Imaging electron flow from collimating contacts in graphene
NASA Astrophysics Data System (ADS)
Bhandari, S.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.
2018-04-01
The ballistic motion of electrons in graphene opens exciting opportunities for electron-optic devices based on collimated electron beams. We form a collimating contact in a hBN-encapsulated graphene hall bar by adding zigzag contacts on either side of an electron emitter that absorb stray electrons; collimation can be turned off by floating the zig-zag contacts. The electron beam is imaged using a liquid-He cooled scanning gate microscope (SGM). The tip deflects electrons as they pass from the collimating contact to a receiving contact on the opposite side of the channel, and an image of electron flow can be made by displaying the change in transmission as the tip is raster scanned across the sample. The angular half width Δθ of the electron beam is found by applying a perpendicular magnetic field B that bends electron paths into cyclotron orbits. The images reveal that the electron flow from the collimating contact drops quickly at B = 0.05 T when the electron orbits miss the receiving contact. The flow for the non-collimating case persists longer, up to B = 0.19 T, due to the broader range of entry angles. Ray-tracing simulations agree well with the experimental images. By fitting the fields B at which the magnitude of electron flow drops in the experimental SGM images, we find Δθ = 9° for electron flow from the collimating contact, compared with Δθ = 54° for the non-collimating case.
Imaging electron motion in graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Sagar; Westervelt, Robert M.
A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group's previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imagingmore » techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooled scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz -1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.« less
Imaging electron motion in graphene
Bhandari, Sagar; Westervelt, Robert M.
2017-01-05
A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group's previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imagingmore » techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooled scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz -1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.« less
Imaging Electron Motion in a Few Layer MoS2 Device
NASA Astrophysics Data System (ADS)
Bhandari, S.; Wang, K.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.
2017-06-01
Ultrathin sheets of MoS2 are a newly discovered 2D semiconductor that holds great promise for nanoelectronics. Understanding the pattern of current flow will be crucial for developing devices. In this talk, we present images of current flow in MoS2 obtained with a Scanned Probe Microscope (SPM) cooled to 4 K. We previously used this technique to image electron trajectories in GaAs/AlGaAs heterostructures and graphene. The charged SPM tip is held just above the sample surface, creating an image charge inside the device that scatters electrons. By measuring the change in resistance ΔR while the tip is raster scanned above the sample, an image of electron flow is obtained. We present images of electron flow in an MoS2 device patterned into a hall bar geometry. A three-layer MoS2 sheet is encased by two hBN layers, top and bottom, and patterned into a hall-bar with multilayer graphene contacts. An SPM image shows the current flow pattern from the wide contact at the end of the device for a Hall density n = 1.3×1012 cm-2. The SPM tip tends to block flow, increasing the resistance R. The pattern of flow was also imaged for a narrow side contact on the sample. At density n = 5.4×1011 cm-2; the pattern seen in the SPM image is similar to the wide contact. The ability to image electron flow promises to be very useful for the development of ultrathin devices from new 2D materials.
Probing the electronic transport on the reconstructed Au/Ge(001) surface
Krok, Franciszek; Kaspers, Mark R; Bernhart, Alexander M; Nikiel, Marek; Jany, Benedykt R; Indyka, Paulina; Wojtaszek, Mateusz; Möller, Rolf
2014-01-01
Summary By using scanning tunnelling potentiometry we characterized the lateral variation of the electrochemical potential µec on the gold-induced Ge(001)-c(8 × 2)-Au surface reconstruction while a lateral current flows through the sample. On the reconstruction and across domain boundaries we find that µec shows a constant gradient as a function of the position between the contacts. In addition, nanoscale Au clusters on the surface do not show an electronic coupling to the gold-induced surface reconstruction. In combination with high resolution scanning electron microscopy and transmission electron microscopy, we conclude that an additional transport channel buried about 2 nm underneath the surface represents a major transport channel for electrons. PMID:25247129
Correlation of live-cell imaging with volume scanning electron microscopy.
Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger
2017-01-01
Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.
The electron accelerator utilized in this treatment process has a potential of 1.5 MeV, rated from 0 to 50 mA, providing radiation doses of 0-850 krad (0-8.5 kGy). The horizontal electron beam is scanned at 200 Hz and impacts the waste stream as it flows over a weir approximately...
NASA Astrophysics Data System (ADS)
Montón, Helena; Parolo, Claudio; Aranda-Ramos, Antonio; Merkoçi, Arben; Nogués, Carme
2015-02-01
There is a great demand to develop novel techniques that allow useful and complete monitoring of apoptosis, which is a key factor of several diseases and a target for drug development. Here, we present the use of a novel dual electrochemical/optical label for the detection and study of apoptosis. We combined the specificity of Annexin-V for phosphatidylserine, a phospholipid expressed in the outer membrane of apoptotic cells, with the optical and electrochemical properties of quantum dots to create a more efficient label. Using this conjugate we addressed three important issues: (i) we made the labeling of apoptotic cells faster (30 min) and easier; (ii) we fully characterized the samples by common cell biological techniques (confocal laser scanning microscopy, scanning electron microscopy and flow cytometry); and (iii) we developed a fast, cheap and quantitative electrochemical detection method for apoptotic cells with results in full agreement with those obtained by flow cytometry.There is a great demand to develop novel techniques that allow useful and complete monitoring of apoptosis, which is a key factor of several diseases and a target for drug development. Here, we present the use of a novel dual electrochemical/optical label for the detection and study of apoptosis. We combined the specificity of Annexin-V for phosphatidylserine, a phospholipid expressed in the outer membrane of apoptotic cells, with the optical and electrochemical properties of quantum dots to create a more efficient label. Using this conjugate we addressed three important issues: (i) we made the labeling of apoptotic cells faster (30 min) and easier; (ii) we fully characterized the samples by common cell biological techniques (confocal laser scanning microscopy, scanning electron microscopy and flow cytometry); and (iii) we developed a fast, cheap and quantitative electrochemical detection method for apoptotic cells with results in full agreement with those obtained by flow cytometry. Electronic supplementary information (ESI) available: Optical microscopy images of apoptotic induced cell cultures at different times and negative control of flow cytometry. See DOI: 10.1039/c4nr07191c
SURVIVAL OF SALMONELLA SPECIES IN RIVER WATER.
The survival of four Salmonella strains in river water microcosms was monitored using culturing techniques, direct counts, whole cell hybridization, scanning electron microscopy, and resuscitation techniques via the direct viable count method and flow cytrometry. Plate counts of...
Reipert, S; Reipert, B M; Allen, T D
1994-09-01
The aim of the work is to visualise nuclear pore complexes (NPCs) in mammalian cells by high resolution scanning electron microscopy. A detergent-free isolation protocol was employed to obtain clean nuclei from the haemopoietic cell line K 562. Nuclear isolation was performed by mechanical homogenisation under hypotonic conditions followed by purification of the nuclear fraction. The isolated nuclei were attached to silicon chips, fixed, critical point dried, and sputter coated with a thin film (3-4 nm) of tantalum. Analysis of the nuclear surface by scanning electron microscopy (SEM) revealed a strong sensitivity of the outer nuclear membrane (ONM) to disruption during the isolation procedure. A significant reduction of the characteristic pattern of damage to the ONM was achieved by means of an isopicnic centrifugation on an isoosmolar balanced Percoll gradient. Analysis of the population of isolated nuclei by flow cytometry showed no signs of cell cycle specific losses of nuclei during isolation. The SEM investigations of the morphology of the nuclear envelope (NE) and of substructural details of NPCs and polyribosomes were performed using an in-lens field emission scanning electron microscope.
SURVIVAL OF SALMONELLA SPECIES IN RIVER WATER
The survival of four Salmonella strains in river water microcosms was monitored by culturing techniques, direct counts, whole-cell hybridization, scanning electron microscopy, and resuscitation techniques via the direct viable count method and flow cytometry. Plate counts of bact...
Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers.
Lee, Song-Woo; Jo, Gunho; Lee, Takhee; Lee, Yong-Gu
2009-09-28
In(2)O(3) nanowires can be used effectively as building blocks in the production of electronic circuits used in transparent and flexible electronic devices. The fabrication of these devices requires a controlled assembly of nanowires at crucial places and times. However, this kind of controlled assembly, which results in the fusion of nanowires to circuits, is still very difficult to execute. In this study, we demonstrate the benefits of using various lengths of In(2)O(3) nanowires by using non-contact mechanisms, such as scanning optical tweezers, to place them on designated targets during the fabrication process. Furthermore, these nanowires can be stabilized at both ends of the conducting wires using a focused laser, and later in the process, the annealed technique, so that proper flow of electrons is affected.
NASA Astrophysics Data System (ADS)
Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.
2009-05-01
Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.
Matsuo, Toshihiko; Gochi, Akira; Hirakawa, Tsuyoshi; Ito, Tadashi; Kohno, Yoshihisa
2010-10-01
General electronic medical records systems remain insufficient for ophthalmology outpatient clinics from the viewpoint of dealing with many ophthalmic examinations and images in a large number of patients. Filing systems for documents and images by Yahgee Document View (Yahgee, Inc.) were introduced on the platform of general electronic medical records system (Fujitsu, Inc.). Outpatients flow management system and electronic medical records system for ophthalmology were constructed. All images from ophthalmic appliances were transported to Yahgee Image by the MaxFile gateway system (P4 Medic, Inc.). The flow of outpatients going through examinations such as visual acuity testing were monitored by the list "Ophthalmology Outpatients List" by Yahgee Workflow in addition to the list "Patients Reception List" by Fujitsu. Patients' identification number was scanned with bar code readers attached to ophthalmic appliances. Dual monitors were placed in doctors' rooms to show Fujitsu Medical Records on the left-hand monitor and ophthalmic charts of Yahgee Document on the right-hand monitor. The data of manually-inputted visual acuity, automatically-exported autorefractometry and non-contact tonometry on a new template, MaxFile ED, were again automatically transported to designated boxes on ophthalmic charts of Yahgee Document. Images such as fundus photographs, fluorescein angiograms, optical coherence tomographic and ultrasound scans were viewed by Yahgee Image, and were copy-and-pasted to assigned boxes on the ophthalmic charts. Ordering such as appointments, drug prescription, fees and diagnoses input, central laboratory tests, surgical theater and ward room reservations were placed by functions of the Fujitsu electronic medical records system. The combination of the Fujitsu electronic medical records and Yahgee Document View systems enabled the University Hospital to examine the same number of outpatients as prior to the implementation of the computerized filing system.
Analysis of Scanned Probe Images for Magnetic Focusing in Graphene
Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip; ...
2017-02-21
We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN–graphene–hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons.more » The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.« less
Analysis of Scanned Probe Images for Magnetic Focusing in Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Sagar; Lee, Gil-Ho; Kim, Philip
We have used cooled scanning probe microscopy (SPM) to study electron motion in nanoscale devices. The charged tip of the microscope was raster-scanned at constant height above the surface as the conductance of the device was measured. The image charge scatters electrons away, changing the path of electrons through the sample. Using this technique, we imaged cyclotron orbits that flow between two narrow contacts in the magnetic focusing regime for ballistic hBN–graphene–hBN devices. We present herein an analysis of our magnetic focusing imaging results based on the effects of the tip-created charge density dip on the motion of ballistic electrons.more » The density dip locally reduces the Fermi energy, creating a force that pushes electrons away from the tip. When the tip is above the cyclotron orbit, electrons are deflected away from the receiving contact, creating an image by reducing the transmission between contacts. The data and our analysis suggest that the graphene edge is rather rough, and electrons scattering off the edge bounce in random directions. However, when the tip is close to the edge, it can enhance transmission by bouncing electrons away from the edge, toward the receiving contact. Our results demonstrate that cooled SPM is a promising tool to investigate the motion of electrons in ballistic graphene devices.« less
Challenges of microtome‐based serial block‐face scanning electron microscopy in neuroscience
WANNER, A. A.; KIRSCHMANN, M. A.
2015-01-01
Summary Serial block‐face scanning electron microscopy (SBEM) is becoming increasingly popular for a wide range of applications in many disciplines from biology to material sciences. This review focuses on applications for circuit reconstruction in neuroscience, which is one of the major driving forces advancing SBEM. Neuronal circuit reconstruction poses exceptional challenges to volume EM in terms of resolution, field of view, acquisition time and sample preparation. Mapping the connections between neurons in the brain is crucial for understanding information flow and information processing in the brain. However, information on the connectivity between hundreds or even thousands of neurons densely packed in neuronal microcircuits is still largely missing. Volume EM techniques such as serial section TEM, automated tape‐collecting ultramicrotome, focused ion‐beam scanning electron microscopy and SBEM (microtome serial block‐face scanning electron microscopy) are the techniques that provide sufficient resolution to resolve ultrastructural details such as synapses and provides sufficient field of view for dense reconstruction of neuronal circuits. While volume EM techniques are advancing, they are generating large data sets on the terabyte scale that require new image processing workflows and analysis tools. In this review, we present the recent advances in SBEM for circuit reconstruction in neuroscience and an overview of existing image processing and analysis pipelines. PMID:25907464
High enthalpy arc-heated plasma flow diagnostics by tunable diode laser absorption spectroscopy
NASA Astrophysics Data System (ADS)
Lin, Xin; Chen, Lianzhong; Zeng, Hui; Ou, Dongbin; Dong, Yonghui
2017-05-01
This paper reports the laser absorption measurements of atomic oxygen in the FD04 arc-heater at China Academy of Aerospace Aerodynamics (CAAA). An atomic oxygen absorption line at 777.19 nm is utilizied for detecting the population of electronically excited oxygen atom in an air plasma flow. A scanned-wavelength direct absorption mode is used in this study. The laser is scanned in wavelength across the absorption feature at a rate of 200 Hz. Under the assumption of thermal equilibrium, time-resolved temperature measurements are obtained on one line-of-sight in the arc-heater. The good agreement of the temperature inferred from the sonic throat method suggests the equilibrium assumption is valid. These results illustrate the feasibility of the diode laser sensors for flow parameters in high enthalpy arc-heated facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunner, D.; LaBombard, B.; Ochoukov, R.
2013-03-15
A new Retarding Field Analyzer (RFA) head has been created for the outer-midplane scanning probe system on the Alcator C-Mod tokamak. The new probe head contains back-to-back retarding field analyzers aligned with the local magnetic field. One faces 'upstream' into the field-aligned plasma flow and the other faces 'downstream' away from the flow. The RFA was created primarily to benchmark ion temperature measurements of an ion sensitive probe; it may also be used to interrogate electrons. However, its construction is robust enough to be used to measure ion and electron temperatures up to the last-closed flux surface in C-Mod. Amore » RFA probe of identical design has been attached to the side of a limiter to explore direct changes to the boundary plasma due to lower hybrid heating and current drive. Design of the high heat flux (>100 MW/m{sup 2}) handling probe and initial results are presented.« less
Effects of Passive Porosity on Interacting Vortex Flows At Supersonic Speeds
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2000-01-01
A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity on vortex flow interaction about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used and included pressure-sensitive paint (PSP), schlieren, and laser vapor screen (LVS) These techniques were combined with force and moment and conventional electronically-scanned pressure (ESP) measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model.
NASA Astrophysics Data System (ADS)
Gorokhov, M. V.; Kozhevin, V. M.; Yavsin, D. A.; Voronin, A. V.; Gurevich, S. A.
2017-04-01
We have experimentally studied the action of high-power plasma flows on pure tungsten plates covered with multilayer films of tungsten nanoparticles formed by the method of laser electrodeposition. The samples were irradiated using a plasma gun producing hydrogen (helium) plasma flows with power density up to 35 GW/cm2. The resulting surface morphology was studied by scanning electron microscopy (SEM). SEM data showed that tungsten plates coated by nanoparticles are more resistant to the formation of microcracks than are pure tungsten plates.
Electrode erosion in steady-state electric propulsion engines
NASA Technical Reports Server (NTRS)
Pivirotto, Thomas J.; Deininger, William D.
1988-01-01
The anode and cathode of a 30 kW class arcjet engine were sectioned and analyzed. This arcjet was operated for a total time of 573 hr at power levels between 25 and 30 kW with ammonia at flow rates of 0.25 and 0.27 gm/s. The accumulated run time was sufficient to clearly establish erosion patterns and their causes. The type of electron emission from various parts of the cathode surface was made clear by scanning electron microscope analysis. A scanning electron microscope was used to study recrystallization on the hot anode surface. These electrodes were made of 2 percent thoriated tungsten and the surface thorium content and gradient perpendicular to the surfaces was determined by quantitative microprobe analysis. The results of this material analysis on the electrodes and recommendations for improving electrode operational life time are presented.
Flow-induced immobilization of glucose oxidase in nonionic micellar nanogels for glucose sensing.
Cardiel, Joshua J; Zhao, Ya; Tonggu, Lige; Wang, Liguo; Chung, Jae-Hyun; Shen, Amy Q
2014-10-21
A simple microfluidic platform was utilized to immobilize glucose oxidase (GOx) in a nonionic micellar scaffold. The immobilization of GOx was verified by using a combination of cryogenic electron microscopy (cryo-EM), scanning electron microscopy (SEM), and ultraviolet spectroscopy (UV) techniques. Chronoamperometric measurements were conducted on nanogel-GOx scaffolds under different glucose concentrations, exhibiting linear amperometric responses. Without impacting the lifetime and denaturation of GOx, the nonionic nanogel provides a favorable microenvironment for GOx in biological media. This flow-induced immobilization method in a nonionic nanogel host matrix opens up new pathways for designing a simple, fast, biocompatible, and cost-effective process to immobilize biomolecules that are averse to ionic environments.
In vivo lateral blood flow velocity measurement using speckle size estimation.
Xu, Tiantian; Hozan, Mohsen; Bashford, Gregory R
2014-05-01
In previous studies, we proposed blood measurement using speckle size estimation, which estimates the lateral component of blood flow within a single image frame based on the observation that the speckle pattern corresponding to blood reflectors (typically red blood cells) stretches (i.e., is "smeared") if blood flow is in the same direction as the electronically controlled transducer line selection in a 2-D image. In this observational study, the clinical viability of ultrasound blood flow velocity measurement using speckle size estimation was investigated and compared with that of conventional spectral Doppler of carotid artery blood flow data collected from human patients in vivo. Ten patients (six male, four female) were recruited. Right carotid artery blood flow data were collected in an interleaved fashion (alternating Doppler and B-mode A-lines) with an Antares Ultrasound Imaging System and transferred to a PC via the Axius Ultrasound Research Interface. The scanning velocity was 77 cm/s, and a 4-s interval of flow data were collected from each subject to cover three to five complete cardiac cycles. Conventional spectral Doppler data were collected simultaneously to compare with estimates made by speckle size estimation. The results indicate that the peak systolic velocities measured with the two methods are comparable (within ±10%) if the scan velocity is greater than or equal to the flow velocity. When scan velocity is slower than peak systolic velocity, the speckle stretch method asymptotes to the scan velocity. Thus, the speckle stretch method is able to accurately measure pure lateral flow, which conventional Doppler cannot do. In addition, an initial comparison of the speckle size estimation and color Doppler methods with respect to computational complexity and data acquisition time indicated potential time savings in blood flow velocity estimation using speckle size estimation. Further studies are needed for calculation of the speckle stretch method across a field of view and combination with an appropriate axial flow estimator. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Baghaie, Ahmadreza; Pahlavan Tafti, Ahmad; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun
2017-01-01
Scanning Electron Microscope (SEM) as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D) reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.
NASA Technical Reports Server (NTRS)
Zhao, Minhua; Ming, Bin; Kim, Jae-Woo; Gibbons, Luke J.; Gu, Xiaohong; Nguyen, Tinh; Park, Cheol; Lillehei, Peter T.; Villarrubia, J. S.; Vladar, Andras E.;
2015-01-01
Despite many studies of subsurface imaging of carbon nanotube (CNT)-polymer composites via scanning electron microscopy (SEM), significant controversy exists concerning the imaging depth and contrast mechanisms. We studied CNT-polyimide composites and, by threedimensional reconstructions of captured stereo-pair images, determined that the maximum SEM imaging depth was typically hundreds of nanometers. The contrast mechanisms were investigated over a broad range of beam accelerating voltages from 0.3 to 30 kV, and ascribed to modulation by embedded CNTs of the effective secondary electron (SE) emission yield at the polymer surface. This modulation of the SE yield is due to non-uniform surface potential distribution resulting from current flows due to leakage and electron beam induced current. The importance of an external electric field on SEM subsurface imaging was also demonstrated. The insights gained from this study can be generally applied to SEM nondestructive subsurface imaging of conducting nanostructures embedded in dielectric matrices such as graphene-polymer composites, silicon-based single electron transistors, high resolution SEM overlay metrology or e-beam lithography, and have significant implications in nanotechnology.
Growth of single-layer graphene on Ge (1 0 0) by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Mendoza, C. D.; Caldas, P. G.; Freire, F. L.; Maia da Costa, M. E. H.
2018-07-01
The integration of graphene into nanoelectronic devices is dependent on the availability of direct deposition processes, which can provide uniform, large-area and high-quality graphene on semiconductor substrates such as Ge or Si. In this work, we synthesised graphene directly on p-type Ge (1 0 0) substrates by chemical vapour deposition. The influence of the CH4:H2 flow ratio on the graphene growth was investigated. Raman Spectroscopy, Raman mapping, Scanning Electron Microscopy, Atomic Force Microscopy and Scanning Tunnelling Microscopy/Scanning Tunnelling Spectroscopy results showed that good quality and homogeneous monolayer graphene over a large area can be achieved on Ge substrates directly with optimal growth conditions.
Identification of sandstone core damage using scanning electron microscopy
NASA Astrophysics Data System (ADS)
Ismail, Abdul Razak; Jaafar, Mohd Zaidi; Sulaiman, Wan Rosli Wan; Ismail, Issham; Shiunn, Ng Yinn
2017-12-01
Particles and fluids invasion into the pore spaces causes serious damage to the formation, resulting reduction in petroleum production. In order to prevent permeability damage for a well effectively, the damage mechanisms should be identified. In this study, water-based drilling fluid was compared to oil-based drilling fluids based on microscopic observation. The cores were damaged by several drilling fluid systems. Scanning electron microscope (SEM) was used to observe the damage mechanism caused by the drilling fluids. Results showed that the ester based drilling fluid system caused the most serious damage followed by synthetic oil based system and KCI-polymer system. Fine solids and filtrate migration and emulsion blockage are believed to be the major mechanisms controlling the changes in flow properties for the sandstone samples.
Synthesis of zinc ultrafine powders via the Guen–Miller flow-levitation method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jigatch, A. N., E-mail: jan@chph.ras.ru; Leipunskii, I. O.; Kuskov, M. L.
2015-12-15
Zinc ultrafine powders (UFPs) with the average particle size of 0.175 to 1.24 μm are synthesized via the flow-levitation method. The peculiarities of the formation of zinc UFPs are considered with respect to the carrier gas properties (heat capacity, thermal conductivity, and diffusion coefficient), as well as the gas flow parameters (pressure and flow rate). The obtained zinc particles are studied via scanning electron microscopy and X-ray diffraction. The factors determining the crystal structure of zinc particles and their size distribution are discussed as well. The data on oxidation of zinc stored in unsealed containers under normal conditions are alsomore » presented.« less
TiCl4 as a source of TiO2 particles for laser anemometry measurements in hot gas
NASA Technical Reports Server (NTRS)
Weikle, Donald H.; Seasholtz, Richard G.; Oberle, Lawrence G.
1990-01-01
A method of reacting TiCl4 with water saturated gaseous nitrogen (GN2) at the entrance into a high temperature gas flow is described. The TiO2 particles formed are then entrained in the gas flow and used as seed particles for making laser anemometry (LA) measurements of the flow velocity distribution in the hot gas. Scanning electron microscope photographs of the TiO2 particles are shown. Data rate of the LA processor was measured to determine the amount of TiO2 formed. The TiCl4 and mixing gas flow diagram is shown. This work was performed in an open jet burner.
Growth of diamond by RF plasma-assisted chemical vapor deposition
NASA Technical Reports Server (NTRS)
Meyer, Duane E.; Ianno, Natale J.; Woollam, John A.; Swartzlander, A. B.; Nelson, A. J.
1988-01-01
A system has been designed and constructed to produce diamond particles by inductively coupled radio-frequency, plasma-assisted chemical vapor deposition. This is a low-pressure, low-temperature process used in an attempt to deposit diamond on substrates of glass, quartz, silicon, nickel, and boron nitride. Several deposition parameters have been varied including substrate temperature, gas concentration, gas pressure, total gas flow rate, RF input power, and deposition time. Analytical methods employed to determine composition and structure of the deposits include scanning electron microscopy, absorption spectroscopy, scanning Auger microprobe spectroscopy, and Raman spectroscopy. Analysis indicates that particles having a thin graphite surface, as well as diamond particles with no surface coatings, have been deposited. Deposits on quartz have exhibited optical bandgaps as high as 4.5 eV. Scanning electron microscopy analysis shows that particles are deposited on a pedestal which Auger spectroscopy indicates to be graphite. This is a phenomenon that has not been previously reported in the literature.
Meng, Dan; Falconer, James; Krauel-Goellner, Karen; Chen, John J J J; Farid, Mohammed; Alany, Raid G
2008-01-01
The purpose of this study was to design and build a supercritical CO(2) anti-solvent (SAS) unit and use it to produce microparticles of the class II drug carbamazepine. The operation conditions of the constructed unit affected the carbamazepine yield. Optimal conditions were: organic solution flow rate of 0.15 mL/min, CO(2) flow rate of 7.5 mL/min, pressure of 4,200 psi, over 3,000 s and at 33 degrees C. The drug solid-state characteristics, morphology and size distribution were examined before and after processing using X-ray powder diffraction and differential scanning calorimetry, scanning electron microscopy and laser diffraction particle size analysis, respectively. The in vitro dissolution of the treated particles was investigated and compared to that of untreated particles. Results revealed a change in the crystalline structure of carbamazepine with different polymorphs co-existing under various operation conditions. Scanning electron micrographs showed a change in the crystalline habit from the prismatic into bundled whiskers, fibers and filaments. The volume weighted diameter was reduced from 209 to 29 mum. Furthermore, the SAS CO(2) process yielded particles with significantly improved in vitro dissolution. Further research is needed to optimize the operation conditions of the self-built unit to maximize the production yield and produce a uniform polymorphic form of carbamazepine.
An investigation of the initiation stage of hot corrosion in Ni-base alloys
NASA Technical Reports Server (NTRS)
Huang, T. T.; Meier, G. H.
1979-01-01
The mechanisms which lead to the destruction of a normally protective scale during the initial stages of hot corrosion of 14 nickel-base alloys contaminated with Na2SO4 and other condensed deposits were investigated. A continuous reading microbalance was used to record weight changes at temperatures between 900 C and 1000 C at 1 atmosphere pressure of slowly flowing oxygen. The reaction was initiated by raising a preheated furnace around the quartz tube in which the specimen was supported with oxygen flowing. The furnace was raised in a time period of seconds. At 900 C, the system and specimen came to thermal equilibrium in less than one minute. Oxidized specimens were studied using optical and scanning electron metallography and X-ray diffraction techniques. Transmission electron microscopy and electron diffraction spectroscopy were also used to identify the structure of carbides in some of the commercial alloys.
Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X. Q.; Xiong, Z.; Nevins, W. M.
The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon} scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.
Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Xiong, Z.; Gao, Z.; Nevins, W. M.; McKee, G. R.
2008-05-01
The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio γ scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.
TEMPEST simulations of collisionless damping of the geodesic-acoustic mode in edge-plasma pedestals.
Xu, X Q; Xiong, Z; Gao, Z; Nevins, W M; McKee, G R
2008-05-30
The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.
New leak assembly based on fluidic nanochannels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Aiqing; Zhao, Yongheng; Wang, Xudi, E-mail: wxudi@hfut.edu.cn
2016-09-15
Fluidic nanochannels with a characteristic dimension of ∼280 nm were fabricated and designed as a leak assembly, where the nanochannels were formed on silicon wafers and enclosed with Pyrex{sup ®} glass. The geometric dimensions were characterized by scanning electron microscopy, and the gas flow conductance of He and other heavy gases (N{sub 2}, O{sub 2}, and Ar) was measured, and its uncertainty estimated, by the difference method. The results indicated that the measured flow conductance values were 45% less than the calculated flow conductance values. For helium, molecular flow was shown to occur at pressures ranging from vacuum to atmospheric pressure.more » As a consequence of the well-defined geometry, the prediction of flow conductance could be achieved for various gas species.« less
The nanostructure and microstructure of SiC surface layers deposited by MWCVD and ECRCVD
NASA Astrophysics Data System (ADS)
Dul, K.; Jonas, S.; Handke, B.
2017-12-01
Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to investigate ex-situ the surface topography of SiC layers deposited on Si(100) by Microwave Chemical Vapour Deposition (MWCVD) -S1,S2 layers and Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) - layers S3,S4, using silane, methane, and hydrogen. The effects of sample temperature and gas flow on the nanostructure and microstructure have been investigated. The nanostructure was described by three-dimensional surface roughness analysis based on digital image processing, which gives a tool to quantify different aspects of surface features. A total of 13 different numerical parameters used to describe the surface topography were used. The scanning electron image (SEM) of the microstructure of layers S1, S2, and S4 was similar, however, layer S3 was completely different; appearing like grains. Nonetheless, it can be seen that no grain boundary structure is present in the AFM images.
Forensic tools for the diagnosis of electrocution death: Case study and literature review.
Mondello, Cristina; Micali, Antonio; Cardia, Luigi; Argo, Antonina; Zerbo, Stefania; Spagnolo, Elvira Ventura
2018-06-01
Diagnosis of death by electrocution may be difficult when electric marking is not visible or unclear. Accordingly, the body of a man who appeared to have died from accidental electrocution was carefully forensically analysed. Macroscopic and microscopic analysis of the current mark was carried out using a variable-pressure scanning electron microscope equipped with energy dispersive X-ray microanalyser to highlight skin metallisation, indicating the presence of iron and zinc. The histological findings of electrocution myocardial damage were supported by the results of biochemical analysis which demonstrated the creatine kinase-MB and cardiac troponin I elevation. The effects of electric current flow were also highlighted by perforations of endothelial surface of a pulmonary artery using scanning electron microscope, and all the results were analysed by the main tools suggested in the literature.
The Development of a Scanning Soft X-Ray Microscope.
NASA Astrophysics Data System (ADS)
Rarback, Harvey Miles
We have developed a scanning soft X-ray microscope, which can be used to image natural biological specimens at high resolution and with less damage than electron microscopy. The microscope focuses a monochromatic beam of synchrotron radiation to a nearly diffraction limited spot with the aid of a high resolution Fresnel zone plate, specially fabricated for us at the IBM Watson Research Center. The specimen at one atmosphere is mechanically scanned through the spot and the transmitted radiation is efficiently detected with a flow proportional counter. A computer forms a realtime transmission image of the specimen which is displayed on a color monitor. Our first generation optics have produced images of natural wet specimens at a resolution of 300 nm.
Flow Liner Slot Edge Replication Feasibility Study
NASA Technical Reports Server (NTRS)
Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.
2006-01-01
Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.
Sekine, Tetsuro; Amano, Yasuo; Takagi, Ryo; Matsumura, Yoshio; Murai, Yasuo; Kumita, Shinichiro
2014-01-01
A drawback of time-resolved 3-dimensional phase contrast magnetic resonance (4D Flow MR) imaging is its lengthy scan time for clinical application in the brain. We assessed the feasibility for flow measurement and visualization of 4D Flow MR imaging using Cartesian y-z radial sampling and that using k-t sensitivity encoding (k-t SENSE) by comparison with the standard scan using SENSE. Sixteen volunteers underwent 3 types of 4D Flow MR imaging of the brain using a 3.0-tesla scanner. As the standard scan, 4D Flow MR imaging with SENSE was performed first and then followed by 2 types of acceleration scan-with Cartesian y-z radial sampling and with k-t SENSE. We measured peak systolic velocity (PSV) and blood flow volume (BFV) in 9 arteries, and the percentage of particles arriving from the emitter plane at the target plane in 3 arteries, visually graded image quality in 9 arteries, and compared these quantitative and visual data between the standard scan and each acceleration scan. 4D Flow MR imaging examinations were completed in all but one volunteer, who did not undergo the last examination because of headache. Each acceleration scan reduced scan time by 50% compared with the standard scan. The k-t SENSE imaging underestimated PSV and BFV (P < 0.05). There were significant correlations for PSV and BFV between the standard scan and each acceleration scan (P < 0.01). The percentage of particles reaching the target plane did not differ between the standard scan and each acceleration scan. For visual assessment, y-z radial sampling deteriorated the image quality of the 3 arteries. Cartesian y-z radial sampling is feasible for measuring flow, and k-t SENSE offers sufficient flow visualization; both allow acquisition of 4D Flow MR imaging with shorter scan time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J.
2015-12-01
This work was motivated by the observation, as early as 2008, that GYRO simulations of some ITER operating scenarios exhibited nonlinear zonal-flow generation large enough to effectively quench turbulence inside r /a ~ 0.5. This observation of flow-dominated, low-transport states persisted even as more accurate and comprehensive predictions of ITER profiles were made using the state-of-the-art TGLF transport model. This core stabilization is in stark contrast to GYRO-TGLF comparisons for modern-day tokamaks, for which GYRO and TGLF are typically in very close agreement. So, we began to suspect that TGLF needed to be generalized to include the effect of zonal-flowmore » stabilization in order to be more accurate for the conditions of reactor simulations. While the precise cause of the GYRO-TGLF discrepancy for ITER parameters was not known, it was speculated that closeness to threshold in the absence of driven rotation, as well as electromagnetic stabilization, created conditions more sensitive the self-generated zonal-flow stabilization than in modern tokamaks. Need for nonlinear zonal-flow stabilization: To explore the inclusion of a zonal-flow stabilization mechanism in TGLF, we started with a nominal ITER profile predicted by TGLF, and then performed linear and nonlinear GYRO simulations to characterize the behavior at and slightly above the nominal temperature gradients for finite levels of energy transport. Then, we ran TGLF on these cases to see where the discrepancies were largest. The predicted ITER profiles were indeed near to the TGLF threshold over most of the plasma core in the hybrid discharge studied (weak magnetic shear, q > 1). Scanning temperature gradients above the TGLF power balance values also showed that TGLF overpredicted the electron energy transport in the low-collisionality ITER plasma. At first (in Q3), a model of only the zonal-flow stabilization (Dimits shift) was attempted. Although we were able to construct an ad hoc model of the zonal flows that fit the GYRO simulations, the parameters of the model had to be tuned to each case. A physics basis for the zonal flow model was lacking. Electron energy transport at short wavelength: A secondary issue – the high-k electron energy flux – was initially assumed to be independent of the zonal flow effect. However, detailed studies of the fluctuation spectra from recent multiscale (electron and ion scale) GYRO simulations provided a critical new insight into the role of zonal flows. The multiscale simulations suggested that advection by the zonal flows strongly suppressed electron-scale turbulence. Radial shear of the zonal E×B fluctuation could not compete with the large electron-scale linear growth rate, but the k x-mixing rate of the E×B advection could. This insight led to a preliminary new model for the way zonal flows saturate both electron- and ion-scale turbulence. It was also discovered that the strength of the zonal E×B velocity could be computed from the linear growth rate spectrum. The new saturation model (SAT1), which replaces the original model (SAT0), was fit to the multiscale GYRO simulations as well as the ion-scale GYRO simulations used to calibrate the original SAT0 model. Thus, SAT1 captures the physics of both multiscale electron transport and zonal-flow stabilization. In future work, the SAT1 model will require significant further testing and (expensive) calibration with nonlinear multiscale gyrokinetic simulations over a wider variety of plasma conditions – certainly more than the small set of scans about a single C-Mod L-mode discharge. We believe the SAT1 model holds great promise as a physics-based model of the multiscale turbulent transport in fusion devices. Correction to ITER performance predictions: Finally, the impact of the SAT1model on the ITER hybrid case is mixed. Without the electron-scale contribution to the fluxes, the Dimits shift makes a significant improvement in the predicted fusion power as originally posited. Alas, including the high-k electron transport reduces the improvement, yielding a modest net increase in predicted fusion power compared to the TGLF prediction with the original SAT0 model.« less
NASA Astrophysics Data System (ADS)
Sung, Baeckkyoung; Kim, Min Su; Lee, Byung-Cheon; Yoo, Jung Sun; Lee, Sang-Hee; Kim, Youn-Joong; Kim, Ki-Woo; Soh, Kwang-Sup
2008-02-01
There have been several reports on novel threadlike structures (NTSs) on the surfaces of the internal organs of rats and rabbits since their first observation by Bonghan Kim in 1963. To confirm this novel circulatory function, it is necessary to observe the flow of liquid through the NTS as well as the structurally corroborating channels in the NTS. In this article, we report on the measurement of the flow speed of Alcian blue solution in the NTSs on the organ surfaces of rabbits, and we present electron microscopic images depicting the cribrous cross-section with channels. The speed was measured as 0.3 ± 0.1 mm/s, and the flow distance was up to 12 cm. The flow was unidirectional, and the phase contrast microscopic images showed that the NTSs were strongly stained with Alcian blue. The ultrastructure of the NTSs revealed by cryo-scanning electron microscopy and high-voltage electron microscopy showed that (1) there were cell-like bodies and globular clumps of matter inside the sinus of the channel with thin strands of segregated zones which is a microscopic evidence of the liquid flow, (2) the sinuses have wall structures surrounded with extracellular matrices of collagenous fibers, and (3) there exists a cribriform structure of sinuses. To understand the mechanism for the circulation, a quantitative analysis of the flow speed has been undertaken applying a simplified windkessel model. In this analysis, it was shown that the liquid flow through the NTSs could be due to peristaltic motion of the NTS itself.
Low dose dynamic myocardial CT perfusion using advanced iterative reconstruction
NASA Astrophysics Data System (ADS)
Eck, Brendan L.; Fahmi, Rachid; Fuqua, Christopher; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.
2015-03-01
Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.
Sumithran, Suganya; Sono, Masanori; Raner, Gregory M; Dawson, John H
2012-12-01
Horseradish peroxidase (HRP) catalyzes the oxidative para-dechlorination of the environmental pollutant/carcinogen 2,4,6-trichlorophenol (2,4,6-TCP). A possible mechanism for this reaction is a direct oxygen atom transfer from HRP compound I (HRP I) to trichlorophenol to generate 2,6-dichloro 1,4-benzoquinone, a two-electron transfer process. An alternative mechanism involves two consecutive one-electron transfer steps in which HRP I is reduced to compound II (HRP II) and then to the ferric enzyme as first proposed by Wiese et al. [F.W. Wiese, H.C. Chang, R.V. Lloyd, J.P. Freeman, V.M. Samokyszyn, Arch. Environ. Contam. Toxicol. 34 (1998) 217-222]. To probe the mechanism of oxidative halophenol dehalogenation, the reactions between 2,4,6-TCP and HRP compounds I or II have been investigated under single turnover conditions (i.e., without excess H(2)O(2)) using rapid scan stopped-flow spectroscopy. Addition of 2,4,6-TCP to HRP I leads rapidly to HRP II and then more slowly to the ferric resting state, consistent with a mechanism involving two consecutive one-electron oxidations of the substrate via a phenoxy radical intermediate. HRP II can also directly dechlorinate 2,4,6-TCP as judged by rapid scan stopped-flow and mass spectrometry. This observation is particularly significant since HRP II can only carry out one-electron oxidations. A more detailed understanding of the mechanism of oxidative halophenol dehalogenation will facilitate the use of HRP as a halophenol bioremediation catalyst. Copyright © 2012 Elsevier Inc. All rights reserved.
Biofilm Formation on Reverse Osmosis Membranes Is Initiated and Dominated by Sphingomonas spp.▿ †
Bereschenko, L. A.; Stams, A. J. M.; Euverink, G. J. W.; van Loosdrecht, M. C. M.
2010-01-01
The initial formation and spatiotemporal development of microbial biofilm layers on surfaces of new and clean reverse osmosis (RO) membranes and feed-side spacers were monitored in situ using flow cells placed in parallel with the RO system of a full-scale water treatment plant. The feed water of the RO system had been treated by the sequential application of coagulation, flocculation, sand filtration, ultrafiltration, and cartridge filtration processes. The design of the flow cells permitted the production of permeate under cross-flow conditions similar to those in spiral-wound RO membrane elements of the full-scale system. Membrane autopsies were done after 4, 8, 16, and 32 days of flow-cell operation. A combination of molecular (fluorescence in situ hybridization [FISH], denaturing gradient gel electrophoresis [DGGE], and cloning) and microscopic (field emission scanning electron, epifluorescence, and confocal laser scanning microscopy) techniques was applied to analyze the abundance, composition, architecture, and three-dimensional structure of biofilm communities. The results of the study point out the unique role of Sphingomonas spp. in the initial formation and subsequent maturation of biofilms on the RO membrane and feed-side spacer surfaces. PMID:20190090
NASA Astrophysics Data System (ADS)
Guo, Enyi; McKenzie, David R.
2017-11-01
Electron fluxes crossing the interface between a metallic conductor and an aqueous environment are important in many fields; hydrogen production, environmental scanning tunnelling microscopy, scanning electrochemical microscopy being some of them. Gurney (Gurney 1931 Proc. R. Soc. Lond. 134, 137 (doi:10.1098/rspa.1931.0187)) provided in 1931 a scheme for tunnelling during electrolysis and outlined conditions for it to occur. We measure the low-voltage current flows between gold electrodes in pure water and use the time-dependent behaviour at voltage switch-on and switch-off to evaluate the relative contribution to the steady current arising from tunnelling of electrons between the electrodes and ions in solution and from the neutralization of ions adsorbed onto the electrode surface. We ascribe the larger current contribution to quantum tunnelling of electrons to and from ions in solution near the electrodes. We refine Gurney's barrier scheme to include solvated electron states and quantify energy differences using updated information. We show that Gurney's conditions would prevent the current flow at low voltages we observe but outline how the ideas of Marcus (Marcus 1956 J. Chem. Phys. 24, 966-978 (doi:10.1063/1.1742723)) concerning solvation fluctuations enable the condition to be relaxed. We derive an average barrier tunnelling model and a multiple pathways tunnelling model and compare predictions with measurements of the steady-state current-voltage relation. The tunnelling barrier was found to be wide and low in agreement with other experimental studies. Applications as a biosensing mechanism are discussed that exploit the fast tunnelling pathways along molecules in solution.
NASA Astrophysics Data System (ADS)
Victor, Rodolfo A.; Prodanović, Maša.; Torres-Verdín, Carlos
2017-12-01
We develop a new Monte Carlo-based inversion method for estimating electron density and effective atomic number from 3-D dual-energy computed tomography (CT) core scans. The method accounts for uncertainties in X-ray attenuation coefficients resulting from the polychromatic nature of X-ray beam sources of medical and industrial scanners, in addition to delivering uncertainty estimates of inversion products. Estimation of electron density and effective atomic number from CT core scans enables direct deterministic or statistical correlations with salient rock properties for improved petrophysical evaluation; this condition is specifically important in media such as vuggy carbonates where CT resolution better captures core heterogeneity that dominates fluid flow properties. Verification tests of the inversion method performed on a set of highly heterogeneous carbonate cores yield very good agreement with in situ borehole measurements of density and photoelectric factor.
A parametric study of single-wall carbon nanotube growth by laser ablation
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram; Holmes, William A.; Nikolaev, Pavel; Hadjiev, Victor G.; Scott, Carl D.
2004-01-01
Results of a parametric study of carbon nanotube production by the double-pulse laser oven process are presented. The effect of various operating parameters on the production of single-wall carbon nanotubes (SWCNTs) is estimated by characterizing the nanotube material using analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermo gravimetric analysis and Raman spectroscopy. The study included changing the sequence of the laser pulses, laser energy, pulse separation, type of buffer gas used, operating pressure, flow rate, inner tube diameter, as well as its material, and oven temperature. It was found that the material quality and quantity improve with deviation from normal operation parameters such as laser energy density higher than 1.5 J/cm2, pressure lower than 67 kPa, and flow rates higher than 100 sccm. Use of helium produced mainly small diameter tubes and a lower yield. The diameter of SWCNTs decreases with decreasing oven temperature and lower flow rates.
NASA Technical Reports Server (NTRS)
Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.; Lin, I.-C.; Boynton, W. V.
2000-01-01
Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. In order to characterize these potential phases the Thermal Evolved-Gas Analyzer (TEGA), which was onboard the Mars Polar Lander, was to have performed differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. The sample chamber in TEGA operates at about 100 mbar (approximately 76 torr) with a N2, carrier gas flow of 0.4 seem. Essentially, no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. In support of TEGA, we have constructed a laboratory analog for TEGA from commercial instrumentation. We connected together a commercial differential scanning calorimeter, a quadruple mass spectrometer, a vacuum pump, digital pressure gauge, electronic mass flow meter, gas "K" bottles, gas dryers, and high and low pressure regulators using a collection of shut off and needle valves. Our arrangement allows us to vary and control the pressure and carrier gas flow rate inside the calorimeter oven chamber.
TEMPEST Simulations of Collisionless Damping of Geodesic-Acoustic Mode in Edge Plasma Pedestal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X Q; Xiong, Z; Nevins, W M
The fully nonlinear (full-f) 4D TEMPEST gyrokinetic continuum code produces frequency, collisionless damping of GAM and zonal flow with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon}-scan and the tokamak safety factor q-scan in homogeneous plasmas. The TEMPEST simulation shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude.
TEMPEST Simulations of Collisionless Damping of Geodesic-Acoustic Mode in Edge Plasma Pedestal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X; Xiong, Z; Nevins, W
The fully nonlinear 4D TEMPEST gyrokinetic continuum code produces frequency, collisionless damping of geodesic-acoustic mode (GAM) and zonal flow with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon}-scan and the tokamak safety factor q-scan in homogeneous plasmas. The TEMPEST simulation shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude.
Linking the micro and macro: L-H transition dynamics and threshold physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkov, M. A., E-mail: mmalkov@ucsd.edu; Diamond, P. H.; Miki, K.
2015-03-15
The links between the microscopic dynamics and macroscopic threshold physics of the L → H transition are elucidated. Emphasis is placed on understanding the physics of power threshold scalings, and especially on understanding the minimum in the power threshold as a function of density P{sub thr} (n). By extending a numerical 1D model to evolve both electron and ion temperatures, including collisional coupling, we find that the decrease in P{sub thr} (n) along the low-density branch is due to the combination of an increase in collisional electron-to-ion energy transfer and an increase in the heating fraction coupled to the ions.more » Both processes strengthen the edge diamagnetic electric field needed to lock in the mean electric field shear for the L→H transition. The increase in P{sub thr} (n) along the high-density branch is due to the increase with ion collisionality of damping of turbulence-driven shear flows. Turbulence driven shear flows are needed to trigger the transition by extracting energy from the turbulence. Thus, we identify the critical transition physics components of the separatrix ion heat flux and the zonal flow excitation. The model reveals a power threshold minimum in density scans as a crossover between the threshold decrease supported by an increase in heat fraction received by ions (directly or indirectly, from electrons) and a threshold increase, supported by the rise in shear flow damping. The electron/ion heating mix emerges as important to the transition, in that it, together with electron-ion coupling, regulates the edge diamagnetic electric field shear. The importance of possible collisionless electron-ion heat transfer processes is explained.« less
Size-dependent microstructures in rapidly solidified uranium-niobium powder particles
McKeown, Joseph T.; Hsiung, Luke L.; Park, Jong M.; ...
2016-06-14
The microstructures of rapidly solidified U-6wt%Nb powder particles synthesized by centrifugal atomization were characterized using scanning electron microscopy and transmission electron microscopy. Observed variations in microstructure are related to particle sizes. All of the powder particles exhibited a two-zone microstructure. The formation of this two-zone microstructure is described by a transition from solidification controlled by internal heat flow and high solidification rate during recalescence (micro-segregation-free or partitionless growth) to solidification controlled by external heat flow with slower solidification rates (dendritic growth with solute redistribution). The extent of partitionless solidification increased with decreasing particle size due to larger undercoolings in smallermore » particles prior to solidification. The metastable phases that formed are related to variations in Nb concentration across the particles. Lastly, the microstructures of the powders were heavily twinned.« less
One step synthesis of porous graphene by laser ablation: A new and facile approach
NASA Astrophysics Data System (ADS)
Kazemizadeh, Fatemeh; Malekfar, Rasoul
2018-02-01
Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.
Bn and Si-Doped Bn Coatings on Woven Fabrics
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Scott, John M.; Wheeler, Donald R.; Chayka, Paul V.; Gray, Hugh R. (Technical Monitor)
2002-01-01
A computer controlled, pulsed chemical vapor infiltration (CVI) system has been developed to deposit BN from a liquid borazine (B3N3H6) source, as well as silicon doped BN coatings using borazine and a silicon source, into 2-D woven ceramic fabric preforms. The coating process was evaluated as a function of deposition temperature, pressure, and precursor flow rate. Coatings were characterized by field emission scanning electron microscopy, electron dispersive spectroscopy and Auger spectroscopy. By controlling the reactant feed ratios, Si incorporation could be controlled over the range of 6-24 atomic percent.
Quality Assurance By Laser Scanning And Imaging Techniques
NASA Astrophysics Data System (ADS)
SchmalfuB, Harald J.; Schinner, Karl Ludwig
1989-03-01
Laser scanning systems are well established in the world of fast industrial in-process quality inspection systems. The materials inspected by laser scanning systems are e.g. "endless" sheets of steel, paper, textile, film or foils. The web width varies from 50 mm up to 5000 mm or more. The web speed depends strongly on the production process and can reach several hundred meters per minute. The continuous data flow in one of different channels of the optical receiving system exceeds ten Megapixels/sec. Therefore it is clear that the electronic evaluation system has to process these data streams in real time and no image storage is possible. But sometimes (e.g. first installation of the system, change of the defect classification) it would be very helpful to have the possibility for a visual look on the original, i.e. not processed sensor data. At first we show the principle set up of a standard laser scanning system. Then we will introduce a large image memory especially designed for the needs of high-speed inspection sensors. This image memory co-operates with the standard on-line evaluation electronics and provides therefore an easy comparison between processed and non-processed data. We will discuss the basic system structure and we will show the first industrial results.
NASA Astrophysics Data System (ADS)
Blau, P. J.; Howe, J. Y.; Coffey, D. W.; Trejo, R. M.; Kenik, E. D.; Jolly, B. C.; Yang, N.
2012-08-01
Fine holes in metal alloys are employed for many important technological purposes, including cooling and the precise atomization of liquids. For example, they play an important role in the metering and delivery of fuel to the combustion chambers in energy-efficient, low-emission diesel engines. Electro-discharge machining (EDM) is one process employed to produce such holes. Since the hole shape and bore morphology can affect fluid flow, and holes also represent structural discontinuities in the tips of the spray nozzles, it is important to understand the microstructures adjacent to these holes, the features of the hole walls, and the nanomechanical properties of the material that was in some manner altered by the EDM hole-making process. Several techniques were used to characterize the structure and properties of spray-holes in a commercial injector nozzle. These include scanning electron microscopy, cross sectioning and metallographic etching, bore surface roughness measurements by optical interferometry, scanning electron microscopy, and transmission electron microscopy of recast EDM layers extracted with the help of a focused ion beam.
Laser Measurement Of Convective-Heat-Transfer Coefficient
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.
1994-01-01
Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.
Cytotoxicity of four denture adhesives on human gingival fibroblast cells.
Lee, Yoon; Ahn, Jin-Soo; Yi, Young-Ah; Chung, Shin-Hye; Yoo, Yeon-Jee; Ju, Sung-Won; Hwang, Ji-Yun; Seo, Deog-Gyu
2015-02-01
The purpose of this study was to compare the cytotoxicity of four denture adhesives on human gingival fibroblast cells. Immortalized human gingival fibroblasts were cultured with one of four different denture adhesives, Polident, Protefix, Staydent or Denfix-A, which was placed in insert dishes (10% w/v concentration) for 48 h. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and flow cytometric apoptosis assay were used to evaluate cell viability and apoptosis rates. The fibroblasts were also examined under a scanning electron microscope. The MTT assay showed that all denture adhesives resulted in a significantly lower cell viability compared to the control cells propagated in normal culture medium (p < 0.05), with Staydent demonstrating the lowest cell viability. According to the flow cytometric apoptosis assay, Staydent and Protefix showed significantly higher apoptosis rates than the control group (p < 0.05), whereas Polident and Denfix-A did not demonstrate any significant differences (p > 0.05). Staydent showed the highest apoptosis rate. Scanning electron microscopy showed that the cells of the Staydent group underwent cytoplasmic membrane shrinkage, with cell free areas containing residual fragments of the membrane of dead cells. The four denture adhesives evaluated in this study imparted cytotoxic effects on human gingival fibroblast cells. Staydent showed the highest toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiyama, Takeshi, E-mail: ishiyama@ee.tut.ac.jp; Nakane, Takaya, E-mail: ishiyama@ee.tut.ac.jp; Fujii, Tsutomu, E-mail: ishiyama@ee.tut.ac.jp
Arrays of single-crystal zinc oxide (ZnO) nanowires have been synthesized on silicon substrates by vapor-liquid-solid growth techniques. The effect of growth conditions including substrate temperature and Ar gas flow rate on growth properties of ZnO nanowire arrays were studied. Structural and optical characterization was performed using scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. SEM images of the ZnO nanowire arrays grown at various Ar gas flow rates indicated that the alignment and structural features of ZnO nanowires were affected by the gas flow rate. The PL of the ZnO nanowire arrays exhibited strong ultraviolet (UV) emission at 380 nmmore » and green emission around 510 nm. Moreover, the green emission reduced in Ga-doped sample.« less
Digital Rock Simulation of Flow in Carbonate Samples
NASA Astrophysics Data System (ADS)
Klemin, D.; Andersen, M.
2014-12-01
Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three ranges of wetting properties. The wetting variation affected phase mobility and residual phase saturations for primary oil flood and floods with varying ratios of oil and water.
Single-Molecule Interfacial Electron Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H. Peter
This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static andmore » dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO 2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO 2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO 2 nanoparticle surfaces by using ultrafast single-molecule spectroscopy and electrochemical AFM metal tip scanning microscopy, focusing on understanding the interfacial electron transfer dynamics at specific nanoscale electron transfer sites with high-spatially and temporally resolved topographic-and-spectroscopic characterization at individual molecule basis, characterizing single-molecule rate processes, reaction driving force, and molecule-substrate electronic coupling. One of the most significant characteristics of our new approach is that we are able to interrogate the complex interfacial electron transfer dynamics by actively pin-point energetic manipulation of the surface interaction and electronic couplings, beyond the conventional excitation and observation.« less
Field-Flow Fractionation of Carbon Nanotubes and Related Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
John P. Selegue
During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitoredmore » the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.« less
4D spiral imaging of flows in stenotic phantoms and subjects with aortic stenosis.
Negahdar, M J; Kadbi, Mo; Kendrick, Michael; Stoddard, Marcus F; Amini, Amir A
2016-03-01
The utility of four-dimensional (4D) spiral flow in imaging of stenotic flows in both phantoms and human subjects with aortic stenosis is investigated. The method performs 4D flow acquisitions through a stack of interleaved spiral k-space readouts. Relative to conventional 4D flow, which performs Cartesian readout, the method has reduced echo time. Thus, reduced flow artifacts are observed when imaging high-speed stenotic flows. Four-dimensional spiral flow also provides significant savings in scan times relative to conventional 4D flow. In vitro experiments were performed under both steady and pulsatile flows in a phantom model of severe stenosis (one inch diameter at the inlet, with 87% area reduction at the throat of the stenosis) while imaging a 6-cm axial extent of the phantom, which included the Gaussian-shaped stenotic narrowing. In all cases, gradient strength and slew rate for standard clinical acquisitions, and identical field of view and resolution were used. For low steady flow rates, quantitative and qualitative results showed a similar level of accuracy between 4D spiral flow (echo time [TE] = 2 ms, scan time = 40 s) and conventional 4D flow (TE = 3.6 ms, scan time = 1:01 min). However, in the case of high steady flow rates, 4D spiral flow (TE = 1.57 ms, scan time = 38 s) showed better visualization and accuracy as compared to conventional 4D flow (TE = 3.2 ms, scan time = 51 s). At low pulsatile flow rates, a good agreement was observed between 4D spiral flow (TE = 2 ms, scan time = 10:26 min) and conventional 4D flow (TE = 3.6 ms, scan time = 14:20 min). However, in the case of high flow-rate pulsatile flows, 4D spiral flow (TE = 1.57 ms, scan time = 10:26 min) demonstrated better visualization as compared to conventional 4D flow (TE = 3.2 ms, scan time = 14:20 min). The feasibility of 4D spiral flow was also investigated in five normal volunteers and four subjects with mild-to-moderate aortic stenosis. The approach achieved TE = 1.68 ms and scan time = 3:44 min. The conventional sequence achieved TE = 2.9 ms and scan time = 5:23 min. In subjects with aortic stenosis, we also compared both MRI methods with Doppler ultrasound (US) in the measurement of peak velocity, time to peak systolic velocity, and eject time. Bland-Altman analysis revealed that, when comparing peak velocities, the discrepancy between Doppler US and 4D spiral flow was significantly less than the discrepancy between Doppler and 4D Cartesian flow (2.75 cm/s vs. 10.25 cm/s), whereas the two MR methods were comparable (-5.75 s vs. -6 s) for time to peak. However, for the estimation of eject time, relative to Doppler US, the discrepancy for 4D conventional flow was smaller than that of 4D spiral flow (-16.25 s vs. -20 s). Relative to conventional 4D flow, 4D spiral flow achieves substantial reductions in both the TE and scan times; therefore, utility for it should be sought in a variety of in vivo and complex flow imaging applications. © 2015 Wiley Periodicals, Inc.
Software electron counting for low-dose scanning transmission electron microscopy.
Mittelberger, Andreas; Kramberger, Christian; Meyer, Jannik C
2018-05-01
The performance of the detector is of key importance for low-dose imaging in transmission electron microscopy, and counting every single electron can be considered as the ultimate goal. In scanning transmission electron microscopy, low-dose imaging can be realized by very fast scanning, however, this also introduces artifacts and a loss of resolution in the scan direction. We have developed a software approach to correct for artifacts introduced by fast scans, making use of a scintillator and photomultiplier response that extends over several pixels. The parameters for this correction can be directly extracted from the raw image. Finally, the images can be converted into electron counts. This approach enables low-dose imaging in the scanning transmission electron microscope via high scan speeds while retaining the image quality of artifact-free slower scans. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lempert, Walter R.; Zhang, Boying; Miles, Richard B.; Diskin, Glenn
1991-01-01
The use of an O2:He stimulated Raman cell to generate the Stokes beam for the Raman vibrational pumping step of the RELIEF (Raman Excitation plus Laser-Induced Electronic Fluorescence) flow tagging method is reported. Use of the Raman cell rather than a dye laser provides pump and Stokes beams which are automatically frequency matched and temporally and spatially overlapped. The Nd:YAG pump laser is operated multilongitudinal mode, which eliminates the need for injection seeding, resulting in decreased operation complexity and improved stability with respect to acoustic noise. Results are presented for 1st Stokes conversion efficiency and stimulated Brillouin backscattering loss and are compared to the case of pure O2. Scanning CARS measurements of the Q-branch lineshape for both pure O2 and the O2:He mixture are also presented.
Production of microscale particles from fish bone by gas flow assisted laser ablation
NASA Astrophysics Data System (ADS)
Boutinguiza, M.; Lusquiños, F.; Comesaña, R.; Riveiro, A.; Quintero, F.; Pou, J.
2007-12-01
Recycled wastes from fish and seafood can constitute a source of precursor material for different applications in the biomedical field such as bone fillers or precursor material for bioceramic coatings to improve the osteointegration of metallic implants. In this work, fish bones have been used directly as target in a laser ablation system. A pulsed Nd:YAG laser was used to ablate the fish bone material and a transverse air flow was used to extract the ablated material out of the interaction zone. The particles collected at a filter were in the micro and nanoscale range. The morphology as well as the composition of the obtained particles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results reveal that the composition of the analyzed particles is similar to that of the inorganic part of the fish bone.
Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids.
Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Kim, Hae Koo; Lee, Sang Joon
2010-07-27
X-ray-based imaging is one of the most powerful and convenient methods in terms of versatility in applicable energy and high performance in use. Different from conventional nuclear medicine imaging, contrast agents are required in X-ray imaging especially for effectively targeted and molecularly specific functions. Here, in contrast to much reported static accumulation of the contrast agents in targeted organs, dynamic visualization in a living organism is successfully accomplished by the particle-traced X-ray imaging for the first time. Flow phenomena across perforated end walls of xylem vessels in rice are monitored by a gold nanoparticle (AuNP) (approximately 20 nm in diameter) as a flow tracing sensor working in nontransparent biofluids. AuNPs are surface-modified to control the hydrodynamic properties such as hydrodynamic size (DH), zeta-potential, and surface plasmonic properties in aqueous conditions. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray nanoscopy (XN), and X-ray microscopy (XM) are used to correlate the interparticle interactions with X-ray absorption ability. Cluster formation and X-ray contrast ability of the AuNPs are successfully modulated by controlling the interparticle interactions evaluated as flow-tracing sensors.
NASA Astrophysics Data System (ADS)
Peng, Edwin
In the recent decades, there has been much interest in functionalized surfaces produced by ultrafast laser processing. Using pulse lasers with nanosecond to femtosecond time scale, a wide range of micro/nanoscale structures can be produced on virtually all metal surfaces. These surface structures create special optoelectronic, wetting, and tribological properties with a diverse range of potential applications. The formation mechanisms of these surface structures, especially microscale, mound-like structures, are not fully understood. There has been wide study of ultrafast laser processing of metals. Yet, the proposed formation models present in current literature often lack sufficient experimental verification. Specifically, many studies are limited to surface characterization, e.g. scanning electron microscopy of the surfaces of these micro/nanoscale structures. Valuable insight into the physical processes responsible for formation can be obtained if standard material science characterization methods are performed across the entire mound. In our study, we examined mound-like structures formed on three metal alloys. Using cross section and 3D slice and view operations by a dual beam scanning electron microscope-focused ion beam, the interior microstructures of these mounds are revealed. Taking advantage of amorphous phase formation during laser processing of Ni60Nb40, we verified the fluence-dependent formation model: mounds formed at low fluence are primarily the result of ablation while mounds formed at high fluence are formed by both ablation and rapid resolidification by hydrodynamical fluid flow. For the first time, we revealed the cross section of a wide variety of mound-like structures on titanium surfaces. The increased contribution to mound formation by fluid flow with increasing fluence was observed. Finally, a 3D scanning electron microscopy technique was applied for mounds produced on silver surface by delayed-pulse laser processing. The interior microstructure demonstrated that most of the volume comprised of resolidified silver grains with 1% porosity.
The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms.
Simões, Manuel; Pereira, Maria O; Sillankorva, Sanna; Azeredo, Joana; Vieira, Maria J
2007-01-01
This study investigated the phenotypic characteristics of monoculture P. fluorescens biofilms grown under turbulent and laminar flow, using flow cells reactors with stainless steel substrata. The cellular physiology and the overall biofilm activity, structure and composition were characterized, and compared, within hydrodynamically distinct conditions. The results indicate that turbulent flow-generated biofilm cells were significantly less extensive, with decreased metabolic activity and a lower protein and polysaccharides composition per cell than those from laminar flow-generated biofilms. The effect of flow regime did not cause significantly different outer membrane protein expression. From the analysis of biofilm activity, structure and composition, turbulent flow-generated biofilms were metabolically more active, had twice more mass per cm(2), and higher cellular density and protein content (mainly cellular) than laminar flow-generated biofilms. Conversely, laminar flow-generated biofilms presented higher total and matrix polysaccharide contents. Direct visualisation and scanning electron microscopy analysis showed that these different flows generate structurally different biofilms, corroborating the quantitative results. The combination of applied methods provided useful information regarding a broad spectrum of biofilm parameters, which can contribute to control and model biofilm processes.
Atomic-Scale Control of Electron Transport through Single Molecules
NASA Astrophysics Data System (ADS)
Wang, Y. F.; Kröger, J.; Berndt, R.; Vázquez, H.; Brandbyge, M.; Paulsson, M.
2010-04-01
Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure of the surface electrode. Nonequilibrium Green’s function calculations reproduce the trend of the conductance and visualize the current flow through the junction, which is guided through molecule-electrode chemical bonds.
An EBIC equation for solar cells. [Electron Beam Induced Current
NASA Technical Reports Server (NTRS)
Luke, K. L.; Von Roos, O.
1983-01-01
When an electron beam of a scanning electron microscope (SEM) impinges on an N-P junction, the generation of electron-hole pairs by impact ionization causes a characteristic short circuit current I(sc) to flow. The I(sc), i.e., EBIC (electron beam induced current) depends strongly on the configuration used to investigate the cell's response. In this paper the case where the plane of the junction is perpendicular to the surface is considered. An EBIC equation amenable to numerical computations is derived as a function of cell thickness, source depth, surface recombination velocity, diffusion length, and distance of the junction to the beam-cell interaction point for a cell with an ohmic contact at its back surface. It is shown that the EBIC equation presented here is more general and easier to use than those previously reported. The effects of source depth, ohmic contact, and diffusion length on the normalized EBIC characteristic are discussed.
NASA Astrophysics Data System (ADS)
Kwok, Y. H.; Tsang, Alpha C. H.; Wang, Yifei; Leung, Dennis Y. C.
2017-05-01
Platinum-decorated graphene aerogel as a porous electrode for flow-through direct methanol microfluidic fuel cell is introduced. Ultra-fine platinum nanoparticles with size ranged from diameter 1.5 nm-3 nm are evenly anchored on the graphene nanosheets without agglomeration. The electrode is characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity is confirmed by cyclic voltammetry. The electroactive surface area and catalytic activity of platinum on graphene oxide (Pt/GO) are much larger than commercial platinum on carbon black (Pt/C). A counterflow microfluidic fuel cell is designed for contrasting the cell performance between flow-over type and flow-through type electrodes using Pt/C on carbon paper and Pt/GO, respectively. The Pt/GO electrode shows 358% increment in specific power compared with Pt/C anode. Apart from catalytic activity, the effect of porous electrode conductivity to cell performance is also studied. The conductivity of the porous electrode should be further enhanced to achieve higher cell performance.
NASA Astrophysics Data System (ADS)
Stopa, Michael
2005-03-01
We calculate the electronic structure of GaAs-AlGaAs two-dimensional electron gas (2DEG) devices, such as quantum dots and quantum point contacts (QPCs) in the presence of a tip of a scanning probe microscope at some distance above the surface. The calculation employs standard density functional theory with exchange and correlation treated in the local density approximation. The position and voltage on the tip are varied and the conditions for depletion of the 2DEG are shown to compare favorably to experiment [1]. We show that the size of the depletion region created (by a negative tip voltage) is unexpectedly small due to focusing of the potential lines by the higher dielectric. We study the interaction of the tip with an isolated quantum dot that contains one or two electrons. The raster pattern of the difference between single particle energies reveals that the tip distorts the shape of the confining potential and suggests that excited state properties, if they can be measured experimentally, can contribute to the resolution of spatial information. [1] M.A. Topinka, R.M. Westervelt, E.J. Heller, ``http://meso.deas.harvard.edu/papers/Topinka, PT 56 12 (2003)'' (Imaging Electron Flow), Physics Today 56, 12 (2003).
NASA Astrophysics Data System (ADS)
Paudel, Hari P.; Jung, Yookyung; Raphael, Anthony; Alt, Clemens; Wu, Juwell; Runnels, Judith; Lin, Charles P.
2018-02-01
The present standard of blood cell analysis is an invasive procedure requiring the extraction of patient's blood, followed by ex-vivo analysis using a flow cytometer or a hemocytometer. We are developing a noninvasive optical technique that alleviates the need for blood extraction. For in-vivo blood analysis we need a high speed, high resolution and high contrast label-free imaging technique. In this proceeding report, we reported a label-free method based on differential epi-detection of forward scattered light, a method inspired by Jerome Mertz's oblique back-illumination microscopy (OBM) (Ford et al, Nat. Meth. 9(12) 2012). The differential epi-detection of forward light gives phase contrast image at diffraction-limited resolution. Unlike reflection confocal microscopy (RCM), which detects only sharp refractive index variation and suffers from speckle noise, this technique is suitable for detection of subtle variation of refractive index in biological tissue and it provides the shape and the size of cells. A custom built high speed electronic detection circuit board produces a real-time differential signal which yields image contrast based on phase gradient in the sample. We recorded blood flow in-vivo at 17.2k lines per second in line scan mode, or 30 frames per second (full frame), or 120 frame per second (quarter frame) in frame scan mode. The image contrast and speed of line scan data recording show the potential of the system for noninvasive blood cell analysis.
Lucas, Thabata Coaglio; Tessarolo, Francesco; Jakitsch, Victor; Caola, Iole; Brunori, Giuliano; Nollo, Giandomenico; Huebner, Rudolf
2014-07-01
Although catheters with side holes allow high flow rate during hemodialysis, they also induce flow disturbances and create a critical hemodynamic environment that can favor fibrin deposition and thrombus formation. This study compared the blood flow and analyzed the influence of shear stress and shear rate in fibrin deposition and thrombus formation in nontunneled hemodialysis catheters with unobstructed side holes (unobstructed device) or with some side holes obstructed by blood thrombi (obstructed device). Computational fluid dynamics (CFD) was performed to simulate realistic blood flow under laminar and turbulent conditions. The results from the numerical simulations were compared with the fibrin distribution and thrombus architecture data obtained from scanning electron microscopy (SEM) and two photons laser scanning microscopy (TPLSM) on human thrombus formed in catheters removed from patients. CFD showed that regions of flow eddies and separation were mainly found in the venous holes region. TPLSM characterization of thrombi and fibrin structure in patient samples showed fibrin formations in accordance with simulated flux dynamics. Under laminar flow conditions, the wall shear stress close to border holes increased from 87.3±0.2 Pa in the unobstructed device to 176.2±0.5 Pa in the obstructed one. Under turbulent flow conditions, the shear stress increased by 47% when comparing the obstructed to the unobstructed catheter. The shear rates were generally higher than 5000/s and therefore sufficient to induce fibrin deposition. This findings were supported by SEM data documenting a preferential fibrin arrangement on side hole walls. Copyright © 2013 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Doppler optical coherence tomography of retinal circulation.
Tan, Ou; Wang, Yimin; Konduru, Ranjith K; Zhang, Xinbo; Sadda, SriniVas R; Huang, David
2012-09-18
Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R(2)>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.
Utilization of Additive Manufacturing for Aerospace Heat Exchangers
2016-02-29
is made up of flat plates that are layered on top of each other creating air passages in between the plates where the hot liquid and cold liquid flow...electron beam- based) for two-dimensional scanning of the heat source on the powder layer , stages that decrease the build plate and increase the powder...build plate and result in uneven coating of subsequent powder layers or complete failure of the system to recoat. The perturbations in recoater
Kennedy, Eamonn; Nelson, Edward M; Tanaka, Tetsuya; Damiano, John; Timp, Gregory
2016-02-23
It is now possible to visualize at nanometer resolution the infection of a living biological cell with virus without compromising cell viability using scanning transmission electron microscopy (STEM). To provide contrast while preserving viability, Escherichia coli and P1 bacteriophages were first positively stained with a very low concentration of uranyl acetate in minimal phosphate medium and then imaged with low-dose STEM in a microfluidic liquid flow cell. Under these conditions, it was established that the median lethal dose of electrons required to kill half the tested population was LD50 = 30 e(-)/nm(2), which coincides with the disruption of a wet biological membrane, according to prior reports. Consistent with the lateral resolution and high-contrast signal-to-noise ratio (SNR) inferred from Monte Carlo simulations, images of the E. coli membrane, flagella, and the bacteriophages were acquired with 5 nm resolution, but the cumulative dose exceeded LD50. On the other hand, with a cumulative dose below LD50 (and lower SNR), it was still possible to visualize the infection of E. coli by P1, showing the insertion of viral DNA within 3 s, with 5 nm resolution.
Sabbuba, N A; Stickler, D J; Long, M J; Dong, Z; Short, T D; Feneley, R J C
2005-01-01
We tested whether valve regulated, intermittent flow of urine from catheterized bladders decreases catheter encrustation. Laboratory models of the catheterized bladder were infected with Proteus mirabilis. Urine was allowed to drain continuously through the catheters or regulated by valves to drain intermittently at predetermined intervals. The time that catheters required to become blocked was recorded and encrustation was visualized by scanning electron microscopy. When a manual valve was used to drain urine from the bladder at 2-hour intervals 4 times during the day, catheters required significantly longer to become blocked than those on continuous drainage (mean 62.6 vs 35.9 hours, p = 0.039). A similar 1.7-fold increase occurred when urine was drained at 4-hour intervals 3 times daily. Experiments with an automatic valve in which urine was released at 2 or 4-hour intervals through the day and night also showed a significant increase in mean time to blockage compared with continuous drainage (p = 0.001). Scanning electron microscopy confirmed that crystalline biofilm was less extensive on valve regulated catheters. Valve regulated, intermittent flow of urine through catheters increases the time that catheters require to become blocked with crystalline biofilm. The most beneficial effect was recorded when urine was released from the bladder at 4-hour intervals throughout the day and night by an automatic valve.
Yang, Hongtao; Wang, Cong; Liu, Chaoqiang; Chen, Houwen; Wu, Yifan; Han, Jintao; Jia, Zichang; Lin, Wenjiao; Zhang, Deyuan; Li, Wenting; Yuan, Wei; Guo, Hui; Li, Huafang; Yang, Guangxin; Kong, Deling; Zhu, Donghui; Takashima, Kazuki; Ruan, Liqun; Nie, Jianfeng; Li, Xuan; Zheng, Yufeng
2017-11-01
In the present study, pure zinc stents were implanted into the abdominal aorta of rabbits for 12 months. Multiscale analysis including micro-CT, scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and histological stainings was performed to reveal the fundamental degradation mechanism of the pure zinc stent and its biocompatibility. The pure zinc stent was able to maintain mechanical integrity for 6 months and degraded 41.75 ± 29.72% of stent volume after 12 months implantation. No severe inflammation, platelet aggregation, thrombosis formation or obvious intimal hyperplasia was observed at all time points after implantation. The degradation of the zinc stent played a beneficial role in the artery remodeling and healing process. The evolution of the degradation mechanism of pure zinc stents with time was revealed as follows: Before endothelialization, dynamic blood flow dominated the degradation of pure zinc stent, creating a uniform corrosion mode; After endothelialization, the degradation of pure zinc stent depended on the diffusion of water molecules, hydrophilic solutes and ions which led to localized corrosion. Zinc phosphate generated in blood flow transformed into zinc oxide and small amounts of calcium phosphate during the conversion of degradation microenvironment. The favorable physiological degradation behavior makes zinc a promising candidate for future stent applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Process depending morphology and resulting physical properties of TPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frick, Achim, E-mail: achim.frick@hs-aalen.de; Spadaro, Marcel, E-mail: marcel.spadaro@hs-aalen.de
2015-12-17
Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix ormore » of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.« less
Tan, Yih Horng; Schallom, John R.; Ganesh, N. Vijaya; Fujikawa, Kohki; Demchenko, Alexei V.
2011-01-01
Nanoporous gold (NPG), made by dealloying low carat gold alloys, is a relatively new nanomaterial finding application in catalysis, sensing, and as a support for biomolecules. NPG has attracted considerable interest due to its open bicontinuous structure, high surface-to-volume ratio, tunable porosity, chemical stability and biocompatibility. NPG also has the attractive feature of being able to be modified by self-assembled monolayers. Here we use scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize a highly efficient approach for protein immobilization on NPG using N-hydroxysuccinimide (NHS) ester functionalized self-assembled monolayers on NPG with pore sizes in the range of tens of nanometres. Comparison of coupling under static versus flow conditions suggests that BSA (Bovine Serum Albumin) and IgG (Immunoglobulin G) can only be immobilized onto the interior surfaces of free standing NPG monoliths with good coverage under flow conditions. AFM is used to examine protein coverage on both the exterior and interior of protein modified NPG. Access to the interior surface of NPG for AFM imaging is achieved using a special procedure for cleaving NPG. AFM is also used to examine BSA immobilized on rough gold surfaces as a comparative study. In principle, the general approach described should be applicable to many enzymes, proteins and protein complexes since both pore sizes and functional groups present on the NPG surfaces are controllable. PMID:21750834
NASA Astrophysics Data System (ADS)
1989-01-01
A "NASA Tech Briefs" article describing an inspection tool and technique known as Optically Stimulated Electron Emission (OSEE) led to the formation of Photo Acoustic Technology, Inc. (PAT). PAT produces sensors and scanning systems which assure surface cleanliness prior to bonding, coating, painting, etc. The company's OP1000 series realtime pre-processing detection capability assures 100 percent surface quality testing. The technique involves brief exposure of the inspection surface to ultraviolet radiation. The energy interacts with the surface layer, causing free electrons to be emitted from the surface to be picked up by the detector. When contamination is present, it interferes with the electron flow in proportion to the thickness of the contaminant layer enabling measurement by system signal output. OP1000 systems operate in conventional atmospheres on all types of material and detect both organic and inorganic contamination.
System and method for compressive scanning electron microscopy
Reed, Bryan W
2015-01-13
A scanning transmission electron microscopy (STEM) system is disclosed. The system may make use of an electron beam scanning system configured to generate a plurality of electron beam scans over substantially an entire sample, with each scan varying in electron-illumination intensity over a course of the scan. A signal acquisition system may be used for obtaining at least one of an image, a diffraction pattern, or a spectrum from the scans, the image, diffraction pattern, or spectrum representing only information from at least one of a select subplurality or linear combination of all pixel locations comprising the image. A dataset may be produced from the information. A subsystem may be used for mathematically analyzing the dataset to predict actual information that would have been produced by each pixel location of the image.
The importance of particulate texture to the flow strength of ice + dust
W. B. Durham,; N. Golding,; Stern, Laura A.; A. Pathare,; D. L. Goldsby,; D. Prior,
2015-01-01
Preliminary experimental surveys of the flow of dilute mixtures of ice plus hard particulates under planetary conditions indicate a strengthening effect with respect to pure ice, but with dependencies on environmental conditions (temperature, stress, grain size) that vary widely from study to study [1-4]. With the expectation that the textural character of the particulate fraction (size, shape, spatial distribution of particulates; relationship of particulates to ice grain boundaries, etc.) also influences rheological behavior, we have begun a more systematic investigation of the effect of particulates on strength. We rely extensively on cryogenic scanning electron microscopy (CSEM) and to maximize planetary relevance we focus on behavior at low stress and small grain size.
Live-cell Imaging of Platelet Degranulation and Secretion Under Flow.
Barendrecht, Arjan D; Verhoef, Johan J F; Pignatelli, Silvia; Pasterkamp, Gerard; Heijnen, Harry F G; Maas, Coen
2017-07-10
Blood platelets are essential players in hemostasis, the formation of thrombi to seal vascular breaches. They are also involved in thrombosis, the formation of thrombi that occlude the vasculature and injure organs, with life-threatening consequences. This motivates scientific research on platelet function and the development of methods to track cell-biological processes as they occur under flow conditions. A variety of flow models are available for the study of platelet adhesion and aggregation, two key phenomena in platelet biology. This work describes a method to study real-time platelet degranulation under flow during activation. The method makes use of a flow chamber coupled to a syringe-pump setup that is placed under a wide-field, inverted, LED-based fluorescence microscope. The setup described here allows for the simultaneous excitation of multiple fluorophores that are delivered by fluorescently labeled antibodies or fluorescent dyes. After live-cell imaging experiments, the cover glasses can be further processed and analyzed using static microscopy (i.e., confocal microscopy or scanning electron microscopy).
Yang, Zhanjun; Zong, Chen; Ju, Huangxian; Yan, Feng
2011-11-07
A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using α-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL(-1) and a low detection limit of 0.1 ng mL(-1). The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org
2015-10-15
Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films wasmore » done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.« less
NASA Astrophysics Data System (ADS)
Martín, Gemma; Varea, Aïda; Cirera, Albert; Estradé, Sònia; Peiró, Francesca; Cornet, Albert
2018-07-01
Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder. In order to correlate the applied current with the structural properties of GO, Raman spectroscopy is carried out and data analysis is used to obtain information regarding the reduction grade and the disorder degree of the GO sheets before and after the application of current.
Martín, Gemma; Varea, Aïda; Cirera, Albert; Estradé, Sònia; Peiró, Francesca; Cornet, Albert
2018-04-17
Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder. In order to correlate the applied current with the structural properties of GO, Raman spectroscopy is carried out and data analysis is used to obtain information regarding the reduction grade and the disorder degree of the GO sheets before and after the application of current.
Synchronized voltage contrast display analysis system
NASA Technical Reports Server (NTRS)
Johnston, M. F.; Shumka, A.; Miller, E.; Evans, K. C. (Inventor)
1982-01-01
An apparatus and method for comparing internal voltage potentials of first and second operating electronic components such as large scale integrated circuits (LSI's) in which voltage differentials are visually identified via an appropriate display means are described. More particularly, in a first embodiment of the invention a first and second scanning electron microscope (SEM) are configured to scan a first and second operating electronic component respectively. The scan pattern of the second SEM is synchronized to that of the first SEM so that both simultaneously scan corresponding portions of the two operating electronic components. Video signals from each SEM corresponding to secondary electron signals generated as a result of a primary electron beam intersecting each operating electronic component in accordance with a predetermined scan pattern are provided to a video mixer and color encoder.
Swept Line Electron Beam Annealing of Ion Implanted Semiconductors.
1982-07-01
of my research to the mainstream of technology. The techniques used for beam processing are distinguished by their * ~.* beam source and method by...raster scanned CW lasers (CWL), pulsed ion beams (PI), area pulsed electron beams (PEE), raster scanned (RSEB) or multi - scanned electron beams (MSEB...where high quality or tailored profiles are required. Continuous wave lasers and multi -scanned or swept-line electron beams are the most likely candidates
Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my
2015-07-22
Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Randommore » orientation of fibers was noted in the composites test bars produced from divergent melt flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shuning; Roy, Amitava; Lichtenberg, Henning
The micro-segmented flow technique was applied for continuous synthesis of ZnO micro- and nanoparticles with short residence times of 9.4 s and 21.4 s, respectively. The obtained particles were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Small angle X-ray scattering (SAXS) and photoluminescence spectroscopy were used to determine the size and optical properties of ZnO nanoparticles. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to investigate local structural properties. The EXAFS measurements reveal a larger degree of structural disorder in the nanoparticles than the microparticles. These structural changes should be taken into considerationmore » while evaluating the size-dependent visible emission of ZnO nanoparticles.« less
Scanning Transmission Electron Microscopy | Materials Science | NREL
mode by collecting the EDS and EELS signals point-by-point as one scans the electron probe across the . Examples of Scanning Transmission Electron Microscopy Capabilities Z-contrast image microphoto taken by
Application of environmental scanning electron microscopy to determine biological surface structure.
Kirk, S E; Skepper, J N; Donald, A M
2009-02-01
The use of environmental scanning electron microscopy in biology is growing as more becomes understood about the advantages and limitations of the technique. These are discussed and we include new evidence about the effect of environmental scanning electron microscopy imaging on the viability of mammalian cells. We show that although specimen preparation for high-vacuum scanning electron microscopy introduces some artefacts, there are also challenges in the use of environmental scanning electron microscopy, particularly at higher resolutions. This suggests the two technologies are best used in combination. We have used human monocyte-derived macrophages as a test sample, imaging their complicated and delicate membrane ruffles and protrusions. We have also explored the possibility of using environmental scanning electron microscopy for dynamic experiments, finding that mammalian cells cannot be imaged and kept alive in the environmental scanning electron microscopy. The dehydration step in which the cell surface is exposed causes irreversible damage, probably via loss of membrane integrity during liquid removal in the specimen chamber. Therefore, mammalian cells should be imaged after fixation where possible to protect against damage as a result of chamber conditions.
Kim, S Y; Kim, E J; Kim, D S; Lee, I B
2013-01-01
The aims of this study were to examine changes in dentinal fluid flow (DFF) during the application of a desensitizing agent and to compare the permeability reduction levels among different types of desensitizing agents. A cervical cavity was prepared for the exposure of cervical dentin on an extracted human premolar connected to a subnanoliter fluid flow measuring device under 20 cm of water pressure. The cavity was acid-etched with 32% phosphoric acid to make dentin highly permeable. The different types of desensitizing agents that were applied on the cavity were Seal&Protect as the light-curing adhesive type, SuperSeal and BisBlock as oxalate types, Gluma Desensitizer as the protein-precipitation type, and Bi-Fluoride 12 as the fluoride type. DFF was measured from the time before the application of the desensitizing agent throughout the application procedure to five minutes after the application. The characteristics of dentinal tubule occlusion of each desensitizing agent were examined by scanning electron microscopy. The DFF rate after each desensitizing agent application was significantly reduced when compared to the initial DFF rate before application for all of the desensitizing agents (p<0.05). Seal&Protect showed a greater reduction in the DFF rate when compared to Gluma Desensitizer and Bi-Fluoride 12 (p<0.05). SuperSeal and BisBlock exhibited a greater reduction in DFF rate when compared to Bi-Fluoride 12 (p<0.05). The dentin hypersensitivity treatment effects of the employed desensitizing agents in this study were confirmed through real-time measurements of DFF changes. The light-curing adhesive and oxalate types showed greater reduction in the DFF rate than did the protein-precipitation and fluoride types.
1982 AFOSR Research Meeting on Diagnostics of Reacting Flow, 25-26 February 1982.
1982-02-01
wing of the Na 589.0 nm line is achieved with a piezo-electrically tuned Fabry - Perot interferometer combined with an interference filter. A second...air burner seeded to -0.01% with NaCl. Oscilloscope traces of the detector signal as the Fabry - Perot is scanned over the wavelength range of interest...lamp, SG from the gas and SL+G transmitted from the lamp through the gas. Following electronic demodulation (Fig. Ib) the three signals are used to
2017-06-29
Accurate Virus Quantitation Using a Scanning Transmission Electron Microscopy (STEM) Detector in a Scanning Electron Microscope Candace D Blancett1...L Norris2, Cynthia A Rossi4 , Pamela J Glass3, Mei G Sun1,* 1 Pathology Division, United States Army Medical Research Institute of Infectious...Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Maryland, 21702 2Biostatistics Division, United States Army Medical Research Institute of
Tylko, G; Karasiński, J; Wróblewski, R; Roomans, G M; Kilarski, W M
2000-01-01
Heterogeneity of the elemental content of myogenic C2C12 cultured cells was studied by electron probe X-ray microanalysis (EPXMA) with scanning (SEM EPXMA) and scanning transmission electron microscopy (STEM EPXMA). The best plastic substrate for growing cells was Thermanox. For STEM EPXMA, a Formvar film coated with carbon was found to be suitable substrate. The cells examined by scanning transmission electron microscopy showed great heterogeneity in their elemental content in comparison with the cells examined in the scanning electron microscope despite of an almost identical preparation procedure for EPXMA. Nevertheless the K/Na ratios obtained from both methods of EPXMA were very close (4.1 and 4.3). We conclude that the observed discrepancy in the elemental content obtained by the two methods may be due to differences in instrumentation and this must be taken into account when planning a comparative study.
Influence of lead ions on the macromorphology of electrodeposited zinc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuda, Tetsuaki; Tobias, Charles W.
1981-09-01
The morphology of zinc as it is electrodeposited from acid solutions demonstrates a remarkable imprint of electrolyte flow conditions. The development of macromorphology of zinc deposits has been investigated under galvanostatic conditions on a rotating plantinum disk electrode by use of photomacrography, scanning electron microscopy, electron probe microanalysis and Auger microprobe analysis. Logarithmic spiral markings, which reflect the hydrodynamic flow on a rotating disk, appear in a certain region of current density well below the limiting current density. Morphological observations revealed the major influence of trace lead ions on the amplifications of surface roughness through coalescence and preferred growth ofmore » initial protrusions. Results obtained from ultra-pure electrolyte suggest preferred crystal growth towards well-mixed orientation in the concentration field caused by slight differences in crystallization overpotential. A qualitative model involving a coupling mechanism between the evolving surface roughness and instability phenomena in the boundary layer is advanced to explain the formation of spiral patterns.« less
Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn
2014-03-15
Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electricmore » field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.« less
Physics of the diffusion region in the Magnetospheric Multiscale era
NASA Astrophysics Data System (ADS)
Chen, L. J.; Hesse, M.; Wang, S.; Ergun, R.; Bessho, N.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Gershman, D. J.; Wilson, L. B., III; Dorelli, J.; Pollock, C. J.; Moore, T. E.; Lavraud, B.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y. V.; Le Contel, O.; Avanov, L. A.
2016-12-01
Encounters of reconnection diffusion regions by the Magnetospheric Multiscale (MMS) mission during its first magnetopause scan are studied in combination with theories and simulations. The goal is to understand by first-principles how stored magnetic energy is converted into plasma thermal and bulk flow energies via particle energization, mixing and interaction with waves. The magnetosheath population having much higher density than the magnetospheric plasma is an outstanding narrator for and participant in the magnetospheric part of the diffusion region. For reconnection with negligible guide fields, the accelerated magnetosheath population (for both electrons and ions) is cyclotron turned by the reconnected magnetic field to form outflow jets, and then gyrotropized downstream. Wave fluctuations are reduced in the central electron diffusion region (EDR) and do not dominate the energy conversion there. For an event with a significant guide field to magnetize the electrons, wave fluctuations at the lower hybrid frequency dominate the energy conversion in the EDR, and the fastest electron outflow is established dominantly by a strong perpendicular electric field via the ExB flow in one exhaust and by time-of-flight effects along with parallel electric field acceleration in the other. Whether the above features are common threads to magnetopause reconnection diffusion regions is a question to be further examined.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography
NASA Astrophysics Data System (ADS)
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM).
Schaudinn, C; Carr, G; Gorur, A; Jaramillo, D; Costerton, J W; Webster, P
2009-08-01
Scanning electron microscopy is a useful imaging approach for the visualization of bacterial biofilms in their natural environments including their medical and dental habitats, because it allows for the exploration of large surfaces with excellent resolution of topographic features. Most biofilms in nature, however, are embedded in a thick layer of extracellular matrix that prevents a clear identification of individual bacteria by scanning electron microscopy. The use of confocal laser scanning microscopy on the other hand in combination with fluorescence in situ hybridization enables the visualization of matrix embedded bacteria in multi-layered biofilms. In our study, fluorescence in situ hybridization/confocal laser scanning microscopy and scanning electron microscopy were applied to visualize bacterial biofilm in endodontic root canals. The resulting fluorescence in situ hybridization /confocal laser scanning microscopy and scanning electron microscopy and pictures were subsequently combined into one single image to provide high-resolution information on the location of hidden bacteria. The combined use of scanning electron microscopy and fluorescence in situ hybridization / confocal laser scanning microscopy has the potential to overcome the limits of each single technique.
Multi-modality molecular imaging: pre-clinical laboratory configuration
NASA Astrophysics Data System (ADS)
Wu, Yanjun; Wellen, Jeremy W.; Sarkar, Susanta K.
2006-02-01
In recent years, the prevalence of in vivo molecular imaging applications has rapidly increased. Here we report on the construction of a multi-modality imaging facility in a pharmaceutical setting that is expected to further advance existing capabilities for in vivo imaging of drug distribution and the interaction with their target. The imaging instrumentation in our facility includes a microPET scanner, a four wavelength time-domain optical imaging scanner, a 9.4T/30cm MRI scanner and a SPECT/X-ray CT scanner. An electronics shop and a computer room dedicated to image analysis are additional features of the facility. The layout of the facility was designed with a central animal preparation room surrounded by separate laboratory rooms for each of the major imaging modalities to accommodate the work-flow of simultaneous in vivo imaging experiments. This report will focus on the design of and anticipated applications for our microPET and optical imaging laboratory spaces. Additionally, we will discuss efforts to maximize the daily throughput of animal scans through development of efficient experimental work-flows and the use of multiple animals in a single scanning session.
Effect of annealing time and NH3 flow on GaN films deposited on amorphous SiO2 by MOCVD
NASA Astrophysics Data System (ADS)
Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Xu, Bingshe
2018-05-01
GaN polycrystalline films were successfully grown on amorphous SiO2 by metal-organic chemical vapour deposition to fabricate transferable devices using inorganic films. Field-emission scanning electron microscopy images show that by prolonging the annealing time, re-evaporation is enhanced, which reduced the uniformity of the nucleation layer and GaN films. X-ray diffraction patterns indicate that the decomposition rate of the nucleation layer increases when the annealing flow rate of NH3 is 500 sccm, which makes the unstable plane and amorphous domains decompose rapidly, thereby improving the crystallinity of the GaN films. Photoluminescence spectra also indicate the presence of fewer defects when the annealing flow rate of NH3 is 500 sccm. The excellent crystal structure of the GaN films grown under optimized conditions was revealed by transmission electron microscopy analysis. More importantly, the crystal structure and orientation of GaN grown on SiO2 are the same as that of GaN grown on conventional sapphire substrate when a buffer layer is used. This work can aid in the development of transferable devices using GaN films.
Sparse sampling and reconstruction for electron and scanning probe microscope imaging
Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.
2015-07-28
Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Xu, X. Q.; Yan, Z.; Mckee, G. R.; Grierson, B. A.; Xia, T. Y.; Gao, X.
2018-02-01
A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n = 30 or k_θρ_i˜0.12 . The ion diamagnetic drift and E× B convection flow are balanced when the radial electric field (E r ) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density n_e˜1.5×1019 m-3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40 kHz and 10 kHz respectively. The poloidal wave number k_θ is about 0.2 cm -1 (k_θρ_i˜0.05 ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are ˜3.5-6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. The electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.
Scanning ultrafast electron microscopy.
Yang, Ding-Shyue; Mohammed, Omar F; Zewail, Ahmed H
2010-08-24
Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability.
Bao, Yong; Fan, Jian-Zhong; Li, Ke; Li, Chuan; Yang, Jun-Feng
2008-06-01
To investigate the effect of infrasound therapy on the proliferation, apoptosis and ultrastructure of human B lymphoma Raji cells. Human B lymphoma Raji cells were exposed to infrasound treatment for 15, 30, 60, 90 and 120 min and cultured subsequently for 24 or 48 h. MTT assay, flow cytometry analysis, and electron microscopy were performed to examine the proliferative status, cell apoptosis and ultrastructural changes of the exposed cells, respectively. MTT assay revealed no significant changes in the proliferation of the cells exposed to infrasound treatment (P>0.05), nor did flow cytometry analysis identified significant variation in the cell apoptosis (P>0.05). Scanning electron microscopy, however, identified shortened or reduced cell processes and microvilli on the surface of the cells with infrasound exposure and a subsequent 24-hour culture, and the cell membrane surface became smooth. Under transmission electron microscope, the cells with infrasound treatment presented with significantly reduced microvilli, and the cell nuclei appeared homogeneous, with cytoplasmic budding and losses after a 48-hour culture. Infrasound less than 90 dB does not obviously affect the proliferation and apoptosis of Raji cells, but may directly cause cell ultrastructural changes such as reduction of the cell processes.
Atom Optics for Bose-Einstein Condensates (BEC)
2012-04-25
Electron Micrograph of the Top View of Test Chip A .......................................29 11. A Scanning Electron Micrograph of the Cross...Sectional View of Test Chip A .....................29 12. A Scanning Electron Micrograph of the Top View of Test Chip B...30 13. A Scanning Electron Micrograph of the Cross Sectional View of Test Chip B .....................30 14. Toner Masks for Etching
Comparison of Engine/Inlet Distortion Measurements with MEMS and ESP Pressure Sensors
NASA Technical Reports Server (NTRS)
Soto, Hector L.; Hernandez, Corey D.
2004-01-01
A study of active-flow control in a small-scale boundary layer ingestion inlet was conducted at the NASA Langley Basic Aerodynamic Research Tunnel (BART). Forty MEMS pressure sensors, in a rake style configuration, were used to examine both the mean (DC) and high frequency (AC) components of the total pressure across the inlet/engine interface plane. The mean component was acquired and used to calculate pressure distortion. The AC component was acquired separately, at a high sampling rate, and is used to study the unsteady effects of the active-flow control. An identical total pressure rake, utilizing an Electronically Scanned Pressure (ESP) system, was also used to calculate distortion; a comparison of the results obtained using the two rakes is presented.
Rheological and volumetric properties of TiO2-ethylene glycol nanofluids
2013-01-01
Homogeneous stable suspensions obtained by dispersing dry TiO2 nanoparticles in pure ethylene glycol were prepared and studied. Two types of nanocrystalline structure were analyzed, namely anatase and rutile phases, which have been characterized by scanning electron microscopy. The rheological behavior was determined for both nanofluids at nanoparticle mass concentrations up to 25%, including flow curves and frequency-dependent storage and loss moduli, using a cone-plate rotational rheometer. The effect of temperature over these flow curve tests at the highest concentration was also analyzed from 283.15 to 323.15 K. Furthermore, the influence of temperature, pressure, nanocrystalline structure, and concentration on the volumetric properties, including densities and isobaric thermal expansivities, were also analyzed. PMID:23763850
Failure Analysis of Fractured Poppet from Space Shuttle Orbiter Flow Control Valve
NASA Technical Reports Server (NTRS)
Russell, Richard
2010-01-01
This slide presentation reviews the failure analysis of a fractured poppet from a flow control valve (FCV) used on the space shuttle. This presentation has focused on the laboratory analysis of the failed hardware. The use of Scanning electron fractography during the investigation led to the conclusion that the poppet failed due to fatigue cracking that, most likely, occurred under changing loading conditions. The initial investigation led to a more thorough test of poppets that had been retired, this testing led to the conclusion that the thumbnail cracks in the flight hardware had existed for the life of the shuttle program. This led to a program to develop an eddy current technique that was capable of detecting small very tight cracks.
de Jonge, Niels [Oak Ridge, TN
2010-08-17
A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.
Rat animal model for preclinical testing of microparticle urethral bulking agents.
Mann-Gow, Travis K; Blaivas, Jerry G; King, Benjamin J; El-Ghannam, Ahmed; Knabe, Christine; Lam, Michael K; Kida, Masatoshi; Sikavi, Cameron S; Plante, Mark K; Krhut, Jan; Zvara, Peter
2015-04-01
To develop an economic, practical and readily available animal model for preclinical testing of urethral bulking therapies, as well as to establish feasible experimental methods that allow for complete analysis of hard microparticle bulking agents. Alumina ceramic beads suspended in hyaluronic acid were injected into the proximal urethra of 15 female rats under an operating microscope. We assessed overall lower urinary tract function, bulking material intraurethral integrity and local host tissue response over time. Microphotographs were taken during injection and again 6 months postoperatively, before urethral harvest. Urinary flow rate and voiding frequency were assessed before and after injection. At 6 months, the urethra was removed and embedded in resin. Hard tissue sections were cut using a sawing microtome, and processed for histological analysis using scanning electron microscopy, light microscopy and immunohistochemistry. Microphotographs of the urethra showed complete volume retention of the bulking agent at 6 months. There was no significant difference between average urinary frequency and mean urinary flow rate at 1 and 3 months postinjection as compared with baseline. Scanning electron microscopy proved suitable for evaluation of microparticle size and integrity, as well as local tissue remodeling. Light microscopy and immunohistochemistry allowed for evaluation of an inflammatory host tissue reaction to the bulking agent. The microsurgical injection technique, in vivo physiology and novel hard tissue processing for histology, described in the present study, will allow for future comprehensive preclinical testing of urethral bulking therapy agents containing microparticles made of a hard material. © 2015 The Japanese Urological Association.
NASA Astrophysics Data System (ADS)
Nguy, Amanda
Engineering nanoparticles with desired shape-dependent properties is the key to many applications in nanotechnology. Although many synthetic procedures exist to produce anisotropic gold nanoparticles, the dynamics of growth are typically unknown or hypothetical. In the case of seed-mediated growth in the presence of DNA into anisotropic nanoparticles, it is not known exactly how DNA directs growth into specific morphologies. A series of preliminary experiments were carried out to contribute to the investigation of the possible mechanism of DNA-mediated growth of gold nanoprisms into gold nanostars using liquid cell scanning transmission electron microscopy (STEM). Imaging in the liquid phase was achieved through the use of a liquid cell platform and liquid cell holder that allow the sample to be contained within a âchip sandwichâ between two electron transparent windows. Ex situ growth experiments were performed using Au-T30 NPrisms (30-base thymine oligonucleotide-coated gold nanoprisms) that are expected to grow into gold nanostars. Growth to form these nanostars were imaged using TEM (transmission electron microscopy) and liquid cell STEM (scanning transmission electron microscopy). An attempt to perform in situ growth experiments with the same Au-T30 nanoprisms revealed challenges in obtaining desired morphology results due to the environmental differences within the liquid cell compared to the ex situ environment. Different parameters in the experimental method were explored including fluid line set up, simultaneous and alternating reagent addition, and the effect of different liquid cell volumes to ensure adequate flow of reagents into the liquid cell. Lastly, the binding affinities were compared for T30 and A30 DNA incubated with gold nanoparticles using zeta potential measurements, absorption spectroscopy, and isothermal titration calorimetry (ITC). It was previously reported thymine bases have a lower binding affinity to gold surfaces than adenine bases. However, the results reported here contradict the previously reported data. Future prospectives on this work are outlined.
Investigating the use of in situ liquid cell scanning transmission electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguy, Amanda
2016-02-19
Engineering nanoparticles with desired shape-dependent properties is the key to many applications in nanotechnology. Although many synthetic procedures exist to produce anisotropic gold nanoparticles, the dynamics of growth are typically unknown or hypothetical. In the case of seed-mediated growth in the presence of DNA into anisotropic nanoparticles, it is not known exactly how DNA directs growth into specific morphologies. A series of preliminary experiments were carried out to contribute to the investigation of the possible mechanism of DNA-mediated growth of gold nanoprisms into gold nanostars using liquid cell scanning transmission electron microscopy (STEM). Imaging in the liquid phase was achievedmore » through the use of a liquid cell platform and liquid cell holder that allow the sample to be contained within a “chip sandwich” between two electron transparent windows. Ex situ growth experiments were performed using Au-T30 NPrisms (30-base thymine oligonucleotide-coated gold nanoprisms) that are expected to grow into gold nanostars. Growth to form these nanostars were imaged using TEM (transmission electron microscopy) and liquid cell STEM (scanning transmission electron microscopy). An attempt to perform in situ growth experiments with the same Au-T30 nanoprisms revealed challenges in obtaining desired morphology results due to the environmental differences within the liquid cell compared to the ex situ environment. Different parameters in the experimental method were explored including fluid line set up, simultaneous and alternating reagent addition, and the effect of different liquid cell volumes to ensure adequate flow of reagents into the liquid cell. Lastly, the binding affinities were compared for T30 and A30 DNA incubated with gold nanoparticles using zeta potential measurements, absorption spectroscopy, and isothermal titration calorimetry (ITC). It was previously reported thymine bases have a lower binding affinity to gold surfaces than adenine bases. However, the results reported here contradict the previously reported data. Future prospectives on this work are outlined.« less
Applications of optically detected MRI for enhanced contrast and penetration in metal
NASA Astrophysics Data System (ADS)
Ruangchaithaweesuk, Songtham; Yu, Dindi S.; Garcia, Nissa C.; Yao, Li; Xu, Shoujun
2012-10-01
We report quantitative measurements using optically detected magnetic resonance imaging (MRI) for enhanced pH contrast and flow inside porous metals. Using a gadolinium chelate as the pH contrast agent, we show the response is 0.6 s-1 mM-1 per pH unit at the ambient magnetic field for the pH range 6-8.5. A stopped flow scheme was used to directly measure T1 relaxation time to determine the relaxivity. Flow profiles and images were obtained for a series of porous metals with different average pore sizes. The signal amplitudes and spatial distributions were compared. A clogged region in one of the samples was revealed using optically detected MRI but not optical imaging or scanning electron microscopy. These applications will significantly broaden the impact of optically detected MRI in chemical imaging and materials research.
Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum
NASA Astrophysics Data System (ADS)
Calligaro, T.; Dran, J.-C.; Ioannidou, E.; Moignard, B.; Pichon, L.; Salomon, J.
2000-03-01
The external beam line of our facility has been recently equipped with the focusing system previously mounted on a classical nuclear microprobe. When using a 0.1 μm thick Si 3N 4 foil for the exit window and flowing helium on the sample under analysis, a beam spot as small as 10 μm is attainable at a distance of 3 mm from the window. Elemental micromapping is performed by mechanical scanning. An electronic device has been designed which allows XY scanning by moving the sample under the beam by steps down to 0.1 μm. Beam monitoring is carried out by means of the weak X-ray signal emitted by the exit foil and detected by a specially designed Si(Li) detector cooled by Peltier effect. The characteristics of external beams of protons and alpha particles are evaluated by means of resonance scanning and elemental mapping of a grid. An example of application is presented, dealing with elemental micro-mapping of inclusions in gemstones.
Impact of ZnO embedded feed spacer on biofilm development in membrane systems.
Ronen, Avner; Semiat, Raphael; Dosoretz, Carlos G
2013-11-01
The concept of suppressing biofouling formation using an antibacterial feed spacer was investigated in a bench scale-cross flow system mimicking a spiral wound membrane configuration. An antibacterial composite spacer containing zinc oxide-nanoparticles was constructed by modification of a commercial polypropylene feed spacer using sonochemical deposition. The ability of the modified spacers to repress biofilm development on membranes was evaluated in flow-through cells simulating the flow conditions in commercial spiral wound modules. The experiments were performed at laminar flow (Re = 300) with a 200 kDa molecular weight cut off polysulfone ultrafiltration membrane using Pseudomonas putida S-12 as model biofilm bacteria. The modified spacers reduced permeate flux decrease at least by 50% compared to the unmodified spacers (control). The physical properties of the modified spacer and biofilm development were evaluated using high resolution/energy dispersive spectrometry-scanning electron microscopy, atomic force microscopy and confocal laser scanning microscopy imaging (HRSEM, EDS, AFM and CLSM). HRSEM images depicted significantly less bacteria attached to the membranes exposed to the modified spacer, mainly scattered and in a sporadic monolayer structure. AFM analysis indicated the influence of the modification on the spacer surface including a phase change on the upper surface. Dead-live staining assay by CLSM indicated that most of the bacterial cells attached on the membranes exposed to the modified spacer were dead in contrast to a developed biofilm which was predominant in the control samples. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, H. S.; Choi, H. J., E-mail: hjchoi@inha.ac.kr
2015-05-07
Octahedral-shaped Fe{sub 3}O{sub 4} nanoparticles were synthesized in the presence of 1,3-diaminopropane using a hydrothermal method and assessed as a potential magnetorheological (MR) material. Their morphology, crystal structure, and magnetic properties were examined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometry, respectively. The MR characteristics of the octahedral-shaped, Fe{sub 3}O{sub 4} nanoparticle-based MR particles when dispersed in silicone oil with a 10 vol. % particle concentration were examined using a rotational rheometer under an external magnetic field. The resulting MR fluids exhibited a Bingham-like behavior with a distinctive yield stress from their flow curves.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-03-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. (c) 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Waktola, Selam; Bieberle, Andre; Barthel, Frank; Bieberle, Martina; Hampel, Uwe; Grudzień, Krzysztof; Babout, Laurent
2018-04-01
In most industrial products, granular materials are often required to flow under gravity in various kinds of silo shapes and usually through an outlet in the bottom. There are several interrelated parameters which affect the flow, such as internal friction, bulk and packing density, hopper geometry, and material type. Due to the low-spatial resolution of electrical capacitance tomography or scanning speed limitation of standard X-ray CT systems, it is extremely challenging to measure the flow velocity and possible centrifugal effects of granular materials flow effectively. However, ROFEX (ROssendorf Fast Electron beam X-ray tomography) opens new avenues of granular flow investigation due to its very high temporal resolution. This paper aims to track particle movements and evaluate the local grain velocity during silo discharging process in the case of mass flow. The study has considered the use of the Seramis material, which can also serve as a type of tracer particles after impregnation, due to its porous nature. The presented novel image processing and analysis approach allows satisfyingly measuring individual particle velocities but also tracking their lateral movement and three-dimensional rotations.
NASA Astrophysics Data System (ADS)
Burganos, Vasilis N.; Skouras, Eugene D.; Kalarakis, Alexandros N.
2017-10-01
The lattice-Boltzmann (LB) method is used in this work to reproduce the controlled addition of binder and hydrophobicity-promoting agents, like polytetrafluoroethylene (PTFE), into gas diffusion layers (GDLs) and to predict flow permeabilities in the through- and in-plane directions. The present simulator manages to reproduce spreading of binder and hydrophobic additives, sequentially, into the neat fibrous layer using a two-phase flow model. Gas flow simulation is achieved by the same code, sidestepping the need for a post-processing flow code and avoiding the usual input/output and data interface problems that arise in other techniques. Compression effects on flow anisotropy of the impregnated GDL are also studied. The permeability predictions for different compression levels and for different binder or PTFE loadings are found to compare well with experimental data for commercial GDL products and with computational fluid dynamics (CFD) predictions. Alternatively, the PTFE-impregnated structure is reproduced from Scanning Electron Microscopy (SEM) images using an independent, purely geometrical approach. A comparison of the two approaches is made regarding their adequacy to reproduce correctly the main structural features of the GDL and to predict anisotropic flow permeabilities at different volume fractions of binder and hydrophobic additives.
Prostate: techniques, results, and potential applications of color Doppler US scanning.
Rifkin, M D; Sudakoff, G S; Alexander, A A
1993-02-01
Color Doppler ultrasound (US) scanning and conventional endorectal gray-scale US of the prostate were performed in 619 patients. Pathologic correlation was available in all cases after US-guided transrectal biopsy. There were 132 cancers in 121 men, 13 foci of atypia in 10 men, 33 foci of inflammation in 31 men, and 469 benign lesions in 457 men. Two hundred seventy patients with abnormal areas of flow identified at color Doppler scanning also underwent spectral waveform analysis of the area of potential concern. No statistical difference in the mean resistive indexes was identified in any patient (P = .25; Scheffe F test, analysis of variance). All malignant lesions had abnormalities demonstrated at gray-scale US and/or focal or diffuse abnormal flow demonstrated at color Doppler scanning. Of the 132 cancers, 123 (93%) had corresponding gray-scale abnormalities and 114 (86%) demonstrated abnormal flow at color Doppler imaging. Nine of the 132 cancers (7%) had no obviously identifiable abnormality at gray-scale scanning but had distinctly abnormal flow at color Doppler scanning. Abnormal findings at color scanning without abnormal findings at gray-scale scanning occurred in eight of the 33 cases of inflammatory foci (24%) and in 24 of the 469 (5%) benign lesions.
Li, Sining; Zhao, Yaping
2017-01-01
Nanoparticles have attracted more and more attention in the medicinal field. Zein is a biomacromolecule and can be used as a carrier for delivering active ingredients to prepare controlled release drugs. In this article, we presented the preparation of zein nanoparticles by solution-enhanced dispersion by supercritical CO 2 (SEDS) approach. Scanning electron microscopy and transmission electron microscopy were applied to characterize the size and morphology of the obtained particles. The nozzle structure and the CO 2 flow rate greatly affected the morphology and the size of the particles. The size of zein was able to be reduced to 50-350 nm according to the different conditions. The morphologies of the resultant zein were either sphere or the filament network consisted of nanoparticles. The influence of the nozzle structure and the CO 2 flow rate on the velocity field was elucidated by using computational fluid dynamics. The nozzle structure and the CO 2 flow rate greatly affected the distribution of the velocity field. However, a similar velocity field could also be obtained when the nozzle structure or the CO 2 flow rate, or both were different. Therefore, the influence of the nozzle structure and the CO 2 flow rate on the size and morphology of the particles, can boil down to the velocity field. The results demonstrated that the velocity field can be a potential criterion for producing nanoparticles with controllable morphology and size, which is useful to scale-up the SEDS process.
Electronic noise in CT detectors: Impact on image noise and artifacts.
Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H
2013-10-01
The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.
Scanning ultrafast electron microscopy
Yang, Ding-Shyue; Mohammed, Omar F.; Zewail, Ahmed H.
2010-01-01
Progress has been made in the development of four-dimensional ultrafast electron microscopy, which enables space-time imaging of structural dynamics in the condensed phase. In ultrafast electron microscopy, the electrons are accelerated, typically to 200 keV, and the microscope operates in the transmission mode. Here, we report the development of scanning ultrafast electron microscopy using a field-emission-source configuration. Scanning of pulses is made in the single-electron mode, for which the pulse contains at most one or a few electrons, thus achieving imaging without the space-charge effect between electrons, and still in ten(s) of seconds. For imaging, the secondary electrons from surface structures are detected, as demonstrated here for material surfaces and biological specimens. By recording backscattered electrons, diffraction patterns from single crystals were also obtained. Scanning pulsed-electron microscopy with the acquired spatiotemporal resolutions, and its efficient heat-dissipation feature, is now poised to provide in situ 4D imaging and with environmental capability. PMID:20696933
Nanoscale electron transport at the surface of a topological insulator.
Bauer, Sebastian; Bobisch, Christian A
2016-04-21
The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.
Nanoscale electron transport at the surface of a topological insulator
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Bobisch, Christian A.
2016-04-01
The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.
Miyai, K; Abraham, J L; Linthicum, D S; Wagner, R M
1976-10-01
Several methods of tissue preparation and different modes of operation of the scanning electron microscope were used to study the ultrastructure of rat liver. Rat livers were perfusion fixed with buffered 2 per cent paraformaldehyde or a mixture of 1.5 per cent paraformaldehyde and 1 per cent glutaraldehyde and processed as follows. Tissue blocks were postfixed in buffered 2 per cent osmium tetroxide followed sequentially by the ligand-mediated osmium binding technique, dehydration and cryofracture in ethanol, and critical point drying. They were then examined without metal coating in the scanning electron microscope operating in the secondary electron and backscattered electron modes. Fifty-micrometer sections were cut with a tissue sectioner, stained with lead citrate, postfixed with osmium, dehydrated, critical point dried, and examined in the secondary electron and back-scattered electron modes. Frozen sections (0.25 to 0.75 mum. thick) were cut by the method of Tokuyasu (Toluyasu KT: J Cell Biol 57:551, 1973) and their scanning transmission electron microscope images were examined either with a scanning transmission electron microscope detector or with a conversion stub using the secondary electron detector. Secondary electron images of the liver prepared by ligand-mediated osmium binding and subsequent cryofracture revealed such intracellular structures as cisternae of the endoplasmic reticulum, lysosomes, mitochondria, lipid droplets, nucleolus and nuclear chromatin, as well as the usual surface morphology, Lipocytes in the perisinusoidal space were readily identified. Backscattered electron images. Unembedded frozen sections had little drying artifact and were virtually free of freezing damage. The scanning transmission electron microscope image revealed those organelles visualized by the secondary electron mode in the ligand-mediated osmium binding-treated tissue.
Lead electrowinning in a fluoborate medium. Use of hydrogen diffusion anodes
NASA Astrophysics Data System (ADS)
Expósito, E.; González-García, J.; Bonete, P.; Montiel, V.; Aldaz, A.
The results of an investigation of the electrowinning of lead employing a fluoboric acid bath are reported. The electrodeposition lead reaction was studied by voltammetric methods and scanning electron microscopy (SEM) microphotographs of the electrodeposited lead were taken. The effects of current density, temperature, catholyte flow and H + concentration were investigated on a laboratory scale to optimise operating conditions. Finally, the substitution of the traditionally used Dimensionally Stable Anode (DSA) by a Hydrogen Diffusion Electrode (HDE) was made in order to decrease the energy consumption (EC) of the overall process.
NASA Astrophysics Data System (ADS)
Guo, Hongxuan; Gao, Jianhua; Ishida, Nobuyuki; Xu, Mingsheng; Fujita, Daisuke
2014-01-01
Characterization of the structural and physical properties of two-dimensional (2D) materials, such as layer number and inelastic mean free path measurements, is very important to optimize their synthesis and application. In this study, we characterize the layer number and morphology of hexagonal boron nitride (h-BN) nanosheets on a metallic substrate using field emission scanning electron microscopy (FE-SEM) and scanning helium ion microscopy (HIM). Using scanning beams of various energies, we could analyze the dependence of the intensities of secondary electrons on the thickness of the h-BN nanosheets. Based on the interaction between the scanning particles (electrons and helium ions) and h-BN nanosheets, we deduced an exponential relationship between the intensities of secondary electrons and number of layers of h-BN. With the attenuation factor of the exponential formula, we calculate the inelastic mean free path of electrons and helium ions in the h-BN nanosheets. Our results show that HIM is more sensitive and consistent than FE-SEM for characterizing the number of layers and morphology of 2D materials.
Electron beams scanning: A novel method
NASA Astrophysics Data System (ADS)
Askarbioki, M.; Zarandi, M. B.; Khakshournia, S.; Shirmardi, S. P.; Sharifian, M.
2018-06-01
In this research, a spatial electron beam scanning is reported. There are various methods for ion and electron beam scanning. The best known of these methods is the wire scanning wherein the parameters of beam are measured by one or more conductive wires. This article suggests a novel method for e-beam scanning without the previous errors of old wire scanning. In this method, the techniques of atomic physics are applied so that a knife edge has a scanner role and the wires have detector roles. It will determine the 2D e-beam profile readily when the positions of the scanner and detectors are specified.
Suga, Hiroshi; Sumiya, Touru; Furuta, Shigeo; Ueki, Ryuichi; Miyazawa, Yosuke; Nishijima, Takuya; Fujita, Jun-ichi; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa
2012-10-24
A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces.
Nishiyama, Hidetoshi; Suga, Mitsuo; Ogura, Toshihiko; Maruyama, Yuusuke; Koizumi, Mitsuru; Mio, Kazuhiro; Kitamura, Shinichi; Sato, Chikara
2010-11-01
Direct observation of subcellular structures and their characterization is essential for understanding their physiological functions. To observe them in open environment, we have developed an inverted scanning electron microscope with a detachable, open-culture dish, capable of 8 nm resolution, and combined with a fluorescence microscope quasi-simultaneously observing the same area from the top. For scanning electron microscopy from the bottom, a silicon nitride film window in the base of the dish maintains a vacuum between electron gun and open sample dish while allowing electrons to pass through. Electrons are backscattered from the sample and captured by a detector under the dish. Cells cultured on the open dish can be externally manipulated under optical microscopy, fixed, and observed using scanning electron microscopy. Once fine structures have been revealed by scanning electron microscopy, their component proteins may be identified by comparison with separately prepared fluorescence-labeled optical microscopic images of the candidate proteins, with their heavy-metal-labeled or stained ASEM images. Furthermore, cell nuclei in a tissue block stained with platinum-blue were successfully observed without thin-sectioning, which suggests the applicability of this inverted scanning electron microscope to cancer diagnosis. This microscope visualizes mesoscopic-scale structures, and is also applicable to non-bioscience fields including polymer chemistry. Copyright © 2010 Elsevier Inc. All rights reserved.
A new apparatus for electron tomography in the scanning electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morandi, V., E-mail: morandi@bo.imm.cnr.it; Maccagnani, P.; Masini, L.
2015-06-23
The three-dimensional reconstruction of a microscopic specimen has been obtained by applying the tomographic algorithm to a set of images acquired in a Scanning Electron Microscope. This result was achieved starting from a series of projections obtained by stepwise rotating the sample under the beam raster. The Scanning Electron Microscope was operated in the scanning-transmission imaging mode, where the intensity of the transmitted electron beam is a monotonic function of the local mass-density and thickness of the specimen. The detection strategy has been implemented and tailored in order to maintain the projection requirement over the large tilt range, as requiredmore » by the tomographic workflow. A Si-based electron detector and an eucentric-rotation specimen holder have been specifically developed for the purpose.« less
Subsurface examination of a foliar biofilm using scanning electron- and focused-ion-beam microscopy
USDA-ARS?s Scientific Manuscript database
The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB is capable of removing small cross sections to view the subsurface features and may be s...
Nguyen, Kayla X; Holtz, Megan E; Richmond-Decker, Justin; Muller, David A
2016-08-01
A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope's objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Kayla X.; Holtz, Megan E.; Richmond-Decker, Justin
2016-07-25
Abstract A long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Montemore » Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens andin situchemical and electrochemical processes.« less
NASA Astrophysics Data System (ADS)
Mirzazadeh, Hoda; Lashanizadegan, Maryam
2018-05-01
Magnetic Fe3O4/ZnO-CdO/reduced graphene oxide (MFZC/RGO) has been synthesized by simple hydrothermal method. The structure and morphology were investigated by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), Diffuse reflectance spectroscopy (DRS), Vibrating sample magnetometer (VSM), Raman and Fourier-transform infrared spectroscopy (FTIR). MFZC/RGO was applied as catalyst in degradation of methylene blue (MB), rhodamin B (RhB) and methylorange (MO) under ultrasonic irradiation. Based on the results, excellent degradation efficiencies of MB, RhB and MO (>99%) were achieved within 10, 20 and 20 min, respectively under oxygen flow. Moreover the catalytic property of MFZC/RGO was investigated in oxidation of styrene, α-methyl styrene, cyclohexene and cyclooctene under oxygen flow. In addition, MFZC/RGO can be easily collected and separated by an external magnet. The catalyst displayed negligible loss in activity and selectivity within several successive runs due to super paramagnetism.
Corrosion of RoHS-Compliant Surface Finishes in Corrosive Mixed Flowing Gas Environments
NASA Astrophysics Data System (ADS)
Hannigan, K.; Reid, M.; Collins, M. N.; Dalton, E.; Xu, C.; Wright, B.; Demirkan, K.; Opila, R. L.; Reents, W. D.; Franey, J. P.; Fleming, D. A.; Punch, J.
2012-03-01
Recently, the corrosion resistance of printed wiring board (PWB) finishes has generated considerable interest due to field failures observed in various parts of the world. This study investigates the corrosion issues associated with the different lead-free PWB surface finishes. Corrosion products on various PWB surface finishes generated in mixed flowing gas (MFG) environments were studied, and analysis techniques such as scanning electron microscopy, energy-dispersive x-ray, x-ray diffraction, focused ion beam, and scanning Auger microscopy were used to quantify the corrosion layer thickness and determine the composition of corrosion products. The corrosion on organic solderability preservative samples shows similar corrosion products to bare copper and is mainly due to direct attack of copper traces by corrosive gases. The corrosion on electroless nickel immersion gold occurs primarily through the porosity in the film and is accelerated by the galvanic potential between gold and copper; similar results were observed on immersion silver. Immersion tin shows excellent corrosion resistance due to its inherent corrosion resistance in the MFG environment as well as the opposite galvanic potential between tin and copper compared with gold or silver and copper.
Supercritical fluids crystallization of budesonide and flunisolide.
Velaga, Sitaram P; Berger, Rolf; Carlfors, Johan
2002-10-01
Budesonide and flunisolide anhydrate were crystallized using the solution enhanced dispersion by supercritical fluids (SEDS) technique. The aim was to investigate the possibility of preparing different pure polymorphs. 0.25% w/v solutions of each drug were prepared from acetone and methanol. Operating conditions were 40-80 degrees C and 80-200 bars. The flow rate of drug solution was 0.3 mL/min and that of CO2 was 9-25 mL/min. Sample characterizations included differential scanning calorimetry, X-ray powder diffraction, variable temperature X-ray diffraction, scanning electron microscopy, and solubility studies. The particle morphology of budesonide was dependent on the nature of the solvent. SEDS processing of flunisolide with acetone at 100 bars resulted in the formation of polymorphic mixtures at 80 degrees C and a new polymorph III at 60 C and 40 degrees C. With methanol at 100 bars another new polymorph IV was formed with different particle morphology at 80 degrees C and a polymorphic mixture at 60 degrees C. Using the SEDS, microparticles of crystalline budesonide were prepared and new polymorphs of flunisolide were produced. Particle characteristics were controlled by the temperature, pressure and relative flow rates of drug solution and CO2.
NASA Technical Reports Server (NTRS)
Ware, Jacqueline; Hammond, Ernest C., Jr.
1989-01-01
The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.
Gandhi, Sumeet; Oh, Byung-Taek; Schnoor, Jerald L; Alvarez, Pedro J J
2002-04-01
Flow-through aquifer columns packed with a middle layer of granular iron (Fe0) were used to study the applicability and limitations of bio-enhanced Fe0 barriers for the treatment of contaminant mixtures in groundwater. Concentration profiles along the columns showed extensive degradation of hexavalent chromium Cr(VI), nitrate, sulfate, and trichloroethene (TCE), mainly in the Fe0 layer. One column was bioaugmented with Shevanella algae BRY, an iron-reducing bacterium that could enhance Fe0 reactivity by reductive dissolution of passivating iron oxides. This strain did not enhance Cr(VI), which was rapidly reduced by iron, leaving little room for improvement by microbial participation. Nevertheless, BRY-enhanced nitrate removal (from 15% to 80%), partly because this strain has a wide range of electron acceptors, including nitrate. Sulfate was removed (55%) only in a column that was bioaugmented with a mixed culture containing sulfate-reducing bacteria. Apparently, these bacteria used H2 (produced by Fe0 corrosion) as electron donor to respire sulfate. Most of the TCE was degraded in the zone containing Fe0 (50-70%), and bioaugmentation with BRY slightly increased the removal efficiency to about 80%. Microbial colonization of the Fe0 surface was confirmed by scanning electron microscopy.
Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran
2017-09-13
Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.
U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.
2016-10-01
The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.
U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.
2016-03-30
The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.
Yang, Wei; Fu, Juan; Yu, Miao; Huang, Qingde; Wang, Di; Xu, Jiqu; Deng, Qianchun; Yao, Ping; Huang, Fenghong; Liu, Liegang
2012-07-08
The erythrocyte membrane lesion is a serious diabetic complication. A number of studies suggested that n-3 fatty acid could reduce lipid peroxidation and elevate α- or γ-tocopherol contents in membrane of erythrocytes. However, evidence regarding the protective effects of flaxseed oil, a natural product rich in n-3 fatty acid, on lipid peroxidation, antioxidative capacity and membrane deformation of erythrocytes exposed to high glucose is limited. Human peripheral blood erythrocytes were isolated and treated with 50 mM glucose to mimic hyperglycemia in the absence or presence of three different doses of flaxseed oil (50, 100 or 200 μM) in the culture medium for 24 h. The malondialdehyde (MDA) and L-glutathione (GSH) were measured by HPLC and LC/MS respectively. The phospholipids symmetry and membrane fatty acid composition of human erythrocytes were detected by flow cytometry and gas chromatograph (GC). The morphology of human erythrocyte was illuminated by ultra scanning electron microscopy. Flaxseed oil attenuated hyperglycemia-induced increase of MDA and decrease of GSH in human erythrocytes. Human erythrocytes treated with flaxseed oil contained higher C22:5 and C22:6 than those in the 50 mM glucose control group, indicating that flaxseed oil could reduce lipid asymmetric distribution and membrane perturbation. The ultra scanning electron microscopy and flow cytometer have also indicated that flaxseed oil could protect the membrane of human erythrocytes from deformation at high glucose level. The flaxseed oil supplementation may prevent lipid peroxidation and membrane dysfunction of human erythrocytes in hyperglycemia.
Chun, P W; Brumbaugh, E E; Shiremann, R B
1986-12-31
Based on data from sedimentation velocity experiments, electrophoresis, electron microscopy, cellular uptake studies, scanning molecular sieve chromatography using a quasi-three-dimensional data display and flow performance liquid chromatography (FPLC), models for the interaction of human serum low density lipoprotein (LDL) and of apolipoprotein B (apo B) with a ternary lipid microemulsion (ME) are proposed. The initial step in the interaction of LDL (Stokes radius 110 A) with the ternary microemulsion (Stokes radius 270 A) appears to be attachment of the LDL to emulsion particles. This attachment is followed by a very slow fusion into particles having a radius of approx. 280 A. Sonication of this mixture yields large aggregates. Electron micrographs of deoxycholate-solubilized apo B indicate an arrangement of apo B resembling strings of beads. During incubation, these particles also attach to the ternary microemulsion particles and, upon sonication, spherical particles result which resemble native LDL particles in size. Scanning chromatography corroborates the electron microscopy results. By appropriate choice of display angles in a quasi-three-dimensional display of the scanning data (corrected for gel apparent absorbance) taken at equal time intervals during passage of a sample through the column, changes in molecular radius of less than 10 A can be detected visually. Such a display gives a quantitative estimate of 101 +/- 2 A for these particles (compared to 110 A for native LDL). The LDL-ME particles and apo B-ME particles compete efficiently with native LDL for cellular binding and uptake. Cellular association studies indicate that both LDL- and apo B-ME particles are effective vehicles for lipid delivery into cells.
Haberland, Ulrike; Klotz, Ernst; Abolmaali, Nasreddin
2010-07-01
Perfusion computed tomography is increasingly being used in diagnostic radiology. Axial coverage of the traditional approach is limited to the width of the detector. Using continuous periodic table movement coverage can be increased beyond this limit. In this study, we compared tissue flow values determined from scans with a periodic spiral implementation with variable pitch with ones determined from standard dynamic scan modes. A flow phantom (preserved porcine kidney) was scanned with 2 settings of a periodic spiral (Adaptive 4D Spiral) with a range of 100 and 148 mm and a temporal sampling of 1.5 seconds. Additionally, the whole phantom was scanned with the standard dynamic mode (detector width 38.4 mm, temporal sampling 1.0 seconds) at various overlapping positions as a reference. Scan parameters (80 kV, 140 mAs, 40s scan time) were selected similar to a typical brain perfusion study. All scans were repeated 5 times. Tissue flow was calculated with a dedicated deconvolution algorithm. In a center slice and 3 additional slices at various off center positions flow values were recorded in a total of 126 regions of interest (ROI). Reproducibility was determined from the variation of the repeat scans. Agreement between periodic spirals and standard mode was determined by Bland Altman plots and correlation analysis. The reproducibility of the tissue flow determination ranged from 2.7 to 4.4 mL/100 mL/min and was similar for all scan modes. The coefficient of variation ranged from 3.9% to 6.1%. Mean tissue flow in the 126 ROIs ranged from 35 to 121 mL/100 mL/min. There was excellent correlation between both periodic spiral ranges and the standard dynamic mode with a Pearson correlation coefficient of r = 0.97. The regression slope (intercept 0) for the 100 mm range was 1.01, for the 148 mm range it was 0.97. The absolute differences per ROI varied between 1.5 and 4.1 mL/100 mL/min, the relative differences between 1.9% and 6.5%. Differences did not depend on the slice location. Periodic spiral scan modes with variable pitch and a sampling rate of 1.5 seconds can be used for the quantitative determination of tissue flow. Their performance is equivalent to equidistant sampling with standard dynamic scan modes. The ranges of 100 and 148 mm investigated allow coverage of the whole brain or an entire organ for perfusion imaging.
Kamphuis, Vivian P; Westenberg, Jos J M; van der Palen, Roel L F; van den Boogaard, Pieter J; van der Geest, Rob J; de Roos, Albert; Blom, Nico A; Roest, Arno A W; Elbaz, Mohammed S M
2018-01-05
The aim of the current study was to assess the scan-rescan reproducibility of left ventricular (LV) kinetic energy (KE), viscous energy loss (EL) and vorticity during diastole from four-dimensional flow magnetic resonance imaging (4D flow MRI) in healthy subjects. Twelve volunteers (age 27 ± 3 years) underwent whole-heart 4D flow MRI twice in one session. In-scan consistency was evaluated by correlation between KE and EL. EL index was computed to measure the amount of EL relative to KE over diastole. Scan-rescan analysis was performed to test reproducibility of volumetric measurements of KE, EL, EL index and vorticity in the LV over early (E) and late (A) diastolic filling. In-scan consistency between KE and EL was strong-excellent (E-filling scan1: r = 0.92, P < 0.001; scan2: ρ = 0.96, P < 0.001 and A-filling scan1: ρ = 0.87, P < 0.001; scan2: r = 0.99, P < 0.001). For the majority of subjects (10 out of 12), KE and EL measures showed good to strong reproducibility. However, with a wide range of agreement [intraclass correlation (ICC): 0.64-0.95] and coefficients of variation (CV) ≤ 25%. EL index showed strong reproducibility for all 12 subjects with a strong ICC (0.94, P < 0.001) and a CV of 9%. Scan-rescan reproducibility of volumetric vorticity showed good-excellent ICCs (0.83-0.95) with CVs ≤ 11%. In conclusion, the current study shows strong-excellent in-scan consistency and overall good agreement between scans for 4D flow MRI assessment of left ventricular kinetic energy, energy loss and vorticity over diastole. However, substantial differences between the scans were also found in some parameters in two out of twelve subjects. Strong reproducibility was found in the dimensionless EL index , which measures the amount of viscous energy loss relative to the average kinetic energy over diastole.
Size Effects on Deformation and Fracture of Scandium Deuteride Films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teresi, C. S.; Hintsala, E.; Adams, David P.
Metal hydride films have been observed to crack during production and use, prompting mechanical property studies of scandium deuteride films. The following focuses on elastic modulus, fracture, and size effects observed in the system for future film mechanical behavior modeling efforts. Scandium deuteride films were produced through the deuterium charging of electron beam evaporated scandium films using X-ray diffraction, scanning Auger microscopy, and electron backscatter diffraction to monitor changes in the films before and after charging. Scanning electron microscopy, nanoindentation, and focused ion beam machined micropillar compression tests were used for mechanical characterization of the scandium deuteride films. The micropillarsmore » showed a size effect for flow stress, indicating that film thickness is a relevant tuning parameter for film performance, and that fracture was controlled by the presence of grain boundaries. Elastic modulus was determined by both micropillar compression and nanoindentation to be approximately 150 GPa, Fracture studies of bulk film channel cracking as well as compression induced cracks in some of the pillars yielded a fracture toughness around 1.0 MPa-m1/2. Preliminary Weibull distributions of fracture in the micropillars are provided. Despite this relatively low value of fracture toughness, scandium deuteride micropillars can undergo a large degree of plasticity in small volumes and can harden to some degree, demonstrating the ductile and brittle nature of this material« less
Novel porous CuO microrods: synthesis, characterization, and their photocatalysis property
NASA Astrophysics Data System (ADS)
Huang, Jiarui; Fu, Guijun; Shi, Chengcheng; Wang, Xinyue; Zhai, Muheng; Gu, Cuiping
2014-09-01
Porous copper oxide microrods have been synthesized via calcining copper glycinate monohydrate microrod precursor which was prepared in mild conditions without any template or additive. Several techniques, such as X-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller (BET) N2 adsorption-desorption analyses, were used to characterize the structure and morphology of the products. Scanning electron microscopy (SEM) analyses show that the precursor consists of a large quantity of uniform rod-like micro/nanostructures with typical lengths in the range of 25-40 μm and diameters in the range of 0.1-0.35 μm. The microrod-like precursors transformed into porous microrod products after calcination at 450 °C in flow air for 2 h. The BET surface area of the porous CuO microrods was calculated to be 8.5 m² g-1. In addition, the obtained porous CuO microrods were used as catalysts to photodegrade rhodamine B (RhB), methyl orange, methylene blue, eosin B, and p-nitrophenol. Compared with commercial CuO powders, the as-prepared porous CuO microrods exhibit superior properties on photocatalytic decomposition of RhB due to their porous hierarchical structures.
Polliack, Aaron; Tadmor, Tamar
2011-06-01
This short review deals with the ultrastructural surface architecture of hairy cell leukemia (HCL) compared to other leukemic cells, as seen by scanning electron microscopy (SEM). The development of improved techniques for preparing blood cells for SEM in the 1970s readily enabled these features to be visualized more accurately. This review returns us to the earlier history of SEM, when the surface topography of normal and neoplastic cells was visualized and reported for the first time, in an era before the emergence and use of monoclonal antibodies and flow cytometry, now used routinely to define cells by their immunophenotype. Surface microvilli are characteristic for normal and leukemic lymphoid cells, myelo-monocytic cells lack microvilli and show surface ruffles, while leukemic plasma and myeloma cells and megakaryocytes display large surface blebs. HCL cell surfaces are complex and typically 'hybrid' in nature, displaying both lymphoid and monocytic features with florid ruffles of varying sizes interspersed with clumps of short microvilli cytoplasm. The surface features of other leukemic cells and photomicrographs of immuno-SEM labeling of cells employing antibodies and colloidal gold, reported more than 20 years ago, are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ophus, Colin; Ciston, Jim; Nelson, Chris T.
Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method.
Ophus, Colin; Ciston, Jim; Nelson, Chris T.
2015-12-10
Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method.
Li, Sining; Zhao, Yaping
2017-01-01
Nanoparticles have attracted more and more attention in the medicinal field. Zein is a biomacromolecule and can be used as a carrier for delivering active ingredients to prepare controlled release drugs. In this article, we presented the preparation of zein nanoparticles by solution-enhanced dispersion by supercritical CO2 (SEDS) approach. Scanning electron microscopy and transmission electron microscopy were applied to characterize the size and morphology of the obtained particles. The nozzle structure and the CO2 flow rate greatly affected the morphology and the size of the particles. The size of zein was able to be reduced to 50–350 nm according to the different conditions. The morphologies of the resultant zein were either sphere or the filament network consisted of nanoparticles. The influence of the nozzle structure and the CO2 flow rate on the velocity field was elucidated by using computational fluid dynamics. The nozzle structure and the CO2 flow rate greatly affected the distribution of the velocity field. However, a similar velocity field could also be obtained when the nozzle structure or the CO2 flow rate, or both were different. Therefore, the influence of the nozzle structure and the CO2 flow rate on the size and morphology of the particles, can boil down to the velocity field. The results demonstrated that the velocity field can be a potential criterion for producing nanoparticles with controllable morphology and size, which is useful to scale-up the SEDS process. PMID:28496324
Non Destructive Analysis of Fsw Welds using Ultrasonic Signal Analysis
NASA Astrophysics Data System (ADS)
Pavan Kumar, T.; Prabhakar Reddy, P.
2017-08-01
Friction Stir Welding is an evolving metal joining technique and is mostly used in joining materials which cannot be easily joined by other available welding techniques. It is a technique which can be used for welding dissimilar materials also. The strength of the weld joint is determined by the way in which these material are mixing with each other, since we are not using any filler material for the welding process the intermixing has a significant importance. The complication with the friction stir welding process is that there are many process parameters which effect this intermixing process such as tool geometry, rotating speed of the tool, transverse speed etc., In this study an attempt is made to compare the material flow and weld quality of various weldments by changing the parameters. Ultrasonic signal Analysis is used to characterize the microstructure of the weldments. use of ultrasonic waves is a non destructive, accurate and fast way of characterization of microstructure. In this method the relationship between the ultrasonic measured parameters and microstructures are evaluated using background echo and backscattered signal process techniques. The ultrasonic velocity and attenuation measurements are dependent on the elastic modulus and any change in the microstructure is reflected in the ultrasonic velocity. An insight into material flow is essential to determine the quality of the weld. Hence an attempt is made in this study to know the relationship between tool geometry and the pattern of material flow and resulting weld quality the experiments are conducted to weld dissimilar aluminum alloys and the weldments are characterized using and ultra Sonic signal processing. Characterization is also done using Scanning Electron Microscopy. It is observed that there is a good correlation between the ultrasonic signal processing results and Scanning Electron Microscopy on the observed precipitates. Tensile tests and hardness tests are conducted on the weldments and compared for determining the weld quality.
High-resolution, high-throughput imaging with a multibeam scanning electron microscope
EBERLE, AL; MIKULA, S; SCHALEK, R; LICHTMAN, J; TATE, ML KNOTHE; ZEIDLER, D
2015-01-01
Electron–electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. Lay Description The composition of our world and our bodies on the very small scale has always fascinated people, making them search for ways to make this visible to the human eye. Where light microscopes reach their resolution limit at a certain magnification, electron microscopes can go beyond. But their capability of visualizing extremely small features comes at the cost of a very small field of view. Some of the questions researchers seek to answer today deal with the ultrafine structure of brains, bones or computer chips. Capturing these objects with electron microscopes takes a lot of time – maybe even exceeding the time span of a human being – or new tools that do the job much faster. A new type of scanning electron microscope scans with 61 electron beams in parallel, acquiring 61 adjacent images of the sample at the same time a conventional scanning electron microscope captures one of these images. In principle, the multibeam scanning electron microscope’s field of view is 61 times larger and therefore coverage of the sample surface can be accomplished in less time. This enables researchers to think about large-scale projects, for example in the rather new field of connectomics. A very good introduction to imaging a brain at nanometre resolution can be found within course material from Harvard University on http://www.mcb80x.org/# as featured media entitled ‘connectomics’. PMID:25627873
Engel, A; Plöger, M; Mulac, D; Langer, K
2014-01-30
Nanoparticles composed of poly(DL-lactide-co-glycolide) (PLGA) represent promising colloidal drug carriers for improved drug targeting. Although most research activities are focused on intravenous application of these carriers the peroral administration is described to improve bioavailability of poorly soluble drugs. Based on these insights the manuscript describes a model tablet formulation for PLGA-nanoparticles and especially its analytical characterisation with regard to a nanosized drug carrier. Besides physico-chemical tablet characterisation according to pharmacopoeias the main goal of the study was the development of a suitable analytical method for the quantification of nanoparticle release from tablets. An analytical flow field-flow fractionation (AF4) method was established and validated which enables determination of nanoparticle content in solid dosage forms as well as quantification of particle release during dissolution testing. For particle detection a multi-angle light scattering (MALS) detector was coupled to the AF4-system. After dissolution testing, the presence of unaltered PLGA-nanoparticles was successfully proved by dynamic light scattering and scanning electron microscopy. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Xu; Liu, Xinkun; Li, Haizhu; Zhang, Angran; Huang, Mingju
2017-03-01
High-quality vanadium oxide ( VO2) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO2 has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO2 thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm.
High-resolution scanning precession electron diffraction: Alignment and spatial resolution.
Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A
2017-03-01
Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.
The application of scanning electron microscopy to fractography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, C.R.; McGill, B.L.
1994-10-01
Many failures involve fracture, and determination of the fracture process is a key factor in understanding the failure. This is frequently accomplished by characterizing the topography of the fracture surface. Scanning electron microscopy has a prominent role in fractography due to three features of the scanning electron microscope (SEM): high resolution, great depth of field, and the ability to obtain chemical information via analysis of the X-rays generated by the electrons. A qualitative treatment is presented of the interaction of electrons with a sample and the effect of the SEM operating parameters on image formation, quality, and X-ray analysis. Fractographsmore » are presented to illustrate these features of scanning electron microscopy and to illustrate the limitations and precautions in obtaining fractographs and x-ray analyses. The review is concluded with examples of fracture surface features of metallic, ceramic, and polymeric materials.« less
Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar
2018-04-01
Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.
Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří
2016-05-01
This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert
2015-01-01
The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Parametric Study of Carbon Nanotube Production by Laser Ablation Process
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram; Nikolaev, Pavel; Holmes, William; Hadjiev, Victor; Scott, Carl
2002-01-01
Carbon nanotubes form a new class of nanomaterials that are presumed to have extraordinary mechanical, electrical and thermal properties. The single wall nanotubes (SWNTs) are estimated to be 100 times stronger than steel with 1/6th the weight; electrical carrying capacity better than copper and thermal conductivity better than diamond. Applications of these SWNTs include possible weight reduction of aerospace structures, multifunctional materials, nanosensors and nanoelectronics. Double pulsed laser vaporization process produces SWNTs with the highest percentage of nanotubes in the output material. The normal operating conditions include a green laser pulse closely followed by an infrared laser pulse. Lasers ab late a metal-containing graphite target located in a flow tube maintained in an oven at 1473K with argon flow of 100 sccm at a 500 Torr pressure. In the present work a number of production runs were carried out, changing one operating condition at a time. We have studied the effects of nine parameters, including the sequencing of the laser pulses, pulse separation times, laser energy densities, the type of buffer gas used, oven temperature, operating pressure, flow rate and inner flow tube diameters. All runs were done using the same graphite target. The collected nanotube material was characterized by a variety of analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and thermo gravimetric analysis (TGA). Results indicate trends that could be used to optimize the process and increase the efficiency of the production process.
Munir, Hira; Shahid, Muhammad; Anjum, Fozia; Mudgil, Deepak
2016-03-01
Dalbergia sissoo gum was purified by ethanol precipitation. The purified gum was modified and hydrolyzed. Gum was modified by performing polyacrylamide grafting and carboxymethylation methods. The hydrolysis was carried out by using mannanase, barium hydroxide and trifluoroacetic acid. The modified and hydrolyzed gums were characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The decrease in viscosity was studied by performing the flow test. The modified and hydrolyzed gums were thermally stable as compared to crude gum. There was increase in crystallinity after modification and hydrolysis, determined through XRD. FTIR analysis exhibits no major transformation of functional group, only there was change in the intensity of transmittance. It is concluded that the modified and hydrolyzed gum can be used for pharmaceutical and food industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Y. M.; Xu, X. Q.; Yan, Z.; ...
2018-01-05
A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n=30 ormore » $$k_\\theta\\rho_i\\sim0.12$$ . The ion diamagnetic drift and $$E\\times B$$ convection flow are balanced when the radial electric field (E r) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density $$n_e\\sim1.5\\times10^{19}$$ m -3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40kHz and 10 kHz respectively. The poloidal wave number $$k_\\theta$$ is about 0.2 cm -1 ($$k_\\theta\\rho_i\\sim0.05$$ ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are~3.5–6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. In conclusion, the electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y. M.; Xu, X. Q.; Yan, Z.
A six-field two-fluid model has been used to simulate density fluctuations. The equilibrium is generated by experimental measurements for both Deuterium (D) and Hydrogen (H) plasmas at the lowest densities of DIII-D low to high confinement (L-H) transition experiments. In linear simulations, the unstable modes are found to be resistive ballooning modes with the most unstable mode number n=30 ormore » $$k_\\theta\\rho_i\\sim0.12$$ . The ion diamagnetic drift and $$E\\times B$$ convection flow are balanced when the radial electric field (E r) is calculated from the pressure profile without net flow. The curvature drift plays an important role in this stage. Two poloidally counter propagating modes are found in the nonlinear simulation of the D plasma at electron density $$n_e\\sim1.5\\times10^{19}$$ m -3 near the separatrix while a single ion mode is found in the H plasma at the similar lower density, which are consistent with the experimental results measured by the beam emission spectroscopy (BES) diagnostic on the DIII-D tokamak. The frequency of the electron modes and the ion modes are about 40kHz and 10 kHz respectively. The poloidal wave number $$k_\\theta$$ is about 0.2 cm -1 ($$k_\\theta\\rho_i\\sim0.05$$ ) for both ion and electron modes. The particle flux, ion and electron heat fluxes are~3.5–6 times larger for the H plasma than the D plasma, which makes it harder to achieve H-mode for the same heating power. The change of the atomic mass number A from 2 to 1 using D plasma equilibrium make little difference on the flux. Increase the electric field will suppress the density fluctuation. In conclusion, the electric field scan and ion mass scan results show that the dual-mode results primarily from differences in the profiles rather than the ion mass.« less
Quality Improvement of Chrome-Diamond Coatings on Flowing Chrome Plating
NASA Astrophysics Data System (ADS)
Belyaev, V. N.; Koslyuk, A. Yu; Lobunets, A. V.; Andreyev, A. S.
2016-04-01
The research results of the process of flowing chrome plating of internal surfaces of long-length cylindrical articles with the usage of electrolyte with ultra-dispersed diamonds when continuous article rotation, while chromium-plating, are presented. During experiments the following varying technological parameters: electrolyte temperature and article frequency rotation were chosen, and experimental samples were obtained. Estimation of porosity, micro-hardness, thickness of chrome coatings and uniformity were performed as well as the precipitation structure by the method of scanning electron microscopy. The results showed that the use of ultra-dispersed diamonds and realization of the scheme with rotation of detail-cathode when flowing chromium-plating allows one to increase servicing characteristics of the coating due to the decrease of grains size of chrome coating and porosity, and due to the increase of micro-hardness, so confirming the efficiency of using the suggested scheme of coating application and the given type of ultra-dispersed fillers when chromium-plating.
Shear-thickening behavior of Fe-ZSM5 zeolite slurry and its removal with alumina/boehmites
NASA Astrophysics Data System (ADS)
Liu, Xiao-guang; Li, Yan; Xue, Wen-dong; Sun, Jia-lin; Tang, Qian
2018-06-01
A cryogenic scanning electron microscopy (cryo-SEM) technique was used to explore the shear-thickening behavior of Fe-ZSM5 zeolite pastes and to discover its underlying mechanism. Bare Fe-ZSM5 zeolite samples were found to contain agglomerations, which may break the flow of the pastes and cause shear-thickening behaviors. However, the shear-thickening behaviors can be eliminated by the addition of halloysite and various boehmites because of improved particle packing. Furthermore, compared with pure Fe-ZSM5 zeolite samples and its composite samples with halloysite, the samples with boehmite (Pural SB or Disperal) additions exhibited network structures in their cryo-SEM images; these structures could facilitate the storage and release of flow water, smooth paste flow, and avoid shear-thickening. By contrast, another boehmite (Versal 250) formed agglomerations rather than network structures after being added to the Fe-ZSM5 zeolite paste and resulted in shear-thickening behavior. Consequently, the results suggest that these network structures play key roles in eliminating the shear-thickening behavior.
NASA Astrophysics Data System (ADS)
Luo, Haibo; Teng, Jie; Chen, Shuang; Wang, Yu; Zhang, Hui
2017-10-01
Hot compression tests of 8009Al alloy reinforced with 15% SiC particles (8009Al/15%SiCp composites) prepared by powder metallurgy (direct hot extrusion methods) were performed on Gleeble-3500 system in the temperature range of 400-550 °C and strain rate range of 0.001-1 s-1. The processing map based on the dynamic material model was established to evaluate the flow instability regime and optimize processing parameters; the associated microstructural changes were studied by the observations of optical metallographic and scanning electron microscopy. The results showed that the flow stress increased initially and reached a plateau after peak stress value with increasing strain. The peak stress increased as the strain rate increased and deformation temperature decreased. The optimum parameters were identified to be deformation temperature range of 500-550 °C and strain rate range of 0.001-0.02 s-1 by combining the processing map with microstructural observation.
Varghese, Arthur; Datta, Shouvik
2012-05-01
We explore nanoscale hydrodynamical effects on synthesis and self-assembly of cadmium sulfide nanotubes oriented along one direction. These nanotubes are synthesized by horizontal capillary flow of two different chemical reagents from opposite directions through nanochannels of porous anodic alumina which are used primarily as nanoreactors. We show that uneven flow of different chemical precursors is responsible for directionally asymmetric growth of these nanotubes. On the basis of structural observations using scanning electron microscopy, we argue that chemohydrodynamic convective interfacial instability of multicomponent liquid-liquid reactive interface is necessary for sustained nucleation of these CdS nanotubes at the edges of these porous nanochannels over several hours. However, our estimates clearly suggest that classical hydrodynamics cannot account for the occurrence of such instabilities at these small length scales. Therefore, we present a case which necessitates further investigation and understanding of chemohydrodynamic fluid flow through nanoconfined channels in order to explain the occurrence of such interfacial instabilities at nanometer length scales.
New developments in electron microscopy for serial image acquisition of neuronal profiles.
Kubota, Yoshiyuki
2015-02-01
Recent developments in electron microscopy largely automate the continuous acquisition of serial electron micrographs (EMGs), previously achieved by laborious manual serial ultrathin sectioning using an ultramicrotome and ultrastructural image capture process with transmission electron microscopy. The new systems cut thin sections and capture serial EMGs automatically, allowing for acquisition of large data sets in a reasonably short time. The new methods are focused ion beam/scanning electron microscopy, ultramicrotome/serial block-face scanning electron microscopy, automated tape-collection ultramicrotome/scanning electron microscopy and transmission electron microscope camera array. In this review, their positive and negative aspects are discussed. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Thermal oxidation and nitridation of Si nanowalls prepared by metal assisted chemical etching
NASA Astrophysics Data System (ADS)
Behera, Anil K.; Viswanath, R. N.; Lakshmanan, C.; Polaki, S. R.; Sarguna, R. M.; Mathews, Tom
2018-04-01
Silicon nanowalls with controlled orientation have been prepared using metal assisted chemical etching process. Thermal oxidation and nitridation processes have been carried out on the prepared silicon nanowalls under a control flow of oxygen/nitrogen gases independently at 1050°C for 900s. The morphology and structural properties of the as-prepared, oxidized and nitridated silicon nanowalls have been studied using the scanning electron microscopy and the Grazing incident X-ray diffraction techniques. The results obtained from the analysis of X-ray diffraction patterns and the microscopy images are discussed.
Studies of erosion of solar max samples of Kapton and Teflon
NASA Technical Reports Server (NTRS)
Fristrom, R. M.; Benson, R. C.; Bargeron, C. B.; Phillips, T. E.; Vest, C. E.; Hoshall, C. H.; Satkiewicz, F. G.; Uy, O. M.
1985-01-01
Several samples of Kapton and Teflon which was exposed to solar radiation were examined. The samples represent material behavior in near Earth space. Clues to the identity of erosive processes and the responsible species were searched for. Interest centered around oxygen atoms which are ubiquitous at these altitudes and are known to erode some metal surfaces. Three diagnostic methods were employed: optical microscopy, scanning electron microscopy, and fourier transform infrared spectroscopy. Two types of simulation were used: a flow containing low energy oxygen atoms and bombardment with 3000 volt Ar ions. Results and conclusions are presented.
Tobin, R S; Dutka, B J
1977-01-01
A comparative study was made of nine commonly used membrane filters from five manufacturers, all recommended for enumeration of coliform bacteria. Bacterial recoveries and flow rates were examined from three types of water and were found to correlate with the surface pore structure determined by scanning electron microscopy. The sorption of metals was also determined. The results of these studies indicate that the five best membranes for fecal coliform recovery could be placed in two groups: Millipore HC and Gelman, followed by Johns-Manville SG and AG and Sartorius 13806. Images PMID:329763
Synthesis of carbon nanofibers by catalytic CVD of chlorobenzene over bulk nickel alloy
NASA Astrophysics Data System (ADS)
Kenzhin, Roman M.; Bauman, Yuri I.; Volodin, Alexander M.; Mishakov, Ilya V.; Vedyagin, Aleksey A.
2018-01-01
Catalytic chemical vapor deposition (CCVD) of chlorobenzene over bulk nickel alloy (nichrome) was studied. The bulk Ni-containing samples being exposed to a contact with aggressive reaction medium undergo self-disintegration followed by growth of carbon nanofibers. This process, also known as a metal dusting, requires the simultaneous presence of chlorine and hydrogen sources in the reaction mixture. Molecule of chlorobenzene complies with these requirements. The experiments on CCVD were performed in a flow-through reactor system. The initial stages of nickel disintegration process were investigated in a closed system under Autogenic Pressure at Elevated Temperature (RAPET) conditions. Scanning and transmission electron microscopies and ferromagnetic resonance spectroscopy were applied to examine the samples after their interaction with chlorobenzene. Introduction of additional hydrogen into the flow-through system was shown to affect the morphology of grown carbon nanofibers.
Gill, Arran M; Hinde, Christopher S; Leary, Rowan K; Potter, Matthew E; Jouve, Andrea; Wells, Peter P; Midgley, Paul A; Thomas, John M; Raja, Robert
2016-03-08
Highly active and selective aerobic oxidation of KA-oil to cyclohexanone (precursor for adipic acid and ɛ-caprolactam) has been achieved in high yields using continuous-flow chemistry by utilizing uncapped noble-metal (Au, Pt & Pd) nanoparticle catalysts. These are prepared using a one-step in situ methodology, within three-dimensional porous molecular architectures, to afford robust heterogeneous catalysts. Detailed spectroscopic characterization of the nature of the active sites at the molecular level, coupled with aberration-corrected scanning transmission electron microscopy, reveals that the synthetic methodology and associated activation procedures play a vital role in regulating the morphology, shape and size of the metal nanoparticles. These active centers have a profound influence on the activation of molecular oxygen for selective catalytic oxidations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.
2017-03-01
Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.
Sang, Xiahan; Lupini, Andrew R; Ding, Jilai; Kalinin, Sergei V; Jesse, Stephen; Unocic, Raymond R
2017-03-08
Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. "Archimedean" spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.
Shameli, Seyed Mostafa; Glawdel, Tomasz; Ren, Carolyn L
2015-03-01
Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient. Developing an effective separation system based on the scanning counter-flow nonlinear gradient electrofocusing technique usually requires extensive experimental and numerical efforts, which can be reduced significantly with the help of analytical models for design optimization and guiding experimental studies. Therefore, this study focuses on developing an analytical model to evaluate the separation performance of scanning counter-flow bilinear gradient electrofocusing methods. In particular, this model allows a bilinear gradient and a scanning rate to be optimized for the desired separation performance. The results based on this model indicate that any bilinear gradient provides a higher separation resolution (up to 100%) compared to the linear case. This model is validated by numerical studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Peterson, Gary; Abeytunge, Sanjeewa; Eastman, Zachary; Rajadhyaksha, Milind
2012-02-01
Reflectance confocal microscopy with a line scanning approach potentially offers a smaller, simpler and less expensive approach than traditional methods of point scanning for imaging in living tissues. With one moving mechanical element (galvanometric scanner), a linear array detector and off-the-shelf optics, we designed a compact (102x102x76mm) line scanning confocal reflectance microscope (LSCRM) for imaging human tissues in vivo in a clinical setting. Custom-designed electronics, based on field programmable gate array (FPGA) logic has been developed. With 405 nm illumination and a custom objective lens of numerical aperture 0.5, lateral resolution was measured to be 0.8 um (calculated 0.64 um). The calculated optical sectioning is 3.2 um. Preliminary imaging shows nuclear and cellular detail in human skin and oral epithelium in vivo. Blood flow is also visualized in the deeper connective tissue (lamina propria) in oral mucosa. Since a line is confocal only in one dimension (parallel) but not in the other, the detection is more sensitive to multiply scattered out of focus background noise than in the traditional point scanning configuration. Based on the results of our translational studies thus far, a simpler, smaller and lower-cost approach based on a LSCRM appears to be promising for clinical imaging.
The Scanning Electron Microscope and the Archaeologist
ERIC Educational Resources Information Center
Ponting, Matthew
2004-01-01
Images from scanning electron microscopy are now quite common and they can be of great value in archaeology. Techniques such as secondary electron imaging, backscattered electron imaging and energy-dispersive x-ray analysis can reveal information such as the presence of weevils in grain in Roman Britain, the composition of Roman coins and the…
Scanning Electron Microscopy (SEM) Procedure for HE Powders on a Zeiss Sigma HD VP SEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaka, F.
This method describes the characterization of inert and HE materials by the Zeiss Sigma HD VP field emission Scanning Electron Microscope (SEM). The SEM uses an accelerated electron beam to generate high-magnification images of explosives and other materials. It is fitted with five detectors (SE, Inlens, STEM, VPSE, HDBSD) to enable imaging of the sample via different secondary electron signatures, angles, and energies. In addition to imaging through electron detection, the microscope is also fitted with two Oxford Instrument Energy Dispersive Spectrometer (EDS) 80 mm detectors to generate elemental constituent spectra and two-dimensional maps of the material being scanned.
Comparative study of image contrast in scanning electron microscope and helium ion microscope.
O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C
2017-12-01
Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Souza, Warren D.; Kwok, Young; Deyoung, Chad
2005-12-15
Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CTmore » scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging.« less
Study on GaN nanostructures: Growth and the suppression of the yellow emission
NASA Astrophysics Data System (ADS)
Wang, Ting; Chen, Fei; Ji, Xiaohong; Zhang, Qinyuan
2018-07-01
GaN nanostructures were synthesized via a simple chemical vapor deposition using Ga2O3 and NH3 as precursors. Structural and morphological properties were systematically characterized by field emission scanning electron microscopy, X-ray diffractometer, transmission electron microscopy, and Raman spectroscopy. The configuration of GaN nanostructures was found to be strongly dependent on the growth temperature and the NH3 flow rate. Photoluminescence analysis revealed that all the fabricated GaN NSs exhibited a strong ultra-violet emission (∼364 nm), and the yellow emission of GaN nanorods can be suppressed at appropriate III/V ratio. The suppression of the yellow emission was attributed to the low density of surface or the VGa defect. The work demonstrates that the GaN nanostructures have potential applications in the optoelectronic and nanoelectronic devices.
Growing concerns with the flow of misinformation from electronic books.
Takahashi, Kenzo; Kanda, Hideyuki; Mizushima, Shunsaku
2013-05-24
In 2012, several kinds of electronic books (e-books) became available in Japan. Since several major book retailers launched e-book businesses, it is expected that e-books will become a popular source of information in the country. However, we are concerned that e-books may also be a source of misinformation. In examining 24 available materials published by anti-vaccinists, "atopy businesses", and "wellness maintenance" authors, each was found to contain inaccuracies or misinformation. Thus far, such information is only available in printed books. If these books are scanned and circulated, or published in e-book format, this misinformation may circulate rapidly as e-book devices are becoming popular, and, consequently, harm people's health. We think that it is important for the government to formulate ethical guidelines for the publishing e-books with due consideration to freedom of expression.
NASA Astrophysics Data System (ADS)
Zhao, H.; Fu, C.; Yu, D.; Wang, Z.; Hu, T.; Ruan, M.
2018-03-01
The design and optimization of the Electromagnetic Calorimeter (ECAL) are crucial for the Circular Electron Positron Collider (CEPC) project, a proposed future Higgs/Z factory. Following the reference design of the International Large Detector (ILD), a set of silicon-tungsten sampling ECAL geometries are implemented into the Geant4 simulation, whose performance is then scanned using Arbor algorithm. The photon energy response at different ECAL longitudinal structures is analyzed, and the separation performance between nearby photon showers with different ECAL transverse cell sizes is investigated and parametrized. The overall performance is characterized by a set of physics benchmarks, including νν H events where Higgs boson decays into a pair of photons (EM objects) or gluons (jets) and Z→τ+τ- events. Based on these results, we propose an optimized ECAL geometry for the CEPC project.
Metal dusting behavior of 321 stainless steel: Effects of edge and corner
NASA Astrophysics Data System (ADS)
Chang, Chia-Hao; Tsai, Wen-Ta
2011-04-01
The metal dusting behavior of 321 stainless steel (SS) in a flowing mixed CO/H2/H2O gas stream at 600 °C for 500 h and 1000 h was investigated. The microstructures and chemical compositions of the reaction products at the surface and those in the substrate under the pits were examined by using a scanning electron microscope (SEM) and a transmission electron microscope (TEM), each combined with an energy dispersive spectrometer (EDS). The phenomenon of a pitting attack that occurred preferentially at the edges and corners of the specimens was the focus of this study. The carburization behavior in the steel substrate under the pits was also characterized. Matrix carbide in the form of Cr7C3 and grain boundary carbide in the form of Cr23C6 were identified by TEM.
Xu, Jinglu; Yu, Yang; Ding, Kang; Liu, Zhiying; Wang, Lei; Xu, Yanhua
2018-03-01
This study converted sewage sludge into a carbonaceous catalyst via pyrolysis and employed it in the ozonation of hydroquinone. The catalyst was characterized by Mössbauer spectroscopy, X-ray photoelectron spectroscopy, temperature programmed desorption, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. Intermediate products were detected by gas chromatography-mass spectrometry, and a pathway for hydroquinone degradation was proposed. The results showed that sludge pyrolyzed at 700 °C promoted hydroquinone degradation, compared with commercial activated carbon derived from coal. When the catalyst dose was 0.5 g/L, the hydroquinone (200 mg/L) removal rate reached 97.86% after exposure to ozone (the ozone concentration was 17 mg/L and the flow rate was 50 mL/min) for 60 min. The results indicated that basic groups contributed to the catalysis.
Paim, A.; Braghirolli, D.I.; Cardozo, N.S.M.; Pranke, P.; Tessaro, I.C.
2018-01-01
Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005–3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion. PMID:29590258
Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow.
Schulte, Paul J
2012-02-01
• The flow of xylem sap through conifer bordered pits, particularly through the pores in the pit membrane, is not well understood, but is critical for an understanding of water transport through trees. • Models solving the Navier-Stokes equation governing fluid flow were based on the geometry of bordered pits in black spruce (Picea mariana) and scanning electron microscopy images showing details of the pores in the margo of the pit membrane. • Solutions showed that the pit canals contributed a relatively small fraction of resistance to flow, whereas the torus and margo pores formed a large fraction, which depended on the structure of the individual pit. The flow through individual pores in the margo was strongly dependent on pore area, but also on the radial location of the pore with respect to the edge of the torus. • Model results suggest that only a few per cent of the pores in the margo account for nearly half of the flow and these pores tend to be located in the inner region of the margo where their contribution will be maximized. A high density of strands in outer portions of the margo (hence narrower pores) may be more significant for mechanical support of the torus. © 2011 The Author. New Phytologist © 2011 New Phytologist Trust.
Radiative properties of advanced spacecraft heat shield materials
NASA Technical Reports Server (NTRS)
Cunnington, G. R.; Funai, A. I.; Mcnab, T. K.
1983-01-01
Experimental results are presented to show the effects of simulated reentry exposure by convective heating and by radiant heating on spectral and total emittance of statically oxidized Inconel 617 and Haynes HS188 superalloys to 1260 K and a silicide coatea (R512E) columbium 752 alloy to 1590 K. Convective heating exposures were conducted in a supersonic arc plasma wind tunnel using a wedge-shaped specimen configuration. Radiant tests were conducted at a pressure of .003 atmospheres of dry air at a flow velocity of several meters per second. Convective heating specimens were subjected to 8, 20, and 38 15-min heating cycles, and radiant heating specimens were tested for 10, 20, 50, and 100 30-min heating cycles. Changes in radiative properties are explained in terms of changes in composition resulting from simulated reentry tests. The methods used to evaluate morphological, compositional and crystallographic changes include: Auger electron spectroscopy; scanning electron microscopy; X-ray diffraction analysis; and electron microprobe analysis.
Teng, Fei; Yao, Wenqing; Zheng, Youfei; Ma, Yutao; Xu, Tongguang; Gao, Guizhi; Liang, Shuhui; Teng, Yang; Zhu, Yongfa
2008-09-15
The hollow Co(3)O(4) microspheres (HCMs) were prepared by the carbonaceous templates, which did not need the surface pretreatment. The chemiluminescence (CL) and catalytic properties for CO oxidation over these hollow samples were evaluated. The samples were characterized by scanning electron microscopy (SEM), energy disperse spectra (EDS), transmission electron microscopy (TEM), selected area electron diffraction (ED), X-ray diffraction (XRD), temperature-programmed desorption (TPD) and N(2) adsorption. The influences of filter' band length, flow rate of gas, test temperature, and particle structure on CL intensities were mainly investigated. It was found that compared with the solid Co(3)O(4) particles (SCPs), HCMs had a stronger CL intensity, which was ascribed to its hollow structure; and that CL properties of the catalysts were well correlated with their reaction activities. Moreover, HCMs were used to fabricate a highly sensitive gas detector, which is a rapid and effective method for the selection of catalysts or the detection of environmental deleterious gases.
Correction of image drift and distortion in a scanning electron microscopy.
Jin, P; Li, X
2015-12-01
Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
High-resolution, high-throughput imaging with a multibeam scanning electron microscope.
Eberle, A L; Mikula, S; Schalek, R; Lichtman, J; Knothe Tate, M L; Zeidler, D
2015-08-01
Electron-electron interactions and detector bandwidth limit the maximal imaging speed of single-beam scanning electron microscopes. We use multiple electron beams in a single column and detect secondary electrons in parallel to increase the imaging speed by close to two orders of magnitude and demonstrate imaging for a variety of samples ranging from biological brain tissue to semiconductor wafers. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Dynamic scan control in STEM: Spiral scans
Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.; ...
2016-06-13
Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less
Dynamic scan control in STEM: Spiral scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.
Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less
NASA Astrophysics Data System (ADS)
Yamashita, Yoshifumi; Nakata, Ryu; Nishikawa, Takeshi; Hada, Masaki; Hayashi, Yasuhiko
2018-04-01
We studied the dynamics of the expansion of a Shockley-type stacking fault (SSF) with 30° Si(g) partial dislocations (PDs) using a scanning electron microscope. We observed SSFs as dark lines (DLs), which formed the contrast at the intersection between the surface and the SSF on the (0001) face inclined by 8° from the surface. We performed experiments at different electron-beam scanning speeds, observing magnifications, and irradiation areas. The results indicated that the elongation of a DL during one-frame scanning depended on the time for which the electron beam irradiated the PD segment in the frame of view. From these results, we derived a formula to express the velocity of the PD using the elongation rate of the corresponding DL during one-frame scanning. We also obtained the result that the elongation velocity of the DL was not influenced by changing the direction in which the electron beam irradiates the PD. From this result, we deduced that the geometrical kink motion of the PD was enhanced by diffusing carriers that were generated by the electron-beam irradiation.
Three-dimensional imaging of adherent cells using FIB/SEM and STEM.
Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul
2014-01-01
In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.
NASA Astrophysics Data System (ADS)
Breton, Daniel; Baker, Ian; Cole, David
2013-04-01
Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests to ~10% strain on 917 kg m-3, initially randomly-oriented polycrystalline ice specimens at 0.1 (atmospheric) and 20 MPa (simulating ~2,000 m depth) hydrostatic pressures, performing microstructural analyses on the resulting deformed specimens to characterize the evolution and strength of crystal fabric. Our microstructural analysis technique simultaneously collects grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtains crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and orientation data. We present creep and microstructural data to demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice and discuss possible mechanisms for the observed differences.
NASA Astrophysics Data System (ADS)
Wang, H. L.; Han, W.; Xu, M.
2011-12-01
Measurement of the water flow rate in microchannel has been one of the hottest points in the applications of microfluidics, medical, biological, chemical analyses and so on. In this study, the scanning microscale particle image velocimetry (scanning micro-PIV) technique is used for the measurements of water flow rates in a straight microchannel of 200μm width and 60μm depth under the standard flow rates ranging from 2.481μL/min to 8.269μL/min. The main effort of this measurement technique is to obtain three-dimensional velocity distribution on the cross sections of microchannel by measuring velocities of the different fluid layers along the out-of-plane direction in the microchannel, so the water flow rates can be evaluated from the discrete surface integral of velocities on the cross section. At the same time, the three-dimensional velocity fields in the measured microchannel are simulated numerically using the FLUENT software in order to verify the velocity accuracy of measurement results. The results show that the experimental values of flow rates are well consistent to the standard flow rates input by the syringe pump and the compared results between numerical simulation and experiment are consistent fundamentally. This study indicates that the micro-flow rate evaluated from three-dimensional velocity by the scanning micro-PIV technique is a promising method for the micro-flow rate research.
2012-01-01
Background The erythrocyte membrane lesion is a serious diabetic complication. A number of studies suggested that n-3 fatty acid could reduce lipid peroxidation and elevate α- or γ-tocopherol contents in membrane of erythrocytes. However, evidence regarding the protective effects of flaxseed oil, a natural product rich in n-3 fatty acid, on lipid peroxidation, antioxidative capacity and membrane deformation of erythrocytes exposed to high glucose is limited. Methods Human peripheral blood erythrocytes were isolated and treated with 50 mM glucose to mimic hyperglycemia in the absence or presence of three different doses of flaxseed oil (50, 100 or 200 μM) in the culture medium for 24 h. The malondialdehyde (MDA) and L-glutathione (GSH) were measured by HPLC and LC/MS respectively. The phospholipids symmetry and membrane fatty acid composition of human erythrocytes were detected by flow cytometry and gas chromatograph (GC). The morphology of human erythrocyte was illuminated by ultra scanning electron microscopy. Results Flaxseed oil attenuated hyperglycemia-induced increase of MDA and decrease of GSH in human erythrocytes. Human erythrocytes treated with flaxseed oil contained higher C22:5 and C22:6 than those in the 50 mM glucose control group, indicating that flaxseed oil could reduce lipid asymmetric distribution and membrane perturbation. The ultra scanning electron microscopy and flow cytometer have also indicated that flaxseed oil could protect the membrane of human erythrocytes from deformation at high glucose level. Conclusion The flaxseed oil supplementation may prevent lipid peroxidation and membrane dysfunction of human erythrocytes in hyperglycemia. PMID:22768971
Self-gated golden-angle spiral 4D flow MRI.
Bastkowski, Rene; Weiss, Kilian; Maintz, David; Giese, Daniel
2018-01-17
The acquisition of 4D flow magnetic resonance imaging (MRI) in cardiovascular applications has recently made large progress toward clinical feasibility. The need for simultaneous compensation of cardiac and breathing motion still poses a challenge for widespread clinical use. Especially, breathing motion, addressed by gating approaches, can lead to unpredictable and long scan times. The current work proposes a time-efficient self-gated 4D flow sequence that exploits up to 100% of the acquired data and operates at a predictable scan time. A self-gated golden-angle spiral 4D flow sequence was implemented and tested in 10 volunteers. Data were retrospectively binned into respiratory and cardiac states and reconstructed using a conjugate-gradient sensitivity encoding reconstruction. Net flow curves, stroke volumes, and peak flow in the aorta were evaluated and compared to a conventional Cartesian 4D flow sequence. Additionally, flow quantities reconstructed from 50% to 100% of the self-gated 4D flow data were compared. Self-gating signals for respiratory and cardiac motion were extracted for all volunteers. Flow quantities were in agreement with the standard Cartesian scan. Mean differences in stroke volumes and peak flow of 7.6 ± 11.5 and 4.0 ± 79.9 mL/s were obtained, respectively. By retrospectively increasing breathing navigator efficiency while decreasing acquisition times (15:06-07:33 minutes), 50% of the acquired data were sufficient to measure stroke volumes with errors under 9.6 mL. The feasibility to acquire respiratory and cardiac self-gated 4D flow data at a predictable scan time was demonstrated. Magn Reson Med, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenzhong; Yi, Ji; Chen, Siyu
Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (smallmore » ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.« less
Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.
2015-01-01
Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length. PMID:26328984
Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F
2015-09-01
Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.
Yoon, Yeo Hun; Kim, Seung Jae; Kim, Dong Hwan
2015-12-01
The scanning electron microscope is used in various fields to go beyond diffraction limits of the optical microscope. However, the electron pathway should be conducted in a vacuum so as not to scatter electrons. The pretreatment of the sample is needed for use in the vacuum. To directly observe large and fully hydrophilic samples without pretreatment, the atmospheric scanning electron microscope (ASEM) is needed. We developed an electron filter unit and an electron detector unit for implementation of the ASEM. The key of the electron filter unit is that electrons are transmitted while air molecules remain untransmitted through the unit. The electron detector unit collected the backscattered electrons. We conducted experiments using the selected materials with Havar foil, carbon film and SiN film. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.
Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M
2016-02-01
We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai
Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with amore » constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.« less
Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; ...
2017-03-08
Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with amore » constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.
Vortex Matter in Highly Strained Nb_{75}Zr_{25}: Analogy with Viscous Flow of Disordered Solids
NASA Astrophysics Data System (ADS)
Chandra, Jagdish; Manekar, Meghmalhar; Sharma, V. K.; Mondal, Puspen; Tiwari, Pragya; Roy, S. B.
2017-01-01
We present the results of magnetization and magneto-transport measurements in the superconducting state of an as-cast Nb_{75}Zr_{25} alloy. We also report the microstructure of our sample at various length scales by using optical, scanning electron and transmission electron microscopies. The information of microstructure is used to understand the flux pinning properties in the superconducting state within the framework of collective pinning. The magneto-transport measurements show a non-Arrhenius behaviour of the temperature- and field-dependent resistivity across the resistive transition and is understood in terms of a model for viscous flow of disordered solids which is popularly known as the `shoving model'. The activation energy for flux flow is assumed to be mainly the elastic energy stored in the flux-line lattice. The scaling of pinning force density indicates the presence of two pinning mechanisms of different origins. The elastic constants of the flux-line lattice are used to estimate the length scale of vortex lattice movement, or the volume displaced by the flux-line lattice. It appears that the vortex lattice displacement estimated from elastic energy considerations is of the same order of magnitude as that of the flux bundle hopping length during flux flow. Our results could provide possible directions for establishing a framework where vortex matter and glass-forming liquids or amorphous solids can be treated in a similar manner for understanding the phenomenon of viscous flow in disordered solids or more generally the pinning and depinning properties of elastic manifolds in random media. It is likely that the vortex molasses scenario is more suited to explain the vortex dynamics in conventional low-T_C superconductors.
Thrombogenesis with continuous blood flow in the inferior vena cava. A novel mouse model.
Diaz, José A; Hawley, Angela E; Alvarado, Christine M; Berguer, Alexandra M; Baker, Nichole K; Wrobleski, Shirley K; Wakefield, Thomas W; Lucchesi, Benedict R; Myers, Daniel D
2010-08-01
Several rodent models have been used to study deep venous thrombosis (DVT). However, a model that generates consistent venous thrombi in the presence of continuous blood flow, to evaluate therapeutic agents for DVT, is not available. Mice used in the present study were wild-type C57BL/6 (WT), plasminogen activator inhibitor-1 (PAI-1) knock out (KO) and Delta Cytoplasmic Tail (DCT). An electrolytic inferior vena cava (IVC) model (EIM) was used. A 25G stainless-steel needle, attached to a silver coated copper wire electrode (anode), was inserted into the exposed caudal IVC. Another electrode (cathode) was placed subcutaneously. A current of 250 muAmps over 15 minutes was applied. Ultrasound imaging was used to demonstrate the presence of IVC blood flow. Analyses included measurement of plasma soluble P-selectin (sP-Sel), thrombus weight (TW), vein wall morphometrics, P-selectin and Von Willebrand factor (vWF) staining, transmission electron microscopy (TEM), scanning electron microscopy (SEM); and the effect of enoxaparin on TW was evaluated. A current of 250 muAmps over 15 minutes consistently promoted thrombus formation in the IVC. Plasma sP-Sel was decreased in PAI-1 KO and increased in DCT vs. WT (WT/PAI-1: p=0.003, WT/DCT: p=0.0002). Endothelial activation was demonstrated by SEM, TEM, P-selectin and vWF immunohistochemistry and confirmed by inflammatory cell counts. Ultrasound imaging demonstrated thrombus formation in the presence of blood flow. Enoxaparin significantly reduced the thrombus size by 61% in this model. This EIM closely mimics clinical venous disease and can be used to study endothelial cell activation, leukocyte migration, thrombogenesis and therapeutic applications in the presence of blood flow.
Li, Jiao; Ding, Tian; Liao, Xinyu; Chen, Shiguo; Ye, Xingqian; Liu, Donghong
2017-09-01
This study evaluated the synergetic effects of ultrasound and slightly acidic electrolyzed water (SAEW) on the inactivation of Staphylococcus aureus using flow cytometry and electron microscopy. The individual ultrasound treatment for 10min only resulted in 0.36logCFU/mL reductions of S. aureus, while the SAEW treatment alone for 10min resulted in 3.06logCFU/mL reductions. The log reductions caused by combined treatment were enhanced to 3.68logCFU/mL, which were greater than the sum of individual treatments. This phenomenon was referred to as synergistic effects. FCM analysis distinguished live and dead cells as well as revealed dynamic changes in the physiological states of S. aureus after different treatments. The combined treatment greatly reduced the number of viable but nonculturable (VBNC) bacteria to 0.07%; in contrast, a single ultrasound treatment for 10min induced the formation of VBNC cells to 45.75%. Scanning and transmission electron microscopy analysis revealed that greater damage to the appearance and ultrastructure of S. aureus were achieved after combined ultrasound-SAEW treatment compared to either treatment alone. These results indicated that combining ultrasound with SAEW is a promising sterilization technology with potential uses for environmental remediation and food preservation. Copyright © 2016 Elsevier B.V. All rights reserved.
Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.
Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun
2016-08-01
We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.
Development of Scanning Ultrafast Electron Microscope Capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Kimberlee Chiyoko; Talin, Albert Alec; Chandler, David W.
Modern semiconductor devices rely on the transport of minority charge carriers. Direct examination of minority carrier lifetimes in real devices with nanometer-scale features requires a measurement method with simultaneously high spatial and temporal resolutions. Achieving nanometer spatial resolutions at sub-nanosecond temporal resolution is possible with pump-probe methods that utilize electrons as probes. Recently, a stroboscopic scanning electron microscope was developed at Caltech, and used to study carrier transport across a Si p-n junction [ 1 , 2 , 3 ] . In this report, we detail our development of a prototype scanning ultrafast electron microscope system at Sandia National Laboratoriesmore » based on the original Caltech design. This effort represents Sandia's first exploration into ultrafast electron microscopy.« less
Anwar, Mohammed; Ahmad, Iqbal; Warsi, Musarrat H; Mohapatra, Sharmistha; Ahmad, Niyaz; Akhter, Sohail; Ali, Asgar; Ahmad, Farhan J
2015-10-01
The biomedical applications of curcumin (CUR) are limited due to its poor oral bioavailability. In this work, CUR nanoparticles were successfully prepared by combining the supercritical anti-solvent (SAS) process with Tween 80 as a solubilizing agent and permeation enhancer. Different processing parameters that can govern the mean particle size and size distribution of nanoparticles were well investigated by manipulating the types of solvents, mixing vessel pressure, mixing vessel temperature, CO2 flow rate, solution flow rate and solution concentration. Solid state characterization was done by Fourier Transform infrared spectroscopy, differential scanning calorimetry, dynamic light scattering, scanning electron microscopy, and powder X-ray diffraction study. Solubility and dissolution profile of SAS-processed CUR were found to be significantly increased in comparison with native CUR. Further, a validated ultra-performance liquid chromatographic method with quadrupole-time of flight-mass spectrometry was developed to investigate the pharmacokinetic parameters after a single oral dose (100mg/kg) administration of CUR (before/after SAS-processed) in male Wistar rats. From the plasma concentration vs. time profile graph, oral bioavailability of SAS-processed CUR was found to be increased approximately 11.6-fold (p<0.001) as compared to native CUR. Copyright © 2015 Elsevier B.V. All rights reserved.
Winfred, Sofi Beaula; Mannivanan, Bhavani; Bhoopalan, Hemadev; Shankar, Venkatesh; Sekar, Sathiya; Venkatachalam, Deepa Parvathi; Pitani, Ravishankar; Nagendrababu, Venkateshbabu; Thaiman, Malini; Devivanayagam, Kandaswamy; Jayaraman, Jeyakanthan; Ragavachary, Raghunathan; Venkatraman, Ganesh
2015-01-01
The antibacterial activity of β-lactam derived polycyclic fused pyrrolidine/pyrrolizidine derivatives synthesized by 1, 3-dipolar cycloaddition reaction was evaluated against microbes involved in dental infection. Fifteen compounds were screened; among them compound 3 showed efficient antibacterial activity in an ex vivo dentinal tubule model and in vivo mice infectious model. In silico docking studies showed greater affinity to penicillin binding protein. Cell damage was observed under Scanning Electron Microscopy (SEM) which was further proved by Confocal Laser Scanning Microscope (CLSM) and quantified using Flow Cytometry by PI up-take. Compound 3 treated E. faecalis showed ROS generation and loss of membrane integrity was quantified by flow cytometry. Compound 3 was also found to be active against resistant E. faecalis strains isolated from failed root canal treatment cases. Further, compound 3 was found to be hemocompatible, not cytotoxic to normal mammalian NIH 3T3 cells and non mutagenic. It was concluded that β-lactam compound 3 exhibited promising antibacterial activity against E. faecalis involved in root canal infections and the mechanism of action was deciphered. The results of this research can be further implicated in the development of potent antibacterial medicaments with applications in dentistry. PMID:26185985
PMMA/PS coaxial electrospinning: a statistical analysis on processing parameters
NASA Astrophysics Data System (ADS)
Rahmani, Shahrzad; Arefazar, Ahmad; Latifi, Masoud
2017-08-01
Coaxial electrospinning, as a versatile method for producing core-shell fibers, is known to be very sensitive to two classes of influential factors including material and processing parameters. Although coaxial electrospinning has been the focus of many studies, the effects of processing parameters on the outcomes of this method have not yet been well investigated. A good knowledge of the impacts of processing parameters and their interactions on coaxial electrospinning can make it possible to better control and optimize this process. Hence, in this study, the statistical technique of response surface method (RSM) using the design of experiments on four processing factors of voltage, distance, core and shell flow rates was applied. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), oil immersion and Fluorescent microscopy were used to characterize fiber morphology. The core and shell diameters of fibers were measured and the effects of all factors and their interactions were discussed. Two polynomial models with acceptable R-squares were proposed to describe the core and shell diameters as functions of the processing parameters. Voltage and distance were recognized as the most significant and influential factors on shell diameter, while core diameter was mainly under the influence of core and shell flow rates besides the voltage.
Farah, Nicolas; Francis, Ziad; Abboud, Marie
2014-09-01
We explore in our study the effects of electrons and X-rays irradiations on the newest version of the Gafchromic EBT3 film. Experiments are performed using the Varian "TrueBeam 1.6" medical accelerator delivering 6 MV X-ray photons and 6 MeV electron beams as desired. The main interest is to compare the responses of EBT3 films exposed to two separate beams of electrons and photons, for radiation doses ranging up to 500 cGy. The analysis is done on a flatbed EPSON 10000 XL scanner and cross checked on a HP Scanjet 4850 scanner. Both scanners are used in reflection mode taking into account landscape and portrait scanning positions. After thorough verifications, the reflective scanning method can be used on EBT3 as an economic alternative to the transmission method which was also one of the goals of this study. A comparison is also done between single scan configuration including all samples in a single A4 (HP) or A3 (EPSON) format area and multiple scan procedure where each sample is scanned separately on its own. The images analyses are done using the ImageJ software. Results show significant influence of the scanning configuration but no significant differences between electron and photon irradiations for both single and multiple scan configurations. In conclusion, the film provides a reliable relative dose measurement method for electrons and photons irradiations in the medical field applications. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Writing silica structures in liquid with scanning transmission electron microscopy.
van de Put, Marcel W P; Carcouët, Camille C M C; Bomans, Paul H H; Friedrich, Heiner; de Jonge, Niels; Sommerdijk, Nico A J M
2015-02-04
Silica nanoparticles are imaged in solution with scanning transmission electron microscopy (STEM) using a liquid cell with silicon nitride (SiN) membrane windows. The STEM images reveal that silica structures are deposited in well-defined patches on the upper SiN membranes upon electron beam irradiation. The thickness of the deposits is linear with the applied electron dose. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrate that the deposited patches are a result of the merging of the original 20 nm-diameter nanoparticles, and that the related surface roughness depends on the electron dose rate used. Using this approach, sub-micrometer scale structures are written on the SiN in liquid by controlling the electron exposure as function of the lateral position. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Examination of Surveyor 3 parts with the scanning electron microscope and electron microprobe
NASA Technical Reports Server (NTRS)
Chodos, A. A.; Devaney, J. R.; Evens, K. C.
1972-01-01
Two screws and two washers, several small chips of tubing, and a fiber removed from a third screw were examined with the scanning electron microscope and the electron microprobe. The purpose of the examination was to determine the nature of the material on the surface of these samples and to search for the presence of meteoritic material.
Observations on the Role of Hydrogen in Facet Formation in Near-alpha Titanium (Preprint)
2011-05-01
using quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning...quantitative tilt fractography and electron backscatter diffraction while facet topography was examined using ultra high resolution scanning electron...tilt fractography / electron backscatter diffraction (EBSD) technique in which both the crystallographic orientation of the fractured grain and the
Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony
2017-10-01
This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Nondestructive determination of the depth of planar p-n junctions by scanning electron microscopy
NASA Technical Reports Server (NTRS)
Chi, J.-Y.; Gatos, H. C.
1977-01-01
A method was developed for measuring nondestructively the depth of planar p-n junctions in simple devices as well as in integrated-circuit structures with the electron-beam induced current (EBIC) by scanning parallel to the junction in a scanning electron microscope (SEM). The results were found to be in good agreement with those obtained by the commonly used destructive method of lapping at an angle to the junction and staining to reveal the junction.
DOT National Transportation Integrated Search
2013-02-01
Standard sample sets of cement and mortar formulations with known levels of Cl as well as concrete samples subject to Cl diffusion were all prepared for and analyzed with scanning electron microscopy (SEM) and electron microprobe (EPMA). Using x-ray ...
Electronically-Scanned Pressure Sensors
NASA Technical Reports Server (NTRS)
Coe, C. F.; Parra, G. T.; Kauffman, R. C.
1984-01-01
Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.
41 CFR 301-71.201 - What are the reviewing official's responsibilities?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true What are the reviewing official's responsibilities? 301-71.201 Section 301-71.201 Public Contracts and Property Management Federal... implements electronic scanning, the electronic travel claim includes scanned electronic images of such...
41 CFR 301-71.201 - What are the reviewing official's responsibilities?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false What are the reviewing official's responsibilities? 301-71.201 Section 301-71.201 Public Contracts and Property Management Federal... implements electronic scanning, the electronic travel claim includes scanned electronic images of such...
41 CFR 301-71.201 - What are the reviewing official's responsibilities?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false What are the reviewing official's responsibilities? 301-71.201 Section 301-71.201 Public Contracts and Property Management Federal... implements electronic scanning, the electronic travel claim includes scanned electronic images of such...
41 CFR 301-71.201 - What are the reviewing official's responsibilities?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false What are the reviewing official's responsibilities? 301-71.201 Section 301-71.201 Public Contracts and Property Management Federal... implements electronic scanning, the electronic travel claim includes scanned electronic images of such...
Davis, Mark T; Potter, Catherine B; Walker, Gavin M
2018-06-10
Downstream processing aspects of a stable form of amorphous itraconazole exhibiting enhanced dissolution properties were studied. Preparation of this ternary amorphous solid dispersion by either spray drying or hot melt extrusion led to significantly different powder processing properties. Particle size and morphology was analysed using scanning electron microscopy. Flow, compression, blending and dissolution were studied using rheometry, compaction simulation and a dissolution kit. The spray dried material exhibited poorer flow and reduced sensitivity to aeration relative to the milled extrudate. Good agreement was observed between differing forms of flow measurement, such as Flow Function, Relative flow function, Flow rate index, Aeration rate, the Hausner ratio and the Carr index. The stability index indicated that both powders were stable with respect to agglomeration, de-agglomeration and attrition. Tablet ability and compressibility studies showed that spray dried material could be compressed into stronger compacts than extruded material. Blending of the powders with low moisture, freely-flowing excipients was shown to influence both flow and compression. Porosity studies revealed that blending could influence the mechanism of densification in extrudate and blended extrudate formulations. Following blending, the powders were compressed into four 500 mg tablets, each containing a 100 mg dose of amorphous itraconazole. Dissolution studies revealed that the spray dried material released drug faster and more completely and that blending excipients could further influence the dissolution rate. Copyright © 2018 Elsevier B.V. All rights reserved.
Jungreuthmayer, Christian; Steppert, Petra; Sekot, Gerhard; Zankel, Armin; Reingruber, Herbert; Zanghellini, Jürgen; Jungbauer, Alois
2015-12-18
Polymethacrylate-based monoliths have excellent flow properties. Flow in the wide channel interconnected with narrow channels is theoretically assumed to account for favorable permeability. Monoliths were cut into 898 slices in 50nm distances and visualized by serial block face scanning electron microscopy (SBEM). A 3D structure was reconstructed and used for the calculation of flow profiles within the monolith and for calculation of pressure drop and permeability by computational fluid dynamics (CFD). The calculated and measured permeabilities showed good agreement. Small channels clearly flowed into wide and wide into small channels in a repetitive manner which supported the hypothesis describing the favorable flow properties of these materials. This alternating property is also reflected in the streamline velocity which fluctuated. These findings were corroborated by artificial monoliths which were composed of regular (interconnected) cells where narrow cells followed wide cells. In the real monolith and the artificial monoliths with interconnected flow channels similar velocity fluctuations could be observed. A two phase flow simulation showed a lateral velocity component, which may contribute to the transport of molecules to the monolith wall. Our study showed that the interconnection of small and wide pores is responsible for the excellent pressure flow properties. This study is also a guide for further design of continuous porous materials to achieve good flow properties. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
García-Díaz, Y.; Quiñones-Bolaños, E.; Bustos-Blanco, C.; Vives-Pérez, L.; Bustillo-Lecompte, C.; Saba, M.
2017-12-01
The energy potential of the osmotic pressure gradient of cyanide waters is evaluated using two membrane modules, horizontal and vertical, operated under dead-end flow. The membrane was characterized using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The membrane is mainly composed of carbon, oxygen, and sulphur. The properties of the membrane were unchanged and had no pore clogging after exposure to the cyanide waters. Potentials of 1.78×10-4 and 6.36×10-5Wm-2 were found for the horizontal and vertical modules, respectively, using the Van’t Hoff equation. Likewise, the permeability coefficient of the membrane was higher in the vertical module. Although the energy potential is low under the studied conditions the vertical configuration has a greater potential due to the action of gravity and the homogenous contact of the fluid with the membrane.
Habibi, Esmaeil; Omidinia, Eskandar; Heidari, Hassan; Fazli, Maryam
2016-02-15
Cobalt hydroxide nanoparticles were prepared onto a carbon ceramic electrode (CHN|CCE) using the cyclic voltammetry (CV) technique. The modified electrode was characterized by X-ray diffraction and scanning electron microscopy. The results showed that CHN with a single-layer structure was uniformly electrodeposited on the surface of CCE. The electrocatalytic activity of the modified electrode toward the oxidation of insulin was studied by CV. CHN|CCE was also used in a homemade flow injection analysis system for insulin determination. The limit of detection (signal/noise [S/N] = 3) and sensitivity were found to be 0.11 nM and 11.8 nA/nM, respectively. Moreover, the sensor was used for detection of insulin in human serum samples. This sensor showed attractive properties such as high stability, reproducibility, and high selectivity. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hausmann, Michael; Doelle, Juergen; Arnold, Armin; Stepanow, Boris; Wickert, Burkhard; Boscher, Jeannine; Popescu, Paul C.; Cremer, Christoph
1992-07-01
Laser fluorescence activated slit-scan flow cytometry offers an approach to a fast, quantitative characterization of chromosomes due to morphological features. It can be applied for screening of chromosomal abnormalities. We give a preliminary report on the development of the Heidelberg slit-scan flow cytometer. Time-resolved measurement of the fluorescence intensity along the chromosome axis can be registered simultaneously for two parameters when the chromosome axis can be registered simultaneously for two parameters when the chromosome passes perpendicularly through a narrowly focused laser beam combined by a detection slit in the image plane. So far automated data analysis has been performed off-line on a PC. In its final performance, the Heidelberg slit-scan flow cytometer will achieve on-line data analysis that allows an electro-acoustical sorting of chromosomes of interest. Interest is high in the agriculture field to study chromosome aberrations that influence the size of litters in pig (Sus scrofa domestica) breeding. Slit-scan measurements have been performed to characterize chromosomes of pigs; we present results for chromosome 1 and a translocation chromosome 6/15.
Probing the location of displayed cytochrome b562 on amyloid by scanning tunnelling microscopy
NASA Astrophysics Data System (ADS)
Forman, C. J.; Wang, N.; Yang, Z. Y.; Mowat, C. G.; Jarvis, S.; Durkan, C.; Barker, P. D.
2013-05-01
Amyloid fibres displaying cytochrome b562 were probed using scanning tunnelling microscopy (STM) in vacuo. The cytochromes are electron transfer proteins containing a haem cofactor and could, in principle, mediate electron transfer between the tip and the gold substrate. If the core fibres were insulating and electron transfer within the 3D haem network was detected, then the electron transport properties of the fibre could be controlled by genetic engineering. Three kinds of STM images were obtained. At a low bias (<1.5 V) the fibres appeared as regions of low conductivity with no evidence of cytochrome mediated electron transfer. At a high bias, stable peaks in tunnelling current were observed for all three fibre species containing haem and one species of fibre that did not contain haem. In images of this kind, some of the current peaks were collinear and spaced around 10 nm apart over ranges longer than 100 nm, but background monomers complicate interpretation. Images of the third kind were rare (1 in 150 fibres); in these, fully conducting structures with the approximate dimensions of fibres were observed, suggesting the possibility of an intermittent conduction mechanism, for which a precedent exists in DNA. To test the conductivity, some fibres were immobilized with sputtered gold, and no evidence of conduction between the grains of gold was seen. In control experiments, a variation of monomeric cytochrome b562 was not detected by STM, which was attributed to low adhesion, whereas a monomeric multi-haem protein, GSU1996, was readily imaged. We conclude that the fibre superstructure may be intermittently conducting, that the cytochromes have been seen within the fibres and that they are too far apart for detectable current flow between sites to occur. We predict that GSU1996, being 10 nm long, is more likely to mediate successful electron transfer along the fibre as well as being more readily detectable when displayed from amyloid.
Chu, Ming-Wen; Chen, Cheng Hsuan
2013-06-25
With innovative modern material-growth methods, a broad spectrum of fascinating materials with reduced dimensions-ranging from single-atom catalysts, nanoplasmonic and nanophotonic materials to two-dimensional heterostructural interfaces-is continually emerging and extending the new frontiers of materials research. A persistent central challenge in this grand scientific context has been the detailed characterization of the individual objects in these materials with the highest spatial resolution, a problem prompting the need for experimental techniques that integrate both microscopic and spectroscopic capabilities. To date, several representative microscopy-spectroscopy combinations have become available, such as scanning tunneling microscopy, tip-enhanced scanning optical microscopy, atom probe tomography, scanning transmission X-ray microscopy, and scanning transmission electron microscopy (STEM). Among these tools, STEM boasts unique chemical and electronic sensitivity at unparalleled resolution. In this Perspective, we elucidate the advances in STEM and chemical mapping applications at the atomic scale by energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy with a focus on the ultimate challenge of chemical quantification with atomic accuracy.
An, Lin; Qin, Jia; Wang, Ruikang K
2010-01-01
In this paper, we demonstrate for the first time that the detailed cutaneous blood flow at capillary level within dermis of human skin can be imaged by optical micro-angiography (OMAG) technique. A novel scanning protocol, i.e. fast B scan mode is used to achieve the capillary flow imaging. We employ a 1310nm system to scan the skin tissue at an imaging rate of 300 frames per second, which requires only ∼5 sec to complete one 3D imaging of capillary blood flow within skin. The technique is sensitive enough to image the very slow blood flows at ∼4 μm/sec. The promising results show a great potential of OMAG's role in the diagnosis, treatment and management of human skin diseases. PMID:20588668
Publications - GMC 357 | Alaska Division of Geological & Geophysical
DGGS GMC 357 Publication Details Title: Thin Section and Scanning Electron Microscopy summary Laboratories, Inc., 2008, Thin Section and Scanning Electron Microscopy summary photographs from plugs taken
Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro.
Lionetto, S; Little, A; Moriceau, G; Heymann, D; Decurtins, M; Plecko, M; Filgueira, L; Cadosch, D
2013-04-01
In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenil)-2H-tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate-resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS. Copyright © 2012 Wiley Periodicals, Inc.
Williams, Monique; Bozhilov, Krassimir; Ghai, Sanjay; Talbot, Prue
2017-01-01
Our purpose was to quantify 36 inorganic chemical elements in aerosols from disposable electronic cigarettes (ECs) and electronic hookahs (EHs), examine the effect of puffing topography on elements in aerosols, and identify the source of the elements. Thirty-six inorganic chemical elements and their concentrations in EC/EH aerosols were determined using inductively coupled plasma optical emission spectroscopy, and their source was identified by analyzing disassembled atomizers using scanning electron microscopy and energy dispersive X-ray spectroscopy. Of 36 elements screened, 35 were detected in EC/EH aerosols, while only 15 were detected in conventional tobacco smoke. Some elements/metals were present in significantly higher concentrations in EC/EH aerosol than in cigarette smoke. Concentrations of particular elements/metals within EC/EH brands were sometimes variable. Aerosols generated at low and high air-flow rates produced the same pattern of elements, although the total element concentration decreased at the higher air flow rate. The relative amount of elements in the first and last 60 puffs was generally different. Silicon was the dominant element in aerosols from all EC/EH brands and in cigarette smoke. The elements appeared to come from the filament (nickel, chromium), thick wire (copper coated with silver), brass clamp (copper, zinc), solder joints (tin, lead), and wick and sheath (silicon, oxygen, calcium, magnesium, aluminum). Lead was identified in the solder and aerosol of two brands of EHs (up to 0.165 μg/10 puffs). These data show that EC/EH aerosols contain a mixture of elements, including heavy metals, with concentrations often significantly higher than in conventional cigarette smoke. While the health effects of inhaling mixtures of heated metals is currently not known, these data will be valuable in future risk assessments involving EC/EH elements/metals.
Microcircuit testing and fabrication, using scanning electron microscopes
NASA Technical Reports Server (NTRS)
Nicolas, D. P.
1975-01-01
Scanning electron microscopes are used to determine both user-induced damages and manufacturing defects subtle enough to be missed by conventional light microscopy. Method offers greater depth of field and increased working distances.
NASA Astrophysics Data System (ADS)
Hwang, Sunghwan; Han, Chang Wan; Venkatakrishnan, Singanallur V.; Bouman, Charles A.; Ortalan, Volkan
2017-04-01
Scanning transmission electron microscopy (STEM) has been successfully utilized to investigate atomic structure and chemistry of materials with atomic resolution. However, STEM’s focused electron probe with a high current density causes the electron beam damages including radiolysis and knock-on damage when the focused probe is exposed onto the electron-beam sensitive materials. Therefore, it is highly desirable to decrease the electron dose used in STEM for the investigation of biological/organic molecules, soft materials and nanomaterials in general. With the recent emergence of novel sparse signal processing theories, such as compressive sensing and model-based iterative reconstruction, possibilities of operating STEM under a sparse acquisition scheme to reduce the electron dose have been opened up. In this paper, we report our recent approach to implement a sparse acquisition in STEM mode executed by a random sparse-scan and a signal processing algorithm called model-based iterative reconstruction (MBIR). In this method, a small portion, such as 5% of randomly chosen unit sampling areas (i.e. electron probe positions), which corresponds to pixels of a STEM image, within the region of interest (ROI) of the specimen are scanned with an electron probe to obtain a sparse image. Sparse images are then reconstructed using the MBIR inpainting algorithm to produce an image of the specimen at the original resolution that is consistent with an image obtained using conventional scanning methods. Experimental results for down to 5% sampling show consistency with the full STEM image acquired by the conventional scanning method. Although, practical limitations of the conventional STEM instruments, such as internal delays of the STEM control electronics and the continuous electron gun emission, currently hinder to achieve the full potential of the sparse acquisition STEM in realizing the low dose imaging condition required for the investigation of beam-sensitive materials, the results obtained in our experiments demonstrate the sparse acquisition STEM imaging is potentially capable of reducing the electron dose by at least 20 times expanding the frontiers of our characterization capabilities for investigation of biological/organic molecules, polymers, soft materials and nanostructures in general.
Shiojiri, M; Saijo, H
2006-09-01
The first part of this paper is devoted to physics, to explain high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging and to interpret why HAADF-STEM imaging is incoherent, instructing a strict definition of interference and coherence of electron waves. Next, we present our recent investigations of InGaN/GaN multiple quantum wells and AlGaN/GaN strained-layer superlattice claddings in GaN-based violet laser diodes, which have been performed by HAADF-STEM and high-resolution field-emission gun scanning electron microscopy.
Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements
NASA Astrophysics Data System (ADS)
Sand, S. C.; Pichugina, Y. L.; Brewer, A.
2016-12-01
Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.
Scanning electron microscope observation of dislocations in semiconductor and metal materials.
Kuwano, Noriyuki; Itakura, Masaru; Nagatomo, Yoshiyuki; Tachibana, Shigeaki
2010-08-01
Scanning electron microscope (SEM) image contrasts have been investigated for dislocations in semiconductor and metal materials. It is revealed that single dislocations can be observed in a high contrast in SEM images formed by backscattered electrons (BSE) under the condition of a normal configuration of SEM. The BSE images of dislocations were compared with those of the transmission electron microscope and scanning transmission electron microscope (STEM) and the dependence of BSE image contrast on the tilting of specimen was examined to discuss the origin of image contrast. From the experimental results, it is concluded that the BSE images of single dislocations are attributed to the diffraction effect and related with high-angle dark-field images of STEM.
Morishita, Shigeyuki; Ishikawa, Ryo; Kohno, Yuji; Sawada, Hidetaka; Shibata, Naoya; Ikuhara, Yuichi
2018-02-01
The achievement of a fine electron probe for high-resolution imaging in scanning transmission electron microscopy requires technological developments, especially in electron optics. For this purpose, we developed a microscope with a fifth-order aberration corrector that operates at 300 kV. The contrast flat region in an experimental Ronchigram, which indicates the aberration-free angle, was expanded to 70 mrad. By using a probe with convergence angle of 40 mrad in the scanning transmission electron microscope at 300 kV, we attained the spatial resolution of 40.5 pm, which is the projected interatomic distance between Ga-Ga atomic columns of GaN observed along [212] direction.
Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke
We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than themore » size of the incident electron beam.« less
Characteristics of Volcanic Soils in Landslide during the 2016 Kumamoto Earthquake, Japan
NASA Astrophysics Data System (ADS)
Hazarika, H.; Fukuoka, H.; Kokusho, T.; Sumartini, O.; Bhoopendra, D.
2017-12-01
There were many seismic subsidence, debris flows, landslides and slope failures, which occurred in Aso area due to the 2016 Kumamoto earthquake, Japan. This research aims to determine the failure mechanism of many mild slopes, and elucidate the strength characteristics of volcanic soils collected from the sites. A series of undrained static and cyclic triaxial tests, ring shear tests and direct shear tests were performed. Also, for further understanding of volcanic soils' material strength, X-ray powder diffraction analysis (XRD), X-ray fluorescence analysis (XRF), and Scanning electron microscope analysis (SEM) were performed. In this paper, preliminary results of the experimental testing program are discussed.
An experimental study of the self-healing behavior of ionomeric systems under ballistic impact tests
NASA Astrophysics Data System (ADS)
Grande, A. M.; Coppi, S.; Di Landro, L.; Sala, G.; Giacomuzzo, C.; Francesconi, A.; Rahman, M. A.
2012-04-01
This research deals with the investigation of the self-healing behavior after ballistic damage of ethylene-methacrylic acid ionomers and theirs blends with epoxidized natural rubber (ENR). The self-healing capability was studied by ballistic puncture tests under different experimental conditions as sample thickness, bullet speed, diameter and shape. Bullet speed ranging from few hundreds meters per second to few km/s were employed. The healing efficiency was evaluated by applying a pressure gradient trough the plates and by checking for possible flow at the damage zone. A morphology analysis of the impact area was made observing all samples by scanning electron microscope.
Control of microbiological corrosion on carbon steel with sodium hypochlorite and biopolymer.
Oliveira, Sara H; Lima, Maria Alice G A; França, Francisca P; Vieira, Magda R S; Silva, Pulkra; Urtiga Filho, Severino L
2016-07-01
In the present work, the interaction of a mixture of a biocide, sodium hypochlorite (NaClO), and a biopolymer, xanthan, with carbon steel coupons exposed to seawater in a turbulent flow regime was studied. The cell concentrations, corrosion rates, biomasses, and exopolysaccharides (EPSs) produced on the coupon surfaces with the various treatments were quantified. The corrosion products were evaluated using X-ray diffraction (XRD), and the surfaces of steels were analysed by scanning electron microscopy (SEM). The results indicated that xanthan and the hypochlorite-xanthan mixture reduced the corrosion rate of steel. Copyright © 2016. Published by Elsevier B.V.
Study on stainless steel electrode based on dynamic aluminum liquid corrosion mechanism.
Hou, Hua; Yang, Ruifeng
2009-01-01
Scanning electrion microscope (SEM) was performed for investigations on the corrosion mechanism of stainless steel electrode in dynamic melting aluminum liquid. Microstructures and composition analysis was made by electron probe analysis (EPA) combined with metallic phase analysis. It can be concluded that the corrosion process is mainly composed of physical corrosion (flowing and scouring corrosion) and chemical corrosion (forming FeAl and Fe2Al5) and the two mechanisms usually exist simultaneously. The corrosion interface thickness is about 10 μm, which is different to usual interface width of hundreds μm in the static melting Al with iron matrix.
Improved pressure measurement system for calibration of the NASA LeRC 10x10 supersonic wind tunnel
NASA Technical Reports Server (NTRS)
Blumenthal, Philip Z.; Helland, Stephen M.
1994-01-01
This paper discusses a method used to provide a significant improvement in the accuracy of the Electronically Scanned Pressure (ESP) Measurement System by means of a fully automatic floating pressure generating system for the ESP calibration and reference pressures. This system was used to obtain test section Mach number and flow angularity measurements over the full envelope of test conditions for the 10 x 10 Supersonic Wind Tunnel. The uncertainty analysis and actual test data demonstrated that, for most test conditions, this method could reduce errors to about one-third to one-half that obtained with the standard system.
Image and compositional characteristics of the LDEF Big Guy impact crater
NASA Technical Reports Server (NTRS)
Bunch, T. E.; Paque, Julie M.; Zolensky, Michael
1995-01-01
A 5.2 mm crater in Al-metal represents the largest found on LDEF. We have examined this crater by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and time-of-flight/secondary ion mass spectroscopy (TOF-SIMS) in order to determine if there is any evidence of impactor residue. Droplet and dome-shaped columns, along with flow features, are evidence of melting. EDS from the crater cavity and rim show Mg, C, O and variable amounts of Si, in addition to Al. No evidence for a chondritic impactor was found, and it hypothesized that the crater may be the result of impact with space debris.
Measurement of Strain and Stress Distributions in Structural Materials by Electron Moiré Method
NASA Astrophysics Data System (ADS)
Kishimoto, Satoshi; Xing, Yougming; Tanaka, Yoshihisa; Kagawa, Yutaka
A method for measuring the strain and stress distributions in structural materials has been introduced. Fine model grids were fabricated by electron beam lithography, and an electron beam scan by a scanning electron microscope (SEM) was used as the master grid. Exposure of the electron beam scan onto the model grid in an SEM produced the electron beam moiré fringes of bright and dark parts caused by the different amounts of the secondary electrons per a primary electron. For demonstration, the micro-creep deformation of pure copper was observed. The creep strain distribution and the grain boundary sliding were analyzed. The residual strain and stress at the interface between a fiber and a matrix of a fiber reinforced plastic (FRP) were measured using the pushing-out test and this electron moiré method. Also, a non-uniform deformation around the boundary of 3-point bended laminated steel was observed and the strain distribution analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; Zhu, Zihua; Yu, Xiao-Ying
In this study, we report new results of in situ study of 5 nm goat anti-mouse IgG gold nanoparticles in a novel portable vacuum compatible microfluidic device using scanning electron microscope (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The unique feature of the liquid flow cell is that the detection window is open to the vacuum allowing direct probing of the liquid surface. The flow cell is composed of a silicon nitride (SiN) membrane and polydimethylsiloxane (PDMS), and it is fully compatible with vacuum operations for surface analysis. The aperture can be drilled through the 100 nm SiN membranemore » using a focused ion beam. Characteristic signals of the conjugated gold nanoparticles were successfully observed through the aperture by both energy-dispersive X-ray spectroscopy (EDX) in SEM and ToF-SIMS. Comparison was also made among wet samples, dry samples, and liquid sample in the flow cell using SEM/EDX. Stronger gold signal can be observed in our novel portable device by SEM/EDX compared with the wet or dry samples, respectively. Our results indicate that analyses of the nanoparticle components are better made in their native liquid environment. This is made possible using our unique microfluidic flow cell.« less
Ropars, Jeanne; Lo, Ying‐Chu; Dumas, Emilie; Snirc, Alodie; Begerow, Dominik; Rollnik, Tanja; Lacoste, Sandrine; Dupont, Joëlle; Giraud, Tatiana; López‐Villavicencio, Manuela
2016-01-01
Genetic differentiation occurs when gene flow is prevented, due to reproductive barriers or asexuality. Investigating the early barriers to gene flow is important for understanding the process of speciation. Here, we therefore investigated reproductive isolation between different genetic clusters of the fungus Penicillium roqueforti, used for maturing blue cheeses, and also occurring as food spoiler or in silage. We investigated premating and postmating fertility between and within three genetic clusters (two from cheese and one from other substrates), and we observed sexual structures under scanning electron microscopy. All intercluster types of crosses showed some fertility, suggesting that no intersterility has evolved between domesticated and wild populations despite adaptation to different environments and lack of gene flow. However, much lower fertility was found in crosses within the cheese clusters than within the noncheese cluster, suggesting reduced fertility of cheese strains, which may constitute a barrier to gene flow. Such degeneration may be due to bottlenecks during domestication and/or to the exclusive clonal replication of the strains in industry. This study shows that degeneration has occurred rapidly and independently in two lineages of a domesticated species. Altogether, these results inform on the processes and tempo of degeneration and speciation. PMID:27470007
A Preliminary Experimental Investigation of Wet Fine Erosion in Two-Phase Flow
NASA Astrophysics Data System (ADS)
Ya, H. H.; Luthfi, Haziq; Ngo, Nguyet-Tran; Hassan, Suhaimi; Pao, William
2018-03-01
Solid particles below 62 μm is classified as fine. In oil producing operation, the most commonly used downhole sand screen can only capture solid particles of 140 μm and above. Most predictive erosion model is limited to particle size of 100 μm with single phase flow assumption because it is commonly believed that erosion due to particles below 100 μm is insignificant and typically ignored by oil and gas consultants when proposing facilities design. The objective of this paper is to investigate the impact of fines particle on mild steel plate in two-phase flow at different collision angles. A two phase flow loop was set up. The average size of fine particle was 60 μm, mixed with water with sand to water ratio at 1:65 wt/wt. The mild steel plates were oriented at three different impact angles which are -30°, 30° and 90°, with respect to the horizon. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), surface roughness and Vickers micro hardness techniques were used to quantify the effects of fine particle on the exposed surface.
Continuous-flow biosynthesis of Au-Ag bimetallic nanoparticles in a microreactor
NASA Astrophysics Data System (ADS)
Liu, Hongyu; Huang, Jiale; Sun, Daohua; Odoom-Wubah, Tareque; Li, Jun; Li, Qingbiao
2014-11-01
Herein, a microfluidic biosynthesis of Au-Ag bimetallic nanoparticle (NP) in a tubular microreactor, based on simultaneous reduction of HAuCl4 and AgNO3 precursors in the presence of Cacumen Platycladi ( C. Platycladi) extract was studied. The flow velocity profile was numerically analyzed with computational fluid dynamics. Au-Ag bimetallic NPs with Ag/Au molar ratios of 1:1 and 2:1 were synthesized, respectively. The alloy formation, morphology, structure, and size were investigated by UV-Vis spectra analysis, transmission electron microscopy (TEM), high resolution TEM, scanning TEM, and energy-dispersive X-ray analysis. In addition, the effects of volumetric flow rate, reaction temperature, and concentration of C. Platycladi extract and NaOH on the properties of the as-synthesized Au-Ag bimetallic NPs were investigated. The results indicated that these factors could not only affect the molar ratios of the two elements in the Au-Ag bimetallic NPs, but also affect particle size which can be adjusted from 3.3 to 5.6 nm. The process was very rapid and green, since a microreactor was employed with no additional synthetic reagents used. This work is anticipated to provide useful parameters for continuous-flow biosynthesis of bimetallic NPs in microreactors.
NASA Astrophysics Data System (ADS)
Schwenke, A. M.; Janoschka, T.; Stolze, C.; Martin, N.; Hoeppener, S.; Schubert, U. S.
2016-12-01
A simple and fast microwave-assisted protocol to functionalize commercially available graphite felts (GFs) with carbon nanofibers (CNFs) for the application as electrode materials in redox-flow batteries (RFB) is demonstrated. As catalyst for the CNF synthesis nickel acetate is applied and ethanol serves as the carbon source. By the in-situ growth of CNFs, the active surface of the electrodes is increased by a factor of 50, which is determined by the electrochemical double layer capacities of the obtained materials. Furthermore, the morphology of the CNF-coating is investigated by scanning electron microscopy. Subsequently, the functionalized electrodes are applied in a polymer-based redox-flow battery (pRFB) using a TEMPO- and a viologen polymer as active materials. Due to the increased surface area as compared to an untreated graphite felt electrode, the current rating is improved by about 45% at 80 mA cm-2 and, furthermore, a decrease in overpotentials is observed. Thus, using this microwave-assisted synthesis approach, CNF-functionalized composite electrodes are prepared with a very simple protocol suitable for real life applications and an improvement of the overall performance of the polymer-based redox-flow battery is demonstrated.
NASA Astrophysics Data System (ADS)
Attaf, A.; Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.
2015-03-01
In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h.
NASA Astrophysics Data System (ADS)
Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos
2016-11-01
We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.
Mittelberger, Andreas; Kramberger, Christian; Meyer, Jannik C
2018-03-19
Atomically resolved images of monolayer organic crystals have only been obtained with scanning probe methods so far. On the one hand, they are usually prepared on surfaces of bulk materials, which are not accessible by (scanning) transmission electron microscopy. On the other hand, the critical electron dose of a monolayer organic crystal is orders of magnitudes lower than the one for bulk crystals, making (scanning) transmission electron microscopy characterization very challenging. In this work we present an atomically resolved study on the dynamics of a monolayer CuPcCl 16 crystal under the electron beam as well as an image of the undamaged molecules obtained by low-dose electron microscopy. The results show the dynamics and the radiation damage mechanisms in the 2D layer of this material, complementing what has been found for bulk crystals in earlier studies. Furthermore, being able to image the undamaged molecular crystal allows the characterization of new composites consisting of 2D materials and organic molecules.
Chemical vapor deposition growth
NASA Technical Reports Server (NTRS)
Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.
1976-01-01
A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature.
Growing Concerns With the Flow of Misinformation From Electronic Books
2013-01-01
In 2012, several kinds of electronic books (e-books) became available in Japan. Since several major book retailers launched e-book businesses, it is expected that e-books will become a popular source of information in the country. However, we are concerned that e-books may also be a source of misinformation. In examining 24 available materials published by anti-vaccinists, "atopy businesses", and "wellness maintenance" authors, each was found to contain inaccuracies or misinformation. Thus far, such information is only available in printed books. If these books are scanned and circulated, or published in e-book format, this misinformation may circulate rapidly as e-book devices are becoming popular, and, consequently, harm people’s health. We think that it is important for the government to formulate ethical guidelines for the publishing e-books with due consideration to freedom of expression. PMID:23709125
The detailed analysis of the changes of murine dendritic cells (DCs) induced by thymic peptide
Hu, Xiaofang; Zheng, Wei; Wang, Lu; Wan, Nan; Wang, Bing; Li, Weiwei; Hua, Hui; Hu, Xu; Shan, Fengping
2012-01-01
The aim of present research is to analyze the detailed changes of dendritic cells (DCs) induced by pidotimod(PTD). These impacts on DCs of both bone marrow derived DCs and established DC2.4 cell line were assessed with use of conventional scanning electron microscopy (SEM), flow cytometry (FCM), transmission electron microscopy (TEM), cytochemistry assay FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA). We demonstrated the ability of PTD to induce DC phynotypic and functional maturation as evidenced by higher expression of key surface molecules such as MHC II, CD80 and CD86. The functional tests proved the downregulation of ACP inside the DCs, occurred when phagocytosis of DCs decreased, with simultaneously antigen presentation increased toward maturation. Finally, PTD also stimulated production of more cytokine IL-12 and less TNF-α. Therefore it is concluded that PTD can markedly exert positive induction to murine DCs. PMID:22863756
Synthesis procedure optimization and characterization of europium (III) tungstate nanoparticles
NASA Astrophysics Data System (ADS)
Rahimi-Nasrabadi, Mehdi; Pourmortazavi, Seied Mahdi; Ganjali, Mohammad Reza; Reza Banan, Ali; Ahmadi, Farhad
2014-09-01
Taguchi robust design as a statistical method was applied for the optimization of process parameters in order to tunable, facile and fast synthesis of europium (III) tungstate nanoparticles. Europium (III) tungstate nanoparticles were synthesized by a chemical precipitation reaction involving direct addition of europium ion aqueous solution to the tungstate reagent solved in an aqueous medium. Effects of some synthesis procedure variables on the particle size of europium (III) tungstate nanoparticles were studied. Analysis of variance showed the importance of controlling tungstate concentration, cation feeding flow rate and temperature during preparation of europium (III) tungstate nanoparticles by the proposed chemical precipitation reaction. Finally, europium (III) tungstate nanoparticles were synthesized at the optimum conditions of the proposed method. The morphology and chemical composition of the prepared nano-material were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy and fluorescence.
NASA Technical Reports Server (NTRS)
Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.
1977-01-01
The oxidation at 900 and 1,000 C of four nickel-base superalloys in 1 atmosphere of slowly flowing oxygen was investigated. Thermogravimetric rate data were obtained for periods to 100 hours. The morphology and composition of the oxide scales formed after 100 hours were studied by optical microscopy, X-ray diffraction, electron microprobe, scanning electron microscopy, and X-ray photoelectron spectroscopy (ESCA). Alloys B-1900 and VIA were found to be primarily alumina formers, though probably 25 percent of their surface was covered by CR2O3-containing oxides at 900 C. Alloys 713C and IN-738 were primarily chromia formers, though the surface of 713C at 1,000 C was covered with NiO, and the surface of IN-738 at both temperatures was covered with a thin layer of TiO2.
NASA Astrophysics Data System (ADS)
Cedeño, V. J.; Rangel, R.; Cervantes, J. L.; Lara, J.; Alvarado, J. J.; Galván, D. H.
2017-07-01
Graphene oxide decoration with europium was carried out using SDS (sodium dodecyl sulfate) as the surfactant. The reaction was performed in a microwave oven and subsequently underwent thermal treatment under hydrogen flow. The results found in the present work demonstrate that through the use of SDS surfactant aggregates of hemi-cylindrical and onion-like structures could be obtained; which propitiate an enhanced synergistic photoluminescence located at the red wavelength. On the other hand, after thermal treatment the aggregates disappear providing a good dispersion of europium, however a decrease in the photoluminescence signal is observed. The graphene oxide decorated with europium was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier infrared transform spectroscopy (FTIR), RAMAN spectroscopy, x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques, showing the characteristic features of graphene oxide and europium.
Fan, Zheng; Tao, Xinyong; Cui, Xudong; Fan, Xudong; Zhang, Xiaobin; Dong, Lixin
2012-09-21
Controlled fabrication of metal nanospheres on nanotube tips for optical antennas is investigated experimentally. Resembling soap bubble blowing using a straw, the fabrication process is based on nanofluidic mass delivery at the attogram scale using metal-filled carbon nanotubes (m@CNTs). Two methods have been investigated including electron-beam-induced bubbling (EBIB) and electromigration-based bubbling (EMBB). EBIB involves the bombardment of an m@CNT with a high energy electron beam of a transmission electron microscope (TEM), with which the encapsulated metal is melted and flowed out from the nanotube, generating a metallic particle on a nanotube tip. In the case where the encapsulated materials inside the CNT have a higher melting point than what the beam energy can reach, EMBB is an optional process to apply. Experiments show that, under a low bias (2.0-2.5 V), nanoparticles can be formed on the nanotube tips. The final shape and crystallinity of the nanoparticles are determined by the cooling rate. Instant cooling occurs with a relatively large heat sink and causes the instant shaping of the solid deposit, which is typically similar to the shape of the molten state. With a smaller heat sink as a probe, it is possible to keep the deposit in a molten state. Instant cooling by separating the deposit from the probe can result in a perfect sphere. Surface and volume plasmons characterized with electron energy loss spectroscopy (EELS) prove that resonance occurs between a pair of as-fabricated spheres on the tip structures. Such spheres on pillars can serve as nano-optical antennas and will enable devices such as scanning near-field optical microscope (SNOM) probes, scanning anodes for field emitters, and single molecule detectors, which can find applications in bio-sensing, molecular detection, and high-resolution optical microscopy.
Blancett, Candace D; Fetterer, David P; Koistinen, Keith A; Morazzani, Elaine M; Monninger, Mitchell K; Piper, Ashley E; Kuehl, Kathleen A; Kearney, Brian J; Norris, Sarah L; Rossi, Cynthia A; Glass, Pamela J; Sun, Mei G
2017-10-01
A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Scanning electron microscope fractography in failure analysis of steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wouters, R.; Froyen, L.
1996-04-01
For many failure cases, macroscopic examination of the fracture surface permits discrimination of fatigue fractures from overload fractures. For clarifying fatigue fractures, the practical significance of microfractography is limited to an investigation of the crack initiation areas. Scanning electron microscopy is successfully used in tracing local material abnormalities that act as fatigue crack initiators. The task for the scanning electron microscope, however, is much more substantial in failure analysis of overload fractures, especially for steels. By revealing specific fractographic characteristics, complemented by information about the material and the loading conditions, scanning electron microscopy provides a strong indication of the probablemore » cause of failure. A complete dimple fracture is indicative of acceptable bulk material properties; overloading, by subdimensioning or excessive external loading, has to be verified. The presence of cleavage fracture makes the material properties questionable if external conditions causing embrittlement are absent. Intergranular brittle fracture requires verification of grain-boundary weakening conditions--a sensitized structure, whether or not combined with a local stress state or a specific environment. The role of scanning electron microscopy in failure analysis is illustrated by case histories of the aforementioned fracture types.« less
Field Emission Auger Electron Spectroscopy with Scanning Auger Microscopy |
0.5 at.% for elements from lithium to uranium. Depth Profiling Removes successive layers by using size (> ~25 nm). Imaging Obtains SEM micrographs with up to 20,000x magnification by using raster scanning with a highly focused electron beam â¥25 nm in diameter. Using the same raster scan, SAM can
Flow-gated radial phase-contrast imaging in the presence of weak flow.
Peng, Hsu-Hsia; Huang, Teng-Yi; Wang, Fu-Nien; Chung, Hsiao-Wen
2013-01-01
To implement a flow-gating method to acquire phase-contrast (PC) images of carotid arteries without use of an electrocardiography (ECG) signal to synchronize the acquisition of imaging data with pulsatile arterial flow. The flow-gating method was realized through radial scanning and sophisticated post-processing methods including downsampling, complex difference, and correlation analysis to improve the evaluation of flow-gating times in radial phase-contrast scans. Quantitatively comparable results (R = 0.92-0.96, n = 9) of flow-related parameters, including mean velocity, mean flow rate, and flow volume, with conventional ECG-gated imaging demonstrated that the proposed method is highly feasible. The radial flow-gating PC imaging method is applicable in carotid arteries. The proposed flow-gating method can potentially avoid the setting up of ECG-related equipment for brain imaging. This technique has potential use in patients with arrhythmia or weak ECG signals.
H, Neumann; A P, Schulz; S, Breer; A, Unger; B, Kienast
2015-01-01
Osteochondral injuries, if not treated appropriately, often lead to severe osteoarthritis of the affected joint. Without refixation of the osteochondral fragment, human cartilage only repairs these defects imperfectly. All existing refixation systems for chondral defects have disadvantages, for instance bad MRI quality in the postoperative follow-up or low anchoring forces. To address the problem of reduced stability in resorbable implants, ultrasound-activated pins were developed. By ultrasound-activated melting of the tip of these implants a higher anchoring is assumed. Aim of the study was to investigate, if ultrasound-activated pins can provide a secure refixation of osteochondral fractures comparing to conventional screw and conventional, resorbable pin osteosynthesis. CT scans and scanning electron microscopy should proovegood refixation results with no further tissue damage by the melting of the ultrasound-activated pins in comparison to conventional osteosynthesis. Femoral osteochondral fragments in sheep were refixated with ultrasound-activated pins (SonicPin™), Ethipins(®) and screws (Asnis™). The quality of the refixated fragments was examined after three month of full weight bearing by CT scans and scanning electron microscopy of the cartilage surface. The CT examination found almost no statistically significant difference in the quality of refixation between the three different implants used. Concerning the CT morphology, ultrasound-activated pins demonstrated at least the same quality in refixation of osteochondral fragments as conventional resorbable pins or screws. The scanning electron microscopy showed no major surface damage by the three implants, especially any postulated cartilage damage induced by the heat of the ultrasound-activated pin. The screws protruded above the cartilage surface, which may affect the opposingtibial surface. Using CT scans and scanning electron microscopy, the SonicPin™, the Ethipin(®) and screws were at least equivalent in refixation quality of osteochondral fragments.
NASA Astrophysics Data System (ADS)
Peimanifard, Zahra; Rashid-Nadimi, Sahar
2015-12-01
The aim of this study is utilizing the artificial photosynthesis, which is an attractive and challenging theme in the photoelectrocatalytic water splitting, to charge the vanadium redox flow battery (VRFB). In this work multi walled carbon nanotube/cadmium sulphide hybrid is employed as a photoanode material to oxidize VO2+ toVO2+ for charging the positive vanadium redox flow battery's half-cell. Characterization studies are also described using the scanning electron microscopic-energy-dispersive X-ray spectroscopy (SEM-EDS), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and UV-Visible methods. The phtoelectrochemical performance is characterized by cyclic voltammetry and chronoamperometry. Applied bias photon-to-current efficiency (ABPE) is achieved for both two and three-electrode configurations. The glassy carbon/multi walled carbon nanotube/cadmium sulphide yields high maximum ABPE of 2.6% and 2.12% in three and two-electrode setups, respectively. These results provide a useful guideline in designing photoelectrochemical cells for charging the vanadium redox flow batteries by sunlight as a low cost, free and abundant energy source, which does not rely on an external power input.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2004-01-01
A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the vortex-induced surface static pressures on a slender, faceted missile model at subsonic and transonic speeds. Global PSP calibrations were obtained using an in-situ method featuring the simultaneous electronically-scanned pressures (ESP) measurements. Both techniques revealed the significant influence leading-edge vortices on the surface pressure distributions. The mean error in the PSP measurements relative to the ESP data was approximately 0.6 percent at M(sub infinity)=0.70 and 2.6 percent at M(sub infinity)=0.90 and 1.20. The vortex surface pressure signatures obtained from the PSP and ESP techniques were correlated with the off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The on-surface and off-surface techniques were complementary, since each provided details of the vortex-dominated flow that were not clear or apparent in the other.
Sieve tube geometry in relation to phloem flow.
Mullendore, Daniel L; Windt, Carel W; Van As, Henk; Knoblauch, Michael
2010-03-01
Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube-specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms.
Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei
2014-02-01
To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).
Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites
NASA Astrophysics Data System (ADS)
Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.
2014-01-01
In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.
Sieve Tube Geometry in Relation to Phloem Flow
Mullendore, Daniel L.; Windt, Carel W.; Van As, Henk; Knoblauch, Michael
2010-01-01
Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube–specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms. PMID:20354199
Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation
NASA Astrophysics Data System (ADS)
Zhang, Yan; Chen, Genyu; Mao, Shuai; Zhou, Cong; Chen, Fei
2017-06-01
The hybrid laser arc welding (HLAW) of 42CrMo quenched and tempered steel was conducted. The effect of the processing parameters, such as the relative positions of the laser and the arc, the shielding gas flow rate, the defocusing distance, the laser power, the wire feed rate and the welding speed, on the pore formation was analyzed, the morphological characteristics of the pores were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the majority of the pores were invasive. The pores formed at the leading a laser (LA) welding process were fewer than those at the leading a arc (AL) welding process. Increasing the shielding gas flow rate could also facilitate the reduction of pores. The laser power and the welding speed were two key process parameters to reduce the pores. The flow of the molten pool, the weld cooling rate and the pore escaping rate as a result of different parameters could all affect pore formation. An ideal pore-free weld was obtained for the optimal welding process parameters.
Alagdar, Gada Sulaiman A.; Oo, May Kyaw; Sengupta, Pinaki; Mandal, Uttam Kumar; Jaffri, Julian Md.; Chatterjee, Bappaditya
2017-01-01
Background and Objective: One of the established strategies to improve solubility and dissolution rate of poorly water-soluble drugs is solid dispersion (SD). Polyethylene glycol (PEG) is used as common carrier despite its stability problem which may be overcome by the addition of hydrophobic polymer. The present research aimed to develop an SD formulation with ibuprofen, a poor water-soluble BCS Class II drug as active pharmaceutical ingredient (API) and PEG 4000-ethyl cellulose (EC) as binary carrier. Methods: Melt mixing SD method was employed using a ratio of API: binary carrier (1:3.5 w/w) (SDPE). Another SD was prepared using only PEG (SDP) as a carrier for comparative study. The developed formulation was evaluated using optical microscopy, scanning electron microscopy (SEM), determination of moisture content, differential scanning calorimetry (DSC), in vitro dissolution test, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and flow properties. Results: SEM and DSC indicated the conversion of crystalline ibuprofen to fine partly amorphous solid dispersion, which was responsible for the increase in dissolution rate of SD than a physical mixture. The release characteristics within 1 h from the higher to the lower value were the SDPE> SDP> physical mixture. Flow property evaluation using the angle of repose showed no difference between SD and PM. However, by Carr index and Hausner ratio, the flow properties of SDPE was excellent. Conclusion: The SD formulation with the PEG 4000-EC carrier can be effective to enhance in vitro dissolution of ibuprofen immediate release dosage form. PMID:29184827
Analytical and numerical analysis of imaging mechanism of dynamic scanning electron microscopy.
Schröter, M-A; Holschneider, M; Sturm, H
2012-11-02
The direct observation of small oscillating structures with the help of a scanning electron beam is a new approach to study the vibrational dynamics of cantilevers and microelectromechanical systems. In the scanning electron microscope, the conventional signal of secondary electrons (SE, dc part) is separated from the signal response of the SE detector, which is correlated to the respective excitation frequency for vibration by means of a lock-in amplifier. The dynamic response is separated either into images of amplitude and phase shift or into real and imaginary parts. Spatial resolution is limited to the diameter of the electron beam. The sensitivity limit to vibrational motion is estimated to be sub-nanometer for high integration times. Due to complex imaging mechanisms, a theoretical model was developed for the interpretation of the obtained measurements, relating cantilever shapes to interaction processes consisting of incident electron beam, electron-lever interaction, emitted electrons and detector response. Conclusions drawn from this new model are compared with numerical results based on the Euler-Bernoulli equation.
Publications - GMC 58 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 58 Publication Details Title: X-ray diffraction and scanning electron microscopy mineral , Michael, and Core Laboratories, 1985, X-ray diffraction and scanning electron microscopy mineral analyses
Scanning electron microscope fine tuning using four-bar piezoelectric actuated mechanism
NASA Astrophysics Data System (ADS)
Hatamleh, Khaled S.; Khasawneh, Qais A.; Al-Ghasem, Adnan; Jaradat, Mohammad A.; Sawaqed, Laith; Al-Shabi, Mohammad
2018-01-01
Scanning Electron Microscopes are extensively used for accurate micro/nano images exploring. Several strategies have been proposed to fine tune those microscopes in the past few years. This work presents a new fine tuning strategy of a scanning electron microscope sample table using four bar piezoelectric actuated mechanisms. The introduced paper presents an algorithm to find all possible inverse kinematics solutions of the proposed mechanism. In addition, another algorithm is presented to search for the optimal inverse kinematic solution. Both algorithms are used simultaneously by means of a simulation study to fine tune a scanning electron microscope sample table through a pre-specified circular or linear path of motion. Results of the study shows that, proposed algorithms were able to minimize the power required to drive the piezoelectric actuated mechanism by a ratio of 97.5% for all simulated paths of motion when compared to general non-optimized solution.
Malignant human cell transformation of Marcellus shale gas drilling flow back water
Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max
2015-01-01
The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation is known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these waste waters, flow back water from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy / energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependant. In addition, flow back water-transformed BEAS-2B cells show a better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. PMID:26210350
2017-02-02
Corresponding Author Abstract Accurate virus quantification is sought, but a perfect method still eludes the scientific community. Electron...unlimited. UNCLASSIFIED 2 provides morphology data and counts all viral particles, including partial or noninfectious particles; however, EM methods ...consistent, reproducible virus quantification method called Scanning Transmission Electron Microscopy – Virus Quantification (STEM-VQ) which simplifies
Yaffee, M; Walter, P; Richter, C; Müller, M
1996-01-01
When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8643576
Masters, Robert C; Pearson, Andrew J; Glen, Tom S; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M; Lidzey, David G; Rodenburg, Cornelia
2015-04-24
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials.
Lei, Yu; Zhang, Xianyun; Xu, Dingding; Yu, Minfeng; Yi, Zhiran; Li, Zhixiang; Sun, Aihua; Xu, Gaojie; Cui, Ping; Guo, Jianjun
2018-05-03
Micro- and nanopatterning of cost-effective addressable metallic nanostructures has been a long endeavor in terms of both scientific understanding and industrial needs. Herein, a simple and efficient dynamic meniscus-confined electrodeposition (MCED) technique for precisely positioned copper line micropatterns with superior electrical conductivity (greater than 1.57 × 10 4 S/cm) on glass, silicon, and gold substrates is reported. An unexpected higher printing speed in the evaporative regime is realized for precisely positioned copper lines patterns with uniform width and height under horizontal scanning-mode. The final line height and width depend on the typical behavior of traditional flow coating process, while the surface morphologies and roughness are mainly governed by evaporation-driven electrocrystallization dynamics near the receding moving contact line. Integrated 3D structures and a rapid prototyping of 3D hot-wire anemometer are further demonstrated, which is very important for the freedom integration applications in advanced conceptual devices, such as miniaturized electronics and biomedical sensors and actuators.
NASA Astrophysics Data System (ADS)
Suk, Dongwoo; Van der Voo, Rob; Peacor, Donald R.
Early to middle Paleozoic carbonates of eastern North America have been pervasively remagnetized. In order to determine the process of remagnetization, scanning and scanning transmission electron microscopy have been used to characterize magnetite in thin sections and in concentrated separates. Samples included Ordovician Knox carbonates from east Tennessee, Ordovician Trenton limestone and Devonian Onondaga and Helderberg limestones from New York, and Ordovician Trenton carbonates from Michigan. Inclusions of authigenic minerals within magnetite grains, lack of cations other than iron, and a variety of textural relations all imply that the magnetite is authigenic. These data are consistent with estimates that paleotemperatures never exceeded values that would reset magnetic directions. The remagnetization is thus a chemical remanent magnetization (CRM) rather than viscous remanent magnetization (VRM). As the timing of remagnetization corresponds to the Alleghenian orogeny, the observed relations imply stress-induced crystallization of magnetite that was mediated by fluids, consistent with but not requiring fluid flow on a regional basis.
Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna
2016-05-01
The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.
Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites
Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna
2016-01-01
The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability. PMID:27222742
Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method.
Liu, Yixi; Liu, Le; He, Yonghong; Zhu, Liang; Ma, Hui
2015-05-19
We presented a decoding method of quantum dots encoded microbeads with its fluorescence spectra using line scan hyperspectral fluorescence imaging (HFI) method. A HFI method was developed to attain both the spectra of fluorescence signal and the spatial information of the encoded microbeads. A decoding scheme was adopted to decode the spectra of multicolor microbeads acquired by the HFI system. Comparison experiments between the HFI system and the flow cytometer were conducted. The results showed that the HFI system has higher spectrum resolution; thus, more channels in spectral dimension can be used. The HFI system detection and decoding experiment with the single-stranded DNA (ssDNA) immobilized multicolor beads was done, and the result showed the efficiency of the HFI system. Surface modification of the microbeads by use of the polydopamine was characterized by the scanning electron microscopy and ssDNA immobilization was characterized by the laser confocal microscope. These results indicate that the designed HFI system can be applied to practical biological and medical applications.
Fortunato, Luca; Jeong, Sanghyun; Wang, Yiran; Behzad, Ali R; Leiknes, TorOve
2016-12-01
Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Xiuhua; Zu, Yuangang; Jiang, Ru; Wang, Ying; Li, Yong; Li, Qingyong; Zhao, Dongmei; Zu, Baishi; Zhang, Baoyou; Sun, Zhiqiang; Zhang, Xiaonan
2011-01-01
The goal of the present work was to study the feasibility of 10-hydroxycamptothecin (HCPT) nanoparticle preparation using supercritical antisolvent (SAS) precipitation. The influences of various experimental factors on the mean particle size (MPS) of HCPT nanoparticles were investigated. The optimum micronization conditions are determined as follows: HCPT solution concentration 0.5 mg/mL, the flow rate ratio of CO2 and HCPT solution 19.55, precipitation temperature 35 °C and precipitation pressure 20 MPa. Under the optimum conditions, HCPT nanoparticles with a MPS of 180 ± 20.3 nm were obtained. Moreover, the HCPT nanoparticles obtained were characterized by Scanning electron microscopy, Dynamic light scattering, Fourier-transform infrared spectroscopy, High performance liquid chromatography-mass spectrometry, X-ray diffraction and Differential scanning calorimetry analyses. The physicochemical characterization results showed that the SAS process had not induced degradation of HCPT. Finally, the dissolution rates of HCPT nanoparticles were investigated and the results proved that there is a significant increase in dissolution rate compared to unprocessed HCPT. PMID:21731466
Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita
2016-01-01
Background and Aims Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. Methods The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G0/G1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain–nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Key Results Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Conclusions Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members belonging to this highly complex polyploid family. PMID:27594649
Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita
2016-11-01
Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G 0 /G 1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain-nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members belonging to this highly complex polyploid family. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy
Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Yu.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Yu.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V.
2014-01-01
The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments. PMID:24434734
NASA Astrophysics Data System (ADS)
Lei, Ming; Tian, Qing; Wu, Kevin; Zhao, Yan
2016-03-01
Gate to source/drain (S/D) short is the most common and detrimental failure mechanism for advanced process technology development in Metal-Oxide-Semiconductor-Field-Effect-Transistor (MOSFET) device manufacturing. Especially for sub-1Xnm nodes, MOSFET device is more vulnerable to gate-S/D shorts due to the aggressive scaling. The detection of this kind of electrical short defect is always challenging for in-line electron beam inspection (EBI), especially new shorting mechanisms on atomic scale due to new material/process flow implementation. The second challenge comes from the characterization of the shorts including identification of the exact shorting location. In this paper, we demonstrate unique scan direction induced charging dynamics (SDCD) phenomenon which stems from the transistor level response from EBI scan at post metal contact chemical-mechanical planarization (CMP) layers. We found that SDCD effect is exceptionally useful for gate-S/D short induced voltage contrast (VC) defect detection, especially for identification of shorting locations. The unique SDCD effect signatures of gate-S/D shorts can be used as fingerprint for ground true shorting defect detection. Correlation with other characterization methods on the same defective location from EBI scan shows consistent results from various shorting mechanism. A practical work flow to implement the application of SDCD effect for in-line EBI monitor of critical gate-S/D short defects is also proposed, together with examples of successful application use cases which mostly focus on static random-access memory (SRAM) array regions. Although the capability of gate-S/D short detection as well as expected device response is limited to passing transistors and pull-down transistors due to the design restriction from standard 6-cell SRAM structure, SDCD effect is proven to be very effective for gate-S/D short induced VC defect detection as well as yield learning for advanced technology development.
Reising, Arved E; Schlabach, Sabine; Baranau, Vasili; Stoeckel, Daniela; Tallarek, Ulrich
2017-09-01
Column wall effects are well recognized as major limiting factor in achieving high separation efficiency in HPLC. This is especially important for modern analytical columns packed with small particles, where wall effects dominate the band broadening. Detailed knowledge about the packing microstructure of packed analytical columns has so far not been acquired. Here, we present the first three-dimensional reconstruction protocol for these columns utilizing focused ion-beam scanning electron microscopy (FIB-SEM) on a commercial 2.1mm inner diameter×50mm length narrow-bore analytical column packed with 1.7μm bridged-ethyl hybrid silica particles. Two sections from the packed bed are chosen for reconstruction by FIB-SEM: one from the bulk packing region of the column and one from its critical wall region. This allows quantification of structural differences between the wall region and the center of the bed due to effects induced by the hard, confining column wall. Consequences of these effects on local flow velocity in the column are analyzed with flow simulations utilizing the lattice-Boltzmann method. The reconstructions of the bed structures reveal significant structural differences in the wall region (extending radially over approximately 62 particle diameters) compared to the center of the column. It includes the local reduction of the external porosity by up to 10% and an increase of the mean particle diameter by up to 3%, resulting in a decrease of the local flow velocity by up to 23%. In addition, four (more ordered) layers of particles in the direct vicinity of the column wall induce local velocity fluctuations by up to a factor of three regarding the involved velocity amplitudes. These observations highlight the impact of radial variations in packing microstructure on band migration and column performance. This knowledge on morphological peculiarities of column wall effects helps guiding us towards further optimization of the packing process for analytical HPLC columns. Copyright © 2017 Elsevier B.V. All rights reserved.
Qualitative and quantitative interpretation of SEM image using digital image processing.
Saladra, Dawid; Kopernik, Magdalena
2016-10-01
The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Using the scanning electron microscope on the production line to assure quality semiconductors
NASA Technical Reports Server (NTRS)
Adolphsen, J. W.; Anstead, R. J.
1972-01-01
The use of the scanning electron microscope to detect metallization defects introduced during batch processing of semiconductor devices is discussed. A method of determining metallization integrity was developed which culminates in a procurement specification using the scanning microscope on the production line as a quality control tool. Batch process control of the metallization operation is monitored early in the manufacturing cycle.
Pieniazek, Facundo; Messina, Valeria
2016-11-01
In this study the effect of freeze drying on the microstructure, texture, and tenderness of Semitendinous and Gluteus Medius bovine muscles were analyzed applying Scanning Electron Microscopy combined with image analysis. Samples were analyzed by Scanning Electron Microscopy at different magnifications (250, 500, and 1,000×). Texture parameters were analyzed by Texture analyzer and by image analysis. Tenderness by Warner-Bratzler shear force. Significant differences (p < 0.05) were obtained for image and instrumental texture features. A linear trend with a linear correlation was applied for instrumental and image features. Image texture features calculated from Gray Level Co-occurrence Matrix (homogeneity, contrast, entropy, correlation and energy) at 1,000× in both muscles had high correlations with instrumental features (chewiness, hardness, cohesiveness, and springiness). Tenderness showed a positive correlation in both muscles with image features (energy and homogeneity). Combing Scanning Electron Microscopy with image analysis can be a useful tool to analyze quality parameters in meat.Summary SCANNING 38:727-734, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Flat panel ferroelectric electron emission display system
Sampayan, Stephen E.; Orvis, William J.; Caporaso, George J.; Wieskamp, Ted F.
1996-01-01
A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.
Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software.
Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique
2011-01-01
Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this article, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. Copyright © 2011 Wiley Periodicals, Inc.
Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software
Demers, Hendrix; Poirier-Demers, Nicolas; Couture, Alexandre Réal; Joly, Dany; Guilmain, Marc; de Jonge, Niels; Drouin, Dominique
2011-01-01
Monte Carlo softwares are widely used to understand the capabilities of electron microscopes. To study more realistic applications with complex samples, 3D Monte Carlo softwares are needed. In this paper, the development of the 3D version of CASINO is presented. The software feature a graphical user interface, an efficient (in relation to simulation time and memory use) 3D simulation model, accurate physic models for electron microscopy applications, and it is available freely to the scientific community at this website: www.gel.usherbrooke.ca/casino/index.html. It can be used to model backscattered, secondary, and transmitted electron signals as well as absorbed energy. The software features like scan points and shot noise allow the simulation and study of realistic experimental conditions. This software has an improved energy range for scanning electron microscopy and scanning transmission electron microscopy applications. PMID:21769885
The spatial coherence function in scanning transmission electron microscopy and spectroscopy.
Nguyen, D T; Findlay, S D; Etheridge, J
2014-11-01
We investigate the implications of the form of the spatial coherence function, also referred to as the effective source distribution, for quantitative analysis in scanning transmission electron microscopy, and in particular for interpreting the spatial origin of imaging and spectroscopy signals. These questions are explored using three different source distribution models applied to a GaAs crystal case study. The shape of the effective source distribution was found to have a strong influence not only on the scanning transmission electron microscopy (STEM) image contrast, but also on the distribution of the scattered electron wavefield and hence on the spatial origin of the detected electron intensities. The implications this has for measuring structure, composition and bonding at atomic resolution via annular dark field, X-ray and electron energy loss STEM imaging are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A
2013-01-01
A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO3-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO3-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO3-HA. For silicate-substituted hydroxyapatite (SiO4-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO4-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...
Lane, Whitney O.; Jantzen, Alexandra E.; Carlon, Tim A.; Jamiolkowski, Ryan M.; Grenet, Justin E.; Ley, Melissa M.; Haseltine, Justin M.; Galinat, Lauren J.; Lin, Fu-Hsiung; Allen, Jason D.; Truskey, George A.; Achneck, Hardean E.
2012-01-01
The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6. PMID:22297325
Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion
2010-08-24
X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical
Jeyanthi, Venkadapathi; Velusamy, Palaniyandi
2016-06-01
The aim of this study was to purify, characterize and evaluate the antibacterial activity of bioactive compound against methicillin-resistant Staphylococcus aureus (MRSA). The anti-MRSA compound was produced by a halophilic bacterial strain designated as MHB1. The MHB1 strain exhibited 99 % similarity to Bacillus amyloliquefaciens based on 16S rRNA gene analysis. The culture conditions of Bacillus amyloliquefaciens MHB1 were optimized using nutritional and environmental parameters for enhanced anti-MRSA compound production. The pure bioactive compound was isolated using silica gel column chromatography and Semi-preparative High-performance liquid chromatography (Semi-preparative HPLC). The Thin layer chromatography, Fourier transform infrared spectroscopy and proton NMR ((1)H NMR) analysis indicated the phenolic nature of the compound. The molecular mass of the purified compound was 507 Da as revealed by Liquid chromatography-mass spectrometry (LC-MS) analysis. The compound inhibited the growth of MRSA with minimum inhibitory concentration (MIC) of 62.5 µg mL(-1). MRSA bacteria exposed to 4× MIC of the compound and the cell viability was determined using flow cytometric analysis. Scanning electron microscope and Transmission electron microscope analysis was used to determine the ultrastructural changes in bacteria. This is the first report on isolation of anti-MRSA compound from halophilic B. amyloliquefaciens MHB1 and could act as a promising biocontrol agent.
Kohler, Steven W; Chen, Richard; Kagan, Alex; Helvey, Dustin W; Buccigrossi, David
2013-06-01
In order to determine the effects of implementation of an electronic medical record on rates of repeat computed tomography (CT) scanning in the emergency department (ED) setting, we analyzed the utilization of CT of the kidneys, ureters, and bladder (CT KUB) for the detection of urinary tract calculi for periods before and after the implementation of a hospital-wide electronic medical record system. Rates of repeat CT scanning within a 6-month period of previous scan were determined pre- and post-implementation and compared. Prior to implementation, there was a 6-month repeat rate of 6.2 % compared with the post-implementation period, which was associated with a 6-month repeat rate of 4.1 %. Statistical analysis using a two-sample, one-tailed t test for difference of means was associated with a p value of 0.00007. This indicates that the implementation of the electronic medical record system was associated with a 34 % decrease in 6-month repeat CT KUB scans. We conclude that the use of an electronic medical record can be associated with a decrease in utilization of unnecessary repeat CT imaging, leading to decreased cumulative lifetime risk for cancer in these patients and more efficient utilization of ED and radiologic resources.
You, Yun-Wen; Chang, Hsun-Yun; Liao, Hua-Yang; Kao, Wei-Lun; Yen, Guo-Ji; Chang, Chi-Jen; Tsai, Meng-Hung; Shyue, Jing-Jong
2012-10-01
Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged.
Zečević, Jovana; Hermannsdörfer, Justus; Schuh, Tobias; de Jong, Krijn P; de Jonge, Niels
2017-01-01
Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of scanning TEM (STEM) brings about the dissolution of silica nanoparticles in water by a gradual reduction of their sizes, and that silica redeposites at the sides of the nanoparticles in the scanning direction of the electron beam, such that elongated nanoparticles are formed. Nanoparticles with an elongation in a different direction are obtained simply by changing the scan direction. Material is expelled from the center of the nanoparticles at higher electron dose, leading to the formation of doughnut-shaped objects. Nanoparticles assembled in an aggregate gradually fuse, and the electron beam exposed section of the aggregate reduces in size and is elongated. Under TEM conditions with a stationary electron beam, the nanoparticles dissolve but do not elongate. The observed phenomena are important to consider when conducting liquid-phase STEM experiments on silica-based materials and may find future application for controlled anisotropic manipulation of the size and the shape of nanoparticles in liquid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method.
Feng, Jian-Min; Dai, Ye-Jing
2013-05-21
Combining carbon nanotubes (CNTs) with graphene has been proved to be a feasible method for improving the performance of graphene for some practical applications. This paper reports a water-assisted route to grow graphene on CNTs from ferrocene and thiophene dissolved in ethanol by the chemical vapor deposition method in an argon flow. A double injection technique was used to separately inject ethanol solution and water for the preparation of graphene/CNTs. First, CNTs were prepared from ethanol solution and water. The injection of ethanol solution was suspended and water alone was injected into the reactor to etch the CNTs. Thereafter, ethanol solution was injected along with water, which is the key factor in obtaining graphene/CNTs. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and Raman scattering analyses confirmed that the products were the hybrid materials of graphene/CNTs. X-ray photo-electron spectroscopy analysis showed the presence of oxygen rich functional groups on the surface of the graphene/CNTs. Given the activity of the graphene/CNT surface, CdS quantum dots adhered onto it uniformly through simple mechanical mixing.
Strain mapping in TEM using precession electron diffraction
Taheri, Mitra Lenore; Leff, Asher Calvin
2017-02-14
A sample material is scanned with a transmission electron microscope (TEM) over multiple steps having a predetermined size at a predetermined angle. Each scan at a predetermined step and angle is compared to a template, wherein the template is generated from parameters of the material and the scanning. The data is then analyzed using local mis-orientation mapping and/or Nye's tensor analysis to provide information about local strain states.
Sparse imaging for fast electron microscopy
NASA Astrophysics Data System (ADS)
Anderson, Hyrum S.; Ilic-Helms, Jovana; Rohrer, Brandon; Wheeler, Jason; Larson, Kurt
2013-02-01
Scanning electron microscopes (SEMs) are used in neuroscience and materials science to image centimeters of sample area at nanometer scales. Since imaging rates are in large part SNR-limited, large collections can lead to weeks of around-the-clock imaging time. To increase data collection speed, we propose and demonstrate on an operational SEM a fast method to sparsely sample and reconstruct smooth images. To accurately localize the electron probe position at fast scan rates, we model the dynamics of the scan coils, and use the model to rapidly and accurately visit a randomly selected subset of pixel locations. Images are reconstructed from the undersampled data by compressed sensing inversion using image smoothness as a prior. We report image fidelity as a function of acquisition speed by comparing traditional raster to sparse imaging modes. Our approach is equally applicable to other domains of nanometer microscopy in which the time to position a probe is a limiting factor (e.g., atomic force microscopy), or in which excessive electron doses might otherwise alter the sample being observed (e.g., scanning transmission electron microscopy).
A Boundary Scan Test Vehicle for Direct Chip Attach Testing
NASA Technical Reports Server (NTRS)
Parsons, Heather A.; DAgostino, Saverio; Arakaki, Genji
2000-01-01
To facilitate the new faster, better and cheaper spacecraft designs, smaller more mass efficient avionics and instruments are using higher density electronic packaging technologies such as direct chip attach (DCA). For space flight applications, these technologies need to have demonstrated reliability and reasonably well defined fabrication and assembly processes before they will be accepted as baseline designs in new missions. As electronics shrink in size, not only can repair be more difficult, but 49 probing" circuitry can be very risky and it becomes increasingly more difficult to identify the specific source of a problem. To test and monitor these new technologies, the Direct Chip Attach Task, under NASA's Electronic Parts and Packaging Program (NEPP), chose the test methodology of boundary scan testing. The boundary scan methodology was developed for interconnect integrity and functional testing at hard to access electrical nodes. With boundary scan testing, active devices are used and failures can be identified to the specific device and lead. This technology permits the incorporation of "built in test" into almost any circuit and thus gives detailed test access to the highly integrated electronic assemblies. This presentation will describe boundary scan, discuss the development of the boundary scan test vehicle for DCA and current plans for testing of direct chip attach configurations.
Masters, Robert C.; Pearson, Andrew J.; Glen, Tom S.; Sasam, Fabian-Cyril; Li, Letian; Dapor, Maurizio; Donald, Athene M.; Lidzey, David G.; Rodenburg, Cornelia
2015-01-01
The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials. PMID:25906738
Flat panel ferroelectric electron emission display system
Sampayan, S.E.; Orvis, W.J.; Caporaso, G.J.; Wieskamp, T.F.
1996-04-16
A device is disclosed which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density. 6 figs.
Electron Beam-Induced Writing of Nanoscale Iron Wires on a Functional Metal Oxide
2013-01-01
Electron beam-induced surface activation (EBISA) has been used to grow wires of iron on rutile TiO2(110)-(1 × 1) in ultrahigh vacuum. The wires have a width down to ∼20 nm and hence have potential utility as interconnects on this dielectric substrate. Wire formation was achieved using an electron beam from a scanning electron microscope to activate the surface, which was subsequently exposed to Fe(CO)5. On the basis of scanning tunneling microscopy and Auger electron spectroscopy measurements, the activation mechanism involves electron beam-induced surface reduction and restructuring. PMID:24159366
Chowdhury, S; Hillman, Damon A; Catledge, Shane A; Konovalov, Valery V; Vohra, Yogesh K
2006-10-01
Ultrasmooth nanostructured diamond (USND) films were synthesized on Ti-6Al-4V medical grade substrates by adding helium in H(2)/CH(4)/N(2) plasma and changing the N(2)/CH(4) gas flow from 0 to 0.6. We were able to deposit diamond films as smooth as 6 nm (root-mean-square), as measured by an atomic force microscopy (AFM) scan area of 2 μm(2). Grain size was 4-5 nm at 71% He in (H(2) + He) and N(2)/CH(4) gas flow ratio of 0.4 without deteriorating the hardness (~50-60 GPa). The characterization of the films was performed with AFM, scanning electron microscopy, x-ray diffraction (XRD), Raman spectroscopy, and nanoindentation techniques. XRD and Raman results showed the nanocrystalline nature of the diamond films. The plasma species during deposition were monitored by optical emission spectroscopy. With increasing N(2)/CH(4) feedgas ratio (CH(4) was fixed) in He/H(2)/CH(4)/N(2) plasma, a substantial increase of CN radical (normalized by Balmer H(α) line) was observed along with a drop in surface roughness up to a critical N(2)/CH(4) ratio of 0.4. The CN radical concentration in the plasma was thus correlated to the formation of ultrasmooth nanostructured diamond films.
Jung, Hee Joon; Huh, June; Park, Cheolmin
2012-10-21
This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm(-1)). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.
NASA Astrophysics Data System (ADS)
Jung, Hee Joon; Huh, June; Park, Cheolmin
2012-09-01
This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm-1). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.
Nazin, G. V.; Wu, S. W.; Ho, W.
2005-01-01
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends. PMID:15956189
Nazin, G V; Wu, S W; Ho, W
2005-06-21
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.
Concerns about the environmental and public health effects of particulate matter (PM) have stimulated interest in analytical techniques capable of measuring the size and chemical composition of individual aerosol particles. Computer-controlled scanning electron microscopy (CCSE...
Scanning electron microscopy of dentition: methodology and ultrastructural morphology of tooth wear.
Shkurkin, G V; Almquist, A J; Pfeihofer, A A; Stoddard, E L
1975-01-01
Scanning electron micrographs were taken of sets of human molars-those of paleo-Indians used in mastication of, ostensibly, a highly abrasive diet, and those of contemporary Americans. Different ultrastructural patterns of enamel wear were observed between the groups.
Scanning-electron-microscope used in real-time study of friction and wear
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1975-01-01
Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.
NASA Astrophysics Data System (ADS)
Li, N.; Li, W. Y.; Yang, X. W.; Feng, Y.; Vairis, A.
2018-05-01
Using cold spraying (CS), a surface layer with a modified microstructure and enhanced mechanical properties was formed on a 3.2 mm thick friction stir welded (FSWed) AA2024-T3 joint. The combined effect of "shot peening effect (SPE)" and "heat flow effect (HFE)" during CS were used to enhance joint mechanical properties. The microstructure evolution of the FSWed AA2024-T3 joints in the surface layer following CS coatings and their effect on mechanical properties were systematically characterized with electron back-scattered diffraction, transmission electron microscopy, differential scanning calorimetry and mechanical tests. Based on these experiments, a grain refinement, finer and more S phases, and improved amount of Guinier-Preston-Bagaryatsky (GPB) zones produced by CS treatments are proposed. The deposition of aluminum coating on the joint, lead to hardness recovery in the stir zone and the development of two low hardness zones as the density of GPB increased. The tensile properties of FSWed AA2024-T3 joints improved with the application of the aluminum coatings. Experiments and analysis of the enhanced mechanical properties mechanism indicate that SPE with a high plastic deformation and HFE with an intensive heat flow are necessary for the production of refined grains and increased numbers of GPB zones.
Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures.
Aksu, Cemile; Ingram, Wade; Bradford, Philip D; Jur, Jesse S
2018-08-17
This paper describes a way to fabricate novel hybrid low density nanostructures containing both carbon nanotubes (CNTs) and ceramic nanotubes. Using atomic layer deposition, a thin film of aluminum oxide was conformally deposited on aligned multiwall CNT foams in which the CNTs make porous, three-dimensional interconnected networks. A CO 2 laser was used to etch pure alumina nanotube structures by burning out the underlying CNT substrate in discrete locations via the printed laser pattern. Structural and morphological transitions during the calcination process of aluminum oxide coated CNTs were investigated through in situ transmission electron microscopy and high-resolution scanning electron microscopy. Laser parameters were optimized to etch the CNT away (i.e. etching speed, power and focal length) while minimizing damage to the alumina nanotubes due to overheating. This study opens a new route for fabricating very low density three dimensionally patterned materials with areas of dissimilar materials and properties. To demonstrate the attributes of these structures, the etched areas were used toward anisotropic microfluidic liquid flow. The demonstration used the full thickness of the material to make complex pathways for the liquid flow in the structure. Through tuning of processing conditions, the alumina nanotube (etched) regions became hydrophilic while the bulk material remained hydrophobic and electrically conductive.
Growth of ultrananocrystalline diamond film by DC Arcjet plasma enhanced chemical vapor deposition
NASA Astrophysics Data System (ADS)
Chen, G. C.; Li, B.; Yan, Z. Q.; Liu, J.; Lu, F. X.; Ye, H.
2012-06-01
Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H2/CH4, in which the flow ratio of CH4 to H2 (F/F) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the "pineapple-like" morphology and the "cauliflower-like" morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH4 to H2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the "pineapple-like" films whilst there were ultrananocrystalline grains within "cauliflower-like" films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the "cauliflower-like" films whilst (100) crystalline plane was the dominant surface in the "pineapple-like" films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions.
Single-scan rest/stress imaging: validation in a porcine model with 18F-Flurpiridaz.
Guehl, Nicolas J; Normandin, Marc D; Wooten, Dustin W; Rozen, Guy; Sitek, Arkadiusk; Ruskin, Jeremy; Shoup, Timothy M; Ptaszek, Leon M; El Fakhri, Georges; Alpert, Nathaniel M
2017-08-01
18 F-labeled myocardial flow agents are becoming available for clinical application but the ∼2 hour half-life of 18 F complicates their clinical application for rest-stress measurements. The goal of this work is to evaluate in a pig model a single-scan method which provides quantitative rest-stress blood flow in less than 15 minutes. Single-scan rest-stress measurements were made using 18 F-Flurpiridaz. Nine scans were performed in healthy pigs and seven scans were performed in injured pigs. A two-injection, single-scan protocol was used in which an adenosine infusion was started 4 minutes after the first injection of 18 F-Flurpiridaz and followed either 3 or 6 minutes later by a second radiotracer injection. In two pigs, microsphere flow measurements were made at rest and during stress. Dynamic images were reoriented into the short axis view, and regions of interest (ROIs) for the 17 myocardial segments were defined in bull's eye fashion. PET data were fitted with MGH2, a kinetic model with time varying kinetic parameters, in which blood flow changes abruptly with the introduction of adenosine. Rest and stress myocardial blood flow (MBF) were estimated simultaneously. The first 12-14 minutes of rest-stress PET data were fitted in detail by the MGH2 model, yielding MBF measurement with a mean precision of 0.035 ml/min/cc. Mean myocardial blood flow across pigs was 0.61 ± 0.11 mL/min/cc at rest and 1.06 ± 0.19 mL/min/cc at stress in healthy pigs and 0.36 ± 0.20 mL/min/cc at rest and 0.62 ± 0.24 mL/min/cc at stress in the ischemic area. Good agreement was obtained with microsphere flow measurement (slope = 1.061 ± 0.017, intercept = 0.051 ± 0.017, mean difference 0.096 ± 0.18 ml/min/cc). Accurate rest and stress blood flow estimation can be obtained in less than 15 min of PET acquisition. The method is practical and easy to implement suggesting the possibility of clinical translation.
Beam distribution reconstruction simulation for electron beam probe
NASA Astrophysics Data System (ADS)
Feng, Yong-Chun; Mao, Rui-Shi; Li, Peng; Kang, Xin-Cai; Yin, Yan; Liu, Tong; You, Yao-Yao; Chen, Yu-Cong; Zhao, Tie-Cheng; Xu, Zhi-Guo; Wang, Yan-Yu; Yuan, You-Jin
2017-07-01
An electron beam probe (EBP) is a detector which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While it can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain a parallel electron beam is introduced and a simulation code is developed. An EBP as a profile monitor for dense beams is then simulated using the fast scan method for various target beam profiles, including KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory is implemented and compared with the actual profile, and the expected agreement is achieved. Furthermore, as well as fast scan, a slow scan, i.e. step-by-step scan, is considered, which lowers the requirement for hardware, i.e. Radio Frequency deflector. We calculate the three-dimensional electric field of a Gaussian distribution and simulate the electron motion in this field. In addition, a fast scan along the target beam direction and slow scan across the beam are also presented, and can provide a measurement of longitudinal distribution as well as transverse profile simultaneously. As an example, simulation results for the China Accelerator Driven Sub-critical System (CADS) and High Intensity Heavy Ion Accelerator Facility (HIAF) are given. Finally, a potential system design for an EBP is described.
Recombinant Reflectin-Based Optical Materials
2012-01-01
sili- con substrates were placed in a sealed plastic box. The RH was controlled using a Dydra electronic cigar humidifier and monitored using a Fisher...diffraction gratings to generate diffraction patterns. Nano-spheres and la- mellar microstructures of refCBA samples were observed by scanning electron ...samples were observed by scanning electron microscopy and atomic force microscopy. Despite the reduced complexity of the refCBA protein compared to natural
Morphology of ductile metals eroded by a jet of spherical particles impinging at normal incidence
NASA Technical Reports Server (NTRS)
Veerabhadra Rao, P.; Young, S. G.; Buckley, D. H.
1983-01-01
Scanning electron microscopy and energy-dispersive X-ray spectroscopy are used, together with surface profile measurements, in the present morphological study of the erosion of an aluminum alloy and copper by the normal impact of spherical glass erodent particles. The morphology of the damage pattern is a manifestation of the flow pattern of erodent particles, and yields insight into the mechanisms that may be active at different stages of erosion. The simultaneous appearance of radial cracks and concentric rings is reported, together with wave crests which contain an accumulation of metallic flakes. A preliminary analysis is advanced to explain the formation of the various damage patterns observed.
Big Data and machine learning in radiation oncology: State of the art and future prospects.
Bibault, Jean-Emmanuel; Giraud, Philippe; Burgun, Anita
2016-11-01
Precision medicine relies on an increasing amount of heterogeneous data. Advances in radiation oncology, through the use of CT Scan, dosimetry and imaging performed before each fraction, have generated a considerable flow of data that needs to be integrated. In the same time, Electronic Health Records now provide phenotypic profiles of large cohorts of patients that could be correlated to this information. In this review, we describe methods that could be used to create integrative predictive models in radiation oncology. Potential uses of machine learning methods such as support vector machine, artificial neural networks, and deep learning are also discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zhou, Peng-Li; Wu, Gang; Han, Xin-Wei; Bi, Yong-Hua; Zhang, Wen-Guang; Wu, Zheng-Yang
2017-06-01
To compare the results of computed tomography venography (CTV) with a fixed and a flexible delayed scan time for Budd-Chiari syndrome (BCS) with inferior vena cava (IVC) obstruction. A total of 209 consecutive BCS patients with IVC obstruction underwent either a CTV with a fixed delayed scan time of 180s (n=87) or a flexible delayed scan time for good image quality according to IVC blood flow in color Doppler ultrasonography (n=122). The IVC blood flow velocity was measured using a color Doppler ultrasound prior to CT scan. Image quality was classified as either good, moderate, or poor. Image quality, surrounding structures and the morphology of the IVC obstruction were compared between the two groups using a χ 2 -test or paired or unpaired t-tests as appropriate. Inter-observer agreement was assessed using Kappa statistics. There was no significant difference in IVC blood flow velocity between the two groups. Overall image quality, surrounding structures and IVC obstruction morphology delineation on the flexible delayed scan time of CTV images were rated better relative to those obtained by fixed delayed scan time of CTV images (p<0.001). Evaluation of CTV data sets was significantly facilitated with flexible delayed scan time of CTV. There were no significant differences in Kappa statistics between Group A and Group B. The flexible delayed scan time of CTV was associated with better detection and more reliable characterization of BCS with IVC obstruction compared to a fixed delayed scan time. Copyright © 2017 Elsevier B.V. All rights reserved.
Elemental mapping with energy-dispersive X-ray spectroscopy (EDX) associated with scanning electron microscopy is highly useful for studying internally mixed atmospheric particles. Presented is a study of individual particles from urban airsheds and the analytical challenges in q...
USDA-ARS?s Scientific Manuscript database
The fat and protein in milk may be examined by scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy, and any bacteria present may be viewed by light microscopy. The fat exists as globules, the bulk of the protein is in the form of casein micelles, a...
Three-Dimensional Intercalated Porous Graphene on Si(111)
NASA Astrophysics Data System (ADS)
Pham, Trung T.; Sporken, Robert
2018-02-01
Three-dimensional intercalated porous graphene has been formed on Si(111) by electron beam evaporation under appropriate conditions and its structural and electronic properties investigated in detail by reflection high-energy electron diffraction, x-ray photoemission spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The results show that the crystalline quality of the porous graphene depended not only on the substrate temperature but also on the SiC layer thickness during carbon atom deposition.
Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps
NASA Technical Reports Server (NTRS)
Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.
1993-01-01
Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.
Local 2D-2D tunneling in high mobility electron systems
NASA Astrophysics Data System (ADS)
Pelliccione, Matthew; Sciambi, Adam; Bartel, John; Goldhaber-Gordon, David; Pfeiffer, Loren; West, Ken; Lilly, Michael; Bank, Seth; Gossard, Arthur
2012-02-01
Many scanning probe techniques have been utilized in recent years to measure local properties of high mobility two-dimensional (2D) electron systems in GaAs. However, most techniques lack the ability to tunnel into the buried 2D system and measure local spectroscopic information. We report scanning gate measurements on a bilayer GaAs/AlGaAs heterostructure that allows for a local modulation of tunneling between two 2D electron layers. We call this technique Virtual Scanning Tunneling Microscopy (VSTM) [1,2] as the influence of the scanning gate is analogous to an STM tip, except at a GaAs/AlGaAs interface instead of a surface. We will discuss the spectroscopic capabilities of the technique, and show preliminary results of measurements on a high mobility 2D electron system.[1] A. Sciambi, M. Pelliccione et al., Appl. Phys. Lett. 97, 132103 (2010).[2] A. Sciambi, M. Pelliccione et al., Phys. Rev. B 84, 085301 (2011).
Nogueira, Luísa; Quatrehomme, Gérald; Bertrand, Marie-France; Rallon, Christophe; Ceinos, Romain; du Jardin, Philippe; Adalian, Pascal; Alunni, Véronique
2017-03-01
This experimental study examined the lesions produced by a hatchet on human bones (tibiae). A total of 30 lesions were produced and examined macroscopically (naked eye) and by stereomicroscopy. 13 of them were also analyzed using scanning electron microscopy. The general shape of the lesion, both edges, both walls, the kerf floor and the extremities were described. The length and maximum width of the lesions were also recorded. The microscopic analysis of the lesions led to the description of a sharp-blunt mechanism. Specific criteria were identified (lateral pushing back, fragmentation of the upraising, fossa dug laterally to the edge and vertical striae) enabling the forensic expert to conclude that a hacking instrument was used. These criteria are easily identifiable using scanning electron microscopy, but can also be observed with stereomicroscopy. Overall, lateral pushing back and vertical striae visible using stereomicroscopy and scanning electron microscopy signal the use of a hacking tool.
Structural characteristics of a gas-liquid flow in a microchannel with a T-shaped mixer
NASA Astrophysics Data System (ADS)
Kuznetsov, V. V.; Kozulin, I. A.
2017-11-01
The results of experimental studies of the structural characteristics of a nitrogen-water mixture flow in a horizontal microchannel provided with a T-shaped mixer are presented. The experiments are performed in a channel with a rectangular cross section of 250 × 315 μm under the conditions of a dominating influence of capillary forces. Structural characteristics of the flow are determined using the two-beam laser scanning and high-speed video capture at a distance of 500 calibers from the inlet in a wide range of reduced gas- and liquid-flow rates. A new method for the identification of flow regimes is proposed based on the statistical treatment of the laser-scanning data, and a map of flow patterns is constructed.
Fabrication and Characterization of High Temperature Resin/Carbon Nanofiber Composites
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.
2005-01-01
Multifunctional composites present a route to structural weight reduction. Nanoparticles such as carbon nanofibers (CNF) provide a compromise as a lower cost nanosize reinforcement that yields a desirable combination of properties. Blends of PETI-330 and CNFs were prepared and characterized to investigate the potential of CNF composites as a high performance structural medium. Dry mixing techniques were employed and the effect of CNF loading level on melt viscosity was determined. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, samples containing 30 and 40 wt% CNF were scaled up to approx.300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the process in an attempt to achieve some alignment of CNFs in the flow direction. Moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of CNFs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/CNF composites are discussed. Keywords: resins, carbon nanofibers, scanning electron microscopy, electrical properties, thermal conductivity,injection
Direct and continuous synthesis of VO2 nanoparticles
NASA Astrophysics Data System (ADS)
Powell, M. J.; Marchand, P.; Denis, C. J.; Bear, J. C.; Darr, J. A.; Parkin, I. P.
2015-11-01
Monoclinic VO2 nanoparticles are of interest due to the material's thermochromic properties, however, direct synthesis routes to VO2 nanoparticles are often inaccessible due to the high synthesis temperatures or long reaction times required. Herein, we present a two-step synthesis route for the preparation of monoclinic VO2 nanoparticles using Continuous Hydrothermal Flow Synthesis (CHFS) followed by a short post heat treatment step. A range of particle sizes, dependent on synthesis conditions, were produced from 50 to 200 nm by varying reaction temperatures and the residence times in the process. The nanoparticles were characterised by powder X-ray diffraction, Raman and UV/Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The nanoparticles were highly crystalline with rod and sphere-like morphologies present in TEM micrographs, with the size of both the rod and spherical particles being highly dependent on both reaction temperature and residence time. SEM micrographs showed the surface of the powders produced from the CHFS process to be highly uniform. The samples were given a short post synthesis heat treatment to ensure that they were phase pure monoclinic VO2, which led to them exhibiting a large and reversible switch in optical properties (at near-IR wavelengths), which suggests that if such materials can be incorporated into coatings or in composites, they could be used for fenestration in architectural applications.
Direct and continuous synthesis of VO2 nanoparticles.
Powell, M J; Marchand, P; Denis, C J; Bear, J C; Darr, J A; Parkin, I P
2015-11-28
Monoclinic VO2 nanoparticles are of interest due to the material's thermochromic properties, however, direct synthesis routes to VO2 nanoparticles are often inaccessible due to the high synthesis temperatures or long reaction times required. Herein, we present a two-step synthesis route for the preparation of monoclinic VO2 nanoparticles using Continuous Hydrothermal Flow Synthesis (CHFS) followed by a short post heat treatment step. A range of particle sizes, dependent on synthesis conditions, were produced from 50 to 200 nm by varying reaction temperatures and the residence times in the process. The nanoparticles were characterised by powder X-ray diffraction, Raman and UV/Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The nanoparticles were highly crystalline with rod and sphere-like morphologies present in TEM micrographs, with the size of both the rod and spherical particles being highly dependent on both reaction temperature and residence time. SEM micrographs showed the surface of the powders produced from the CHFS process to be highly uniform. The samples were given a short post synthesis heat treatment to ensure that they were phase pure monoclinic VO2, which led to them exhibiting a large and reversible switch in optical properties (at near-IR wavelengths), which suggests that if such materials can be incorporated into coatings or in composites, they could be used for fenestration in architectural applications.
Postek, Michael T; Vladár, András E; Lowney, Jeremiah R; Keery, William J
2002-01-01
Traditional Monte Carlo modeling of the electron beam-specimen interactions in a scanning electron microscope (SEM) produces information about electron beam penetration and output signal generation at either a single beam-landing location, or multiple landing positions. If the multiple landings lie on a line, the results can be graphed in a line scan-like format. Monte Carlo results formatted as line scans have proven useful in providing one-dimensional information about the sample (e.g., linewidth). When used this way, this process is called forward line scan modeling. In the present work, the concept of image simulation (or the first step in the inverse modeling of images) is introduced where the forward-modeled line scan data are carried one step further to construct theoretical two-dimensional (2-D) micrographs (i.e., theoretical SEM images) for comparison with similar experimentally obtained micrographs. This provides an ability to mimic and closely match theory and experiment using SEM images. Calculated and/or measured libraries of simulated images can be developed with this technique. The library concept will prove to be very useful in the determination of dimensional and other properties of simple structures, such as integrated circuit parts, where the shape of the features is preferably measured from a single top-down image or a line scan. This paper presents one approach to the generation of 2-D simulated images and presents some suggestions as to their application to critical dimension metrology.
Torres-Tirado, David; Knabb, Maureen; Castaño, Irene; Patrón-Soberano, Araceli; De Las Peñas, Alejandro; Rubio, Rafael
2016-01-01
Candida glabrata (CG) is an opportunistic fungal pathogen that initiates infection by binding to host cells via specific lectin-like adhesin proteins. We have previously shown the importance of lectin-oligosaccharide binding in cardiac responses to flow and agonists. Because of the lectinic-oligosaccharide nature of CG binding, we tested the ability of CG to alter the agonist- and flow-induced changes in cardiac function in isolated perfused guinea pig hearts. Both transmission and scanning electron microscopy showed strong attachment of CG to the coronary endothelium, even after extensive washing. CG shifted the coronary flow vs. auricular-ventricular (AV) delay relationship upward, indicating that greater flow was required to achieve the same AV delay. This effect was completely reversed with mannose, partially reversed with galactose and N-acetylgalactosamine, but hyaluronan had no effect. Western blot analysis was used to determine binding of CG to isolated coronary endothelial luminal membrane (CELM) receptors, and the results indicate that flow-sensitive CELM receptors, ANG II type I, α-adrenergic 1A receptor, endothelin-2, and VCAM-1 bind to CG. In addition, CG inhibited agonist-induced effects of bradykinin, angiotensin, and phenylephrine on AV delay, coronary perfusion pressure, and left ventricular pressure. Mannose reversed the inhibitory effects of CG on the agonist responses. These results suggest that CG directly binds to flow-sensitive CELM receptors via lectinic-oligosaccharide interactions with mannose and disrupts the lectin-oligosaccharide binding necessary for flow-induced cardiac responses. Copyright © 2016 the American Physiological Society.
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM). PMID:29568263
Rodríguez, José-Rodrigo; Turégano-López, Marta; DeFelipe, Javier; Merchán-Pérez, Angel
2018-01-01
Semithin sections are commonly used to examine large areas of tissue with an optical microscope, in order to locate and trim the regions that will later be studied with the electron microscope. Ideally, the observation of semithin sections would be from mesoscopic to nanoscopic scales directly, instead of using light microscopy and then electron microscopy (EM). Here we propose a method that makes it possible to obtain high-resolution scanning EM images of large areas of the brain in the millimeter to nanometer range. Since our method is compatible with light microscopy, it is also feasible to generate hybrid light and electron microscopic maps. Additionally, the same tissue blocks that have been used to obtain semithin sections can later be used, if necessary, for transmission EM, or for focused ion beam milling and scanning electron microscopy (FIB-SEM).
a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source
NASA Astrophysics Data System (ADS)
Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.
2007-09-01
A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.
a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source
NASA Astrophysics Data System (ADS)
Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.
A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.
Study on the parameters of the scanning system for the 300 keV electron accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leo, K. W.; Chulan, R. M., E-mail: leo@nm.gov.my; Hashim, S. A.
2016-01-22
This paper describes the method to identify the magnetic coil parameters of the scanning system. This locally designed low energy electron accelerator with the present energy of 140 keV will be upgraded to 300 keV. In this accelerator, scanning system is required to deflect the energetic electron beam across a titanium foil in vertical and horizontal direction. The excitation current of the magnetic coil is determined by the energy of the electron beam. Therefore, the magnetic coil parameters must be identified to ensure the matching of the beam energy and excitation coil current. As the result, the essential parameters ofmore » the effective lengths for X-axis and Y-axis have been found as 0.1198 m and 0.1134 m and the required excitation coil currents which is dependenton the electron beam energies have be identified.« less
NASA Technical Reports Server (NTRS)
Li, C.-J.; Sun, Q.; Lagowski, J.; Gatos, H. C.
1985-01-01
The microscale characterization of electronic defects in (SI) GaAs has been a challenging issue in connection with materials problems encountered in GaAs IC technology. The main obstacle which limits the applicability of high resolution electron beam methods such as Electron Beam-Induced Current (EBIC) and cathodoluminescence (CL) is the low concentration of free carriers in semiinsulating (SI) GaAs. The present paper provides a new photo-EBIC characterization approach which combines the spectroscopic advantages of optical methods with the high spatial resolution and scanning capability of EBIC. A scanning electron microscope modified for electronic characterization studies is shown schematically. The instrument can operate in the standard SEM mode, in the EBIC modes (including photo-EBIC and thermally stimulated EBIC /TS-EBIC/), and in the cathodo-luminescence (CL) and scanning modes. Attention is given to the use of CL, Photo-EBIC, and TS-EBIC techniques.
H, Neumann; A.P, Schulz; S, Breer; A, Unger; B, Kienast
2015-01-01
Background: Osteochondral injuries, if not treated appropriately, often lead to severe osteoarthritis of the affected joint. Without refixation of the osteochondral fragment, human cartilage only repairs these defects imperfectly. All existing refixation systems for chondral defects have disadvantages, for instance bad MRI quality in the postoperative follow-up or low anchoring forces. To address the problem of reduced stability in resorbable implants, ultrasound-activated pins were developed. By ultrasound-activated melting of the tip of these implants a higher anchoring is assumed. Aim of the study was to investigate, if ultrasound-activated pins can provide a secure refixation of osteochondral fractures comparing to conventional screw and conventional, resorbable pin osteosynthesis. CT scans and scanning electron microscopy should proovegood refixation results with no further tissue damage by the melting of the ultrasound-activated pins in comparison to conventional osteosynthesis. Methods: Femoral osteochondral fragments in sheep were refixated with ultrasound-activated pins (SonicPin™), Ethipins® and screws (Asnis™). The quality of the refixated fragments was examined after three month of full weight bearing by CT scans and scanning electron microscopy of the cartilage surface. Results: The CT examination found almost no statistically significant difference in the quality of refixation between the three different implants used. Concerning the CT morphology, ultrasound-activated pins demonstrated at least the same quality in refixation of osteochondral fragments as conventional resorbable pins or screws. The scanning electron microscopy showed no major surface damage by the three implants, especially any postulated cartilage damage induced by the heat of the ultrasound-activated pin. The screws protruded above the cartilage surface, which may affect the opposingtibial surface. Conclusion: Using CT scans and scanning electron microscopy, the SonicPin™, the Ethipin® and screws were at least equivalent in refixation quality of osteochondral fragments. PMID:25674184
NASA Astrophysics Data System (ADS)
Zhi, Zhongwei; Yin, Xin; Dziennis, Suzan; Alpers, Charles E.; Wang, Ruikang K.
2013-03-01
Visualization and measurement of retinal blood flow (RBF) is important to the diagnosis and management of different eye diseases, including diabetic retinopathy. Optical microangiography (OMAG) is developed for generating 3D dynamic microcirculation image and later refined into ultra-high sensitive OMAG (UHS-OMAG) for true capillary vessels imaging. Here, we present the application of OMAG imaging technique for visualization of depth-resolved vascular network within retina and choroid as well as measurement of total retinal blood flow in mice. A fast speed spectral domain OCT imaging system at 820nm with a line scan rate of 140 kHz was developed to image mouse posterior eye. By applying UHS-OMAG scanning protocol and processing algorithm, we achieved true capillary level imaging of retina and choroid vasculature in mouse eye. The vascular pattern within different retinal layers and choroid was presented. An en face Doppler OCT approach [1] without knowing Doppler angle was adopted for the measurement of total retinal blood flow. The axial blood flow velocity is measured in an en face plane by raster scanning and the flow is calculated by integrating over the vessel area of the central retinal artery.
Physical properties of electricity.
Thomson, Angus J M
2013-01-01
Electricity is the flow of electrons through a conductor. The amount of current (amps) is related to the voltage (volts) pushing the electrons and the degree of resistance to flow (ohms). During their flow around a circuit, electrons can be used to create a number of useful byproducts such as heat and light. As electrons flow, they alter the charge of the matter they flow through, which may also generate electromagnetic effects. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights reserved.
A Versatile Strategy for Characterization and Imaging of Drip Flow Microbial Biofilms.
Li, Bin; Dunham, Sage J B; Ellis, Joseph F; Lange, Justin D; Smith, Justin R; Yang, Ning; King, Travis L; Amaya, Kensey R; Arnett, Clint M; Sweedler, Jonathan V
2018-06-05
The inherent architectural and chemical complexities of microbial biofilms mask our understanding of how these communities form, survive, propagate, and influence their surrounding environment. Here we describe a simple and versatile workflow for the cultivation and characterization of model flow-cell-based microbial ecosystems. A customized low-shear drip flow reactor was designed and employed to cultivate single and coculture flow-cell biofilms at the air-liquid interface of several metal surfaces. Pseudomonas putida F1 and Shewanella oneidensis MR-1 were selected as model organisms for this study. The utility and versatility of this platform was demonstrated via the application of several chemical and morphological imaging techniques-including matrix-assisted laser desorption/ionization mass spectrometry imaging, secondary ion mass spectrometry imaging, and scanning electron microscopy-and through the examination of model systems grown on iron substrates of varying compositions. Implementation of these techniques in combination with tandem mass spectrometry and a two-step imaging principal component analysis strategy resulted in the identification and characterization of 23 lipids and 3 oligosaccharides in P. putida F1 biofilms, the discovery of interaction-specific analytes, and the observation of several variations in cell and substrate morphology present during microbially influenced corrosion. The presented workflow is well-suited for examination of both single and multispecies drip flow biofilms and offers a platform for fundamental inquiries into biofilm formation, microbe-microbe interactions, and microbially influenced corrosion.
Effect of preparation methods and doping on the structural and tunable emissions of CdS
NASA Astrophysics Data System (ADS)
Mohamed, Mohamed Bakr; Abdel-Kader, M. H.; Alhazime, Ali A.; Almarashi, Jamal Q. M.
2018-03-01
Fe, Mn and Mg doped CdS samples were prepared by thermolysis method in air and under flow of nitrogen. Structural, compositional and optical properties of the prepared samples were investigated using x-ray powder diffraction (XRD), scanning electron microscope (SEM/EDS mapping), Fourier transform infrared red (FTIR), UV-vis absorption and photoluminescence (PL) spectroscopes. Rietveld refinement of x-ray data showed that all the undoped and doped CdS samples prepared in air and under flow of nitrogen have both cubic and hexagonal structures. The percentages of hexagonal and cubic phases for all prepared samples were determined. The crystallite size increased for CdS prepared under flow of N2 compared with the sample prepared in air. The energy gap of all the samples was calculated using UV data. The intensity of PL emission changed according to the method of preparation and the kind of doping elements. PL emission revealed a blue shift for CdS prepared in air compared with CdS prepared under flow of nitrogen; also all doped samples showed a red shift of PL spectra compared with undoped samples. Undoped and doped CdS with Fe and Mg samples emitted violet and blue sub-spectra. Mn doped CdS prepared in air revealed violet, blue and yellow sub-spectra, while the sample prepared under flow of N2 emitted violet, blue and green sub-spectra.
Design and performance of a beetle-type double-tip scanning tunneling microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaschinsky, Philipp; Coenen, Peter; Pirug, Gerhard
2006-09-15
A combination of a double-tip scanning tunneling microscope with a scanning electron microscope in ultrahigh vacuum environment is presented. The compact beetle-type design made it possible to integrate two independently driven scanning tunneling microscopes in a small space. Moreover, an additional level for coarse movement allows the decoupling of the translation and approach of the tunneling tip. The position of the two tips can be controlled from the millimeter scale down to 50 nm with the help of an add-on electron microscope. The instrument is capable of atomic resolution imaging with each tip.
Transition to subcritical turbulence in a tokamak plasma
NASA Astrophysics Data System (ADS)
van Wyk, F.; Highcock, E. G.; Schekochihin, A. A.; Roach, C. M.; Field, A. R.; Dorland, W.
2016-12-01
Tokamak turbulence, driven by the ion-temperature gradient and occurring in the presence of flow shear, is investigated by means of local, ion-scale, electrostatic gyrokinetic simulations (with both kinetic ions and electrons) of the conditions in the outer core of the Mega-Ampere Spherical Tokamak (MAST). A parameter scan in the local values of the ion-temperature gradient and flow shear is performed. It is demonstrated that the experimentally observed state is near the stability threshold and that this stability threshold is nonlinear: sheared turbulence is subcritical, i.e. the system is formally stable to small perturbations, but, given a large enough initial perturbation, it transitions to a turbulent state. A scenario for such a transition is proposed and supported by numerical results: close to threshold, the nonlinear saturated state and the associated anomalous heat transport are dominated by long-lived coherent structures, which drift across the domain, have finite amplitudes, but are not volume filling; as the system is taken away from the threshold into the more unstable regime, the number of these structures increases until they overlap and a more conventional chaotic state emerges. Whereas this appears to represent a new scenario for transition to turbulence in tokamak plasmas, it is reminiscent of the behaviour of other subcritically turbulent systems, e.g. pipe flows and Keplerian magnetorotational accretion flows.
NASA Astrophysics Data System (ADS)
Kim, Jae Gon; Lee, Gyoo Ho; Lee, Jin-Soo; Chon, Chul-Min; Kim, Tack Hyun; Ha, Kyoochul
2006-02-01
We examined the infiltration pattern of water in a regolith-bedrock profile consisting of two overburdens (OB1 and OB2), a buried rice paddy soil (PS), two texturally distinctive weathered materials (WM1 and WM2) and a fractured sedimentary rock (BR), using a Brilliant Blue FCF dye tracer. A black-coloured coating in conducting fractures in WM1, WM2 and BR was analysed by X-ray diffraction and scanning electron microscopy. The dye tracer penetrated to greater than 2 m depth in the profile. The macropore flow and saturated interflow were the major infiltration patterns in the profile. Macropore flow and saturated interflow were observed along fractures in WM1, WM2 and BR and at the dipping interfaces of PS-WM1, PS-WM2 and PS-BR respectively. Heterogeneous matrix flow occurred in upper overburden (OB1) and PS. Compared with OB1, the coarser textured OB2 acted as a physical barrier for vertical flow of water. The PS with low bulk density and many fine roots was another major conducting route of water in the profile. Manganese oxide and iron oxide were positively identified in the black coating material and had low crystallinity and high surface area, indicating their high reactivity with conducting contaminants.
In Vitro Ability of a Novel Nanohydroxyapatite Oral Rinse to Occlude Dentine Tubules
Hill, Robert G.; Chen, Xiaohui; Gillam, David G.
2015-01-01
Objectives. The aim of the study was to investigate the ability of a novel nanohydroxyapatite (nHA) desensitizing oral rinse to occlude dentine tubules compared to selected commercially available desensitizing oral rinses. Methods. 25 caries-free extracted molars were sectioned into 1 mm thick dentine discs. The dentine discs (n = 25) were etched with 6% citric acid for 2 minutes and rinsed with distilled water, prior to a 30-second application of test and control oral rinses. Evaluation was by (1) Scanning Electron Microscopy (SEM) of the dentine surface and (2) fluid flow measurements through a dentine disc. Results. Most of the oral rinses failed to adequately cover the dentine surface apart from the nHa oral rinse. However the hydroxyapatite, 1.4% potassium oxalate, and arginine/PVM/MA copolymer oral rinses, appeared to be relatively more effective than the nHA test and negative control rinses (potassium nitrate) in relation to a reduction in fluid flow measurements. Conclusions. Although the novel nHA oral rinse demonstrated the ability to occlude the dentine tubules and reduce the fluid flow measurements, some of the other oral rinses appeared to demonstrate a statistically significant reduction in fluid flow through the dentine disc, in particular the arginine/PVM/MA copolymer oral rinse. PMID:26161093
[Scanning electron microscope study of chemically disinfected endodontic files].
Navarro, G; Mateos, M; Navarro, J L; Canalda, C
1991-01-01
Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made.
Hiyoshi, Norihito
2018-05-17
Polyoxometalate nanosheets were synthesized at the gas/liquid interface of an aqueous solution of Keggin-type silicotungstic acid, cesium chloride, and n-octylamine. The structure of the nanosheets was elucidated via aberration-corrected scanning transmission electron microscopy at the atomic and molecular levels.
Scanning electron microscopy analysis of corrosion degradation on tinplate substrates.
Zumelzu, E; Cabezas, C; Vera, A
2003-01-01
The degradation of electrolytic tinplate used in food containers was analysed and evaluated, using scanning electron microscopy and electrochemical measurements of microcorrosion and ion dissolution by atomic absorption to prevent food contamination caused by metal traces and to increase the durability of such tinplates.
Recent interest in monitoring and speciation of particulate matter has led to increased application of scanning electron microscopy (SEM) coupled with energy-dispersive x-ray analysis (EDX) to individual particle analysis. SEM/EDX provides information on the size, shape, co...
Path-separated electron interferometry in a scanning transmission electron microscope
NASA Astrophysics Data System (ADS)
Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.
2018-05-01
We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the +1 diffraction order probe through amorphous carbon while passing the 0th and ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.
Local electric field direct writing – Electron-beam lithography and mechanism
Jiang, Nan; Su, Dong; Spence, John C. H.
2017-08-24
Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less
Local electric field direct writing – Electron-beam lithography and mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Nan; Su, Dong; Spence, John C. H.
Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less
Veazey, Joshua P; Reguera, Gemma; Tessmer, Stuart H
2011-12-01
The metal-reducing bacterium Geobacter sulfurreducens produces conductive protein appendages known as "pilus nanowires" to transfer electrons to metal oxides and to other cells. These processes can be harnessed for the bioremediation of toxic metals and the generation of electricity in bioelectrochemical cells. Key to these applications is a detailed understanding of how these nanostructures conduct electrons. However, to the best of our knowledge, their mechanism of electron transport is not known. We used the capability of scanning tunneling microscopy (STM) to probe conductive materials with higher spatial resolution than other scanning probe methods to gain insights into the transversal electronic behavior of native, cell-anchored pili. Despite the presence of insulating cellular components, the STM topography resolved electronic molecular substructures with periodicities similar to those reported for the pilus shaft. STM spectroscopy revealed electronic states near the Fermi level, consistent with a conducting material, but did not reveal electronic states expected for cytochromes. Furthermore, the transversal conductance was asymmetric, as previously reported for assemblies of helical peptides. Our results thus indicate that the Geobacter pilus shaft has an intrinsic electronic structure that could play a role in charge transport.
NASA Astrophysics Data System (ADS)
Everhart, Wesley; Dinardo, Joseph; Barr, Christian
2017-02-01
Electron beam melting (EBM) is a powder bed fusion-based additive manufacturing process in which selective areas of a layer of powder are melted with an electron beam and a part is built layer by layer. EBM scanning strategies within the Arcam AB® A2X EBM system rely upon governing relationships between the scan length of the beam path, the beam current, and speed. As a result, a large parameter process window exists for Ti-6Al-4V. Many studies have reviewed various properties of EBM materials without accounting for this effect. The work performed in this study demonstrates the relationship between scan length and the resulting density, microstructure, and mechanical properties of EBM-produced Ti-6Al-4V using the scanning strategies set by the EBM control software. This emphasizes the criticality of process knowledge and careful experimental design, and provides an alternate explanation for reported orientation-influenced strength differences.
... Computed tomography scan - heart; Calcium scoring; Multi-detector CT scan - heart; Electron beam computed tomography - heart; Agatston ... table that slides into the center of the CT scanner. You will lie on your back with ...
Patel, Binay; Watanabe, Masashi
2014-02-01
Scanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Österreicher, Johannes Albert; Kumar, Manoj
Characterization of Mg-Si precipitates is crucial for optimizing the homogenization heat treatment of Al-Mg-Si alloys. Although sample preparation is key for high quality scanning electron microscopy imaging, most common methods lead to dealloying of Mg-Si precipitates. In this article we systematically evaluate different sample preparation methods: mechanical polishing, etching with various reagents, and electropolishing using different electrolytes. We demonstrate that the use of a nitric acid and methanol electrolyte for electropolishing a homogenized Al-Mg-Si alloy prevents the dissolution of Mg-Si precipitates, resulting in micrographs of higher quality. This preparation method is investigated in depth and the obtained scanning electron microscopymore » images are compared with transmission electron micrographs: the shape and size of Mg-Si precipitates appear very similar in either method. The scanning electron micrographs allow proper identification and measurement of the Mg-Si phases including needles with lengths of roughly 200 nm. These needles are β″ precipitates as confirmed by high resolution transmission electron microscopy. - Highlights: •Secondary precipitation in homogenized 6xxx Al alloys is crucial for extrudability. •Existing sample preparation methods for SEM are improvable. •Electropolishing with nitric acid/methanol yields superior quality in SEM. •The obtained micrographs are compared to TEM micrographs.« less
Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.
Bolker, Asaf; Saguy, Cecile; Kalish, Rafi
2014-09-26
The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.
NASA Astrophysics Data System (ADS)
Lu, Xianfeng
The focus of this thesis is the study of the field electron emission (FEE) of diamond and related films synthesized by plasma enhanced chemical vapor deposition. The diamond and related films with different morphologies and compositions were prepared in a microwave plasma-enhanced chemical vapor deposition (CVD) reactor and a hot filament CVD reactor. Various analytical techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy were employed to characterize the surface morphology and chemical composition. The influence of surface morphology on the field electron emission property of diamond films was studied. The emission current of well-oriented microcrystalline diamond films is relatively small compared to that of randomly oriented microcrystalline diamond films. Meanwhile, the nanocrystalline diamond film has demonstrated a larger emission current than microcrystalline diamond films. The nanocone structure significantly improves the electron emission current of diamond films due to its strong field enhancement effect. The sp2 phase concentration also has significant influence on the field electron emission property of diamond films. For the diamond films synthesized by gas mixture of hydrogen and methane, their field electron emission properties were enhanced with the increase of methane concentration. The field electron emission enhancement was attributed to the increase of sp2 phase concentration, which increases the electrical conductivity of diamond films. For the diamond films synthesized through graphite etching, the growth rate and nucleation density of diamond films increase significantly with decreasing hydrogen flow rate. The field electron emission properties of the diamond films were also enhanced with the decrease of hydrogen flow rate. The field electron emission enhancement can be also attributed to the increase of the sp 2 phase concentration. In addition, the deviation of the experimental Fowler-Nordheim (F-N) plot from a straight line was observed for graphitic nanocone films. The deviation can be mainly attributed to the nonuniform field enhancement factor of the graphitic nanocones. In low macroscopic electric field regions, electrons are emitted mainly from nanocone or nanocones with the largest field enhancement factor, which corresponds to the smallest slope magnitude. With the increase of electric field, nanocones with small field enhancement factors also contribute to the emission current, which results in a reduced average field enhancement factor and therefore a large slope magnitude.
Differences between Subjective Balanced Occlusion and Measurements Reported With T-Scan III
Lila-Krasniqi, Zana; Shala, Kujtim; Krasniqi, Teuta Pustina; Bicaj, Teuta; Ahmedi, Enis; Dula, Linda; Dragusha, Arlinda Tmava; Guguvcevski, Ljuben
2017-01-01
BACKGROUND: The aetiology of Temporomandibular disorder is multifactorial, and numerous studies have addressed that occlusion may be of great importance in the pathogenesis of Temporomandibular disorder. AIM: The aim of this study is to determine if any direct relationship exists between balanced occlusion and Temporomandibular disorder and to evaluate the differences between subjective balanced occlusion and measurements reported with T-scan III electronic system. MATERIAL AND METHODS: A total of 54 subjects were divided into three groups, selection based on anamnesis-responded to a Fonseca questionnaire and clinical measurements analysed with electronic system T-scan III. In the I study group were participants with fixed dentures with prosthetic ceramic restorations. In the II study group were symptomatic participants with TMD. In the third control group were healthy participants with full arch dentition that completed a subjective questionnaire that documented the absence of jaw pain, joint noise, locking and subjects without a history of TMD. The occlusal balance was reported subjectively through Fonseca questionnaire and compared with occlusion analysed with electronic system T-scan III. RESULTS: For attributive data were used percentage of the structure. Differences in P < 0.05 were considered significant. After distributing attributive data of occlusal balance subjectively reported and compared with measurements analysed with electronic system T-scan III were found significant difference P < 0.001 in all three groups. CONCLUSION: In our study, it was concluded that there were statistically significant differences of balanced occlusion in all three groups. Also it was concluded that subjective data are not exact with measurements reported with electronic device T-scan III. PMID:28932311
Skjöldebrand, Charlotte; Schmidt, Susann; Vuong, Vicky; Pettersson, Maria; Grandfield, Kathryn; Högberg, Hans; Engqvist, Håkan; Persson, Cecilia
2017-01-01
Silicon nitride (SiNx) coatings are promising for joint replacement applications due to their high wear resistance and biocompatibility. For such coatings, a higher nitrogen content, obtained through an increased nitrogen gas supply, has been found to be beneficial in terms of a decreased dissolution rate of the coatings. The substrate temperature has also been found to affect the composition as well as the microstructure of similar coatings. The aim of this study was to investigate the effect of the substrate temperature and nitrogen flow on the coating composition, microstructure and mechanical properties. SiNx coatings were deposited onto CoCrMo discs using reactive high power impulse magnetron sputtering. During deposition, the substrate temperatures were set to 200 °C, 350 °C or 430 °C, with nitrogen-to-argon flow ratios of 0.06, 0.17 or 0.30. Scanning and transmission electron spectroscopy revealed that the coatings were homogenous and amorphous. The coatings displayed a nitrogen content of 23–48 at.% (X-ray photoelectron spectroscopy). The surface roughness was similar to uncoated CoCrMo (p = 0.25) (vertical scanning interferometry). The hardness and Young’s modulus, as determined from nanoindentation, scaled with the nitrogen content of the coatings, with the hardness ranging from 12 ± 1 GPa to 26 ± 2 GPa and the Young’s moduli ranging from 173 ± 8 GPa to 293 ± 18 GPa, when the nitrogen content increased from 23% to 48%. The low surface roughness and high nano-hardness are promising for applications exposed to wear, such as joint implants. PMID:28772532
NASA Astrophysics Data System (ADS)
Gardner, Craig M.; Lisauskas, Jennifer; Hull, Edward L.; Tan, Huwei; Sum, Stephen; Meese, Thomas; Jiang, Chunsheng; Madden, Sean; Caplan, Jay; Muller, James E.
2007-09-01
Although heart disease remains the leading cause of death in the industrialized world, there is still no method, even under cardiac catheterization, to reliably identify those atherosclerotic lesions most likely to lead to heart attack and death. These lesions, which are often non-stenotic, are frequently comprised of a necrotic, lipid-rich core overlaid with a thin fibrous cap infiltrated with inflammatory cells. InfraReDx has developed a scanning, near-infrared, optical-fiber-based, spectroscopic cardiac catheter system capable of acquiring NIR reflectance spectra from coronary arteries through flowing blood under automated pullback and rotation in order to identify lipid-rich plaques (LRP). The scanning laser source and associated detection electronics produce a spectrum in 5 ms at a collection rate of 40 Hz, yielding thousands of spectra in a single pullback. The system console analyzes the spectral data with a chemometric model, producing a hyperspectral image (a Chemogram, see figure below) that identifies LRP encountered in the region interrogated by the system. We describe the system architecture and components, explain the experimental procedure by which the chemometric model was constructed from spectral data and histology-based reference information collected from autopsy hearts, and provide representative data from ongoing ex vivo and clinical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinman, B.; Henkin, R.E.; Glisson, S.N.
Qualitative distribution of coronary flow using thallium-201 perfusion scans immediately postintubation was studied in 22 patients scheduled for elective coronary artery bypass surgery. Ten patients received a thiopental (4 mg/kg) and halothane induction. Twelve patients received a fentanyl (100 micrograms/kg) induction. Baseline thallium-201 perfusion scans were performed 24 h prior to surgery. These scans were compared with the scans performed postintubation. A thallium-positive scan was accepted as evidence of relative hypoperfusion. Baseline hemodynamic and ECG data were obtained prior to induction of anesthesia. These data were compared with the data obtained postintubation. Ten patients developed postintubation thallium-perfusion scan defects (thallium-positivemore » scan), even though there was no statistical difference between their baseline hemodynamics and hemodynamics at the time of intubation. There was no difference in the incidence of thallium-positive scans between those patients anesthetized by fentanyl and those patients anesthetized with thiopental-halothane. The authors conclude that relative hypoperfusion, and possibly ischemia, occurred in 45% of patients studied, despite stable hemodynamics, and that the incidence of these events was the same with two different anesthetic techniques.« less
Doppler color imaging. Principles and instrumentation.
Kremkau, F W
1992-01-01
DCI acquires Doppler-shifted echoes from a cross-section of tissue scanned by an ultrasound beam. These echoes are then presented in color and superimposed on the gray-scale anatomic image of non-Doppler-shifted echoes received during the scan. The flow echoes are assigned colors according to the color map chosen. Usually red, yellow, or white indicates positive Doppler shifts (approaching flow) and blue, cyan, or white indicates negative shifts (receding flow). Green is added to indicate variance (disturbed or turbulent flow). Several pulses (the number is called the ensemble length) are needed to generate a color scan line. Linear, convex, phased, and annular arrays are used to acquire the gray-scale and color-flow information. Doppler color-flow instruments are pulsed-Doppler instruments and are subject to the same limitations, such as Doppler angle dependence and aliasing, as other Doppler instruments. Color controls include gain, TGC, map selection, variance on/off, persistence, ensemble length, color/gray priority. Nyquist limit (PRF), baseline shift, wall filter, and color window angle, location, and size. Doppler color-flow instruments generally have output intensities intermediate between those of gray-scale imaging and pulsed-Doppler duplex instruments. Although there is no known risk with the use of color-flow instruments, prudent practice dictates that they be used for medical indications and with the minimum exposure time and instrument output required to obtain the needed diagnostic information.
Malignant human cell transformation of Marcellus Shale gas drilling flow back water.
Yao, Yixin; Chen, Tingting; Shen, Steven S; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max; Zelikoff, Judith
2015-10-01
The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chaouadi, R.
2008-01-01
This paper examines the effect of irradiation-induced plastic flow localization on the crack resistance behavior. Tensile and crack resistance measurements were performed on Eurofer-97 that was irradiated at 300 °C to neutron doses ranging between 0.3 and 2.1 dpa. A severe degradation of crack resistance behavior is experimentally established at quasi-static loading, in contradiction with the Charpy impact data and the dynamic crack resistance measurements. This degradation is attributed to the dislocation channel deformation phenomenon. At quasi-static loading rate, scanning electron microscopy observations of the fracture surfaces revealed a significant change of fracture topography, mainly from equiaxed dimples (mode I) to shear dimples (mode I + II). With increasing loading rate, the high peak stresses that develop inside the process zone activate much more dislocation sources resulting in a higher density of cross cutting dislocation channels and therefore an almost unaffected crack resistance. These explanations provide a rational to all experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodaei, Azin, E-mail: Azin.Khodaei@gmail.com; Hasannasab, Malihe; Amousoltani, Narges
2016-02-15
Highlights: • Ni ultrafine/nanoparticles were produced using the single-step ELGC method. • Ar and He–20%Ar gas mixtures were used as the condensing gas under 1 atm. • Effects of gas type and flow rate on particle size distribution were investigated. • The nanoparticles showed both high saturation magnetization and low coercivity. - Abstract: In this work, Ni ultrafine/nanoparticles were directly produced using the one-step, relatively large-scale electromagnetic levitational gas condensation method. In this process, Ni vapors ascending from the levitated droplet were condensed by Ar and He–20%Ar gas mixtures under atmospheric pressure. Effects of type and flow rate of themore » condensing gas on the size, size distribution and crystallinity of Ni particles were investigated. The particles were characterized by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer (VSM). The process parameters for the synthesis of the crystalline Ni ultrafine/nanoparticles were determined.« less
Experimental Study of Grit Particle Enhancement in Non-Shock Ignition
NASA Astrophysics Data System (ADS)
Browning, Richard V.; Peterson, Paul D.; Roemer, Edward L.; Oldenborg, Michael R.; Thompson, Darla G.; Deluca, Racci
2006-07-01
The drop weight impact test is the most commonly used configuration for evaluating sensitivity of explosives to non-shock ignition. Although developed 60 years ago and widely used both as a material compression test and as a test bed for understanding the ignition process itself, little is known about the flow mechanisms or involvement of grit particles as sensitizing agents. In this paper, we present the results of a series of experiments designed to study the flow mechanisms and events leading up to ignition. The experimental configuration used involves two pellet sizes, 3 and 5 mm in diameter, tested with three conditions: (1) smooth steel anvils, (2) standard flint sandpaper, and (3) shed grit particles loaded between the steel anvils and the pellet faces. Diagnostics include optical micrographs, and scanning electron micrographs. Un-reacted samples show a variety of morphologies, including what appear to be quenched reaction sites, even at very low drop heights. Quasi-static crushing experiments were also done to quantify load-time histories.
Experimental Study of Grit Particle Enhancement in Non-Shock Ignition of PBX 9501
NASA Astrophysics Data System (ADS)
Peterson, Paul
2005-07-01
The drop weight impact test is the most commonly used configuration for evaluating sensitivity of explosives to non-shock ignition. Although developed 60 years ago and widely used both as a material compression test and as a test bed for understanding the ignition process itself, little is known about the flow mechanisms or involvement of grit particles as sensitizing agents. In this paper we present the results of a series of experiments designed to study the flow mechanisms and events leading up to ignition. The experimental configuration used involves two pellet sizes, 3 and 5 mm in diameter, tested in three conditions, (1) with smooth steel anvils, (2) with standard flint sandpaper, and (3) with shed grit particles loaded between the steel anvils and the pellet faces. Diagnostics include optical micrographs, and scanning electron micrographs. Un-reacted samples show a variety of morphologies, including what appear to be quenched reaction sites, even at very low drop heights. Quasi-static crushing experiments were also done to quantify load-time histories.
Synthesis and characterization of carbon microsphere for extinguishing sodium fire
NASA Astrophysics Data System (ADS)
Snehalatha, V.; Ponraju, D.; Nashine, B. K.; Chellapandi, P.
2013-06-01
In Sodium cooled Fast breeder Reactors (SFRs), accidental leakage of liquid sodium leads to sodium fire. Carbon microsphere is a promising and novel extinguishant for sodium fire since it possesses high thermal conductivity, chemical inertness and excellent flow characteristics. Low density Carbon microsphere (CMS) with high thermal stability was successfully synthesized from functionalized styrene divinyl benzene copolymer by carbonization under inert atmosphere. Protocol for stepwise carbonization was developed by optimizing heating rate and time of heating. The synthesized CMS was characterized by Densimeter, Scanning Electron Microscope (SEM), Fourier Transfer Infra-Red spectroscopy (FTIR), Thermogravimetry (TG), X-ray Diffraction (XRD) and RAMAN spectroscopy. CMS thus obtained was spherical in shape having diameters ranging between 60 to 80μm with narrow size distribution. The smooth surface of CMS ensures its free flow characteristics. The yield of carbonization process was about 38%. The performance of CMS was tested on small scale sodium. This paper describes the development of carbon microsphere for extinguishing sodium fire and its characteristics.
Polymer deformation and filling modes during microembossing
NASA Astrophysics Data System (ADS)
Rowland, Harry D.; King, William P.
2004-12-01
This work investigates the initial stages of polymer deformation during hot embossing micro-manufacturing at processing temperatures near the glass transition temperature (Tg) of polymer films having sufficient thickness such that polymer flow is not supply limited. Several stages of polymer flow can be observed by employing stamp geometries of various widths and varying imprint conditions of time and temperature to modulate polymer viscosity. Experiments investigate conditions affecting cavity filling phenomena, including apparent polymer viscosity. Stamps with periodic ridges of height and width 4 µm and periodicity 30, 50 and 100 µm emboss trenches into polymethyl methacrylate films at Tg - 10 °C < Temboss < Tg + 20 °C. Imprint parameters of time, temperature and load are correlated with replicated polymer shape, height and imprinted area. Polymer replicates are measured by atomic force microscopy and inspected by scanning electron microscopy. Cavity size and the temperature dependence of polymer viscosity significantly influence the nature of polymer deformation in hot embossing micro-manufacturing and must be accounted for in rational process design.
NASA Technical Reports Server (NTRS)
Reehorst, Andrew; Potapczuk, Mark; Ratvasky, Thomas; Laflin, Brenda Gile
1996-01-01
A series of wind tunnel tests were conducted to assess the effects of leading edge ice contamination upon the performance of a short-haul transport. The wind tunnel test was conducted in the NASA Langley 14 by 22 foot facility. The test article was a 1/8 scale twin-engine short-haul jet transport model. Two separate leading edge ice contamination configurations were tested in addition to the uncontaminated baseline configuration. Several aircraft configurations were examined including various flap and slat deflections, with and without landing gear. Data gathered included force measurements via an internal six-component force balance, pressure measurements through 700 electronically scanned wing pressure ports, and wing surface flow visualization measurements. The artificial ice contamination caused significant performance degradation and caused visible changes demonstrated by the flow visualization. The data presented here is just a portion of the data gathered. A more complete data report is planned for publication as a NASA Technical Memorandum and data supplement.
Blood platelet adhesion to protein studied by on-line acoustic wave sensor.
Cavic, B A; Freedman, J; Morel, Z; Mody, M; Rand, M L; Stone, D C; Thompson, M
2001-03-01
The attachment of blood platelets to the surface of bare and protein-coated thickness-shear mode acoustic wave devices operating in a flow-through configuration has been studied. Platelets in washed from bind to the gold electrodes of such sensors, but the resulting frequency shifts are far less than predicted by the conventional mass-based model of device operation. Adherence to albumin and various types of collagen can be produced by on-line introduction of protein or by a pre-coating strategy. Differences in attachment of platelets to collagen types I and IV and the Horm variety can be detected. Platelets attached to collagen yield an interesting delayed, but reversible signal on exposure to a flowing medium of low pH. Scanning electron microscopy of sensor surfaces at various time points in this experiment reveals that originally intact platelets are eventually destroyed by the high acidity of the medium. The reversible frequency is attributed to the presence of removable platelet granular components at the sensor-liquid interface.
Experimental study of hot cracking at circular welding joints of 42CrMo steel
NASA Astrophysics Data System (ADS)
Zhang, Yan; Chen, Genyu; Chen, Binghua; Wang, Jinhai; Zhou, Cong
2017-12-01
The hot cracking at circular welding joints of quenched and tempered 42CrMo steel were studied. The flow of the molten pool and the solidification process of weld were observed with a high-speed video camera. The information on the variations in the weld temperature was collected using an infrared (IR) thermal imaging system. The metallurgical factors of hot cracking were analyzed via metallographic microscope and scanning electron microscope (SEM). The result shows that leading laser laser-metal active gas (MAG) hybrid welding process has a smaller solid-liquid boundary movement rate (VSL) and a smaller solid-liquid boundary temperature gradient (GSL) compared with leading arc laser-MAG hybrid welding process and laser welding process. Additionally, the metal in the molten pool has superior permeability while flowing toward the dendritic roots and can compensate for the inner-dendritic pressure balance. Therefore, leading laser laser-MAG hybrid welding process has the lowest hot cracking susceptibility.
Hydrodynamic fractionation of finite size gold nanoparticle clusters.
Tsai, De-Hao; Cho, Tae Joon; DelRio, Frank W; Taurozzi, Julian; Zachariah, Michael R; Hackley, Vincent A
2011-06-15
We demonstrate a high-resolution in situ experimental method for performing simultaneous size classification and characterization of functional gold nanoparticle clusters (GNCs) based on asymmetric-flow field flow fractionation (AFFF). Field emission scanning electron microscopy, atomic force microscopy, multi-angle light scattering (MALS), and in situ ultraviolet-visible optical spectroscopy provide complementary data and imagery confirming the cluster state (e.g., dimer, trimer, tetramer), packing structure, and purity of fractionated populations. An orthogonal analysis of GNC size distributions is obtained using electrospray-differential mobility analysis (ES-DMA). We find a linear correlation between the normalized MALS intensity (measured during AFFF elution) and the corresponding number concentration (measured by ES-DMA), establishing the capacity for AFFF to quantify the absolute number concentration of GNCs. The results and corresponding methodology summarized here provide the proof of concept for general applications involving the formation, isolation, and in situ analysis of both functional and adventitious nanoparticle clusters of finite size. © 2011 American Chemical Society
LPG sensing characteristics of electrospray deposited SnO2 nanoparticles
NASA Astrophysics Data System (ADS)
Gürbüz, Mevlüt; Günkaya, Göktuğ; Doğan, Aydın
2014-11-01
In this study, SnO2 films were fabricated on conductive substrate such as aluminum and platinum coated alumina using electro-spray deposition (ESD) method for gas sensor applications. Solution flow rate, coating time, substrate-nozzle distance and solid/alcohol ratio were studied to optimize SnO2 film structure. The morphology of the deposited films was characterized by stereo and scanning electron microscopy (SEM). The gas sensing properties of tin oxide films were investigated using liquid petroleum gas (LPG) for various lower explosive limit (LEL). The results obtained from microscopic analyses show that optimum SnO2 films were evaluated at flow rate of 0.05 ml/min, at distance of 6 cm, for 10 min deposition time, for 20 gSnO2/Lethanol ratio and at 7 kV DC electric field. By the results obtained from the gas sensing behavior, the sensitivity of the films was increased with operating temperature. The films showed better sensitivity for 20 LEL LPG concentration at 450 °C operating temperature.
Zhang, Xiaonan; Zhao, Xiuhua; Zu, Yuangang; Chen, Xiaoqiang; Lu, Qi; Ma, Yuliang; Yang, Lei
2012-01-01
The objective of the study was to prepare vinblastine microparticles by supercritical antisolvent process using N-methyl-2-pyrrolidone as solvent and carbon dioxide as antisolvent and evaluate its physicochemical properties. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during the supercritical antisolvent process, were investigated. Particles with a mean particle size of 121 ± 5.3 nm were obtained under the optimized process conditions (precipitation temperature 60 °C, precipitation pressure 25 MPa, vinblastine concentration 2.50 mg/mL and vinblastine solution flow rate 6.7 mL/min). The vinblastine was characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, mass spectrometry and dissolution test. It was concluded that physicochemical properties of crystalline vinblastine could be improved by physical modification, such as particle size reduction and generation of amorphous state using the supercritical antisolvent process. Furthermore, the supercritical antisolvent process was a powerful methodology for improving the physicochemical properties of vinblastine. PMID:23202916
Low-Temperature Scanning Capacitance Probe for Imaging Electron Motion
NASA Astrophysics Data System (ADS)
Bhandari, S.; Westervelt, R. M.
2014-12-01
Novel techniques to probe electronic properties at the nanoscale can shed light on the physics of nanoscale devices. In particular, studying the scattering of electrons from edges and apertures at the nanoscale and imaging the electron profile in a quantum dot, have been of interest [1]. In this paper, we present the design and implementation of a cooled scanning capacitance probe that operates at liquid He temperatures to image electron waves in nanodevices. The conducting tip of a scanned probe microscope is held above the nanoscale structure, and an applied sample-to-tip voltage creates an image charge that is measured by a cooled charge amplifier [2] adjacent to the tip. The circuit is based on a low-capacitance, high- electron-mobility transistor (Fujitsu FHX35X). The input is a capacitance bridge formed by a low capacitance pinched-off HEMT transistor and tip-sample capacitance. We have achieved low noise level (0.13 e/VHz) and high spatial resolution (100 nm) for this technique, which promises to be a useful tool to study electronic behavior in nanoscale devices.
Hermannsdörfer, Justus; Tinnemann, Verena; Peckys, Diana B; de Jonge, Niels
2016-06-01
Whole cells can be studied in their native liquid environment using electron microscopy, and unique information about the locations and stoichiometry of individual membrane proteins can be obtained from many cells thus taking cell heterogeneity into account. Of key importance for the further development of this microscopy technology is knowledge about the effect of electron beam radiation on the samples under investigation. We used environmental scanning electron microscopy (ESEM) with scanning transmission electron microscopy (STEM) detection to examine the effect of radiation for whole fixed COS7 fibroblasts in liquid. The main observation was the localization of nanoparticle labels attached to epidermal growth factor receptors (EGFRs). It was found that the relative distances between the labels remained mostly unchanged (<1.5%) for electron doses ranging from the undamaged native state at 10 e-/Å2 toward 103 e-/Å2. This dose range was sufficient to determine the EGFR locations with nanometer resolution and to distinguish between monomers and dimers. Various different forms of radiation damage became visible at higher doses, including severe dislocation, and the dissolution of labels.
Zheng, Changlin; Zhu, Ye; Lazar, Sorin; Etheridge, Joanne
2014-04-25
We introduce off-axis chromatic scanning confocal electron microscopy, a technique for fast mapping of inelastically scattered electrons in a scanning transmission electron microscope without a spectrometer. The off-axis confocal mode enables the inelastically scattered electrons to be chromatically dispersed both parallel and perpendicular to the optic axis. This enables electrons with different energy losses to be separated and detected in the image plane, enabling efficient energy filtering in a confocal mode with an integrating detector. We describe the experimental configuration and demonstrate the method with nanoscale core-loss chemical mapping of silver (M4,5) in an aluminium-silver alloy and atomic scale imaging of the low intensity core-loss La (M4,5@840 eV) signal in LaB6. Scan rates up to 2 orders of magnitude faster than conventional methods were used, enabling a corresponding reduction in radiation dose and increase in the field of view. If coupled with the enhanced depth and lateral resolution of the incoherent confocal configuration, this offers an approach for nanoscale three-dimensional chemical mapping.
Belu, A; Schnitker, J; Bertazzo, S; Neumann, E; Mayer, D; Offenhäusser, A; Santoro, F
2016-07-01
The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles.
Shaw, Lucas A; Chizari, Samira; Shusteff, Maxim; Naghsh-Nilchi, Hamed; Di Carlo, Dino; Hopkins, Jonathan B
2018-05-14
Demand continues to rise for custom-fabricated and engineered colloidal microparticles across a breadth of application areas. This paper demonstrates an improvement in the fabrication rate of high-resolution 3D colloidal particles by using two-photon scanning lithography within a microfluidic channel. To accomplish this, we present (1) an experimental setup that supports fast, 3D scanning by synchronizing a galvanometer, piezoelectric stage, and an acousto-optic switch, and (2) a new technique for modifying the laser's scan path to compensate for the relative motion of the rapidly-flowing photopolymer medium. The result is an instrument that allows for rapid conveyor-belt-like fabrication of colloidal objects with arbitrary 3D shapes and micron-resolution features.
ZEISS Angioplex™ Spectral Domain Optical Coherence Tomography Angiography: Technical Aspects.
Rosenfeld, Philip J; Durbin, Mary K; Roisman, Luiz; Zheng, Fang; Miller, Andrew; Robbins, Gillian; Schaal, Karen B; Gregori, Giovanni
2016-01-01
ZEISS Angioplex™ optical coherence tomography (OCT) angiography generates high-resolution three-dimensional maps of the retinal and choroidal microvasculature while retaining all of the capabilities of the existing CIRRUS™ HD-OCT Model 5000 instrument. Angioplex™ OCT angiographic imaging on the CIRRUS™ HD-OCT platform was made possible by increasing the scanning rate to 68,000 A-scans per second and introducing improved tracking software known as FastTrac™ retinal-tracking technology. The generation of en face microvascular flow images with Angioplex™ OCT uses an algorithm known as OCT microangiography-complex, which incorporates differences in both the phase and intensity information contained within sequential B-scans performed at the same position. Current scanning patterns for en face angiographic visualization include a 3 × 3 and a 6 × 6 mm scan pattern on the retina. A volumetric dataset showing erythrocyte flow information can then be displayed as a color-coded retinal depth map in which the microvasculature of the superficial, deep, and avascular layers of the retina are displayed together with the colors red, representing the superficial microvasculature; green, representing the deep retinal vasculature; and blue, representing any vessels present in the normally avascular outer retina. Each retinal layer can be viewed separately, and the microvascular layers representing the choriocapillaris and the remaining choroid can be viewed separately as well. In addition, readjusting the contours of the slabs to target different layers of interest can generate custom en face flow images. Moreover, each en face flow image is accompanied by an en face intensity image to help with the interpretation of the flow results. Current clinical experience with this technology would suggest that OCT angiography should replace fluorescein angiography for retinovascular diseases involving any area of the retina that can be currently scanned with the CIRRUS™ HD-OCT instrument and may replace fluorescein angiography and indocyanine green angiography for some choroidal vascular diseases. © 2016 S. Karger AG, Basel.
TU-F-18A-06: Dual Energy CT Using One Full Scan and a Second Scan with Very Few Projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T; Zhu, L
Purpose: The conventional dual energy CT (DECT) requires two full CT scans at different energy levels, resulting in dose increase as well as imaging errors from patient motion between the two scans. To shorten the scan time of DECT and thus overcome these drawbacks, we propose a new DECT algorithm using one full scan and a second scan with very few projections by preserving structural information. Methods: We first reconstruct a CT image on the full scan using a standard filtered-backprojection (FBP) algorithm. We then use a compressed sensing (CS) based iterative algorithm on the second scan for reconstruction frommore » very few projections. The edges extracted from the first scan are used as weights in the Objectives: function of the CS-based reconstruction to substantially improve the image quality of CT reconstruction. The basis material images are then obtained by an iterative image-domain decomposition method and an electron density map is finally calculated. The proposed method is evaluated on phantoms. Results: On the Catphan 600 phantom, the CT reconstruction mean error using the proposed method on 20 and 5 projections are 4.76% and 5.02%, respectively. Compared with conventional iterative reconstruction, the proposed edge weighting preserves object structures and achieves a better spatial resolution. With basis materials of Iodine and Teflon, our method on 20 projections obtains similar quality of decomposed material images compared with FBP on a full scan and the mean error of electron density in the selected regions of interest is 0.29%. Conclusion: We propose an effective method for reducing projections and therefore scan time in DECT. We show that a full scan plus a 20-projection scan are sufficient to provide DECT images and electron density with similar quality compared with two full scans. Our future work includes more phantom studies to validate the performance of our method.« less
Cooling system for electronic components
Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong
2015-12-15
Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.
Cooling system for electronic components
Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong
2016-05-17
Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.
Minority carrier diffusion length and edge surface-recombination velocity in InP
NASA Technical Reports Server (NTRS)
Hakimzadeh, Roshanak; Bailey, Sheila G.
1993-01-01
A scanning electron microscope was used to obtain the electron-beam-induced current (EBIC) profiles in InP specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure the edge surface-recombination velocity. These values were used in a fit of the experimental EBIC data with a theoretical expression for normalized EBIC (Donolato, 1982) to obtain the electron (minority carrier) diffusion length.
Choice of range-energy relationship for the analysis of electron-beam-induced-current line scans
NASA Astrophysics Data System (ADS)
Luke, Keung, L.
1994-07-01
The electron range in a material is an important parameter in the analysis of electron-beam-induced-current (EBIC) line scans. Both the Kanaya-Okayama (KO) and Everhart-Hoff (EH) range-energy relationships have been widely used by investigators for this purpose. Although the KO range is significantly larer than the EH range, no study has been done to examine the effect of choosing one range over the other on the values of the surface recombination velocity S(sub T) and minority-carrier diffusion length L evaluated from EBICF line scans. Such a study has been carried out, focusing on two major questions: (1) When the KO range is used in different reported methods to evaluate either or both S(sub T) and L from EBIC line scans, how different are their values thus determined in comparison to those using the EH range?; (2) from EBIC line scans of a given material, is there a way to discriminate between the KO and the EH ranges which should be used to analyze these scans? Answers to these questions are presented to assist investigators in extracting more reliable values of either or both S(sub T) and L and in finding the right range to use in the analysis of these line scans.
Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.
Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue
2014-03-01
One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.
NASA Astrophysics Data System (ADS)
Breton, D. J.; Baker, I.; Cole, D. M.
2012-12-01
Understanding and predicting the flow of polycrystalline ice is crucial to ice sheet modeling and paleoclimate reconstruction from ice cores. Ice flow rates depend strongly on the fabric (i.e. the distribution of grain sizes and crystallographic orientations) which evolves over time and enhances the flow rate in the direction of applied stress. The mechanisms for fabric evolution in ice have been extensively studied at atmospheric pressures, but little work has been done to observe these processes at the high pressures experienced deep within ice sheets where long-term changes in ice rheology are expected to have significance. We conducted compressive creep tests on a 917 kg m-3 polycrystalline ice specimen at 20 MPa hydrostatic pressure, thus simulating ~2,000 m depth. Initial specimen grain orientations were random, typical grain diameters were 1.2 mm, and the applied creep stress was 0.3 MPa. Subsequent microstructural analyses on the deformed specimen and a similarly prepared, undeformed specimen allowed characterization of crystal fabric evolution under pressure. Our microstructural analysis technique simultaneously collected grain shape and size data from Scanning Electron Microscope (SEM) micrographs and obtained crystallographic orientation data via Electron BackScatter Diffraction (EBSD). Combining these measurements allows rapid analysis of the ice fabric over large numbers of grains, yielding statistically useful numbers of grain size and full c- and a-axis grain orientation data. The combined creep and microstructural data demonstrate pressure-dependent effects on the mechanical and microstructural evolution of polycrystalline ice. We discuss possible mechanisms for the observed phenomena, and future directions for hydrostatic creep testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xinyu; Strickland, Daniel J.; Derlet, Peter M.
We report on the use of quantitative in situ microcompression experiments in a scanning electron microscope to systematically investigate the effect of self-ion irradiation damage on the full plastic response of <111> Ni. In addition to the well-known irradiationinduced increases in the yield and flow strengths with increasing dose, we measure substantial changes in plastic flow intermittency behavior, manifested as stress drops accompanying energy releases as the driven material transits critical states. At low irradiation doses, the magnitude of stress drops reduces relative to the unirradiated material and plastic slip proceeds on multiple slip systems, leading to quasi-homogeneous plastic flow.more » In contrast, highly irradiated specimens exhibit pronounced shear localization on parallel slip planes, which we ascribe to the onset of defect free channels normally seen in bulk irradiated materials. Our in situ testing system and approach allows for a quantitative study of the energy release and dynamics associated with defect free channel formation and subsequent localization. As a result, this study provides fundamental insight to the nature of interactions between mobile dislocations and irradiation-mediated and damage-dependent defect structures.« less
NASA Astrophysics Data System (ADS)
Derr, Igor; Bruns, Michael; Langner, Joachim; Fetyan, Abdulmonem; Melke, Julia; Roth, Christina
2016-09-01
Electrochemical degradation (ED) of carbon felt electrodes was investigated by cycling of a flow through all-vanadium redox flow battery (VRFB) and conducting half-cell measurements with two reference electrodes inside the test bench. ED was detected using half-cell and full-cell electrochemical impedance spectroscopy (EIS) at different states of charge (SOC). Reversing the polarity of the battery to recover cell performance was performed with little success. Renewing the electrolyte after a certain amount of cycles restored the capacity of the battery. X-ray photoelectron spectroscopy (XPS) reveals that the amount of surface functional increases by more than a factor of 3 for the negative side as well as for the positive side. Scanning electron microscope (SEM) images show a peeling of the fiber surface after cycling the felts, which leads to a loss of electrochemically active surface area (ECSA). Long term cycling shows that ED has a stronger impact on the negative half-cell [V(II)/V(III)] than the positive half-cell [V(IV)/V(V)] and that the negative half-cell is the rate-determining half-cell for the VRFB.
Flow accelerated corrosion of carbon steel feeder pipes from pressurized heavy water reactors
NASA Astrophysics Data System (ADS)
Singh, J. L.; Kumar, Umesh; Kumawat, N.; Kumar, Sunil; Kain, Vivekanand; Anantharaman, S.; Sinha, A. K.
2012-10-01
Detailed investigation of a number of feeder pipes received from Rajasthan Atomic Power Station Unit 2 (RAPS#2) after en-masse feeder pipe replacement after 15.67 Effective Full Power Years (EFPYs) was carried out. Investigations included ultrasonic thickness measurement by ultrasonic testing, optical microscopy, scanning electron microscopy, chemical analysis and X-ray Diffraction (XRD). Results showed that maximum thickness reduction of the feeder had occurred downstream and close to the weld in 32 NB (1.25″/32.75 mm ID) elbows. Rate of Flow Accelerated Corrosion (FAC) was measured to be higher in the lower diameter feeder pipes due to high flow velocity and turbulence. Weld regions had thinned to a lower extent than the parent material due to higher chromium content in the weld. A weld protrusion has been shown to add to the thinning due to FAC and lead to faster thinning rate at localized regions. Surface morphology of inner surface of feeder had shown different size scallop pattern over the weld and parent material. Inter-granular cracks were also observed along the weld fusion line and in the parent material in 32 NB outlet feeder elbow.
Polishing Step Purification of High-Strength Wastewaters by Nanofiltration and Reverse Osmosis
Zhou, Jinxiang; Baker, Brian O.; Grimsley, Charles T.; Husson, Scott M.
2016-01-01
This article reports findings on the use of nanofiltration (NF) and reverse osmosis (RO) for secondary treatment of high-strength rendering facility wastewaters following an ultrafiltration step. These wastewaters present significant challenges to classical treatment technologies. Constant-pressure, direct-flow membrane filtration experiments were done to screen for flux and effluent water permeate quality of ten commercial NF and RO membranes. All membranes tested were effective in reducing total dissolved salts (TDS) and chemical oxygen demand (COD); however, only two membranes (Koch MPF-34 and Toray 70UB) gave sufficiently stable flux values to warrant longer term cross-flow filtration studies. Cross-flow flux measurements, scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDS), and attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) indicated that both membranes were eventually fouled by organic and inorganic foulants; however, the Toray 70UB RO membrane yielded a capacity of 1600 L/m2 prior to cleaning. A preliminary economic analysis compared the estimated costs of energy and consumables for a dual-stage UF/RO membrane process and dissolved air floatation (DAF) and found membrane process costs could be less than about 40% of the current DAF process. PMID:26978407
Microstructural analysis of hot press formed 22MnB5 steel
NASA Astrophysics Data System (ADS)
Aziz, Nuraini; Aqida, Syarifah Nur; Ismail, Izwan
2017-10-01
This paper presents a microstructural study on hot press formed 22MnB5 steel for enhanced mechanical properties. Hot press forming process consists of simultaneous forming and quenching of heated blank. The 22MnB5 steel was processed at three different parameter settings: quenching time, water temperature and water flow rate. 22MnB5 was processed using 33 full factorial design of experiment (DOE). The full factorial DOE was designed using three factors of quenching time, water temperature and water flow rate at three levels. The factors level were quenching time range of 5 - 11 s, water temperature; 5 - 27°C and water flow rate; 20 - 40 L/min. The as-received and hot press forming processed steel was characterised for metallographic study and martensitic structure area percentage using JEOL Field Emission Scanning Electron Microscopic (FESEM). From the experimental finding, the hot press formed 22MnB5 steel consisted of 50 to 84% martensitic structure area. The minimum quenching time of 8 seconds was required to obtain formed sample with high percentage of martensite. These findings contribute to initial design of processing parameters in hot press forming of 22MnB5 steel blanks for automotive component.
In situ real-time measurement of physical characteristics of airborne bacterial particles
NASA Astrophysics Data System (ADS)
Jung, Jae Hee; Lee, Jung Eun
2013-12-01
Bioaerosols, including aerosolized bacteria, viruses, and fungi, are associated with public health and environmental problems. One promising control method to reduce the harmful effects of bioaerosols is thermal inactivation via a continuous-flow high-temperature short-time (HTST) system. However, variations in bioaerosol physical characteristics - for example, the particle size and shape - during the continuous-flow inactivation process can change the transport properties in the air, which can affect particle deposition in the human respiratory system or the filtration efficiency of ventilation systems. Real-time particle monitoring techniques are a desirable alternative to the time-consuming process of microscopic analysis that is conventionally used in sampling and particle characterization. Here, we report in situ real-time optical scattering measurements of the physical characteristics of airborne bacteria particles following an HTST process in a continuous-flow system. Our results demonstrate that the aerodynamic diameter of bacterial aerosols decreases when exposed to a high-temperature environment, and that the shape of the bacterial cells is significantly altered. These variations in physical characteristics using optical scattering measurements were found to be in agreement with the results of scanning electron microscopy analysis.
Zhao, Xinyu; Strickland, Daniel J.; Derlet, Peter M.; ...
2015-02-11
We report on the use of quantitative in situ microcompression experiments in a scanning electron microscope to systematically investigate the effect of self-ion irradiation damage on the full plastic response of <111> Ni. In addition to the well-known irradiationinduced increases in the yield and flow strengths with increasing dose, we measure substantial changes in plastic flow intermittency behavior, manifested as stress drops accompanying energy releases as the driven material transits critical states. At low irradiation doses, the magnitude of stress drops reduces relative to the unirradiated material and plastic slip proceeds on multiple slip systems, leading to quasi-homogeneous plastic flow.more » In contrast, highly irradiated specimens exhibit pronounced shear localization on parallel slip planes, which we ascribe to the onset of defect free channels normally seen in bulk irradiated materials. Our in situ testing system and approach allows for a quantitative study of the energy release and dynamics associated with defect free channel formation and subsequent localization. As a result, this study provides fundamental insight to the nature of interactions between mobile dislocations and irradiation-mediated and damage-dependent defect structures.« less
Ma, Pei Lian; Buschmann, Michael D; Winnik, Françoise M
2010-03-08
The composition of samples obtained upon complexation of DNA with chitosan was analyzed by asymmetrical flow field flow fractionation (AF4) with online UV-visible, multiangle light scattering (MALS), and dynamic light scattering (DLS) detectors. A chitosan labeled with rhodamine B to facilitate UV-vis detection of the polycation was complexed with DNA under conditions commonly used for transfection (chitosan glucosamine to DNA phosphate molar ratio of 5). AF4 analysis revealed that 73% of the chitosan-rhodamine remained free in the dispersion and that the DNA/chitosan complexes had a broad size distribution ranging from 20 to 160 nm in hydrodynamic radius. The accuracy of the data was assessed by comparison with data from batch-mode DLS and scanning electron microscopy. The AF4 combined with DLS allowed the characterization of small particles that were not detected by conventional batch-mode DLS. The AF4 analysis will prove to be an important tool in the field of gene therapy because it readily provides, in a single measurement, three important physicochemical parameters of the complexes: the amount of unbound polycation, the hydrodynamic size of the complexes, and their size distribution.
Bridier, A; Meylheuc, T; Briandet, R
2013-05-01
In this contribution, we used a set of microscopic techniques including confocal laser scanning microscopy (CLSM), environmental scanning electron microscopy (ESEM) and field emission scanning electron microscopy (FESEM) to analyze the three-dimensional spatial arrangement of cells and their surrounding matrix in Bacillus subtilis biofilm. The combination of the different techniques enabled a deeper and realistic deciphering of biofilm architecture by providing the opportunity to overcome the limits of each single technique. Copyright © 2013 Elsevier Ltd. All rights reserved.
Low-temperature and conventional scanning electron microscopy of human urothelial neoplasms.
Hopkins, D M; Morris, J A; Oates, K; Huddart, H; Staff, W G
1989-05-01
The appearance of neoplastic human urothelium viewed by low-temperature scanning electron microscopy (LTSEM) and conventional scanning electron microscopy (CSEM) was compared. Fixed, dehydrated neoplastic cells viewed by CSEM had well-defined, often raised cell junctions; no intercellular gaps; and varying degrees of pleomorphic surface microvilli. The frozen hydrated material viewed by LTSEM, however, was quite different. The cells had a flat or dimpled surface, but no microvilli. There were labyrinthine lateral processes which interdigitated with those of adjacent cells and outlined large intercellular gaps. The process of fixation and dehydration will inevitably distort cell contours and on theoretical grounds, the images of frozen hydrated material should more closely resemble the in vivo appearance.
Asensio, L; Lopez-Llorca, L V; López-Jiménez, J A
2005-01-01
We have evaluated the parasitism of the red scale insect of the date palm (Phoenicococcus marlatti) by entomopathogenic fungi, using light microscopy (LM), scanning electron microscopy (SEM) and low temperature scanning electron microscopy (LTSEM). Beauveria bassiana, Lecanicillium dimorphum and Lecanicillium cf. psalliotae, were inoculated directly on the scale insects or on insect infested plant material. We found that L. dimorphum and L. cf. psalliotae developed on plant material and on scale insects, making infection structures. B. bassiana was a bad colonizer of date palm leaves (Phoenix dactylifera L.) and did not parasite the scale insects.
Adnet, F A O; Anjos, D H S; Menezes-Oliveira, A; Lanfredi, R M
2009-04-01
Species of Cruzia are parasites of the large intestine of marsupials, reptiles, amphibians, and mammalians. Cruzia tentaculata specimens were collected from the large intestine of Didelphis marsupialis (Mammalia: Didelphidae) from Colombia (new geographical record) and from Brazil and analyzed by light and scanning electron microscopy. The morphology of males and females by light microscopy corroborated most of the previous description and the ultrastructure by scanning electron microscopy evidence: the topography of the cuticle, deirids, amphids, phasmids in both sexes, a pair of papillae near the vulva opening, and the number and location of male caudal papillae, adding new features for species identification only observed by this technique.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2007-01-01
A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.
p-GaN/n-ZnO heterojunction nanowires: optoelectronic properties and the role of interface polarity.
Schuster, Fabian; Laumer, Bernhard; Zamani, Reza R; Magén, Cesar; Morante, Joan Ramon; Arbiol, Jordi; Stutzmann, Martin
2014-05-27
In this work, simulations of the electronic band structure of a p-GaN/n-ZnO heterointerface are presented. In contrast to homojunctions, an additional energy barrier due to the type-II band alignment hinders the flow of majority charge carriers in this heterojunction. Spontaneous polarization and piezoelectricity are shown to additionally affect the band structure and the location of the recombination region. Proposed as potential UV-LEDs and laser diodes, p-GaN/n-ZnO heterojunction nanowires were fabricated by plasma-assisted molecular beam epitaxy (PAMBE). Atomic resolution annular bright field scanning transmission electron microscopy (STEM) studies reveal an abrupt and defect-free heterointerface with a polarity inversion from N-polar GaN to Zn-polar ZnO. Photoluminescence measurements show strong excitonic UV emission originating from the ZnO-side of the interface as well as stimulated emission in the case of optical pumping above a threshold of 55 kW/cm(2).
NASA Astrophysics Data System (ADS)
Kim, Duk Jae; Park, Jeongwon; Geon Han, Jeon
2016-08-01
We show results of the patterning of graphene layers on poly(ethylene terephthalate) (PET) films through remote atmospheric-pressure dielectric barrier discharge plasma. The size of plasma discharge electrodes was adjusted for large-area and role-to-role-type substrates. Optical emission spectroscopy (OES) was used to analyze the characteristics of charge species in atmospheric-pressure plasma. The OES emission intensity of the O2* peaks (248.8 and 259.3 nm) shows the highest value at the ratio of \\text{N}2:\\text{clean dry air (CDA)} = 100:1 due to the highest plasma discharge. The PET surface roughness and hydrophilic behavior were controlled with CDA flow rate during the process. Although the atmospheric-pressure plasma treatment of the PET film led to an increase in the FT-IR intensity of C-O bonding at 1240 cm-1, the peak intensity at 1710 cm-1 (C=O bonding) decreased. The patterning of graphene layers was confirmed by scanning electron microscopy and Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Ayala-Valenzuela, Oscar; McDonald, Ross D.; Bulaevskii, Lev N.; Holesinger, Terry G.; Ronning, Filip; Weisse-Bernstein, Nina R.; Williamson, Todd L.; Mueller, Alexander H.; Hoffbauer, Mark A.; Rabin, Michael W.; Graf, Matthias J.
2013-05-01
The fabrication of high-quality thin superconducting films is essential for single-photon detectors. Their device performance is crucially affected by their material parameters, thus requiring reliable and nondestructive characterization methods after the fabrication and patterning processes. Important material parameters to know are the resistivity, superconducting transition temperature, relaxation time of quasiparticles, and uniformity of patterned wires. In this work, we characterize micropatterned thin NbN films by using transport measurements in magnetic fields. We show that from the instability of vortex motion at high currents in the flux-flow state of the IV characteristic, the inelastic lifetime of quasiparticles can be determined to be about 2 ns. Additionally, from the depinning transition of vortices at low currents, as a function of magnetic field, the size distribution of grains can be extracted. This size distribution is found to be in agreement with the film morphology obtained from scanning electron microscopy and high-resolution transmission electron microscopy images.
Alam, Israt S.; Arrowsmith, Rory L.; Cortezon-Tamarit, Fernando; Twyman, Frazer; Kociok-Köhn, Gabriele; Botchway, Stanley W.; Dilworth, Jonathan R.
2016-01-01
We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under ‘cold’ and ‘hot’ biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. 68Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration. PMID:26583314
Quantitative analysis of oxygen content in copper oxide films using ultra microbalance
NASA Astrophysics Data System (ADS)
Shu, Yonghua; Wang, Lianhong; Liu, Chong; Fan, Jing
2014-12-01
Copper oxide films were prepared on quartz substrates through electron beam physical vapor deposition in a vacuum chamber, and the films were observed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The oxygen content of the films were analyzed using an ultra microbalance. Results indicated that when the substrate was heated to 600°C and the oxygen flow rate was 5 sccm, the film was composed of 47% Cu and 53% Cu2O (mass percent), and the oxidation ratio of copper was 25%. After the deposition process at the same condition, i.e. the substrate at temperature of 600°C and blowed by oxygen flowrate of 5 sccm, then in-stu annealed at 600°C in low oxygen pressure of 10 Pa for 30 minutes, the film composition became 22% Cu2O and 78% CuO (mass percent), and the oxidation ratio of copper greatly increased to about 88%.
Electroextraction of boron from boron carbide scrap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Ashish; Anthonysamy, S., E-mail: sas@igcar.gov.in; Ghosh, C.
2013-10-15
Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction processmore » developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.« less
Gonococcal attachment to eukaryotic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, J.F.; Lammel, C.J.; Draper, D.L.
The attachment of Neisseria gonorrhoeae to eukaryotic cells grown in tissue culture was analyzed by use of light and electron microscopy and by labeling of the bacteria with (/sup 3/H)- and (/sup 14/C)adenine. Isogenic piliated and nonpiliated N. gonorrhoeae from opaque and transparent colonies were studied. The results of light microscopy studies showed that the gonococci attached to cells of human origin, including Flow 2000, HeLa 229, and HEp 2. Studies using radiolabeled gonococci gave comparable results. Piliated N. gonorrhoeae usually attached in larger numbers than nonpiliated organisms, and those from opaque colonies attached more often than isogenic variants frommore » transparent colonies. Day-to-day variation in rate of attachment was observed. Scanning electron microscopy studies showed the gonococcal attachment to be specific for microvilli of the host cells. It is concluded that more N. gonorrhoeae from opaque colonies, as compared with isogenic variants from transparent colonies, attach to eukaryotic cells grown in tissue culture.« less
Bartosova, Z; Riman, D; Halouzka, V; Vostalova, J; Simanek, V; Hrbac, J; Jirovsky, D
2016-09-07
A novel method of carbon fiber microelectrode activation using spark discharge was demonstrated and compared to conventional electrochemical pretreatment by potential cycling. The spark discharge was performed at 800 V between the microelectrode connected to positive pole of the power supply and platinum counter electrode. Spark discharge led both to trimming of the fiber tip into conical shape and to the modification of carbon fiber microelectrode with platinum, as proven by scanning electron microscopy and electron dispersive X-ray spectroscopy. After the characterization of electrochemical properties using ferricyanide voltammetry, the activated electrodes were used for electrochemical analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine, an oxidative stress marker. Subnanomolar detection limits (0.55 nmol L(-1)) in high-performance liquid chromatography were achieved for spark platinized electrodes incorporated into the flow detection cell. Copyright © 2016 Elsevier B.V. All rights reserved.
Jensen, Jonas; Olesen, Jacob Bjerring; Stuart, Matthias Bo; Hansen, Peter Møller; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt
2016-08-01
A method for vector velocity volume flow estimation is presented, along with an investigation of its sources of error and correction of actual volume flow measurements. Volume flow errors are quantified theoretically by numerical modeling, through flow phantom measurements, and studied in vivo. This paper investigates errors from estimating volumetric flow using a commercial ultrasound scanner and the common assumptions made in the literature. The theoretical model shows, e.g. that volume flow is underestimated by 15%, when the scan plane is off-axis with the vessel center by 28% of the vessel radius. The error sources were also studied in vivo under realistic clinical conditions, and the theoretical results were applied for correcting the volume flow errors. Twenty dialysis patients with arteriovenous fistulas were scanned to obtain vector flow maps of fistulas. When fitting an ellipsis to cross-sectional scans of the fistulas, the major axis was on average 10.2mm, which is 8.6% larger than the minor axis. The ultrasound beam was on average 1.5mm from the vessel center, corresponding to 28% of the semi-major axis in an average fistula. Estimating volume flow with an elliptical, rather than circular, vessel area and correcting the ultrasound beam for being off-axis, gave a significant (p=0.008) reduction in error from 31.2% to 24.3%. The error is relative to the Ultrasound Dilution Technique, which is considered the gold standard for volume flow estimation for dialysis patients. The study shows the importance of correcting for volume flow errors, which are often made in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.
Transmission environmental scanning electron microscope with scintillation gaseous detection device.
Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios
2015-03-01
A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of scanning electron and x-ray microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Tomokazu, E-mail: tomokzau.matsumura@etd.hpk.co.jp; Hirano, Tomohiko, E-mail: tomohiko.hirano@etd.hpk.co.jp; Suyama, Motohiro, E-mail: suyama@etd.hpk.co.jp
We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and softmore » materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.« less
A compilation of cold cases using scanning electron microscopy at the University of Rhode Island
NASA Astrophysics Data System (ADS)
Platek, Michael J.; Gregory, Otto J.
2015-10-01
Scanning electron microscopy combined with microchemical analysis has evolved into one of the most widely used instruments in forensic science today. In particular, the environmental scanning electron microscope (SEM) in conjunction with energy dispersive spectroscopy (EDS), has created unique opportunities in forensic science in regard to the examination of trace evidence; i.e. the examination of evidence without altering the evidence with conductive coatings, thereby enabling criminalists to solve cases that were previously considered unsolvable. Two cold cases were solved at URI using a JEOL 5900 LV SEM in conjunction with EDS. A cold case murder and a cold missing person case will be presented from the viewpoint of the microscopist and will include sample preparation, as well as image and chemical analysis of the trace evidence using electron microscopy and optical microscopy.
Scanning Mode Sensor for Detection of Flow Inhomogeneities
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor)
1998-01-01
A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry. Schlieren, and shadowgraph techniques. These techniques. however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.
Scanning Mode Sensor for Detection of Flow Inhomogeneities
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor)
1996-01-01
A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry, Schlieren, and shadowgraph techniques. These techniques, however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.
Craig, G.D.; Pettibone, J.S.; Drobot, A.T.
1982-05-06
The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.
Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques
NASA Astrophysics Data System (ADS)
Bolker, Asaf; Saguy, Cecile; Kalish, Rafi
2014-09-01
The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter, P., E-mail: psutter@bnl.gov; Sutter, E.
2014-09-01
We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.
Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek
2017-05-01
We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Modelling rating curves using remotely sensed LiDAR data
Nathanson, Marcus; Kean, Jason W.; Grabs, Thomas J.; Seibert, Jan; Laudon, Hjalmar; Lyon, Steve W.
2012-01-01
Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage-discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics-based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m-wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90-m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a 'hybrid model' rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see 'below' the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics-based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations.
Williams, Monique; Bozhilov, Krassimir; Ghai, Sanjay; Talbot, Prue
2017-01-01
Objective Our purpose was to quantify 36 inorganic chemical elements in aerosols from disposable electronic cigarettes (ECs) and electronic hookahs (EHs), examine the effect of puffing topography on elements in aerosols, and identify the source of the elements. Methods Thirty-six inorganic chemical elements and their concentrations in EC/EH aerosols were determined using inductively coupled plasma optical emission spectroscopy, and their source was identified by analyzing disassembled atomizers using scanning electron microscopy and energy dispersive X-ray spectroscopy. Results Of 36 elements screened, 35 were detected in EC/EH aerosols, while only 15 were detected in conventional tobacco smoke. Some elements/metals were present in significantly higher concentrations in EC/EH aerosol than in cigarette smoke. Concentrations of particular elements/metals within EC/EH brands were sometimes variable. Aerosols generated at low and high air-flow rates produced the same pattern of elements, although the total element concentration decreased at the higher air flow rate. The relative amount of elements in the first and last 60 puffs was generally different. Silicon was the dominant element in aerosols from all EC/EH brands and in cigarette smoke. The elements appeared to come from the filament (nickel, chromium), thick wire (copper coated with silver), brass clamp (copper, zinc), solder joints (tin, lead), and wick and sheath (silicon, oxygen, calcium, magnesium, aluminum). Lead was identified in the solder and aerosol of two brands of EHs (up to 0.165 μg/10 puffs). Conclusion These data show that EC/EH aerosols contain a mixture of elements, including heavy metals, with concentrations often significantly higher than in conventional cigarette smoke. While the health effects of inhaling mixtures of heated metals is currently not known, these data will be valuable in future risk assessments involving EC/EH elements/metals. PMID:28414730
Cyclic electron flow is redox-controlled but independent of state transition.
Takahashi, Hiroko; Clowez, Sophie; Wollman, Francis-André; Vallon, Olivier; Rappaport, Fabrice
2013-01-01
Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna.
Dynamic recrystallization behavior of an as-cast TiAl alloy during hot compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jianbo, E-mail: lijianbo1205@163.com; Liu, Yong, E-mail: yonliu@csu.edu.cn; Wang, Yan, E-mail: wangyan@csu.edu.cn
2014-11-15
High temperature compressive deformation behaviors of as-cast Ti–43Al–4Nb–1.4W–0.6B alloy were investigated at temperatures ranging from 1050 °C to 1200 °C, and strain rates from 0.001 s{sup −1} to 1 s{sup −1}. Electron back scattered diffraction technique, scanning electron microscopy and transmission electron microscopy were employed to investigate the microstructural evolutions and nucleation mechanisms of the dynamic recrystallization. The results indicated that the true stress–true strain curves show a dynamic flow softening behavior. The dependence of the peak stress on the deformation temperature and the strain rate can well be expressed by a hyperbolic-sine type equation. The activation energy decreases withmore » increasing the strain. The size of the dynamically recrystallized β grains decreases with increasing the value of the Zener–Hollomon parameter (Z). When the flow stress reaches a steady state, the size of β grains almost remains constant with increasing the deformation strain. The continuous dynamic recrystallization plays a dominant role in the deformation. In order to characterize the evolution of dynamic recrystallization volume fraction, the dynamic recrystallization kinetics was studied by Avrami-type equation. Besides, the role of β phase and the softening mechanism during the hot deformation was also discussed in details. - Highlights: • The size of DRXed β grains decreases with increasing the value of the Z. • The CDRX plays a dominant role in the deformation. • The broken TiB{sub 2} particles can promote the nucleation of DRX.« less
A statistical survey of heat input parameters into the cusp thermosphere
NASA Astrophysics Data System (ADS)
Moen, J. I.; Skjaeveland, A.; Carlson, H. C.
2017-12-01
Based on three winters of observational data, we present those ionosphere parameters deemed most critical to realistic space weather ionosphere and thermosphere representation and prediction, in regions impacted by variability in the cusp. The CHAMP spacecraft revealed large variability in cusp thermosphere densities, measuring frequent satellite drag enhancements, up to doublings. The community recognizes a clear need for more realistic representation of plasma flows and electron densities near the cusp. Existing average-value models produce order of magnitude errors in these parameters, resulting in large under estimations of predicted drag. We fill this knowledge gap with statistics-based specification of these key parameters over their range of observed values. The EISCAT Svalbard Radar (ESR) tracks plasma flow Vi , electron density Ne, and electron, ion temperatures Te, Ti , with consecutive 2-3 minute windshield-wipe scans of 1000x500 km areas. This allows mapping the maximum Ti of a large area within or near the cusp with high temporal resolution. In magnetic field-aligned mode the radar can measure high-resolution profiles of these plasma parameters. By deriving statistics for Ne and Ti , we enable derivation of thermosphere heating deposition under background and frictional-drag-dominated magnetic reconnection conditions. We separate our Ne and Ti profiles into quiescent and enhanced states, which are not closely correlated due to the spatial structure of the reconnection foot point. Use of our data-based parameter inputs can make order of magnitude corrections to input data driving thermosphere models, enabling removal of previous two fold drag errors.
Warzoha, Ronald J; Fleischer, Amy S
2014-08-13
Solid-liquid phase change materials (PCMs) are attractive candidates for thermal energy storage and electronics cooling applications but have limited applicability in state-of-the-art technologies due to their low intrinsic thermal conductivities. Recent efforts to incorporate graphene and multilayer graphene into PCMs have led to the development of thermal energy storage materials with remarkable values of bulk thermal conductivity. However, the full potential of graphene as a filler material for the thermal enhancement of PCMs remains unrealized, largely due to an incomplete understanding of the physical mechanisms that govern thermal transport within graphene-based nanocomposites. In this work, we show that the number of graphene layers (n) within an individual graphene nanoparticle has a significant effect on the bulk thermal conductivity of an organic PCM. Results indicate that the bulk thermal conductivity of PCMs can be tuned by over an order of magnitude simply by adjusting the number of graphene layers (n) from n = 3 to 44. Using scanning electron microscopy in tandem with nanoscale analytical techniques, the physical mechanisms that govern heat flow within a graphene nanocomposite PCM are found to be nearly independent of the intrinsic thermal conductivity of the graphene nanoparticle itself and are instead found to be dependent on the mechanical compliance of the graphene nanoparticles. These findings are critical for the design and development of PCMs that are capable of cooling next-generation electronics and storing heat effectively in medium-to-large-scale energy systems, including solar-thermal power plants and building heating and cooling systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masson, D.G.; Huggett, Q.J.; Weaver, P.P.E.
1991-08-01
Side-scan sonar data, cores, and high-resolution profiles have been used to produce an integrated model of sedimentation for the continental margin west of the Canary Islands. Long-range side-scan sonar (GLORIA) data and a grid of 3.5-kHz profiles, covering some 200,000 km{sup 2} allow a regional appraisal of sedimentation. More detailed studies of selected areas have been undertaken using a new 30 kHz deep-towed side-scan sonar (TOBI) developed by the U.K. Institute of Oceanographic Sciences. Sediment cores have been used both to calibrate acoustic facies identified on sonographs and for detailed stratigraphic studies. The most recent significant sedimentation event in themore » area is to Saharan Sediment Slide, which carried material from the upper continental slope off West Africa to the edge of the Madeira Abyssal Plain, a distance of some 1000 km. The authors data shows the downslope evolution of the debris flow. Near the Canaries, it is a 20-m-thick deposit rafting coherent blocks of more than 1 km diameter; side-scan records show a strong flow-parallel fabric on a scale of tens of meters. On the lower slope, the debris flow thins to a few meters, the flow fabric disappears, and the rafted blocks decrease to meters in diameter. Side-scan data from the lower slope show that the Saharan Slide buries an older landscape of turbidity current channels, typically 1 km wide and 50 m deep. Evidence from the Madeiran Abyssal Plain indicates a history of large but infrequent turbidity currents, the emplacement of which is related to the effects of sea level changes on the northwest African margin.« less
Isothermal microcalorimetry provides new insights into biofilm variability and dynamics.
Astasov-Frauenhoffer, Monika; Braissant, Olivier; Hauser-Gerspach, Irmgard; Daniels, Alma U; Weiger, Roland; Waltimo, Tuomas
2012-12-01
The purpose of this study was to investigate a three-species in vitro biofilm with peri-implantitis-related bacteria for its variability and metabolic activity. Streptococcus sanguinis, Fusobacterium nucleatum, and Porphyromonas gingivalis were suspended in simulated body fluid containing 0.2% glucose to form biofilms on polished, protein-coated implant-grade titanium disks over 72 h using a flow chamber system. Thereafter, biofilm-coated disks were characterized by scanning electron microscopy and fluorescence in situ hybridization/confocal laser scanning microscopy. To assess metabolic activity within the biofilms, their heat flow was recorded for 480 h at 37 °C by IMC. The microscopic methods revealed that the total number of bacteria in the biofilms varied slightly among specimens (2.59 × 10(4) ± 0.67 × 10(4) cells mm(-2) ), whereas all three species were found constantly with unchanged proportions (S. sanguinis 41.3 ± 4.8%, F. nucleatum 17.7 ± 2.1%, and P. gingivalis 41.0 ± 4.9%). IMC revealed minor differences in time-to-peak heat flow (20.6 ± 4.5 h), a trend consistent with the small variation in bacterial species proportions as shown by microscopy. Peak heat flow (35.8 ± 42.6 μW), mean heat flow (13.1 ± 22.0 μW), and total heat over 480 h (23.5 ± 37.2 J) showed very high variation. These IMC results may be attributed to differences in the initial cell counts and relative proportions of the three species, their distribution and embedment in exopolysaccharide matrix on the test specimens. The present results provide new insights into variability and dynamics of biofilms on titanium disks, aspects that should be explored in future studies of dental surfaces. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-10
... motor carrier of a scanned image of the original record; the driver would retain the original while the carrier maintains the electronic scanned electronic image along with any supporting documents. [[Page... plans to implement a new approach for receiving and processing RODS. Its drivers would complete their...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
... ``cut'' from a sheet or roll of labels--is used. Persistent problems with drug product mislabeling and... believe that development and use of advanced code scanning equipment has made many current electronic... and other advanced scanning techniques have made current electronic systems reliable to the 100...
Scanning electron microscope view of iron crystal growing on pyroxene crystal
NASA Technical Reports Server (NTRS)
1972-01-01
A scanning electron microscope photograph of a four-micron size iron crystal growing on a pyroxene crystal (calcium-magnesium-iron silicate) from the Apollo 15 Hadley-Apennino lunar landing site. The well developed crystal faces indicate that the crystal was formed from a hot vapor as the rock was cooling.
USDA-ARS?s Scientific Manuscript database
This paper evaluates the potential usefulness of low temperature-scanning electron microscopy (LT-SEM) to evaluate morphology and predation behavior of the six-spotted thrips (Scolothrips sexmaculatus Pergande) against the two-spotted spider mite (Tetranychus urticae (Koch)). Morphological features...
Arc-melting preparation of single crystal LaB.sub.6 cathodes
Gibson, Edwin D.; Verhoeven, John D.
1977-06-21
A method for preparing single crystals of lanthanum hexaboride (LaB.sub.6) by arc melting a rod of compacted LaB.sub.6 powder. The method is especially suitable for preparing single crystal LaB.sub.6 cathodes for use in scanning electron microscopes (SEM) and scanning transmission electron microscopes (STEM).
Sung, Wonmo; Park, Jong In; Kim, Jung-in; Carlson, Joel; Ye, Sung-Joon
2017-01-01
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans. PMID:28493940
Sung, Wonmo; Park, Jong In; Kim, Jung-In; Carlson, Joel; Ye, Sung-Joon; Park, Jong Min
2017-01-01
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.
Kaymakçı, Mustafa; Acar, Mustafa; Burukoglu, Dilek; Kutlu, Hatice Mehtap; Shojaolsadati, Paria; Cingi, Cemal; Bayar Muluk, Nuray
2015-04-01
In this prospective experimental study, we investigated the preventive effects of 2-aminoethyl diphenylborinate (2-APB) in rats exposed to acoustic trauma (AT). Light microscopic, transmission electron microscopic (TEM), and scanning electron microscopic (SEM) examinations were performed. Eighteen healthy Wistar albino rats were divided into the following three groups: groups 1 (control), 2 (AT), and 3 (AT+APB). The rats in groups 2 and 3 were exposed to AT; in group 3 rats, 2-APB at 2 mg/kg was also administered, initially transperitoneally, after 10 min. During the light microscopic, TEM, and SEM examinations, the structures of the cochlear hair cells, stereocilia, and Deiter's cells were normal in the control group. In the AT group, the organ of Corti and proximate structures were damaged according to the light microscopic examination. During the TEM examination, intense cellular damage and stereocilia loss were detected, while during the SEM examination, extensive damage and stereocilia loss were observed. Decreased damage with preserved cochlear structure was detected during the light microscopic examination in the AT+APB group than in the AT group. During the TEM and SEM examinations, although stereocilia loss occurred in the AT+APB group, near-normal cell, cilia, and tectorial membrane structures were also observed in the AT+APB group compared with the AT group. 2-APB may have protective effects against AT damage of the cochlea. The main mechanism underlying this effect is the inhibition of the vasoconstriction of the cochlear spiral modiolar artery, thereby improving cochlear blood flow. We conclude that 2-APB may also be effective if used immediately following AT.
Tsou, Chih-Hua; Cheng, Ping-Chin; Tseng, Chiung-Maan; Yen, Hsiao-Jung; Fu, Yu-Lan; You, Tien-Rong; Walden, David B
2015-03-01
Key message: Pollen maturation in Poaceae. Another development has been extensively examined by various imaging tools, including transmission electron microscopy, scanning electron microscopy, and light microscopy, but none is capable of identifying liquid water. Cryo-scanning electron microscopy with high-pressure rapid freeze fixation is excellent in preserving structures at cellular level and differentiating gas- versus liquid-filled space, but rarely used in anther study. We applied this technique to examine anther development of Poaceae because of its economic importance and unusual peripheral arrangement of pollen. Maize and longstamen rice were focused on. Here, we report for the first time that anthers of Poaceae lose the locular free liquid during late-microspore to early pollen stages; the majority of pollen grains arranged in a tight peripheral whorl develops normally and reaches maturity in the gas-filled loculus. Occasionally, pollen grains are found situated in the locular cavity, but they remain immature or become shrunk at anthesis. At pollen stage, microchannels and cytoplasmic strands are densely distributed in the entire pollen exine and intine, respectively, suggesting that nutrients are transported into the pollen from the entire surface. We propose that in Poaceae, the specialized peripheral arrangement of pollen grains is crucial for pollen maturation in the gas-filled loculus, which enables pollen achieving large surface contact area with the tapetum and neighboring grains to maintain sufficient nutrient flow. This report also shows that the single aperture of pollen in Poaceae usually faces the tapetum, but other orientation is also common; pollen grains with different aperture orientations show no morphological differences.
2010-01-01
Background We have previously identified two mineral mixtures, CB07 and BY07, and their respective aqueous leachates that exhibit in vitro antibacterial activity against a broad spectrum of pathogens. The present study assesses cellular ultrastructure and membrane integrity of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli after exposure to CB07 and BY07 aqueous leachates. Methods We used scanning and transmission electron microscopy to evaluate E. coli and MRSA ultrastructure and morphology following exposure to antibacterial leachates. Additionally, we employed Baclight LIVE/DEAD staining and flow cytometry to investigate the cellular membrane as a possible target for antibacterial activity. Results Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging of E. coli and MRSA revealed intact cells following exposure to antibacterial mineral leachates. TEM images of MRSA showed disruption of the cytoplasmic contents, distorted cell shape, irregular membranes, and distorted septa of dividing cells. TEM images of E. coli exposed to leachates exhibited different patterns of cytoplasmic condensation with respect to the controls and no apparent change in cell envelope structure. Although bactericidal activity of the leachates occurs more rapidly in E. coli than in MRSA, LIVE/DEAD staining demonstrated that the membrane of E. coli remains intact, while the MRSA membrane is permeabilized following exposure to the leachates. Conclusions These data suggest that the leachate antibacterial mechanism of action differs for Gram-positive and Gram-negative organisms. Upon antibacterial mineral leachate exposure, structural integrity is retained, however, compromised membrane integrity accounts for bactericidal activity in Gram-positive, but not in Gram-negative cells. PMID:20846374
Nishino, Tomoaki
2014-01-01
This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics.
NASA Astrophysics Data System (ADS)
Tsuda, Kenji; Tanaka, Michiyoshi
2015-08-01
Rhombohedral nanostructures previously found in the orthorhombic phase of KNbO3, by convergent-beam electron diffraction [Tsuda et al., Appl. Phys. Lett. 102, 051913 (2013)], have been investigated by the combined use of scanning transmission electron microscopy and convergent-beam electron diffraction. Two-dimensional distributions of the rhombohedral nanostructures, or nanometer-scale spatial fluctuations of polarization clusters, have been successfully visualized. The correlation length of the observed spatial fluctuations of local polarizations is related to the cpc/apc ratio and the transition entropy.
Polliack, A; McKenzie, S; Gee, T; Lampen, N; de Harven, E; Clarkson, B D
1975-09-01
This report describes the surface architecture of leukemic cells, as seen by scanning electron microscopy in 34 patients with acute nonlymphoblastic leukemia. Six patients with myeloblastic, 4 with promyelocytic, 10 with myelomonocytic, 8 with monocytic, 4 with histiocytic and 2 with undifferentiated leukemia were studied. Under the scanning electron microscope most leukemia histiocytes and monocytes appeared similar and were characterized by the presence of large, well developed broad-based ruffled membranes or prominent raised ridge-like profiles, resembling ithis respect normal monocytes. Most cells from patients with acute promyelocytic or myeloblastic leukemia exhibited narrower ridge-like profiles whereas some showed ruffles or microvilli. Patients with myelomonocytic leukemia showed mixed populations of cells with ridge-like profiles and ruffled membranes whereas cells from two patients with undifferentiated leukemia had smooth surfaces, similar to those encountered in cells from patients with acute lymphoblastic leukemia. It appears that nonlymphoblastic and lymphoblastic leukemia cells (particularly histiocytes and monocytes) can frequently be distinquished on the basis of their surface architecture. The surface features of leukemic histiocytes and monocytes are similar, suggesting that they may belong to the same cell series. The monocytes seem to have characteristic surface features recognizable with the scanning electron microscope and differ from most cells from patients with acute granulocytic leukemia. Although overlap of surface features and misidentification can occur, scanning electron microscopy is a useful adjunct to other modes of microscopy in the study and diagnosis of acute leukemia.
Cleaning of titanium substrates after application in a bioreactor.
Fingerle, Mathias; Köhler, Oliver; Rösch, Christina; Kratz, Fabian; Scheibe, Christian; Davoudi, Neda; Müller-Renno, Christine; Ziegler, Christiane; Huster, Manuel; Schlegel, Christin; Ulber, Roland; Bohley, Martin; Aurich, Jan C
2015-03-10
Plain and microstructured cp-titanium samples were studied as possible biofilm reactor substrates. The biofilms were grown by exposition of the titanium samples to bacteria in a flow cell. As bacteria the rod shaped gram negative Pseudomonas fluorescens and the spherical gram negative Paracoccus seriniphilus were chosen. Afterward, the samples were cleaned in subsequent steps: First, with a standard solvent based cleaning procedure with acetone, isopropanol, and ultrapure water and second by oxygen plasma sputtering. It will be demonstrated by means of x-ray photoelectron spectroscopy, fluorescence microscopy, and confocal laser scanning microscopy that oxygen plasma cleaning is a necessary and reliant tool to fully clean and restore titanium surfaces contaminated with a biofilm. The microstructured surfaces act beneficial to biofilm growth, while still being fully restorable after biofilm contamination. Scanning electron microscopy images additionally show, that the plasma process does not affect the microstructures. The presented data show the importance of the cleaning procedure. Just using solvents does not remove the biofilm and all its components reliably while a cleaning process by oxygen plasma regenerates the surfaces.
Yap, Benlee; Zilm, Peter S; Briggs, Nancy; Rogers, Anthony H; Cathro, Peter C
2014-12-01
Enterococcus faecalis is often involved in the aetiology of apical periodontitis after endodontic treatment. This project aimed to establish, on dentine in vitro, a multi-species biofilm containing E. faecalis, and to determine if the organism had an increased resistance to sodium hypochlorite compared with an axenic biofilm. Biofilms were established on dentine discs in flow cells with either E. faecalis alone (axenic) or together with Fusobacterium nucleatum and Streptococcus sanguinis. Following treatment with either 0.9% sodium hypochlorite or saline, the viability of E. faecalis was determined by serial plating and qualitative analysis was performed by scanning electron microscopy and confocal laser scanning microscopy. Viable counts indicated that 0.9% NaOCl is highly effective against E. faecalis grown alone and as part of a multi-species biofilm (P = 0.0005 and P = 0.001, respectively). No significant difference in its survival in the two biofilm types was found (P = 0.8276). © 2014 Australian Society of Endodontology.
Du, Hechao; Yang, Jie; Lu, Xiaohong; Lu, Zhaoxin; Bie, Xiaomei; Zhao, Haizhen; Zhang, Chong; Lu, Fengxia
2018-05-09
Bacillus cereus is an opportunistic pathogen that causes foodborne diseases. We isolated a novel bacteriocin, designated plantaricin GZ1-27, and elucidated its mode of action against B. cereus. Plantaricin GZ1-27 was purified using ammonium sulfate precipitation, gel-filtration chromatography, and RP-HPLC. MALDI-TOF/MS revealed that its molecular mass was 975 Da, and Q-TOF-MS/MS analysis predicted the amino acid sequence as VSGPAGPPGTH. Plantaricin GZ1-27 showed thermostability and pH stability. The antibacterial mechanism was investigated using flow cytometry, confocal laser-scanning microscopy, scanning and transmission electron microscopy, and RT-PCR, which revealed that GZ1-27 increased cell membrane permeability, triggered K + leakage and pore formation, damaged cell membrane integrity, altered cell morphology and intracellular organization, and reduced the expression of genes related to cytotoxin production, peptidoglycan synthesis, and cell division. These results suggest that plantaricin GZ1-27 effectively inhibits B. cereus at both the cellular and the molecular levels and is a potential natural food preservative targeting B. cereus.
Khamanga, Sandile Maswazi; Walker, Roderick B
2012-01-01
Captopril (CPT) microparticles were manufactured by solvent evaporation using acetone (dispersion phase) and liquid paraffin (manufacturing phase) with Eudragit® and Methocel® as coat materials. Design of experiments and response surface methodology (RSM) approaches were used to optimize the process. The microparticles were characterized based on the percent of drug released and yield, microcapsule size, entrapment efficiency and Hausner ratio. Differential scanning calorimetry (DSC), Infrared (IR) spectroscopy, scanning electron microscopy (SEM) and in vitro dissolution studies were conducted. The microcapsules were spherical, free-flowing and IR and DSC thermograms revealed that CPT was stable. The percent drug released was investigated with respect to Eudragit® RS and Methocel® K100M, Methocel® K15M concentrations and homogenizing speed. The optimal conditions for microencapsulation were 1.12 g Eudragit® RS, 0.67 g Methocel® K100M and 0.39 g Methocel® K15M at a homogenizing speed of 1643 rpm and 89% CPT was released. The value of RSM-mediated microencapsulation of CPT was elucidated.
Ploner, Stefan B; Moult, Eric M; Choi, WooJhon; Waheed, Nadia K; Lee, ByungKun; Novais, Eduardo A; Cole, Emily D; Potsaid, Benjamin; Husvogt, Lennart; Schottenhamml, Julia; Maier, Andreas; Rosenfeld, Philip J; Duker, Jay S; Hornegger, Joachim; Fujimoto, James G
2016-12-01
Currently available optical coherence tomography angiography systems provide information about blood flux but only limited information about blood flow speed. The authors develop a method for mapping the previously proposed variable interscan time analysis (VISTA) algorithm into a color display that encodes relative blood flow speed. Optical coherence tomography angiography was performed with a 1,050 nm, 400 kHz A-scan rate, swept source optical coherence tomography system using a 5 repeated B-scan protocol. Variable interscan time analysis was used to compute the optical coherence tomography angiography signal from B-scan pairs having 1.5 millisecond and 3.0 milliseconds interscan times. The resulting VISTA data were then mapped to a color space for display. The authors evaluated the VISTA visualization algorithm in normal eyes (n = 2), nonproliferative diabetic retinopathy eyes (n = 6), proliferative diabetic retinopathy eyes (n = 3), geographic atrophy eyes (n = 4), and exudative age-related macular degeneration eyes (n = 2). All eyes showed blood flow speed variations, and all eyes with pathology showed abnormal blood flow speeds compared with controls. The authors developed a novel method for mapping VISTA into a color display, allowing visualization of relative blood flow speeds. The method was found useful, in a small case series, for visualizing blood flow speeds in a variety of ocular diseases and serves as a step toward quantitative optical coherence tomography angiography.
Atmospheric pressure scanning transmission electron microscopy.
de Jonge, Niels; Bigelow, Wilbur C; Veith, Gabriel M
2010-03-10
Scanning transmission electron microscope (STEM) images of gold nanoparticles at atmospheric pressure have been recorded through a 0.36 mm thick mixture of CO, O2, and He. This was accomplished using a reaction cell consisting of two electron-transparent silicon nitride membranes. Gold nanoparticles of a full width at half-maximum diameter of 1.0 nm were visible above the background noise, and the achieved edge resolution was 0.4 nm in accordance with calculations of the beam broadening.
Atom Chips on Direct Bonded Copper Substrates (Postprint)
2012-01-19
joining of a thin sheet of pure copper to a ceramic substrate14 and is commonly used in power electronics due to its high current handling and heat...Squires et al. Rev. Sci. Instrum. 82, 023101 (2011) FIG. 1. A scanning electron micrograph of the top view of test chip A. the photolithographically...the etching pro- cesses and masking methods were quantified using a scanning electron microscope. Two test chips (A and B) are presented below and are
2016-01-09
studied in detail using scanning tunneling microscopy and angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the...angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the electron mobility at room temperature was comparable...scanning tunneling microscopy and angle resolved photoemission. For the doping levels achieved in cobalt titanium antimony, the electron mobility at room
Sparsity-Based Super Resolution for SEM Images.
Tsiper, Shahar; Dicker, Or; Kaizerman, Idan; Zohar, Zeev; Segev, Mordechai; Eldar, Yonina C
2017-09-13
The scanning electron microscope (SEM) is an electron microscope that produces an image of a sample by scanning it with a focused beam of electrons. The electrons interact with the atoms in the sample, which emit secondary electrons that contain information about the surface topography and composition. The sample is scanned by the electron beam point by point, until an image of the surface is formed. Since its invention in 1942, the capabilities of SEMs have become paramount in the discovery and understanding of the nanometer world, and today it is extensively used for both research and in industry. In principle, SEMs can achieve resolution better than one nanometer. However, for many applications, working at subnanometer resolution implies an exceedingly large number of scanning points. For exactly this reason, the SEM diagnostics of microelectronic chips is performed either at high resolution (HR) over a small area or at low resolution (LR) while capturing a larger portion of the chip. Here, we employ sparse coding and dictionary learning to algorithmically enhance low-resolution SEM images of microelectronic chips-up to the level of the HR images acquired by slow SEM scans, while considerably reducing the noise. Our methodology consists of two steps: an offline stage of learning a joint dictionary from a sequence of LR and HR images of the same region in the chip, followed by a fast-online super-resolution step where the resolution of a new LR image is enhanced. We provide several examples with typical chips used in the microelectronics industry, as well as a statistical study on arbitrary images with characteristic structural features. Conceptually, our method works well when the images have similar characteristics, as microelectronics chips do. This work demonstrates that employing sparsity concepts can greatly improve the performance of SEM, thereby considerably increasing the scanning throughput without compromising on analysis quality and resolution.
Use of radiologic modalities in coccidioidal meningitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadalnik, R.C.; Goldstein, E.; Hoeprich, P.D.
1981-01-01
The diagnostic utility of pentetate indium trisodium CSF studies, technetium Tc 99m brain scans, and computerized tomographic (CT) scans was evaluated in eight patients in whom coccidioidal meningitis developed following a dust storm in the Central Valley of California. The 111In flow studies and the CT scans demonstrated hydrocephalus in five patients with clinical findings suggesting this complication. Ventriculitis has not previously been diagnosed before death in patients with coccidioidal meningitis; however, it was demonstrated in two patients by the technetium Tc 99m brain scan. The finding that communicating hydrocephalus occurs early in meningitis and interferes with CSF flow intomore » infected basilar regions has important therapeutic implications in that antifungal agents injected into the lumbar subarachnoid space may not reach these regions.« less
Atlas of computerized blood flow analysis in bone disease.
Gandsman, E J; Deutsch, S D; Tyson, I B
1983-11-01
The role of computerized blood flow analysis in routine bone scanning is reviewed. Cases illustrating the technique include proven diagnoses of toxic synovitis, Legg-Perthes disease, arthritis, avascular necrosis of the hip, fractures, benign and malignant tumors, Paget's disease, cellulitis, osteomyelitis, and shin splints. Several examples also show the use of the technique in monitoring treatment. The use of quantitative data from the blood flow, bone uptake phase, and static images suggests specific diagnostic patterns for each of the diseases presented in this atlas. Thus, this technique enables increased accuracy in the interpretation of the radionuclide bone scan.
Marovitz, W F; Khan, K M
1977-01-01
A method for removal, fixation, microdissection, and drying of early rat otocyst for examination by the scanning electron microscope is elaborated. Tissues were dissected, fixed as for conventional transmission electron microscopy and dried by critical point evaporation using amylacetate as the transitional fluid and carbon dioxide as the pressure head. Otocysts were either dissected at the time of initial fixation, or subsequent to drying. The otocyst of the 12th postcoital day was used as a model system in this preliminary report. Critical point drying retained the overall configuration and the fine ultrastructural detail of the otocyst. The interior otocystic surface was visualized and cilia bearing cells of the luminal surface were identified. Most if not all of these cells had a comspicuous, but short kinocillum which terminated in an ovoid bulb. The scanning electron microscopic appearance was correlated to the transmission electron microscopic image seen in the second paper in this Supplement.
Environmental scanning electron microscopy in cell biology.
McGregor, J E; Staniewicz, L T L; Guthrie Neé Kirk, S E; Donald, A M
2013-01-01
Environmental scanning electron microscopy (ESEM) (1) is an imaging technique which allows hydrated, insulating samples to be imaged under an electron beam. The resolution afforded by this technique is higher than conventional optical microscopy but lower than conventional scanning electron microscopy (CSEM). The major advantage of the technique is the minimal sample preparation needed, making ESEM quick to use and the images less susceptible to the artifacts that the extensive sample preparation usually required for CSEM may introduce. Careful manipulation of both the humidity in the microscope chamber and the beam energy are nevertheless essential to prevent dehydration and beam damage artifacts. In some circumstances it is possible to image live cells in the ESEM (2).In the following sections we introduce the fundamental principles of ESEM imaging before presenting imaging protocols for plant epidermis, mammalian cells, and bacteria. In the first two cases samples are imaged using the secondary electron (topographic) signal, whereas a transmission technique is employed to image bacteria.
Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe
2014-01-01
The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations.
NASA Astrophysics Data System (ADS)
Zhang, Chendong; Li, Ming-Yang; Tersoff, Jerry; Han, Yimo; Su, Yushan; Li, Lain-Jong; Muller, David A.; Shih, Chih-Kang
2018-02-01
Monolayer transition metal dichalcogenide heterojunctions, including vertical and lateral p-n junctions, have attracted considerable attention due to their potential applications in electronics and optoelectronics. Lattice-misfit strain in atomically abrupt lateral heterojunctions, such as WSe2-MoS2, offers a new band-engineering strategy for tailoring their electronic properties. However, this approach requires an understanding of the strain distribution and its effect on band alignment. Here, we study a WSe2-MoS2 lateral heterojunction using scanning tunnelling microscopy and image its moiré pattern to map the full two-dimensional strain tensor with high spatial resolution. Using scanning tunnelling spectroscopy, we measure both the strain and the band alignment of the WSe2-MoS2 lateral heterojunction. We find that the misfit strain induces type II to type I band alignment transformation. Scanning transmission electron microscopy reveals the dislocations at the interface that partially relieve the strain. Finally, we observe a distinctive electronic structure at the interface due to hetero-bonding.
Atmospheric scanning electron microscope for correlative microscopy.
Morrison, Ian E G; Dennison, Clare L; Nishiyama, Hidetoshi; Suga, Mitsuo; Sato, Chikara; Yarwood, Andrew; O'Toole, Peter J
2012-01-01
The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.;
2016-01-01
The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.
Burlaud-Gaillard, Julien; Sellin, Caroline; Georgeault, Sonia; Uzbekov, Rustem; Lebos, Claude; Guillaume, Jean-Marc; Roingeard, Philippe
2014-01-01
The intracellular morphogenesis of flaviviruses has been well described, but flavivirus release from the host cell remains poorly documented. We took advantage of the optimized production of an attenuated chimeric yellow fever/dengue virus for vaccine purposes to study this phenomenon by microscopic approaches. Scanning electron microscopy (SEM) showed the release of numerous viral particles at the cell surface through a short-lived process. For transmission electron microscopy (TEM) studies of the intracellular ultrastructure of the small number of cells releasing viral particles at a given time, we developed a new correlative microscopy method: CSEMTEM (for correlative scanning electron microscopy - transmission electron microscopy). CSEMTEM analysis suggested that chimeric flavivirus particles were released as individual particles, in small exocytosis vesicles, via a regulated secretory pathway. Our morphological findings provide new insight into interactions between flaviviruses and cells and demonstrate that CSEMTEM is a useful new method, complementary to SEM observations of biological events by intracellular TEM investigations. PMID:24681578
Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics
NASA Technical Reports Server (NTRS)
1994-01-01
The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.