    A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

  18. AC electric field for rapid assembly of nanostructured polyaniline onto microsized gap for sensor devices.

    PubMed

    La Ferrara, Vera; Rametta, Gabriella; De Maria, Antonella

    2015-07-01

    Interconnected network of nanostructured polyaniline (PANI) is giving strong potential for enhancing device performances than bulk PANI counterparts. For nanostructured device processing, the main challenge is to get prototypes on large area by requiring precision, low cost and high rate assembly. Among processes meeting these requests, the alternate current electric fields are often used for nanostructure assembling. For the first time, we show the assembly of nanostructured PANI onto large electrode gaps (30-60 μm width) by applying alternate current electric fields, at low frequencies, to PANI particles dispersed in acetonitrile (ACN). An important advantage is the short assembly time, limited to 5-10 s, although electrode gaps are microsized. That encouraging result is due to a combination of forces, such as dielectrophoresis (DEP), induced-charge electrokinetic (ICEK) flow and alternate current electroosmotic (ACEO) flow, which speed up the assembly process when low frequencies and large electrode gaps are used. The main achievement of the present study is the development of ammonia sensors created by direct assembling of nanostructured PANI onto electrodes. Sensors exhibit high sensitivity to low gas concentrations as well as excellent reversibility at room temperature, even after storage in air. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Control assembly for controlling a fuel cell system during shutdown and restart

    DOEpatents

    Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred

    2010-06-15

    A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.

  20. Computational and Experimental Investigations of the Coolant Flow in the Cassette Fissile Core of a KLT-40S Reactor

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. M.; Varentsov, A. V.; Dobrov, A. A.; Doronkov, D. V.; Pronin, A. N.; Sorokin, V. D.; Khrobostov, A. E.

    2017-07-01

    Results of experimental investigations of the local hydrodynamic and mass-exchange characteristics of a coolant flowing through the cells in the characteristic zones of a fuel assembly of a KLT-40S reactor plant downstream of a plate-type spacer grid by the method of diffusion of a gas tracer in the coolant flow with measurement of its velocity by a five-channel pneumometric probe are presented. An analysis of the concentration distribution of the tracer in the coolant flow downstream of a plate-type spacer grid in the fuel assembly of the KLT-40S reactor plant and its velocity field made it possible to obtain a detailed pattern of this flow and to determine its main mechanisms and features. Results of measurement of the hydraulic-resistance coefficient of a plate-type spacer grid depending on the Reynolds number are presented. On the basis of the experimental data obtained, recommendations for improvement of the method of calculating the flow rate of a coolant in the cells of the fissile core of a KLT-40S reactor were developed. The results of investigations of the local hydrodynamic and mass-exchange characteristics of the coolant flow in the fuel assembly of the KLT-40S reactor plant were accepted for estimating the thermal and technical reliability of the fissile cores of KLT-40S reactors and were included in the database for verification of computational hydrodynamics programs (CFD codes).

  1. Reliability of spring interconnects for high channel-count polyimide electrode arrays

    NASA Astrophysics Data System (ADS)

    Khan, Sharif; Ordonez, Juan Sebastian; Stieglitz, Thomas

    2018-05-01

    Active neural implants with a high channel-count need robust and reliable operational assembly for the targeted environment in order to be classified as viable fully implantable systems. The discrete functionality of the electrode array and the implant electronics is vital for intact assembly. A critical interface exists at the interconnection sites between the electrode array and the implant electronics, especially in hybrid assemblies (e.g. retinal implants) where electrodes and electronics are not on the same substrate. Since the interconnects in such assemblies cannot be hermetically sealed, reliable protection against the physiological environment is essential for delivering high insulation resistance and low defusibility of salt ions, which are limited in complexity by current assembly techniques. This work reports on a combination of spring-type interconnects on a polyimide array with silicone rubber gasket insulation for chronically active implantable systems. The spring design of the interconnects on the backend of the electrode array compensates for the uniform thickness of the sandwiched gasket during bonding in assembly and relieves the propagation of extrinsic stresses to the bulk polyimide substrate. The contact resistance of the microflex-bonded spring interconnects with the underlying metallized ceramic test vehicles and insulation through the gasket between adjacent contacts was investigated against the MIL883 standard. The contact and insulation resistances remained stable in the exhausting environmental conditions.

  2. Charge transport in vertically aligned, self-assembled peptide nanotube junctions.

    PubMed

    Mizrahi, Mordechay; Zakrassov, Alexander; Lerner-Yardeni, Jenny; Ashkenasy, Nurit

    2012-01-21

    The self-assembly propensity of peptides has been extensively utilized in recent years for the formation of supramolecular nanostructures. In particular, the self-assembly of peptides into fibrils and nanotubes makes them promising building blocks for electronic and electro-optic applications. However, the mechanisms of charge transfer in these wire-like structures, especially in ambient conditions, are not yet fully understood. We describe here a layer-by-layer deposition methodology of short self-assembled cyclic peptide nanotubes, which results in vertically oriented nanotubes on gold substrates. Using this novel deposition methodology, we have fabricated molecular junctions with a conductive atomic force microscopy tip as a second electrode. Studies of the junctions' current-voltage characteristics as a function of the nanotube length revealed an efficient charge transfer in these supramolecular structures, with a low current attenuation constant of 0.1 Å(-1), which indicate that electron transfer is dominated by hopping. Moreover, the threshold voltage to field-emission dominated transport was found to increase with peptide length in a manner that depends on the nature of the contact with the electrodes. The flexibility in the design of the peptide monomers and the ability to control their sequential order over the nanotube by means of the layer-by-layer assembly process, which is demonstrated in this work, can be used to engineer the electronic properties of self-assembled peptide nanotubes toward device applications.

  3. Development of a Hand Held Thromboelastograph

    DTIC Science & Technology

    2015-01-01

    documents will be referenced during the Entegrion PCM System design, verification and validation activities. EN 61010 -1:2010 (Edition3.0) Safety...requirements for electrical equipment for measurement, control, and laboratory use – Part 1: General requirements. EN 61010 -2-101:2002 Safety...IPC-A-610E Acceptability of Electronic Assemblies IPC 7711/21B Rework, Modification and Repair of Electronic Assemblies. IEC 62304:2006/AC:2008

  4. Electromagnetic compatibility test report for the tethered satellite data acquisition and control assembly

    NASA Astrophysics Data System (ADS)

    Hoskins, Douglas; Snead, Robert

    1988-05-01

    This report details the results of an electromagnetic compatibility test on the SCI Systems Data Acquisition and Control Assembly (DACA). This assembly is an electronic processor which controls the central communication link from the Tethered Satellite System (TSS) to the Space Transportation System Orbiter Space Shuttle.

  5. Electron beam weld development on a Filter Pack Assembly

    NASA Astrophysics Data System (ADS)

    Dereskiewicz, J. P.

    1994-06-01

    A continuous electron beam welding procedure was developed to replace the manual gas tungsten arc welding procedure on the Filter Pack Assembly. A statistical study was used to evaluate the feasibility of electron beam welding 6061-T6 aluminum covers to A356 cast weldments throughout the joint tolerance range specified on product drawings. Peak temperature exposures were not high enough to degrade the heat sensitive electrical components inside the cast weldment. Actual weldments with alodine coating on the weld joint area were successfully cleaned using a nonmetallic fiberglass brush cleaning method.

  6. Electronics box having internal circuit cards interconnected to external connectors sans motherboard

    NASA Technical Reports Server (NTRS)

    Hockett, John E. (Inventor)

    2005-01-01

    An electronics chassis box includes a pair of opposing sidewalls, a pair of opposing end walls, a bottom surface, a top cover, and ring connectors assemblies mounted in selective ones of the walls of the electronic box. Boss members extend from the bottom surface at different heights upon which circuit cards are mounted in spatial relationship to each other. A flex interconnect substantially reduces and generally eliminates the need of a motherboard by interconnecting the circuit cards to one another and to external connectors mounted within the ring connector assemblies.

  7. Dump assembly

    DOEpatents

    Goldmann, L.H.

    1984-12-06

    This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.

  8. Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives.

    PubMed

    Liyanage, Wathsala; Nilsson, Bradley L

    2016-01-26

    Supramolecular hydrogels derived from the self-assembly of organic molecules have been exploited for applications ranging from drug delivery to tissue engineering. The relationship between the structure of the assembly motif and the emergent properties of the resulting materials is often poorly understood, impeding rational approaches for the creation of next-generation materials. Aromatic π-π interactions play a significant role in the self-assembly of many supramolecular hydrogelators, but the exact nature of these interactions lacks definition. Conventional models that describe π-π interactions rely on quadrupolar electrostatic interactions between neighboring aryl groups in the π-system. However, recent experimental and computational studies reveal the potential importance of local dipolar interactions between elements of neighboring aromatic rings in stabilizing π-π interactions. Herein, we examine the nature of π-π interactions in the self- and coassembly of Fmoc-Phe-derived hydrogelators by systematically varying the electron-donating or electron-withdrawing nature of the side chain benzyl substituents and correlating these effects to the emergent assembly and gelation properties of the systems. These studies indicate a significant role for stabilizing dipolar interactions between neighboring benzyl groups in the assembled materials. Additional evidence for specific dipolar interactions is provided by high-resolution crystal structures obtained from dynamic transition of gel fibrils to crystals for several of the self-assembled/coassembled Fmoc-Phe derivatives. In addition to electronic effects, steric properties also have a significant effect on the interaction between neighboring benzyl groups in these assembled systems. These findings provide significant insight into the structure-function relationship for Fmoc-Phe-derived hydrogelators and give cues for the design of next-generation materials with desired emergent properties.

  9. Dynamic Pressure Probes Developed for Supersonic Flow-Field Measurements

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert

    2001-01-01

    A series of dynamic flow-field pressure probes were developed for use in large-scale supersonic wind tunnels at the NASA Glenn Research Center. These flow-field probes include pitot and static pressure probes that can capture fast-acting flow-field pressure transients occurring on a millisecond timescale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The flow-field pressure probe contains four major components: 1) Static pressure aerodynamic tip; 2) Pressure-sensing cartridge assembly; 3) Pitot pressure aerodynamic tip; 4) Mounting stem. This modular design allows for a variety of probe tips to be used for a specific application. Here, the focus is on flow-field pressure measurements in supersonic flows, so we developed a cone-cylinder static pressure tip and a pitot pressure tip. Alternatively, probe tips optimized for subsonic and transonic flows could be used with this design. The pressure-sensing cartridge assembly allows the simultaneous measurement of steady-state and transient pressure which allows continuous calibration of the dynamic pressure transducer.

  10. Microfluidic assembly blocks.

    PubMed

    Rhee, Minsoung; Burns, Mark A

    2008-08-01

    An assembly approach for microdevice construction using prefabricated microfluidic components is presented. Although microfluidic systems are convenient platforms for biological assays, their use in the life sciences is still limited mainly due to the high-level fabrication expertise required for construction. This approach involves prefabrication of individual microfluidic assembly blocks (MABs) in PDMS that can be readily assembled to form microfluidic systems. Non-expert users can assemble the blocks on glass slides to build their devices in minutes without any fabrication steps. In this paper, we describe the construction and assembly of the devices using the MAB methodology, and demonstrate common microfluidic applications including laminar flow development, valve control, and cell culture.

  11. Chemically assembled double-dot single-electron transistor analyzed by the orthodox model considering offset charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kano, Shinya; Maeda, Kosuke; Majima, Yutaka, E-mail: majima@msl.titech.ac.jp

    2015-10-07

    We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge),more » respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.« less

  12. Commercial-Off-The-Shelf Microelectromechanical Systems (MEMS) Flow-Measurement Probes Fabricated And Assembled

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2002-01-01

    As an alternative to conventional tubing instrumentation for measuring airflow, designers and technicians at the NASA Glenn Research Center have been fabricating packaging components and assembling a set of unique probes using commercial-off-the-shelf microelectromechanical systems (MEMS) integrated circuits (computer chips). Using MEMS as an alternative has some compelling advantages over standard measurement devices. Sensor technologies have matured through high-production usage in industries such as automotive and aircraft manufacturers. Currently, MEMS are the choice in applications such as tire pressure monitors, altimeters, pneumatic controls, cable leak detectors, and consumer appliances. Conventional instrumentation uses tubing buried in the model aerodynamic surfaces or wind tunnel walls. The measurements are made when pressure is introduced at the tube opening. The pressure then must travel the tubing for lengths ranging from 20 to hundreds of feet before reaching an electronic signal conditioner. This condition causes a considerable amount of damping and requires measurements to be made only after the test rig has reached steady-state operation. The electronic MEMS pressure sensor is able to take readings continuously under dynamic states in nearly real time. The use of stainless steel tubing for pressure measurements requires many tubes to be cleaned, cut to length, carefully installed, and delicately deburred and spliced for use. A cluster of a few hundred 1/16-in.- (0.0625-in.-) diameter tubes (not uncommon in research testing facilities) can be several inches in diameter and may weigh enough to require two men to handle. Replacing hard tubing with electronic chips can eliminate much of the bulk. Each sensor would fit on the tip of the 1/16-in. tubing with room to spare. The P592 piezoresistive silicon pressure sensor (Lucas NovaSensor, Fremont, CA) was chosen for this project because of its cost, availability, and tolerance to extreme ambient conditions. The chip is 1 mm square by 0.6 mm thick (0.039 by 0.023 in.) with 0.12-mm (0.005-in.) wire connection tabs. Three MEMS chips were used to build the first type of flow-angularity probe. This MEMS probe will be demonstrated as an alternative to a standard tube type "Cobra Probe" now used routinely in wind tunnel and aeronautical hardware applications. The response time and accuracy would allow the probe to be translated on an actuator across a flow field, yielding precision dynamic measurements not possible with conventional instrumentation. The low profile, the minimal power requirement, the rugged construction, and the moderate cost all contribute to making MEMS sensors the enticing choice instrument in future research measurement needs. The MEMS probe efforts are a continuation of work initiated by Brian Willis, without whose foresight and efforts this project would never have been realized. This task was funded through cooperation with the NASA Electronic Parts and Packaging (NEPP) program at the Jet Propulsion Laboratory.

  13. Solid-phase synthesis of self-assembling multivalent π-conjugated peptides

    DOE PAGES

    Sanders, Allix M.; Kale, Tejaswini S.; Katz, Howard E.; ...

    2017-02-07

    Here, we present a completely solid-phase synthetic strategy to create three- and four-fold peptide-appended π-electron molecules, where the multivalent oligopeptide presentation is dictated by the symmetries of reactive handles placed on discotic π-conjugated cores. Carboxylic acid and anhydride groups were viable amidation and imidation partners, respectively, and oligomeric π-electron discotic cores were prepared through Pd-catalyzed cross-couplings. Due to intermolecular hydrogen bonding between the three or four peptide axes, these π-peptide hybrids self-assemble into robust one-dimensional nanostructures with high aspect ratios in aqueous solution. The preparation of these systems via solid-phase methods will be detailed along with their self-assembly properties, asmore » revealed by steady-state spectroscopy and transmission electron microscopy and electrical characterization using field-effect transistor measurements.« less

  14. Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure.

    PubMed

    Tapio, Kosti; Leppiniemi, Jenni; Shen, Boxuan; Hytönen, Vesa P; Fritzsche, Wolfgang; Toppari, J Jussi

    2016-11-09

    DNA based structures offer an adaptable and robust way to develop customized nanostructures for various purposes in bionanotechnology. One main aim in this field is to develop a DNA nanobreadboard for a controllable attachment of nanoparticles or biomolecules to form specific nanoelectronic devices. Here we conjugate three gold nanoparticles on a defined size TX-tile assembly into a linear pattern to form nanometer scale isolated islands that could be utilized in a room temperature single electron transistor. To demonstrate this, conjugated structures were trapped using dielectrophoresis for current-voltage characterization. After trapping only high resistance behavior was observed. However, after extending the islands by chemical growth of gold, several structures exhibited Coulomb blockade behavior from 4.2 K up to room temperature, which gives a good indication that self-assembled DNA structures could be used for nanoelectronic patterning and single electron devices.

  15. Fuel injection assembly for use in turbine engines and method of assembling same

    DOEpatents

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  16. Improved Assembly for Gas Shielding During Welding or Brazing

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Baker, Kevin; Weeks, Jack

    2009-01-01

    An improved assembly for inert-gas shielding of a metallic joint is designed to be useable during any of a variety of both laser-based and traditional welding and brazing processes. The basic purpose of this assembly or of a typical prior related assembly is to channel the flow of a chemically inert gas to a joint to prevent environmental contamination of the joint during the welding or brazing process and, if required, to accelerate cooling upon completion of the process.

  17. Three Dimensional Assembly in Directed Self-assembly of Block Copolymers

    DOE PAGES

    Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing; ...

    2016-09-02

    The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.

  18. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups.

    PubMed

    Gittins, D I; Bethell, D; Schiffrin, D J; Nichols, R J

    2000-11-02

    So-called bottom-up fabrication methods aim to assemble and integrate molecular components exhibiting specific functions into electronic devices that are orders of magnitude smaller than can be fabricated by lithographic techniques. Fundamental to the success of the bottom-up approach is the ability to control electron transport across molecular components. Organic molecules containing redox centres-chemical species whose oxidation number, and hence electronic structure, can be changed reversibly-support resonant tunnelling and display promising functional behaviour when sandwiched as molecular layers between electrical contacts, but their integration into more complex assemblies remains challenging. For this reason, functionalized metal nanoparticles have attracted much interest: they exhibit single-electron characteristics (such as quantized capacitance charging) and can be organized through simple self-assembly methods into well ordered structures, with the nanoparticles at controlled locations. Here we report scanning tunnelling microscopy measurements showing that organic molecules containing redox centres can be used to attach metal nanoparticles to electrode surfaces and so control the electron transport between them. Our system consists of gold nanoclusters a few nanometres across and functionalized with polymethylene chains that carry a central, reversibly reducible bipyridinium moiety. We expect that the ability to electronically contact metal nanoparticles via redox-active molecules, and to alter profoundly their tunnelling properties by charge injection into these molecules, can form the basis for a range of nanoscale electronic switches.

  19. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  20. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  1. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  2. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  3. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  4. Thermal Hydraulic Computational Fluid Dynamics Simulations and Experimental Investigation of Deformed Fuel Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, Brian; Jackson, R. Brian

    2017-03-08

    The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services.more » The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.« less

  5. Splash bar for cooling tower fill assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stackhouse, D.W.; Heidl, S.C.

    1987-11-10

    A crossflow cooling tower fill assembly for allowing liquid to fall down through the fill assembly and for allowing cooling air to flow through the fill assembly transverse to the flow of the liquid in order to cool the liquid is described. The assembly comprises: longitudinal splash bars; and means for supporting the splash bars so that the splash bars are substantially horizontal and parallel to one another and arranged in vertically spaced, substantially horizontal planes. The splash bars in each plane are horizontally spaced from one another to allow the liquid to fall down between the splash bars tomore » the planes of splash bars below. Each splash bar includes a substantially horizontal, longitudinally extending top web member having (1) longitudinally extending, downwardly projecting vertical side web members, both of the side web members having a lower longitudinal edge with a longitudinally extending, inwardly projecting flange, and (2) at least one longitudinally extending, downardly projecting rib web member between the side web members. Each rib web member has a lower longitudinal edge with a longitudinally extending, laterally projecting flange.« less

  6. Radial flow heat exchanger

    DOEpatents

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  7. Generation of microfluidic flow using an optically assembled and magnetically driven microrotor

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Ghadiri, R.; Ksouri, S. I.; Guo, Q.; Gurevich, E. L.; Ostendorf, A.

    2014-12-01

    The key components in microfluidic systems are micropumps, valves and mixers. Depending on the chosen technology, the realization of these microsystems often requires rotational and translational control of subcomponents. The manufacturing of such active components as well as the driving principle are still challenging tasks. A promising all-optical approach could be the combination of laser direct writing and actuation based on optical forces. However, when higher actuation velocities are required, optical driving might be too slow. Hence, a novel approach based on optical assembling of microfluidic structures and subsequent magnetic actuation is proposed. By applying the optical assembly of microspherical building blocks as the manufacturing method and magnetic actuation, a microrotor was successfully fabricated and tested within a microfluidic channel. The resulting fluid flow was characterized by introducing an optically levitated measuring probe particle. Finally, a freely moving tracer particle visualizes the generated flow. The tracer particle analysis shows average velocities of 0.4-0.5 µm s-1 achieved with the presented technology.

  8. Visualizing Coolant Flow in Sodium Reactor Subassemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    Uniformity of temperature controls peak power output. Interchannel cross-flow is the principal cross-assembly energy transport mechanism. The areas of fastest flow all occur at the exterior of the assembly. Further, the fast moving region winds around the assembly in a continuous swath. This Nek5000 simulation uses an unstructured mesh with over one billion grid points, resulting in five billion degrees of freedom per time slice. High speed patches of turbulence due to vertex shedding downstream of the wires persist for about a quarter of the wire-wrap periodic length. Credits: Science: Paul Fisher and Aleks Obabko, Argonne National Laboratory. Visualization: Hankmore » Childs and Janet Jacobsen, Lawrence Berkeley National Laboratory. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy under contract DE-AC02-06CH11357. This research was sponsored by the Department of Energy's Office of Nuclear Energy's NEAMS program.« less

  9. Chloroplast evolution, structure and functions

    PubMed Central

    Jensen, Poul Erik

    2014-01-01

    In this review, we consider a selection of recent advances in chloroplast biology. These include new findings concerning chloroplast evolution, such as the identification of Chlamydiae as a third partner in primary endosymbiosis, a second instance of primary endosymbiosis represented by the chromatophores found in amoebae of the genus Paulinella, and a new explanation for the longevity of captured chloroplasts (kleptoplasts) in sacoglossan sea slugs. The controversy surrounding the three-dimensional structure of grana, its recent resolution by tomographic analyses, and the role of the CURVATURE THYLAKOID1 (CURT1) proteins in supporting grana formation are also discussed. We also present an updated inventory of photosynthetic proteins and the factors involved in the assembly of thylakoid multiprotein complexes, and evaluate findings that reveal that cyclic electron flow involves NADPH dehydrogenase (NDH)- and PGRL1/PGR5-dependent pathways, both of which receive electrons from ferredoxin. Other topics covered in this review include new protein components of nucleoids, an updated inventory of the chloroplast proteome, new enzymes in chlorophyll biosynthesis and new candidate messengers in retrograde signaling. Finally, we discuss the first successful synthetic biology approaches that resulted in chloroplasts in which electrons from the photosynthetic light reactions are fed to enzymes derived from secondary metabolism. PMID:24991417

  10. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  11. Methods and devices for fabricating and assembling printable semiconductor elements

    DOEpatents

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  12. Imaging and Quantitation of a Succession of Transient Intermediates Reveal the Reversible Self-Assembly Pathway of a Simple Icosahedral Virus Capsid.

    PubMed

    Medrano, María; Fuertes, Miguel Ángel; Valbuena, Alejandro; Carrillo, Pablo J P; Rodríguez-Huete, Alicia; Mateu, Mauricio G

    2016-11-30

    Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.

  13. Module Configuration

    DOEpatents

    Oweis, Salah; D'Ussel, Louis; Chagnon, Guy; Zuhowski, Michael; Sack, Tim; Laucournet, Gaullume; Jackson, Edward J.

    2002-06-04

    A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

  14. Aging of d-Limonene-cleaned assemblies. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somer, T.A.

    1995-08-01

    The performance of 1600 electronic circuit variables was monitored throughout an 8000-hour exposure to +160{degrees}F. The variables involve 36 electronic assemblies, cleaned with various solvents, including d-Limonene, as a replacement for trichloroethylene (TCE). The assemblies were divided into four groups, including a TCE-cleaned control group at room temperature. Of the three groups exposed at +160{degrees}F, one was cleaned in TCE, one was cleaned in d-Limonene, and one was kept in a saturated d-Limonene atmosphere. No performance degradation was observed with any of the groups, including the worst-case exposure in a saturated d-Limonene atmosphere.

  15. Defects in the Expression of Chloroplast Proteins Leads to H2O2 Accumulation and Activation of Cyclic Electron Flow around Photosystem I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strand, Deserah D.; Livingston, Aaron K.; Satoh-Cruz, Mio

    We describe a new member of the class of mutants in Arabidopsis exhibiting high rates of cyclic electron flow around photosystem I (CEF), a light-driven process that produces ATP but not NADPH. High cyclic electron flow 2 (hcef2) shows strongly increased CEF activity through the NADPH dehydrogenase complex (NDH), accompanied by increases in thylakoid proton motive force (pmf), activation of the photoprotective qE response, and the accumulation of H 2O 2 . Surprisingly, hcef2 was mapped to a nonsense mutation in the TADA1 (tRNA adenosine deaminase arginine) locus, coding for a plastid targeted tRNA editing enzyme required for efficient codonmore » recognition. Comparison of protein content from representative thylakoid complexes, the cytochrome bf complex and the ATP synthase, suggests that inefficient translation of hcef2 leads to compromised complex assembly or stability leading to alterations in stoichiometries of major thylakoid complexes as well as their constituent subunits. Altered subunit stoichiometries for photosystem I, ratios and properties of cytochrome bf hemes, and the decay kinetics of the flash induced thylakoid electric field suggest that these defect lead to accumulation of H 2O 2 in hcef2, which we have previously shown leads to activation of NDHrelated CEF. We observed similar increases in CEF and H 2O 2 accumulation in other translation defective mutants, suggesting that loss of coordination in plastid protein levels lead to imbalances in the photosynthetic energy balance that leads to increased CEF. These results, together with a large body of previous observations, support a general model in which processes that imbalances in chloroplast energetics result in the production of H 2O 2 , which activates CEF, either as a redox signal or by inducing deficits in ATP levels.« less

  16. Coordination-Driven Self-Assembly of M3L2 Trigonal Cages from Pre-organized Metalloligands Incorporating Octahedral Metal Centers and Fluorescent Detection of Nitroaromatics

    PubMed Central

    Wang, Ming; Vajpayee, Vaishali; Shanmugaraju, Sankarasekaran; Zheng, Yao-Rong; Zhao, Zhigang; Kim, Hyunuk

    2011-01-01

    The design and preparation of novel M3L2 trigonal cages via coordination-driven self-assembly of pre-organized metalloligands containing octahedral aluminum(III), gallium(III), or ruthenium(II) centers is described. By employing tritopic or dinuclear linear metalloligands and appropriate complementary subunits, M3L2 trigonal-bipyramidal and trigonal prismatic cages are self-assembled under mild conditions. These 3-D cages were characterized with multinuclear NMR spectroscopy (1H and 31P) and high-resolution electronic spray mass spectrometry (HR-ESI-MS). The structure of one such trigonal prismatic cage, self-assembled from an arene ruthenium metalloligand, was confirmed via single-crystal X-ray crystallography. The fluorescent nature of these prisms, due to the presence of their electron-rich ethynyl functionalities, prompted photophysical studies which revealed that electron-deficient nitroaromatics are effective quenchers of the cages' emission. Excited state charge transfer from the prisms to the nitroaromatic substrates can be used as the basis for developing selective and discriminatory turn-off fluorescent sensors for nitroaromatics. PMID:21214171

  17. Electron microscopic analysis of rotavirus assembly-replication intermediates

    PubMed Central

    Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M.

    2015-01-01

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally, using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly-replicase process. PMID:25635339

  18. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli

    PubMed Central

    Sashital, Dipali G; Greeman, Candacia A; Lyumkis, Dmitry; Potter, Clinton S; Carragher, Bridget; Williamson, James R

    2014-01-01

    Ribosome assembly is a complex process involving the folding and processing of ribosomal RNAs (rRNAs), concomitant binding of ribosomal proteins (r-proteins), and participation of numerous accessory cofactors. Here, we use a quantitative mass spectrometry/electron microscopy hybrid approach to determine the r-protein composition and conformation of 30S ribosome assembly intermediates in Escherichia coli. The relative timing of assembly of the 3′ domain and the formation of the central pseudoknot (PK) structure depends on the presence of the assembly factor RimP. The central PK is unstable in the absence of RimP, resulting in the accumulation of intermediates in which the 3′-domain is unanchored and the 5′-domain is depleted for r-proteins S5 and S12 that contact the central PK. Our results reveal the importance of the cofactor RimP in central PK formation, and introduce a broadly applicable method for characterizing macromolecular assembly in cells. DOI: http://dx.doi.org/10.7554/eLife.04491.001 PMID:25313868

  19. Apollo Guidance, Navigation, and Control (GNC) Hardware Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic guidance, navigation and control (GNC) concepts, examines the Command and Service Module (CSM) and Lunar Module (LM) GNC organization and discusses the primary GNC and the CSM Stabilization and Control System (SCS), as well as other CSM-specific hardware. The LM Abort Guidance System (AGS), Control Electronics System (CES) and other LM-specific hardware are also addressed. Three subsystems exist on each vehicle: the computer subsystem (CSS), the inertial subsystem (ISS) and the optical subsystem (OSS). The CSS and ISS are almost identical between CSM and LM and each is designed to operate independently. CSM SCS hardware are highlighted, including translation control, rotation controls, gyro assemblies, a gyro display coupler and flight director attitude indicators. The LM AGS hardware are also highlighted and include the abort electronics assembly and the abort sensor assembly; while the LM CES hardware includes the attitude controller assembly, thrust/translation controller assemblies and the ascent engine arming assemble. Other common hardware including the Orbital Rate Display - Earth and Lunar (ORDEAL) and the Crewman Optical Alignment Sight (COAS), a docking aid, are also highlighted.

  20. 75 FR 47207 - Airworthiness Directives; Airbus Model A330-200 and -300 Series Airplanes, and Model A340-200...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... airplanes. The AD requires replacing or modifying the Halon dual-filter assemblies of the flow metering fire...-filter assembly P/N QA06753 is embodied in production through Airbus modification 40041. The Halon dual- filter assembly P/N QA06753-01 is only embodied in service through Airbus Service Bulletin A330-26-3030...

  1. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  2. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    NASA Astrophysics Data System (ADS)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  3. Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching.

    PubMed

    Hauwiller, Matthew R; Ondry, Justin C; Alivisatos, A Paul

    2018-05-17

    Graphene liquid cell electron microscopy provides the ability to observe nanoscale chemical transformations and dynamics as the reactions are occurring in liquid environments. This manuscript describes the process for making graphene liquid cells through the example of graphene liquid cell transmission electron microscopy (TEM) experiments of gold nanocrystal etching. The protocol for making graphene liquid cells involves coating gold, holey-carbon TEM grids with chemical vapor deposition graphene and then using those graphene-coated grids to encapsulate liquid between two graphene surfaces. These pockets of liquid, with the nanomaterial of interest, are imaged in the electron microscope to see the dynamics of the nanoscale process, in this case the oxidative etching of gold nanorods. By controlling the electron beam dose rate, which modulates the etching species in the liquid cell, the underlying mechanisms of how atoms are removed from nanocrystals to form different facets and shapes can be better understood. Graphene liquid cell TEM has the advantages of high spatial resolution, compatibility with traditional TEM holders, and low start-up costs for research groups. Current limitations include delicate sample preparation, lack of flow capability, and reliance on electron beam-generated radiolysis products to induce reactions. With further development and control, graphene liquid cell may become a ubiquitous technique in nanomaterials and biology, and is already being used to study mechanisms governing growth, etching, and self-assembly processes of nanomaterials in liquid on the single particle level.

  4. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    NASA Astrophysics Data System (ADS)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  5. Carrier relaxation mechanisms in self-assembled (In,Ga)As/GaAs quantum dots: Efficient P→S Auger relaxation of electrons

    NASA Astrophysics Data System (ADS)

    Narvaez, Gustavo A.; Bester, Gabriel; Zunger, Alex

    2006-08-01

    We calculate the P -shell-to- S -shell decay lifetime τ(P→S) of electrons in lens-shaped self-assembled (In,Ga)As/GaAs dots due to Auger electron-hole scattering within an atomistic pseudopotential-based approach. We find that this relaxation mechanism leads to fast decay of τ(P→S)˜1-7ps for dots of different sizes. Our calculated Auger-type P -shell-to- S -shell decay lifetimes τ(P→S) compare well to data in (In,Ga)As/GaAs dots, showing that as long as both electrons and holes are present there is no need for an alternative polaron mechanism.

  6. Cooled electrical terminal assembly and device incorporating same

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2006-08-22

    A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  7. Cooled electrical terminal assembly and device incorporating same

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2005-05-24

    A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  8. Passive Safety Features Evaluation of KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Zhaopeng; Gohar, Yousry

    2016-06-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine and its commissioning process is underway. It will be used to conduct basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The facility has an electron accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100 MeV electrons. Tungsten or natural uranium is the target material for generating neutrons driving the subcritical assembly. The subcritical assemblymore » is composed of WWR-M2 - Russian fuel assemblies with U-235 enrichment of 19.7 wt%, surrounded by beryllium reflector assembles and graphite blocks. The subcritical assembly is seated in a water tank, which is a part of the primary cooling loop. During normal operation, the water coolant operates at room temperature and the total facility power is ~300 KW. The passive safety features of the facility are discussed in in this study. Monte Carlo computer code MCNPX was utilized in the analyses with ENDF/B-VII.0 nuclear data libraries. Negative reactivity temperature feedback was consistently observed, which is important for the facility safety performance. Due to the design of WWR-M2 fuel assemblies, slight water temperature increase and the corresponding water density decrease produce large reactivity drop, which offset the reactivity gain by mistakenly loading an additional fuel assembly. The increase of fuel temperature also causes sufficiently large reactivity decrease. This enhances the facility safety performance because fuel temperature increase provides prompt negative reactivity feedback. The reactivity variation due to an empty fuel position filled by water during the fuel loading process is examined. Also, the loading mistakes of removing beryllium reflector assemblies and replacing them with dummy assemblies were analyzed. In all these circumstances, the reactivity change results do not cause any safety concerns.« less

  9. High-Flow Jet Exit Rig Designed and Fabricated

    NASA Technical Reports Server (NTRS)

    Buehrle, Robert J.; Trimarchi, Paul A.

    2003-01-01

    The High-Flow Jet Exit Rig at the NASA Glenn Research Center is designed to test single flow jet nozzles and to measure the appropriate thrust and noise levels. The rig has been designed for the maximum hot condition of 16 lbm/sec of combustion air at 1960 R (maximum) and to produce a maximum thrust of 2000 lb. It was designed for cold flow of 29.1 lbm/sec of air at 530 R. In addition, it can test dual-flow nozzles (nozzles with bypass flow in addition to core flow) with independent control of each flow. The High- Flow Jet Exit Rig was successfully fabricated in late 2001 and is being readied for checkout tests. The rig will be installed in Glenn's Aeroacoustic Propulsion Laboratory. The High-Flow Jet Exit Rig consists of the following major components: a single component force balance, the natural-gas-fueled J-79 combustor assembly, the plenum and manifold assembly, an acoustic/instrumentation/seeding (A/I/S) section, a table, and the research nozzles. The rig will be unique in that it is designed to operate uncooled. The structure survives the 1960 R test condition because it uses carefully selected high temperature alloy materials such as Hastelloy-X. The lower plenum assembly was designed to operate at pressures to 450 psig at 1960 R, in accordance with the ASME B31.3 piping code. The natural gas-fueled combustor fires directly into the lower manifold. The hot air is directed through eight 1-1/2-in. supply pipes that supply the upper plenum. The flow is conditioned in the upper plenum prior to flowing to the research nozzle. The 1-1/2-in. supply lines are arranged in a U-shaped design to provide for a flexible piping system. The combustor assembly checkout was successfully conducted in Glenn's Engine Component Research Laboratory in the spring of 2001. The combustor is a low-smoke version of the J79 combustor used to power the F4 Phantom military aircraft. The natural gas-fueled combustor demonstrated high-efficiency combustion over a wide range of operating conditions. This wide operating envelope is required to support the testing of both single- and dual-flow nozzles. Key research goals include providing simultaneous, highly accurate acoustic, flow, and thrust measurements on jet nozzle models in realistic flight conditions, as well as providing scaleable acoustic results. The High-Flow Jet Exit Rig is a second-generation high-flow test rig. Improvements include cleaner flow with reduced levels of particulate, soot, and odor. Choked-flow metering is required with plus or minus 0.25-percent accuracy. Thrust measurements from 0 to 2000 lbf are required with plus or minus 0.25-percent accuracy. Improved acoustics will be achieved by minimizing noise through large pipe bend radii, lower internal flow velocities, and microdrilled choke plates with thousands of 0.040-in.- diameter holes.

  10. Liquid rocket engine axial-flow turbopumps

    NASA Technical Reports Server (NTRS)

    Scheer, D. D.; Huppert, M. C.; Viteri, F.; Farquhar, J.; Keller, R. B., Jr. (Editor)

    1978-01-01

    The axial pump is considered in terms of the total turbopump assembly. Stage hydrodynamic design, pump rotor assembly, pump materials for liquid hydrogen applications, and safety factors as utilized in state of the art pumps are among the topics discussed. Axial pump applications are included.

  11. Fluid-flow-templated self-assembly of calcium carbonate tubes in the laboratory and in biomineralization: The tubules of the watering-pot shells, Clavagelloidea.

    PubMed

    Cardoso, Silvana S S; Cartwright, Julyan H E; Checa, Antonio G; Sainz-Díaz, C Ignacio

    2016-10-01

    We show with laboratory experiments that self-assembled mineral tube formation involving precipitation around a templating jet of fluid - a mechanism well-known in the physical sciences from the tubular growth of so-called chemical gardens - functions with carbonates, and we analyse the microstructures and compositions of the precipitates. We propose that there should exist biological examples of fluid-flow-templated tubes formed from carbonates. We present observational and theoretical modelling evidence that the complex structure of biomineral calcium carbonate tubules that forms the 'rose' of the watering-pot shells, Clavagelloidea, may be an instance of this mechanism in biomineralization. We suggest that this is an example of self-organization and self-assembly processes in biomineralization, and that such a mechanism is of interest for the production of tubes as a synthetic biomaterial. The work discussed in the manuscript concerns the self-assembly of calcium carbonate micro-tubes and nano-tubes under conditions of fluid flow together with chemical reaction. We present the results of laboratory experiments on tube self-assembly together with theoretical calculations. We show how nature may already be making use of this process in molluscan biomineralization of the so-called watering-pot shells, and we propose that we may be able to take advantage of the formation mechanism to produce synthetic biocompatible micro- and nano-tubes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. An analysis of FtsZ assembly using small angle X-ray scattering and electron microscopy.

    PubMed

    Kuchibhatla, Anuradha; Abdul Rasheed, A S; Narayanan, Janaky; Bellare, Jayesh; Panda, Dulal

    2009-04-09

    Small angle X-ray scattering (SAXS) was used for the first time to study the self-assembly of the bacterial cell division protein, FtsZ, with three different additives: calcium chloride, monosodium glutamate and DEAE-dextran hydrochloride in solution. The SAXS data were analyzed assuming a model form factor and also by a model-independent analysis using the pair distance distribution function. Transmission electron microscopy (TEM) was used for direct observation of the FtsZ filaments. By sectioning and negative staining with glow discharged grids, very high bundling as well as low bundling polymers were observed under different assembly conditions. FtsZ polymers formed different structures in the presence of different additives and these additives were found to increase the bundling of FtsZ protofilaments by different mechanisms. The combined use of SAXS and TEM provided us a significant insight of the assembly of FtsZ and microstructures of the assembled FtsZ polymers.

  13. Long life assurance study for manned spacecraft long life hardware. Volume 4: Special long life assurance studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Guidelines for the selection of equipment to be used for manned spacecraft in order to assure a five year maintenance-free service life were developed. A special study was conducted to determine the adequacy of the procedures used to determine the quality and effectiveness of various components. The subjects examined are: (1) temperature cycling for acceptance of electronic assemblies; (2) accelerated testing techniques; (3) electronic part screening techniques; (4) electronic part derating practices; (5) vibration life extension of printed circuit board assemblies; and (6) tolerance funnelling and test requirements.

  14. Combustor assembly in a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2015-04-28

    A combustor assembly in a gas turbine engine includes a combustor device, a fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner surrounded by the flow sleeve. The fuel injection system provides fuel to be mixed with the pressurized air and ignited in the liner to create combustion products. The intermediate duct is disposed between the liner and the transition duct so as to define a path for the combustion products to flow from the liner to the transition duct. The intermediate duct is associated with the liner such that movement may occur therebetween, and the intermediate duct is associated with the transition duct such that movement may occur therebetween. The flow sleeve includes structure that defines an axial stop for limiting axial movement of the intermediate duct.

  15. Boostream: a dynamic fluid flow process to assemble nanoparticles at liquid interface

    NASA Astrophysics Data System (ADS)

    Delléa, Olivier; Lebaigue, Olivier

    2017-12-01

    CEA-LITEN develops an original process called Boostream® to manipulate, assemble and connect micro- or nanoparticles of various materials, sizes, shapes and functions to obtain monolayer colloidal crystals (MCCs). This process uses the upper surface of a liquid film flowing down a ramp to assemble particles in a manner that is close to the horizontal situation of a Langmuir-Blodgett film construction. In presence of particles at the liquid interface, the film down-flow configuration exhibits an unusual hydraulic jump which results from the fluid flow accommodation to the particle monolayer. In order to master our process, the fluid flow has been modeled and experimentally characterized by optical means, such as with the moiré technique that consists in observing the reflection of a succession of periodic black-and-red fringes on the liquid surface mirror. The fringe images are deformed when reflected by the curved liquid surface associated with the hydraulic jump, the fringe deformation being proportional to the local slope of the surface. This original experimental setup allowed us to get the surface profile in the jump region and to measure it along with the main process parameters (liquid flow rate, slope angle, temperature sensitive fluid properties such as dynamic viscosity or surface tension, particle sizes). This work presents the experimental setup and its simple model, the different experimental characterization techniques used and will focus on the way the hydraulic jump relies on the process parameters.

  16. Process For Controlling Flow Rate Of Viscous Materials Including Use Of Nozzle With Changeable Openings

    DOEpatents

    Ellingson, William A.; Forster, George A.

    1999-11-02

    Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.

  17. Programmed self-assembly of large π-conjugated molecules into electroactive one-dimensional nanostructures

    PubMed Central

    Yamamoto, Yohei

    2012-01-01

    Electroactive one-dimensional (1D) nano-objects possess inherent unidirectional charge and energy transport capabilities along with anisotropic absorption and emission of light, which are of great advantage for the development of nanometer-scale electronics and optoelectronics. In particular, molecular nanowires formed by self-assembly of π-conjugated molecules attract increasing attention for application in supramolecular electronics. This review introduces recent topics related to electroactive molecular nanowires. The nanowires are classified into four categories with respect to the electronic states of the constituent molecules: electron donors, acceptors, donor–acceptor pairs and miscellaneous molecules that display interesting electronic properties. Although many challenges still remain for practical use, state-of-the-art 1D supramolecular nanomaterials have already brought significant advances to both fundamental chemical sciences and technological applications. PMID:27877488

  18. Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples.

    PubMed

    Krueger, Mark; Berg, Shannon; Stone, D'Arcy; Strelcov, Evgheni; Dikin, Dmitriy A; Kim, Jaemyung; Cote, Laura J; Huang, Jiaxing; Kolmakov, Andrei

    2011-12-27

    Graphene oxide sheets dispersed in water and many other solvents can spontaneously assemble into a surface film covering an evaporating droplet due to their amphiphilicity. Thus, graphene oxide membranes with controllable thickness suspended over an orifice have been directly fabricated using a simple drop-cast approach. Mechanical properties and electron transparency tests of these membranes show their use as electron transparent, but molecularly impenetrable, windows for environmental electron microscopy in liquids and dense gaseous media. The foreseeable, broader application of this drop-cast window methodology is the creation of access spots for electron probes to study isolated microsamples in their natural, undisrupted state within the interior of prefabricated devices (such as microfluidic chips or sealed containers of biological, chemically reactive, toxic, or forensic materials).

  19. Frit inlet field-flow fractionation techniques for the characterization of polyion complex self-assemblies.

    PubMed

    Till, Ugo; Gaucher, Mireille; Amouroux, Baptiste; Gineste, Stéphane; Lonetti, Barbara; Marty, Jean-Daniel; Mingotaud, Christophe; Bria, Carmen R M; Williams, S Kim Ratanathanawongs; Violleau, Frédéric; Mingotaud, Anne-Françoise

    2017-01-20

    Polymer self-assemblies joining oppositely charged chains, known as polyion complexes (PICs), have been formed using poly(ethyleneoxide - b - acrylic acid)/poly(l-lysine), poly(ethyleneoxide-b-acrylic acid)/dendrigraft poly(l-lysine) and poly[(3-acrylamidopropyl) trimethylammonium chloride - b - N - isopropyl acrylamide]/poly(acrylic acid). The self-assemblies have been first characterized in batch by Dynamic Light Scattering. In a second step, their analysis by Flow Field-Flow Fractionation techniques (FlFFF) was examined. They were shown to be very sensitive to shearing, especially during the focus step of the fractionation, and this led to an incompatibility with asymmetrical FlFFF. On the other hand, Frit Inlet FlFFF proved to be very efficient to observe them, either in its symmetrical (FI-FlFFF) or asymmetrical version (FI-AsFlFFF). Conditions of elution were found to optimize the sample recovery in pure water. Spherical self-assemblies were detected, with a size range between 70-400nm depending on the polymers. Compared to batch DLS, FI-AsFlFFF clearly showed the presence of several populations in some cases. The influence of salt on poly(ethyleneoxide-b-acrylic acid) (PEO-PAA) 6000-3000/dendrigraft poly(l-lysine) (DGL 3) was also assessed in parallel in batch DLS and FI-AsFlFFF. Batch DLS revealed a first process of swelling of the self-assembly for low concentrations up to 0.8M followed by the dissociation. FI-AsFlFFF furthermore indicated a possible ejection of DGL3 from the PIC assembly for concentrations as low as 0.2M, which could not be observed in batch DLS. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Tailored Surfaces/Assemblies for Molecular Plasmonics and Plasmonic Molecular Electronics.

    PubMed

    Lacroix, Jean-Christophe; Martin, Pascal; Lacaze, Pierre-Camille

    2017-06-12

    Molecular plasmonics uses and explores molecule-plasmon interactions on metal nanostructures for spectroscopic, nanophotonic, and nanoelectronic devices. This review focuses on tailored surfaces/assemblies for molecular plasmonics and describes active molecular plasmonic devices in which functional molecules and polymers change their structural, electrical, and/or optical properties in response to external stimuli and that can dynamically tune the plasmonic properties. We also explore an emerging research field combining molecular plasmonics and molecular electronics.

  1. Evaluating print performance of Sn-Ag-Cu lead-free solder pastes used in electronics assembly process

    NASA Astrophysics Data System (ADS)

    Mallik, S.; Bauer, R.; Hübner, F.; Ekere, N. N.

    2011-01-01

    Solder paste is the most widely used interconnection material in the electronic assembly process for attaching electronic components/devices directly onto the surface of printed circuit boards, using stencil printing process. This paper evaluates the performance of three different commercially available Sn-Ag-Cu solder pastes formulated with different particle size distributions (PSD), metal content and alloy composition. A series of stencil printing tests were carried out using a specially designed stencil of 75 μm thickness and apertures of 300×300 μm2 dimension and 500 μm pitch sizes. Solder paste printing behaviors were found related to attributes such as slumping and surface tension and printing performance was correlated with metal content and PSD. The results of the study should benefit paste manufacturers and SMT assemblers to improve their products and practices.

  2. NASA-DoD Lower Process Temperature Lead-Free Solder Project Overview

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2014-01-01

    This project is a follow-on effort to the Joint Council on Aging AircraftJoint Group on Pollution Prevention (JCAAJG-PP) Pb-free Solder Project and NASA-DoD Lead-Free Electronics Project which were the first projects to test the reliability of Pb-free solder joints against the requirements of the aerospace and military community. This effort would continue to build on the results from the JCAAJG-PP Lead-Free Solder Project and NASA-DoD Lead-Free Electronics Project while focusing on a particular failure mechanism currently plaguing Pb-free assemblies, pad cratering.The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. Pad Cratering is a latent defect that may occur during assembly, rework, and post assembly handling and testing.

  3. Nanopatched Graphene with Molecular Self-Assembly Toward Graphene-Organic Hybrid Soft Electronics.

    PubMed

    Kang, Boseok; Lee, Seong Kyu; Jung, Jaehyuck; Joe, Minwoong; Lee, Seon Baek; Kim, Jinsung; Lee, Changgu; Cho, Kilwon

    2018-06-01

    Increasing the mechanical durability of large-area polycrystalline single-atom-thick materials is a necessary step toward the development of practical and reliable soft electronics based on these materials. Here, it is shown that the surface assembly of organosilane by weak epitaxy forms nanometer-thick organic patches on a monolayer graphene surface and dramatically increases the material's resistance to harsh postprocessing environments, thereby increasing the number of ways in which graphene can be processed. The nanopatched graphene with the improved mechanical durability enables stable operation when used as transparent electrodes of wearable strain sensors. Also, the nanopatched graphene applied as an electrode modulates the molecular orientation of deposited organic semiconductor layers, and yields favorable nominal charge injection for organic transistors. These results demonstrate the potential for use of self-assembled organic nanopatches in graphene-based soft electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Far-from-equilibrium magnetic granular layers: dynamic patterns, magnetic order and self-assembled swimmers

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey

    2010-03-01

    Ensembles of interacting particles subject to an external periodic forcing often develop nontrivial collective behavior and self-assembled dynamic patterns. We study emergent phenomena in magnetic granular ensembles suspended at a liquid-air and liquid-liquid interfaces and subjected to a transversal alternating magnetic field. Experiments reveal a new type of nontrivially ordered dynamic self-assembled structures (in particular, ``magnetic snakes'', ``asters'', ``clams'') emerging in such systems in a certain range of excitation parameters. These non-equilibrium dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex magnetic ordering. Transition between different self-assembled phases with parameters of external driving magnetic field is observed. I will show that above some frequency threshold magnetic snakes spontaneously break the symmetry of the self-induced surface flows (symmetry breaking instability) and turn into swimmers. Self-induced surface flows symmetry can be also broken in a controlled fashion by introduction of a large bead to a magnetic snake (bead-snake hybrid), that transforms it into a robust self-locomoting entity. Some features of the self-localized structures can be understood in the framework of an amplitude equation for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows.

  5. Vectorial electron transfer for improved hydrogen evolution by mercaptopropionic-acid-regulated CdSe quantum-dots-TiO2 -Ni(OH)2 assembly.

    PubMed

    Yu, Shan; Li, Zhi-Jun; Fan, Xiang-Bing; Li, Jia-Xin; Zhan, Fei; Li, Xu-Bing; Tao, Ye; Tung, Chen-Ho; Wu, Li-Zhu

    2015-02-01

    A visible-light-induced hydrogen evolution system based on a CdSe quantum dots (QDs)-TiO2 -Ni(OH)2 ternary assembly has been constructed under an ambient environment, and a bifunctional molecular linker, mercaptopropionic acid, is used to facilitate the interaction between CdSe QDs and TiO2 . This hydrogen evolution system works effectively in a basic aqueous solution (pH 11.0) to achieve a hydrogen evolution rate of 10.1 mmol g(-1)  h(-1) for the assembly and a turnover frequency of 5140 h(-1) with respect to CdSe QDs (10 h); the latter is comparable with the highest value reported for QD systems in an acidic environment. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and control experiments demonstrate that Ni(OH)2 is an efficient hydrogen evolution catalyst. In addition, inductively coupled plasma optical emission spectroscopy and the emission decay of the assembly combined with the hydrogen evolution experiments show that TiO2 functions mainly as the electron mediator; the vectorial electron transfer from CdSe QDs to TiO2 and then from TiO2 to Ni(OH)2 enhances the efficiency for hydrogen evolution. The assembly comprises light antenna CdSe QDs, electron mediator TiO2 , and catalytic Ni(OH)2 , which mimics the strategy of photosynthesis exploited in nature and takes us a step further towards artificial photosynthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrically heated particulate filter with zoned exhaust flow control

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2012-06-26

    A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

  7. Space Station Environmental Control and Life Support System Purge Control Pump Assembly Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Schunk, R. Gregory; Hunt, Patrick L. (Technical Monitor)

    2001-01-01

    Preliminary results from a thermal/flow analysis of the Purge Control Pump Assembly (PCPA) indicate that pump performance (mass flow rate) is enhanced via cooling of the housing and lowering of the inlet vapor quality. Under a nominal operational profile (25% duty cycle or less), at the maximum motor dissipation, it appears that the peristaltic tubing temperature will still remain significantly below the expected UPA condenser temperature (78 F max versus approximately 105 F in the condenser) permitting condensation in the pump head.

  8. Solid polymer electrolyte water electrolysis preprototype subsystem. [oxygen production for life support systems on space stations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.

  9. Removable feedwater sparger assembly

    DOEpatents

    Challberg, R.C.

    1994-10-04

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith. 8 figs.

  10. Removable feedwater sparger assembly

    DOEpatents

    Challberg, Roy C.

    1994-01-01

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith.

  11. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

    NASA Technical Reports Server (NTRS)

    Cisar, Alan J. (Inventor); Murphy, Oliver J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor)

    1997-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.

  12. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin [Danbury, CT; Urko, Willam [West Granby, CT

    2008-01-29

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  13. Fuel nozzle assembly

    DOEpatents

    Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  14. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  15. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  16. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  17. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  18. 10 CFR 434.402 - Building envelope assemblies and materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Design Requirements-Electric Systems and Equipment... be determined with due consideration of all major series and parallel heat flow paths through the... thermal transmittance of opaque elements of assemblies shall be determined using a series path procedure...

  19. Assembly of silver nanowire ring induced by liquid droplet

    NASA Astrophysics Data System (ADS)

    Seong, Baekhoon; Park, Hyun Sung; Chae, Ilkyeong; Lee, Hyungdong; Wang, Xiaofeng; Jang, Hyung-Seok; Jung, Jaehyuck; Lee, Changgu; Lin, Liwei; Byun, Doyoung

    2017-11-01

    Several forces in the liquid droplet drive the nanomaterials to naturally form an assembled structure. During evaporation of a liquid droplet, nanomaterials can move to the rim of the droplet by convective flow and capillary flow, due to the difference in temperature between the top and contact line of the droplet. Here, we demonstrate a new, simple and scalable technology for the fabrication of ring-shaped Ag NWs by a spraying method. We experimentally identify the compressive force of the droplet driven by surface tension as the key mechanism for the self-assembly of ring structures. We investigated the progress of ring shape formation of Ag NWs according to the droplet size with theoretically calculated optimal conditions. As such, this self-assembly technique of making ring-shaped structures from Ag NWs could be applied to other nanomaterials. This work was supported by the New & Renewable Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Trade, Industry and Energy. (No. 20163010071630).

  20. Engineered phages for electronics.

    PubMed

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Self Assembly of Nano Metric Metallic Particles for Realization of Photonic and Electronic Nano Transistors

    PubMed Central

    Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev

    2010-01-01

    In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles. PMID:20559513

  2. Fabrication of capsule assemblies, phase 3

    NASA Technical Reports Server (NTRS)

    Keeton, A. R.; Stemann, L. G.

    1973-01-01

    Thirteen capsule assemblies were fabricated for evaluation of fuel pin design concepts for a fast spectrum lithium cooled compact space power reactor. These instrumented assemblies were designed for real time test of prototype fuel pins. Uranium mononitride fuel pins were encased in AISI 304L stainless steel capsules. Fabrication procedures were fully qualified by process development and assembly qualification tests. Instrumentation reliability was achieved utilizing specially processed and closely controlled thermocouple hot zone fabrication and by thermal screening tests. Overall capsule reliability was achieved with an all electron beam welded assembly.

  3. Self assembly of nano metric metallic particles for realization of photonic and electronic nano transistors.

    PubMed

    Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev

    2010-05-25

    In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles.

  4. Elucidating energy and electron transfer dynamics within molecular assemblies for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Morseth, Zachary Aaron

    The use of sunlight to make chemical fuels (i.e. solar fuels) is an attractive approach in the quest to develop sustainable energy sources. Using nature as a guide, assemblies for artificial photosynthesis will need to perform multiple functions. They will need to be able to harvest light across a broad region of the solar spectrum, transport excited-state energy to charge-separation sites, and then transport and store redox equivalents for use in the catalytic reactions that produce chemical fuels. This multifunctional behavior will require the assimilation of multiple components into a single macromolecular system. A wide variety of different architectures including porphyrin arrays, peptides, dendrimers, and polymers have been explored, with each design posing unique challenges. Polymer assemblies are attractive due to their relative ease of production and facile synthetic modification. However, their disordered nature gives rise to stochastic dynamics not present in more ordered assemblies. The rational design of assemblies requires a detailed understanding of the energy and electron transfer events that follow light absorption, which can occur on timescales ranging from femtoseconds to hundreds of microseconds, necessitating the use of sophisticated techniques. We have used a combination of time-resolved absorption and emission spectroscopies with observation times that span nine orders of magnitude to follow the excited-state evolution within single-site and polymer-based molecular assemblies. We complement experimental observations with electronic structure calculations, molecular dynamics simulations, and kinetic modeling to develop a microscopic view of these dynamics. This thesis provides an overview of work on single-site molecular assemblies and polymers decorated with pendant chromophores, both in solution and on surfaces. This work was made possible through extensive collaboration with Dr. Kirk Schanze's and Dr. John Reynolds' research groups who synthesized the samples for study.

  5. Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Wenshuai; Wu, Zili; Foo, Guo Shiou

    Taming interfacial electronic effects on Pt nanoparticles modulated by their concomitants has emerged as an intriguing approach to optimize Pt catalytic performance. Here, we report Pt nanoparticles assembled on vacancy-abundant hexagonal boron nitride nanosheets and their use as a model catalyst to embrace an interfacial electronic effect on Pt induced by the nanosheets with N-vacancies and B-vacancies for superior CO oxidation catalysis. Experimental results indicate that strong interaction exists between Pt and the vacancies. Bader charge analysis shows that with Pt on B-vacancies, the nanosheets serve as a Lewis acid to accept electrons from Pt, and on the contrary, whenmore » Pt sits on N-vacancies, the nanosheets act as a Lewis base for donating electrons to Pt. The overall-electronic effect demonstrates an electron-rich feature of Pt after assembling on hexagonal boron nitride nanosheets. Such an interfacial electronic effect makes Pt favour the adsorption of O 2, alleviating CO poisoning and promoting the catalysis.« less

  6. Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis

    DOE PAGES

    Zhu, Wenshuai; Wu, Zili; Foo, Guo Shiou; ...

    2017-06-09

    Taming interfacial electronic effects on Pt nanoparticles modulated by their concomitants has emerged as an intriguing approach to optimize Pt catalytic performance. Here, we report Pt nanoparticles assembled on vacancy-abundant hexagonal boron nitride nanosheets and their use as a model catalyst to embrace an interfacial electronic effect on Pt induced by the nanosheets with N-vacancies and B-vacancies for superior CO oxidation catalysis. Experimental results indicate that strong interaction exists between Pt and the vacancies. Bader charge analysis shows that with Pt on B-vacancies, the nanosheets serve as a Lewis acid to accept electrons from Pt, and on the contrary, whenmore » Pt sits on N-vacancies, the nanosheets act as a Lewis base for donating electrons to Pt. The overall-electronic effect demonstrates an electron-rich feature of Pt after assembling on hexagonal boron nitride nanosheets. Such an interfacial electronic effect makes Pt favour the adsorption of O 2, alleviating CO poisoning and promoting the catalysis.« less

  7. Correlating electronic transport to atomic structures in self-assembled quantum wires.

    PubMed

    Qin, Shengyong; Kim, Tae-Hwan; Zhang, Yanning; Ouyang, Wenjie; Weitering, Hanno H; Shih, Chih-Kang; Baddorf, Arthur P; Wu, Ruqian; Li, An-Ping

    2012-02-08

    Quantum wires, as a smallest electronic conductor, are expected to be a fundamental component in all quantum architectures. The electronic conductance in quantum wires, however, is often dictated by structural instabilities and electron localization at the atomic scale. Here we report on the evolutions of electronic transport as a function of temperature and interwire coupling as the quantum wires of GdSi(2) are self-assembled on Si(100) wire-by-wire. The correlation between structure, electronic properties, and electronic transport are examined by combining nanotransport measurements, scanning tunneling microscopy, and density functional theory calculations. A metal-insulator transition is revealed in isolated nanowires, while a robust metallic state is obtained in wire bundles at low temperature. The atomic defects lead to electron localizations in isolated nanowire, and interwire coupling stabilizes the structure and promotes the metallic states in wire bundles. This illustrates how the conductance nature of a one-dimensional system can be dramatically modified by the environmental change on the atomic scale. © 2012 American Chemical Society

  8. One-Dimensional Nanostructures: Microfluidic-Based Synthesis, Alignment and Integration towards Functional Sensing Devices

    PubMed Central

    Xing, Yanlong; Dittrich, Petra S.

    2018-01-01

    Microfluidic-based synthesis of one-dimensional (1D) nanostructures offers tremendous advantages over bulk approaches e.g., the laminar flow, reduced sample consumption and control of self-assembly of nanostructures. In addition to the synthesis, the integration of 1D nanomaterials into microfluidic chips can enable the development of diverse functional microdevices. 1D nanomaterials have been used in applications such as catalysts, electronic instrumentation and sensors for physical parameters or chemical compounds and biomolecules and hence, can be considered as building blocks. Here, we outline and critically discuss promising strategies for microfluidic-assisted synthesis, alignment and various chemical and biochemical applications of 1D nanostructures. In particular, the use of 1D nanostructures for sensing chemical/biological compounds are reviewed. PMID:29303990

  9. Development of an Atmospheric Pressure Ionization Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A commercial atmospheric pressure ionization mass spectrometer (APIMS) was purchased from EXTREL Mass Spectrometry, Inc. (Pittsburgh, PA). Our research objectives were to adapt this instrument and develop techniques for real-time determinations of the concentrations of trace species in the atmosphere. The prototype instrument is capable of making high frequency measurements with no sample preconcentrations. Isotopically labeled standards are used as an internal standard to obtain high precision and to compensate for changes in instrument sensitivity and analyte losses in the sampling manifold as described by Bandy and coworkers. The prototype instrument is capable of being deployed on NASA C130, Electra, P3, and DC8 aircraft. After purchasing and taking delivery by June 1994, we assembled the mass spectrometer, data acquisition, and manifold flow control instrumentation in electronic racks and performed tests.

  10. Post-assembly Modification of Tetrazine-Edged Fe(II)4L6 Tetrahedra.

    PubMed

    Roberts, Derrick A; Pilgrim, Ben S; Cooper, Jonathan D; Ronson, Tanya K; Zarra, Salvatore; Nitschke, Jonathan R

    2015-08-19

    Post-assembly modification (PAM) is a powerful tool for the modular functionalization of self-assembled structures. We report a new family of tetrazine-edged Fe(II)4L6 tetrahedral cages, prepared using different aniline subcomponents, which undergo rapid and efficient PAM by inverse electron-demand Diels-Alder (IEDDA) reactions. Remarkably, the electron-donating or -withdrawing ability of the para-substituent on the aniline moiety influences the IEDDA reactivity of the tetrazine ring 11 bonds away. This effect manifests as a linear free energy relationship, quantified using the Hammett equation, between σ(para) and the rate of the IEDDA reaction. The rate of PAM can thus be adjusted by varying the aniline subcomponent.

  11. Physical properties of electricity.

    PubMed

    Thomson, Angus J M

    2013-01-01

    Electricity is the flow of electrons through a conductor. The amount of current (amps) is related to the voltage (volts) pushing the electrons and the degree of resistance to flow (ohms). During their flow around a circuit, electrons can be used to create a number of useful byproducts such as heat and light. As electrons flow, they alter the charge of the matter they flow through, which may also generate electromagnetic effects. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights reserved.

  12. Electronics manufacturing and assembly in Japan

    NASA Technical Reports Server (NTRS)

    Kukowski, John A.; Boulton, William R.

    1995-01-01

    In the consumer electronics industry, precision processing technology is the basis for enhancing product functions and for minimizing components and end products. Throughout Japan, manufacturing technology is seen as critical to the production and assembly of advanced products. While its population has increased less than 30 percent over twenty-five years, Japan's gross national product has increase thirtyfold; this growth has resulted in large part from rapid replacement of manual operations with innovative, high-speed, large-scale, continuously running, complex machines that process a growing number of miniaturized components. The JTEC panel found that introduction of next-generation electronics products in Japan goes hand-in-hand with introduction of new and improved production equipment. In the panel's judgment, Japan's advanced process technologies and equipment development and its highly automated factories are crucial elements of its domination of the consumer electronics marketplace - and Japan's expertise in manufacturing consumer electronics products gives it potentially unapproachable process expertise in all electronics markets.

  13. Self-assembled nanotubes from single fluorescent amino acid

    NASA Astrophysics Data System (ADS)

    Babar, Dipak Gorakh; Sarkar, Sabyasachi

    2017-04-01

    Self-assembly of biomolecules has gained increasing attention as it generates various supramolecular structural assemblies having potential applications principally in biomedical sciences. Here, we show that amino acid like tryptophan or tyrosine readily aggregates as nanotubes via a simple self-assembly process. These were characterized by FTIR, scanning electron microscopy, and by fluorescence microscopy. Nanotubes prepared from tryptophan are having 200 nm inner diameter and those from tyrosine are having the same around 50 nm diameter.

  14. Finalizing the DTAG: Implementation and Testing of Design Improvements for Reliability and Availability

    DTIC Science & Technology

    2015-09-30

    acoustics and fine scale motion. The success of the Dtag has resulted in an increased demand for the instrument from researchers both within the...sensor blocks sound when the animal is close to the surface. The polyethylene shell was eliminated in the Dtag-3 design to improve acoustic ...into 3 main sub-assemblies (Figure 5): 1) foam sub-assembly, 2) sensor sub-assembly, and 3) Electronics sub-assembly. This separation enables rapid

  15. The impact of recent improvements in cryo-electron microscopy technology on the understanding of bacterial ribosome assembly

    PubMed Central

    Razi, Aida; Britton, Robert A.

    2017-01-01

    Abstract Cryo-electron microscopy (cryo-EM) had played a central role in the study of ribosome structure and the process of translation in bacteria since the development of this technique in the mid 1980s. Until recently cryo-EM structures were limited to ∼10 Å in the best cases. However, the recent advent of direct electron detectors has greatly improved the resolution of cryo-EM structures to the point where atomic resolution is now achievable. This improved resolution will allow cryo-EM to make groundbreaking contributions in essential aspects of ribosome biology, including the assembly process. In this review, we summarize important insights that cryo-EM, in combination with chemical and genetic approaches, has already brought to our current understanding of the ribosomal assembly process in bacteria using previous detector technology. More importantly, we discuss how the higher resolution structures now attainable with direct electron detectors can be leveraged to propose precise testable models regarding this process. These structures will provide an effective platform to develop new antibiotics that target this fundamental cellular process. PMID:28180306

  16. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing.

    PubMed

    Yan, Hong; Zhong, Mengjuan; Lv, Ze; Wan, Pengbo

    2017-11-01

    A stretchable, transparent, and body-attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS 2 (PANI/MoS 2 ) nanocomposite in MoS 2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high-performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS 2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real-time monitoring of environment safety and human healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Numerical Investigations of High Pressure Acoustic Waves in Resonators

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Pindera, Maciej; Daniels, Christopher C.; Steinetz, Bruce M.

    2004-01-01

    This presentation presents work on numerical investigations of nonlinear acoustic phenomena in resonators that can generate high-pressure waves using acoustic forcing of the flow. Time-accurate simulations of the flow in a closed cone resonator were performed at different oscillation frequencies and amplitudes, and the numerical results for the resonance frequency and fluid pressure increase match the GRC experimental data well. Work on cone resonator assembly simulations has started and will involve calculations of the flow through the resonator assembly with and without acoustic excitation. A new technique for direct calculation of resonance frequency of complex shaped resonators is also being investigated. Script-driven command procedures will also be developed for optimization of the resonator shape for maximum pressure increase.

  18. Lageos assembly operation plan

    NASA Technical Reports Server (NTRS)

    Brueger, J.

    1975-01-01

    Guidelines and constraints procedures for LAGEOS assembly, operation, and design performance are given. Special attention was given to thermal, optical, and dynamic analysis and testing. The operation procedures illustrate the interrelation and sequence of tasks in a flow diagram. The diagram also includes quality assurance functions for verification of operation tasks.

  19. Spin-flip transitions in self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Stavrou, V. N.

    2017-12-01

    Detailed realistic calculations of the spin-flip time (T 1) for an electron in a self-assembled quantum dot (SAQD) due to emission of an acoustic phonon, using only bulk properties with no fitting parameters, are presented. Ellipsoidal lens shaped Inx Ga1-x As quantum dots, with electronic states calculated using 8-band strain dependent {k \\cdot p} theory, are considered. The phonons are treated as bulk acoustic phonons coupled to the electron by both deformation potential and piezoelectric interactions. The dependence of T 1 on the geometry of SAQD, on the applied external magnetic field and on the lattice temperature is highlighted. The theoretical results are close to the experimental measurements on the spin-flip times for a single electron in QD.

  20. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin.

    PubMed

    Gupton, Stephanie L; Anderson, Karen L; Kole, Thomas P; Fischer, Robert S; Ponti, Aaron; Hitchcock-DeGregori, Sarah E; Danuser, Gaudenz; Fowler, Velia M; Wirtz, Denis; Hanein, Dorit; Waterman-Storer, Clare M

    2005-02-14

    The actin cytoskeleton is locally regulated for functional specializations for cell motility. Using quantitative fluorescent speckle microscopy (qFSM) of migrating epithelial cells, we previously defined two distinct F-actin networks based on their F-actin-binding proteins and distinct patterns of F-actin turnover and movement. The lamellipodium consists of a treadmilling F-actin array with rapid polymerization-dependent retrograde flow and contains high concentrations of Arp2/3 and ADF/cofilin, whereas the lamella exhibits spatially random punctae of F-actin assembly and disassembly with slow myosin-mediated retrograde flow and contains myosin II and tropomyosin (TM). In this paper, we microinjected skeletal muscle alphaTM into epithelial cells, and using qFSM, electron microscopy, and immunolocalization show that this inhibits functional lamellipodium formation. Cells with inhibited lamellipodia exhibit persistent leading edge protrusion and rapid cell migration. Inhibition of endogenous long TM isoforms alters protrusion persistence. Thus, cells can migrate with inhibited lamellipodia, and we suggest that TM is a major regulator of F-actin functional specialization in migrating cells.

  1. A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Bong-Gi; Jeong, Eun Jeong; Chung, Jong Won

    Conjugated polymers with a one-dimensional p-orbital overlap exhibit optoelectronic anisotropy. Their unique anisotropic properties can be fully realized in device applications only when the conjugated chains are aligned. Here, we report a molecular design principle of conjugated polymers to achieve concentration-regulated chain planarization, self-assembly, liquid-crystal-like good mobility and non-interdigitated side chains. As a consequence of these intra- and intermolecular attributes, chain alignment along an applied flow field occurs. This liquid-crystalline conjugated polymer was realized by incorporating intramolecular sulphur–fluorine interactions and bulky side chains linked to a tetrahedral carbon having a large form factor. By optimizing the polymer concentration and themore » flow field, we could achieve a high dichroic ratio of 16.67 in emission from conducting conjugated polymer films. Two-dimensional grazing-incidence X-ray diffraction was performed to analyse a well-defined conjugated polymer alignment. Thin-film transistors built on highly aligned conjugated polymer films showed more than three orders of magnitude faster carrier mobility along the conjugated polymer alignment direction than the perpendicular direction.« less

  2. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyerlein, K. R.; Adriano, L.; Heymann, M.

    Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injectionmore » molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquidflow conservation. In conclusion, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.« less

  3. Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery

    DOE PAGES

    Beyerlein, K. R.; Adriano, L.; Heymann, M.; ...

    2015-12-08

    Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injectionmore » molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquidflow conservation. In conclusion, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.« less

  4. Fabrication of large area flexible nanoplasmonic templates with flow coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qian; Devetter, Brent M.; Roosendaal, Timothy

    Here, we describe the development of a custom-built two-axis flow coater for the deposition of polymeric nanosphere monolayers used in the fabrication of large area nanoplasmonic films. The technique described here has the capability of depositing large areas (up to 7” x 10”) of self-assembled monolayers of polymeric nanospheres onto polyethylene terephthalate (PET) films. Here, three sets of film consisting of different diameter (ranging from 100 to 300 nm) polymeric nanospheres were used to demonstrate the capabilities of this instrument. To improve the surface wettability of the PET substrates during wet-deposition we enhanced the wettability by using a forced airmore » blown-arc plasma treatment system. Both the local microstructure, as confirmed by scanning electron microscopy, describing monolayer and multilayer coverage, and the overall macroscopic uniformity of the resultant nanostructured film were optimized by controlling the relative stage to blade speed and nanosphere concentration. As this is a scalable technique, large area films such as the ones described here, have a variety of crucial emerging applications in areas such as energy, catalysis, and chemical sensing.« less

  5. 48 CFR 1819.1005 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Printed Circuit Assembly (Electronic Assembly) Manufacturing. 334613 Magnetic and Optical Recording Media... and Wireless Communication Equipment Manufacturing. 336415 Guided Missile and Space Vehicle Propulsion Unit and Propulsion Unit Parts Manufacturing. 336419 Other Guided Missile and Space Vehicle Parts and...

  6. 48 CFR 1819.1005 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Printed Circuit Assembly (Electronic Assembly) Manufacturing. 334613 Magnetic and Optical Recording Media... and Wireless Communication Equipment Manufacturing. 336415 Guided Missile and Space Vehicle Propulsion Unit and Propulsion Unit Parts Manufacturing. 336419 Other Guided Missile and Space Vehicle Parts and...

  7. Correction to: Fe-S cluster assembly in the supergroup Excavata.

    PubMed

    Peña-Diaz, Priscila; Lukeš, Julius

    2018-05-29

    The article "Fe-S cluster assembly in the supergroup Excavata", written by Priscila Peña‑Diaz, Julius Lukeš was originally published electronically on the publisher's internet portal (currently SpringerLink) without open access.

  8. The bipolar assembly domain of the mitotic motor kinesin-5

    PubMed Central

    Acar, Seyda; Carlson, David B.; Budamagunta, Madhu S.; Yarov-Yarovoy, Vladimir; Correia, John J.; Niñonuevo, Milady R.; Jia, Weitao; Tao, Li; Leary, Julie A.; Voss, John C.; Evans, James E.; Scholey, Jonathan M.

    2013-01-01

    An outstanding unresolved question is how does the mitotic spindle utilize microtubules and mitotic motors to coordinate accurate chromosome segregation during mitosis? This process depends upon the mitotic motor, kinesin-5, whose unique bipolar architecture, with pairs of motor domains lying at opposite ends of a central rod, allows it to crosslink microtubules within the mitotic spindle and to coordinate their relative sliding during spindle assembly, maintenance and elongation. The structural basis of kinesin-5’s bipolarity is, however, unknown, as protein asymmetry has so far precluded its crystallization. Here we use electron microscopy of single molecules of kinesin-5 and its subfragments, combined with hydrodynamic analysis plus mass spectrometry, circular dichroism and site-directed spin label electron paramagnetic resonance spectroscopy, to show how a staggered antiparallel coiled-coil ‘BASS’ (bipolar assembly) domain directs the assembly of four kinesin-5 polypeptides into bipolar minifilaments. PMID:23299893

  9. Dynamic Nanoparticles Assemblies

    PubMed Central

    WANG, LIBING; XU, LIGUANG; KUANG, HUA; XU, CHUANLAI; KOTOV, NICHOLAS A.

    2012-01-01

    CONSPECTUS Importance Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple sizes of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously formed superstructures containing more than two inorganic nanoscale particles that display ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the ‘bottom-up’ fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Classification Superstructures of NPs (and those held together by similar intrinsic forces) are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable superstructures with a nearly constant number same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation and/or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions in the field may include different size dimensionalities: discrete assemblies (artificial molecules), one-dimensional (spaced chains) and two-dimensional (sheets) and three-dimensional (superlattices, twisted structures) assemblies. Notably, these dimensional attributes must be regarded as primarily topological in nature because all of these superstructures can acquire complex three-dimensional shapes. Preparation We discuss three primary strategies used to prepare NP superstructures: (1) anisotropy-based assemblies utilizing either intrinsic force field anisotropy around NPs or external anisotropy associated with templates and/or applied fields; (2) assembly methods utilizing uniform NPs with isotropic interactions; and (3) methods based on mutual recognition of biomolecules, such as DNA and antigen-antibody interactions. Applications We consider optical, electronic, and magnetic properties of dynamic superstructures, focusing primarily on multiparticle effects in NP superstructures as represented by surface plasmon resonance, NP-NP charge transport, and multibody magnetization. Unique properties of NP superstructures are being applied to biosensing, drug delivery, and nanoelectronics. For both Class 1 and Class 2 dynamic assemblies, biosensing is the most dominant and well-developed area of dynamic nanostructures being successfully transitioned into practice. We can foresee the rapid development of dynamic NP assemblies toward applications in harvesting of dissipated energy, photonics, and electronics. The final part of the review is devoted to the fundamental questions facing dynamic assemblies of NPs in the future. PMID:22449243

  10. Active control of jet flowfields

    NASA Astrophysics Data System (ADS)

    Kibens, Valdis; Wlezien, Richard W.

    1987-06-01

    Passive and active control of jet shear layer development were investigated as mechanisms for modifying the global characteristics of jet flowfields. Slanted and stepped indeterminate origin (I.O.) nozzles were used as passive, geometry-based control devices which modified the flow origins. Active control techniques were also investigated, in which periodic acoustic excitation signals were injected into the I.O. nozzle shear layers. Flow visualization techniques based on a pulsed copper-vapor laser were used in a phase-conditioned image acquisition mode to assemble optically averaged sets of images acquired at known times throughout the repetition cycle of the basic flow oscillation period. Hot wire data were used to verify the effect of the control techniques on the mean and fluctuating flow properties. The flow visualization images were digitally enhanced and processed to show locations of prominent vorticity concentrations. Three-dimensional vortex interaction patterns were assembled in a format suitable for movie mode on a graphic display workstation, showing the evolution of three-dimensional vortex system in time.

  11. System for remotely servicing a top loading captive ball valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, S.M.; Porter, M.L.

    1996-06-25

    An attachment for facilitating servicing of a valve is disclosed including: an assembly composed of a valve seat defining a flow path, a flow control member movable relative to the valve seat for blocking or unblocking the valve seat, and a control device including a stem coupled to the flow control member and operable for moving the flow control member relative to the valve seat; a housing for receiving the assembly, the housing having an opening via which the assembly can be removed from, and installed in, the housing, and the housing having a plurality of threaded studs which surroundmore » the opening and project away from the housing; a valve housing cover for closing and sealing the opening in the housing, the cover having a first bore for passage of the stem of the control device when the assembly is installed in the housing and a plurality of second bores each located for passage of a respective stud when the cover closes the opening in the housing. A plurality of threaded nuts are engageable with the studs for securing the cover to the housing when the cover closes the opening in the housing, wherein the attachment comprises: a plurality of nut guide devices removable from the housing and each operatively associated with a respective stud for retaining a respective nut and guiding the respective nut into alignment with the respective stud to enable the respective nut to be rotated into engagement with the respective stud; and aligning the nut guide devices with the studs. 7 figs.« less

  12. Combustor with two stage primary fuel tube with concentric members and flow regulating

    DOEpatents

    Parker, David Marchant; Whidden, Graydon Lane; Zolyomi, Wendel

    1999-01-01

    A combustor for a gas turbine having a centrally located fuel nozzle and inner, middle and outer concentric cylindrical liners, the inner liner enclosing a primary combustion zone. The combustor has an air inlet that forms two passages for pre-mixing primary fuel and air to be supplied to the primary combustion zone. Each of the pre-mixing passages has a circumferential array of swirl vanes. A plurality of primary fuel tube assemblies extend through both pre-mixing passages, with each primary fuel tube assembly located between a pair of swirl vanes. Each primary fuel tube assembly is comprised of two tubular members. The first member supplies fuel to the first pre-mixing passage, while the second member, which extends through the first member, supplies fuel to the second pre-mixing passage. An annular fuel manifold is divided into first and second chambers by a circumferentially extending baffle. The proximal end of the first member is attached to the manifold itself while the proximal end of the second member is attached to the baffle. The distal end of the first member is attached directly to the second member at around its mid-point. The inlets of the first and second members are in flow communication with the first and second manifold chambers, respectively. Control valves separately regulate the flow of fuel to the two chambers and, therefore, to the two members of the fuel tube assemblies, thereby allowing the flow of fuel to the first and second pre-mixing passages to be separately controlled.

  13. System for remotely servicing a top loading captive ball valve

    DOEpatents

    Berry, S.M.; Porter, M.L.

    1996-06-25

    An attachment for facilitating servicing of a valve is disclosed including: an assembly composed of a valve seat defining a flow path, a flow control member movable relative to the valve seat for blocking or unblocking the valve seat, and a control device including a stem coupled to the flow control member and operable for moving the flow control member relative to the valve seat; a housing for receiving the assembly, the housing having an opening via which the assembly can be removed from, and installed in, the housing, and the housing having a plurality of threaded studs which surround the opening and project away from the housing; a valve housing cover for closing and sealing the opening in the housing, the cover having a first bore for passage of the stem of the control device when the assembly is installed in the housing and a plurality of second bores each located for passage of a respective stud when the cover closes the opening in the housing. A plurality of threaded nuts are engageable with the studs for securing the cover to the housing when the cover closes the opening in the housing, wherein the attachment comprises: a plurality of nut guide devices removable from the housing and each operatively associated with a respective stud for retaining a respective nut and guiding the respective nut into alignment with the respective stud to enable the respective nut to be rotated into engagement with the respective stud; and aligning the nut guide devices with the studs. 7 figs.

  14. System for remotely servicing a top loading captive ball valve

    DOEpatents

    Berry, Stephen M.; Porter, Matthew L.

    1996-01-01

    An attachment for facilitating servicing of a valve, the valve including: an assembly composed of a valve seat defining a flow path, a flow control member movable relative to the valve seat for blocking or unblocking the valve seat, and a control device including a stem coupled to the flow control member and operable for moving the flow control member relative to the valve seat; a housing for receiving the assembly, the housing having an opening via which the assembly can be removed from, and installed in, the housing, and the housing having a plurality of threaded studs which surround the opening and project away from the housing; a valve housing cover for closing and sealing the opening in the housing, the cover having a first bore for passage of the stem of the control device when the assembly is installed in the housing and a plurality of second bores each located for passage of a respective stud when the cover closes the opening in the housing. A plurality of threaded nuts are engageable with the studs for securing the cover to the housing when the cover closes the opening in the housing, wherein the attachment comprises: a plurality of nut guide devices removable from the housing and each operatively associated with a respective stud for retaining a respective nut and guiding the respective nut into alignment with the respective stud to enable the respective nut to be rotated into engagement with the respective stud; and aligning the nut guide devices with the studs.

  15. Optomechanical Design of Ten Modular Cameras for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.; Karlmann, Paul; Hagerott, Ed; Scherr, Larry

    2003-01-01

    This viewgraph presentation reviews the design and fabrication of the modular cameras for the Mars Exploration Rovers. In the 2003 mission there were to be 2 landers and 2 rovers, each were to have 10 cameras each. Views of the camera design, the lens design, the lens interface with the detector assembly, the detector assembly, the electronics assembly are shown.

  16. Novel Round Energy Director for Use with Servo-driven Ultrasonic Welder

    NASA Astrophysics Data System (ADS)

    Savitski, Alex; Klinstein, Leo; Holt, Kenneth

    Increasingly stringent process repeatability and precision of assembly requirements are common for high-volume manufacturing for electronic, automotive and especially medical device industries, in which components for disposable medication delivery devices are produced in hundreds of millions annually. Ultrasonic welding, one of the most efficient of plastic welding processes often joins these small plastic parts together, and quite possibly, the one most broadly adopted for high volume assembly. The very fundamental factor in ultrasonic welding process performance is a proper joint design, the most common of which is a design utilizing an energy director. Keeping the energy director size and shape consistent on a part-to-part basis in high volume, multi-cavity operations presents a constant challenge to molded part vendors, as dimensional variations from cavity to cavity and variations in the molding process are always present. A newly developed concept of energy director design, when the tip of the energy director is round, addresses these problems, as the round energy director is significantly easier to mold and maintain its dimensional consistency. It also eliminates a major source of process variability for assembly operations. Materializing the benefits of new type of joint design became possible with the introduction of servo-driven ultrasonic welders, which allow an unprecedented control of material flow during the welding cycle and results in significantly improved process repeatability. This article summarizes results of recent studies focused on evaluating performance of round energy director and investigating the main factors responsible for the joint quality.

  17. pH shift assembly of adenoviral serotype 5 capsid protein nanosystems for enhanced delivery of nanoparticles, proteins and nucleic acids.

    PubMed

    Rao, Vidhya R; Upadhyay, Arun K; Kompella, Uday B

    2013-11-28

    Empty adenovirus serotype 5 (Ad5) capsids devoid of viral genome were developed as a novel delivery system for nanoparticles, proteins, and nucleic acids. Ad5 capsids of 110 nm diameter undergo an increase in particle size to 1637 nm in 1mM acetic acid at pH4.0 and then shrink to 60 nm, following pH reversal to 7.4. These pH shifts induced reversible changes in capsid zeta potential and secondary structure and irreversible changes in tertiary structure of capsid proteins. Using pH shift dependent changes in capsid size and structure, 20 nm fluorescent nanoparticles, FITC-BSA, and Alexa Fluor® 488 conjugated siRNA were encapsulated with high efficiency in Ad5 capsids, as confirmed by electron microscopy and/or flow cytometry. HEK cell uptake with capsid delivery system was 7.8-, 7.4-, and 2.9-fold greater for nanoparticles, FITC-BSA, and Alexa-siRNA, respectively, when compared to plain solutes. Physical mixtures of capsids and fluorescent solutes exhibited less capsid associated fluorescence intensity and cell uptake. Further, unlike physical mixture, pH shift assembled Ad5 capsids protected siRNA from RNase degradation. Ad5 capsids before and after pH shift exhibited endolysosomal escape. Thus, empty Ad5 capsids can encapsulate a variety of solutes based on pH shift assembly, resulting in enhanced cellular delivery. © 2013. Published by Elsevier B.V. All rights reserved.

  18. TIMMDC1/C3orf1 functions as a membrane-embedded mitochondrial complex I assembly factor through association with the MCIA complex.

    PubMed

    Guarani, Virginia; Paulo, Joao; Zhai, Bo; Huttlin, Edward L; Gygi, Steven P; Harper, J Wade

    2014-03-01

    Complex I (CI) of the electron transport chain, a large membrane-embedded NADH dehydrogenase, couples electron transfer to the release of protons into the mitochondrial inner membrane space to promote ATP production through ATP synthase. In addition to being a central conduit for ATP production, CI activity has been linked to neurodegenerative disorders, including Parkinson's disease. CI is built in a stepwise fashion through the actions of several assembly factors. We employed interaction proteomics to interrogate the molecular associations of 15 core subunits and assembly factors previously linked to human CI deficiency, resulting in a network of 101 proteins and 335 interactions (edges). TIMMDC1, a predicted 4-pass membrane protein, reciprocally associated with multiple members of the MCIA CI assembly factor complex and core CI subunits and was localized in the mitochondrial inner membrane, and its depletion resulted in reduced CI activity and cellular respiration. Quantitative proteomics demonstrated a role for TIMMDC1 in assembly of membrane-embedded and soluble arms of the complex. This study defines a new membrane-embedded CI assembly factor and provides a resource for further analysis of CI biology.

  19. Method of driving liquid flow at or near the free surface using magnetic microparticles

    DOEpatents

    Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Evanston, IL; Belkin, Maxim V [Woodridge, IL

    2011-10-11

    The present invention provides a method of driving liquid flow at or near a free surface using self-assembled structures composed of magnetic particles subjected to an external AC magnetic field. A plurality of magnetic particles are supported at or near a free surface of liquid by surface tension or buoyancy force. An AC magnetic field traverses the free surface and dipole-dipole interaction between particles produces in self-assembled snake structures which oscillate at the frequency of the traverse AC magnetic field. The snake structures independently move across the free surface and may merge with other snake structures or break up and coalesce into additional snake structures experiencing independent movement across the liquid surface. During this process, the snake structures produce asymmetric flow vortices across substantially the entirety of the free surface, effectuating liquid flow across the free surface.

  20. A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.

    1992-01-01

    A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.

  1. Bacterial flagellar microhydrodynamics: Laminar flow over complex flagellar filaments, analog archimedean screws and cylinders, and its perturbations.

    PubMed

    Trachtenberg, Shlomo; Fishelov, Dalia; Ben-Artzi, Matania

    2003-09-01

    The flagellar filament, the bacterial organelle of motility, is the smallest rotary propeller known. It consists of 1), a basal body (part of which is the proton driven rotary motor), 2), a hook (universal joint-allowing for off-axial transmission of rotary motion), and 3), a filament (propeller-a long, rigid, supercoiled helical assembly allowing for the conversion of rotary motion into linear thrust). Helically perturbed (so-called "complex") filaments have a coarse surface composed of deep grooves and ridges following the three-start helical lines. These surface structures, reminiscent of a turbine or Archimedean screw, originate from symmetry reduction along the six-start helical lines due to dimerization of the flagellin monomers from which the filament self assembles. Using high-resolution electron microscopy and helical image reconstruction methods, we calculated three-dimensional density maps of the complex filament of Rhizobium lupini H13-3 and determined its surface pattern and boundaries. The helical symmetry of the filament allows viewing it as a stack of identical slices spaced axially and rotated by constant increments. Here we use the closed outlines of these slices to explore, in two dimensions, the hydrodynamic effect of the turbine-like boundaries of the flagellar filament. In particular, we try to determine if, and under what conditions, transitions from laminar to turbulent flow (or perturbations of the laminar flow) may occur on or near the surface of the bacterial propeller. To address these questions, we apply the boundary element method in a manner allowing the handling of convoluted boundaries. We tested the method on several simple, well-characterized cylindrical structures before applying it to real, highly convoluted biological surfaces and to simplified mechanical analogs. Our results indicate that under extreme structural and functional conditions, and at low Reynolds numbers, a deviation from laminar flow might occur on the flagellar surface. These transitions, and the conditions enabling them, may affect flagellar polymorphism and the formation and dispersion of flagellar bundles-factors important in the chemotactic response.

  2. Multicommuted flow system for the determination of glucose in animal blood serum exploiting enzymatic reaction and chemiluminescence detection

    PubMed Central

    Pires, Cherrine K.; Martelli, Patrícia B.; Lima, José L. F. C.; Saraiva, Maria Lúcia M. F. S.

    2003-01-01

    An automatic flow procedure based on multicommutation dedicated for the determination of glucose in animal blood serum using glucose oxidase with chemiluminescence detection is described. The flow manifold consisted of a set of three-way solenoid valves assembled to implement multicommutation. A microcomputer furnished with an electronic interface and software written in Quick BASIC 4.5 controlled the manifold and performed data acquisition. Glucose oxidase was immobilized on porous silica beads (glass aminopropyl) and packed in a minicolumn (15 × 5 mm). The procedure was based on the enzymatic degradation of glucose, producing hydrogen peroxide, which oxidized luminol in the presence of hexacyanoferrate(III), causing the chemiluminescence. The system was tested by analysing a set of serum animal samples without previous treatment. Results were in agreement with those obtained with the conventional method (LABTEST Kit) at the 95% confidence level. The detection limit and variation coefficient were estimated as 12.0 mg l−1 (99.7% confidence level) and 3.5% (n = 20), respectively. The sampling rate was about 60 determinations h−1 with sample concentrations ranging from 50 to 600 mg l−1 glucose. The consumptions of serum sample, hexacyanoferrate(III) and luminol were 46 μl, 10.0 mg and 0.2 mg/determination, respectively. PMID:18924619

  3. Improving the efficiency of an Er:YAG laser on enamel and dentin.

    PubMed

    Rizcalla, Nicolas; Bader, Carl; Bortolotto, Tissiana; Krejci, Ivo

    2012-02-01

    To evaluate the influence of air pressure, water flow rate, and pulse frequency on the removal speed of enamel and dentin as well as on their surface morphology. Twenty-four bovine incisors were horizontally cut in slices. Each sample was mounted on an experimental assembly, allowing precise orientation. Eighteen cavities were prepared, nine in enamel and nine in dentin. Specific parameters for frequency, water flow rate, and air pressure were applied for each experimental group. Three groups were randomly formed according to the air pressure settings. Cavity depth was measured using a digital micrometer gauge, and surface morphology was checked by means of scanning electron microscopy. Data was analyzed with ANOVA and Duncan post hoc test. Irradiation at 25 Hz for enamel and 30 Hz for dentin provided the best ablation rates within this study, but efficiency decreased if the frequency was raised further. Greater tissue ablation was found with water flow rate set to low and dropped with higher values. Air pressure was found to have an interaction with the other settings, since ablation rates varied with different air pressure values. Fine-tuning of all parameters to get a good ablation rate with minimum surface damage seems to be key in achieving optimal efficiency for cavity preparation with an Er:YAG laser.

  4. Information Flow Analysis of Level 4 Payload Processing Operations

    NASA Technical Reports Server (NTRS)

    Danz, Mary E.

    1991-01-01

    The Level 4 Mission Sequence Test (MST) was studied to develop strategies and recommendations to facilitate information flow. Recommendations developed as a result of this study include revised format of the Test and Assembly Procedure (TAP) document and a conceptualized software based system to assist in the management of information flow during the MST.

  5. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  6. Opto-electronic devices with nanoparticles and their assemblies

    NASA Astrophysics Data System (ADS)

    Nguyen, Chieu Van

    Nanotechnology is a fast growing field; engineering matters at the nano-meter scale. A key nanomaterial is nanoparticles (NPs). These sub-wavelength (< 100nm) particles provide tremendous possibilities due to their unique electrical, optical, and mechanical properties. Plethora of NPs with various chemical composition, size and shape has been synthesized. Clever designs of sub-wavelength structures enable observation of unusual properties of materials, and have led to new areas of research such as metamaterials. This dissertation describes two self-assemblies of gold nanoparticles, leading to an ultra-soft thin film and multi-functional single electron device at room temperature. First, the layer-by-layer self-assembly of 10nm Au nanoparticles and polyelectrolytes is shown to behave like a cellular-foam with modulus below 100 kPa. As a result, the composite thin film (˜ 100nm) is 5 orders of magnitude softer than an equally thin typical polymer film. The thin film can be compressed reversibly to 60% strain. The extraordinarily low modulus and high compressibility are advantageous in pressure sensing applications. The unique mechanical properties of the composite film lead to development of an ultra-sensitive tactile imaging device capable of screening for breast cancer. On par with human finger sensitivity, the tactile device can detect a 5mm imbedded object up to 20mm below the surface with low background noise. The second device is based on a one-dimensional (1-D) self-directed self-assembly of Au NPs mediated by dielectric materials. Depending on the coverage density of the Au NPs assembly deposited on the device, electronic emission was observed at ultra-low bias of 40V, leading to low-power plasma generation in air at atmospheric pressure. Light emitted from the plasma is apparent to the naked eyes. Similarly, 1-D self-assembly of Au NPs mediated by iron oxide was fabricated and exhibits ferro-magnetic behavior. The multi-functional 1-D self-assembly of Au NPs has great potential in modern electronics such as solid state lighting, plasma-based nanoelectronics, and memory devices.

  7. Capillary Flow Layer-by-Layer: A Microfluidic Platform for the High-Throughput Assembly and Screening of Nanolayered Film Libraries

    PubMed Central

    2015-01-01

    Layer-by-layer (LbL) assembly is a powerful tool with increasing real world applications in energy, biomaterials, active surfaces, and membranes; however, the current state of the art requires individual sample construction using large quantities of material. Here we describe a technique using capillary flow within a microfluidic device to drive high-throughput assembly of LbL film libraries. This capillary flow layer-by-layer (CF-LbL) method significantly reduces material waste, improves quality control, and expands the potential applications of LbL into new research spaces. The method can be operated as a simple lab benchtop apparatus or combined with liquid-handling robotics to extend the library size. Here we describe and demonstrate the technique and establish its ability to recreate and expand on the known literature for film growth and morphology. We use the same platform to assay biological properties such as cell adhesion and proliferation and ultimately provide an example of the use of this approach to identify LbL films for surface-based DNA transfection of commonly used cell types. PMID:24836460

  8. Systems and Methods for Fabricating Carbon Nanotube-Based Vacuum Electronic Devices

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Toda, Risaku (Inventor); Del Castillo, Linda Y. (Inventor); Murthy, Rakesh (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention proficiently produce carbon nanotube-based vacuum electronic devices. In one embodiment a method of fabricating a carbon nanotube-based vacuum electronic device includes: growing carbon nanotubes onto a substrate to form a cathode; assembling a stack that includes the cathode, an anode, and a first layer that includes an alignment slot; disposing a microsphere partially into the alignment slot during the assembling of the stack such that the microsphere protrudes from the alignment slot and can thereby separate the first layer from an adjacent layer; and encasing the stack in a vacuum sealed container.

  9. Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer.

    PubMed

    Pintscher, Sebastian; Kuleta, Patryk; Cieluch, Ewelina; Borek, Arkadiusz; Sarewicz, Marcin; Osyczka, Artur

    2016-03-25

    In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemesb The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on hemebligand mutants of cytochromebc1in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functionalin vivo This reveals that cytochromebc1can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemesbin this cytochrome and in other membranous cytochromesbact as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Viewfinder/tracking system for Skylab

    NASA Technical Reports Server (NTRS)

    Casey, W. L.

    1975-01-01

    Basic component of system is infrared spectrometer designed for manual target acquisition, pointing and tracking, and data-take initiation. System incorporates three main subsystems which include: (1) viewfinder telescope, (2) control panel and electronics assembly, and (3) IR-spectrometer case assembly.

  11. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  12. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  13. Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization.

    PubMed

    Li, Shan-Shan; Northrop, Brian H; Yuan, Qun-Hui; Wan, Li-Jun; Stang, Peter J

    2009-02-17

    Metallosupramolecular compounds have attracted a great deal of attention over the past two decades largely because of their unique, highly complex structural characteristics and their potential electronic, magnetic, optical, and catalytic properties. These molecules can be prepared with relative ease using coordination-driven self-assembly techniques. In particular, the use of electron-poor square-planar Pt(II) transition metals in conjunction with rigid, electron-rich pyridyl donors has enabled the spontaneous self-assembly of a rich library of 2D metallacyclic and 3D metallacage assemblies via the directional-bonding approach. With this progress in the preparation and characterization of metallosupramolecules, researchers have now turned their attention toward fully exploring and developing their materials properties. Assembling metallosupramolecular compounds on solid supports represents a vitally important step toward developing their materials properties. Surfaces provide a means of uniformly aligning and orienting these highly symmetric metallacycles and metallacages. This uniformity increases the level of coherence between molecules above that which can be achieved in the solution phase and provides a way to integrate adsorbed layers, or adlayers, into a solid-state materials setting. The dynamic nature of kinetically labile Pt(II)-N coordination bonds requires us to adjust deposition and imaging conditions to retain the assemblies' stability. Toward these aims, we have used scanning tunneling microscopy (STM) to image these adlayers and to understand the factors that govern surface self-assembly and the interactions that influence their structure and stability. This Account describes our efforts to deposit 2D rectangular and square metallacycles and 3D trigonal bipyramidal and chiral trigonal prism metallacages on highly oriented pyrolytic graphite (HOPG) and Au(111) substrates to give intact assemblies and ordered adlayers. We have investigated the effects of varying the size, symmetry, and dimensionality of supramolecular adsorbates, the choice of substrate, the use of a molecular template, and the effects of chirality. Our systematic investigations provide insights into the various adsorbate-adsorbate and substrate-adsorbate interactions that largely determine the architecture of each assembly and affect their performance in a materials setting. Rational control over adlayer formation and structure will greatly enhance the potential of these supramolecules to be used in a variety of applications such as host-guest sensing/diagnostic systems, molecular electronic devices, and heterogeneous stereoselective synthesis and catalysis.

  14. Universal chemiluminescence flow-through device based on directed self-assembly of solid-state organic chromophores on layered double hydroxide matrix.

    PubMed

    Wang, Zhihua; Teng, Xu; Lu, Chao

    2013-02-19

    In this work, a universal chemiluminescence (CL) flow-through device suitable for various CL resonance energy transfer (CRET) systems has been successfully fabricated. Highly efficient CRET in solid-state photoactive organic molecules can be achieved by assembling them on the surface of layered double hydroxides (LDHs). We attribute these observations to the suppression of the intermolecular π-π stacking interactions among aromatic rings and the improvement of molecular orientation and planarity in the LDH matrix, enabling a remarkable increase in fluorescence lifetime and quantum yield of organic molecules. Under optimal conditions, using peroxynitrous acid-fluorescein dianion (FLUD) as a model CRET system, trace FLUD (10 μM) was assembled on the surface of LDHs. Peroxynitrous acid/nitrite could be assayed in the range of 1.0-500 μM, and the detection limit for peroxynitrous acid/nitrite (S/N = 3) was 0.6 μM. This CL flow-through device exhibited operational stability, high reproducibility, and long lifetime. While LDHs were immobilized in a flow-through device in the absence of FLUD, the detection limit for peroxynitrous acid/nitrite was 100 μM. On the other hand, FLUD at the same concentration can not enhance the CL intensity of peroxynitrous acid system. This fabricated CL flow-through column has been successfully applied to determine nitrite in sausage samples with recoveries of 98-102%. These satisfactory results demonstrated that our studies pave a novel way toward flow-through column-based CRET using solid-state organic molecules as acceptors for signal amplification.

  15. Surface mediated assembly of small, metastable gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities. Electronic supplementary information (ESI) available: Further details on stored plating solution preparation, film characterization, solution processing, MOF crystal FIB reconstruction and stability are available. See DOI: 10.1039/c3nr01708g

  16. Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line

    PubMed Central

    2011-01-01

    Among the molecular milieu of the cell, the membrane bilayer stands out as a complex and elusive synthetic target. We report a microfluidic assembly line that produces uniform cellular compartments from droplet, lipid, and oil/water interface starting materials. Droplets form in a lipid-containing oil flow and travel to a junction where the confluence of oil and extracellular aqueous media establishes a flow-patterned interface that is both stable and reproducible. A triangular post mediates phase transfer bilayer assembly by deflecting droplets from oil, through the interface, and into the extracellular aqueous phase to yield a continuous stream of unilamellar phospholipid vesicles with uniform and tunable size. The size of the droplet precursor dictates vesicle size, encapsulation of small-molecule cargo is highly efficient, and the single bilayer promotes functional insertion of a bacterial transmembrane pore. PMID:21309555

  17. Flashback resistant pre-mixer assembly

    DOEpatents

    Laster, Walter R [Oviedo, FL; Gambacorta, Domenico [Oviedo, FL

    2012-02-14

    A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.

  18. Mechanism controller system for the optical spectroscopic and infrared remote imaging system instrument on board the Rosetta space mission

    NASA Astrophysics Data System (ADS)

    Castro Marín, J. M.; Brown, V. J. G.; López Jiménez, A. C.; Rodríguez Gómez, J.; Rodrigo, R.

    2001-05-01

    The optical, spectroscopic infrared remote imaging system (OSIRIS) is an instrument carried on board the European Space Agency spacecraft Rosetta that will be launched in January 2003 to study in situ the comet Wirtanen. The electronic design of the mechanism controller board (MCB) system of the two OSIRIS optical cameras, the narrow angle camera, and the wide angle camera, is described here. The system is comprised of two boards mounted on an aluminum frame as part of an electronics box that contains the power supply and the digital processor unit of the instrument. The mechanisms controlled by the MCB for each camera are the front door assembly and a filter wheel assembly. The front door assembly for each camera is driven by a four phase, permanent magnet stepper motor. Each filter wheel assembly consists of two, eight filter wheels. Each wheel is driven by a four phase, variable reluctance stepper motor. Each motor, for all the assemblies, also contains a redundant set of four stator phase windings that can be energized separately or in parallel with the main windings. All stepper motors are driven in both directions using the full step unipolar mode of operation. The MCB also performs general housekeeping data acquisition of the OSIRIS instrument, i.e., mechanism position encoders and temperature measurements. The electronic design application used is quite new due to use of a field programmable gate array electronic devices that avoid the use of the now traditional system controlled by microcontrollers and software. Electrical tests of the engineering model have been performed successfully and the system is ready for space qualification after environmental testing. This system may be of interest to institutions involved in future space experiments with similar needs for mechanisms control.

  19. Spectral, thermal and optical-electrical properties of the layer-by-layer deposited thin film of nano Zn(II)-8-hydroxy-5-nitrosoquinolate complex.

    PubMed

    Haggag, Sawsan M S; Farag, A A M; Abdelrafea, Mohamed

    2013-06-01

    Zinc(II)-8-hydroxy-5-nitrosoquinolate, [Zn(II)-(HNOQ)2], was synthesized and assembled as a deposited thin film of nano-metal complex by a rapid, direct, simple and efficient procedure based on layer-by-layer chemical deposition technique. Stoichiometric identification and structural characterization of [Zn(II)-(HNOQ)2] were confirmed by electron impact mass spectrometry (EI-MS) and Fourier Transform infrared spectroscopy (FT-IR). Surface morphology was studied by using a scanning electron microscope imaging (SEM) and the particle size was found to be in the range of 23-49 nm. Thermal stability of [Zn(II)-(HNOQ)2] was studied and the thermal parameters were evaluated using thermal gravimetric analysis (TGA). The current density-voltage measurements showed that the current flow is dominated by a space charge limited and influenced by traps under high bias. The optical properties of [Zn(II)-(HNOQ)2] thin films were found to exhibit two direct allowed transitions at 2.4 and 1.0 eV, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein.

    PubMed

    Jones, Matthew; Talfournier, Francois; Bobrov, Anton; Grossmann, J Günter; Vekshin, Nikolai; Sutcliffe, Michael J; Scrutton, Nigel S

    2002-03-08

    The trimethylamine dehydrogenase-electron transferring flavoprotein (TMADH.ETF) electron transfer complex has been studied by fluorescence and absorption spectroscopies. These studies indicate that a series of conformational changes occur during the assembly of the TMADH.ETF electron transfer complex and that the kinetics of assembly observed with mutant TMADH (Y442F/L/G) or ETF (alpha R237A) complexes are much slower than are the corresponding rates of electron transfer in these complexes. This suggests that electron transfer does not occur in the thermodynamically most favorable state (which takes too long to form), but that one or more metastable states (which are formed more rapidly) are competent in transferring electrons from TMADH to ETF. Additionally, fluorescence spectroscopy studies of the TMADH.ETF complex indicate that ETF undergoes a stable conformational change (termed structural imprinting) when it interacts transiently with TMADH to form a second, distinct, structural form. The mutant complexes compromise imprinting of ETF, indicating a dependence on the native interactions present in the wild-type complex. The imprinted form of semiquinone ETF exhibits an enhanced rate of electron transfer to the artificial electron acceptor, ferricenium. Overall molecular conformations as probed by small-angle x-ray scattering studies are indistinguishable for imprinted and non-imprinted ETF, suggesting that changes in structure likely involve confined reorganizations within the vicinity of the FAD. Our results indicate a series of conformational events occur during the assembly of the TMADH.ETF electron transfer complex, and that the properties of electron transfer proteins can be affected lastingly by transient interaction with their physiological redox partners. This may have significant implications for our understanding of biological electron transfer reactions in vivo, because ETF encounters TMADH at all times in the cell. Our studies suggest that caution needs to be exercised in extrapolating the properties of in vitro interprotein electron transfer reactions to those occurring in vivo.

  1. Self-assembled Nanomaterials for Hybrid Electronic and Photonic Systems

    DTIC Science & Technology

    2015-05-15

    storage media.  Project 3. Self‐assembling Circuit Defect Modeling The self‐assembly of  nanoelectronic  devices provide an opportunity to achieve... nanoelectronics . This work will be useful in predicting the potential success of defect‐ tolerance techniques for DNA self‐assembled  nanoelectronic  substrates...program with integrated circuit emphasis simulations for DNA self-assembled nanoelectronics ." IET Computers and Digital Techniques 3, no. 6 (2009): 553-569.        

  2. Self‐Assembled Graphene‐Based Architectures and Their Applications

    PubMed Central

    Yuan, Zhongke; Xiao, Xiaofen; Li, Jing; Zhao, Zhe

    2017-01-01

    Abstract Due to unique planar structures and remarkable thermal, electronic, and mechanical properties, chemically modified graphenes (CMGs) such as graphene oxides, reduced graphene oxides, and the related derivatives are recognized as the attractive building blocks for “bottom‐up” nanotechnology, while self‐assembly of CMGs has emerged as one of the most promising approaches to construct advanced functional materials/systems based on graphene. By virtue of a variety of noncovalent forces like hydrogen bonding, van der Waals interaction, metal‐to‐ligand bonds, electrostatic attraction, hydrophobic–hydrophilic interactions, and π–π interactions, the CMGs bearing various functional groups are highly desirable for the assemblies with themselves and a variety of organic and/or inorganic species which can yield various hierarchical nanostructures and macroscopic composites endowed with unique structures, properties, and functions for widespread technological applications such as electronics, optoelectronics, electrocatalysis/photocatalysis, environment, and energy storage and conversion. In this review, significant recent advances concerning the self‐assembly of CMGs are summarized, and the broad applications of self‐assembled graphene‐based materials as well as some future opportunities and challenges in this vibrant area are elucidated. PMID:29619311

  3. Functional Testing of the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy R.; Soulas, George C.

    1995-01-01

    A plasma contactor system has been baselined for the International Space Station Alpha (ISSA) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thruster systems. The plasma contactor subsystems include a hollow cathode assembly, a power electronics unit, and an expellant management unit. Under a pre-flight development program these subsystems are being developed to the level of maturity appropriate for transfer to U.S. industry for final development. Development efforts for the hollow cathode assembly include design selection and refinement, validating its required lifetime, and quantifying the cathode performance and interface specifications. To date, cathode components have demonstrated over 10,000 hours lifetime, and a hollow cathode assembly has demonstrated over 3,000 ignitions. Additionally, preliminary integration testing of a hollow cathode assembly with a breadboard power electronics unit has been completed. This paper discusses test results and the development status of the plasma contactor subsystems for ISSA, and in particular, the hollow cathode assembly.

  4. Self-assembled nanocages based on the coiled coil bundle motif

    NASA Astrophysics Data System (ADS)

    Sinha, Nairiti; Villegas, Jose; Saven, Jeffery; Kiick, Kristi; Pochan, Darrin

    Computational design of coiled coil peptide bundles that undergo solution phase self-assembly presents a diverse toolbox for engineering new materials with tunable and pre-determined nanostructures that can have various end applications such as in drug delivery, biomineralization and electronics. Self-assembled cages are especially advantageous as the cage geometry provides three distinct functional sites: the interior, the exterior and the solvent-cage interface. In this poster, syntheses and characterization of a peptide cage based on computationally designed homotetrameric coiled coil bundles as building blocks is discussed. Techniques such as Transmission Electron Microscopy (TEM), Small-Angle Neutron Scattering (SANS) and Analytical Ultracentrifugation (AUC) are employed to characterize the size, shape and molecular weight of the self-assembled peptide cages under different pH and temperature conditions. Various self-assembly pathways such as dialysis and thermal quenching are shown to have a significant impact on the final structure of these peptides in solution. Comparison of results with the target cage design can be used to iteratively improve the peptide design and provide greater understanding of its interactions and folding.

  5. Visualization of flows in a motored rotary combustion engine using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.

    1986-01-01

    The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.

  6. Colloidal Microworms Propelling via a Cooperative Hydrodynamic Conveyor Belt.

    PubMed

    Martinez-Pedrero, Fernando; Ortiz-Ambriz, Antonio; Pagonabarraga, Ignacio; Tierno, Pietro

    2015-09-25

    We study propulsion arising from microscopic colloidal rotors dynamically assembled and driven in a viscous fluid upon application of an elliptically polarized rotating magnetic field. Close to a confining plate, the motion of this self-assembled microscopic worm results from the cooperative flow generated by the spinning particles which act as a hydrodynamic "conveyor belt." Chains of rotors propel faster than individual ones, until reaching a saturation speed at distances where induced-flow additivity vanishes. By combining experiments and theoretical arguments, we elucidate the mechanism of motion and fully characterize the propulsion speed in terms of the field parameters.

  7. Surface Confined Metallosupramolecular Architectures: Formation and STM Characterization

    PubMed Central

    Li, Shan-Shan; Northrop, Brian H.; Yuan, Qun-Hui; Wan, Li-Jun; Stang, Peter J.

    2009-01-01

    CONSPECTUS Metallosupramolecular compounds have attracted a great deal of attention over the past two decades largely because of their unique, highly-complex structural characteristics, the fact that they can be prepared with relative ease using coordination-driven self-assembly techniques, and their potential electronic, magnetic, optical, and catalytic properties. In particular, the use of electron-poor square planar Pt(II) transition metals in conjunction with rigid, electron-rich pyridyl donors had enabled the spontaneous self-assembly of a rich library of 2D metallacyclic and 3D metallacage assemblies via the directional-bonding approach. With the tremendous progress that has been made in the preparation and characterization of metallosupramolecules, much attention is now being turned toward fully exploring and developing their materials properties. Assembling metallosupramolecular compounds on solid supports represents a vitally important step toward developing their materials properties. Surfaces provide a means of uniformly aligning and orienting these highly symmetric metallacycles and metallacages, which increases the level of coherence between molecules above that which can be achieved in the solution phase and affords a means of integrating adlayers into a solid-state materials setting. The dynamic nature of kinetically labile Pt(II)-N coordination bonds, however, requires that deposition and imaging conditions be appropriate to retain the assemblies' stability. Toward these aims it is imperative to understand the factors that govern surface self-assembly and the interactions that influence the structure and stability of the resulting adlayer. Such insight can be obtained from Scanning Tunneling Microscopy (STM), which has emerged as a powerful technique for the imaging and characterization of self-assembled adlayers. This account describes the means by which 2D rectangular and square metallacycles and 3D trigonal bipyrimidal and chiral trigonal prism metallacages can be deposited on Highly Oriented Pyrolytic Graphite (HOPG) and Au(111) substrates such that the assemblies remain intact and result in ordered adlayers. The effects of varying the size, symmetry, and dimensionality of supramolecular adsorbates, the choice of substrate, the use of a molecular template, and the effects of chirality have been investigated. These systematic investigations provide much insight into the various adsorbate-adsorbate and substrate-adsorbate interactions that largely determine the architecture of each assembly and affect their performance in a materials setting. Exhibiting the ability to rationally control adlayer formation and structure will greatly enhance the potential of these supramolecules to be used in a variety of applications such as in host-guest sensing/diagnostic systems, molecular electronic devices, and in heterogeneous stereoselective synthesis and catalysis. PMID:19072706

  8. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  9. Dynamics assembly of magnetic microparticles suspended in moving droplets under the influence of magnetic fields

    NASA Astrophysics Data System (ADS)

    Strey, Helmut; Brouzes, Eric; Kruse, Travis

    2013-03-01

    Droplet microfluidics has experienced tremendous growth, particularly since it is well suited for single-cell manipulation and analysis. As mature methods for high throughput droplet manipulation have been developed a technological bottleneck of current droplet microfluidics is that because droplets are separated, sequential chemical reactions are more difficult to achieve. For example, it is very difficult to concentrate target molecules, especially since every reaction step adds volume to the droplets. Our solution to this problem is to employ functionalized magnetic beads inside droplets. The basic idea is that an external magnetic field could be used to concentrate the magnetic beads in one part of the droplet and those could then be extracted by splitting the droplet. Here we present an experimental study of the self-assembly of superparamagnetic microparticles that are suspended in moving droplets and experience a combination of forces due to the internal fluid flow fields and external magnetic fields. We observed that this interplay of flow fields coupled to the formation of particle assemblies leads to the formations of stable patterns depending on the flow speed and magnetic field strength. An understanding of this dynamic assembly is critical in employing external forces for applications in separation and sorting. Funding through NYSTAR, Center for Advanced Technology and a grant from NIH-NHGRI (1 R21 HG006206-01).

  10. Pb-free surface-finishing on electronic components' terminals for Pb-free soldering assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Hitoshi; Tanimoto, Morimasa; Matsuda, Akira

    1999-11-01

    Pb-free solderable surface finishing is essential to implement Pb-free solder assembly in order to meet with the growing demand of environmental consciousness to eliminate Pb from electronic products. Two types of widely applicable Pb-free surface finishing technologies are developed. One is the multilayer-system including Pd with Ni undercoat. Heat-resistance of Pd enables whole-surface-plating on to leadframe before IC-assembling process. The other is the double-layer-system with low-melting-point-materials, for example, thicker Sn underlayer and thinner Sn-Bi alloy overlayer, dilutes Sn-Bi alloy's defects of harmful reactivity along with substrate metal and mechanical brittleness with keeping its advantages of solder-wettability and no whisker.

  11. Status of the eROSITA Telescope testing and calibrating the x-ray mirror assemblies

    NASA Astrophysics Data System (ADS)

    Burwitz, Vadim; Predehl, Peter; Bräuninger, Heinrich; Burkert, Wolfgang; Dennerl, Konrad; Eder, Josef; Friedrich, Peter; Fürmetz, Maria; Grisoni, Gabriele; Hartner, Gisela; Marioni, Fabio; Menz, Benedikt; Pfeffermann, Elmar; Valsecchi, Giuseppe

    2013-09-01

    The eROSITA X-ray observatory that will be launched on board the Russian Spectrum-RG mission comprises seven X-ray telescopes, each with its own mirror assembly (mirror module + X-ray baffle), electron deflector, filter wheel, and CCD camera with its control electronics. The completed flight mirror modules are undergoing many thorough X-ray tests at the PANTHER X-ray test facility after delivery, after being mated with the X-ray baffle, and again after both the vibration and thermal-vacuum tests. A description of the work done with mirror modules/assemblies and the test results obtained will be reported here. We report also on the environmental tests that have been performed on the eROSITA telescope qualification model.

  12. High-temperature microphone system. [for measuring pressure fluctuations in gases at high temperature

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1979-01-01

    Pressure fluctuations in air or other gases in an area of elevated temperature are measured using a condenser microphone located in the area of elevated temperature and electronics for processing changes in the microphone capacitance located outside the area the area and connected to the microphone by means of high-temperature cable assembly. The microphone includes apparatus for decreasing the undesirable change in microphone sensitivity at high temperatures. The high temperature cable assembly operates as a half-wavelength transmission line in an AM carrier system and maintains a large temperature gradient between the two ends of the cable assembly. The processing electronics utilizes a voltage controlled oscillator for automatic tuning thereby increasing the sensitivity of the measuring apparatus.

  13. Carbon nanotube-DNA nanoarchitectures and electronic functionality.

    PubMed

    Wang, Xu; Liu, Fei; Andavan, G T Senthil; Jing, Xiaoye; Singh, Krishna; Yazdanpanah, Vahid R; Bruque, Nicolas; Pandey, Rajeev R; Lake, Roger; Ozkan, Mihrimah; Wang, Kang L; Ozkan, Cengiz S

    2006-11-01

    Biological molecules such as deoxyribonucleic acid (DNA) possess inherent recognition and self-assembly capabilities, and are attractive templates for constructing functional hierarchical material structures as building blocks for nanoelectronics. Here we report the assembly and electronic functionality of nanoarchitectures based on conjugates of single-walled carbon nanotubes (SWNTs) functionalized with carboxylic groups and single-stranded DNA (ssDNA) sequences possessing terminal amino groups on both ends, hybridized together through amide linkages by adopting a straightforward synthetic route. Morphological and chemical-functional characterization of the nanoarchitectures are investigated using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Electrical measurements (I-V characterization) of the nanoarchitectures demonstrate negative differential resistance in the presence of SWNT/ssDNA interfaces, which indicates a biomimetic route to fabricating resonant tunneling diodes. I-V characterization on platinum-metallized SWNT-ssDNA nanoarchitectures via salt reduction indicates modulation of their electrical properties, with effects ranging from those of a resonant tunneling diode to a resistor, depending on the amount of metallization. Electron transport through the nanoarchitectures has been analyzed by density functional theory calculations. Our studies illustrate the great promise of biomimetic assembly of functional nanosystems based on biotemplated materials and present new avenues toward exciting future opportunities in nanoelectronics and nanobiotechnology.

  14. CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry.

    PubMed

    Bang, Jin Ho; Kamat, Prashant V

    2011-12-27

    The development of organic/inorganic hybrid nanocomposite systems that enable efficient solar energy conversion has been important for applications in solar cell research. Nanostructured carbon-based systems, in particular C(60), offer attractive strategies to collect and transport electrons generated in a light harvesting assembly. We have assembled CdSe-C(60) nanocomposites by chemically linking CdSe quantum dots (QDs) with thiol-functionalized C(60). The photoinduced charge separation and collection of electrons in CdSe QD-C(60) nanocomposites have been evaluated using transient absorption spectroscopy and photoelectrochemical measurements. The rate constant for electron transfer between excited CdSe QD and C(60) increased with the decreasing size of the CdSe QD (7.9 × 10(9) s(-1) (4.5 nm), 1.7 × 10(10) s(-1) (3.2 nm), and 9.0 × 10(10) s(-1) (2.6 nm)). Slower hole transfer and faster charge recombination and transport events were found to dominate over the forward electron injection process, thus limiting the deliverance of maximum power in CdSe QD-C(60)-based solar cells. The photoinduced charge separation between CdSe QDs and C(60) opens up new design strategies for developing light harvesting assemblies.

  15. Assembly of hydrogel units for 3D microenvironment in a poly(dimethylsiloxane) channel

    NASA Astrophysics Data System (ADS)

    Cho, Chang Hyun; Kwon, Seyong; Park, Je-Kyun

    2017-12-01

    Construction of three-dimensional (3D) microenvironment become an important issue in recent biological studies due to their biological relevance compared to conventional two-dimensional (2D) microenvironment. Various fabrication techniques have been employed to construct a 3D microenvironment, however, it is difficult to fully satisfy the biological and mechanical properties required for the 3D cell culture system, such as heterogeneous tissue structures generated from the functional differences or diseases. We propose here an assembly method for facile construction of 3D microenvironment in a poly(dimethylsiloxane) (PDMS) channel using hydrogel units. The high-aspect-ratio of hydrogel units was achieved by fabricating these units using a 2D mold. With this approach, 3D heterogeneous hydrogel units were produced and assembled in a PDMS channel by structural hookup. In vivo-like 3D heterogeneous microenvironment in a precisely controllable fluidic system was also demonstrated using a controlled assembly of different types of hydrogel units, which was difficult to obtain from previous methods. By regulating the flow condition, the mechanical stability of the assembled hydrogel units was verified by the flow-induced deformation of hydrogel units. In addition, in vivo-like cell culture environment was demonstrated using an assembly of cell-coated hydrogel units in the fluidic channel. Based on these features, our method expects to provide a beneficial tool for the 3D cell culture module and biomimetic engineering.

  16. Cyclic electron flow is redox-controlled but independent of state transition.

    PubMed

    Takahashi, Hiroko; Clowez, Sophie; Wollman, Francis-André; Vallon, Olivier; Rappaport, Fabrice

    2013-01-01

    Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna.

  17. Cooling assembly for fuel cells

    DOEpatents

    Kaufman, Arthur; Werth, John

    1990-01-01

    A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet.

  18. Video flowmeter

    DOEpatents

    Lord, D.E.; Carter, G.W.; Petrini, R.R.

    1983-08-02

    A video flowmeter is described that is capable of specifying flow nature and pattern and, at the same time, the quantitative value of the rate of volumetric flow. An image of a determinable volumetric region within a fluid containing entrained particles is formed and positioned by a rod optic lens assembly on the raster area of a low-light level television camera. The particles are illuminated by light transmitted through a bundle of glass fibers surrounding the rod optic lens assembly. Only particle images having speeds on the raster area below the raster line scanning speed may be used to form a video picture which is displayed on a video screen. The flowmeter is calibrated so that the locus of positions of origin of the video picture gives a determination of the volumetric flow rate of the fluid. 4 figs.

  19. Rotor and stator assembly configured as an aspirating face seal

    NASA Technical Reports Server (NTRS)

    Turnquist, Norman Arnold (Inventor); Bagepalli, Bharat Sampathkumaran (Inventor); Reluzco, George (Inventor); Tseng, Wu-Yang (Inventor)

    1999-01-01

    A rotor and stator assembly having a rotor and a stator with opposing surfaces defining an air bearing and an air dam of an aspirating face seal. In a first embodiment, the air bearing and the air dam are axially offset. In a second embodiment, the rotor has an axially extending protuberance located radially between the air bearing and the air dam. The axial offset and the protuberance each act to divert the air flow (e.g., compressed gas or combustion gases in a gas turbine or steam in a steam turbine) in a direction transverse to the air flow direction through the air bearing and the air dam, thus isolating the air flows from the air bearing and the air dam which improves seal performance.

  20. Vehicle drive module having improved terminal design

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2006-04-25

    A terminal structure for vehicle drive power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  1. Power converter having improved terminal structure

    DOEpatents

    Radosevich, Lawrence D.; Kannenberg, Daniel G.; Phillips, Mark G.; Kaishian, Steven C.

    2007-03-06

    A terminal structure for power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  2. Thin graphite bipolar plate with associated gaskets and carbon cloth flow-field for use in an ionomer membrane fuel cell

    DOEpatents

    Marchetti, George A.

    2003-01-03

    The present invention comprises a thin graphite plate with associated gaskets and pieces of carbon cloth that comprise a flow-field. The plate, gaskets and flow-field comprise a "plate and gasket assembly" for use in an ionomer membrane fuel cell, fuel cell stack or battery.

  3. Aerodynamic improvement of the assembly through which gas conduits are taken into a smoke stack by simulating gas flow on a computer

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. B.; Fomenko, M. V.; Grigor'ev, I. V.

    2012-06-01

    Results from computer simulation of gas flow motion for gas conduits taken on one and two sides into the gas-removal shaft of a smoke stack with a constant cross section carried out using the SolidWorks and FlowVision application software packages are presented.

  4. Influence of Nanostructure on the Exciton Dynamics of Multichromophore Donor–Acceptor Block Copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jianlong; Busby, Erik; Sanders, Samuel N.

    Here, we explore the synthesis and photophysics of nanostructured block copolymers that mimic light-harvesting complexes. We find that the combination of a polar and electron-rich boron dipyrromethene (BODIPY) block with a nonpolar electron-poor perylene diimide (PDI) block yields a polymer that self-assembles into ordered “nanoworms”. Numerical simulations are used to determine optimal compositions to achieve robust self-assembly. Photoluminescence spectroscopy is used to probe the rich exciton dynamics in these systems. Using controls, such as homopolymers and random copolymers, we analyze the mechanisms of the photoluminescence from these polymers. With this understanding it allows us to probe in detail the photophysicsmore » of the block copolymers, including the effects of their self-assembly into nanostructures on their excited-state properties. Similar to natural systems, ordered nanostructures result in properties that are starkly different than the properties of free polymers in solution, such as enhanced rates of electronic energy transfer and elimination of excitonic emission from disordered PDI trap states.« less

  5. Influence of Nanostructure on the Exciton Dynamics of Multichromophore Donor–Acceptor Block Copolymers

    DOE PAGES

    Xia, Jianlong; Busby, Erik; Sanders, Samuel N.; ...

    2017-03-27

    Here, we explore the synthesis and photophysics of nanostructured block copolymers that mimic light-harvesting complexes. We find that the combination of a polar and electron-rich boron dipyrromethene (BODIPY) block with a nonpolar electron-poor perylene diimide (PDI) block yields a polymer that self-assembles into ordered “nanoworms”. Numerical simulations are used to determine optimal compositions to achieve robust self-assembly. Photoluminescence spectroscopy is used to probe the rich exciton dynamics in these systems. Using controls, such as homopolymers and random copolymers, we analyze the mechanisms of the photoluminescence from these polymers. With this understanding it allows us to probe in detail the photophysicsmore » of the block copolymers, including the effects of their self-assembly into nanostructures on their excited-state properties. Similar to natural systems, ordered nanostructures result in properties that are starkly different than the properties of free polymers in solution, such as enhanced rates of electronic energy transfer and elimination of excitonic emission from disordered PDI trap states.« less

  6. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W [Danville, CA; Palmer, Todd A [Livermore, CA; Teruya, Alan T [Livermore, CA

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  7. Methods for fabrication of flexible hybrid electronics

    NASA Astrophysics Data System (ADS)

    Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos

    2017-08-01

    Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.

  8. Healable supramolecular polymers as organic metals.

    PubMed

    Armao, Joseph J; Maaloum, Mounir; Ellis, Thomas; Fuks, Gad; Rawiso, Michel; Moulin, Emilie; Giuseppone, Nicolas

    2014-08-13

    Organic materials exhibiting metallic behavior are promising for numerous applications ranging from printed nanocircuits to large area electronics. However, the optimization of electronic conduction in organic metals such as charge-transfer salts or doped conjugated polymers requires high crystallinity, which is detrimental to their processability. To overcome this problem, the combination of the electronic properties of metal-like materials with the mechanical properties of soft self-assembled systems is attractive but necessitates the absence of structural defects in a regular lattice. Here we describe a one-dimensional supramolecular polymer in which photoinduced through-space charge-transfer complexes lead to highly coherent domains with delocalized electronic states displaying metallic behavior. We also reveal that diffusion of supramolecular polarons in the nanowires repairs structural defects thereby improving their conduction. The ability to access metallic properties from mendable self-assemblies extends the current understanding of both fields and opens a wide range of processing techniques for applications in organic electronics.

  9. Experimental studies of electron impact depopulation of excited states of atoms: applications to laser development for fusion and isotope separation. Final report, 1 January 1977-30 June 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubell, M.S.

    1980-06-01

    Motivated by the need for measurements of metastable depopulation mechanisms of Ar and Kr in the KrF rare-gas monohalide excimer laser, an ultra-high vacuum triple crossed-beams apparatus has been designed, fabricated, and assembled for the purpose of studying electron scattering from excited states of Ar and Kr atoms. A beam of metastable rare gas atoms, produced by near-resonant charge transfer of rare gas ions with alkali neutral atoms, is crossed by an electron beam and a far-red laser beam along mutually orthogonal axes. A hemispherical electron monochromator-spectrometer pair is used to measure the cross section for electron scattering from themore » 2p/sub 9/ excited state of the rare gas atom. Testing of parts of the assembled apparatus has been completed.« less

  10. Efficient low static-volume water heater

    NASA Technical Reports Server (NTRS)

    Brown, R. L.

    1976-01-01

    Calrod heating element is surrounded by matrix of fused sintered copper or brass balls, and assembly is then installed in piping of water system. As water flows through matrix, sintered balls cause turbulent flow and heating. Applications include laundromats, laboratories, and photographic labs.

  11. Molecular diodes and ultra-thin organic rectifying junctions: Au-S-CnH2n-Q3CNQ and TCNQ derivatives.

    PubMed

    Ashwell, Geoffrey J; Moczko, Katarzyna; Sujka, Marta; Chwialkowska, Anna; Hermann High, L R; Sandman, Daniel J

    2007-02-28

    Attempts to obtain derivatives of the molecular diode, 2-{4-[1-cyano-2-(1-(omega-acetylsulfanylalkyl)-1H-quinolin-4-ylidene)-ethylidene]-cyclohexa-2,5-dienylidene}-malonitrile [1, CH(3)CO-S-C(n)H(2n)-Q3CNQ], from either 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-p-quinodimethane (TCNQF(4)) or 2,3,5,6-tetramethyl-7,7,8,8-tetracyano-p-quinodimethane (TMTCNQ) result in ring closure via the cyano group of the pi-bridge and yield di-substituted analogues: 2-{2,3,5,6-tetrafluoro-4-[6-(10-acetylsulfanyldecyl)-3-(1-(10-acetylsulfanyldecyl)-1H-quinolin-4-ylidenemethyl)-6H-benzo[f][1,7]naphthyridin-2-ylidene]-cyclohexa-2,5-dienylidene}-malonitrile (2a) and the 2,3,5,6-tetramethyl derivative (2b). Self-assembled monolayers (SAMs) of these donor-(pi-bridge)-acceptor molecular diodes exhibit asymmetric current-voltage characteristics with electron flow at forward bias from the top contact to surface C(CN)(2) groups. Comparison is made with I-V curves from ultra-thin films of an organic rectifying junction in which TCNQ(-) is electron-donating and a donor-(sigma-bridge)-acceptor diode in which TCNQ degrees is electron-accepting.

  12. Cytochrome oxidase assembly does not require catalytically active cytochrome C.

    PubMed

    Barrientos, Antoni; Pierre, Danielle; Lee, Johnson; Tzagoloff, Alexander

    2003-03-14

    Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen. COX assembly requires the coming together of nuclear- and mitochondrial-encoded subunits and the assistance of a large number of nuclear gene products acting at different stages of maturation of the enzyme. In Saccharomyces cerevisiae, expression of cytochrome c, encoded by CYC1 and CYC7, is required not only for electron transfer but also for COX assembly through a still unknown mechanism. We have attempted to distinguish between a functional and structural requirement of cytochrome c in COX assembly. A cyc1/cyc7 double null mutant strain was transformed with the cyc1-166 mutant gene (Schweingruber, M. E., Stewart, J. W., and Sherman, F. (1979) J. Biol. Chem. 254, 4132-4143) that expresses stable but catalytically inactive iso-1-cytochrome c. The COX content of the cyc1/cyc7 double mutant strain harboring non-functional iso-1-cytochrome c has been characterized spectrally, functionally, and immunochemically. The results of these studies demonstrate that cytochrome c plays a structural rather than functional role in assembly of cytochrome c oxidase. In addition to its requirement for COX assembly, cytochrome c also affects turnover of the enzyme. Mutants containing wild type apocytochrome c in mitochondria lack COX, suggesting that only the folded and mature protein is able to promote COX assembly.

  13. Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.

  14. Carbon nanotube chemistry and assembly for electronic devices

    NASA Astrophysics Data System (ADS)

    Derycke, Vincent; Auvray, Stéphane; Borghetti, Julien; Chung, Chia-Ling; Lefèvre, Roland; Lopez-Bezanilla, Alejandro; Nguyen, Khoa; Robert, Gaël; Schmidt, Gregory; Anghel, Costin; Chimot, Nicolas; Lyonnais, Sébastien; Streiff, Stéphane; Campidelli, Stéphane; Chenevier, Pascale; Filoramo, Arianna; Goffman, Marcelo F.; Goux-Capes, Laurence; Latil, Sylvain; Blase, Xavier; Triozon, François; Roche, Stephan; Bourgoin, Jean-Philippe

    2009-05-01

    Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties; (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes (this route being particularly relevant for gas- and bio-sensors, opto-electronic devices and energy sources); and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we review our recent results concerning nanotube chemistry and assembly and their use to develop electronic devices. In particular, we present carbon nanotube field effect transistors and their chemical optimization, high frequency nanotube transistors, nanotube-based opto-electronic devices with memory capabilities and nanotube-based nano-electromechanical systems (NEMS). The impact of chemical functionalization on the electronic properties of CNTs is analyzed on the basis of theoretical calculations. To cite this article: V. Derycke et al., C. R. Physique 10 (2009).

  15. Nuclear reactor I

    DOEpatents

    Ference, Edward W.; Houtman, John L.; Waldby, Robert N.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor whose upper internals include provision for channeling the liquid metal flowing from the core-component assemblies to the outlet plenum in vertical paths in direction generally along the direction of the respective assemblies. The metal is channeled by chimneys, each secured to, and extending from, a grid through whose openings the metal emitted by a plurality of core-component assemblies encompassed by the grid flows. To reduce the stresses resulting from structural interaction, or the transmissive of thermal strains due to large temperature differences in the liquid metal emitted from neighboring core-component assemblies, throughout the chimneys and the other components of the upper internals, the grids and the chimneys are supported from the heat plate and the core barrel by support columns (double portal support) which are secured to the head plate at the top and to a member, which supports the grids and is keyed to the core barrel, at the bottom. In addition to being restrained from lateral flow by the chimneys, the liquid metal is also restrained from flowing laterally by a peripheral seal around the top of the core. This seal limits the flow rate of liquid metal, which may be sharply cooled during a scram, to the outlet nozzles. The chimneys and the grids are formed of a highly-refractory, high corrosion-resistant nickel-chromium-iron alloy which can withstand the stresses produced by temperature differences in the liquid metal. The chimneys are supported by pairs of plates, each pair held together by hollow stubs coaxial with, and encircling, the chimneys. The plates and stubs are a welded structure but, in the interest of economy, are composed of stainless steel which is not weld compatible with the refractory metal. The chimneys and stubs are secured together by shells of another nickel-chromium-iron alloy which is weld compatible with, and is welded to, the stubs and has about the same coefficient of expansion as the highly-refractory, high corrosion-resistant alloy.

  16. Mixer Assembly for a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Smith, Lance L. (Inventor); Fotache, Catalin G. (Inventor); Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Hautman, Donald J. (Inventor)

    2015-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  17. Mixer Assembly for a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor); Hautman, Donald J. (Inventor); Smith, Lance L. (Inventor)

    2018-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  18. 10 CFR Appendix D to Part 110 - Illustrative List of Aerodynamic Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... control the flow within the cascade: (1) Separation nozzles and assemblies. Especially designed or... fluids. (10) Special shut-off and control valves. Especially designed or prepared manual or automated... assemblies. Especially designed or prepared vortex tubes that are cylindrical or tapered, made of or...

  19. 10 CFR Appendix D to Part 110 - Illustrative List of Aerodynamic Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... control the flow within the cascade: (1) Separation nozzles and assemblies. Especially designed or... fluids. (10) Special shut-off and control valves. Especially designed or prepared manual or automated... assemblies. Especially designed or prepared vortex tubes that are cylindrical or tapered, made of or...

  20. 10 CFR Appendix D to Part 110 - Illustrative List of Aerodynamic Enrichment Plant Equipment and Components Under NRC Export...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... control the flow within the cascade: (1) Separation nozzles and assemblies. Especially designed or... fluids. (10) Special shut-off and control valves. Especially designed or prepared manual or automated... assemblies. Especially designed or prepared vortex tubes that are cylindrical or tapered, made of or...

  1. Monolithic fiber optic sensor assembly

    DOEpatents

    Sanders, Scott

    2015-02-10

    A remote sensor element for spectrographic measurements employs a monolithic assembly of one or two fiber optics to two optical elements separated by a supporting structure to allow the flow of gases or particulates therebetween. In a preferred embodiment, the sensor element components are fused ceramic to resist high temperatures and failure from large temperature changes.

  2. Method and apparatus for performing in-situ vacuum-assisted metal to glass sealing

    DOEpatents

    Kramer, D.P.; Massey, R.T.

    1985-07-18

    A method and apparatus for assembling and fusing glass to metal in a glass-metal electrical component is disclosed. The component includes a metallic shell formed with upper and lower cylindrical recesses connected together by longitudinal passages, a pair of metal rings and plural metal pins assembled to define electrical feed-throughs. The component parts are assembled on a fixture having a sleeve-like projection and a central mounting projection establishing concentric nesting surfaces to which the metal rings are slip-fitted in concentric alignment with each other spaced from sidewalls of the lower recess. The pins are in electrical contact with the metal rings. A glass pre-form is seated within the upper recess. The assembled structure is heated to a temperature sufficient to melt the glass pre-form which flows under gravity through the passages into the lower recess to provide an insulative seal between the metal parts. The gravity flow of glass is assisted by applying vacuum to the lower recess, ensuring that all spaces between the metal parts are filled with sealing glass without formation of bubbles.

  3. Method and apparatus for performing in-situ vacuum-assisted metal to glass sealing

    DOEpatents

    Kramer, Daniel P.; Massey, Richard T.

    1986-01-01

    A method and apparatus for assembling and fusing glass to metal in a glass-metal electrical component is disclosed. The component includes a metallic shell formed with upper and lower cylindrical recesses connected together by longitudinal passages, a pair of metal rings and plural metal pins assembled to define electrical feed-throughs. The component parts are assembled on a fixture having a sleeve-like projection and a central mounting projection establishing concentric nesting surfaces to which the metal rings are slip-fitted in concentric alignment with each other spaced from sidewalls of the lower recess. The pins are in electrical contact with the metal rings. A glass pre-form is seated within the upper recess. The assembled structure is heated to a temperature sufficient to melt the glass pre-form which flows under gravity through the passages into the lower recess to provide an insulative seal between the metal parts. The gravity flow of glass is assisted by applying vacuum to the lower recess, ensuring that all spaces between the metal parts are filled with sealing glass without formation of bubbles.

  4. Problems in obtaining perfect images by single-particle electron cryomicroscopy of biological structures in amorphous ice.

    PubMed

    Henderson, Richard; McMullan, Greg

    2013-02-01

    Theoretical considerations together with simulations of single-particle electron cryomicroscopy images of biological assemblies in ice demonstrate that atomic structures should be obtainable from images of a few thousand asymmetric units, provided the molecular weight of the whole assembly being studied is greater than the minimum needed for accurate position and orientation determination. However, with present methods of specimen preparation and current microscope and detector technologies, many more particles are needed, and the alignment of smaller assemblies is difficult or impossible. Only larger structures, with enough signal to allow good orientation determination and with enough images to allow averaging of many hundreds of thousands or even millions of asymmetric units, have successfully produced high-resolution maps. In this review, we compare the contrast of experimental electron cryomicroscopy images of two smaller molecular assemblies, namely apoferritin and beta-galactosidase, with that expected from perfect simulated images calculated from their known X-ray structures. We show that the contrast and signal-to-noise ratio of experimental images still require significant improvement before it will be possible to realize the full potential of single-particle electron cryomicroscopy. In particular, although reasonably good orientations can be obtained for beta-galactosidase, we have been unable to obtain reliable orientation determination from experimental images of apoferritin. Simulations suggest that at least 2-fold improvement of the contrast in experimental images at ~10 Å resolution is needed and should be possible.

  5. 10 CFR 830.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... research and experimental and analytical laboratory activities, electron microscopes, and X-ray machines... research, test, and power reactors, and critical and pulsed assemblies and any assembly that is designed to... covering a topic such as: quality assurance; maintenance of safety systems; personnel training; conduct of...

  6. Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics.

    PubMed

    Sengupta, Sanchita; Würthner, Frank

    2013-11-19

    Among the natural light-harvesting (LH) systems, those of green sulfur and nonsulfur photosynthetic bacteria are exceptional because they lack the support of a protein matrix. Instead, these so-called chlorosomes are based solely on "pigments". These are self-assembled bacteriochlorophyll c, d, and e derivatives, which consist of a chlorophyll skeleton bearing a 3(1)-hydroxy functional group. Chemists consider the latter as an essential structural unit to direct the formation of light-harvesting self-assembled dye aggregates with J-type excitonic coupling. The intriguing properties of chlorosomal J-type aggregates, particularly narrow red-shifted absorption bands, compared with monomers and their ability to delocalize and migrate excitons, have inspired intense research activities toward synthetic analogues in this field. The ultimate goal of this research field is the development of (opto-)electronic devices based on the architectural principle of chlorosomal LH systems. In this regard, the challenge is to develop small, functional building blocks with appropriate substituents that are preprogrammed to self-assemble across different length scales and to emulate functions of natural LH systems or to realize entirely new functions beyond those found in nature. In this Account, we highlight our achievements in the past decade with semisynthetic zinc chlorins (ZnChls) as model compounds of bacteriochlorophylls obtained from the naturally most abundant chlorin precursor: chlorophyll a. To begin, we explore how supramolecular strategies involving π-stacking, hydrogen bonding, and metal-oxygen coordination can be used to design ZnChl-based molecular stack, tube, and liquid crystalline assemblies conducive to charge and energy transport. Our design principle is based on the bioinspired functionalization of the 3(1)-position of ZnChl with a hydroxy or methoxy group; the former gives rise to tubular assemblies, whereas the latter induces stack assemblies. Functionalization of the 17(2)-position with esterified hydrophilic or hydrophobic chains, dendron-wedge substituents, and chromophores having complementary optical properties such as naphthalene bisimides (NBIs) is used to modulate the self-assembly of ZnChl dyes. The resulting assemblies exhibit enhanced charge transport and energy transfer abilities. We have used UV/vis, circular dichroism (CD), fluorescence spectroscopy, and dynamic light scattering (DLS) for the characterization of these assemblies in solution. In addition, we have studied assembly morphologies by atomic force microscopy (AFM), scanning tunneling microscopy (STM), transmission electron microscopy (TEM), and cryogenic-TEM. Crystallographic techniques such as powder X-ray and solid-state NMR have been used to explain the precise long- and short-range packing of dyes in these assemblies. Finally, functional properties such as charge and energy transport have been explored by pulse radiolysis time-resolved microwave conductivity (PR-TRMC), conductive AFM, and time-resolved fluorescence spectroscopy. The design principles discussed in this Account are important steps toward the utilization of these materials in biosupramolecular electronics and photonics in the future.

  7. Cryo-Electron Tomography of Marburg Virus Particles and Their Morphogenesis within Infected Cells

    PubMed Central

    Kolesnikova, Larissa; Welsch, Sonja; Krähling, Verena; Davey, Norman; Parsy, Marie-Laure; Becker, Stephan; Briggs, John A. G.

    2011-01-01

    Several major human pathogens, including the filoviruses, paramyxoviruses, and rhabdoviruses, package their single-stranded RNA genomes within helical nucleocapsids, which bud through the plasma membrane of the infected cell to release enveloped virions. The virions are often heterogeneous in shape, which makes it difficult to study their structure and assembly mechanisms. We have applied cryo-electron tomography and sub-tomogram averaging methods to derive structures of Marburg virus, a highly pathogenic filovirus, both after release and during assembly within infected cells. The data demonstrate the potential of cryo-electron tomography methods to derive detailed structural information for intermediate steps in biological pathways within intact cells. We describe the location and arrangement of the viral proteins within the virion. We show that the N-terminal domain of the nucleoprotein contains the minimal assembly determinants for a helical nucleocapsid with variable number of proteins per turn. Lobes protruding from alternate interfaces between each nucleoprotein are formed by the C-terminal domain of the nucleoprotein, together with viral proteins VP24 and VP35. Each nucleoprotein packages six RNA bases. The nucleocapsid interacts in an unusual, flexible “Velcro-like” manner with the viral matrix protein VP40. Determination of the structures of assembly intermediates showed that the nucleocapsid has a defined orientation during transport and budding. Together the data show striking architectural homology between the nucleocapsid helix of rhabdoviruses and filoviruses, but unexpected, fundamental differences in the mechanisms by which the nucleocapsids are then assembled together with matrix proteins and initiate membrane envelopment to release infectious virions, suggesting that the viruses have evolved different solutions to these conserved assembly steps. PMID:22110401

  8. Lidar In-space Technology Experiment (LITE) Electronics Overview

    NASA Technical Reports Server (NTRS)

    Blythe, Michael P.; Couch, Richard H.; Rowland, Carroll W.; Kitchen, Wayne L.; Regan, Curtis P.; Koch, Michael R.; Antill, Charles W.; Stevens, William T.; Rollins, Courtney H.; Kist, Edward H.

    1992-01-01

    The LITE electronics system consists of the following seven subsystems: Laser Transmitter Module (LTM), Boresight Assembly (BA), Aft-Optics Electronics (AOE), Digital Data Handling Unit (DDHU), Engineering Data System (EDS), Instrument Controller (IC), and the Ground Support Equipment (GSE). Each of these subsystems is discussed.

  9. 75 FR 21232 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Institute, Kent State University, Summit Street, PO Box 5190, Kent, OH 44242. Instrument: Electron... W. State Street, Lilly Hall, B126, West Lafayette, IN 47907-2054. Instrument: Electron Microscope... viruses and other macromolecular assemblies. Using cryo-electron microscopy, numerous virus/macromolecular...

  10. Imaging electron flow from collimating contacts in graphene

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.

    2018-04-01

    The ballistic motion of electrons in graphene opens exciting opportunities for electron-optic devices based on collimated electron beams. We form a collimating contact in a hBN-encapsulated graphene hall bar by adding zigzag contacts on either side of an electron emitter that absorb stray electrons; collimation can be turned off by floating the zig-zag contacts. The electron beam is imaged using a liquid-He cooled scanning gate microscope (SGM). The tip deflects electrons as they pass from the collimating contact to a receiving contact on the opposite side of the channel, and an image of electron flow can be made by displaying the change in transmission as the tip is raster scanned across the sample. The angular half width Δθ of the electron beam is found by applying a perpendicular magnetic field B that bends electron paths into cyclotron orbits. The images reveal that the electron flow from the collimating contact drops quickly at B  =  0.05 T when the electron orbits miss the receiving contact. The flow for the non-collimating case persists longer, up to B  =  0.19 T, due to the broader range of entry angles. Ray-tracing simulations agree well with the experimental images. By fitting the fields B at which the magnitude of electron flow drops in the experimental SGM images, we find Δθ  =  9° for electron flow from the collimating contact, compared with Δθ  =  54° for the non-collimating case.

  11. Direct sunlight facility for testing and research in HCPV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in severalmore » locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.« less

  12. Concentration gradient induced morphology evolution of silica nanostructure growth on photoresist-derived carbon micropatterns

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Shi, Tielin; Xi, Shuang; Lai, Wuxing; Liu, Shiyuan; Li, Xiaoping; Tang, Zirong

    2012-09-01

    The evolution of silica nanostructure morphology induced by local Si vapor source concentration gradient has been investigated by a smart design of experiments. Silica nanostructure or their assemblies with different morphologies are obtained on photoresist-derived three-dimensional carbon microelectrode array. At a temperature of 1,000°C, rope-, feather-, and octopus-like nanowire assemblies can be obtained along with the Si vapor source concentration gradient flow. While at 950°C, stringlike assemblies, bamboo-like nanostructures with large joints, and hollow structures with smaller sizes can be obtained along with the Si vapor source concentration gradient flow. Both vapor-liquid-solid and vapor-quasiliquid-solid growth mechanisms have been applied to explain the diverse morphologies involving branching, connecting, and batch growth behaviors. The present approach offers a potential method for precise design and controlled synthesis of nanostructures with different features.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing

    The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.

  14. Lab-scale preparations of Candida albicans and dual Candida albicans-Candida glabrata biofilms on the surface of medical-grade polyvinyl chloride (PVC) perfusion tube using a modified gravity-supported free-flow biofilm incubator (GS-FFBI).

    PubMed

    Shao, Jing; Lu, KeQiao; Tian, Ge; Cui, YanYan; Yan, YuanYuan; Wang, TianMing; Zhang, XinLong; Wang, ChangZhong

    2015-02-01

    The assembly of a man-made gravity-supported free-flow biofilm incubator (GS-FFBI) was described, which was composed of a gas cushion injector and four incubators. The GS-FFBI had the characteristics of (i) a bottom-up flow direction, and (ii) lab-scale biofilm preparation without the use of a multichannel pump. Two opportunistic fungal strains, namely Candida albicans and Candida glabrata, were employed to incubate C. albicans and dual C. albicans-C. glabrata biofilms on the surface of medical-grade polyvinyl chloride perfusion tube. In terms of the results from {2, 3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide} (XTT) assay, dry weight measurement, colony-forming unit counting, susceptibility test, and scanning electron microscopy, it was demonstrated that GS-FFBI could form both stable single and dual Candida biofilms with no significant variations among the four incubators or the three daily incubations within 21h, and could operate for at least 96h smoothly with no contamination of stock medium. The results also indicated, for the first time, that C. albicans and C. glabrata might be co-existent competitively and symbiotically in the dual biofilms with flowing media. GS-FFBI would be a useful device to study in vitro morphological and physiological features of microbial biofilms in the medical settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system

    NASA Astrophysics Data System (ADS)

    Manikandan, J.; Jayaraman, M.; Jayachandran, M.

    2011-02-01

    This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.

  16. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.

    PubMed

    Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K

    2016-01-26

    Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures.

  17. Characterization of charged polymer self-assemblies by multidetector thermal field-flow fractionation in aqueous mobile phases.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2018-01-12

    Charged block copolymer self-assemblies, such as charged micelles, have attracted much attention as versatile drug delivery systems due to their readily tunable characteristics such as size and surface charge. However, current column-based analytical techniques are not suitable to fractionate and comprehensively characterize charged micelles in terms of size, molar mass, chemical composition and morphology. Multidetector thermal field-flow fractionation (ThFFF) is shown to be a unique characterization platform that can be used to characterize charged micelles in terms of size, molar mass, chemical composition and morphology in aqueous mobile phases with various ionic strengths and pH. This is demonstrated by the characterization of poly(methacrylic acid)-b-poly(methyl methacrylate) self-assemblies in high pH buffers as well as the characterization of cationic poly(2-vinyl pyridine)-b-polystyrene and poly(4-vinyl pyridine)-b-polystyrene self-assemblies in low pH buffers. Moreover, it is shown that ThFFF is capable of separating charged micelles according to the corona composition. These investigations prove convincingly that ThFFF is broadly applicable to the comprehensive characterization of amphiphilic self-assemblies even when aqueous mobile phases are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Gate- and Light-Tunable pn Heterojunction Microwire Arrays Fabricated via Evaporative Assembly.

    PubMed

    Park, Jae Hoon; Kim, Jong Su; Choi, Young Jin; Lee, Wi Hyoung; Lee, Dong Yun; Cho, Jeong Ho

    2017-02-01

    One-dimensional (1D) nano/microwires have attracted considerable attention as versatile building blocks for use in diverse electronic, optoelectronic, and magnetic device applications. The large-area assembly of nano/microwires at desired positions presents a significant challenge for developing high-density electronic devices. Here, we demonstrated the fabrication of cross-stacked pn heterojunction diode arrays by integrating well-aligned inorganic and organic microwires fabricated via evaporative assembly. We utilized solution-processed n-type inorganic indium-gallium-zinc-oxide (IGZO) microwires and p-type organic 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN) microwires. The formation of organic TIPS-PEN semiconductor microwire and their electrical properties were optimized by controlling both the amounts of added insulating polymer and the widths of the microwires. The resulting cross-stacked IGZO/TIPS-PEN microwire pn heterojunction devices exhibited rectifying behavior with a forward-to-reverse bias current ratio exceeding 10 2 . The ultrathin nature of the underlying n-type IGZO microwires yielded gate tunability in the charge transport behaviors, ranging from insulating to rectifying. The rectifying behaviors of the heterojunction devices could be modulated by controlling the optical power of the irradiated light. The fabrication of semiconducting microwires through evaporative assembly provides a facile and reliable approach to patterning or positioning 1D microwires for the fabrication of future flexible large-area electronics.

  19. Characteristics of a Power Line Used as a VLF Antenna.

    DTIC Science & Technology

    1982-05-01

    were glass melamine . Assemblies of 12 layers were fabricated at El Segundo, CA and shipped by air to Tromso, Norway for final assembly of the full 120...sciences, applied electronics, semiconductor crystal and device physics, radiometric Imaging; millimeter-wave and microwave technology. Information

  20. STM study of C60F18 high dipole moment molecules on Au(111)

    NASA Astrophysics Data System (ADS)

    Bairagi, K.; Bellec, A.; Chumakov, R. G.; Menshikov, K. A.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Repain, V.; Lebedev, A. M.; Sukhanov, L. P.; Svechnikov, N. Yu.; Stankevich, V. G.

    2015-11-01

    Scanning tunneling microscopy and spectroscopy studies of C60F18 molecules deposited on Au(111) are reported and compared to C60 molecules both at liquid helium temperature and room temperature (RT). Whereas adsorption and electronic properties of C60F18 single molecules were studied at low temperature (LT), self-assemblies were investigated at RT. In both cases, the fluorine atoms of the C60F18 molecules are pointed towards the surface. Individual C60F18 molecules on Au(111) have a HOMO-LUMO gap of 2.9 eV. The self-assembled islands exhibit a close-packed hexagonal lattice with amorphous borders. The comparison with C60 molecules clearly demonstrates the influence of the C60F18 electric dipole moment (EDM) on the electronic properties of single molecules and on the thermodynamics of self-assembled islands. Besides, the apparent height value of a separate molecule increases in a self-assembly environment as a result of a depolarization phenomenon.

Top