Astrophysical gamma-ray production by inverse Compton interactions of relativistic electrons
NASA Technical Reports Server (NTRS)
Schlickeiser, R.
1979-01-01
The inverse Compton scattering of background photon gases by relativistic electrons is a good candidate for the production of high-energy gamma rays in the diffuse interstellar medium as well as in discrete sources. By discussing the special case of the scattering of the diffuse starlight in the interstellar medium by cosmic ray electrons, we demonstrate that previous derivations of the gamma ray source function for this process on the basis of the Thomson limit of the Klein-Nishina cross section lead to incorrect values for gamma-ray energies above 100 MeV. It is shown that the Thomson limit is not applicable for the calculation of gamma-ray source functions in astrophysical circumstances in which target photons with energies greater than 1 eV are scattered by relativistic electrons.
Electron Acceleration and Efficiency in Nonthermal Gamma-Ray Sources
NASA Astrophysics Data System (ADS)
Bykov, A. M.; Meszaros, P.
1996-04-01
In energetic nonthermal sources such as gamma-ray bursts, active galactic nuclei, or galactic jets, etc., one expects both relativistic and transrelativistic shocks accompanied by violent motions of moderately relativistic plasma. We present general considerations indicating that these sites are electron and positron accelerators leading to a modified power-law spectrum. The electron (or e+/-) energy index is very hard, ~ gamma -1 or flatter, up to a comoving frame break energy gamma *, and becomes steeper above that. In the example of gamma-ray bursts, the Lorentz factor reaches gamma * ~ 103 for e+/- accelerated by the internal shock ensemble on subhydrodynamical timescales. For pairs accelerated on hydrodynamical timescales in the external shocks, similar hard spectra are obtained, and the break Lorentz factor can be as high as gamma * <~ 105. Radiation from the nonthermal electrons produces photon spectra with shapes and characteristic energies in qualitative agreement with observed generic gamma-ray burst and blazar spectra. The scenario described here provides a plausible way to solve one of the crucial problems of nonthermal high-energy sources, namely, the efficient transfer of energy from the proton flow to an appropriate nonthermal lepton component.
Polarized γ source based on Compton backscattering in a laser cavity
NASA Astrophysics Data System (ADS)
Yakimenko, V.; Pogorelsky, I. V.
2006-09-01
We propose a novel gamma source suitable for generating a polarized positron beam for the next generation of electron-positron colliders, such as the International Linear Collider (ILC), and the Compact Linear Collider (CLIC). This 30-MeV polarized gamma source is based on Compton scattering inside a picosecond CO2 laser cavity generated from electron bunches produced by a 4-GeV linac. We identified and experimentally verified the optimum conditions for obtaining at least one gamma photon per electron. After multiplication at several consecutive interaction points, the circularly polarized gamma rays are stopped on a target, thereby creating copious numbers of polarized positrons. We address the practicality of having an intracavity Compton-polarized positron source as the injector for these new colliders.
Gamma-ray momentum reconstruction from Compton electron trajectories by filtered back-projection
Haefner, A.; Gunter, D.; Plimley, B.; ...
2014-11-03
Gamma-ray imaging utilizing Compton scattering has traditionally relied on measuring coincident gamma-ray interactions to map directional information of the source distribution. This coincidence requirement makes it an inherently inefficient process. We present an approach to gamma-ray reconstruction from Compton scattering that requires only a single electron tracking detector, thus removing the coincidence requirement. From the Compton scattered electron momentum distribution, our algorithm analytically computes the incident photon's correlated direction and energy distributions. Because this method maps the source energy and location, it is useful in applications, where prior information about the source distribution is unknown. We demonstrate this method withmore » electron tracks measured in a scientific Si charge coupled device. While this method was demonstrated with electron tracks in a Si-based detector, it is applicable to any detector that can measure electron direction and energy, or equivalently the electron momentum. For example, it can increase the sensitivity to obtain energy and direction in gas-based systems that suffer from limited efficiency.« less
High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2011-01-01
This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,
Positron source position sensing detector and electronics
Burnham, Charles A.; Bradshaw, Jr., John F.; Kaufman, David E.; Chesler, David A.; Brownell, Gordon L.
1985-01-01
A positron source, position sensing device, particularly with medical applications, in which positron induced gamma radiation is detected using a ring of stacked, individual scintillation crystals, a plurality of photodetectors, separated from the scintillation crystals by a light guide, and high resolution position interpolation electronics. Preferably the scintillation crystals are several times more numerous than the photodetectors with each crystal being responsible for a single scintillation event from a received gamma ray. The light guide will disperse the light emitted from gamma ray absorption over several photodetectors. Processing electronics for the output of the photodetectors resolves the location of the scintillation event to a fraction of the dimension of each photodetector. Because each positron absorption results in two 180.degree. oppositely traveling gamma rays, the detection of scintillation in pairs permits location of the positron source in a manner useful for diagnostic purposes. The processing electronics simultaneously responds to the outputs of the photodetectors to locate the scintillations to the source crystal. While it is preferable that the scintillation crystal include a plurality of stacked crystal elements, the resolving power of the processing electronics is also applicable to continuous crystal scintillators.
Gamma-Ray Flares from the Crab Nebula
NASA Astrophysics Data System (ADS)
Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costamante, L.; Cutini, S.; D'Ammando, F.; Dermer, C. D.; de Angelis, A.; de Luca, A.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashi, K.; Hayashida, M.; Hays, E.; Horan, D.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Khangulyan, D.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Marelli, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Ray, P. S.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romani, R. W.; Sadrozinski, H. F.-W.; Sanchez, D.; Parkinson, P. M. Saz; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Wang, P.; Wood, K. S.; Yang, Z.; Ziegler, M.
2011-02-01
A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (1015 electron volts) electrons in a region smaller than 1.4 × 10-2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.
Gamma-ray flares from the Crab Nebula.
Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M
2011-02-11
A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.
Gamma-Ray Flares from the Crab Nebula
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-01-06
A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega–electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta–electron-volt (10more » 15 electron volts) electrons in a region smaller than 1.4 × 10 -2 parsecs. In conclusion, these are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.« less
Energy spectrum of extragalactic gamma-ray sources
NASA Technical Reports Server (NTRS)
Protheroe, R. J.
1985-01-01
The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.
NASA Astrophysics Data System (ADS)
López-Coto, R.; Hahn, J.; BenZvi, S.; Dingus, B.; Hinton, J.; Nisa, M. U.; Parsons, R. D.; Greus, F. Salesa; Zhang, H.; Zhou, H.
2018-11-01
The positron excess measured by PAMELA and AMS can only be explained if there is one or several sources injecting them. Moreover, at the highest energies, it requires the presence of nearby ( ∼ hundreds of parsecs) and middle age (maximum of ∼ hundreds of kyr) sources. Pulsars, as factories of electrons and positrons, are one of the proposed candidates to explain the origin of this excess. To calculate the contribution of these sources to the electron and positron flux at the Earth, we developed EDGE (Electron Diffusion and Gamma rays to the Earth), a code to treat the propagation of electrons and compute their diffusion from a central source with a flexible injection spectrum. Using this code, we can derive the source's gamma-ray spectrum, spatial extension, the all-electron density in space, the electron and positron flux reaching the Earth and the positron fraction measured at the Earth. We present in this paper the foundations of the code and study how different parameters affect the gamma-ray spectrum of a source and the electron flux measured at the Earth. We also studied the effect of several approximations usually performed in these studies. This code has been used to derive the results of the positron flux measured at the Earth in [1].
High flux, narrow bandwidth compton light sources via extended laser-electron interactions
Barty, V P
2015-01-13
New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F.; Hartemann, F. V.; Anderson, S. G.
Tunable, high precision gamma-ray sources are under development to enable nuclear photonics, an emerging field of research. This paper focuses on the technological and theoretical challenges related to precision Compton scattering gamma-ray sources. In this scheme, incident laser photons are scattered and Doppler upshifted by a high brightness electron beam to generate tunable and highly collimated gamma-ray pulses. The electron and laser beam parameters can be optimized to achieve the spectral brightness and narrow bandwidth required by nuclear photonics applications. A description of the design of the next generation precision gamma-ray source currently under construction at Lawrence Livermore National Laboratorymore » is presented, along with the underlying motivations. Within this context, high-gradient X-band technology, used in conjunction with fiber-based photocathode drive laser and diode pumped solid-state interaction laser technologies, will be shown to offer optimal performance for high gamma-ray spectral flux, narrow bandwidth applications.« less
Proof of Principle for Electronic Collimation of a Gamma Ray Detector
2016-01-01
complete the Environmental Baseline Survey mission for soldiers. The monitoring of radioactive waste handling, as well as other sources of radioactive ...electronic collimation of a gamma ray spectroscopic detector will include identifying and characterizing environmentally hazardous radioactivity to
Overview of Mono-Energetic Gamma-Ray Sources and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, Fred; /LLNL, Livermore; Albert, Felicie
2012-06-25
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less
Modulated method for efficient, narrow-bandwidth, laser Compton X-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.
Detection of pulsed bremsstrahlung-induced prompt neutron capture gamma rays with a HPGe detector
NASA Astrophysics Data System (ADS)
Jones, James L.
1997-02-01
The Idaho National Engineering Laboratory (INEL) is developing a novel photoneutron-based nondestructive evaluation technique which uses a pulsed, high-energy electron accelerator and gamma-ray spectrometry. Highly penetrating pulses of bremsstrahlung photons are produced by each pulse of electrons. Interrogating neutrons are generated by the bremsstrahlung photons interacting within a photoneutron source material. The interactions of the neutrons within a target result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the photoneutron-induced, prompt gama-rays acquired between accelerator pulses with a unique, high- purity germanium gamma-ray detection system using a modified transistor reset preamplifier. The detection system, the experimental configuration, and the accelerator operation used to characterize the detection systems performance are described. Using a 6.5-MeV electron accelerator and a beryllium metal photoneutron source, gamma-ray spectra were successfully acquired for Al, Cu, polyethylene, NaCl, and depleted uranium targets as soon as 30 microsecond(s) after each bremsstrahlung flash.
Giant collimated gamma-ray flashes
NASA Astrophysics Data System (ADS)
Benedetti, Alberto; Tamburini, Matteo; Keitel, Christoph H.
2018-06-01
Bright sources of high-energy electromagnetic radiation are widely employed in fundamental research, industry and medicine1,2. This motivated the construction of Compton-based facilities planned to yield bright gamma-ray pulses with energies up to3 20 MeV. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission that occurs when a sufficiently dense ultra-relativistic electron beam interacts with a millimetre-thickness conductor. For electron beam densities exceeding approximately 3 × 1019 cm-3, electromagnetic instabilities occur, and the ultra-relativistic electrons travel through self-generated electromagnetic fields as large as 107-108 gauss. This results in the production of a collimated gamma-ray pulse with peak brilliance above 1025 photons s-1 mrad-2 mm-2 per 0.1% bandwidth, photon energies ranging from 200 keV to gigaelectronvolts and up to 60% electron-to-photon energy conversion efficiency. These findings pave the way to compact, high-repetition-rate (kilohertz) sources of short (≲30 fs), collimated (milliradian) and high-flux (>1012 photons s-1) gamma-ray pulses.
Results from Preliminary Checks on AmBe Neutron Source Number 71
2011-02-01
radiation and additional lead shielding was used to shield against gamma radiation emissions. Electronic dosimeters , the MGP DMC2000GN and Thermo EPD...DMC2000GN (S/N: 007395) and EPD-N2 (S/N: 07106323) electronic dosimeters were employed as these both are able to measure and record gamma and neutron...the AN/VDR-2 gamma radiation meter and Meridian Model 5085 neutron meter to confirm this and electronic dosimeters would be worn by personnel to
Upgrades at the Duke Free Electron Laser Laboratory
NASA Astrophysics Data System (ADS)
Howell, Calvin R.
2004-11-01
Major upgrades to the storage-ring based photon sources at the Duke Free Electron Laser Laboratory (DFELL) are underway. The photon sources at the DFELL are well suited for research in the areas of medicine, biophysics, accelerator physics, nuclear physics and material science. These upgrades, which will be completed by the summer 2006, will significantly enhance the capabilities of the ultraviolet (UV) free-electron laser (FEL) and the high intensity gamma-ray source (HIGS). The HIGS is a relatively new research facility at the DFELL that is operated jointly by the DFELL and the Triangle Universities Nuclear Laboratory. The gamma-ray beam is produced by Compton back scattering of the UV photons inside the FEL optical cavity off the circulating electrons in the storage ring. The gamma-ray beam is 100% polarized and its energy resolution is selected by collimation. The capabilities of the upgraded facility will be described, the status of the upgrades will be summarized, and the proposed first-generation research program at HIGS will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankuzhiyil, Nijil; Ansoldi, Stefano; Persic, Massimo
2011-05-20
For the high-frequency-peaked BL Lac object Mrk 421, we study the variation of the spectral energy distribution (SED) as a function of source activity, from quiescent to active. We use a fully automatized {chi}{sup 2}-minimization procedure, instead of the 'eyeball' procedure more commonly used in the literature, to model nine SED data sets with a one-zone synchrotron self-Compton (SSC) model and examine how the model parameters vary with source activity. The latter issue can finally be addressed now, because simultaneous broadband SEDs (spanning from optical to very high energy photon) have finally become available. Our results suggest that in Mrkmore » 421 the magnetic field (B) decreases with source activity, whereas the electron spectrum's break energy ({gamma}{sub br}) and the Doppler factor ({delta}) increase-the other SSC parameters turn out to be uncorrelated with source activity. In the SSC framework, these results are interpreted in a picture where the synchrotron power and peak frequency remain constant with varying source activity, through a combination of decreasing magnetic field and increasing number density of {gamma} {<=} {gamma}{sub br} electrons: since this leads to an increased electron-photon scattering efficiency, the resulting Compton power increases, and so does the total (= synchrotron plus Compton) emission.« less
NASA Astrophysics Data System (ADS)
Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee
2017-05-01
Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).
Compact Gamma-Beam Source for Nuclear Security Technologies
NASA Astrophysics Data System (ADS)
Gladkikh, P.; Urakawa, J.
2015-10-01
A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.
Exploring the Extreme Universe with the Fermi Gamma-Ray Space Telescope
NASA Technical Reports Server (NTRS)
Thompson, D. J.
2010-01-01
Because high-energy gamma rays are produced by powerful sources, the Fermi Gamma-ray Space Telescope provides a window on extreme conditions in the Universe. Some key observations of the constantly changing gamma-ray sky include: (1) Gamma-rays from pulsars appear to come from a region well above the surface of the neutron star; (2) Multiwavelength studies of blazars show that simple models of jet emission are not always adequate to explain what is seen; (3) Gamma-ray bursts can constrain models of quantum gravity; (4) Cosmic-ray electrons at energies approaching 1 TeV suggest a local source for some of these particles.
A comparison of radiation damage in liner ICs from cobalt-60 gamma rays and 2.2-MeV electrons
NASA Technical Reports Server (NTRS)
Gauthier, M. K.; Nichols, D. K.
1983-01-01
The total ionizing dose response of fourteen IC types from eight manufacturers was measured using Co-60 gamma rays and 2.2-MeV electrons for exposure levels of 100 to 20,000 Gy(Si). Key parameter measurements were made and compared for each device type. The data show that a Co-60 source is not a suitable simulation source for some systems because of the generally more damaging nature of electrons as well as the unpredictable nature of the individual device response to the two types of radiations used here.
Compact FEL-driven inverse compton scattering gamma-ray source
Placidi, M.; Di Mitri, Simone; Pellegrini, C.; ...
2017-02-28
Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scatteringmore » (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. As a result, the same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4 × 22 m 2 footprint system.« less
Compact FEL-driven inverse compton scattering gamma-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Placidi, M.; Di Mitri, Simone; Pellegrini, C.
Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scatteringmore » (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. As a result, the same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4 × 22 m 2 footprint system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalcea, D.; Murokh, A.; Piot, P.
2017-07-01
A high-brilliance (~10 22 photon s -1 mm -2 mrad -2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (E γ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, C J
A renaissance in nuclear physics is occurring around the world because of a new kind of incredibly bright, gamma-ray light source that can be created with short pulse lasers and energetic electron beams. These highly Mono-Energetic Gamma-ray (MEGa-ray) sources produce narrow, laser-like beams of incoherent, tunable gamma-rays and are enabling access and manipulation of the nucleus of the atom with photons or so called 'Nuclear Photonics'. Just as in the early days of the laser when photon manipulation of the valence electron structure of the atom became possible and enabling to new applications and science, nuclear photonics with laser-based gamma-raymore » sources promises both to open up wide areas of practical isotope-related, materials applications and to enable new discovery-class nuclear science. In the United States, the development of high brightness and high flux MEGa-ray sources is being actively pursued at the Lawrence Livermore National Laboratory in Livermore (LLNL), California near San Francisco. The LLNL work aims to create by 2013 a machine that will advance the state of the art with respect to source the peak brightness by 6 orders of magnitude. This machine will create beams of 1 to 2.3 MeV photons with color purity matching that of common lasers. In Europe a similar but higher photon energy gamma source has been included as part of the core capability that will be established at the Extreme Light Infrastructure Nuclear Physics (ELI-NP) facility in Magurele, Romania outside of Bucharest. This machine is expected to have an end point gamma energy in the range of 13 MeV. The machine will be co-located with two world-class, 10 Petawatt laser systems thus allowing combined intense-laser and gamma-ray interaction experiments. Such capability will be unique in the world. In this talk, Dr. Chris Barty from LLNL will review the state of the art with respect to MEGa-ray source design, construction and experiments and will describe both the ongoing projects around the world as well some of the exciting applications that these machines will enable. The optimized interaction of short-duration, pulsed lasers with relativistic electron beams (inverse laser-Compton scattering) is the key to unrivaled MeV-scale photon source monochromaticity, pulse brightness and flux. In the MeV spectral range, such Mono-Energetic Gamma-ray (MEGa-ray) sources can have many orders of magnitude higher peak brilliance than even the world's largest synchrotrons. They can efficiently perturb and excite the isotope-specific resonant structure of the nucleus in a manner similar to resonant laser excitation of the valence electron structure of the atom.« less
In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.
Le, M K; Zhu, X M
2001-04-01
Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and alloy. In this work, a single high nitrogen face-centered-cubic (f.c.c.) phase (gammaN) formed on the 1Cr18Ni9Ti and AISI 316L austenitic stainless steels with a high nitrogen concentration of about 32 at % was characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. The corrosion resistance of the gammaN-phase layer was studied by the electrochemical cyclic polarization measurement in Ringer's solutions buffered to pH from 3.5 to 7.2 at a temperature of 37 degrees C. No pitting corrosion in the Ringer's solutions with pH = 7.2 and 5.5 was detected for the gammaN-phase layers on the two stainless steels. The high pitting potential for the gammaN-phase layers is higher, about 500 and 600 mV, above that of the two original stainless steels, respectively, in the Ringer's solution with pH = 3.5. The corroded surface morphologies of the gammaN-phase layers observed by scanning electron microscopy are consistent with the results of the electrochemical polarization measurement.
Gamma ray pulsars. [electron-photon cascades
NASA Technical Reports Server (NTRS)
Oegelman, H.; Ayasli, S.; Hacinliyan, A.
1977-01-01
Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.
Ultralow-dose, feedback imaging with laser-Compton X-ray and laser-Compton gamma ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
Ultralow-dose, x-ray or gamma-ray imaging is based on fast, electronic control of the output of a laser-Compton x-ray or gamma-ray source (LCXS or LCGS). X-ray or gamma-ray shadowgraphs are constructed one (or a few) pixel(s) at a time by monitoring the LCXS or LCGS beam energy required at each pixel of the object to achieve a threshold level of detectability at the detector. An example provides that once the threshold for detection is reached, an electronic or optical signal is sent to the LCXS/LCGS that enables a fast optical switch that diverts, either in space or time the laser pulsesmore » used to create Compton photons. In this way, one prevents the object from being exposed to any further Compton x-rays or gamma-rays until either the laser-Compton beam or the object are moved so that a new pixel location may be illumination.« less
OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, F V; Albert, F; Anderson, G G
2010-05-18
Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.« less
Senftle, F.E.; Macy, R.J.; Mikesell, J.L.
1979-01-01
The fast- and thermal-neutron fluence rates from a 3.7 ??g 252Cf neutron source in a simulated borehole have been measured as a function of the source-to-detector distance using air, water, coal, iron ore-concrete mix, and dry sand as borehole media. Gamma-ray intensity measurements were made for specific spectral lines at low and high energies for the same range of source-to-detector distances in the iron ore-concrete mix and in coal. Integral gamma-ray counts across the entire spectrum were also made at each source-to-detector distance. From these data, the specific neutron-damage rate, and the critical count-rate criteria, we show that in an iron ore-concrete mix (low hydrogen concentration), 252Cf neutron sources of 2-40 ??g are suitable. The source size required for optimum gamma-ray sensitivity depends on the energy of the gamma ray being measured. In a hydrogeneous medium such as coal, similar measurements were made. The results show that sources from 2 to 20 ??g are suitable to obtain the highest gamma-ray sensitivity, again depending on the energy of the gamma ray being measured. In a hydrogeneous medium, significant improvement in sensitivity can be achieved by using faster electronics; in iron ore, it cannot. ?? 1979 North-Holland Publishing Co.
Characterizing the source properties of terrestrial gamma ray flashes
NASA Astrophysics Data System (ADS)
Dwyer, Joseph R.; Liu, Ningyu; Eric Grove, J.; Rassoul, Hamid; Smith, David M.
2017-08-01
Monte Carlo simulations are used to determine source properties of terrestrial gamma ray flashes (TGFs) as a function of atmospheric column depth and beaming geometry. The total mass per unit area traversed by all the runaway electrons (i.e., the total grammage) during a TGF, Ξ, is introduced, defined to be the total distance traveled by all the runaway electrons along the electric field lines multiplied by the local air mass density along their paths. It is shown that key properties of TGFs may be directly calculated from Ξ and its time derivative, including the gamma ray emission rate, the current moment, and the optical power of the TGF. For the calculations presented in this paper, a standard TGF gamma ray fluence, F0 = 0.1 cm-2 above 100 keV for a spacecraft altitude of 500 km, and a standard total grammage, Ξ0 = 1018 g/cm2, are introduced, and results are presented in terms of these values. In particular, the current moments caused by the runaway electrons and their accompanying ionization are found for a standard TGF fluence, as a function of source altitude and beaming geometry, allowing a direct comparison between the gamma rays measured in low-Earth orbit and the VLF-LF radio frequency emissions recorded on the ground. Such comparisons should help test and constrain TGF models and help identify the roles of lightning leaders and streamers in the production of TGFs.
A new class of galactic discrete gamma ray sources: Chaotic winds of massive stars
NASA Technical Reports Server (NTRS)
Chen, Wan; White, Richard L.
1992-01-01
We propose a new class of galactic discrete gamma-ray sources, the chaotic, high mass-loss-rate winds from luminous early-type stars. Early-type stellar winds are highly unstable due to intrinsic line-driven instabilities, and so are permeated by numerous strong shocks. These shocks can accelerate a small fraction of thermal electrons and ions to relativistic energies via the first-order Fermi mechanism. A power-law-like photon spectrum extending from keV to above 10 MeV energies is produced by inverse Compton scattering of the extremely abundant stellar UV photons by the relativistic electrons. In addition, a typical pi(sup 0)-decay gamma-ray spectrum is generated by proton-ion interactions in the densest part of the winds.
An EAS experiment at mountain altitude for the detection of gamma-ray sources
NASA Technical Reports Server (NTRS)
Allkofer, O. C.; Samorski, M.; Stamm, W.
1985-01-01
The plan of an extensive air shower experiment 2.200 m above sea level for the detection of 10 to the 14th power eV to 10 to the 17th power eV gamma rays from sources in the declination band 0 deg to + 60 deg is described. The site selection, detector array and electronic layout are detailed.
NASA Astrophysics Data System (ADS)
Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.
2016-02-01
The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.
Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth
NASA Astrophysics Data System (ADS)
Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Enríquez-Rivera, O.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernández, S.; Hernández-Almada, A.; Hinton, J.; Hona, B.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; Vargas, H. León; Linnemann, J. T.; Longinotti, A. L.; Luis Raya, G.; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G.; Younk, P. W.; Zepeda, A.; Zhou, H.; Guo, F.; Hahn, J.; Li, H.; Zhang, H.
2017-11-01
The unexpectedly high flux of cosmic-ray positrons detected at Earth may originate from nearby astrophysical sources, dark matter, or unknown processes of cosmic-ray secondary production. We report the detection, using the High-Altitude Water Cherenkov Observatory (HAWC), of extended tera–electron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of accelerated leptons, but the measured tera–electron volt emission profile constrains the diffusion of particles away from these sources to be much slower than previously assumed. We demonstrate that the leptons emitted by these objects are therefore unlikely to be the origin of the excess positrons, which may have a more exotic origin.
Development of a high resolution liquid xenon imaging chamber for gamma-ray astronomy
NASA Technical Reports Server (NTRS)
Aprile, Elena
1991-01-01
The objective was to develop the technology of liquid xenon (LXe) detectors for spectroscopy and imaging of gamma rays from astrophysical sources emitting in the low to medium energy regime. In particular, the technical challenges and the physical processes relevant to the realization of the LXe detector operated as a Time Projection Chamber (TPC) were addressed and studied. Experimental results were obtained on the following topics: (1) long distance drift of free electrons in LXe (purity); (2) scintillation light yield for electrons and alphas in LXe (triggering); and (3) ionization yield for electrons and gamma rays in LXe (energy resolution). The major results from the investigations are summarized.
Neutrino Astronomy with the MACRO Detector
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; di Credico, A.; Enriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Okada, C.; Orth, C.; Osteria, G.; Ouchrif, M.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Vilela, E.; Walter, C. W.; Webb, R.
2001-01-01
High-energy gamma-ray astronomy is now a well-established field, and several sources have been discovered in the region from a few giga-electron volts up to several tera-electron volts. If sources involving hadronic processes exist, the production of photons would be accompanied by neutrinos too. Other possible neutrino sources could be related to the annihilation of weakly interacting, massive particles (WIMPs) at the center of galaxies with black holes. We present the results of a search for pointlike sources using 1100 upward-going muons produced by neutrino interactions in the rock below and inside the Monopole Astrophysics and Cosmic Ray Observatory (MACRO) detector in the underground Gran Sasso Laboratory. These data show no evidence of a possible neutrino pointlike source or of possible correlations between gamma-ray bursts and neutrinos. They have been used to set flux upper limits for candidate pointlike sources which are in the range 10-14-10-15 cm-2 s-1.
Fast variability of tera-electron volt gamma rays from the radio galaxy M87.
Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brown, A M; Bühler, R; Büsching, I; Carrigan, S; Chadwick, P M; Chounet, L-M; Coignet, G; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'c; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Füssling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Kendziorra, E; Kerschhaggl, M; Khélifi, B; Komin, Nu; Konopelko, A; Kosack, K; Lamanna, G; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, G; McComb, T J L; Moulin, E; de Naurois, M; Nedbal, D; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Ranchon, S; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Ripken, J; Rob, L; Rolland, L; Rosier-Lees, S; Rowell, G; Sahakian, V; Santangelo, A; Saugé, L; Schlenker, S; Schlickeiser, R; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J-P; Terrier, R; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Völk, H J; Wagner, S J; Ward, M
2006-12-01
The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production. The observations confirm that TeV gamma rays are emitted by extragalactic sources other than blazars, where jets are not relativistically beamed toward the observer.
NASA Technical Reports Server (NTRS)
Oegelman, H.; Ayasli, S.; Hacinliyan, A.
1976-01-01
Recent data from the high energy gamma ray experiment have revealed the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields correspond to many radiation lengths which cause electrons to emit photons via magnetic bremsstrahlung and these photons to pair produce. The cascade develops until the mean photon energy drops below the pair production threshold which happens to be in the gamma ray range; at this stage the photons break out from the source.
Cascade model of gamma-ray bursts: Power-law and annihilation-line components
NASA Technical Reports Server (NTRS)
Harding, A. K.; Sturrock, P. A.; Daugherty, J. K.
1988-01-01
If, in a neutron star magnetosphere, an electron is accelerated to an energy of 10 to the 11th or 12th power eV by an electric field parallel to the magnetic field, motion of the electron along the curved field line leads to a cascade of gamma rays and electron-positron pairs. This process is believed to occur in radio pulsars and gamma ray burst sources. Results are presented from numerical simulations of the radiation and photon annihilation pair production processes, using a computer code previously developed for the study of radio pulsars. A range of values of initial energy of a primary electron was considered along with initial injection position, and magnetic dipole moment of the neutron star. The resulting spectra was found to exhibit complex forms that are typically power law over a substantial range of photon energy, and typically include a dip in the spectrum near the electron gyro-frequency at the injection point. The results of a number of models are compared with data for the 5 Mar., 1979 gamma ray burst. A good fit was found to the gamma ray part of the spectrum, including the equivalent width of the annihilation line.
MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides.
Hendriks, P H G M; Maucec, M; de Meijer, R J
2002-09-01
gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of 40K and the series of 232Th and 238U are used to describe the source. A procedure is proposed which excludes the time-consuming electron tracking in less relevant areas of the geometry. The simulated gamma-ray spectra are benchmarked against laboratory data.
EMITTING ELECTRONS AND SOURCE ACTIVITY IN MARKARIAN 501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankuzhiyil, Nijil; Ansoldi, Stefano; Persic, Massimo
2012-07-10
We study the variation of the broadband spectral energy distribution (SED) of the BL Lac object Mrk 501 as a function of source activity, from quiescent to flaring. Through {chi}{sup 2}-minimization we model eight simultaneous SED data sets with a one-zone synchrotron self-Compton (SSC) model, and examine how model parameters vary with source activity. The emerging variability pattern of Mrk 501 is complex, with the Compton component arising from {gamma}-e scatterings that sometimes are (mostly) Thomson and sometimes (mostly) extreme Klein-Nishina. This can be seen from the variation of the Compton to synchrotron peak distance according to source state. Themore » underlying electron spectra are faint/soft in quiescent states and bright/hard in flaring states. A comparison with Mrk 421 suggests that the typical values of the SSC parameters are different in the two sources: however, in both jets the energy density is particle-dominated in all states.« less
The damage equivalence of electrons, protons, and gamma rays in MOS devices
NASA Technical Reports Server (NTRS)
Brucker, G. J.; Stassinopoulos, E. G.; Van Gunten, O.; August, L. S.; Jordan, T. M.
1982-01-01
The results of laboratory tests to determine the radiation damage effects induced on MOS devices from Co-60, electron, and proton radiation are reported. The tests are performed to establish the relationship between the Co-60 gamma rays and the level of damage to the MOS devices in regards to different damages which can be expected with the electron and particle bombardments experienced in space applications. CMOS devices were exposed to the Co-60 gamma rays, 1 MeV electrons, and 1 MeV protons while operating at 3, 10, and 15 V. The test data indicated that the Co-60 source was reliable for an initial evaluation of the electron damages up to 2 MeV charge. A correction factor was devised for transferring the Co-60 measurements to proton damages, independent of bias and transistor types, for any orbit or environment.
Total-dose radiation effects data for semiconductor devices, volume 2
NASA Technical Reports Server (NTRS)
Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.
1981-01-01
Total ionizing dose radiation test data on integrated circuits are analyzed. Tests were performed with the electron accelerator (Dynamitron) that provides a steady state 2.5 MeV electron beam. Some radiation exposures were made with a Cobalt-60 gamma ray source. The results obtained with the Cobalt-60 source are considered an approximate measure of the radiation damage that would be incurred by an equivalent dose of electrons.
Advanced Compton scattering light source R&D at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, F; Anderson, S G; Anderson, G
2010-02-16
We report the design and current status of a monoenergetic laser-based Compton scattering 0.5-2.5 MeV {gamma}-ray source. Previous nuclear resonance fluorescence results and future linac and laser developments for the source are presented. At MeV photon energies relevant for nuclear processes, Compton scattering light sources are attractive because of their relative compactness and improved brightness above 100 keV, compared to typical 4th generation synchrotrons. Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable Mono-Energetic Gamma-Ray (MEGa-Ray) light sources based on Compton scattering between a high-brightness, relativistic electron beam and a highmore » intensity laser pulse produced via chirped-pulse amplification (CPA). A new precision, tunable gamma-ray source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. Based on the success of the previous Thomson-Radiated Extreme X-rays (T-REX) Compton scattering source at LLNL, the source will be used to excite nuclear resonance fluorescence lines in various isotopes; applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. After a brief presentation of successful nuclear resonance fluorescence (NRF) experiments done with T-REX, the new source design, key parameters, and current status are presented.« less
NASA Astrophysics Data System (ADS)
Wu, W. Z.; Kim, Y.; Li, J. Y.; Teytelman, D.; Busch, M.; Wang, P.; Swift, G.; Park, I. S.; Ko, I. S.; Wu, Y. K.
2011-03-01
Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530 Ω. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartemann, F V; Albert, F; Anderson, S G
Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabledmore » by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).« less
Gamma rays from pulsar wind shock acceleration
NASA Technical Reports Server (NTRS)
Harding, Alice K.
1990-01-01
A shock forming in the wind of relativistic electron-positron pairs from a pulsar, as a result of confinement by surrounding material, could convert part of the pulsar spin-down luminosity to high energy particles through first order Fermi acceleration. High energy protons could be produced by this mechanism both in supernova remnants and in binary systems containing pulsars. The pion-decay gamma-rays resulting from interaction of accelerated protons with surrounding target material in such sources might be observable above 70 MeV with EGRET (Energetic Gamma-Ray Experimental Telescope) and above 100 GeV with ground-based detectors. Acceleration of protons and expected gamma-ray fluxes from SN1987A, Cyg X-3 type sources and binary pulsars are discussed.
Recent Results on SNRs and PWNe from the Fermi Large Area Telescope
NASA Technical Reports Server (NTRS)
Hays, Elizabeth
2010-01-01
Topics include: Fermi LAT Collaboration groups; galactic results from LAT; a GeV, wide-field instrument; the 1FGL catalog, the Fermi LAT 1FGL source catalog, unidentified gamma-ray sources; variability in 1FGL sources; curvature in 1FGL sources; spectral-variability classification; pulsars and their wind nebulae; gamma-ray pulsars and MSPs; GeV PWN search; Crab pulsar and nebula; Vela X nebular of Vela pulsar; MSH 15-52; supernova remnants, resolved GeV sources, galactic transients, LAT unassociated transient detections; gamma rays from a nova; V407 Cyngi - a symbiotic nova; V407 Cygni: a variable star; and March 11 - a nova. Summary slides include pulsars everywhere, blazars, LAT as an electron detector, cosmic ray spectrum, the Large Area Telescope, the Fermi Observatory, LAT sensitivity with time, candidate gamma-ray events, on-orbit energy calibration and rate, a 1 year sky map, LAT automated science processing, reported GeV flares, early activity and spectacular flare, gamma-ray transients near the galactic plane , two early unassociated transients, counter part search - Fermi J0910-5404; counterpart search 3EG J0903-3531, and a new LAT transient - J1057-6027.
NASA Astrophysics Data System (ADS)
Liu, Ruo-Yu; Taylor, Andrew; Wang, Xiang-Yu; Aharonian, Felix
2017-01-01
By interacting with the cosmic background photons during their propagation through intergalactic space, ultrahigh energy cosmic rays (UHECRs) produce energetic electron/positron pairs and photons which will initiate electromagnetic cascades, contributing to the isotropic gamma-ray background (IGRB). The generated gamma-ray flux level highly depends on the redshift evolution of the UHECR sources. Recently, the Fermi-LAT collaboration reported that 86-14+16 of the total extragalactic gamma-ray flux comes from extragalactic point sources including those unresolved ones. This leaves a limited room for the diffusive gamma ray generated via UHECR propagation, and subsequently constrains their source distribution in the Universe. Normalizing the total cosmic ray energy budget with the observed UHECR flux in the energy band of (1-4)×1018 eV, we calculate the diffuse gamma-ray flux generated through UHECR propagation. We find that in order to not overshoot the new IGRB limit, these sub-ankle UHECRs should be produced mainly by nearby sources, with a possible non-negligible contribution from our Galaxy. The distance for the majority of UHECR sources can be further constrained if a given fraction of the observed IGRB at 820 GeV originates from UHECR. We note that our result should be conservative since there may be various other contributions to the IGRB that is not included here.
Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth.
Abeysekara, A U; Albert, A; Alfaro, R; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Avila Rojas, D; Ayala Solares, H A; Barber, A S; Bautista-Elivar, N; Becerril, A; Belmont-Moreno, E; BenZvi, S Y; Berley, D; Bernal, A; Braun, J; Brisbois, C; Caballero-Mora, K S; Capistrán, T; Carramiñana, A; Casanova, S; Castillo, M; Cotti, U; Cotzomi, J; Coutiño de León, S; De León, C; De la Fuente, E; Dingus, B L; DuVernois, M A; Díaz-Vélez, J C; Ellsworth, R W; Engel, K; Enríquez-Rivera, O; Fiorino, D W; Fraija, N; García-González, J A; Garfias, F; Gerhardt, M; González Muñoz, A; González, M M; Goodman, J A; Hampel-Arias, Z; Harding, J P; Hernández, S; Hernández-Almada, A; Hinton, J; Hona, B; Hui, C M; Hüntemeyer, P; Iriarte, A; Jardin-Blicq, A; Joshi, V; Kaufmann, S; Kieda, D; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linnemann, J T; Longinotti, A L; Luis Raya, G; Luna-García, R; López-Coto, R; Malone, K; Marinelli, S S; Martinez, O; Martinez-Castellanos, I; Martínez-Castro, J; Martínez-Huerta, H; Matthews, J A; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nellen, L; Newbold, M; Nisa, M U; Noriega-Papaqui, R; Pelayo, R; Pretz, J; Pérez-Pérez, E G; Ren, Z; Rho, C D; Rivière, C; Rosa-González, D; Rosenberg, M; Ruiz-Velasco, E; Salazar, H; Salesa Greus, F; Sandoval, A; Schneider, M; Schoorlemmer, H; Sinnis, G; Smith, A J; Springer, R W; Surajbali, P; Taboada, I; Tibolla, O; Tollefson, K; Torres, I; Ukwatta, T N; Vianello, G; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yapici, T; Yodh, G; Younk, P W; Zepeda, A; Zhou, H; Guo, F; Hahn, J; Li, H; Zhang, H
2017-11-17
The unexpectedly high flux of cosmic-ray positrons detected at Earth may originate from nearby astrophysical sources, dark matter, or unknown processes of cosmic-ray secondary production. We report the detection, using the High-Altitude Water Cherenkov Observatory (HAWC), of extended tera-electron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of accelerated leptons, but the measured tera-electron volt emission profile constrains the diffusion of particles away from these sources to be much slower than previously assumed. We demonstrate that the leptons emitted by these objects are therefore unlikely to be the origin of the excess positrons, which may have a more exotic origin. Copyright © 2017, American Association for the Advancement of Science.
Applications of laser wakefield accelerator-based light sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Felicie; Thomas, Alec G. R.
Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less
Applications of laser wakefield accelerator-based light sources
Albert, Felicie; Thomas, Alec G. R.
2016-10-01
Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons inmore » the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. Here, we first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.« less
Status of the GAMMA-400 Project
NASA Technical Reports Server (NTRS)
Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.;
2013-01-01
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.
Electronic considerations for externally segmented germanium detectors
NASA Technical Reports Server (NTRS)
Madden, N. W.; Landis, D. A.; Goulding, F. S.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Malone, D. F.; Pollard, M. J.
1991-01-01
The dominant background source for germanium gamma ray detector spectrometers used for some astrophysics observations is internal beta decay. Externally segmented germanium gamma ray coaxial detectors can identify beta decay by localizing the event. Energetic gamma rays interact in the germanium detector by multiple Compton interactions while beta decay is a local process. In order to recognize the difference between gamma rays and beta decay events, the external electrode (outside of detector) is electrically partitioned. The instrumentation of these external segments and the consequence with respect to the spectrometer energy signal is examined.
Possibilities for Nuclear Photo-Science with Intense Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, C J; Hartemann, F V; McNabb, D P
2006-06-26
The interaction of intense laser light with relativistic electrons can produce unique sources of high-energy x rays and gamma rays via Thomson scattering. ''Thomson-Radiated Extreme X-ray'' (T-REX) sources with peak photon brightness (photons per unit time per unit bandwidth per unit solid angle per unit area) that exceed that available from world's largest synchrotrons by more than 15 orders of magnitude are possible from optimally designed systems. Such sources offer the potential for development of ''nuclear photo-science'' applications in which the primary photon-atom interaction is with the nucleons and not the valence electrons. Applications include isotope-specific detection and imaging ofmore » materials, inverse density radiography, transmutation of nuclear waste and fundamental studies of nuclear structure. Because Thomson scattering cross sections are small, < 1 barn, the output from a T-REX source is optimized when the laser spot size and the electron spot size are minimized and when the electron and laser pulse durations are similar and short compared to the transit time through the focal region. The principle limitation to increased x-ray or gamma-ray brightness is ability to focus the electron beam. The effects of space charge on electron beam focus decrease approximately linearly with electron beam energy. For this reason, T-REX brightness increases rapidly as a function of the electron beam energy. As illustrated in Figure 1, above 100 keV these sources are unique in their ability to produce bright, narrow-beam, tunable, narrow-band gamma rays. New, intense, short-pulse, laser technologies for advanced T-REX sources are currently being developed at LLNL. The construction of a {approx}1 MeV-class machine with this technology is underway and will be used to excite nuclear resonance fluorescence in variety of materials. Nuclear resonance fluorescent spectra are unique signatures of each isotope and provide an ideal mechanism for identification of nuclear materials. With TREX it is possible to use NRF to provide high spatial resolution (micron scale) images of the isotopic distribution of all materials in a given object. Because of the high energy of the photons, imaging through dense and/or thick objects is possible. This technology will have applicability in many arenas including the survey of cargo for the presence of clandestine nuclear materials. It is also possible to address the more general radiographic challenge of imaging low-density objects that are shielded or placed behind high density objects. In this case, it is the NRF cross section and not the electron density of the material that provides contrast. Extensions of T-REX technology will be dependent upon the evolution of short pulse laser technology to high average powers. Concepts for sources that would produce 10's of kWs of gamma-rays by utilizing MW-class average-power, diode-pumped, short pulse lasers and energy recovery LINAC technology have been developed.« less
Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches
NASA Astrophysics Data System (ADS)
Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.
2013-02-01
The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.
Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches
NASA Technical Reports Server (NTRS)
Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.;
2012-01-01
The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.
Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches
NASA Technical Reports Server (NTRS)
Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.;
2012-01-01
The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.
Plastic Scintillator Based Detector for Observations of Terrestrial Gamma-ray Flashes.
NASA Astrophysics Data System (ADS)
Barghi, M. R., Sr.; Delaney, N.; Forouzani, A.; Wells, E.; Parab, A.; Smith, D.; Martinez, F.; Bowers, G. S.; Sample, J.
2017-12-01
We present an overview of the concept and design of the Light and Fast TGF Recorder (LAFTR), a balloon borne gamma-ray detector designed to observe Terrestrial Gamma-Ray Flashes (TGFs). Terrestrial Gamma-Ray Flashes (TGFs) are extremely bright, sub-millisecond bursts of gamma-rays observed to originate inside thunderclouds coincident with lightning. LAFTR is joint institutional project built by undergraduates at the University of California Santa Cruz and Montana State University. It consists of a detector system fed into analog front-end electronics and digital processing. The presentation focuses specifically on the UCSC components, which consists of the detector system and analog front-end electronics. Because of the extremely high count rates observed during TGFs, speed is essential for both the detector and electronics of the instrument. The detector employs a fast plastic scintillator (BC-408) read out by a SensL Silicon Photomultiplier (SiPM). BC-408 is chosen for its speed ( 4 ns decay time) and low cost and availability. Furthermore, GEANT3 simulations confirm the scintillator is sensitive to 500 counts at 7 km horizontal distance from the TGF source (for a 13 km source altitude and 26 km balloon altitude) and to 5 counts out to 20 km. The signal from the SiPM has a long exponential decay tail and is sent to a custom shaping circuit board that amplifies and shapes the signal into a semi-Gaussian pulse with a 40 ns FWHM. The signal is then input to a 6-channel discriminator board that clamps the signal and outputs a Low Voltage Differential Signal (LVDS) for processing by the digital electronics.
Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2011-01-01
Intense millisecond flashes of MeV photons have been observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma- Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for these TGF observations. On several occasions, intense beams of high-energy electrons and positrons have been observed at the geomagnetic conjugate points of TGFs.
BOW TIES IN THE SKY. I. THE ANGULAR STRUCTURE OF INVERSE COMPTON GAMMA-RAY HALOS IN THE FERMI SKY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broderick, Avery E.; Shalaby, Mohamad; Tiede, Paul
2016-12-01
Extended inverse Compton halos are generally anticipated around extragalactic sources of gamma rays with energies above 100 GeV. These result from inverse Compton scattered cosmic microwave background photons by a population of high-energy electron/positron pairs produced by the annihilation of the high-energy gamma rays on the infrared background. Despite the observed attenuation of the high-energy gamma rays, the halo emission has yet to be directly detected. Here, we demonstrate that in most cases these halos are expected to be highly anisotropic, distributing the upscattered gamma rays along axes defined either by the radio jets of the sources or oriented perpendicularmore » to a global magnetic field. We present a pedagogical derivation of the angular structure in the inverse Compton halo and provide an analytic formalism that facilitates the generation of mock images. We discuss exploiting this fact for the purpose of detecting gamma-ray halos in a set of companion papers.« less
A method to improve observations of gamma-ray sources near 10 (15) eV
NASA Technical Reports Server (NTRS)
Sommers, P.; Elbert, J. W.
1985-01-01
Now that sources of gamma rays near 10 to the 15th power eV have been identified, there is a need for telescopes which can study in detail the high energy gamma ray emissions from these sources. The capabilities of a Cerenkov detector which can track a source at large zenith angle (small elevation angle) are analyzed. Because the observed showers must then develop far from the detector, the effective detection area is very large. During a single half-hour hot phase of Cygnus X-3, for example, it may be possible to detect 45 signal showers compared with 10 background showers. Time structure within the hot phase may then be discernible. The precise capabilities of the detector depend on its mirror size, angular acceptance, electronic speed, coincidence properties, etc. Calculations are presented for one feasible design using mirrors of an improved Fly's Eye type.
NASA Technical Reports Server (NTRS)
Brucker, G. J.; Van Gunten, O.; Stassinopoulos, E. G.; Shapiro, P.; August, L. S.; Jordan, T. M.
1983-01-01
This paper reports on the recovery properties of rad-hard MOS devices during and after irradiation by electrons, protons, alphas, and gamma rays. The results indicated that complex recovery properties controlled the damage sensitivities of the tested parts. The results also indicated that damage sensitivities depended on dose rate, total dose, supply bias, gate bias, transistor type, radiation source, and particle energy. The complex nature of these dependencies make interpretation of LSI device performance in space (exposure to entire electron and proton spectra) difficult, if not impossible, without respective ground tests and analyses. Complete recovery of n-channel shifts was observed, in some cases within hours after irradiation, with equilibrium values of threshold voltages greater than their pre-irradiation values. This effect depended on total dose, radiation source, and gate bias during exposure. In contrast, the p-channel shifts recovered only 20 percent within 30 days after irradiation.
Fermi Gamma-Ray Space Telescope: Science Highlights for the First 8 Months
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2010-01-01
The Fermi Gamma-ray Space Telescope was launched on June 11, 2008 and since August 2008 has successfully been conducting routine science observations of high energy phenomena in the gamma-ray sky. A number of exciting discoveries have been made during its first year of operation, including blazar flares, high-energy gamma-ray bursts, and numerous new,gamma-ray sources of different types, among them pulsars and Active Galactic Nuclei (AGN). fermi-LAT also performed accurate mea.<;urement of the diffuse gamma-radiation which clarifies the Ge V excess reported by EGRET almost 10 years ago, high precision measurement of the high energy electron spectrum, and other observations. An overview of the observatory status and recent results as of April 30, 2009, are presented. Key words: gamma-ray astronomy, cosmic rays, gamma-ray burst, pulsar, blazar. diffuse gamma-radiation
The GeV Gamma-Ray Emission Detected by Fermi-LAT Adjacent to SNR Kesteven 41
NASA Astrophysics Data System (ADS)
Liu, Bing; Chen, Yang; Zhang, Xiao; Zhang, Gao-Yuan; Xing, Yi; Pannuti, Thomas G.
2017-02-01
Gamma-ray observations for Supernova remnant (SNR)-molecular cloud (MC) association systems play an important role in the research on the acceleration and propagation of cosmic-ray protons. Through the analysis of 5.6 years of Fermi-Large Area Telescope observation data, here we report on the detection of a gamma-ray emission source near the SNR Kesteven 41 with a significance of 24σ in 0.2-300 GeV. The best-fit location of the gamma-ray source is consistent with the MC with which the SNR interacts. Several hypotheses including both leptonic and hadronic scenarios are considered to investigate the origin of these gamma-rays. The gamma-ray emission can be naturally explained by the decay of neutral pions produced via the collision between high energy protons accelerated by the shock of Kesteven 41 and the adjacent MC. The electron energy budget would be too high for the SNR if the gamma-rays were produced via inverse Compton (IC) scattering off the Cosmic Microwave Background (CMB) photons.
Fermi: The Gamma-Ray Large Area Telescope Mission Status
NASA Technical Reports Server (NTRS)
McEnery, Julie
2014-01-01
Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.
Fermi: The Gamma-Ray Large Area Space Telescope Mission Status
NASA Technical Reports Server (NTRS)
McEnery, Julie E
2014-01-01
Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of a population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.
Fermi: The Gamma-Ray Large Area Telescope
NASA Technical Reports Server (NTRS)
McEnery, Julie
2015-01-01
Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.
Fermi: The Gamma-Ray Large Area Telescope
NASA Technical Reports Server (NTRS)
McEnery, Julie
2014-01-01
Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10 seconds of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.
Fermi: The Gamma-Ray Large Area Space Telescope
NASA Technical Reports Server (NTRS)
McEnery, Julie
2014-01-01
Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.
Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernyshov, D. O.; Dogiel, V. A.; Cheng, K.-S.
We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6−2858 (or 3FGL J1745.6−2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array , as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or amore » combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.« less
Terrestrial gamma-ray flash production by lightning
NASA Astrophysics Data System (ADS)
Carlson, Brant E.
Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared to the results of Monte Carlo simulations of the physics of energetic photon production and propagation in air. These comparisons are used to constrain the TGF source altitude, energy, and directional distribution, and indicate a broadly-beamed low-altitude source inconsistent with production far above thunderstorms as previously suggested. The details of energetic electron production by electric fields in air are then examined. In particular, the source of initial high-energy electrons that are accelerated and undergo avalanche multiplication to produce bremsstrahlung is studied and the properties of these initial seed particles as produced by cosmic rays are determined. The number of seed particles available indicates either extremely large amplification of the number of seed particles or an alternate source of seeds. The low-altitude photon source and alternate source of seed particles required by these studies suggest a production mechanism closely-associated with lightning. A survey of lightning physics in the context of TGF emission indicates that current pulses along lightning channels may trigger TGF production by both producing strong electric fields and a large population of candidate seed electrons. The constraints on lightning physics, thunderstorm physics, and TGF physics all allow production by this mechanism. A computational model of this mechanism is then presented on the basis of a method of moments simulation of charge and current on a lightning channel. Calculation of the nearby electric fields then drives Monte Carlo simulations of energetic electron dynamics which determine the properties of the resulting bremsstrahlung. The results of this model compare quite well with satellite observations of TGFs subject to requirements on the ambient electric field and the current pulse magnitude and duration. The model makes quantitative predictions about the TGF source altitude, directional distribution, and lightning association that are in overall agreement with existing TGF observations and may be tested in more detail in future experiments.
Kumar, Munish; Sahani, G; Chourasiya, G
2010-06-01
Electron contamination from a sealed (60)Co radiation source has been investigated comprehensively using a CaSO(4):Dy based TLD badge and LiF crystals. It has been found that due to electron contamination, the thermoluminescence (TL) detectors exhibit over response which can be corrected by applying a magnetic field. It has also been found that for a source-to-dosimeter distance of 50 cm, the ratio of the TL readouts of the third to first discs of the TLD badge reduces from approximately 1.5 to approximately 1.00 after applying a magnetic field. Hence detectors which are sensitive to electrons as well as photons, and are capable of distinguishing them, can lead to an erroneous measurement. This happens because the contribution due to electron contamination interferes with pure gamma calibration. The study is helpful in establishing accurate calibration and appropriate correction factors for personnel monitoring carried out using CaSO(4):Dy based TLD badge. Copyright 2009 Elsevier Ltd. All rights reserved.
A Pair Production Telescope for Medium-Energy Gamma-Ray Polarimetry
NASA Technical Reports Server (NTRS)
Hunter, Stanley D.; Bloser, Peter F.; Depaola, Gerardo; Dion, Michael P.; DeNolfo, Georgia A.; Hanu, Andrei; Iparraguirre, Marcos; Legere, Jason; Longo, Francesco; McConnell, Mark L.;
2014-01-01
We describe the science motivation and development of a pair production telescope for medium-energy (approximately 5-200 Mega electron Volts) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (approximately 0.6 deg at 70 Mega electron Volts), continuum sensitivity comparable with the Fermi-LAT front detector (is less than 3 x 10(exp -6) Mega electron Volts per square centimeter per second at 70 Mega electron Volts), and minimum detectable polarization less than 10% for a 10 milliCrab source in 10(exp 6) s.
Effects of irradiation source and dose level on quality characteristics of processed meat products
NASA Astrophysics Data System (ADS)
Ham, Youn-Kyung; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Choi, Yun-Sang; Song, Beom-Seok; Park, Jong-Heum; Kim, Cheon-Jei
2017-01-01
The effect of irradiation source (gamma-ray, electron-beam, and X-ray) and dose levels on the physicochemical, organoleptic and microbial properties of cooked beef patties and pork sausages was studied, during 10 days of storage at 30±1 °C. The processed meat products were irradiated at 0, 2.5, 5, 7.5, and 10 kGy by three different irradiation sources. The pH of cooked beef patties and pork sausages was unaffected by irradiation sources or their doses. The redness of beef patties linearly decreased with increasing dose level (P<0.05), obviously by e-beam irradiation compared to gamma-ray and X-ray (P<0.05). The redness of pork sausages was increased by gamma-ray irradiation, whereas it decreased by e-beam irradiation depending on absorbed dose level. No significant changes in overall acceptability were observed for pork sausages regardless of irradiation source (P>0.05), while gamma-ray irradiated beef patties showed significantly decreased overall acceptability in a dose-dependent manner (P<0.05). Lipid oxidation of samples was accelerated by irradiation depending on irradiation sources and dose levels during storage at 30 °C. E-beam reduced total aerobic bacteria of beef patties more effectively, while gamma-ray considerably decreased microbes in pork sausages as irradiation dose increased. The results of this study indicate that quality attributes of meat products, in particular color, lipid oxidation, and microbial properties are significantly influenced by the irradiation sources.
Gamma-Ray Observations of the Supernova Remnant RX J0852.0-4622 with the Fermi Large Area Telescope
NASA Technical Reports Server (NTRS)
Tanaka, T.; Allafort, A.; Ballet, J.; Funk, S.; Giordano, F.; Hewitt, J.; Lemoine-Goumard, M.; Tajima, H.; Tibolla, O.; Uchiyama, Y.
2011-01-01
We report on gamma-ray observations of the supernova remnant (SNR) RX J0852.04622 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. In the Fermi-LAT data, we find a spatially extended source at the location of the SNR. The extension is consistent with the SNR size seen in other wavelengths such as X-rays and TeV gamma rays, leading to the identification of the gamma-ray source with the SNR. The spectrum is well described as a power law with a photon index of = 1.85 0.06 (stat)+0.18 0.19 (sys), which smoothly connects to the H.E.S.S. spectrum in the TeV energy band. We discuss the gamma-ray emission mechanism based on multiwavelength data. The broadband data can be fit well by a model in which the gamma rays are of hadronic origin. We also consider a scenario with inverse Compton scattering of electrons as the emission mechanism of the gamma rays. Although the leptonic model predicts a harder spectrum in the Fermi-LAT energy range, the model can fit the data considering the statistical and systematic errors.
SEE induced in SRAM operating in a superconducting electron linear accelerator environment
NASA Astrophysics Data System (ADS)
Makowski, D.; Mukherjee, Bhaskar; Grecki, M.; Simrock, Stefan
2005-02-01
Strong fields of bremsstrahlung photons and photoneutrons are produced during the operation of high-energy electron linacs. Therefore, a mixed gamma and neutron radiation field dominates the accelerators environment. The gamma radiation induced Total Ionizing Dose (TID) effect manifests the long-term deterioration of the electronic devices operating in accelerator environment. On the other hand, the neutron radiation is responsible for Single Event Effects (SEE) and may cause a temporal loss of functionality of electronic systems. This phenomenon is known as Single Event Upset (SEU). The neutron dose (KERMA) was used to scale the neutron induced SEU in the SRAM chips. Hence, in order to estimate the neutron KERMA conversion factor for Silicon (Si), dedicated calibration experiments using an Americium-Beryllium (241Am/Be) neutron standard source was carried out. Single Event Upset (SEU) influences the short-term operation of SRAM compared to the gamma induced TID effect. We are at present investigating the feasibility of an SRAM based real-time beam-loss monitor for high-energy accelerators utilizing the SEU caused by fast neutrons. This paper highlights the effects of gamma and neutron radiations on Static Random Access Memory (SRAM), placed at selected locations near the Superconducting Linear Accelerator driving the Vacuum UV Free Electron Laser (VUVFEL) of DESY.
Exploring the nature of the unidentified very-high-energy gamma-ray source HESS J1507-622
NASA Astrophysics Data System (ADS)
Domainko, W.; Ohm, S.
2012-09-01
Context. Several extended sources of very-high-energy (VHE; E > 100 GeV) gamma rays have been found that lack counterparts belonging to an established class of VHE gamma-ray emitters. Aims: The nature of the first unidentified VHE gamma-ray source with significant angular offset from the Galactic plane of 3.5°, HESS J1507-622, is explored. Methods.Fermi-LAT data in the high-energy (HE, 100 MeV < E < 100 GeV) gamma-ray range collected over 34 month are used to describe the spectral energy distribution (SED) of the source. Additionally, implications of the off-plane location of the source for a leptonic and hadronic gamma-ray emission model are investigated. Results: HESS J1507-622 is detected in the Fermi energy range and its spectrum is best described by a power law in energy with Γ = 1.7 ± 0.1stat ± 0.2sys and integral flux between (0.3-300) GeV of F = (2.0 ± 0.5stat ± 1.0sys) × 10-9 cm-2 s-1. The SED constructed from the Fermi and H.E.S.S. data for this source does not support a smooth power-law continuation from the VHE to the HE gamma-ray range. With the available data it is not possible to discriminate between a hadronic and a leptonic scenario for HESS J1507-622. The location and compactness of the source indicate a considerable physical offset from the Galactic plane for this object. In case of a multiple-kpc distance, this challenges a pulsar wind nebula (PWN) origin for HESS J1507-622 since the time of travel for a pulsar born in the Galactic disk to reach such a location would exceed the inverse Compton (IC) cooling time of electrons that are energetic enough to produce VHE gamma-rays. However, an origin of this gamma-ray source connected to a pulsar that was born off the Galactic plane in the explosion of a hypervelocity star cannot be excluded. Conclusions: The nature of HESS J1507-622 is still unknown to date, and a PWN scenario cannot be ruled out in general. On the contrary HESS J1507-622 could be the first discovered representative of a population of spatially extended VHE gamma-ray emitters with HE gamma-ray counterpart that are located at considerable offsets from the Galactic plane. Future surveys in the VHE gamma-ray range are necessary to probe the presence or absence of such a source population.
Gamma radiation in ceramic capacitors: a study for space missions
NASA Astrophysics Data System (ADS)
dos Santos Ferreira, Eduardo; Sarango Souza, Juliana
2017-10-01
We studied the real time effects of the gamma radiation in ceramic capacitors, in order to evaluate the effects of cosmic radiation on these devices. Space missions have electronic circuits with various types of devices, many studies have been done on semiconductor devices exposed to gamma radiation, but almost no studies for passive components, in particular ceramic capacitors. Commercially sold ceramic capacitors were exposed to gamma radiation, and the capacitance was measured before and after exposure. The results clearly show that the capacitance decreases with exposure to gamma radiation. We confirmed this observation in a real time capacitance measurement, obtained using a data logging system developed by us using the open source Arduino platform.
NASA Astrophysics Data System (ADS)
Mukherjee, Bhaskar; Makowski, Dariusz; Simrock, Stefan
2005-06-01
The neutron and gamma doses are crucial to interpreting the radiation effects in microelectronic devices operating in a high-energy accelerator environment. This report highlights a method for an accurate estimation of photoneutron and the accompanying bremsstrahlung (gamma) doses produced by a 450 MeV electron linear accelerator (linac) operating in pulsed mode. The principle is based on the analysis of thermoluminescence glow-curves of TLD-500 (Aluminium Oxide) and TLD-700 (Lithium Fluoride) dosimeter pairs. The gamma and fast neutron response of the TLD-500 and TLD-700 dosimeter pairs were calibrated with a 60Co (gamma) and a 241Am-Be (α, n) neutron standard-source, respectively. The Kinetic Energy Released in Materials (kerma) conversion factor for photoneutrons was evaluated by folding the neutron kerma (dose) distribution in 7LiF (the main component of the TLD-700 dosimeter) with the energy spectra of the 241Am-Be (α, n) neutrons and electron accelerator produced photoneutrons. The neutron kerma conversion factors for 241Am-Be neutrons and photoneutrons were calculated to be 2.52×10 -3 and 1.37×10 -3 μGy/a.u. respectively. The bremsstrahlung (gamma) dose conversion factor was evaluated to be 7.32×10 -4 μGy/a.u. The above method has been successfully utilised to assess the photoneutron and bremsstrahlung doses from a 450 MeV electron linac operating at DESY Research Centre in Hamburg, Germany.
Electron Acceleration by Stochastic Electric Fields in Thunderstorms: Terrestrial Gamma-Ray Flashes
NASA Astrophysics Data System (ADS)
Alnussirat, S.; Miller, J. A.; Christian, H. J., Jr.; Fishman, G. J.
2016-12-01
Terrestrial gamma-ray flashes (TGFs) are energetic pulses of photons, which are intense and short, originating in the atmosphere during thunderstorm activity. Despite the number of observations, the production mechanism(s) of TGFs and other energetic particles is not well understood. However, two mechanisms have been suggested as a source of TGFs: (1) the relativistic runaway electron avalanche mechanism (RREA), and (2) the lightning leader mechanism. The RREA can account for the TGF observations, but requires restrictive or unrealistic assumptions. The lightning leader channel is also expected to produce runaway electrons, but through inhomogeneous, small scale, strong electric fields. In this work we use the Boltzmann equation to model the electron acceleration by the lightning leader mechanism, and we derive the gamma-ray spectrum from the electron distribution function. The electric fields at the tip of the leaders are assumed to be stochastic in space and time. Since the physics involved in the lightening leader is not known, we test different cases of the stochastic acceleration agent. From this modeling we hope to investigate the possibility and efficiency of stochastic acceleration in thunderstorm.
NASA Technical Reports Server (NTRS)
Anderson, Kinsey A.
1991-01-01
The objective of this grant was to measure the spatial structure and directivity of the hard X-ray and low energy gamma-ray (100 keV-2 MeV) continuum sources in solar flares using stereoscopic observations made with spectrometers aboard the Pioneer Venus Orbiter (PVO) and Third International Sun Earth Explorer (ISEE-3) spacecraft. Since the hard X-ray emission is produced by energetic electrons through the bremsstrahlung process, the observed directivity can be directly related to the 'beaming' of electrons accelerated during the flare as they propagate from the acceleration region in the corona to the chromosphere/transition region. Some models (e.g., the thick-target model) predict that most of the impulsive hard X-ray/low energy gamma-ray source is located in the chromosphere, the effective height of the X-ray source above the photosphere increasing with the decrease in the photon energy. This can be verified by determining the height-dependence of the photon source through stereoscopic observations of those flares which are partially occulted from the view of one of the two spacecraft. Thus predictions about beaming of electrons as well as their spatial distributions could be tested through the analysis proposed under this grant.
Total-dose radiation effects data for semiconductor devices (1989 supplement)
NASA Technical Reports Server (NTRS)
Martin, Keith E.; Coss, James R.; Goben, Charles A.; Shaw, David C.; Farmanesh, Sam; Davarpanah, Michael M.; Craft, Leroy H.; Price, William E.
1990-01-01
Steady state, total dose radiation test data are provided for electronic designers and other personnel using semiconductor devices in a radiation environment. The data are presented in graphic and narrative formats. Two primary radiation source types were used: Cobalt-60 gamma rays and a Dynamitron electron accelerator capable of delivering 2.5 MeV electrons at a steady rate.
NASA Astrophysics Data System (ADS)
Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.
2002-11-01
The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.
Calibration of a DSSSD detector with radioactive sources
NASA Astrophysics Data System (ADS)
Guadilla, V.; Taín, J. L.; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Rubio, B.
2013-06-01
The energy calibration of a DSSSD is carried out with the spectra produced by a 207Bi conversion electron source, a 137Cs gamma source and a 239Pu/241Am/244Cm triple alpha source, as well as employing a precision pulse generator in the whole dynamic range. Multiplicity and coincidence of signals in different strips for the same event are also studied.
Cubic Calorimeter for High-Energy Electrons in Ultra-Long Ballooning
NASA Technical Reports Server (NTRS)
Moiseev, Alexander A.; Mitchell, John W.; Ormes, Jonathan F.; Streitmatter, Robert E.
2003-01-01
The concept and optimization study of a balloon-borne instrument to study high-energy (from 100 GeV to 5 TeV) cosmic ray electrons will be presented. This energy range of electrons is very interesting for the study of cosmic ray propagation and the search for the nearby sources of high-energy electrons. The instrument is based on a cubic design that allows the detection from all sides. Proton rejection is provided by stringent track analysis, which allows defining when an electron shower is exhausted while the hadron shower continues development. The collecting power of a nominal balloon-borne instrument using this concept will be over 2 square meters sr. This will provide approximately 3,000 electron events above 500 GeV for 3-month long ULDB flight. This instrument will also be capable of detecting sharp features in the high energy gamma-ray spectrum such as gamma-ray lines originating from the dark matter annihilation.
Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.;
2013-01-01
The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.
Separation of gamma-ray and neutron events with CsI(Tl) pulse shape analysis
NASA Astrophysics Data System (ADS)
Ashida, Y.; Nagata, H.; Koshio, Y.; Nakaya, T.; Wendell, R.
2018-04-01
Fast neutrons are a large background to measurements of gamma-rays emitted from excited nuclei, such that detectors that can efficiently distinguish between the two are essential. In this paper we describe the separation of gamma-rays from neutrons with the pulse shape information of the CsI(Tl) scintillator, using a fast neutron beam and several gamma-ray sources. We find that a figure of merit optimized for this separation takes on large and stable values (nearly 4) between 5 and 10 MeV of electron equivalent deposited energy, the region of most interest to the study of nuclear de-excitation gamma-rays. Accordingly, this work demonstrates the ability of CsI(Tl) scintillators to reject neutron backgrounds to gamma-ray measurements at these energies.
Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U
2013-09-13
Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.
Observations of medium energy gamma ray emission from the galactic center region
NASA Technical Reports Server (NTRS)
Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.
1978-01-01
Measurements of the gamma-ray emission in the medium energy range between 15 and 100 MeV, obtained during two ballon flights from Brazil are presented. The importance of this energy region in determining whether pi deg - decay of electron bremsstrahlung is the most likely dominant source mechanism is discussed along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to theoretical spectrum calculations including both sources mechanisms, but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.
Microstructural evolution and micromechanical properties of gamma-irradiated Au ball bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, Wan Yusmawati Wan, E-mail: yusmawati@upnm.edu.my; Ismail, Roslina, E-mail: roslina.ismail@ukm.my; Jalar, Azman, E-mail: azmn@ukm.my
2014-07-01
The effect of gamma radiation on the mechanical and structural properties of gold ball bonds was investigated. Gold wires from thermosonic wire bonding were exposed to gamma rays from a Cobalt-60 source at a low dose (5 Gy). The load–depth curve of nanoindentation for the irradiated gold wire bond has an apparent staircase shape during loading compared to the as-received sample. The hardness of the specimens calculated from the nanoindentation shows an increase in value from 0.91 to 1.09 GPa for specimens after exposure. The reduced elastic modulus for irradiated specimens significantly increased as well, with values from 75.18 tomore » 98.55 GPa. The change in intrinsic properties due to gamma radiation was investigated using dual-focused ion beam and high-resolution transmission electron microscope analysis. The dual-focused ion beam and high-resolution transmission electron microscope images confirmed the changes in grain structure and the presence of dislocations. The scanning electron microscope micrographs of focused ion beam cross sections showed that the grain structure of the gold became elongated and smaller after exposure to gamma rays. Meanwhile, high-resolution transmission electron microscopy provided evidence that gamma radiation induced dislocation of the atomic arrangement. - Highlights: • Nanoindentation technique provides a detailed characterisation of Au ball bond. • P–h curve of irradiated Au ball bond shows an apparent pop-in event. • Hardness and reduced modulus increased after exposure. • Elongated and smaller grain structure in irradiated specimens • Prevalent presence of dislocations in the atomic arrangement.« less
Development of a digital method for neutron/gamma-ray discrimination based on matched filtering
NASA Astrophysics Data System (ADS)
Korolczuk, S.; Linczuk, M.; Romaniuk, R.; Zychor, I.
2016-09-01
Neutron/gamma-ray discrimination is crucial for measurements with detectors sensitive to both neutron and gamma-ray radiation. Different techniques to discriminate between neutrons and gamma-rays based on pulse shape analysis are widely used in many applications, e.g., homeland security, radiation dosimetry, environmental monitoring, fusion experiments, nuclear spectroscopy. A common requirement is to improve a radiation detection level with a high detection reliability. Modern electronic components, such as high speed analog to digital converters and powerful programmable digital circuits for signal processing, allow us to develop a fully digital measurement system. With this solution it is possible to optimize digital signal processing algorithms without changing any electronic components in an acquisition signal path. We report on results obtained with a digital acquisition system DNG@NCBJ designed at the National Centre for Nuclear Research. A 2'' × 2'' EJ309 liquid scintillator was used to register mixed neutron and gamma-ray radiation from PuBe sources. A dedicated algorithm for pulse shape discrimination, based on real-time filtering, was developed and implemented in hardware.
NASA Astrophysics Data System (ADS)
Hurford, Gordon J.; Krucker, Samuel
The previous solar maximum has featured high resolution imaging/spectroscopy observations at hard x-ray and gamma-ray energies by the Reuven Ramaty High Energy Solar/Spectroscopic Imager (RHESSI). Highlights of these observations will be reviewed, along with their impli-cations for our understanding of ion and electron acceleration and transport processes. The results to date have included new insights into the location of the acceleration region and the thick target model, a new appreciation of the significance of x-ray albedo, observation of coronal gamma-ray sources and their implications for electron trapping, and indications of differences in the acceleration and transport between electrons and ions. The role of RHESSI's observational strengths and weaknesses in determining the character of its scientific results will also be discussed and used to identify what aspects of the acceleration and transport processes must await the next generation of instrumentation. The extent to which new instrumentation now under development, such as Solar Orbiter/STIX, GRIPS, and FOXSI, can address these open issues will be outlined.
NASA Astrophysics Data System (ADS)
Topchiev, N. P.; Galper, A. M.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Kheymits, M. D.; Suchkov, S. I.; Yurkin, Y. T.
2017-01-01
Scientific project GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) relates to the new generation of space observatories intended to perform an indirect search for signatures of dark matter in the cosmic-ray fluxes, measurements of characteristics of diffuse gamma-ray emission and gamma-rays from the Sun during periods of solar activity, gamma-ray bursts, extended and point gamma-ray sources, electron/positron and cosmic-ray nuclei fluxes up to TeV energy region by means of the GAMMA-400 gamma-ray telescope represents the core of the scientific complex. The system of triggers and counting signals formation of the GAMMA-400 gamma-ray telescope constitutes the pipelined processor structure which collects data from the gamma-ray telescope subsystems and produces summary information used in forming the trigger decision for each event. The system design is based on the use of state-of-the-art reconfigurable logic devices and fast data links. The basic structure, logic of operation and distinctive features of the system are presented.
NASA Astrophysics Data System (ADS)
Jedamzik, Ralf; Petzold, Uwe
2017-09-01
Optical systems in space environment have to withstand harsh radiation. Radiation in space usually comes from three main sources: the Van Allen radiation belts (mainly electrons and protons); solar proton events and solar energetic particles (heavier ions); and galactic cosmic rays (gamma- or x-rays). Other heavy environmental effects include short wavelength radiation (UV) and extreme temperatures (cold and hot). Radiation can damage optical glasses and effect their optical properties. The most common effect is solarization, the decrease in transmittance by radiation. This effect can be observed for UV radiation and for gamma or electron radiation. Optical glasses can be stabilized against many radiation effects. SCHOTT offers radiation resistant glasses that do not show solarization effects for gamma or electron radiation. A review of SCHOTT optical glasses in space missions shows, that not only radiation resistant glasses are used in the optical designs, but also standard optical glasses. This publication finishes with a selection of space missions using SCHOTT optical glass over the last decades.
Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT.
Abdo, A A; Ackermann, M; Ajello, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cognard, I; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Espinoza, C; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giavitto, G; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Katsuta, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kramer, M; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Lyne, A G; Madejski, G M; Makeev, A; Mazziotta, M N; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Noutsos, A; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stappers, B W; Stecker, F W; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Theureau, G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Venter, C; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yamazaki, R; Ylinen, T; Ziegler, M
2010-02-26
Recent observations of supernova remnants (SNRs) hint that they accelerate cosmic rays to energies close to ~10(15) electron volts. However, the nature of the particles that produce the emission remains ambiguous. We report observations of SNR W44 with the Fermi Large Area Telescope at energies between 2 x 10(8) electron volts and 3 x10(11) electron volts. The detection of a source with a morphology corresponding to the SNR shell implies that the emission is produced by particles accelerated there. The gamma-ray spectrum is well modeled with emission from protons and nuclei. Its steepening above approximately 10(9) electron volts provides a probe with which to study how particle acceleration responds to environmental effects such as shock propagation in dense clouds and how accelerated particles are released into interstellar space.
Observing the Non-Thermal Universe with the Highest Energy Photons
NASA Astrophysics Data System (ADS)
Dingus, Brenda L.; HAWC, VERITAS, CTA
2016-01-01
Astrophysical sources of relativistic particles radiate gamma rays to such high energies that they can be detected from the ground. The existence of high energy gamma rays implies that even higher energy particles are being accelerated placing strong constraints on these non-thermal accelerators. Within our galaxy, TeV gamma rays have been detected from supernova remnants, pulsar wind nebula, x-ray binaries and some yet to be identified sources in the Galactic plane. In addition, these gamma rays have sufficient energy to be attenuated by the interaction with infrared photons producing an electron-positron pair. Thus the spectrum of gamma rays can also constrain the infrared photon density, which for distant extragalactic sources is a direct probe of cosmology. The known extragalactic TeV sources are primarily the blazer class of active galactic nuclei. And TeV gamma rays might even be produced by annihilating dark matter.The US currently supports two ground-based gamma-ray observatories—HAWC and VERITAS—and NSF is developing a prototype for the international Cherenkov Telescope Array (CTA) observatory. The HAWC (High Altitude Water Cherenkov) observatory just began operation of the full detector in March 2015 and with its wide field of view scans ~2/3 of the sky each day for TeV sources. VERITAS (Very EneRgetic Imaging Telescope Array System) is an array of four imaging atmospheric Cherenkov telescopes that follows individual sources to produce lightcurves and spectra from 85 GeV to > 30 TeV. The combination of both a survey and pointed observatory is very complementary with a broad scientific reach that includes the study of extragalactic and Galactic objects as well as the search for astrophysical signatures of dark matter and the measurement of cosmic rays. I will present the current view of the TeV sky and the latest results from HAWC and VERITAS as well as plans for CTA.
NASA Astrophysics Data System (ADS)
Mannheim, Karl
There has been a dramatic revolution in gamma-ray astronomy throughout the last few years. Beginning with the discovery made by the spark chamber EGRET on board the Compton Gamma Ray Observatory that AGN with jets are the most powerful quasi-steady gamma-ray sources in the Universe, air-Cerenkov telescopes have soon after succeeded in detecting gamma-rays up to TeV energies. In the last year, it has become clear that these AGN emit photons even up to 10 TeV and more. This is a strong indication for proton acceleration going on in them, since protons owing to their large mass suffer weaker energy losses than electrons and can thus reach higher energies. Nucleons escaping from the AGN jets contribute to the local flux of cosmic rays at highest energies. If AGN produce the diffuse gamma-ray background, they would also be able to produce all the cosmic rays above the ankle in the local spectrum. The majority of AGN resides at large distances, indicated by their cosmological redshifts, and can therefore not be seen through the fog of electron-positron pairs which they produce interacting with diffuse infrared radiation from the era of galaxy formation. To observe the cosmic accelerators at large redshifts, neutrino observations are required. It is important to understand the astrophysical neutrino sources in order to be able to recognize signatures of new physics, e.g. due to decaying or annihilating particles from the early phases of the Universe.
High energy spectrum of spherically accreting black holes
NASA Technical Reports Server (NTRS)
Meszaros, P.; Ostriker, J. P.
1983-01-01
Spherically accreting black holes may sustain strong collisionless shocks, downstream of which the fluid approximation is not valid. The proton-electron Coulomb exchange provides for the downstream matter diffusion into the hole. Energy conversion efficiencies upward of 10-30 percent are obtained, with most of the luminosity in hard X-rays and gamma-rays. The whole spectrum and its application for radio-quiet QSO's and galactic X- and gamma-ray sources are discussed.
Perez-Mendez, V.
1997-01-21
A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.
Perez-Mendez, Victor
1997-01-01
A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.
NASA Astrophysics Data System (ADS)
Kohagura, J.; Yoshikawa, M.; Wang, X.; Kuwahara, D.; Ito, N.; Nagayama, Y.; Shima, Y.; Nojiri, K.; Sakamoto, M.; Nakashima, Y.; Mase, A.
2016-11-01
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohagura, J., E-mail: kohagura@prc.tsukuba.ac.jp; Yoshikawa, M.; Shima, Y.
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensivemore » 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.« less
Kohagura, J; Yoshikawa, M; Wang, X; Kuwahara, D; Ito, N; Nagayama, Y; Shima, Y; Nojiri, K; Sakamoto, M; Nakashima, Y; Mase, A
2016-11-01
In conventional multichannel/imaging microwave diagnostics of interferometry, reflectometry, and electron cyclotron emission measurements, a local oscillator (LO) signal is commonly supplied to a receiver array via irradiation using LO optics. In this work, we present a 60-GHz interferometer with a new eight-channel receiver array, called a local oscillator integrated antenna array (LIA). An outstanding feature of LIA is that it incorporates a frequency quadrupler integrated circuit for LO supply to each channel. This enables simple and uniform LO supply to the receiver array using only a 15-GHz LO source and a coaxial cable transmission line instead of using an expensive 60-GHz source, LO optics, and a waveguide transmission line. The new interferometer system is first applied to measure electron line-averaged density inside the divertor simulation experimental module (D-module) on GAMMA 10/PDX tandem mirror device.
NASA Astrophysics Data System (ADS)
Lemos, N.; Albert, F.; Shaw, J. L.; Papp, D.; Polanek, R.; King, P.; Milder, A. L.; Marsh, K. A.; Pak, A.; Pollock, B. B.; Hegelich, B. M.; Moody, J. D.; Park, J.; Tommasini, R.; Williams, G. J.; Chen, Hui; Joshi, C.
2018-05-01
An x-ray source generated by an electron beam produced using a Self-Modulated Laser Wakefield Accelerator (SM-LWFA) is explored for use in high energy density science facilities. By colliding the electron beam, with a maximum energy of 380 MeV, total charge of >10 nC and a divergence of 64 × 100 mrad, from a SM-LWFA driven by a 1 ps 120 J laser, into a high-Z foil, an x/gamma-ray source was generated. A broadband bremsstrahlung energy spectrum with temperatures ranging from 0.8 to 2 MeV was measured with an almost 2 orders of magnitude flux increase when compared with other schemes using LWFA. GEANT4 simulations were done to calculate the source size and divergence.
A gamma beam profile imager for ELI-NP Gamma Beam System
NASA Astrophysics Data System (ADS)
Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.
2018-06-01
The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.
Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)
NASA Astrophysics Data System (ADS)
Eger, Peter
2015-08-01
The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.
Prospects for compact high-intensity laser synchrotron x-ray and gamma sources
NASA Astrophysics Data System (ADS)
Pogorelsky, I. V.
1997-03-01
A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.
Observations of medium-energy gamma-ray emission from the galactic center region
NASA Technical Reports Server (NTRS)
Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.
1978-01-01
Measurements of the gamma-ray emission in the medium-energy range between 15 and 100 MeV, obtained during two balloon flights from Brazil, are presented. The importance of this energy region in determining whether neutral-pion decay or electron bremsstrahlung is the most likely dominant source mechanism is discussed, along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to the theoretical spectrum calculated by Fichtel et al. (1976), including both source mechanisms but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.
Dubey, Vikas; Kaur, Jagjeet; Parganiha, Yogita; Suryanarayana, N S; Murthy, K V R
2016-04-01
This paper reports the thermoluminescence properties of Eu(3+) doped different host matrix phosphors (SrY2O4 and Y4Al2O9). The phosphor is prepared by high temperature solid state reaction method. The method is suitable for large scale production and fixed concentration of boric acid using as a flux. The prepared samples were characterized by X-ray diffraction technique and the crystallite size calculated by Scherer's formula. The prepared phosphor characterized by Scanning Electron Microscopic (SEM), Fourier Transform Infrared (FTIR), Energy Dispersive X-ray analysis (EDX), thermoluminescence (TL) and Transmission Electron Microscopic (TEM) techniques. The prepared phosphors for different concentration of Eu(3+) ions were examined by TL glow curve for UV, beta and gamma irradiation. The UV 254nm source used for UV irradiation, Sr(90) source was used for beta irradiation and Co(60) source used for gamma irradiation. SrY2O4:Eu(3+)and Y4Al2O9:Eu(3+) phosphors which shows both higher temperature peaks and lower temperature peaks for UV, beta and gamma irradiation. Here UV irradiated sample shows the formation of shallow trap (surface trapping) and the gamma irradiated sample shows the formation of deep trapping. The estimation of trap formation was evaluated by knowledge of trapping parameters. The trapping parameters such as activation energy, order of kinetics and frequency factor were calculated by peak shape method. Here most of the peak shows second order of kinetics. The effect of gamma, beta and UV exposure on TL studies was also examined and it shows linear response with dose which indicate that the samples may be useful for TL dosimetry. Formation of deep trapping mechanism by UV, beta and gamma irradiated Eu(3+) activated SrY2O4 and Y4Al2O9 phosphors is discussed in this paper. Copyright © 2015 Elsevier Ltd. All rights reserved.
Laedermann, Jean-Pascal; Valley, Jean-François; Bulling, Shelley; Bochud, François O
2004-06-01
The detection process used in a commercial dose calibrator was modeled using the GEANT 3 Monte Carlo code. Dose calibrator efficiency for gamma and beta emitters, and the response to monoenergetic photons and electrons was calculated. The model shows that beta emitters below 2.5 MeV deposit energy indirectly in the detector through bremsstrahlung produced in the chamber wall or in the source itself. Higher energy beta emitters (E > 2.5 MeV) deposit energy directly in the chamber sensitive volume, and dose calibrator sensitivity increases abruptly for these radionuclides. The Monte Carlo calculations were compared with gamma and beta emitter measurements. The calculations show that the variation in dose calibrator efficiency with measuring conditions (source volume, container diameter, container wall thickness and material, position of the source within the calibrator) is relatively small and can be considered insignificant for routine measurement applications. However, dose calibrator efficiency depends strongly on the inner-wall thickness of the detector.
Radiation effects on MOS devices - dosimetry, annealing, irradiation sequence, and sources
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.; Brucker, G. J.; Van Gunten, O.; Knudson, A. R.; Jordan, T. M.
1983-01-01
This paper reports on some investigations of dosimetry, annealing, irradiation sequences, and radioactive sources, involved in the determination of radiation effects on MOS devices. Results show that agreement in the experimental and theoretical surface to average doses support the use of thermo-luminescent dosimeters (manganese activated calcium fluoride) in specifying the surface dose delivered to thin gate insulators of MOS devices. Annealing measurements indicate the existence of at least two energy levels,,s or a activation energies, for recovery of soft oxide MOS devices after irradiation by electrons, protons, and gammas. Damage sensitivities of MOS devices were found to be independent of combinations and sequences of radiation type or energies. Comparison of various gamma sources indicated a small dependence of damage sensitivity on the Cobalt facility, but a more significant dependence in the case of the Cesium source. These results were attributed to differences in the spectral content of the several sources.
Gamma rays made on Earth have unexpectedly high energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Johanna
Terrestrial gamma-ray flashes (TGFs) are the source of the highest-energy nonanthropogenic photons produced on Earth. Associated with thunder-storms - and in fact, with individual lightning discharges - they are presumed to be the bremsstrahlung produced when relativistic electrons, accelerated by the storms' strong electric fields, collide with air molecules some 10-20 km above sea level. The TGFs last up to a few milliseconds and contain photons with energies on the order of MeV.
NASA Astrophysics Data System (ADS)
Stanbro, M.; Briggs, M. S.; Cramer, E.; Dwyer, J. R.; Roberts, O.
2017-12-01
Terrestrial Gamma-ray Flashes (TGFs) are sub-ms, intense flashes of gamma-rays. They are due to the acceleration of electrons with relativistic energies in thunderstorms that emit gamma-rays via bremsstrahlung. When these photons reach the upper atmosphere, they can produce secondary electrons and positrons that escape the atmosphere and propagate along the Earth's magnetic field line. Space instruments can detect these charged particles, known as Terrestrial Electron Beams (TEBs), after traveling thousands of kilometers from the thunderstorm. We present an event that was observed by the Fermi Gamma-ray Burst Monitor (GBM) as both a TGF and a TEB. To our knowledge this is the first such event that has ever been observed. We interpret the first pulse as a TGF with a duration of 0.2 ms. After 0.5 ms a second pulse is seen with a duration of 2 ms that we interpret as a TEB. Confirming this interpretation, a third pulse is seen 90 ms later, which is understood as a TEB magnetic mirror pulse. The World Wide Lightning Location Network (WWLLN) and the Earth Networks Total Lightning Network (ENTLN) detected a sferic, under the spacecraft footprint and within the southern magnetic footprint that is simultaneous with the first pulse. Along with the sferic, this unique observation allows us for the first time to test TGF and TEB models for the same event. We present Monte Carlo simulations of the first two pulses, including pitch angles for electrons and positrons, to see if the models can consistently describe the TGF/TEB spectra and time profiles originating from the same source.
Radiation Testing at Sandia National Laboratories: Sandia – JPL Collaboration for Europa Lander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattar, Khalid Mikhiel; Olszewska-Wasiolek, Maryla Aleksandra
Sandia National Laboratories (SNL) is assisting Jet Propulsion Laboratory in undertaking feasibility studies and performance assessments for the Planetary Protection aspect of the Europa Lander mission. The specific areas of interest for this project are described by task number. This white paper presents the evaluation results for Task 2, Radiation Testing, which was stated as follows: Survey SNL facilities and capabilities for simulating the Europan radiation environment and assess suitability for: A. Testing batteries, electronics, and other component and subsystems B. Exposing biological organisms to assess their survivability metrics. The radiation environment the Europa Lander will encounter on route andmore » in orbit upon arrival at its destination consists primarily of charged particles, energetic protons and electrons with the energies up to 1 GeV. The charged particle environments can be simulated using the accelerators at the Ion Beam Laboratory. The Gamma Irradiation Facility and its annex, the Low Dose Rate Irradiation Facility, offer irradiations using Co-60 gamma sources (1.17 and 1.33 MeV), as well as Cs-137 gamma (0.661 MeV) AmBe neutron (0-10 MeV) sources.« less
The Second Catalog of Flaring Gamma-Ray Sources from the Fermi All-sky Variability Analysis
NASA Astrophysics Data System (ADS)
Abdollahi, S.; Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Conrad, J.; Costantin, D.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Palma, F.; Desai, A.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Donaggio, B.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giomi, M.; Giordano, F.; Giroletti, M.; Glanzman, T.; Green, D.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hays, E.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paliya, V. S.; Paneque, D.; Perkins, J. S.; Persic, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stawarz, L.; Suson, D. J.; Takahashi, M.; Tanaka, K.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Torresi, E.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.
2017-09-01
We present the second catalog of flaring gamma-ray sources (2FAV) detected with the Fermi All-sky Variability Analysis (FAVA), a tool that blindly searches for transients over the entire sky observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. With respect to the first FAVA catalog, this catalog benefits from a larger data set, the latest LAT data release (Pass 8), as well as from an improved analysis that includes likelihood techniques for a more precise localization of the transients. Applying this analysis to the first 7.4 years of Fermi observations, and in two separate energy bands 0.1-0.8 GeV and 0.8-300 GeV, a total of 4547 flares were detected with significance greater than 6σ (before trials), on the timescale of one week. Through spatial clustering of these flares, 518 variable gamma-ray sources were identified. Based on positional coincidence, likely counterparts have been found for 441 sources, mostly among the blazar class of active galactic nuclei. For 77 2FAV sources, no likely gamma-ray counterpart has been found. For each source in the catalog, we provide the time, location, and spectrum of each flaring episode. Studying the spectra of the flares, we observe a harder-when-brighter behavior for flares associated with blazars, with the exception of BL Lac flares detected in the low-energy band. The photon indexes of the flares are never significantly smaller than 1.5. For a leptonic model, and under the assumption of isotropy, this limit suggests that the spectrum of freshly accelerated electrons is never harder than p˜ 2.
ESA is hot on the trail of Geminga
NASA Astrophysics Data System (ADS)
XMM-Newton image of Geminga showing the discovery of the twi hi-res Size hi-res: 68 kb Credits: ESA XMM-Newton image of Geminga showing the discovery of the twin tails This image was captured by the EPIC camera on board the satellite. The motion of Geminga across the sky is indicated, showing that the tails are trailing the neutron star. The scale bar corresponds to a distance of 1.5 million million kilometres at the distance of Geminga. Computer models of the shock wave created by Geminga hi-res Size hi-res: 522 kb Credits: Patrizia Caraveo Computer models of the shockwave created by Geminga Computer models of the shockwave created by Geminga show that the best matches to the data occur if the neutron star is travelling virtually across our line of sight. These correspond to the inclinations of less than 30 degrees. A neutron star measures only 20-30 kilometres across and is the dense remnant of an exploded star. Geminga is one of the closest to Earth, at a distance of about 500 light-years. Most neutron stars emit radio emissions, appearing to pulsate like a lighthouse, but Geminga is 'radio-quiet'. It does, however, emit huge quantities of pulsating gamma rays making it one of the brightest gamma-ray sources in the sky. Geminga is the only example of a successfully identified gamma-ray source from which astronomers have gained significant knowledge. It is 350 000 years old and ploughs through space at 120 kilometres per second. Its route creates a shockwave that compresses the gas of the interstellar medium and its naturally embedded magnetic field by a factor of four. Patrizia Caraveo, Instituto di Astrofisica Spaziale e Fisica Cosmica, Milano, Italy, and her colleagues (at CESR, France, ESO and MPE, Germany) have calculated that the tails are produced because highly energetic electrons become trapped in this enhanced magnetic field. As the electrons spiral inside the magnetic field, they emit the X-rays seen by XMM-Newton. The electrons themselves are created close to the neutron star. Geminga’s breathless rotation rate - once every quarter of a second - creates an extraordinary environment in which electrons and positrons, their antimatter counterparts, can be accelerated to extraordinarily high energies. At such energies, they become powerful high-energy gamma-ray producers. Astronomers had assumed that all the electrons would be converted into gamma rays. However, the discovery of the tails proves that some do find escape routes from the maelstrom. “It is astonishing that such energetic electrons succeed in escaping to create these tails,” says Caraveo, “The tail electrons have an energy very near to the maximum energy achievable in the environment of Geminga.” The tails themselves are the bright edges of the three-dimensional shockwave sculpted by Geminga. Such shockwaves are a bit like the wake of a ship travelling across the ocean. Using a computer model, the team has estimated that Geminga is travelling almost directly across our line of sight. Studies of Geminga could not be more important. The majority of known gamma-ray sources in the Universe have yet to be identified with known classes of celestial objects. Some astronomers believe that a sizeable fraction of them may be Geminga-like radio-quiet neutron stars. Certainly, the family of radio-quiet neutron stars, discovered through their X-ray emission, is continuously growing. Currently, about a dozen objects are known but only Geminga has a pair of tails! Note for editors During the search to track down this elusive celestial object, a co-author on the paper, Giovanni Bignami, named Geminga almost 30 years ago. He was Principal Investigator of XMM-Newton's EPIC camera from 1987 to1997 and is now Director of the Centre d'Etude Spatiale des Rayonnements (CESR). Geminga was first glimpsed as a mysterious source of gamma rays, coming from somewhere in the constellation Gemini by NASA's SAS-2 spacecraft in 1973. While searching to pin down its exact location and nature, Bignami named it Geminga because it was a 'Gemini gamma-ray source'. As an astronomer in Milan, Italy, he was also aware that in his native dialect 'gh'è minga' means 'it is not there', which he found amusing. It was also remarkably apt, for it was not until 1993 that he succeeded in finally 'seeing' and therefore pinpointing Geminga, using optical wavelengths. While it lacked radio emissions, the pulsating X-ray and gamma-ray emissions meant Geminga could only be a new class of radio-quiet neutron star. The original paper was published yesterday, 24 July 2003, on Science Express, a feature of Science Online.
Development of a High-Average-Power Compton Gamma Source for Lepton Colliders
NASA Astrophysics Data System (ADS)
Pogorelsky, Igor; Polyanskiy, Mikhail N.; Yakimenko, Vitaliy; Platonenko, Viktor T.
2009-01-01
Gamma- (γ-) ray beams of high average power and peak brightness are of demand for a number of applications in high-energy physics, material processing, medicine, etc. One of such examples is gamma conversion into polarized positrons and muons that is under consideration for projected lepton colliders. A γ-source based on the Compton backscattering from the relativistic electron beam is a promising candidate for this application. Our approach to the high-repetition γ-source assumes placing the Compton interaction point inside a CO2 laser cavity. A laser pulse interacts with periodical electron bunches on each round-trip inside the laser cavity producing the corresponding train of γ-pulses. The round-trip optical losses can be compensated by amplification in the active laser medium. The major challenge for this approach is in maintaining stable amplification rate for a picosecond CO2-laser pulse during multiple resonator round-trips without significant deterioration of its temporal and transverse profiles. Addressing this task, we elaborated on a computer code that allows identifying the directions and priorities in the development of such a multi-pass picosecond CO2 laser. Proof-of-principle experiments help to verify the model and show the viability of the concept. In these tests we demonstrated extended trains of picosecond CO2 laser pulses circulating inside the cavity that incorporates the Compton interaction point.
NASA Technical Reports Server (NTRS)
Jones, W. V. (Editor); Wefel, J. P. (Editor)
1985-01-01
The potential of the Space Station as a platform for cosmic-ray and high-energy gamma-ray astronomy is discussed in reviews, reports, and specific proposals. Topics examined include antiparticles and electrons, science facilities and new technology, high-energy nuclear interactions, nuclear composition and energy spectra, Space Shuttle experiments, Space Station facilities and detectors, high-energy gamma rays, and gamma-ray facilities and techniques. Consideration is given to universal-baryon-symmetry testing on the scale of galactic clusters, particle studies in a high-inclination orbit, balloon-borne emulsion-chamber results on ultrarelativistic nucleus-nucleus interactions, ionization states of low-energy cosmic rays, a large gamma-ray telescope for point-source studies above 1 GeV, and the possible existence of stable quark matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camilo, F.; Kerr, M.; Ray, P. S.
2012-01-23
In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar J2030+3641, associated with 1FGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times that spans the entire Fermi mission. With a rotation period of 0.2 s, spin-down luminosity of 3X10 34 erg s -1, and characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright andmore » radio-undetected Geminga. Its gamma-ray flux is 1% that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc cm-3. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive — PSR J2030+3641 would have been found blindly in gamma rays if only & 0:8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.« less
NASA Technical Reports Server (NTRS)
Camilo, F.; Kerr, M.; Ray, P. S.; Ransom, S. M.; Johnston, S.; Romani, R. W.; Parent, D.; Decesar, M. E.; Harding, A. K.; Donato, D.;
2011-01-01
In a radio search with the Green Bank Telescope of three unidentified low Galactic latitude Fermi-LAT sources, we have discovered the middle-aged pulsar J2030+3641, associated with IFGL J2030.0+3641 (2FGL J2030.0+3640). Following the detection of gamma-ray pulsations using a radio ephemeris, we have obtained a phase-coherent timing solution based on gamma-ray and radio pulse arrival times that spans the entire Fermi mission. With a rotation period of 0.28, spin-down luminosity of 3 x 10(exp 34) erg/s, and characteristic age of 0.5 Myr, PSR J2030+3641 is a middle-aged neutron star with spin parameters similar to those of the exceedingly gamma-ray-bright and radio-undetected Geminga. Its gamma-ray flux is 1 % that of Geminga, primarily because of its much larger distance, as suggested by the large integrated column density of free electrons, DM = 246 pc/cu cm. We fit the gamma-ray light curve, along with limited radio polarimetric constraints, to four geometrical models of magnetospheric emission, and while none of the fits have high significance some are encouraging and suggest that further refinements of these models may be worthwhile. We argue that not many more non-millisecond radio pulsars may be detected along the Galactic plane that are responsible for LAT sources, but that modified methods to search for gamma-ray pulsations should be productive - PSR J2030+364 I would have been found blindly in gamma rays if only > or approx. 0.8 GeV photons had been considered, owing to its relatively flat spectrum and location in a region of high soft background.
Multi-particle inspection using associated particle sources
Bingham, Philip R.; Mihalczo, John T.; Mullens, James A.; McConchie, Seth M.; Hausladen, Paul A.
2016-02-16
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing combined neutron and gamma ray radiography. For example, one exemplary system comprises: a neutron source; a set of alpha particle detectors configured to detect alpha particles associated with neutrons generated by the neutron source; neutron detectors positioned to detect at least some of the neutrons generated by the neutron source; a gamma ray source; a set of verification gamma ray detectors configured to detect verification gamma rays associated with gamma rays generated by the gamma ray source; a set of gamma ray detectors configured to detect gamma rays generated by the gamma ray source; and an interrogation region located between the neutron source, the gamma ray source, the neutron detectors, and the gamma ray detectors.
Channeling, Volume Reection and Gamma Emission Using 14GeV Electrons in Bent Silicon Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, Brandon
2015-08-14
High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact whenmore » compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.« less
Fermi-LAT observations of the gamma-ray burst GRB 130427A.
Ackermann, M; Ajello, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Bonamente, E; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Burgess, J Michael; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Chaplin, V; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cleveland, W; Cohen-Tanugi, J; Collazzi, A; Cominsky, L R; Connaughton, V; Conrad, J; Cutini, S; D'Ammando, F; de Angelis, A; DeKlotz, M; de Palma, F; Dermer, C D; Desiante, R; Diekmann, A; Di Venere, L; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Finke, J; Fitzpatrick, G; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Gibby, M; Giglietto, N; Giles, M; Giordano, F; Giroletti, M; Godfrey, G; Granot, J; Grenier, I A; Grove, J E; Gruber, D; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Inoue, Y; Jogler, T; Jóhannesson, G; Johnson, W N; Kawano, T; Knödlseder, J; Kocevski, D; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mayer, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mizuno, T; Moiseev, A A; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orienti, M; Paneque, D; Pelassa, V; Perkins, J S; Pesce-Rollins, M; Petrosian, V; Piron, F; Pivato, G; Porter, T A; Racusin, J L; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Roth, M; Ryde, F; Sartori, A; Parkinson, P M Saz; Scargle, J D; Schulz, A; Sgrò, C; Siskind, E J; Sonbas, E; Spandre, G; Spinelli, P; Tajima, H; Takahashi, H; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Winer, B L; Wood, K S; Yamazaki, R; Younes, G; Yu, H-F; Zhu, S J; Bhat, P N; Briggs, M S; Byrne, D; Foley, S; Goldstein, A; Jenke, P; Kippen, R M; Kouveliotou, C; McBreen, S; Meegan, C; Paciesas, W S; Preece, R; Rau, A; Tierney, D; van der Horst, A J; von Kienlin, A; Wilson-Hodge, C; Xiong, S; Cusumano, G; La Parola, V; Cummings, J R
2014-01-03
The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest γ-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.
Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A
Ackermann, M.; Ajello, M.; Asano, K.; ...
2013-11-21
The Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources using the observations of the exceptionally bright gamma-ray burst (GRB) 130427A. We found that GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest γ-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.
Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging
NASA Astrophysics Data System (ADS)
Barty, C. P. J.
2015-10-01
Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.
Effect of ionizing radiation on some quality attributes of nutraceutically valued lotus seeds.
Bhat, Rajeev; Karim, A A
2009-01-01
Radiation processing has been employed successfully for value addition of food and agricultural products. Preliminary studies were undertaken to evaluate the changes induced by ionizing radiation (up to 30 kGy), in the form of gamma irradiation and electron beam irradiation, on some quality attributes and nutritive values of nutraceutically valued lotus seeds. Significant loss in seed firmness was recorded between control and irradiated seeds, irrespective of radiation source. Similarly, the specific viscosity of irradiated lotus seeds decreased significantly up to a dose of 7.5 kGy. Starch increased after exposure to gamma or electron beam irradiation, whereas the total phenolic contents were decreased. Gamma irradiation revealed an enhancement in protein, while the electron beam showed a decrease. Partial oxidation of the seeds during radiation treatments might have occurred as evidenced from the decomposition profiles (thermogravimetry) during heating. It is evident that ionizing radiation brought about significant and variable changes in the quality and nutritive values of lotus seed. Further exploration of this technology for safety and quality is warranted.
Back-bombardment compensation in microwave thermionic electron guns
NASA Astrophysics Data System (ADS)
Kowalczyk, Jeremy M. D.; Madey, John M. J.
2014-12-01
The development of capable, reliable, and cost-effective compact electron beam sources remains a long-standing objective of the efforts to develop the accelerator systems needed for on-site research and industrial applications ranging from electron beam welding to high performance x-ray and gamma ray light sources for element-resolved microanalysis and national security. The need in these applications for simplicity, reliability, and low cost has emphasized solutions compatible with the use of the long established and commercially available pulsed microwave rf sources and L-, S- or X-band linear accelerators. Thermionic microwave electron guns have proven to be one successful approach to the development of the electron sources for these systems providing high macropulse average current beams with picosecond pulse lengths and good emittance out to macropulse lengths of 4-5 microseconds. But longer macropulse lengths are now needed for use in inverse-Compton x-ray sources and other emerging applications. We describe in this paper our approach to extending the usable macropulse current and pulse length of these guns through the use of thermal diffusion to compensate for the increase in cathode surface temperature due to back-bombardment.
Possible Detection of Gamma Ray Air Showers in Coincidence with BATSE Gamma Ray Bursts
NASA Astrophysics Data System (ADS)
Lin, Tzu-Fen
1999-08-01
Project GRAND presents the results of a search for coincident high-energy gamma ray events in the direction and at the time of nine Gamma Ray Bursts (GRBs) detected by BATSE. A gamma ray has a non-negligible hadron production cross section; for each gamma ray of energy of 100 GeV, there are 0.015 muons which reach detection level (Fasso & Poirier, 1999). These muons are identified and their angles are measured in stations of eight planes of proportional wire chambers (PWCs). A 50 mm steel plate above the bottom pair of planes is used to distinguish muons from electrons. The mean angular resolution is 0.26o over a ± 61o range in the XZ and YZ planes. The BATSE GRB catalogue is examined for bursts which are near zenith for Project GRAND. The geometrical acceptance is calculated for each of these events. The product is then taken of the GRB flux and GRANDÕs geometrical acceptance. The nine sources with the best combination of detection efficiency and BATSEÕs intensity are selected to be examined in the data. The most significant detection of these nine sources is at a statistical significance of +3.7s; this is also the GRB with the highest product of GRB flux and geometrical acceptance.
Fermi LAT discovery of GeV gamma-ray emission from the young supernova remnan Cassiopeia A
Abdo, A. A.
2010-01-27
Here, we report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant (SNR) with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. Our observations reveal a source with no discernible spatial extension detected at a significance level of 12.2σ above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation—Cassiopeia A (Cas A). The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles acceleratedmore » in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as W CR sime (1-4) × 1049 erg thanks to the well-known density in the remnant assuming that the observed gamma ray originates in the SNR shell(s). Finally, the magnetic field in the radio-emitting plasma can be robustly constrained as B ≥ 0.1 mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.« less
Relativistic Particle Population and Magnetic Fields in Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Kushnir, Doron
2011-08-01
We derive constrains on the cosmic ray (CR) population and magnetic fields (MF) in clusters of galaxies, based on: 1. The correlation between the radio and the X-ray luminosities: the former emitted by synchrotron of secondary electrons in a strong MF, >˜3 muG; In the core, the CR energy is ˜10^{-3} of the thermal energy; The source of CR is the accretion shock (AS), which accelerate CR with efficiency >˜1%. 2. The HXR luminosity: emitted by IC of CMB photons by electrons accelerated in AS with efficiency >˜1%. The constrains imply that gamma-ray emission from secondaries will be difficult to detect with existing/planned instruments. However, the extended emission from primary electrons might be detected by future HXR (NuStar, Simbol-X) and gamma-ray observations (Fermi, HESS, VERITAS).
Cosmic gamma-ray bursts detected in the RELEC experiment onboard the Vernov satellite
NASA Astrophysics Data System (ADS)
Bogomolov, A. V.; Bogomolov, V. V.; Iyudin, A. F.; Kuznetsova, E. A.; Minaev, P. Yu.; Panasyuk, M. I.; Pozanenko, A. S.; Prokhorov, A. V.; Svertilov, S. I.; Chernenko, A. M.
2017-08-01
The RELEC scientific instrumentation onboard the Vernov spacecraft launched on July 8, 2014, included the DRGE gamma-ray and electron spectrometer. This instrument incorporates a set of scintillation phoswich detectors, including four identical X-ray and gamma-ray detectors in the energy range from 10 keV to 3 MeV with a total area of 500 cm2 directed toward the nadir, and an electron spectrometer containing three mutually orthogonal detector units with a geometry factor of 2 cm2 sr, which is also sensitive to X-rays and gamma-rays. The goal of the space experiment with the DRGE instrument was to investigate phenomena with fast temporal variability, in particular, terrestrial gammaray flashes (TGFs) and magnetospheric electron precipitations. However, the detectors of the DRGE instrument could record cosmic gamma-ray bursts (GRBs) and allowed one not only to perform a detailed analysis of the gamma-ray variability but also to compare the time profiles with the measurements made by other instruments of the RELEC scientific instrumentation (the detectors of optical and ultraviolet flashes, the radio-frequency and low-frequency analyzers of electromagnetic field parameters). We present the results of our observations of cosmicGRB 141011A and GRB 141104A, compare the parameters obtained in the GBM/Fermi and KONUS-Wind experiments, and estimate the redshifts and E iso for the sources of these GRBs. The detectability of GRBs and good agreement between the independent estimates of their parameters obtained in various experiments are important factors of the successful operation of similar detectors onboard the Lomonosov spacecraft.
Pulse shape discrimination of plastic scintillator EJ 299-33 with radioactive sources
NASA Astrophysics Data System (ADS)
Pagano, E. V.; Chatterjee, M. B.; De Filippo, E.; Russotto, P.; Auditore, L.; Cardella, G.; Geraci, E.; Gnoffo, B.; Guazzoni, C.; Lanzalone, G.; De Luca, S.; Maiolino, C.; Martorana, N. S.; Pagano, A.; Papa, M.; Parsani, T.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Trifirò, A.; Trimarchi, M.
2018-05-01
The present study has been carried out in order to investigate about the possibility of using EJ 299-33 scintillator in a multi-detector array to detect neutrons along with light charged particles. In a reaction induced by stable and exotic heavy-ions beams, where copious production of neutrons and other light charged particles occurs, discrimination with low identification threshold of these particles are of great importance. In view of this, EJ 299-33 scintillator having dimension of 3 cm × 3 cm × 3 cm backed by a photomultiplier tube was tested and used under vacuum to detect neutrons, gamma-rays and alpha particles emitted by radioactive sources. Anode pulses from the photomultiplier tube were digitized through GET electronics, recorded and stored in a data acquisition system for the purpose of an off-line analysis. The measurements, under vacuum and low background conditions, show good pulse shape discrimination properties characterized by low identification threshold for neutrons, gamma-rays and alpha particles. The Figures of Merit for neutron-gamma and alpha particles-gamma discriminations have been evaluated together with the energy resolution for gamma-ray and alpha particles.
Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komura, S.; Takada, A.; Mizumura, Y.
2017-04-10
X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factormore » over an FoV of up to 2 π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10{sup 7} s exposure and over 20 GRBs down to a 6 × 10{sup −6} erg cm{sup −2} fluence and 10% polarization during a one-year observation.« less
Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera
NASA Astrophysics Data System (ADS)
Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.
2017-04-01
X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 107 s exposure and over 20 GRBs down to a 6 × 10-6 erg cm-2 fluence and 10% polarization during a one-year observation.
Discovery of very-high-energy gamma-rays from the Galactic Centre ridge.
Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Marcowith, A; Martin, J M; Martineau-Huynh, O; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J
2006-02-09
The source of Galactic cosmic rays (with energies up to 10(15) eV) remains unclear, although it is widely believed that they originate in the shock waves of expanding supernova remnants. At present the best way to investigate their acceleration and propagation is by observing the gamma-rays produced when cosmic rays interact with interstellar gas. Here we report observations of an extended region of very-high-energy (> 10(11) eV) gamma-ray emission correlated spatially with a complex of giant molecular clouds in the central 200 parsecs of the Milky Way. The hardness of the gamma-ray spectrum and the conditions in those molecular clouds indicate that the cosmic rays giving rise to the gamma-rays are likely to be protons and nuclei rather than electrons. The energy associated with the cosmic rays could have come from a single supernova explosion around 10(4) years ago.
NASA Technical Reports Server (NTRS)
Ramaty, R.; Lingenfelter, R. E.
1982-01-01
Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.
NASA Technical Reports Server (NTRS)
Madejski, G. M.; Nalewajko, K.; Madsen, K. K.; Chiang, J.; Balokovic, M.; Paneque, D.; Furniss, A. K.; Hayashida, M.; Urry, C. M.; Sikora, M.;
2016-01-01
We report the first hard X-ray observations with NuSTAR of the BL Lac-type blazar PKS2155-304, augmented with soft X-ray data from XMM-Newton and gamma-ray data from the Fermi Large Area Telescope, obtained in 2013April when the source was in a very low flux state. A joint NuSTAR and XMM spectrum, covering the energy range 0.5-60 keV, is best described by a model consisting of a log-parabola component with curvature Beta = -0.3(+0.2 -0.1) and a (local) photon index 3.04 +/- 0.15 at photon energy of 2 keV, and a hard power-law tail with photon index 2.2 +/- 0.4. The hard X-ray tail can be smoothly joined to the quasi-simultaneous gamma-ray spectrum by a synchrotron self-Compton component produced by an electron distribution with index p 2.2. Assuming that the power-law electron distribution extends down to gamma (sub min) = 1 and that there is one proton per electron, an unrealistically high total jet power of Lp approximately 10 (exp 47) erg s(sub -1) is inferred. This can be reduced by two orders of magnitude either by considering a significant presence of electron-positron pairs with lepton-to-proton ratio n(sub e+e-/n(sub p) approx. 30, or by introducing an additional, low-energy break in the electron energy distribution at the electron Lorentz factor gamma br1 approx. 100. In either case, the jet composition is expected to be strongly matter-dominated
Variation in electrical properties of gamma irradiated cadmium selenate nanowires
NASA Astrophysics Data System (ADS)
Chauhan, R. P.; Rana, Pallavi; Narula, Chetna; Panchal, Suresh; Choudhary, Ritika
2016-07-01
Preparation of low-dimensional materials attracts more and more interest in the last few years, mainly due to the wide field of potential commercial applications ranging from life sciences, medicine and biotechnology to communication and electronics. One-dimensional systems are the smallest dimension structures that can be used for efficient transport of electrons and thus expected to be critical to the function and integration of nanoscale devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by replicating a nanoporous polymer ion-track membrane with cylindrical pores of controlled dimensions. With this technique, materials can be deposited within the pores of the membrane by electrochemical reduction of the desired ion. In the present study, cadmium selenate nanowires were synthesized potentiostatically via template method. These synthesized nanowires were then exposed to gamma rays by using a 60Co source at the Inter University Accelerator Centre, New Delhi, India. Structural, morphological, electrical and elemental characterizations were made in order to analyze the effect of gamma irradiation on the synthesized nanowires. I-V measurements of cadmium selenate nanowires, before and after irradiation were made with the help of Keithley 2400 source meter and Ecopia probe station. A significant change in the electrical conductivity of cadmium selenate nanowires was found after gamma irradiation. The crystallography of the synthesized nanowires was also studied using a Rigaku X-ray diffractrometer equipped with Cu-Kα radiation. XRD patterns of irradiated samples showed no variation in the peak positions or phase change.
Development of MCNPX-ESUT computer code for simulation of neutron/gamma pulse height distribution
NASA Astrophysics Data System (ADS)
Abolfazl Hosseini, Seyed; Vosoughi, Naser; Zangian, Mehdi
2015-05-01
In this paper, the development of the MCNPX-ESUT (MCNPX-Energy Engineering of Sharif University of Technology) computer code for simulation of neutron/gamma pulse height distribution is reported. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry in mixed neutron/gamma fields, this type of detectors is selected for simulation in the present study. The proposed algorithm for simulation includes four main steps. The first step is the modeling of the neutron/gamma particle transport and their interactions with the materials in the environment and detector volume. In the second step, the number of scintillation photons due to charged particles such as electrons, alphas, protons and carbon nuclei in the scintillator material is calculated. In the third step, the transport of scintillation photons in the scintillator and lightguide is simulated. Finally, the resolution corresponding to the experiment is considered in the last step of the simulation. Unlike the similar computer codes like SCINFUL, NRESP7 and PHRESP, the developed computer code is applicable to both neutron and gamma sources. Hence, the discrimination of neutron and gamma in the mixed fields may be performed using the MCNPX-ESUT computer code. The main feature of MCNPX-ESUT computer code is that the neutron/gamma pulse height simulation may be performed without needing any sort of post processing. In the present study, the pulse height distributions due to a monoenergetic neutron/gamma source in NE-213 detector using MCNPX-ESUT computer code is simulated. The simulated neutron pulse height distributions are validated through comparing with experimental data (Gohil et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664 (2012) 304-309.) and the results obtained from similar computer codes like SCINFUL, NRESP7 and Geant4. The simulated gamma pulse height distribution for a 137Cs source is also compared with the experimental data.
Gamma-ray emission from black holes
NASA Technical Reports Server (NTRS)
Ling, James C.
1991-01-01
Strong continuum gamma-ray emission at about 1 MeV possibly correlated with a narrow annihilation line at 511 keV has been observed from both Cygnus X-1 and the Galactic center. Such correlated emission has been interpreted as a unique gamma-ray signature for theoretically predicted relativistic, positron-electron pair-dominated plasma in regions surrounding the black holes. In this paper, the Cygnus X-1 results, which have provided important new insights about the source, are reviewed. Cygnus X-1 may be considered a canonical reference stellar black hole whose spectral and temporal characteristics can be used for comparison with those of other black-hole candidates including the Galactic center and AGN.
NASA Astrophysics Data System (ADS)
Raiteri, C. M.; Ghisellini, G.; Villata, M.; de Francesco, G.; Lanteri, L.; Chiaberge, M.; Peila, A.; Antico, G.
1998-02-01
New data from the optical monitoring of gamma -ray loud blazars at the Torino Astronomical Observatory are presented. Observations have been taken in the Johnson's B, V, and Cousins' R bands with the 1.05m REOSC telescope equipped with a 1242x1152 pixel CCD camera. Many of the 22 monitored sources presented here show noticeable magnitude variations. Periods corresponding to pointings of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) satellite are indicated on the light curves. The comparison of our data with those taken by CGRO in the gamma -ray band will contribute to better understand the mechanism of the gamma -ray emission. We finally show intranight light curves of 3C 66A and OJ 287, where microvariability was detected. Tables 2--21 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light.
Taira, Yoshitaka; Hayakawa, Takehito; Katoh, Masahiro
2017-07-10
Inverse Thomson scattering is a well-known radiation process that produces high-energy photons both in nature and in the laboratory. Nonlinear inverse Thomson scattering occurring inside an intense light field is a process which generates higher harmonic photons. In this paper, we theoretically show that the higher harmonic gamma-ray produced by nonlinear inverse Thomson scattering of circularly polarized light is a gamma-ray vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding nonlinear inverse Thomson scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma-ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. Nonlinear inverse Thomson scattering is a promising radiation process for realizing a gamma-ray vortex source based on currently available laser and accelerator technologies, which would be an indispensable tool for exploring gamma-ray vortex science.
Galactic X-ray emission from pulsars
NASA Technical Reports Server (NTRS)
Harding, A. K.
1981-01-01
The contribution of pulsars to the gamma-ray flux from the galactic plane is examined using data from the most recent pulsar surveys. It is assumed that pulsar gamma-rays are produced by curvature radiation from relativistic particles above the polar cap and attenuated by pair production in the strong magnetic and electric fields. Assuming that all pulsars produce gamma-rays in this way, their luminosities can be predicted as a function of period and magnetic field strength. Using the distribution of pulsars in the galaxy as determined from data on 328 pulsars detected in three surveys, the local gamma-ray production spectrum, the longitude profile, and the latitude profile of pulsar gamma-ray flux are calculated. The largest sources of uncertainty in the size of the pulsar contribution are the value of the mean interstellar electron density, the turnover in the pulsar radio luminosity function, and the average pulsar magnetic field strength. A present estimate is that pulsars contribute from 15 to 20 % of the total flux of gamma-rays from the galactic plane.
Modelling Hard Gamma-Ray Emission from Supernova Remnants
NASA Technical Reports Server (NTRS)
Baring, Matthew G.
1999-01-01
The observation by the CANGAROO (Collaboration of Australia and Nippon Gamma Ray Observatory at Outback) experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.
Effects of gamma and electron beam irradiation on the microbial quality of steamed tofu rolls
NASA Astrophysics Data System (ADS)
Jia, Qian; Gao, Meixu; Li, Shurong; Wang, Zhidong
2013-01-01
The effectiveness of two kinds of radiation processing, gamma and electron beam (ebeam) irradiation, for the inactivation of Staphylococcus aureus, Salmonella enteritidis and Listeria innocua which were inoculated in pre-sterilised steamed tofu rolls was studied. The corresponding effects of both irradiation types on total bacterial counts (TBCs) in commercial steamed tofu rolls available in the market were also examined. The microbiological results demonstrated that gamma irradiation yielded D10 values of 0.20, 0.24 and 0.22 kGy for S. aureus, S. enteritidis and L. innocua, respectively. The respective D10 values for ebeam irradiation were 0.31, 0.35 and 0.27 kGy. Gamma and ebeam irradiation yielded D10 values of 0.48 and 0.43 kGy for total bacterial counts in commercial steamed tofu rolls, respectively. The results suggest that ebeam irradiation has similar effect on decreasing TBCs in steamed tofu rolls, and gamma irradiation is slightly more effective than ebeam irradiation in reducing the populations of pathogenic bacteria. The observed differences in D10-values between them might be due to the significant differences in dose rate applied, and radiation processing of soybean products to improve their microbial quality could be available for other sources of protein.
Three-dimensional Monte-Carlo simulation of gamma-ray scattering and production in the atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, D.J.
1989-05-15
Monte Carlo codes have been developed to simulate gamma-ray scattering and production in the atmosphere. The scattering code simulates interactions of low-energy gamma rays (20 to several hundred keV) from an astronomical point source in the atmosphere; a modified code also simulates scattering in a spacecraft. Four incident spectra, typical of gamma-ray bursts, solar flares, and the Crab pulsar, and 511 keV line radiation have been studied. These simulations are consistent with observations of solar flare radiation scattered from the atmosphere. The production code simulates the interactions of cosmic rays which produce high-energy (above 10 MeV) photons and electrons. Itmore » has been used to calculate gamma-ray and electron albedo intensities at Palestine, Texas and at the equator; the results agree with observations in most respects. With minor modifications this code can be used to calculate intensities of other high-energy particles. Both codes are fully three-dimensional, incorporating a curved atmosphere; the production code also incorporates the variation with both zenith and azimuth of the incident cosmic-ray intensity due to geomagnetic effects. These effects are clearly reflected in the calculated albedo by intensity contrasts between the horizon and nadir, and between the east and west horizons.« less
EPR Investigation of Gamma-Irradiated Rapana Thomasiana (Gastropoda, Muricidae) Shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletchi, Emilia Dana; Duliu, Octavian G.; Georgescu, Rodica
2007-04-23
The shell of Rapana Thomasiana snail, a carnivorous gastropod collected from the coasts of the Black Sea (Romania) was investigated by using Electron Paramagnetic Resonance (EPR) spectroscopy. The samples in powder form were irradiated with a 60Co gamma-ray source at ambient temperature in the dose range between 1.06 and 11.3 kGy. The measurements showed that the EPR signal intensity enhanced following saturation exponential with the absorbed dose. The estimated EPR parameters: g1 = 1.9976, g2 = 2.0006, g3 = 2.0015, g4 = 2.0030 and g5 = 2.0043 revealed a complex spectrum consisting of CO{sub 2}{sup -}, CO{sub 3}{sup 3-} andmore » CO{sub 3}{sup -} species. A very weak signal at g6 = 2.0057 was associated to SO{sub 2}{sup -} electron center. All EPR signals of gamma-irradiated samples decreased with various rate with the of 100 deg. C isothermal annealing time.« less
Feasibility of a high-speed gamma-camera design using the high-yield-pileup-event-recovery method.
Wong, W H; Li, H; Uribe, J; Baghaei, H; Wang, Y; Yokoyama, S
2001-04-01
Higher count-rate gamma cameras than are currently used are needed if the technology is to fulfill its promise in positron coincidence imaging, radionuclide therapy dosimetry imaging, and cardiac first-pass imaging. The present single-crystal design coupled with conventional detector electronics and the traditional Anger-positioning algorithm hinder higher count-rate imaging because of the pileup of gamma-ray signals in the detector and electronics. At an interaction rate of 2 million events per second, the fraction of nonpileup events is < 20% of the total incident events. Hence, the recovery of pileup events can significantly increase the count-rate capability, increase the yield of imaging photons, and minimize image artifacts associated with pileups. A new technology to significantly enhance the performance of gamma cameras in this area is introduced. We introduce a new electronic design called high-yield-pileup-event-recovery (HYPER) electronics for processing the detector signal in gamma cameras so that the individual gamma energies and positions of pileup events, including multiple pileups, can be resolved and recovered despite the mixing of signals. To illustrate the feasibility of the design concept, we have developed a small gamma-camera prototype with the HYPER-Anger electronics. The camera has a 10 x 10 x 1 cm NaI(Tl) crystal with four photomultipliers. Hot-spot and line sources with very high 99mTc activities were imaged. The phantoms were imaged continuously from 60,000 to 3,500,000 counts per second to illustrate the efficacy of the method as a function of counting rates. At 2-3 million events per second, all phantoms were imaged with little distortion, pileup, and dead-time loss. At these counting rates, multiple pileup events (> or = 3 events piling together) were the predominate occurrences, and the HYPER circuit functioned well to resolve and recover these events. The full width at half maximum of the line-spread function at 3,000,000 counts per second was 1.6 times that at 60,000 counts per second. This feasibility study showed that the HYPER electronic concept works; it can significantly increase the count-rate capability and dose efficiency of gamma cameras. In a larger clinical camera, multiple HYPER-Anger circuits may be implemented to further improve the imaging counting rates that we have shown by multiple times. This technology would facilitate the use of gamma cameras for radionuclide therapy dosimetry imaging, cardiac first-pass imaging, and positron coincidence imaging and the simultaneous acquisition of transmission and emission data using different isotopes with less cross-contamination between transmission and emission data.
Development of a multi-element microdosimetric detector based on a thick gas electron multiplier
NASA Astrophysics Data System (ADS)
Anjomani, Z.; Hanu, A. R.; Prestwich, W. V.; Byun, S. H.
2017-03-01
A prototype multi-element gaseous microdosimetric detector was developed using the Thick Gas Electron Multiplier (THGEM) technique. The detector aims at measuring neutron and gamma-ray dose rates for weak neutron-gamma radiation fields. The multi-element design was employed to increase the neutron detection efficiency. The prototype THGEM multi-element detector consists of three layers of tissue equivalent plastic hexagons and each layer houses a hexagonal array of seven cylindrical gas cavity elements with equal heights and diameters of 17 mm. The final detector structure incorporates 21 gaseous volumes. Owing to the absence of wire electrodes, the THGEM multi-element detector offers flexible and convenient fabrication. The detector responses to neutron and gamma-ray were investigated using the McMaster Tandetron 7Li(p,n) neutron source. The dosimetric performance of the detector is presented in contrast to the response of a commercial tissue equivalent proportional counter. Compared to the standard TEPC response, the detector gave a consistent microdosimetric response with an average discrepancy of 8 % in measured neutron absorbed dose. An improvement of a factor of 3.0 in neutron detection efficiency has been accomplished with only a small degradation in energy resolution. However, its low energy cut off is about 6 keV/μm, which is not sufficient to measure the gamma-ray dose. This problem will be addressed by increasing the electron multiplication gain using double THGEM layers.
7th International Fermi Symposium
NASA Astrophysics Data System (ADS)
2017-10-01
The two Fermi instruments have been surveying the high-energy sky since August 2008. The Large Area Telescope (LAT) has discovered more than three thousand gamma-ray sources and many new source classes, bringing the importance of gamma-ray astrophysics to an ever-broadening community. The LAT catalog includes supernova remnants, pulsar wind nebulae, pulsars, binary systems, novae, several classes of active galaxies, starburst galaxies, normal galaxies, and a large number of unidentified sources. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from a wide range of transients. Fermi LAT's study of diffuse gamma-ray emission in our Galaxy revealed giant bubbles, as well as an excess of gamma-rays from the Galactic center region, both observations have become exciting puzzles for the astrophysics community. The direct measurement of a harder-than- expected cosmic-ray electron spectrum may imply the presence of nearby cosmic-ray accelerators. LAT data have provided stringent constraints on new phenomena such as supersymmetric dark-matter annihilations as well as tests of fundamental physics. The full reprocessing of the entire mission dataset with Pass 8 includes improved event reconstruction, a wider energy range, better energy measurements, and significantly increased effective area, all them boosting the discovery potential and the ability to do precision observations with LAT. The Gamma-ray Burst Monitor (GBM) continues to be a prolific detector of gamma-ray transients: magnetars, solar flares, terrestrial gamma-ray flashes and gamma-ray bursts at keV to MeV energies, complementing the higher energy LAT observations of those sources in addition to providing valuable science return in their own right. All gamma-ray data are made immediately available at the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc). These publicly available data and Fermi analysis tools have enabled a large number of important studies. We especially encourage guest investigators worldwide to participate in this symposium to share results and to learn about upcoming opportunities. This meeting will focus on the new scientific investigations and results enabled by Fermi, the mission and instrument characteristics, future opportunities, coordinated observations and analysis techniques. In particular, we also encourage discussion of future prospects/science with Fermi in preparation for the upcoming NASA senior review. Details on the 7th International Fermi Symposium can be found here: https://events.mpe.mpg.de/Fermi2017
NASA Astrophysics Data System (ADS)
Streicher, Michael W.
A nuclear weapon detonation remains one of the gravest threats to the global community. Although the likelihood of a nuclear event remains small, the economic and political ramifications of an event are vast. The surest way to reduce the probability of an incident is to account for the special nuclear materials (SNM) which can be used to produce a nuclear weapon. Materials which can be used to manufacture a radiological dispersion device ("dirty bomb") must also be monitored. Rapidly-deployable, commercially-available, room-temperature imaging gamma-ray spectrometers are improving the ability of authorities to intelligently and quickly respond to threats. New electronics which digitally-sample the radiation-induced signals in CdZnTe detectors have expanded the capabilities of these sensors. This thesis explores national security applications where digital readout of CdZnTe detectors significantly enhances capabilities. Radioactive sources can be detected more quickly using digitally-sampled CdZnTe detector due to the improved energy resolution. The excellent energy resolution also improves the accuracy of measurements of uranium enrichment and allows users to measure plutonium grade. Small differences in the recorded gamma-ray energy spectrum can be used to estimate the effective atomic number and mass thickness of materials shielding SNM sources. Improved position resolution of gamma-ray interactions through digital readout allows high resolution gamma-ray images of SNM revealing information about the source configuration. CdZnTe sensors can detect the presence of neutrons, indirectly, through measurement of gamma rays released during capture of thermal neutrons by Cd-113 or inelastic scattering with any constituent nuclei. Fast neutrons, such as those released following fission, can be directly detected through elastic scattering interactions in the detector. Neutrons are a strong indicator of fissile material, and the background neutron rate is much lower than the gamma-ray background rate. Neutrons can more easily penetrate shielding materials as well which can greatly aid in the detection of shielded SNM. Digital CdZnTe readout enables the sensors to maintain excellent energy resolution at high count rates. Pulse pile-up and preamplifier decay can be monitored and corrected for on an event-by-event basis limiting energy resolution degradation in dose rates higher than 100 mR/hr. Finally, new iterations of the digital electronics have enhanced gamma-ray detection capabilities at high photon energies. Currently, gamma rays with energy up to 4.4 MeV have been detected. High-energy photon detection is critical for many proposed active interrogation systems.
Nonlinear Brightness Optimization in Compton Scattering
Hartemann, Fred V.; Wu, Sheldon S. Q.
2013-07-26
In Compton scattering light sources, a laser pulse is scattered by a relativistic electron beam to generate tunable x and gamma rays. Because of the inhomogeneous nature of the incident radiation, the relativistic Lorentz boost of the electrons is modulated by the ponderomotive force during the interaction, leading to intrinsic spectral broadening and brightness limitations. We discuss these effects, along with an optimization strategy to properly balance the laser bandwidth, diffraction, and nonlinear ponderomotive force.
Elemental composition, isotopes, electrons and positrons in cosmic rays
NASA Technical Reports Server (NTRS)
Balasubrahmanyan, V. K.
1979-01-01
Papers presented at the 16th International Cosmic Ray Conference, Kyoto, Japan, dealing with the composition of cosmic rays are reviewed. Particular interest is given to data having bearing on nucleosynthesis sites, supernovae, gamma-process, comparison with solar system composition, multiplicity of sources, and the energy dependence of composition.
Gamma radiation-induced synthesis and characterization of Polyvinylpyrrolidone nanogels
NASA Astrophysics Data System (ADS)
Ges, A. A.; Viltres, H.; Borja, R.; Rapado, M.; Aguilera, Y.
2017-01-01
Due to the importance of bioactive peptides, proteins and drug for pharmaceutical purpose, there is a growing interest for suitable delivery systems, able to increase their bioavailability and to target them to the desired location. Some of the most studied delivery systems involve encapsulation or entrapment of drugs into biocompatible polymeric devices. A multitude of techniques have been described for the synthesis of nanomaterials from polymers, however, the use of ionizing radiation (γ, e-), to obtain nano- and microgels polymer is characterized by the possibility of obtaining products with a high degree of purity. Although, in the world, electronic radiation is used for this purpose, gamma radiation has not been utilized for these purposes. In this paper is developed the formulation the formulation of Polyvinylpyrrolidone (PVP) nanogels synthesized by gamma radiation techniques, for their evaluation as potential system of drug delivery. Experiments were performed in absence of oxygen using aqueous solutions of PVP (0.05% -1%). Crosslinking reactions were carried out at 25° C in a gamma irradiation chamber with a 60Co source (MPX-γ 30). The Viscosimetry, Light Scattering, X-Ray Diffraction and Transmission Electron Microscopy (TEM), were used as characterization techniques.
Modelling Hard Gamma-Ray Emission from Supernova Remnants
NASA Technical Reports Server (NTRS)
Baring, Matthew
2000-01-01
The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.
Calculating the Responses of Self-Powered Radiation Detectors.
NASA Astrophysics Data System (ADS)
Thornton, D. A.
Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual response mechanisms.
Delayed Gamma-ray Spectroscopy for Safeguards Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mozin, Vladimir
The delayed gamma-ray assay technique utilizes an external neutron source (D-D, D-T, or electron accelerator-driven), and high-resolution gamma-ray spectrometers to perform characterization of SNM materials behind shielding and in complex configurations such as a nuclear fuel assembly. High-energy delayed gamma-rays (2.5 MeV and above) observed following the active interrogation, provide a signature for identification of specific fissionable isotopes in a mixed sample, and determine their relative content. Potential safeguards applications of this method are: 1) characterization of fresh and spent nuclear fuel assemblies in wet or dry storage; 2) analysis of uranium enrichment in shielded or non-characterized containers or inmore » the presence of a strong radioactive background and plutonium contamination; 3) characterization of bulk and waste and product streams at SNM processing plants. Extended applications can include warhead confirmation and warhead dismantlement confirmation in the arms control area, as well as SNM diagnostics for the emergency response needs. In FY16 and prior years, the project has demonstrated the delayed gamma-ray measurement technique as a robust SNM assay concept. A series of empirical and modeling studies were conducted to characterize its response sensitivity, develop analysis methodologies, and analyze applications. Extensive experimental tests involving weapons-grade Pu, HEU and depleted uranium samples were completed at the Idaho Accelerator Center and LLNL Dome facilities for various interrogation time regimes and effects of the neutron source parameters. A dedicated delayed gamma-ray response modeling technique was developed and its elements were benchmarked in representative experimental studies, including highresolution gamma-ray measurements of spent fuel at the CLAB facility in Sweden. The objective of the R&D effort in FY17 is to experimentally demonstrate the feasibility of the delayed gamma-ray interrogation of shielded SNM samples with portable neutron sources suitable for field applications.« less
Gamma-Ray Observations of Supernova Remnants
NASA Astrophysics Data System (ADS)
Buckley, James
2000-04-01
Despite the growing evidence for shock acceleration of electrons in supernova remnants (SNR), there is still no direct evidence pointing unambiguously to SNR as sources of cosmic-ray nuclei. Observations of nonthermal synchrotron emission in the limbs of a number of shell-type SNR (SN1006, Tycho, Cas A, IC443, RCW86, and Kepler) provide convincing evidence for acceleration of electrons to energies greater than 10 TeV (Allen 1999). The CANGAROO group has now reported significant VHE gamma-ray emission from SN1006 (Tanimori et al. 1998) and RXJ1713-3946, and the HEGRA group has reported preliminary evidence for TeV emission from Cas A (Pülhofer et al. 1999); all of these measurements are consistent with the expected level of inverse-Compton emission in these objects. Following the predictions of an observable π^0-decay signal from nearby SNRs (e.g., Drury, Aharonian and Volk 1994) the discovery of >100 MeV emission from the direction of a number of SNR by the EGRET experiment (Esposito et al. 1996) and possible evidence for a π^0 component (Gaisser, Protheroe and Stanev 1996) led to some initial optimism that evidence for a SNR origin of cosmic-ray nuclei had been obtained. However, 200 GeV to 100 TeV measurements revealed no significant emission implying either a significantly steeper source spectrum than the canonical ~ E-2.1, a spectral cutoff below the knee energy in these sources, or that a re-interpretation of the EGRET results was required. I will discuss these results, as well as the considerable promise of future gamma-ray experiments to determine the sources of galactic cosmic-ray nuclei and to provide quantitative information about the acceleration mechanisms.
Gamma neutron assay method and apparatus
Cole, J.D.; Aryaeinejad, R.; Greenwood, R.C.
1995-01-03
The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source) and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field. 7 figures.
Gamma neutron assay method and apparatus
Cole, Jerald D.; Aryaeinejad, Rahmat; Greenwood, Reginald C.
1995-01-01
The gamma neutron assay technique is an alternative method to standard safeguards techniques for the identification and assaying of special nuclear materials in a field or laboratory environment, as a tool for dismantlement and destruction of nuclear weapons, and to determine the isotopic ratios for a blend-down program on uranium. It is capable of determining the isotopic ratios of fissionable material from the spontaneous or induced fission of a sample to within approximately 0.5%. This is based upon the prompt coincidence relationships that occur in the fission process and the proton conservation and quasi-conservation of nuclear mass (A) that exists between the two fission fragments. The system is used in both passive (without an external neutron source and active (with an external neutron source) mode. The apparatus consists of an array of neutron and gamma-ray detectors electronically connected to determine coincident events. The method can also be used to assay radioactive waste which contains fissile material, even in the presence of a high background radiation field.
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2010-01-01
The Large Area Telescope on-board the Fermi Gamma-Ray Space Telescope has collected more than 10 million cosmic ray electrons with energy above 7 GeV since its science operation on orbit. High energy electrons rapidly lose their energy by synchrotron radiation on Galactic magnetic fields and by inverse Compton scattering on the interstellar radiation field. The typical distance over which a 1 TeV electron loses half its total energy is estimated to be 300-400 pc.This makes them a unique tool for probing nearby Galactic space. Observed spectrum has a harder spectral index than was previously reported and suggests the presence of nearby sources of high energy electrons. One of viable candidates are nearby pulsars, possibly some of recently discovered by Fermi. At the same time the dark matter origin of such sources cannot be ruled out. I will also report our current upper limits on cosmic ray electrons anisotropy which helps to set constraints on their local sources.
Final Technical Report - Nuclear Studies with Intermediate Energy Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norum, Blaine
During the almost 20 year period of this grant research was carried out on atomic nuclei and their constituents using both photons and electrons. Research was carried out at the electron accelerator facility of the Netherlands Institute for Nuclear and High Energy Physics (NIKHEFK, Amsterdam) until the electron accelerator facility was closed in 1998. Subsequently, research was carried out at the Laser-Electron Gamma Source (LEGS) of the National Synchrotron Light Source (NSLS) located at the Brookhaven National Laboratory (BNL) until the LEGS was closed at the end of 2006. During the next several years research was carried out at bothmore » the Thomas Jefferson National Accelerator Facility (JLAB) and the High Intensity Gamma Source (HIGS) of the Tri-Universities Nuclear Laboratory (TUNL) located on the campus of Duke University. Since approximately 2010 the principal focus was on research at TUNL, although analysis of data from previous research at other facilities continued. The principal early focus of the research was on the role of pions in nuclei. This was studied by studying the production of pions using both photons (at LEGS) and electrons (at NIKHEF-K and JLAB). Measurements of charged pion photoproduction from deuterium at LEGS resulted in the most interesting result of these two decades of work. By measuring the production of a charged pion (p + ) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of long-lived states not explicable by standard nuclear theory; they suggest a set of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued.« less
Acciari, V A; Aliu, E; Arlen, T; Bautista, M; Beilicke, M; Benbow, W; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Byrum, K; Cannon, A; Celik, O; Cesarini, A; Chow, Y C; Ciupik, L; Cogan, P; Cui, W; Dickherber, R; Fegan, S J; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Gall, D; Gillanders, G H; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Horan, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kieda, D; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Petry, D; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Swordy, S P; Theiling, M; Toner, J A; Varlotta, A; Vincent, S; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Williams, D A; Wissel, S; Wood, M; Walker, R C; Davies, F; Hardee, P E; Junor, W; Ly, C; Aharonian, F; Akhperjanian, A G; Anton, G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Bühler, R; Bulik, T; Büsching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L-M; Clapson, A C; Coignet, G; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Füssling, M; Gabici, S; Gallant, Y A; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göhring, D; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzyński, K; Katz, U; Kaufmann, S; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Lamanna, G; Lenain, J-P; Lohse, T; Marandon, V; Martin, J M; Martineau-Huynh, O; Marcowith, A; Maurin, D; McComb, T J L; Medina, M C; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; de Oña Wilhelmi, E; Orford, K J; Ostrowski, M; Panter, M; Paz Arribas, M; Pedaletti, G; Pelletier, G; Petrucci, P-O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Spangler, D; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Superina, G; Szostek, A; Tam, P H; Tavernet, J-P; Terrier, R; Tibolla, O; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Balestra, S; Barrio, J A; Bastieri, D; Becerra González, J; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Borla Tridon, D; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea del Pozo, E; Delgado Mendez, C; De los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Dominguez, A; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; García López, R J; Garczarczyk, M; Gaug, M; Goebel, F; Hadasch, D; Hayashida, M; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hsu, C C; Jogler, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Oya, I; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schweizer, T; Shayduk, M; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Torres, D F; Turini, N; Vankov, H; Wagner, R M; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J
2009-07-24
The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope
NASA Technical Reports Server (NTRS)
Thompson, David J.; Baldini, L.; Uchiyama, Y.
2012-01-01
The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TeV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.
Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Baldini, L.; Uchiyama, Y.
2011-01-01
The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of Galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TcV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a Galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.
Highlights of recent results from the VERITAS gamma-ray observatory
NASA Astrophysics Data System (ADS)
Fortson, Lucy;
2016-05-01
VERITAS is a major ground-based gamma-ray observatory comprising an array of four 12 meter air Cherenkov telescopes operating at the Fred Lawrence Whipple Observatory near Tucson, Arizona. Data taking has continued from 2007 with a major camera upgrade completed in 2012 resulting in the current sensitivity to very-high-energy (VHE) gamma rays between 85 GeV and 30 TeV. VERITAS has detected 54 sources (half of which have been discoveries) leading to many significant contributions to the field of VHE astronomy. These proceedings highlight some of the more recent VERITAS results from the blazar and galactic observing programs as well as measurements of the cosmic-ray electron spectrum, constraints on dark matter and a follow-up program for astrophysical neutrinos.
Nikolic, Rebecca J.; Conway, Adam M.; Nelson, Art J.; Payne, Stephen A.
2012-09-04
In one embodiment, a system comprises a semiconductor gamma detector material and a hole blocking layer adjacent the gamma detector material, the hole blocking layer resisting passage of holes therethrough. In another embodiment, a system comprises a semiconductor gamma detector material, and an electron blocking layer adjacent the gamma detector material, the electron blocking layer resisting passage of electrons therethrough, wherein the electron blocking layer comprises undoped HgCdTe. In another embodiment, a method comprises forming a hole blocking layer adjacent a semiconductor gamma detector material, the hole blocking layer resisting passage of holes therethrough. Additional systems and methods are also presented.
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2009-01-01
The measured spectrum is compatible with a power law within our current systematic errors. The spectral index (-3.04) is harder than expected from previous experiments and simple theoretical considerations. "Pre-Fermi" diffusive model requires a harder electron injection spectrum (by 0.12) to fit the Fermi data, but inconsistent with positron excess reported by Pamela if it extends to higher energy. Additional component of electron flux from local source(s) may solve the problem; its origin, astrophysical or exotic, is still unclear. Valuable contribution to the calculation of IC component of diffuse gamma radiation.
NASA Astrophysics Data System (ADS)
Rico, Javier; MAGIC Collaboration
2016-04-01
MAGIC is a system of two 17-m diameter Cherenkov telescopes, located at the Observatorio del Roque de los Muchachos, in the Canary island La Palma (Spain). MAGIC performs astronomical observations of gamma-ray sources in the energy range between 50 GeV and 10 TeV. The first MAGIC telescope has been operating since 2004, and in 2009 the system was completed with the second one. During 2011 and 2012 the electronics for the readout system were fully upgraded, and the camera of the first telescope replaced. After that, no major hardware interventions are foreseen in the next years, and the experiment has undertaken a final period of steady astronomical observations. MAGIC studies particle acceleration in the most violent cosmic environments, such as active galactic nuclei, gamma-ray bursts, pulsars, supernova remnants or binary systems. In addition, it addresses some fundamental questions of Physics, such as the origin of Galactic cosmic rays and the nature of dark matter. Moreover, by observing the gamma-ray emission from sources at cosmological distances, we measure the intensity and evolution of the extragalactic background radiation, and perform tests of Lorentz Invariance. In this paper I present the status and some of the latest results of the MAGIC gamma-ray telescopes.
Significance of medium energy gamma ray astronomy in the study of cosmic rays
NASA Technical Reports Server (NTRS)
Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.
1975-01-01
Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.
Experimental Determination of the Low-Energy Spectral Component of Cobalt-60 Sources
1986-04-01
dependence of the TLD detectors and the dose enhancement due to the lack of electronic equilibrium have been included in the figure. A series of...energy spectrum of cobalt,60 ir- radiators is essential to the proper interpretation of dosimetry and device test data in radiation response testing...of electronic devices and circuits. It is shown that the relative magnitude of the low-energy spec- tral component of cobalt gamma radiation can be
NASA Astrophysics Data System (ADS)
Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan
2017-10-01
Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.
The Litho-Density tool calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, D.; Flaum, C.; Marienbach, E.
1983-10-01
The Litho-Density tool (LDT) uses a gamma ray source and two NaI scintillator detectors for borehole measurement of electron density, p/SUB e/, and a quantity, P/SUB e/, which is related to the photoelectric cross section at 60 keV and therefore to the lithology of the formation. An active stabilization system controls the gains of the two detectors which permits selective gamma-ray detection. Spectral analysis is performed in the near detector (2 energy windows) and in the detector farther away from the source (3 energy windows). This paper describes the results of laboratory measurements undertaken to define the basic tool response.more » The tool is shown to provide reliable measurements of formation density and lithology under a variety of environmental conditions.« less
NASA Technical Reports Server (NTRS)
Zdziarski, Andrzej A.; Lightman, Alan P.; Maciolek-Niedzwiecki, Andrzej
1993-01-01
We show that the recent observations of the Seyfert galaxy NGC 4151 in hard X-rays and soft gamma rays by the OSSE and SIGMA detectors on board CGRO and GRANAT, respectively, are well explained by a nonthermal model with acceleration of relativistic electrons at an efficiency of less than 50 percent and with the remaining power dissipated thermally in the source (the standard nonthermal e(+/-) pair model assumed 100 percent efficiency). Such an acceleration efficiency is generally expected on physical grounds. The resulting model unifies previously proposed purely thermal and purely nonthermal models. The pure nonthermal model for NGC 4151 appears to be ruled out. The pure thermal model gives a worse fit to the data than our hybrid nonthermal/thermal model.
Construction and commissioning of the compact energy-recovery linac at KEK
NASA Astrophysics Data System (ADS)
Akemoto, Mitsuo; Arakawa, Dai; Asaoka, Seiji; Cenni, Enrico; Egi, Masato; Enami, Kazuhiro; Endo, Kuninori; Fukuda, Shigeki; Furuya, Takaaki; Haga, Kaiichi; Hajima, Ryoichi; Hara, Kazufumi; Harada, Kentaro; Honda, Tohru; Honda, Yosuke; Honma, Teruya; Hosoyama, Kenji; Kako, Eiji; Katagiri, Hiroaki; Kawata, Hiroshi; Kobayashi, Yukinori; Kojima, Yuuji; Kondou, Yoshinari; Tanaka, Olga; Kume, Tatsuya; Kuriki, Masao; Matsumura, Hiroshi; Matsushita, Hideki; Michizono, Shinichiro; Miura, Takako; Miyajima, Tsukasa; Nagahashi, Shinya; Nagai, Ryoji; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Norio; Nakanishi, Kota; Nigorikawa, Kazuyuki; Nishimori, Nobuyuki; Nogami, Takashi; Noguchi, Shuichi; Obina, Takashi; Qiu, Feng; Sagehashi, Hidenori; Sakai, Hiroshi; Sakanaka, Shogo; Sasaki, Shinichi; Satoh, Kotaro; Sawamura, Masaru; Shimada, Miho; Shinoe, Kenji; Shishido, Toshio; Tadano, Mikito; Takahashi, Takeshi; Takai, Ryota; Takenaka, Tateru; Tanimoto, Yasunori; Uchiyama, Takashi; Ueda, Akira; Umemori, Kensei; Watanabe, Ken; Yamamoto, Masahiro
2018-01-01
Energy-recovery linacs (ERLs) are promising for advanced synchrotron light sources, high-power free electron lasers (FELs), high-brightness gamma-ray sources, and electron-ion colliders. To demonstrate the critical technology of ERL-based light sources, we have designed and constructed a test accelerator, the compact ERL (cERL). Using advanced technology that includes a photocathode direct current (DC) electron gun and two types of 1.3-GHz-frequency superconducting cavities, the cERL was designed to be capable of recirculating low emittance (≤1 mm ṡ mrad) and high average-current (≥10 mA) electron beams while recovering the beam energy. During initial commissioning, the cERL demonstrated successful recirculation of high-quality beams with normalized transverse emittance of ∼0.14 mm ṡ mrad and momentum spread of ∼1.2 × 10-4 (rms) at a beam energy of 20 MeV and bunch charge below 100 fC. Energy recovery in the superconducting main linac was also demonstrated for high-average-current continuous-wave beams. These results constitute an important milestone toward realizing ERL-based light sources.
Photon and neutral pion production in Au+Au collisions at {radical}s{sub NN} = 130 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.; Adler, C.; Aggarwal, M.M.
2004-01-08
We report the first inclusive photon measurements about mid-rapidity (|y| < 0.5) from {sup 197}Au + {sup 197}Au collisions at {radical}s{sub NN} = 130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of {Delta}E/E {approx} 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum (p{sub t}) spectra of {pi}{sup 0} mesons about mid-rapidity (|y| < 1) via the {pi}{sup 0} {yields} {gamma}{gamma} decay channel. The fractional contribution of themore » {pi}{sup 0} {yields} {gamma}{gamma} decay to the inclusive photon spectrum decreases by 20% {+-} 5% between p{sub t} = 1.65 GeV/c and p{sub t} = 2.4 GeV/c in the most central events, indicating that relative to {pi}{sup 0} {yields} {gamma}{gamma} decay the contribution of other photon sources is substantially increasing.« less
Non-Proportionality of Electron Response and Energy Resolution of Compton Electrons in Scintillators
NASA Astrophysics Data System (ADS)
Swiderski, L.; Marcinkowski, R.; Szawlowski, M.; Moszynski, M.; Czarnacki, W.; Syntfeld-Kazuch, A.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.
2012-02-01
Non-proportionality of light yield and energy resolution of Compton electrons in three scintillators (LaBr3:Ce, LYSO:Ce and CsI:Tl) were studied in a wide energy range from 10 keV up to 1 MeV. The experimental setup was comprised of a High Purity Germanium detector and tested scintillators coupled to a photomultiplier. Probing the non-proportionality and energy resolution curves at different energies was obtained by changing the position of various radioactive sources with respect to both detectors. The distance between both detectors and source was kept small to make use of Wide Angle Compton Coincidence (WACC) technique, which allowed us to scan large range of scattering angles simultaneously and obtain relatively high coincidence rate of 100 cps using weak sources of about 10 μCi activity. The results are compared with those obtained by direct irradiation of the tested scintillators with gamma-ray sources and fitting the full-energy peaks.
Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massaro, F.; D'Abrusco, R.; Tosti, G.
2012-04-02
One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less
UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massaro, F.; Ajello, M.; D'Abrusco, R.
2012-06-10
One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less
NASA Astrophysics Data System (ADS)
Perez, C. L.; Johnson, J. O.
Rapidly changing world events, the increased number of nations with inter-continental ballistic missile capability, and the proliferation of nuclear weapon technology will increase the number of nuclear threats facing the world today. Monitoring these nation's activities and providing an early warning and/or intercept system via reconnaissance and surveillance satellites and space based weapon platforms is a viable deterrent against a surprise nuclear attack. However, the deployment of satellite and weapon platform assets in space will subject the sensitive electronic equipment to a variety of natural and man-made radiation environments. These include Van Allen Belt protons and electrons; galactic and solar flare protons; and neutrons, gamma rays, and x-rays from intentionally detonated fission and fusion weapons. In this paper, the MASH vl.0 code system is used to estimate the dose to the critical electronics components of an idealized space based weapon platform from neutron and gamma-ray radiation emitted from a thermonuclear weapon detonation in space. Fluence and dose assessments were performed for the platform fully loaded, and in several stages representing limited engagement scenarios. The results indicate vulnerabilities to the Command, Control, and Communication bay instruments from radiation damage for a nuclear weapon detonation for certain source/platform orientations. The distance at which damage occurs will depend on the weapon yield (n,(gamma)/kiloton) and size (kilotons).
A NOVEL EMISSION SPECTRUM FROM A RELATIVISTIC ELECTRON MOVING IN A RANDOM MAGNETIC FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teraki, Yuto; Takahara, Fumio, E-mail: teraki@vega.ess.sci.osaka-u.ac.jp
2011-07-10
We numerically calculate the radiation spectrum from relativistic electrons moving in small-scale turbulent magnetic fields expected in high-energy astrophysical sources. Such a radiation spectrum is characterized by the strength parameter a = {lambda}{sub B} e|B|/mc {sup 2}, where {lambda}{sub B} is the length scale of the turbulent field. When a is much larger than the Lorentz factor of a radiating electron {gamma}, synchrotron radiation is realized, while a << 1 corresponds to the so-called jitter radiation regime. Because for 1 < a < {gamma} we cannot use either approximations, we should have recourse to the Lienard-Wiechert potential to evaluate themore » radiation spectrum, which is performed in this Letter. We generate random magnetic fields assuming Kolmogorov turbulence, inject monoenergetic electrons, solve the equation of motion, and calculate the radiation spectrum. We perform numerical calculations for several values of a with {gamma} = 10. We obtain various types of spectra ranging between jitter radiation and synchrotron radiation. For a {approx} 7, the spectrum takes a novel shape which had not been noticed up to now. It is like a synchrotron spectrum in the middle energy region, but in the low frequency region it is a broken power law and in the high frequency region an extra power-law component appears beyond the synchrotron cutoff. We give a physical explanation of these features.« less
Apparatus for photon activation positron annihilation analysis
Akers, Douglas W [Idaho Falls, ID
2007-06-12
Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.
GRO: Black hole models for gamma-ray bursts
NASA Technical Reports Server (NTRS)
Ruderman, Malvin
1995-01-01
The Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) has established that the distribution of gamma-ray bursts (GRB's) is isotropic but is bound radially. This finding suggests that the bursts are either cosmological or they originate from an extended Galactic halo. The implied luminosities and the observed variability of the GRB's on time scales as short as one millisecond suggest that they originate from compact objects. We are presently studying black hole models for GRB's. Any such model must produce a non-thermal photon spectrum to agree with the observed properties. For a wide range of burst parameters the assumed bursting source consists of a non-thermal electron-positron-photon plasma of very high density. It seems possible to produce such a plasma in accretion onto black holes. In our on-going work, we are developing the kinetic theory for a non-equilibrium pair plasma. The main new features of our work are as follows: (1) We do not assume the presence of a thermal electron bath. (2) Non-thermal, high-energy pairs are allowed to have an arbitrary concentration and energy distribution. (3) There is no soft photon source in our model; initially all the photons in the plasma are either energetic X-rays or gamma-rays. (4) The initial energy distribution of the pairs as well as photons is arbitrary. (5) We collect the analytical expressions for the kinetic kernels for all relevant processes. And (6) we present a different approach to finding the time-evolution of pair and photon spectra, which is a combination of the kinetic-theory and the non-linear Monte-Carlo schemes. We have developed many Monte-Carlo programs to model various process, to take into account the time evolution, and to incorporate various physical effects which are unique to non-thermal plasmas. The hydrodynamics of fireballs in GRB's was studied before. Applying results from kinetic theory will improve our understanding of these systems.
Multi-Element CZT Array for Nuclear Safeguards Applications
NASA Astrophysics Data System (ADS)
Kwak, S.-W.; Lee, A.-R.; Shin, J.-K.; Park, U.-R.; Park, S.; Kim, Y.; Chung, H.
2016-12-01
Due to its electronic properties, a cadmium zinc telluride (CZT) detector has been used as a hand-held portable nuclear measurement instrument. However, a CZT detector has low detection efficiency because of a limitation of its single crystal growth. To address its low efficiency, we have constructed a portable four-CZT array based gamma-ray spectrometer consisting of a CZT array, electronics for signal processing and software. Its performance has been characterized in terms of energy resolution and detection efficiency using radioactive sources and nuclear materials. Experimental results showed that the detection efficiency of the four-CZT array based gamma-ray spectrometer was much higher than that of a single CZT detector in the array. The FWHMs of the CZT array were 9, 18, and 21 keV at 185.7, 662, and 1,332 keV, respectively. Some gamma-rays in a range of 100 keV to 200 keV were not clear in a single crystal detector while those from the CZT array system were observed to be clear. The energy resolution of the CZT array system was only slightely worse than those of the single CZT detectors. By combining several single crystals and summing signals from each single detector at a digital electronic circuit, the detection efficiency of a CZT array system increased without degradation of its energy resolution. The technique outlined in this paper shows a very promising method for designing a CZT-based gamma-ray spectroscopy that overcomes the fundamental limitations of a small volume CZT detector.
Fermi bubbles as a source of cosmic rays above 1015 eV
NASA Astrophysics Data System (ADS)
Chernyshov, D. O.; Cheng, K. S.; Dogiel, V. A.; Ko, C. M.
2014-11-01
Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of order of 10 kpc recently discovered by Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the region covered by Fermi bubbles implies the presence of high-energy electrons in this region. Since it is relatively difficult for relativistic electrons of this energy to travel all the way from the Galactic sources toward Fermi bubbles one can assume that they accelerated in-situ. The corresponding acceleration mechanism should also affect the distribution of the relativistic protons in the Galaxy. Since protons have much larger lifetimes the effect may even be observed near the Earth. In our model we suggest that Fermi bubbles are created by acceleration of electrons on series of shocks born due to periodic star accretions by supermassive black hole Sgr A*. We propose that hadronic CR within the 'knee' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Reacceleration of these particles in the Fermi Bubble produces CRs beyond the knee. This model provides a natural explanation of the observed CR flux, spectral indexes, and matching of spectra at the knee.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, H.; Schwitters, R.F.; Toner, W.T.
Important sources of background for PEP experiments are studied. Background particles originate from high-energy electrons and positrons which have been lost from stable orbits, ..gamma..-rays emitted by the primary beams through bremsstrahlung in the residual gas, and synchrotron radiation x-rays. The effect of these processes on the beam lifetime are calculated and estimates of background rates at the interaction region are given. Recommendations for the PEP design, aimed at minimizing background are presented. 7 figs., 4 tabs.
Role of Off-Line-of-Sight Propagation in Geomagnetic EMP Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Hans W.
The author’s synchrotron radiation based 3D geomagnetic EMP code MACSYNC has been used to explore the impact on pulse rise time and air conductivity of EMP propagation paths to the observer that are located off the direct line-of-sight (LOS) between gamma source and observer. This geometry is always present because, for an isotropic source, most the gammas are emitted at an angle with respect to the LOS. Computations for a 1 kt near-surface burst observed from space yield two principal findings: 1. The rise time is generated by the combined actions of a) electron spreading along the LOS due tomore » the Compton electron emission angular distribution folded with electron multiple scattering effects, and b) radiation arrival time spreading due to length differences for different off-LOS propagation paths. The pulse rise time does not depend on the rise time of the conductivity. The conductivity rise time determines the pulse amplitude. 2. One-dimensional legacy EMP codes are inherently incapable of producing the correct pulse shape because they cannot treat the dependence of the conductivity on two dimensions, i.e. the radius from the source and the angle of the propagation path with the LOS. This divergence from one-dimensionality begins at a small fraction of a nanosecond for a sea-level burst. This effect will also be present in high-altitude bursts, however, determination of its onset time and magnitude requires high-altitude computations which have not yet been done.« less
NASA Astrophysics Data System (ADS)
Singh, Babita K.; Parwate, Dilip V.; Das Sarma, Indrani B.; Shukla, Sudhir K.
2010-10-01
The effect of gamma radiation from 60Co source and 2 MeV e-beam was studied on two thermolabile cephalosporin antibiotics viz cefdinir and cefixime in solid state. The parameters studied to assess radiolytic degradation were loss of chemical and microbiological potency, change in optical rotation, electronic and vibrational absorption characteristics, thermal behavior and color modification. ESR spectroscopic study, HPLC related impurity profile, thermogram and Raman spectrum are applied in deducing the nature of radiolytic impurities and their formation hypotheses. Cefixime is radiation sensitive, whereas cefdinir has acceptable radiation resistance at 25 kGy dose. The nature of radiolytic related impurities and their concentrations indicates that the lactam ring is not highly susceptible to direct radiation attack, which otherwise is considered very sensitive to stress (thermal, chemical and photochemical).
Assessment of thunderstorm neutron radiation environment at altitudes of aviation flights
NASA Astrophysics Data System (ADS)
Drozdov, A.; Grigoriev, A.; Malyshkin, Y.
2013-02-01
High-energy radiation emitted from thunderclouds supposes generation of neutrons in photonuclear reactions of the gamma photons with air. This observation is supported by registration of neutrons during thunderstorm activity in a number of experiments, most of which established correlation with lightning. In this work we perform a modeling of the neutron generation and propagation processes at low atmospheric altitudes using current knowledge of the TGF source properties. On this basis we obtain dosimetric maps of thunderstorm neutron radiation and investigate possible radiation threat for aircraft flights. We estimate the maximal effective neutron dose that potentially can be received on board an aircraft in close proximity to the gamma source, to be of the order of 0.54 mSv over a time less than 0.1 s. This dose is considerably less than estimations obtained earlier for the associated electron and gamma radiation; nevertheless, this value is quite large by itself and under some circumstances the neutron component seems to be the most important for the dosimetric effect. Due to wide distribution in space, the thunderstorm neutrons are thought to also provide a convenient means for experimental investigation of gamma emissions from thunderclouds. To register neutrons from powerful gamma flashes that occur at the tops of thunderclouds, however, in the most favorable case one has to take a location above the 2 km level that is appropriate to mountains or aircraft facilities.
Applications Using High Flux LCS gamma-ray Beams: Nuclear Security and Contributions to Fukushima
NASA Astrophysics Data System (ADS)
Fujiwara, Mamoru
2014-09-01
Nuclear nonproliferation and security are an important issue for the peaceful use of nuclear energy. Many countries now collaborate together for preventing serious accidents from nuclear terrorism. Detection of hidden long-lived radioisotopes and fissionable nuclides in a non-destructive manner is useful for nuclear safeguards and management of nuclear wastes as well as nuclear security. After introducing the present situation concerning the nuclear nonproliferation and security in Japan, we plan to show the present activities of JAEA to detect the hidden nuclear materials by means of the nuclear resonance fluorescence with energy-tunable, monochromatic gamma-rays generated by Laser Compton Scattering (LCS) with an electron beam. The energy recovery linac (ERL) machine is now under development with the KEK-JAEA collaboration for realizing the new generation of gamma-ray sources. The detection technologies of nuclear materials are currently developed using the existing electron beam facilities at Duke University and at NewSubaru. These developments in Japan will contribute to the nuclear security program in Japan and to the assay of melted nuclear fuels in the Fukushima Daiichi nuclear power plants.
A novel liquid-Xenon detector concept for combined fast-neutrons and gamma imaging and spectroscopy
NASA Astrophysics Data System (ADS)
Breskin, A.; Israelashvili, I.; Cortesi, M.; Arazi, L.; Shchemelinin, S.; Chechik, R.; Dangendorf, V.; Bromberger, B.; Vartsky, D.
2012-06-01
A new detector concept is presented for combined imaging and spectroscopy of fast-neutrons and gamma rays. It comprises a liquid-Xenon (LXe) converter and scintillator coupled to a UV-sensitive gaseous imaging photomultiplier (GPM). Radiation imaging is obtained by localization of the scintillation-light from LXe with the position-sensitive GPM. The latter comprises a cascade of Thick Gas Electron Multipliers (THGEM), where the first element is coated with a CsI UV-photocathode. We present the concept and provide first model-simulation results of the processes involved and the expected performances of a detector having a LXe-filled capillaries converter. The new detector concept has potential applications in combined fast-neutron and gamma-ray screening of hidden explosives and fissile materials with pulsed sources.
NASA Technical Reports Server (NTRS)
Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf
2004-01-01
We present a study of the compatibility of some current models of the diffuse Galactic continuum gamma-rays with EGRET data. A set of regions sampling the whole sky is chosen to provide a comprehensive range of tests. The range of EGRET data used is extended to 100 GeV. The models are computed with our GALPROP cosmic-ray propagation and gamma-ray production code. We confirm that the "conventional model" based on the locally observed electron and nucleon spectra is inadequate, for all sky regions. A conventional model plus hard sources in the inner Galaxy is also inadequate, since this cannot explain the GeV excess away from the Galactic plane. Models with a hard electron injection spectrum are inconsistent with the local spectrum even considering the expected fluctuations; they are also inconsistent with the EGRET data above 10 GeV. We present a new model which fits the spectrum in all sky regions adequately. Secondary antiproton data were used to fix the Galactic average proton spectrum, while the electron spectrum is adjusted using the spectrum of diffuse emission it- self. The derived electron and proton spectra are compatible with those measured locally considering fluctuations due to energy losses, propagation, or possibly de- tails of Galactic structure. This model requires a much less dramatic variation in the electron spectrum than models with a hard electron injection spectrum, and moreover it fits the y-ray spectrum better and to the highest EGRET energies. It gives a good representation of the latitude distribution of the y-ray emission from the plane to the poles, and of the longitude distribution. We show that secondary positrons and electrons make an essential contribution to Galactic diffuse y-ray emission.
NASA Technical Reports Server (NTRS)
Young, S. G.
1973-01-01
The NASA nickel-base alloy WAZ-20 was analyzed by advanced metallographic techniques to qualitatively and quantitatively characterize its phases and stability. The as-cast alloy contained primary gamma-prime, a coarse gamma-gamma prime eutectic, a gamma-fine gamma prime matrix, and MC carbides. A specimen aged at 870 C for 1000 hours contained these same constituents and a few widely scattered high W particles. No detrimental phases (such as sigma or mu) were observed. Scanning electron microscope, light metallography, and replica electron microscope methods are compared. The value of quantitative electron microprobe techniques such as spot and area analysis is demonstrated.
NASA Technical Reports Server (NTRS)
Fornes, R. E.; Gilbert, R. D.; Memory, J. D.
1985-01-01
In an effort to elucidate the changes in molecular structural and mechanical properties of epoxy/graphite fiber composites upon exposure to ionizing radiation in a simulated space environment, spectroscopic and surface properties of tetraglycidyl-4,4'-diamino diphenyl methane (TGDDM) red with diamino diphenyl sulfone (DDS) and T-300 graphite fiber were investigated following exposure to ionizing radiation. Cobalt-60 gamma radiation and 1/2 MeV electrons were used as radiation sources. The system was studied using electron spin resonance (ESR) spectroscopy, infrared absorption spectroscopy, contact angle measurements, and electron spectroscopy for chemical analysis.
Results of neutron irradiation of GEM detector for plasma radiation detection
NASA Astrophysics Data System (ADS)
Jednorog, S.; Bienkowska, B.; Chernyshova, M.; Łaszynska, E.; Prokopowicz, R.; Ziołkowski, A.
2015-09-01
The detecting devices dedicated for plasma monitoring will be exposed for massive fluxes of neutron, photons as well as other rays that are components of fusion reactions and their product interactions with plasma itself or surroundings. In result detecting module metallic components will be activated becoming a source of radiation. Moreover, electronics components could change their electronic properties. The prototype GEM detector constructed for monitoring soft X-ray radiation in ITER oriented tokamaks was used for plasma monitoring during experimental campaign on tokamak ASDEX Upgrade. After that it became a source of gamma radiation caused by neutrons. The present work contains description of detector activation in the laboratory conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marques, J.G.; Ramos, A.R.; Fernandes, A.C.
The behavior of electronic components and circuits under radiation is a concern shared by the nuclear industry, the space community and the high-energy physics community. Standard commercial components are used as much as possible instead of radiation hard components, since they are easier to obtain and allow a significant reduction of costs. However, these standard components need to be tested in order to determine their radiation tolerance. The Portuguese Research Reactor (RPI) is a 1 MW pool-type reactor, operating since 1961. The irradiation of electronic components and circuits is one area where a 1 MW reactor can be competitive, sincemore » the fast neutron fluences required for testing are in most cases well below 10{sup 16} n/cm{sup 2}. A program was started in 1999 to test electronics components and circuits for the LHC facility at CERN, initially using a dedicated in-pool irradiation device and later a beam line with tailored neutron and gamma filters. Neutron filters are essential to reduce the intensity of the thermal neutron flux, which does not produce significant defects in electronic components but produces unwanted radiation from activation of contacts and packages of integrated circuits and also of the printed circuit boards. In irradiations performed within the line-of-sight of the core of a fission reactor there is simultaneous gamma radiation which complicates testing in some cases. Filters can be used to reduce its importance and separate testing with a pure gamma radiation source can contribute to clarify some irradiation results. Practice has shown the need to introduce several improvements to the procedures and facilities over the years. We will review improvements done in the following areas: - Optimization of neutron and gamma filters; - Dosimetry procedures in mixed neutron / gamma fields; - Determination of hardness parameter and 1 MeV-equivalent neutron fluence; - Temperature measurement and control during irradiation; - Follow-up of reactor power operational fluctuations; - Study of gamma radiation effects only. The fission neutron spectrum can be limitative for some of the tests, as most neutrons are in the 1-2 MeV energy range. Significant progress has been made lately in compact neutron generators using D-D and D-T fusion reactions, achieving higher neutron fluxes and longer lifetime than previously available. The advantages of using compact neutron generators for testing of electronic components and circuits will be also discussed. (authors)« less
NASA Astrophysics Data System (ADS)
Pacciani, L.; Donnarumma, I.; Vittorini, V.; D'Ammando, F.; Fiocchi, M. T.; Impiombato, D.; Stratta, G.; Verrecchia, F.; Bulgarelli, A.; Chen, A. W.; Giuliani, A.; Longo, F.; Pucella, G.; Vercellone, S.; Tavani, M.; Argan, A.; Barbiellini, G.; Boffelli, F.; Caraveo, P. A.; Cattaneo, P. W.; Cocco, V.; Costa, E.; Del Monte, E.; Di Cocco, G.; Evangelista, Y.; Feroci, M.; Froysland, T.; Fuschino, F.; Galli, M.; Gianotti, F.; Labanti, C.; Lapshov, I.; Lazzarotto, F.; Lipari, P.; Marisaldi, M.; Mereghetti, S.; Morselli, A.; Pellizzoni, A.; Perotti, F.; Picozza, P.; Prest, M.; Rapisarda, M.; Soffitta, P.; Trifoglio, M.; Tosti, G.; Trois, A.; Vallazza, E.; Zanello, D.; Antonelli, L. A.; Colafrancesco, S.; Cutini, S.; Gasparrini, D.; Giommi, P.; Pittori, C.; Salotti, L.
2009-01-01
Context: We report the results of a 3-week multi-wavelength campaign targeting the flat spectrum radio quasar 3C 273 carried out with the AGILE gamma-ray mission, covering the 30 MeV-50 GeV and 18-60 keV, the REM observatory (covering the near-IR and optical), Swift (near-UV/Optical, 0.2-10 keV and 15-50 keV), INTEGRAL (3-200 keV) and Rossi XTE (2-12 keV). This is the first observational campaign including gamma-ray data, after the last EGRET observations, more than 8 years ago. Aims: This campaign has been organized by the AGILE team with the aim of observing, studying and modelling the broad band energy spectrum of the source, and its variability on a week timescale, testing the emission models describing the spectral energy distribution of this source. Methods: Our study was carried out using simultaneous light curves of the source flux from all the involved instruments, in the different energy ranges, to search for correlated variability. Then a time-resolved spectral energy distribution was used for a detailed physical modelling of the emission mechanisms. Results: The source was detected in gamma-rays only in the second week of our campaign, with a flux comparable to the level detected by EGRET in June 1991. We found an indication of a possible anti-correlation between the emission at gamma-rays and at soft and hard X-rays, supported by the complete set of instruments. Instead, optical data do not show short term variability, as expected for this source. Only in two preceding EGRET observations (in 1993 and 1997) 3C 273 showed intra-observation variability in gamma-rays. In the 1997 observation, flux variation in gamma-rays was associated with a synchrotron flare. The energy-density spectrum with almost simultaneous data partially covers the regions of synchrotron emission, the big blue bump, and the inverse-Compton. We adopted a leptonic model to explain the hard X/gamma-ray emissions, although from our analysis hadronic models cannot be ruled out. In the adopted model, the soft X-ray emission is consistent with combined synchrotron-self Compton and external Compton mechanisms, while hard X and gamma-ray emissions are compatible with external Compton from thermal photons of the disk. Under this model, the time evolution of the spectral energy distribution is well interpreted and modelled in terms of an acceleration episode of the electron population, leading to a shift in the inverse Compton peak towards higher energies.
Acceleration by pulsar winds in binary systems
NASA Technical Reports Server (NTRS)
Harding, Alice K.; Gaisser, T. K.
1990-01-01
In the absence of accretion torques, a pulsar in a binary system will spin down due to electromagnetic dipole radiation and the spin-down power will drive a wind of relativistic electron-positron pairs. Winds from pulsars with short periods will prevent any subsequent accretion but may be confined by the companion star atmosphere, wind, or magnetosphere to form a standing shock. The authors investigate the possibility of particle acceleration at such a pulsar wind shock and the production of very high energy (VHE) and ultra high energy (UHE) gamma rays from interactions of accelerated protons in the companion star's wind or atmosphere. They find that in close binaries containing active pulsars, protons will be shock accelerated to a maximum energy dependent on the pulsar spin-down luminosity. If a significant fraction of the spin-down power goes into particle acceleration, these systems should be sources of VHE and possibly UHE gamma rays. The authors discuss the application of the pulsar wind model to binary sources such as Cygnus X-3, as well as the possibility of observing VHE gamma-rays from known binary radio pulsar systems.
Time Projection Chamber Polarimeters for X-ray Astrophysics
NASA Astrophysics Data System (ADS)
Hill, Joanne; Black, Kevin; Jahoda, Keith
2015-04-01
Time Projection Chamber (TPC) based X-ray polarimeters achieve the sensitivity required for practical and scientifically significant astronomical observations, both galactic and extragalactic, with a combination of high analyzing power and good quantum efficiency. TPC polarimeters at the focus of an X-ray telescope have low background and large collecting areas providing the ability to measure the polarization properties of faint persistent sources. TPCs based on drifting negative ions rather than electrons permit large detector collecting areas with minimal readout electronics enabling wide field of view polarimeters for observing unpredictable, bright transient sources such as gamma-ray bursts. We described here the design and expected performance of two different TPC polarimeters proposed for small explorer missions: The PRAXyS (Polarimetry of Relativistic X-ray Sources) X-ray Polarimeter Instrument, optimized for observations of faint persistent sources and the POET (Polarimetry of Energetic Transients) Low Energy Polarimeter, designed to detect and measure bright transients. also NASA/GSFC.
Imaging alpha particle detector
Anderson, David F.
1985-01-01
A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.
Imaging alpha particle detector
Anderson, D.F.
1980-10-29
A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.
CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, D.
1999-04-19
A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less
FERMI LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-10-27
In this paper, the discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant (~10 4 yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 × 10 36 erg s –1 given the distance constraint of D > 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral π mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts tomore » $$\\bar{n}_{\\rm H}W_p \\simeq 5\\times 10^{51}\\ (D/6\\ {\\rm kpc})^2\\ \\rm erg\\ cm^{-3}$$. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. Finally, the Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.« less
Fermi-LAT Discovery of Extended Gamma-Ray Emission in the Direction of Supernova Remnant W51C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.
The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant ({approx}10{sup 4} yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1 x 10{sup 36} erg s{sup -1} given the distance constraint of D >more » 5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral p mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to {bar n}{sub H} W{sub p} {approx_equal} 5 x 10{sup 51} (D/6 kpc){sup 2} erg cm{sup -3}. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.« less
Galactic gamma-ray sources, SNOBs, and giant H2 regions
NASA Technical Reports Server (NTRS)
Montmerle, T.
1985-01-01
Progress towards understanding the nature of the COS-B galactic gamma-ray sources was made by two recent developments. The developments are: (1) the existence of extensive wide-latitude CO surveys, from the Northern Hemisphere, and from the Southern Hemisphere which give more precise information on molecular cloud population of the Perseus, Sagittarius, and Carina spiral arms; (2) the study of the time variability of gamma-ray sources in gamma-rays but also at other wavelengths, leading to the discovery of four new variable sources in addition to the already known Crab and Vela pulsars. Three classes of gamma-ray sources are found; invariable sources, active sources, and passive sources.
Economics of food irradiation: Comparison between electron accelerators and cobalt-60
NASA Astrophysics Data System (ADS)
Morrison, R. M.
The Codex Alimentarius Commission's proposed international standard permits three types of ionizing radiation to be used on foods: gamma rays from radioactive cobalt-60 or cesium-137, high energy electrons, and x-rays. The latter two types of radiation are produced by electron accelerators powered by electricity. Unlike gamma rays and x-rays which can penetrate pallet loads of foods, electrons of the allowed energy levels only penetrate 1 to 3 inches when irradiated from one side. Thus, electrons are limited to treating the surface of foods or foods in thin packages or a shallow stream of grains, powders, or liquids. Average costs per kilogram (kg) of irradiating selected foods are similar for the electron accelerator and cobalt-60 irradiators analyzed in this study, but initial investment costs generally vary by U.S. $1 million. Irradiation treatment costs range from 1 to 15 U.S. cents per kg for the foods and annual volumes examined with larger volumes having lower treatment costs. Cobalt-60 is less expensive than electrons when annual volumes are below 23 million kgs. For radiation source requirements above the equivalent of about 1 million curies of cobalt-60, electrons become more economical. The largest differences in costs occur with the papaya irradiators where using x-rays to penetrate the fruit is more expensive than using cobalt-60.
Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope
Ackermann, M.; Ajello, M.; Allafort, A.; ...
2010-05-20
Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~ 200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits excludemore » large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~ 5 over a smooth-halo assumption. Here, we also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. Finally, in this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.« less
First detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare
Pesce-Rollins, Melissa; Omodei, Nicola; Petrosian, V.; ...
2015-05-28
Here, we report the first detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ~9°.9 behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray (HXR) emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ~30 minutes with energies up to 3 GeV. The LAT emission centroid is consistent withmore » the RHESSI HXR source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law (PL) spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distribution and a PL spectrum with a number index of ~3.8. Furthermore, we show that high optical depths rule out the gamma-rays originating from the flare site and a high-corona trap model requires very unusual conditions, so a scenario in which some of the particles accelerated by the CME shock travel to the visible side of the Sun to produce the observed gamma-rays may be at work.« less
FIRST DETECTION OF >100 MeV GAMMA-RAYS ASSOCIATED WITH A BEHIND-THE-LIMB SOLAR FLARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesce-Rollins, M.; Omodei, N.; Petrosian, V.
2015-06-01
We report the first detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare, which presents a unique opportunity to probe the underlying physics of high-energy flare emission and particle acceleration. On 2013 October 11 a GOES M1.5 class solar flare occurred ∼9.°9 behind the solar limb as observed by STEREO-B. RHESSI observed hard X-ray (HXR) emission above the limb, most likely from the flare loop-top, as the footpoints were occulted. Surprisingly, the Fermi Large Area Telescope (LAT) detected >100 MeV gamma-rays for ∼30 minutes with energies up to 3 GeV. The LAT emission centroid is consistent with themore » RHESSI HXR source, but its uncertainty does not constrain the source to be located there. The gamma-ray spectra can be adequately described by bremsstrahlung radiation from relativistic electrons having a relatively hard power-law (PL) spectrum with a high-energy exponential cutoff, or by the decay of pions produced by accelerated protons and ions with an isotropic pitch-angle distribution and a PL spectrum with a number index of ∼3.8. We show that high optical depths rule out the gamma-rays originating from the flare site and a high-corona trap model requires very unusual conditions, so a scenario in which some of the particles accelerated by the CME shock travel to the visible side of the Sun to produce the observed gamma-rays may be at work.« less
Feasibility of a wireless gamma probe in radioguided surgery.
Park, Hye Min; Joo, Koan Sik
2016-06-21
Radioguided surgery through the use of a gamma probe is an established practice, and has been widely applied in the case of sentinel lymph node biopsies. A wide range of intraoperative gamma probes is commercially available. The primary characteristics of the gamma probes include their sensitivity, spatial resolution, and energy resolution. We present the results obtained from a prototype of a new wireless gamma probe. This prototype is composed of a 20 mm thick cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) inorganic scintillation crystal from Furukawa Denshi and a Hamamatsu S12572-100C multi-pixel photon counter equipped with a designed electronics. The measured performance characteristics include the energy resolution, energy linearity, angular aperture, spatial resolution and sensitivity. Measurements were carried out using (57)Co, (133)Ba, (22)Na, and (137)Cs sources. The energy resolutions for 0.122 and 0.511 MeV were 17.2% and 6.9%, respectively. The designed prototype consumes an energy of approximately 4.4 W, weighs about 310 g (including battery) having a dimension of 20 mm (D) × 130 mm (L).
Feasibility of a wireless gamma probe in radioguided surgery
NASA Astrophysics Data System (ADS)
Park, Hye Min; Joo, Koan Sik
2016-06-01
Radioguided surgery through the use of a gamma probe is an established practice, and has been widely applied in the case of sentinel lymph node biopsies. A wide range of intraoperative gamma probes is commercially available. The primary characteristics of the gamma probes include their sensitivity, spatial resolution, and energy resolution. We present the results obtained from a prototype of a new wireless gamma probe. This prototype is composed of a 20 mm thick cerium-doped gadolinium aluminum gallium garnet (Ce:GAGG) inorganic scintillation crystal from Furukawa Denshi and a Hamamatsu S12572-100C multi-pixel photon counter equipped with a designed electronics. The measured performance characteristics include the energy resolution, energy linearity, angular aperture, spatial resolution and sensitivity. Measurements were carried out using 57Co, 133Ba, 22Na, and 137Cs sources. The energy resolutions for 0.122 and 0.511 MeV were 17.2% and 6.9%, respectively. The designed prototype consumes an energy of approximately 4.4 W, weighs about 310 g (including battery) having a dimension of 20 mm (D) × 130 mm (L).
Transparency of near-critical density plasmas under extreme laser intensities
NASA Astrophysics Data System (ADS)
Ji, Liangliang; Shen, Baifei; Zhang, Xiaomei
2018-05-01
We investigated transparency of near-critical plasma targets for highly intense incident lasers and discovered that beyond relativistic transparency, there exists an anomalous opacity regime, where the plasma target tend to be opaque at extreme light intensities. The unexpected phenomenon is found to originate from the trapping of ions under exotic conditions. We found out the propagation velocity and the amplitude of the laser-driven charge separation field in a large parameter range and derived the trapping probability of ions. The model successfully interpolates the emergence of anomalous opacity in simulations. The trend is more significant when radiation reaction comes into effect, leaving a transparency window in the intensity domain. Transparency of a plasma target defines the electron dynamics and thereby the emission mechanisms of gamma-photons in the ultra-relativistic regime. Our findings are not only of fundamental interest but also imply the proper mechanisms for generating desired electron/gamma sources.
Nitriding of AISI 4140 steel by a low energy broad ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochoa, E. A.; Figueroa, C. A.; Alvarez, F.
2006-11-15
A comprehensive study of the thermochemical nitriding process of steel AISI 4140 by low energy ion implantation (Kaufmann cell) is reported. Different times of implantation were employed and the studied samples were characterized by x-ray diffraction, in situ photoemission electron spectroscopy, scanning electron microscopy, and hardness (nanoindentation) measurements. The linear relationship between nitrogen content and hardness was verified. The structure of the nitrided layer was characterized yielding that the compound layer is formed by coarse precipitates, around small grains, constituted principally by {epsilon}-Fe{sub 2-3}N and {gamma}-Fe{sub 4}N phases and the diffusion zone is formed by fine precipitates, around big grainsmore » of the original martensitic phase, constituted principally by {gamma}-Fe{sub 4}N phase. Finally, a diffusion model for multiphase systems was applied to determine effective diffusion coefficients of nitrogen in the different phases.« less
INTEGRAL/SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane
NASA Technical Reports Server (NTRS)
Teegarden, B. J.; Watanabe, K.; Jean, P.; Knoedlseder, J.; Lonjou, V.; Roques, J. P.; Skinner, G. K.; vonBallmoos, P.; Weidenspointner, G.; Bazzano, A.
2005-01-01
The center of our Galaxy is a known strong source of electron-positron 511- keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (INTErnational Gamma-RAy Astrophysics Laboratory) mission, launched in Oct. 2002, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high resolution coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic Plane. No positive annihilation flux was detected outside of the central region (|l| greater than 40 degrees) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511-keV flux.
Ultrarelativistic electrons and solar flare gamma-radiation
NASA Technical Reports Server (NTRS)
Semukhin, P. E.; Kovaltsov, G. A.
1985-01-01
Ten solar flares with gamma radiation in excess of 10 MeV were observed. Almost all took place within a heliolatitude greater than 60 deg, close to the solar limb, an indication of the essential anisotropy of high-energy gamma radiation. This high-energy solar flare gamma radiation can be explained by the specific features of the bremsstrahlung of ultrarelativistic electrons trapped within the magnetic arc of the solar atmosphere, even if the acceleration of the electrons is anisotropic.
Through the Ring of Fire: A Study of the Origin of Orphan Gamma-ray Flares in Blazars
NASA Astrophysics Data System (ADS)
MacDonald, Nicholas R.; Marscher, Alan P.; Jorstad, Svetlana G.; Joshi, Manasvita
2014-06-01
Blazars exhibit flares across the electromagnetic spectrum. Many gamma-ray flares are highly correlated with flares detected at optical wavelengths; however, a small subset appear to occur in isolation, with no counterpart in the other wave bands. These "orphan" gamma-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. We present numerical calculations of the time variable emission of a blazar based on a proposal by Marscher et al. (2010) to explain such events. In this model, a plasmoid ("blob") consisting of a power-law distribution of electrons propagates relativistically along the spine of a blazar jet and passes through a synchrotron emitting ring of electrons representing a shocked portion of the jet sheath. This ring supplies a source of seed photons that are inverse-Compton scattered by the electrons in the moving blob. As the blob approaches the ring, the photon density in the co-moving frame of the plasma increases, resulting in an orphan gamma-ray flare that then dissipates as the blob passes through and then moves away from the ring. The model includes the effects of radiative cooling and a spatially varying magnetic field. Support for the plausibility of this model is provided by observations by Marscher et al.(2010) of an isolated gamma-ray flare that was correlated with the passage of a superluminal knot through the inner jet of quasar PKS 1510-089. Synthetic light-curves produced by this new model are compared to the observed light-curves from this event. In addition, we present polarimetric observations that point to the existence of a jet sheath in the quasar 3C 273. A rough estimate of the bolometric luminosity of the sheath results in a value of ~10^45 erg s^-1 10% of the jet luminosity). This inferred sheath luminosity indicates that the jet sheath in 3C 273 can provide a significant source of seed photons that need to be taken into account when modeling the non-thermal emission due to inverse-Compton scattering processes. Funding for this research was provided by an NSERC PGS D2 Doctoral Fellowship and NASA under Fermi Guest Investigator grants NNX12AO79G and NNX12AO59G.
The great galactic centre mystery
NASA Technical Reports Server (NTRS)
Riegler, G. R.
1982-01-01
Gamma-ray observations of the center of the Galaxy show a varying positron-electron annihilation radiation emission, while at radio wavelengths a non-thermal compact source surrounded by ionized gas moving at high velocities can be seen. Line emission maps for atomic and ionized hydrogen and molecular gas suggest gas expulsion and a massive collapsed object. IR observations show that ionized gas in the central few parsecs of the Galactic center is concentrated in at least 14 small clouds. Charge-coupled device images show a pair of faint, very red sources within a few arc seconds of IRS 16 and the compact non-thermal radio source. The positron-electron annihilation line emission implies an annihilation rate of 10 to the 43rd per sec, compared with an observed luminosity at IR wavelengths of 10 to the 40 erg per sec. Some models are briefly discussed.
High-energy radiation from the relativistic jet of Cygnus X-3
NASA Astrophysics Data System (ADS)
Cerutti, B.; Dubus, G.; Henri, G.
2010-12-01
Cygnus X-3 is an accreting high-mass X-ray binary composed of a Wolf-Rayet star and an unknown compact object, possibly a black hole. The gamma-ray space telescope Fermi found definitive evidence that high-energy emission is produced in this system. We propose a scenario to explain the GeV gamma-ray emission in Cygnus X-3. In this model, energetic electron-positron pairs are accelerated at a specific location in the relativistic jet, possibly related to a recollimation shock, and upscatter the stellar photons to high energies. The comparison with Fermi observations shows that the jet should be inclined close to the line of sight and pairs should not be located within the system. Energetically speaking, a massive compact object is favored. We report also on our investigations of the gamma-ray absorption of GeV photons with the radiation emitted by a standard accretion disk in Cygnus X-3. This study shows that the gamma-ray source should not lie too close to the compact object.
Tuning the properties of tin oxide thin films for device fabrications
NASA Astrophysics Data System (ADS)
Sudha, A.; Sharma, S. L.; Gupta, A. N.; Sharma, S. D.
2017-11-01
Tin oxide thin films were deposited on well cleaned glass substrates by thermal evaporation in vacuum and were annealed at 500 ∘C in the open atmosphere inside a furnace for 90 min for promoting the sensitivity of the films. The X-ray diffraction studies revealed that the as-deposited films were amorphous in nature and the annealed films showed appreciable crystalline behavior. The annealed thin films were then irradiated using 60Co gamma source. The radiation induced changes were then studied by X-ray diffraction, scanning electron microscopy, UV-vis spectroscopy and I- V characterization. The remarkable increase in the average grain size, the decrement in the energy band gap and resistivity due to the gamma irradiations up to a certain dose and the reversal of these properties at higher doses are the important observations. The large changes in the conductivity and energy band gap of the annealed thin films due to gamma irradiation make these films quite important device material for the fabrication of gamma sensors and dosimeters.
Primary standardization of 57Co.
Koskinas, Marina F; Moreira, Denise S; Yamazaki, Ione M; de Toledo, Fábio; Brancaccio, Franco; Dias, Mauro S
2010-01-01
This work describes the method developed by the Nuclear Metrology Laboratory in IPEN, São Paulo, Brazil, for the standardization of a (57)Co radioactive solution. Cobalt-57 is a radionuclide used for calibrating gamma-ray and X-ray spectrometers, as well as a gamma reference source for dose calibrators used in nuclear medicine services. Two 4pibeta-gamma coincidence systems were used to perform the standardization, the first used a 4pi(PC) counter coupled to a pair of 76 mm x 76 mm NaI(Tl) scintillators for detecting gamma-rays, the other one used a HPGe spectrometer for gamma detection. The measurements were performed by selecting a gamma-ray window comprising the (122 keV+136 keV) total absorption energy peaks in the NaI(Tl) and selecting the total absorption peak of 122 keV in the germanium detector. The electronic system used the TAC method developed at LMN for registering the observed events. The methodology recently developed by the LMN for simulating all detection processes in a 4pibeta-gamma coincidence system, by means of the Monte Carlo technique, was applied and the behavior of extrapolation curve compared to experimental data. The final activity obtained by the Monte Carlo calculation agrees with the experimental results within the experimental uncertainty. Copyright 2009 Elsevier Ltd. All rights reserved.
Radio-to-Gamma-Ray Monitoring of the Narrow-line Seyfert 1 Galaxy PMN J0948+0022 from 2008 to 2011
NASA Technical Reports Server (NTRS)
Foschini, L.; Angelakis, E.; Fuhrmann, L.; Ghisellini, G.; Hovatta, T.; Lahteenmaki, A.; Lister, M. L.; Braito, V.; Gallo, L.; Hamilton, T. S.;
2012-01-01
We present more than three years of observations at different frequencies, from radio to high-energy ?-rays, of the Narrow-Line Seyfert 1 (NLS1) Galaxy PMN J0948+0022 (z = 0.585). This source is the first NLS1 detected at energies above 100 MeV and therefore can be considered the prototype of this emerging new class of ?-ray emitting active galactic nuclei (AGN). The observations performed from 2008 August 1 to 2011 December 31 confirmed that PMN J0948+0022 generates a powerful relativistic jet, which is able to develop an isotropic luminosity at gamma-rays of the order of 1048 erg per second, at the level of powerful quasars. The evolution of the radiation emission of this source in 2009 and 2010 followed the canonical expectations of relativistic jets with correlated multiwavelength variability (gamma-rays followed by radio emission after a few months), but it was difficult to retrieve a similar pattern in the light curves of 2011. The comparison of gamma-ray spectra before and including 2011 data suggested that there was a softening of the highenergy spectral slope. We selected five specific epochs to be studied by modelling the broad-band spectrum, which are characterised by an outburst at gamma-rays or very low/high flux at other wavelengths. The observed variability can largely be explained by changes in the injected power, the bulk Lorentz factor of the jet, or the electron spectrum. The characteristic time scale of doubling/halving flux ranges from a few days to a few months, depending on the frequency and the sampling rate. The shortest doubling time scale at gamma-rays is 2.3 +/- 0.5 days. These small values underline the need of highly sampled multiwavelength campaigns to better understand the physics of these sources.
Radiation-assisted grafting of vinylidene chloride onto high-density polyethylene
NASA Astrophysics Data System (ADS)
Nagesh, N.; Dokhale, P. A.; Bhoraskar, V. N.
1999-06-01
6 MeV electrons and Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays were used for grafting vinylidene chloride (VDC) onto high-density polyethylene (HDPE) samples. The HDPE samples were immersed in vinylidene chloride and irradiated either with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays or with 6 MeV electrons. In both cases, the radiation dose was varied in the range 1.25-7.5 kGy. The grafted samples were characterized by IR spectroscopy to obtain information about the chemical bonds and with the 14 MeV neutron activation analysis technique for estimating the number of chlorine atoms. The formation of stable bonds between the VDC molecules and the polymer chains could be achieved either with 6 MeV electrons or with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays. Both the number of chlorine atoms and the sample-surface conductivity increased with the radiation dose but the increases achieved with 6 MeV electrons were greater than those achieved with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays.
Total-dose radiation effects data for semiconductor devices, volume 3
NASA Technical Reports Server (NTRS)
Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.
1982-01-01
Volume 3 of this three-volume set provides a detailed analysis of the data in Volumes 1 and 2, most of which was generated for the Galileo Orbiter Program in support of NASA space programs. Volume 1 includes total ionizing dose radiation test data on diodes, bipolar transistors, field effect transistors, and miscellaneous discrete solid-state devices. Volume 2 includes similar data on integrated circuits and a few large-scale integrated circuits. The data of Volumes 1 and 2 are combined in graphic format in Volume 3 to provide a comparison of radiation sensitivities of devices of a given type and different manufacturer, a comparison of multiple tests for a single data code, a comparison of multiple tests for a single lot, and a comparison of radiation sensitivities vs time (date codes). All data were generated using a steady-state 2.5-MeV electron source (Dynamitron) or a Cobalt-60 gamma ray source. The data that compose Volume 3 represent 26 different device types, 224 tests, and a total of 1040 devices. A comparison of the effects of steady-state electrons and Cobat-60 gamma rays is also presented.
A didactic experiment showing the Compton scattering by means of a clinical gamma camera.
Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio
2017-06-01
We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Iwamoto, Yosuke
2018-03-01
In this study, the Monte Carlo displacement damage calculation method in the Particle and Heavy-Ion Transport code System (PHITS) was improved to calculate displacements per atom (DPA) values due to irradiation by electrons (or positrons) and gamma rays. For the damage due to electrons and gamma rays, PHITS simulates electromagnetic cascades using the Electron Gamma Shower version 5 (EGS5) algorithm and calculates DPA values using the recoil energies and the McKinley-Feshbach cross section. A comparison of DPA values calculated by PHITS and the Monte Carlo assisted Classical Method (MCCM) reveals that they were in good agreement for gamma-ray irradiations of silicon and iron at energies that were less than 10 MeV. Above 10 MeV, PHITS can calculate DPA values not only for electrons but also for charged particles produced by photonuclear reactions. In DPA depth distributions under electron and gamma-ray irradiations, build-up effects can be observed near the target's surface. For irradiation of 90-cm-thick carbon by protons with energies of more than 30 GeV, the ratio of the secondary electron DPA values to the total DPA values is more than 10% and increases with an increase in incident energy. In summary, PHITS can calculate DPA values for all particles and materials over a wide energy range between 1 keV and 1 TeV for electrons, gamma rays, and charged particles and between 10-5 eV and 1 TeV for neutrons.
Very high energy gamma-ray binary stars.
Lamb, R C; Weekes, T C
1987-12-11
One of the major astronomical discoveries of the last two decades was the detection of luminous x-ray binary star systems in which gravitational energy from accretion is released by the emission of x-ray photons, which have energies in the range of 0.1 to 10 kiloelectron volts. Recent observations have shown that some of these binary sources also emit photons in the energy range of 10(12) electron volts and above. Such sources contain a rotating neutron star that is accreting matter from a companion. Techniques to detect such radiation are ground-based, simple, and inexpensive. Four binary sources (Hercules X-1, 4U0115+63, Vela X-1, and Cygnus X-3) have been observed by at least two independent groups. Although the discovery of such very high energy "gamma-ray binaries" was not theoretically anticipated, models have now been proposed that attempt to explain the behavior of one or more of the sources. The implications of these observations is that a significant portion of the more energetic cosmic rays observed on Earth may arise from the action of similar sources within the galaxy during the past few million years.
LeVert, Francis E.; Cox, Samson A.
1981-01-01
An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.
Lunar occultations for gamma-ray source measurements
NASA Technical Reports Server (NTRS)
Koch, David G.; Hughes, E. B.; Nolan, Patrick L.
1990-01-01
The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.
Safety systems in gamma irradiation facilities.
Drndarevic, V
1997-08-01
A new electronic device has been developed to guard against individuals gaining entry through the product entry and exit ports into our irradiation facility for industrial sterilization. This device uses the output from electronic sensors and pressure mats to assure that only the transport cabins may pass through these ports. Any intention of personnel trespassing is detected, the process is stopped by the safety system, and the source is placed in safe position. Owing to a simple construction, the new device enables reliable operation, is inexpensive, easy to implement, and improves the existing safety systems.
Characterization of x- and gamma- radiation in relativistically intense laser-solid interactions
NASA Astrophysics Data System (ADS)
Hou, Bixue; Zulick, Calvin; Zhao, Zhen; Nees, John; Batson, Thomas; Maksimchuk, Anatoly; Thomas, Alexander G. R.; Krushelnick, Karl; CenterUltrafast Optical Science Team
2013-10-01
Using a high resolution (λ/ Δλ > 100) high purity germanium detector, the angular and material dependence, and the intensity scaling, of bremsstrahlung gamma radiation from relativistically intense (I > 1018 W/cm2) laser-solid interactions have been characterized at energies between 0.1 and 1 MeV with the high-repetition rate (500 Hz) Lambda-Cubed laser facility. The bremsstrahlung spectra of SiO2, Mo, and Eu2O3 were observed to have two-temperature energy distributions, corresponding to two different groups of electrons and depending on both laser intensity and observation angle. The spectra and source sizes of hard x-radiation under 0.1 MeV are also studied. These x-ray sources are being developed for phase-contrast imaging. Support provided by DHS (EECS-0833499), AFOSR (FA99550-12-1-0310), ARO (W911NF-11-1-0116).
Method for coding low entrophy data
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu (Inventor)
1995-01-01
A method of lossless data compression for efficient coding of an electronic signal of information sources of very low information rate is disclosed. In this method, S represents a non-negative source symbol set, (s(sub 0), s(sub 1), s(sub 2), ..., s(sub N-1)) of N symbols with s(sub i) = i. The difference between binary digital data is mapped into symbol set S. Consecutive symbols in symbol set S are then paired into a new symbol set Gamma which defines a non-negative symbol set containing the symbols (gamma(sub m)) obtained as the extension of the original symbol set S. These pairs are then mapped into a comma code which is defined as a coding scheme in which every codeword is terminated with the same comma pattern, such as a 1. This allows a direct coding and decoding of the n-bit positive integer digital data differences without the use of codebooks.
Modeling of Pulses in Terrestrial Gamma-ray Flashes
NASA Astrophysics Data System (ADS)
Xu, Wei; Celestin, Sebastien; Pasko, Victor
2015-04-01
Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.
Gamma-sky.net: Portal to the gamma-ray sky
NASA Astrophysics Data System (ADS)
Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes
2017-01-01
http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!
A cosmic and solar X-ray and gamma-ray instrument for a scout launch
NASA Technical Reports Server (NTRS)
Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.
1988-01-01
An overview is presented for a set of simple and robust X-ray and gamma ray instruments which have both cosmic and solar objectives. The primary solar scientific objective is the study of the beaming of energetic electrons and ions in solar flares. The instrument will measure spectra and polarization of flare emissions up to 10 MeV. At X-ray energies both the directly emitted flux and the reflected albedo flux will be measured with a complement of six X-ray sensors. Each of these detectors will have a different high Z filter selected to optimize both the energy resolution and high rate capabilities in the energy band 10 to 300 keV. At energies greater than 100 keV seven 7.6 x 7.6 cm NaI and a set of 30 concentric plastic scattering detectors will record the spectra and polarization of electron bremsstrahlung and nuclear gamma rays. All of the components of the instrument are in existence and have passed flight tests for earlier space missions. The instrument will use a spinning solar oriented Scout spacecraft. The NaI detectors will act as a self-modulating gamma ray detector for cosmic sources in a broad angular band which lies at 90 degrees to the Sun-Earth vector and hence will scan the entire sky in 6 months.
González, M M; Dingus, B L; Kaneko, Y; Preece, R D; Dermer, C D; Briggs, M S
2003-08-14
Gamma-ray bursts are among the most powerful events in nature. These events release most of their energy as photons with energies in the range from 30 keV to a few MeV, with a smaller fraction of the energy radiated in radio, optical, and soft X-ray afterglows. The data are in general agreement with a relativistic shock model, where the prompt and afterglow emissions correspond to synchrotron radiation from shock-accelerated electrons. Here we report an observation of a high-energy (multi-MeV) spectral component in the burst of 17 October 1994 that is distinct from the previously observed lower-energy gamma-ray component. The flux of the high-energy component decays more slowly and its fluence is greater than the lower-energy component; it is described by a power law of differential photon number index approximately -1 up to about 200 MeV. This observation is difficult to explain with the standard synchrotron shock model, suggesting the presence of new phenomena such as a different non-thermal electron process, or the interaction of relativistic protons with photons at the source.
Neutronics Studies for the Nab Experiment
NASA Astrophysics Data System (ADS)
Scott, Elizabeth; Nab Collaboration
2017-09-01
The Nab experiment at the Spallation Neutron Source at ORNL aims to measure the neutron beta decay electron-neutrino correlation coefficient ``a'' and the Fierz interference term ``b'' with competitive precision. In Nab, the parameter ``a'' is extracted from the proton momentum and electron energy using an asymmetric magnetic spectrometer and two large-area highly pixelated Si detectors . To achieve 10-3 accuracy, there must be low background rates compared to our 1 kHz signal rates. The background is primarily reduced by using coincidence detection of the electron and photon from the decay. However, further reduction is still necessary. Neutron and gamma rates in the Si detectors can lead to false coincidences. The majority of this background radiation can be reduced by well designed collimation and shielding. The collimation design was done with McStas and the background shielding with MCNP6 (Monte Carlo N-Particle 6). Neutrons are absorbed by 6Li -loaded materials or borated polyethylene and gammas close to spectrometer with non magnetic materials such as lead and stainless steel. I will present the shielding design and MCNP6 results.
Phenomenological characteristic of the electron component in gamma-quanta initiated showers
NASA Technical Reports Server (NTRS)
Nikolsky, S. I.; Stamenov, J. N.; Ushev, S. Z.
1985-01-01
The phenomenological characteristics of the electron component in showers initiated by primary gamma-quanta were analyzed on the basis of the Tien Shan experimental data. It is shown that the lateral distribution of the electrons ion gamma-quanta initiated showers can be described with NKG - function with age parameters bar S equals 0, 76 plus or minus 0, 02, different from the same parameter for normal showers with the same size bar S equals 0, 85 plus or minus 0, 01. The lateral distribution of the correspondent electron energy flux in gamma-quanta initiated showers is steeper as in normal cosmic ray showers.
NASA Astrophysics Data System (ADS)
Arkhangelskaja, Irene
2016-07-01
GAMMA-400 (Gamma Astronomical Multifunctional Modular Apparatus) will be the gamma-telescope onboard international satellite gamma-observatory designed for particle registration in the wide energy band. Its parameters are optimized for detection of gamma-quanta with the energy ˜ 100 GeV in the main aperture. The main scientific goals of GAMMA-400 are to investigate fluxes of γ-rays and the electron-positron cosmic ray component possibly generated by dark matter particles decay or annihilation and to search for and study in detail discrete γ-ray sources, to investigate the energy spectra of Galactic and extragalactic diffuse γ-rays, and to study γ-ray bursts and γ-emission from the active Sun. This article presents analysis of detected events identification procedures and energy resolution in three apertures provide particles registration both from upper and lateral directions based on GAMMA-400 modeling due special designed software. Time and segmentation methods are used to reject backsplash (backscattering particles created when high energy γ-rays interact with the calorimeter's matter and move in the opposite direction) in the main aperture while only energy deposition analysis allows to reject this effect in the additional and lateral ones. The main aperture provides the best angular (all strip layers information analysis) and energy (energy deposition in the all detectors studying) resolution in the energy range 0.1 - 3 × 10^{3} GeV. The energy resolution in this band is 1%. Triggers in the main aperture will be formed using information about particle direction provided by time of flight system and presence of charged particle or backsplash signal formed according to analysis of energy deposition in combination of all two-layers anticoincidence systems individual detectors. In the additional aperture gamma-telescope allows to register events in the energy band 10 × 10^{-3} - 3 × 10^{3} GeV. The additional aperture energy resolution provides due to energy deposition analysis and is the same as in the main aperture. Gamma-quanta, electrons/positrons and light nuclei with energy E>10 GeV also are registered in the lateral aperture. This aperture allows detecting of low-energy gammas in the ranges of 0.2 - 10 MeV and high energy ones from 10 MeV to several TeV with energy resolution 8% - 2% and 2% correspondingly.
Rat Phantom Depth Dose Studies in Electron, X-ray, Gamma-Ray, and Reactor Radiation Fields
1986-12-01
i©™D©/^ ^1[P@^T Rat phantom depth dose studies in electron , Xrayf gamma-ray, and reactor radiation fields M. Dooley D. M. Eagleson G. H. Zeman...energy electrons , bremsstrahlung, and mixed neutron/gamma radiation fields are sometimes used in radiobiological experiments employing rats. This report...have revealed differing sensitivities of experimental animals that have been exposed to cobalt-60 photons, high-energy electrons , high-energy X rays
Akman, F; Durak, R; Turhan, M F; Kaçal, M R
2015-07-01
The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. Copyright © 2015 Elsevier Ltd. All rights reserved.
Decay studies of a long lived high spin isomer of /sup 210/Bi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuggle, D.G.
1976-08-01
A source of approximately 30 ..mu..g of pure (> 90%) /sup 210m/Bi (J..pi.. = 9-) was prepared by irradiating /sup 209/Bi in a nuclear reactor. After chemical separations to remove /sup 210/Po from the irradiated bismuth sample were completed, the /sup 210/Bi was electromagnetically separated from the /sup 209/Bi by a series of two isotope separations to create the source mentioned above. This source was then used to conduct alpha, conversion electron, gamma, gamma-gamma coincidence, and alpha-gamma coincidence spectroscopic studies of the decay of /sup 210m/Bi. The partial half life for the alpha decay of /sup 210m/Bi was measured asmore » 3.0 x 10/sup 6/ yr. A lower limit of 10/sup 13/ years was set for the partial half life for the decay of /sup 210m/Bi to /sup 210/Po. Alpha decay of /sup 210m/Bi to 8 excited states of /sup 206/Tl was observed. A lower limit of 10/sup -4/% was set for the branching ratio of the parity forbidden alpha decay of /sup 210/Bi to the /sup 206/Ti ground state. Theoretical decay rates for the alpha decays of /sup 210m/Bi, /sup 210/Bi, /sup 211/Po, and /sup 211m/Po were calculated using the method developed by Hans Mang. A comparison of the calculated and experimentally measured alpha decay rates of /sup 210m/Bi showed good agreement for the relative alpha decay rates.« less
Space γ-observatory GAMMA-400 Current Status and Perspectives
NASA Astrophysics Data System (ADS)
Galper, A. M.; Bonvicini, V.; Topchiev, N. P.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Gorbunov, M. S.; Gusakov, Yu. V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Taraskin, A. A.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu. T.; Zampa, N.; Zirakashvili, V. N.; Zverev, V. G.
GAMMA-400 γ-ray telescope is designed to measure fluxes of γ-rays and the electron-positron cosmic ray component possibly generated in annihilation or decay of dark matter particles; to search for and study in detail discrete γ-ray sources, to examine the energy spectra of Galactic and extragalactic diffuse γ-rays, to study γ-ray bursts and γ-rays from the active Sun. GAMMA-400 consists of plastic scintillation anticoincidence top and lateral detectors, converter-tracker, plastic scintillation detectors for the time-of-flight system (TOF), two-part calorimeter (CC1 and CC2), plastic scintillation lateral detectors of calorimeter, plastic scintillation detectors of calorimeter, and neutron detector. The converter-tracker consists of 13 layers of double (x, y) silicon strip coordinate detectors (pitch of 0.08 mm). The first three and final one layers are without tungsten while the middle nine layers are interleaved with nine tungsten conversion foils. The thickness of CC1 and CC2 is 2 X0 (0.1λ0) and 23 X0 (1.1λ0) respectively (where X0 is radiation length and λ0 is nuclear interaction one). The total calorimeter thickness is 25 X0 or 1.2λ0 for vertical incident particles registration and 54 X0 or 2.5λ0 for laterally incident ones. The energy range for γ-rays and electrons (positrons) registration in the main aperture is from ∼0.1 GeV to ∼3.0 TeV. The γ-ray telescope main aperture angular and energy resolutions are respectively ∼0.01 and ∼1% for 102 GeV γ-quanta, the proton rejection factor is ∼5×105. The first three strip layers without tungsten provide the registration of γ-rays down to ∼20 MeV in the main aperture. Also this aperture allows investigating high energy light nuclei fluxes characteristics. Electrons, positrons, light nuclei and gamma-quanta will also register from the lateral directions due to special aperture configuration. Lateral aperture energy resolution is the same as for main aperture for electrons, positrons, light nuclei and gamma-quanta in energy range E>1.0 GeV. But using lateral aperture it is possible to detect low-energy gammas in the ranges 0.2 - 10 MeV and 10 MeV - 1.0 GeV with energy resolution 8% - 2% and 2% correspondingly accordingly to GAMMA-400 "Technical Project" stage results. Angular resolution in the lateral aperture provides only for low-energy gamma-quanta from non-stationary events (GRB, solar flares and so on) due segments of CC2 count rate analysis. GAMMA-400 γ-ray telescope will be installed onboard the Russian Space Observatory GAMMA-400. The lifetime of the space observatory will be at least seven years. The launch of the space observatory is scheduled for the early 2020s.
Gamma ray cosmology: The extra galactic gamma spectrum and methods to detect the underlying source
NASA Technical Reports Server (NTRS)
Cline, David B.
1990-01-01
The possible sources of extragalactic gamma rays and methods to distinguish the different sources are discussed. The sources considered are early universe decays and annihilation of Particles, active galactic nuclei (AGN) sources, and baryon-antibaryon annihilation in a baryon symmetric cosmology. The energy spectrum and possible angular fluctuations due to these sources are described.
Abdollahi, S; Ackermann, M; Ajello, M; Albert, A; Atwood, W B; Baldini, L; Barbiellini, G; Bellazzini, R; Bissaldi, E; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bruel, P; Buson, S; Caragiulo, M; Cavazzuti, E; Chekhtman, A; Ciprini, S; Costanza, F; Cuoco, A; Cutini, S; D'Ammando, F; de Palma, F; Desiante, R; Digel, S W; Di Lalla, N; Di Mauro, M; Di Venere, L; Donaggio, B; Drell, P S; Favuzzi, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Green, D; Guiriec, S; Harding, A K; Jogler, T; Jóhannesson, G; Kamae, T; Kuss, M; Larsson, S; Latronico, L; Li, J; Longo, F; Loparco, F; Lubrano, P; Magill, J D; Malyshev, D; Manfreda, A; Mazziotta, M N; Meehan, M; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Negro, M; Nuss, E; Ohsugi, T; Omodei, N; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Principe, G; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Sgrò, C; Simone, D; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strong, A W; Tajima, H; Thayer, J B; Torres, D F; Troja, E; Vandenbroucke, J; Zaharijas, G; Zimmer, S
2017-03-03
The Large Area Telescope on board the Fermi Gamma-ray Space Telescope has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10^{-3}. We take into account systematic effects that could mimic true anisotropies at this level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. The present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.
A novel type of transient luminous event produced by terrestrial gamma-ray flashes
NASA Astrophysics Data System (ADS)
Xu, Wei; Celestin, Sebastien; Pasko, Victor P.; Marshall, Robert A.
2017-03-01
Terrestrial Gamma-ray Flashes (TGFs), discovered in 1994 by the Compton Gamma-Ray Observatory, are high-energy photon bursts originating in the Earth's atmosphere in association with thunderstorms. In this paper, we demonstrate theoretically that, while TGFs pass through the atmosphere, the large quantities of energetic electrons knocked out by collisions between photons and air molecules generate excited species of neutral and ionized molecules, leading to a significant amount of optical emissions. These emissions represent a novel type of transient luminous events in the vicinity of the cloud tops. We show that this predicted phenomenon illuminates a region with a size notably larger than the TGF source and has detectable levels of brightness. Since the spectroscopic, morphological, and temporal features of this luminous event are closely related with TGFs, corresponding measurements would provide a novel perspective for investigation of TGFs, as well as lightning discharges that produce them.
ISPAE Research Highlights 1995-1997
NASA Technical Reports Server (NTRS)
Harwell, Ken
1997-01-01
This paper presents ISPAE (Institute for Space Physics, Astrophysics and Education) research highlights from 1995-1997. The topics include: 1) High-Energy Astrophysics (Finding the smoking gun in gamma-ray bursts, Playing peekaboo with gamma ray bursts, and Spectral pulses muddle burst source study, Einstein was right: Black holes do spin, Astronomers find "one-man X-ray band", and Cosmic rays from the supernova next door?); 2) Solar Physics (Bright burst confirms solar storm model, Model predicts speed of solar wind in space, and Angry sunspots snap under the strain); 3) Gravitational Physics; 4) Tether Dynamics; and 5) Space Physics (Plasma winds blow form polar regions, De-SCIFERing thermal electrons, and UVI lets scientists see daytime aurora).
NASA Astrophysics Data System (ADS)
Papanicolopoulos, Chrysanthos Dionisios
1987-11-01
The excited states of ^{185 }{rm Au} have been studied by the radioactive decay of {^ {185m,g}Hg.} Sources of {^{185m,g}Hg} were produced by the reaction ^{176 }Hf (^{16}O, 7n) ^{185}Hg using 140 MeV ^{16}O beams from the 25 MV folded tandem of the Holifield Heavy Ion Research Facility. Sources of ^{185}Hg were mass-separated on-line using the University Isotope Separator Oak Ridge (UNISOR) facility. Multiscaled spectra of rays, x rays and conversion electrons were obtained together with gamma- gamma - t, gamma- x - t, e ^{-} - gamma - t, and e^{-}- x - t coincidence data. A decay scheme consisting of 82 excited states and 182 transitions was constructed. Bands of states associated with the s_{1over 2}, d_{3over 2} , d_{5over 2}, h_{11over 2} proton -hole configurations and the h_{9over 2} and i_{13over 2} proton-particle (intruder) configurations were constructed. In addition, a number of EO transitions were located: these de-excite levels which are interpreted as resulting from shape coexistence in the ^ {184}Pt and ^{186 }Hg "particle" and "hole" cores. The h _{9over 2} band is compared with calculations made with the Lund model of Larsson et al.
NASA Astrophysics Data System (ADS)
Arabshahi, S.; Majid, W.; Dwyer, J. R.; Rassoul, H.
2016-12-01
In Earth's atmosphere, runaway electrons are routinely produced from large electric fields such as occurs inside thunderclouds. Electrons run away when the average rate of energy loss in a medium is less than the average rate of energy gains from an electric field. These electrons can then produce more energetic electrons, and subsequently an avalanche of energetic electrons, through electron-electron Møller scattering with air atoms and molecules. The process is called a Relativistic Runaway Electron Avalanche (RREA). RREA also produces large flux of X-rays and gamma rays (e.g. Terrestrial Gamma Ray Flashes) through bremsstrahlung scattering. Theoretical modeling of electric fields inside dust devils [Farrel et al. 2006], and possible observation of large electrostatic discharges from Mars [Ruf et al. 2009] suggest that the electric fields could get close to the breakdown values for Mars' atmosphere, i.e. 25 kV/m. Using detailed Monte Carlo simulations, we have shown that for such electric fields it is possible to have a RREA-like mechanism also at work inside the Martian dust storms, capable of producing a large flux of gamma-ray photons. We have also shown that the resulting gamma ray photons could be detected using instruments either on the surface of Mars or on orbiting satellites.
NASA Astrophysics Data System (ADS)
Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan
2015-05-01
Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.
Very High-Energy Gamma-Ray Sources.
ERIC Educational Resources Information Center
Weekes, Trevor C.
1986-01-01
Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)
Cadieux, J. R.; Fugate, G. A.; King, III, G. S.
2015-02-07
Here, an alpha–gamma coincidence spectrometer has been developed for the measurement of selected actinide isotopes in the presence of high beta/gamma fields. The system is based on a PERALS® liquid scintillation counter for beta/alpha discrimination and was successfully tested with both high purity germanium and bismuth germanate, gamma-ray detectors using conventional analog electronics.
Dissecting the Gamma-Ray Background in Search of Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.
2014-02-01
Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitivemore » with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.« less
Space-Borne Observations of Intense Gamma-Ray Flashes (TGFs) Above Thunderstorms
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2010-01-01
Intense millisecond flashes of MeV photons are being observed with space-borne detectors. These terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi-GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly-Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic runaway avalanche electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. They have generated considerable observational and theoretical interest in recent years. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms.
Suzuki, H; Hashimoto, W; Kumagai, H
1993-09-01
Escherichia coli K-12 can utilize a gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase (EC 2.3.2.2) is essential. We suggest that the gamma-glutamyl linkage of a gamma-glutamyl peptide is hydrolyzed by gamma-glutamyltranspeptidase located in the periplasmic space, and the released amino acid is taken up and utilized by E. coli.
Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility
NASA Astrophysics Data System (ADS)
Wagner, Andreas; Butterling, Maik; Liedke, Maciej O.; Potzger, Kay; Krause-Rehberg, Reinhard
2018-05-01
The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA with bunch charges up to 120 pC. The electron beam is employed to produce several secondary beams including X-rays from bremsstrahlung production, coherent IR light in a Free Electron Laser, superradiant THz radiation, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films. Bulk materials, fluids, gases, and even radioactive samples can be studied at the unique Gamma-induced Positron Source (GiPS) where an intense bremsstrahlung source generates positrons directly inside the material under study. A 22Na-based monoenergetic positron beam serves for offline experiments and additional depth-resolved Doppler-broadening studies complementing both accelerator-based sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amharrak, H.; Di Salvo, J.; Lyoussi, A.
2011-07-01
The objective of this study is to develop nuclear heating measurement methods in Zero Power experimental reactors. This paper presents the analysis of Thermo-Luminescent Detector (TLD) and Optically Stimulated Luminescent Detectors (OSLD) experiments in the UO{sub 2} core of the MINERVE research reactor at the CEA Cadarache. The experimental sources of uncertainties on the gamma dose have been reduced by improving the conditions, as well as the repeatability, of the calibration step for each individual TLD. The interpretation of these measurements needs to take into account calculation of cavity correction factors, related to calibration and irradiation configurations, as well asmore » neutron corrections calculations. These calculations are based on Monte Carlo simulations of neutron-gamma and gamma-electron transport coupled particles. TLD and OSLD are positioned inside aluminum pillboxes. The comparison between calculated and measured integral gamma-ray absorbed doses using TLD, shows that calculation slightly overestimates the measurement with a C/E value equal to 1.05 {+-} 5.3 % (k = 2). By using OSLD, the calculation slightly underestimates the measurement with a C/E value equal to 0.96 {+-} 7.0% (k = 2. (authors)« less
Malone, R M; Herrmann, H W; Stoeffl, W; Mack, J M; Young, C S
2008-10-01
Gas Cherenkov detectors (GCDs) have been used to convert fusion gamma into photons to achieve gamma bang time and reaction history measurements. The GCDs designed for OMEGA used Cassegrain reflector optics in order to fit inside a 10 in. manipulator. A novel design for the National Ignition Facility using 90 degrees off-axis parabolic mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO(2) gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100 mm diameter by 500 mm long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO(2) gas volume. A cluster of four channels will allow for increased dynamic range as well as for different gamma energy threshold sensitivities.
Skin dose from radionuclide contamination on clothing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.
1997-06-01
Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by propermore » weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.« less
A Search for the X-ray Counterpart of the Unidentified Gamma-ray Source 3EG J2020+4017 (2CG078+2)
NASA Technical Reports Server (NTRS)
Weisskopf, Martin; Swartz, Douglas A.; Carraminana, Alberto; Carrasco, Luis; Kaplan, David L.; Becker, Werner; Elsner, Ronald F.; Kanbach, Gottfried; ODell, Stephen L.; Tennant, Allyn F.
2006-01-01
We report observations with the Chandra X-ray Observatory of a field in the gamma-Cygni supernova remnant (SNR78.2+2.1) centered on the cataloged location of the unidentified, bright gamma-ray source 3EG J2020+4017. In this search for an X-ray counterpart to the gamma-ray source, we detected 30 X-ray sources. Of these, we found 17 strong-candidate counterparts in optical (visible through near-infrared) cataloged and an additional 3 through our optical observations. Based upon colors and (for several objects) optical spectra, nearly all the optically identified objects appear to be reddened main-sequence stars: None of the X-ray sources with an optical counterpart is a plausible X-ray counterpart to 3EG J2020+4017-if that gamma-ray source is a spin-powered pulsar. Many of the 10 X-ray sources lacking optical counterparts are likely (extragalactic) active galactic nuclei, based upon the sky density of such sources. Although one of the 10 optically unidentified X-ray sources could be the gamma-ray source, there is no auxiliary evidence supporting such an identification
NASA Astrophysics Data System (ADS)
Gladen, R. W.; Chirayath, V. A.; McDonald, A. D.; Fairchild, A. J.; Chrysler, M. D.; Imam, S. K.; Koymen, A. R.; Weiss, A. H.
We describe herein a digital data acquisition system for a time-of-flight Positron annihilation-induced Auger Electron Spectrometer. This data acquisition system consists of a high-speed digitizer collecting signals induced by Auger electrons and annihilation gammas in a multi-channel plate electron detector and a BaF2 gamma detector, respectively. The time intervals between these two signals is used to determine the times of flight of the Auger electrons, which are analyzed by algorithms based on traditional nuclear electronics methods. Ultimately, this digital data acquisition system will be expanded to incorporate the first coincidence measurements of Auger electron and annihilation gamma energies.
Electrons in a closed galaxy model of cosmic rays
NASA Technical Reports Server (NTRS)
Ramaty, R.; Westergaard, N. J.
1976-01-01
The consistency of positrons and electrons was studied using a propagation model in which the cosmic rays are stopped by nuclear collisions or energy losses before they can escape from the galaxy (the closed-galaxy model). The fact that no inconsistency was found between the predictions and the data implies that the protons which produce the positrons by nuclear reactions could have their origin in a large number of distant sources, as opposed to the heavier nuclei which in this model come from a more limited set of sources. The closed-galaxy model predicts steep electron and positron spectra at high energies. None of these are inconsistent with present measurements; but future measurements of the spectrum of high-energy positrons could provide a definite test for the model. The closed-galaxy model also predicts that the interstellar electron intensity below a few GeV is larger than that implied by other models. The consequence of this result is that electron bremsstrahlung is responsible for about 50% of the galactic gamma-ray emission at photon energies greater than 100 MeV.
Low intensity X-ray and gamma-ray imaging device. [fiber optics
NASA Technical Reports Server (NTRS)
Yin, L. I. (Inventor)
1979-01-01
A radiation to visible light converter is combined with a visible light intensifier. The converter is a phosphor or scintillator material which is modified to block ambient light. The intensifier includes fiber optics input and output face plates with a photocathode-microchannel plate amplifier-phosphor combination. Incoming radiation is converted to visible light by the converter which is piped into the intensifier by the input fiber optics face plate. The photocathode converts the visible light to electrons which are amplified by a microchannel plate amplifier. The electrons are converted back to light by a phosphor layer and piped out for viewing by the output fiber optics faces plate. The converter-intensifier combination may be further combined with its own radiation source or used with an independent source.
Decay properties of Bk 97 243 and Bk 97 244
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, I.; Kondev, F. G.; Greene, J. P.
2018-01-01
Electron capture decays of Bk-243 and Bk-244 have been studied by measuring the gamma-ray spectra of mass-separated sources and level structures of Cm-243 and Cm-244 have been deduced. In Cm-243, the electron capture population to the ground state, 1/2(+)[631], and 1/2(+)[620] Nilsson states have been observed. The octupole K-pi = 2(-) band was identified in Cm-244 at 933.6 keV. In addition, spins and parities were deduced for several other states and two-quasiparticle configurations have been tentatively assigned to them
NASA Technical Reports Server (NTRS)
1991-01-01
An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.
Coded-aperture imaging of the Galactic center region at gamma-ray energies
NASA Technical Reports Server (NTRS)
Cook, Walter R.; Grunsfeld, John M.; Heindl, William A.; Palmer, David M.; Prince, Thomas A.
1991-01-01
The first coded-aperture images of the Galactic center region at energies above 30 keV have revealed two strong gamma-ray sources. One source has been identified with the X-ray source IE 1740.7 - 2942, located 0.8 deg away from the nucleus. If this source is at the distance of the Galactic center, it is one of the most luminous objects in the galaxy at energies from 35 to 200 keV. The second source is consistent in location with the X-ray source GX 354 + 0 (MXB 1728-34). In addition, gamma-ray flux from the location of GX 1 + 4 was marginally detected at a level consistent with other post-1980 measurements. No significant hard X-ray or gamma-ray flux was detected from the direction of the Galactic nucleus or from the direction of the recently discovered gamma-ray source GRS 1758-258.
Helios-2 Vela-Ariel-5 gamma-ray burst source position
NASA Technical Reports Server (NTRS)
Cline, T. L.; Trainor, J. H.; Desai, U. D.; Klebesadel, R. W.; Ricketts, M.; Heluken, H.
1979-01-01
The gamma-ray burst of 28 January 1976, one of 18 events thus far detected in interplanetary space with Helios-2, was also observed with the Vela-5A, -6A and the Ariel-5 satellites. A small source field is obtained from the intersection of the region derived from the observed time delays between Helios-2 and Vela-5A and -6A with the source region independently found with the Ariel-5 X-ray detector. This area contains neither any steady X-ray source as scanned by HEAO-A nor any previously catalogued X-ray, radio or infrared sources, X-ray transients, quasars, seyferts, globular clusters, flare stars, pulsars, white dwarfs or high energy gamma-ray sources. The region is however, within the source field of a gamma-ray transient observed in 1974, which exhibited nuclear gamma-ray line structure.
Measuring ionizing radiation in the atmosphere with a new balloon-borne detector
NASA Astrophysics Data System (ADS)
Aplin, K. L.; Briggs, A. A.; Harrison, R. G.; Marlton, G. J.
2017-05-01
Increasing interest in energetic particle effects on weather and climate has motivated development of a miniature scintillator-based detector intended for deployment on meteorological radiosondes or unmanned airborne vehicles. The detector was calibrated with laboratory gamma sources up to 1.3 MeV and known gamma peaks from natural radioactivity of up to 2.6 MeV. The specifications of our device in combination with the performance of similar devices suggest that it will respond to up to 17 MeV gamma rays. Laboratory tests show that the detector can measure muons at the surface, and it is also expected to respond to other ionizing radiation including, for example, protons, electrons (>100 keV), and energetic helium nuclei from cosmic rays or during space weather events. Its estimated counting error is ±10%. Recent tests, when the detector was integrated with a meteorological radiosonde system and carried on a balloon to 25 km altitude, identified the transition region between energetic particles near the surface, which are dominated by terrestrial gamma emissions, to higher-energy particles in the free troposphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X
Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteriamore » of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.« less
Marcu, Delia; Damian, Grigore; Cosma, Constantin; Cristea, Victoria
2013-09-01
The effects of gamma radiation are investigated by studying plant germination, growth and development, and biochemical characteristics of maize. Maize dry seeds are exposed to a gamma source at doses ranging from 0.1 to 1 kGy. Our results show that the germination potential, expressed through the final germination percentage and the germination index, as well as the physiological parameters of maize seedlings (root and shoot lengths) decreased by increasing the irradiation dose. Moreover, plants derived from seeds exposed at higher doses (≤0.5 kGy) did not survive more than 10 days. Biochemical differences based on photosynthetic pigment (chlorophyll a, chlorophyll b, carotenoids) content revealed an inversely proportional relationship to doses of exposure. Furthermore, the concentration of chlorophyll a was higher than chlorophyll b in both irradiated and non-irradiated seedlings. Electron spin resonance spectroscopy used to evaluate the amount of free radicals induced by gamma ray treatment demonstrates that the relative concentration of radiation-induced free radicals depends linearly on the absorbed doses.
EGRET Observations of the Diffuse Gamma-Ray Emission in Orion: Analysis Through Cycle 6
NASA Technical Reports Server (NTRS)
Digel, S. W.; Aprile, E.; Hunter, S. D.; Mukherjee, R.; Xu, F.
1999-01-01
We present a study of the high-energy diffuse emission observed toward Orion by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The total exposure by EGRET in this region has increased by more than a factor of two since a previous study. A simple model for the diffuse emission adequately fits the data; no significant point sources are detected in the region studied (1 = 195 deg to 220 deg and b = -25 deg to -10 deg) in either the composite dataset or in two separate groups of EGRET viewing periods considered. The gamma-ray emissivity in Orion is found to be (1.65 +/- 0.11) x 10(exp -26)/s.sr for E > 100 MeV, and the differential emissivity is well-described as a combination of contributions from cosmic-ray electrons and protons with approximately the local density. The molecular mass calibrating ratio is N(H2)/W(sub CO) = (1.35 +/- 0.15) x 10(exp 20)/sq cm.(K.km/s).
Detection of a Spectral Break in the Extra Hard Component of GRB 090926A
NASA Astrophysics Data System (ADS)
Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Chaplin, V.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Dingus, B. L.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Goldstein, A.; Granot, J.; Greiner, J.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashi, K.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kouveliotou, C.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Llena Garde, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mehault, J.; Mészáros, P.; Michelson, P. F.; Mizuno, T.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakajima, H.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Preece, R.; Racusin, J. L.; Rainò, S.; Rando, R.; Rau, A.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Reyes, L. C.; Ripken, J.; Ritz, S.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stecker, F. W.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Tanaka, Y.; Thayer, J. B.; Thayer, J. G.; Tibaldo, L.; Tierney, D.; Toma, K.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; Vandenbroucke, J.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wood, K. S.; Wu, X. F.; Yamazaki, R.; Yang, Z.; Ylinen, T.; Ziegler, M.
2011-03-01
We report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other gamma-ray bursts, here we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.
Detection of a spectral break in the extra hard component of GRB 090926A
Ackermann, M.; Ajello, M.; Asano, K.; ...
2011-02-16
Here, we report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other gamma-ray bursts, heremore » we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.« less
Isomer ratios for products of photonuclear reactions on 121Sb
NASA Astrophysics Data System (ADS)
Bezshyyko, Oleg; Dovbnya, Anatoliy; Golinka-Bezshyyko, Larisa; Kadenko, Igor; Vodin, Oleksandr; Olejnik, Stanislav; Tuller, Gleb; Kushnir, Volodymyr; Mitrochenko, Viktor
2017-09-01
Over the past several years various preequilibrium model approaches for nuclear reactions were developed. Diversified detailed experimental data in the medium excitation energy region for nucleus are needed for reasonable selection among these theoretical models. Lack of experimental data in this energy region does essentially limit the possibilities for analysis and comparison of different preequilibrium theoretical models. For photonuclear reactions this energy region extends between bremsstrahlung energies nearly 30-100 MeV. Experimental measurements and estimations of isomer ratios for products of photonuclear reactions with multiple particle escape on antimony have been performed using bremsstrahlung with end-point energies 38, 43 and 53 MeV. Method of induced activity measurement was applied. For acquisition of gamma spectra we used HPGe spectrometer with 20% efficiency and energy resolution 1.9 keV for 1332 keV gamma line of 60Co. Linear accelerator of electrons LU-40 was a source of bremsstrahlung. Energy resolution of electron beam was about 1% and mean current was within (3.8-5.3) μA.
X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries
NASA Technical Reports Server (NTRS)
Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek
1997-01-01
Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.
NASA Astrophysics Data System (ADS)
Hosseini, S. A.; Zangian, M.; Aghabozorgi, S.
2018-03-01
In the present paper, the light output distribution due to poly-energetic neutron/gamma (neutron or gamma) source was calculated using the developed MCNPX-ESUT-PE (MCNPX-Energy engineering of Sharif University of Technology-Poly Energetic version) computational code. The simulation of light output distribution includes the modeling of the particle transport, the calculation of scintillation photons induced by charged particles, simulation of the scintillation photon transport and considering the light resolution obtained from the experiment. The developed computational code is able to simulate the light output distribution due to any neutron/gamma source. In the experimental step of the present study, the neutron-gamma discrimination based on the light output distribution was performed using the zero crossing method. As a case study, 241Am-9Be source was considered and the simulated and measured neutron/gamma light output distributions were compared. There is an acceptable agreement between the discriminated neutron/gamma light output distributions obtained from the simulation and experiment.
Power-law X-ray and gamma-ray emission from relativistic thermal plasmas
NASA Technical Reports Server (NTRS)
Zdziarski, A. A.
1985-01-01
A common characteristic of cosmic sources is power-law X-ray emission. Extragalactic sources of this type include compact components of active galactic nuclei (AGN). The present study is concerned with a theoretical model of such sources, taking into account the assumption that the power-law spectra are produced by repeated Compton scatterings of soft photons by relativistic thermal electrons. This is one of several possible physical mechanisms leading to the formation of a power-law spectrum. Attention is given to the Comptonization of soft photon sources, the rates of pair processes, the solution of the pair equilibrium equation, and the constraints on a soft photon source and an energy source. It is concluded that the compactness parameters L/R of most of the cosmic sources observed to date lie below the maximum luminosity curves considered.
MEGA: the next generation Medium Energy Gamma-ray Telescope
NASA Astrophysics Data System (ADS)
Paciesas, W.; Miller, R. S.; Andritschke, R.; Kanbach, G.; Zoglauer, A.; Bloser, P.; Hunter, S.; Cravens, J.; Cherry, M.; Guzik, T. G.; Stacy, J. G.; Wefel, J. P.; Di Cocco, G.; Hartmann, D.; Kippen, R. M.; Vestrand, W. T.; Kurfess, J.; Phlips, B.; Strickman, M.; Wulf, E.; Macri, J. R.; McConnell, M. L.; Ryan, J. M.; Reglero, V.; Zych, A. D.
2004-08-01
The MEGA mission would enable a sensitive all-sky survey of the medium-energy gamma-ray sky (0.3-50 MeV). This mission will bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory, the SPI and IBIS instruments on INTEGRAL and the visionary ACT mission. It will, among other things, serve to compile a much larger catalog of sources in this energy range, perform far deeper searches for supernovae, better measure the galactic continuum emission as well as identify the components of the cosmic diffuse emission. It will accomplish these goals with a stack of Si-strip detector (SSD) planes surrounded by a dense high-Z calorimeter. At lower photon energies (below ˜ 30 MeV), the design is sensitive to Compton interactions, with the SSD system serving as a scattering medium that also detects and measures the Compton recoil energy deposit. If the energy of the recoil electron is sufficiently high (> 2 MeV), the track of the recoil electron can also be defined. At higher photon energies (above ˜ 10 MeV), the design is sensitive to pair production events, with the SSD system measuring the tracks of the electron and positron. We will discuss the various types of event signatures in detail and describe the advantages of this design over previous Compton telescope designs. Effective area, sensitivity and resolving power estimates are also presented along with simulations of expected scientific results and beam calibration results from the prototype instrument.
Structure of sup 118 Sb nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulyas, J.; Fenyes, T.; Fayez, M.
1992-10-01
{gamma}, {gamma}{gamma}-coincidence, internal conversion electron, and {gamma}-ray angular distribution spectra of the {sup 118}Sn({ital p},{ital n}{gamma}){sup 118}Sb reaction were measured at different bombarding proton energies between 5.5 and 7.5 MeV. {gamma}, {gamma}{gamma}-coincidence, and internal conversion electron spectra of the {sup 115}In ({alpha},{ital n}{gamma}){sup 118}Sb reaction were also measured at {ital E}{sub {alpha}}=14.5 MeV. Ge(HP), Ge(Li), Ge(LEPS) {gamma}-ray detectors, as well as a superconducting magnetic lens electron spectrometer (with Si(Li) detectors), were used in the experiments. About 210 (including {similar to}130 new) {gamma} rays have been assigned to {sup 118}Sb. The deduced {sup 118}Sb level scheme contains more than 70 newmore » levels. On the basis of the internal conversion coefficients, Hauser-Feshbach analysis of ({ital p},{ital n}) reaction cross sections, {gamma}-ray angular distributions, and other arguments spin and parity values have been determined. The parabolic rule'' prediction of the energy splitting of different proton-neutron multiplets enabled the identification of many proton-neutron multiplet states. The energy spectrum and electromagnetic properties have been calculated in the framework of the interacting boson-fermion-fermion--odd-odd truncated quadrupole phonon model, and reasonably good agreement has been obtained between experimental and theoretical results.« less
The Darkside-50 Experiment: Electron Recoil Calibrations and a Global Energy Variable
NASA Astrophysics Data System (ADS)
Hackett, Brianne R.
Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds is done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introducing radioactive sources into or near the detector in a joint effort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in multiple calibration campaigns with both neutron and gamma sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of gamma calibration sources by constructing a global energy variable which takes into account the anti-correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted beta decay spectrum of 39Ar against 39Ar beta decay data collected in the early days of DarkSide-50 while it was filled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can predict energy spectra for the calibration sources and for 39Ar.
The EGRET high energy gamma ray telescope
NASA Technical Reports Server (NTRS)
Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.
1992-01-01
The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.
The EGRET high energy gamma ray telescope
NASA Astrophysics Data System (ADS)
Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.; Michelson, P. F.; von Montigny, C.; Nolan, P. L.; Pinkau, K.; Rothermel, H.; Schneid, E.; Sommer, M.; Sreekumar, P.; Thompson, D. J.
1992-02-01
The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.
Cosmic rays, gamma rays and synchrotron radiation from the Galaxy
Orlando, Elena
2012-07-30
Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.H. Seabury; D.L. Chichester; C.J. Wharton
2008-08-01
Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory’s PINS Chemical Assay System has traditionally used a Cf-252 isotopic neutron source, but recently a Deuterium-Tritium (DT) Electronic Neutron Generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) andmore » high explosive (HE) filled munitions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seabury, E. H.; Chichester, D. L.; Wharton, C. J.
2009-03-10
Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a {sup 252}Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM)more » and high explosive (HE) filled munitions.« less
The Electron Calorimeter (ECAL) Long Duration Balloon Experiment
NASA Technical Reports Server (NTRS)
Guzik, T. G.; Adams, J. H.; Bashindzhagyan, G.; Binns, W. R.; Chang, J.; Cherry, M. L.; Christl, M.; Dowkontt, P.; Ellison, B.; Isbert, J. B.;
2007-01-01
Accurate measurements of the cosmic ray electron energy spectrum in the energy region 50 GeV to greater than 1 TeV may reveal structure caused by the annihilation of exotic dark matter particles and/or individual cosmic ray sources. Here we describe a new long duration balloon (LDB) experiment, ECAL, optimized to directly measure cosmic ray electrons up to several TeV. ECAL includes a double layer silicon matrix, a scintillating optical fiber track imager, a neutron detector and a fully active calorimeter to identify more than 90% of the incident electrons with an energy resolution of about 1.7% while misidentifying only 1 in 200,000 protons and 0.8% of secondary gamma rays as electrons. Two ECAL flights in Antarctica are planned for a total exposure of 50 days with the first flight anticipate for December 2009.
Statistical measurement of the gamma-ray source-count distribution as a function of energy
NASA Astrophysics Data System (ADS)
Zechlin, H.-S.; Cuoco, A.; Donato, F.; Fornengo, N.; Regis, M.
2017-01-01
Photon counts statistics have recently been proven to provide a sensitive observable for characterizing gamma-ray source populations and for measuring the composition of the gamma-ray sky. In this work, we generalize the use of the standard 1-point probability distribution function (1pPDF) to decompose the high-latitude gamma-ray emission observed with Fermi-LAT into: (i) point-source contributions, (ii) the Galactic foreground contribution, and (iii) a diffuse isotropic background contribution. We analyze gamma-ray data in five adjacent energy bands between 1 and 171 GeV. We measure the source-count distribution dN/dS as a function of energy, and demonstrate that our results extend current measurements from source catalogs to the regime of so far undetected sources. Our method improves the sensitivity for resolving point-source populations by about one order of magnitude in flux. The dN/dS distribution as a function of flux is found to be compatible with a broken power law. We derive upper limits on further possible breaks as well as the angular power of unresolved sources. We discuss the composition of the gamma-ray sky and capabilities of the 1pPDF method.
Neutrino Oscillations within the Induced Gravitational Collapse Paradigm of Long Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Becerra, L.; Guzzo, M. M.; Rossi-Torres, F.; Rueda, J. A.; Ruffini, R.; Uribe, J. D.
2018-01-01
The induced gravitational collapse paradigm of long gamma-ray bursts associated with supernovae (SNe) predicts a copious neutrino–antineutrino (ν \\bar{ν }) emission owing to the hypercritical accretion process of SN ejecta onto a neutron star (NS) binary companion. The neutrino emission can reach luminosities of up to 1057 MeV s‑1, mean neutrino energies of 20 MeV, and neutrino densities of 1031 cm‑3. Along their path from the vicinity of the NS surface outward, such neutrinos experience flavor transformations dictated by the neutrino-to-electron-density ratio. We determine the neutrino and electron on the accretion zone and use them to compute the neutrino flavor evolution. For normal and inverted neutrino mass hierarchies and within the two-flavor formalism ({ν }e{ν }x), we estimate the final electronic and nonelectronic neutrino content after two oscillation processes: (1) neutrino collective effects due to neutrino self-interactions where the neutrino density dominates, and (2) the Mikheyev–Smirnov–Wolfenstein effect, where the electron density dominates. We find that the final neutrino content is composed by ∼55% (∼62%) of electronic neutrinos, i.e., {ν }e+{\\bar{ν }}e, for the normal (inverted) neutrino mass hierarchy. The results of this work are the first step toward the characterization of a novel source of astrophysical MeV neutrinos in addition to core-collapse SNe and, as such, deserve further attention.
The Gamma-Ray Imager/Polarimeter for Solar Flares (GRIPS)
NASA Technical Reports Server (NTRS)
Shih, Albert Y.; Lin, Robert P.; Hurford, Gordon J.; Duncan, Nicole A.; Saint-Hilaire, Pascal; Bain, Hazel M.; Boggs, Steven E.; Zoglauer, Andreas C.; Smith, David M.; Tajima, Hiroyasu;
2012-01-01
The balloon-borne Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument will provide a near-optimal combination of high-resolution imaging, spectroscopy, and polarimetry of solar-flare gamma-ray/hard X-ray emissions from approximately 20 keV to greater than approximately 10 MeV. GRIPS will address questions raised by recent solar flare observations regarding particle acceleration and energy release, such as: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? The spectrometer/polarimeter consists of sixteen 3D position-sensitive germanium detectors (3D-GeDs), where each energy deposition is individually recorded with an energy resolution of a few keV FWHM and a spatial resolution of less than 0.1 cubic millimeter. Imaging is accomplished by a single multi-pitch rotating modulator (MPRM), a 2.5-centimeter thick tungsten alloy slit/slat grid with pitches that range quasi-continuously from 1 to 13 millimeters. The MPRM is situated 8 meters from the spectrometer to provide excellent image quality and unparalleled angular resolution at gamma-ray energies (12.5 arcsec FWHM), sufficient to separate 2.2 MeV footpoint sources for almost all flares. Polarimetry is accomplished by analyzing the anisotropy of reconstructed Compton scattering in the 3D-GeDs (i.e., as an active scatterer), with an estimated minimum detectable polarization of a few percent at 150-650 keV in an X-class flare. GRIPS is scheduled for a continental-US engineering test flight in fall 2013, followed by long or ultra-long duration balloon flights in Antarctica.
Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping
Rykovanov, S. G.; Geddes, C. G. R.; Schroeder, C. B.; ...
2016-03-18
Effects of nonlinearity in Thomson scattering of a high intensity laser pulse from electrons are analyzed. Analytic expressions for laser pulse shaping in frequency (chirping) are obtained which control spectrum broadening for high laser pulse intensities. These analytic solutions allow prediction of the spectral form and required laser parameters to avoid broadening. Results of analytical and numerical calculations agree well. The control over the scattered radiation bandwidth allows narrow bandwidth sources to be produced using high scattering intensities, which in turn greatly improves scattering yield for future x- and gamma-ray sources.
Total-dose radiation effects data for semiconductor devices. 1985 supplement. Volume 2, part A
NASA Technical Reports Server (NTRS)
Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.
1986-01-01
Steady-state, total-dose radiation test data, are provided in graphic format for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. This volume provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done using the JPL or Boeing electron accelerator (Dynamitron) which provides a steady-state 2.5 MeV electron beam. However, some radiation exposures were made with a Cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose.
NASA Technical Reports Server (NTRS)
Aharonian, F. A.; Mamidjanian, E. A.; Nikolsky, S. I.; Tukish, E. I.
1985-01-01
The recently observed primary ultra high energy gamma-rays (UHEGR) testify to the cosmic ray (CR) acceleration in the Galaxy. The available data may be interpreted as gamma-ray production due to photomeson production in CR sources.
Selected topics in particle accelerators: Proceedings of the CAP meetings. Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsa, Z.
1995-10-01
This Report includes copies of transparencies and notes from the presentations made at the Center for Accelerator Physics at Brookhaven National Laboratory Editing and changes to the authors` contributions in this Report were made only to fulfill the publication requirements. This volume includes notes and transparencies on nine presentations: ``The Energy Exchange and Efficiency Consideration in Klystrons``, ``Some Properties of Microwave RF Sources for Future Colliders + Overview of Microwave Generation Activity at the University of Maryland``, ``Field Quality Improvements in Superconducting Magnets for RHIC``, ``Hadronic B-Physics``, ``Spiking Pulses from Free Electron Lasers: Observations and Computational Models``, ``Crystalline Beams inmore » Circular Accelerators``, ``Accumulator Ring for AGS & Recent AGS Performance``, ``RHIC Project Machine Status``, and ``Gamma-Gamma Colliders.``« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinnett, Jacob; Venkataraman, Ram
The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.
Changes in the U.S. Primary Standards for the Air Kerma From Gamma-Ray Beams
Seltzer, Stephen M.; Bergstrom, Paul M.
2003-01-01
Monte Carlo photon-electron transport calculations have been done to derive new wall corrections for the six NBS-NIST standard graphite-wall, air-ionization cavity chambers that serve as the U.S. national primary standard for air kerma (and exposure) for gamma rays from 60Co, 137Cs, and 192Ir sources. The data developed for and from these calculations have also been used to refine a number of other factors affecting the standards. The largest changes are due to the new wall corrections, and the total changes are +0.87 % to +1.11 % (depending on the chamber) for 60Co beams, +0.64 % to +1.07 % (depending on the chamber) for 137Cs beams, and −0.06 % for the single chamber used in the measurement of the standardized 192Ir source. The primary standards for air kerma will be adjusted in the near future to reflect the changes in factors described in this work. PMID:27413615
Changes in the U.S. Primary Standards for the Air Kerma From Gamma-Ray Beams.
Seltzer, Stephen M; Bergstrom, Paul M
2003-01-01
Monte Carlo photon-electron transport calculations have been done to derive new wall corrections for the six NBS-NIST standard graphite-wall, air-ionization cavity chambers that serve as the U.S. national primary standard for air kerma (and exposure) for gamma rays from (60)Co, (137)Cs, and (192)Ir sources. The data developed for and from these calculations have also been used to refine a number of other factors affecting the standards. The largest changes are due to the new wall corrections, and the total changes are +0.87 % to +1.11 % (depending on the chamber) for (60)Co beams, +0.64 % to +1.07 % (depending on the chamber) for (137)Cs beams, and -0.06 % for the single chamber used in the measurement of the standardized (192)Ir source. The primary standards for air kerma will be adjusted in the near future to reflect the changes in factors described in this work.
A Study of Spatially-Coincident IceCube Neutrinos and Fermi Gamma-Ray Sources
NASA Astrophysics Data System (ADS)
Seymour, Hannah; Mukherjee, Reshmi; Shaevitz, Michael; Santander, Marcos
2016-03-01
The IceCube neutrino telescope has detected very-high-energy neutrino events with energies between several hundred TeV to a few PeV beginning inside the detector. These events are unlikely to have originated in the atmosphere, and are suspected to come from astrophysical sources, the likes of which can also be observed in gamma rays by the Fermi Gamma-Ray Space Telescope. We present an analysis of archival GeV gamma-ray data collected with the Large Area Telescope onboard the Fermi satellite to search for gamma-ray sources spatially coincident with the locations of high-enery muon neutrinos detected by IceCube. The combined detection of gamma rays and neutrinos from an astrophysical source will allow us to identify cosmic-ray acceleration sites. With gratitude to the Nevis Laboratories REU program.
Mihailescu, Lucian; Vetter, Kai M
2013-08-27
Apparatus for detecting and locating a source of gamma rays of energies ranging from 10-20 keV to several MeV's includes plural gamma ray detectors arranged in a generally closed extended array so as to provide Compton scattering imaging and coded aperture imaging simultaneously. First detectors are arranged in a spaced manner about a surface defining the closed extended array which may be in the form a circle, a sphere, a square, a pentagon or higher order polygon. Some of the gamma rays are absorbed by the first detectors closest to the gamma source in Compton scattering, while the photons that go unabsorbed by passing through gaps disposed between adjacent first detectors are incident upon second detectors disposed on the side farthest from the gamma ray source, where the first spaced detectors form a coded aperture array for two or three dimensional gamma ray source detection.
Radiation response of industrial materials: Dose-rate and morphology implications
NASA Astrophysics Data System (ADS)
Berejka, Anthony J.
2007-08-01
Industrial uses of ionizing radiation mostly rely upon high current, high dose-rate (100 kGy/s) electron beam (EB) accelerators. To a lesser extent, industry uses low dose-rate (2.8 × 10-3 kGy/s) radioactive Cobalt-60 as a gamma source, generally for some rather specific purposes, as medical device sterilization and the treatment of food and foodstuffs. There are nearly nine times as many (∼1400) high current EB units in commercial operation than gamma sources (∼160). However, gamma sources can be easily scaled-down so that much research on materials effects is conducted using gamma radiation. Likewise, laboratories are more likely to have very low beam current and consequently low dose-rate accelerators such as Van de Graaff generators and linear accelerators. With the advent of very high current EB accelerators, X-ray processing has become an industrially viable option. With X-rays from high power sources, dose-rates can be modulated based upon accelerator power and the attenuation of the X-ray by the distance of the material from the X-ray target. Dose and dose-rate dependence has been found to be of consequence in several commercial applications which can employ the use of ionizing radiation. The combination of dose and dose-rate dependence of the polymerization and crosslinking of wood impregnants and of fiber composite matrix materials can yield more economically viable results which have promising commercial potential. Monomer and oligomer structure also play an important role in attaining these desirable results. The influence of morphology is shown on the radiation response of olefin polymers, such as ethylene, propylene and isobutylene polymers and their copolymers. Both controlled morphology and controlled dose-rate have commercial consequences. These are also impacted both by the adroit selection of materials and through the possible use of X-ray processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, Y.; Kataoka, J.; Takahashi, Y.
2012-04-10
We report the results of a Suzaku X-ray imaging study of NGC 6251, a nearby giant radio galaxy with intermediate FR I/II radio properties. Our pointing direction was centered on the {gamma}-ray emission peak recently discovered with the Fermi Large Area Telescope (LAT) around the position of the northwest (NW) radio lobe 15 arcmin offset from the nucleus. After subtracting two 'off-source' pointings adjacent to the radio lobe and removing possible contaminants in the X-ray Imaging Spectrometer field of view, we found significant residual X-ray emission most likely diffuse in nature. The spectrum of the excess X-ray emission is wellmore » fitted by a power law with a photon index {Gamma} = 1.90 {+-} 0.15 and a 0.5-8 keV flux of 4 Multiplication-Sign 10{sup -13} erg cm{sup -2} s{sup -1}. We interpret this diffuse X-ray emission component as being due to inverse Compton upscattering of the cosmic microwave background photons by ultrarelativistic electrons within the lobe, with only a minor contribution from the beamed emission of the large-scale jet. Utilizing archival radio data for the source, we demonstrate by means of broadband spectral modeling that the {gamma}-ray flux of the Fermi-LAT source 2FGL J1629.4+8236 may well be accounted for by the high-energy tail of the inverse Compton continuum of the lobe. Thus, this claimed association of {gamma}-rays from the NW lobe of NGC 6251, together with the recent Fermi-LAT imaging of the extended lobes of Centaurus A, indicates that particles may be efficiently (re-)accelerated up to ultrarelativistic energies within extended radio lobes of nearby radio galaxies in general.« less
The radiated electromagnetic field from collimated gamma rays and electron beams in air
NASA Astrophysics Data System (ADS)
Tumolillo, T. A.; Wondra, J. P.; Hobbs, W. E.; Smith, K.
1980-12-01
Nuclear weapons effects computer codes are used to study the electromagnetic field produced by gamma rays or by highly relativistic electron beams moving through the air. Consideration is given to large-area electron and gamma beams, small-area electron beams, variation of total beam current, variation of pressure in the beam channel, variation of the beam rise time, variation of beam radius, far-field radiated signals, and induced current on a system from a charged-particle beam. The work has application to system EMP coupling from nuclear weapons or charged-particle-beam weapons.
NASA Astrophysics Data System (ADS)
Abdo, Aws Ahmad
2007-08-01
Very high energy gamma-rays can be used to probe some of the most powerful astrophysical objects in the universe, such as active galactic nuclei, supernova remnants and pulsar-powered nebulae. The diffuse gamma radiation arising from the interaction of cosmic-ray particles with matter and radiation in the Galaxy is one of the few probes available to study the origin of cosmic- rays. Milagro is a water Cherenkov detector that continuously views the entire overhead sky. The large field-of-view combined with the long observation time makes Milagro the most sensitive instrument available for the study of large, low surface brightness sources such as the diffuse gamma radiation arising from interactions of cosmic radiation with interstellar matter. In this thesis I present a new background rejection technique for the Milagro detector through the development of a new gamma hadron separation variable. The Abdo variable, A 4 , coupled with the weighting analysis technique significantly improves the sensitivity of the Milagro detector. This new analysis technique resulted in the first discoveries in Milagro. Four localized sources of TeV gamma-ray emission have been discovered, three of which are in the Cygnus region of the Galaxy and one closer to the Galactic center. In addition to these localized sources, a diffuse emission of TeV gamma-rays has been discovered from the Cygnus region of the Galaxy as well. However, the TeV gamma-ray flux as measured at ~12 TeV from the Cygnus region exceeds that predicted from a conventional model of cosmic-ray production and propagation. This observation indicates the existence of either hard-spectrum cosmic-ray sources and/or other sources of TeV gamma rays in the region. Other TeV gamma-ray source candidates with post-trial statistical significances of > 4s have also been observed in the Galactic plane.
Is the gamma-ray source 3FGL J2212.5+0703 a dark matter subhalo?
NASA Astrophysics Data System (ADS)
Bertoni, Bridget; Hooper, Dan; Linden, Tim
2016-05-01
In a previous paper, we pointed out that the gamma-ray source 3FGL J2212.5+\\linebreak 0703 shows evidence of being spatially extended. If a gamma-ray source without detectable emission at other wavelengths were unambiguously determined to be spatially extended, it could not be explained by known astrophysics, and would constitute a smoking gun for dark matter particles annihilating in a nearby subhalo. With this prospect in mind, we scrutinize the gamma-ray emission from this source, finding that it prefers a spatially extended profile over that of a single point-like source with 5.1σ statistical significance. We also use a large sample of active galactic nuclei and other known gamma-rays sources as a control group, confirming, as expected, that statistically significant extension is rare among such objects. We argue that the most likely (non-dark matter) explanation for this apparent extension is a pair of bright gamma-ray sources that serendipitously lie very close to each other, and estimate that there is a chance probability of ~2% that such a pair would exist somewhere on the sky. In the case of 3FGL J2212.5+0703, we test an alternative model that includes a second gamma-ray point source at the position of the radio source BZQ J2212+0646, and find that the addition of this source alongside a point source at the position of 3FGL J2212.5+0703 yields a fit of comparable quality to that obtained for a single extended source. If 3FGL J2212.5+0703 is a dark matter subhalo, it would imply that dark matter particles have a mass of ~18-33 GeV and an annihilation cross section on the order of σ v ~ 10-26 cm3/s (for the representative case of annihilations to bbar b), similar to the values required to generate the Galactic Center gamma-ray excess.
Is the gamma-ray source 3FGL J2212.5+0703 a dark matter subhalo?
Bertoni, Bridget; Hooper, Dan; Linden, Tim
2016-05-23
In a previous study, we pointed out that the gamma-ray source 3FGL J2212.5+0703 shows evidence of being spatially extended. If a gamma-ray source without detectable emission at other wavelengths were unambiguously determined to be spatially extended, it could not be explained by known astrophysics, and would constitute a smoking gun for dark matter particles annihilating in a nearby subhalo. With this prospect in mind, we scrutinize the gamma-ray emission from this source, finding that it prefers a spatially extended profile over that of a single point-like source with 5.1σ statistical significance. We also use a large sample of active galactic nuclei and other known gamma-rays sources as a control group, confirming, as expected, that statistically significant extension is rare among such objects. We argue that the most likely (non-dark matter) explanation for this apparent extension is a pair of bright gamma-ray sources that serendipitously lie very close to each other, and estimate that there is a chance probability of ~2% that such a pair would exist somewhere on the sky. In the case of 3FGL J2212.5+0703, we test an alternative model that includes a second gamma-ray point source at the position of the radio source BZQ J2212+0646, and find that the addition of this source alongside a point source at the position of 3FGL J2212.5+0703 yields a fit of comparable quality to that obtained for a single extended source. If 3FGL J2212.5+0703 is a dark matter subhalo, it would imply that dark matter particles have a mass of ~18–33 GeV and an annihilation cross section on the order of σv ~ 10 –26 cm(3)/s (for the representative case of annihilations tomore » $$b\\bar{b}$$), similar to the values required to generate the Galactic Center gamma-ray excess.« less
Is the gamma-ray source 3FGL J2212.5+0703 a dark matter subhalo?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertoni, Bridget; Hooper, Dan; Linden, Tim
In a previous study, we pointed out that the gamma-ray source 3FGL J2212.5+0703 shows evidence of being spatially extended. If a gamma-ray source without detectable emission at other wavelengths were unambiguously determined to be spatially extended, it could not be explained by known astrophysics, and would constitute a smoking gun for dark matter particles annihilating in a nearby subhalo. With this prospect in mind, we scrutinize the gamma-ray emission from this source, finding that it prefers a spatially extended profile over that of a single point-like source with 5.1σ statistical significance. We also use a large sample of active galactic nuclei and other known gamma-rays sources as a control group, confirming, as expected, that statistically significant extension is rare among such objects. We argue that the most likely (non-dark matter) explanation for this apparent extension is a pair of bright gamma-ray sources that serendipitously lie very close to each other, and estimate that there is a chance probability of ~2% that such a pair would exist somewhere on the sky. In the case of 3FGL J2212.5+0703, we test an alternative model that includes a second gamma-ray point source at the position of the radio source BZQ J2212+0646, and find that the addition of this source alongside a point source at the position of 3FGL J2212.5+0703 yields a fit of comparable quality to that obtained for a single extended source. If 3FGL J2212.5+0703 is a dark matter subhalo, it would imply that dark matter particles have a mass of ~18–33 GeV and an annihilation cross section on the order of σv ~ 10 –26 cm(3)/s (for the representative case of annihilations tomore » $$b\\bar{b}$$), similar to the values required to generate the Galactic Center gamma-ray excess.« less
Electron kinetic effects in atmosphere breakdown by an intense electromagnetic pulse.
Solovyev, A A; Terekhin, V A; Tikhonchuk, V T; Altgilbers, L L
1999-12-01
A physical model is proposed for description of electron kinetics driven by a powerful electromagnetic pulse in the Earth's atmosphere. The model is based on a numerical solution to the Boltzmann kinetic equation for two groups of electrons. Slow electrons (with energies below a few keV) are described in a two-term approximation assuming a weak anisotropy of the electron distribution function. Fast electrons (with energies above a few keV) are described by a modified macroparticle method, taking into account the electron acceleration in the electric field, energy losses in the continuous deceleration approximation, and the multiple pitch angle scattering. The model is applied to a problem of the electric discharge in a nitrogen, which is preionized by an external gamma-ray source. It is shown that the runaway electrons have an important effect on the energy distribution of free electrons, and on the avalanche ionization rate. This mechanism might explain the observation of multiple lightning discharges observed in the Ivy-Mike thermonuclear test in the early 1950's.
Discovery of a Nonblazar Gamma-Ray Transient Source Near the Galactic Plane: GRO J1838-04
NASA Technical Reports Server (NTRS)
Tavani, M.; Oliversen, Ronald (Technical Monitor)
2001-01-01
We report the discovery of a remarkable gamma-ray transient source near the Galactic plane, GRO J1838-04. This source was serendipitously discovered by EGRET in 1995 June with a peak intensity of approx. (4 +/- 1) x 10(exp -6) photons/sq cm s (for photon energies larger than 100 MeV) and a 5.9 sigma significance. At that time, GRO J1838-04 was the second brightest gamma-ray source in the sky. A subsequent EGRET pointing in 1995 late September detected the source at a flux smaller than its peak value by a factor of approx. 7. We determine that no radio-loud spectrally flat blazar is within the error box of GRO J1838-04. We discuss the origin of the gamma-ray transient source and show that interpretations in terms of active galactic nuclei or isolated pulsars are highly problematic. GRO J1838-04 provides strong evidence for the existence of a new class of variable gamma-ray sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvi, Marco
For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories andmore » by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.« less
Review of Monte Carlo simulations for backgrounds from radioactivity
NASA Astrophysics Data System (ADS)
Selvi, Marco
2013-08-01
For all experiments dealing with the rare event searches (neutrino, dark matter, neutrino-less double-beta decay), the reduction of the radioactive background is one of the most important and difficult tasks. There are basically two types of background, electron recoils and nuclear recoils. The electron recoil background is mostly from the gamma rays through the radioactive decay. The nuclear recoil background is from neutrons from spontaneous fission, (α, n) reactions and muoninduced interactions (spallations, photo-nuclear and hadronic interaction). The external gammas and neutrons from the muons and laboratory environment, can be reduced by operating the detector at deep underground laboratories and by placing active or passive shield materials around the detector. The radioactivity of the detector materials also contributes to the background; in order to reduce it a careful screening campaign is mandatory to select highly radio-pure materials. In this review I present the status of current Monte Carlo simulations aimed to estimate and reproduce the background induced by gamma and neutron radioactivity of the materials and the shield of rare event search experiment. For the electromagnetic background a good level of agreement between the data and the MC simulation has been reached by the XENON100 and EDELWEISS experiments, using the GEANT4 toolkit. For the neutron background, a comparison between the yield of neutrons from spontaneous fission and (α, n) obtained with two dedicated softwares, SOURCES-4A and the one developed by Mei-Zhang-Hime, show a good overall agreement, with total yields within a factor 2 difference. The energy spectra from SOURCES-4A are in general smoother, while those from MZH presents sharp peaks. The neutron propagation through various materials has been studied with two MC codes, GEANT4 and MCNPX, showing a reasonably good agreement, inside 50% discrepancy.
Ground-based very high energy gamma ray astronomy: Observational highlights
NASA Technical Reports Server (NTRS)
Turver, K. E.
1986-01-01
It is now more than 20 years since the first ground based gamma ray experiments involving atmospheric Cerenkov radiation were undertaken. The present highlights in observational ground-based very high energy (VHE) gamma ray astronomy and the optimism about an interesting future for the field follow progress in these areas: (1) the detection at increased levels of confidence of an enlarged number of sources so that at present claims were made for the detection, at the 4 to 5 sd level of significance, of 8 point sources; (2) the replication of the claimed detections with, for the first time, confirmation of the nature and detail of the emission; and (3) the extension of gamma ray astronomy to the ultra high energy (UHE) domain. The pattern, if any, to emerge from the list of sources claimed so far is that X-ray binary sources appear to be copious emitters of gamma rays over at least 4 decades of energy. These X-ray sources which behave as VHE and UHE gamma ray emitters are examined.
NASA Astrophysics Data System (ADS)
Kocevski, D.; Ajello, M.; Buson, S.; Buehler, R.; Giomi, M.
2016-02-01
During the week between February 8 and 15, 2016, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, observed gamma-ray activity from a new transient source, Fermi J1654-1055.
GLAST and Ground-Based Gamma-Ray Astronomy
NASA Technical Reports Server (NTRS)
McEnery, Julie
2008-01-01
The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.
NASA Astrophysics Data System (ADS)
Wu, J.; Clark, C. J.; Pletsch, H. J.; Guillemot, L.; Johnson, T. J.; Torne, P.; Champion, D. J.; Deneva, J.; Ray, P. S.; Salvetti, D.; Kramer, M.; Aulbert, C.; Beer, C.; Bhattacharyya, B.; Bock, O.; Camilo, F.; Cognard, I.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Ferrara, E. C.; Kerr, M.; Machenschalk, B.; Ransom, S. M.; Sanpa-Arsa, S.; Wood, K.
2018-02-01
We report on the analysis of 13 gamma-ray pulsars discovered in the Einstein@Home blind search survey using Fermi Large Area Telescope (LAT) Pass 8 data. The 13 new gamma-ray pulsars were discovered by searching 118 unassociated LAT sources from the third LAT source catalog (3FGL), selected using the Gaussian Mixture Model machine-learning algorithm on the basis of their gamma-ray emission properties being suggestive of pulsar magnetospheric emission. The new gamma-ray pulsars have pulse profiles and spectral properties similar to those of previously detected young gamma-ray pulsars. Follow-up radio observations have revealed faint radio pulsations from two of the newly discovered pulsars and enabled us to derive upper limits on the radio emission from the others, demonstrating that they are likely radio-quiet gamma-ray pulsars. We also present results from modeling the gamma-ray pulse profiles and radio profiles, if available, using different geometric emission models of pulsars. The high discovery rate of this survey, despite the increasing difficulty of blind pulsar searches in gamma rays, suggests that new systematic surveys such as presented in this article should be continued when new LAT source catalogs become available.
The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope
Isabelle Grenier
2018-04-17
The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008. Â In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.
Wu, Heyu; Tai, Yuan-Chuan
2011-09-07
To meet the growing demand for functional imaging technology for use in studying plant biology, we are developing a novel technique that permits simultaneous imaging of escaped positrons and coincidence gammas from annihilation of positrons within an intake leaf. The multi-modality imaging system will include two planar detectors: one is a typical PET detector array and the other is a phoswich imaging detector that detects both beta and gamma. The novel phoswich detector is made of a plastic scintillator, a lutetium oxyorthosilicate (LSO) array, and a position sensitive photomultiplier tube (PS-PMT). The plastic scintillator serves as a beta detector, while the LSO array serves as a gamma detector and light guide that couples scintillation light from the plastic detector to the PMT. In our prototype, the PMT signal was fed into the Siemens QuickSilver electronics to achieve shaping and waveform sampling. Pulse-shape discrimination based on the detectors' decay times (2.1 ns for plastic and 40 ns for LSO) was used to differentiate beta and gamma events using the common PMT signals. Using our prototype phoswich detector, we simultaneously measured a beta image and gamma events (in single mode). The beta image showed a resolution of 1.6 mm full-width-at-half-maximum using F-18 line sources. Because this shows promise for plant-scale imaging, our future plans include development of a fully functional simultaneous beta-and-coincidence-gamma imager with sub-millimeter resolution imaging capability for both modalities.
Gamma-ray burst theory: Back to the drawing board
NASA Technical Reports Server (NTRS)
Harding, Alice K.
1994-01-01
Gamma-ray bursts have always been intriguing sources to study in terms of particle acceleration, but not since their discovery two decades ago has the theory of these objects been in such turmoil. Prior to the launch of Compton Gamma-Ray Observatory and observations by Burst and Transient Source Experiment (BATSE), there was strong evidence pointing to magnetized Galactic neutron stars as the sources of gamma-ray bursts. However, since BATSE the observational picture has changed dramatically, requiring much more distant and possibly cosmological sources. I review the history of gamma-ray burst theory from the era of growing consensus for nearby neutron stars to the recent explosion of halo and cosmological models and the impact of the present confusion on the particle acceleration problem.
Abdollahi, S.; Ackermann, M.; Ajello, M.; ...
2017-03-01
We present the Large Area Telescope on board the Fermi Gamma-ray Space Telescope that has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10 -3. We take into account systematic effects that could mimic true anisotropies at thismore » level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. Lastly, the present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.« less
Multiwavelength observations of unidentified high energy gamma ray sources
NASA Technical Reports Server (NTRS)
Halpern, Jules P.
1993-01-01
As was the case for COS B, the majority of high-energy (greater than 100 MeV) gamma-ray sources detected by the EGRET instrument on GRO are not immediately identifiable with cataloged objects at other wavelengths. These persistent gamma-ray sources are, next to the gamma-ray bursts, the least understood objects in the universe. Even a rudimentary understanding of their nature awaits identifications and follow-up work at other wavelengths to tell us what they are. The as yet unidentified sources are potentially the most interesting, since they may represent unrecognized new classes of astronomical objects, such as radio-quiet pulsars or new types of active galactic nuclei (AGN's). This two-year investigation is intended to support the analysis, correlation, and theoretical interpretation of data that we are obtaining at x ray, optical, and radio wavelengths in order to render the gamma-ray data interpretable. According to plan, in the first year concentration was on the identification and study of Geminga. The second year will be devoted to studies of similar unidentified gamma-ray sources which will become available in the first EGRET catalogs. The results obtained so far are presented in the two papers which are reproduced in the Appendix. In these papers, we discuss the pulse profiles of Geminga, the geometry and efficiency of the magnetospheric accelerator, the distance to Geminga, the implications for theories of polar cap heating, the effect of the magnetic field on the surface emission and environment of the neutron star, and possible interpretations of a radio-quiet Geminga. The implications of the other gamma-ray pulsars which were discovered to have high gamma-ray efficiency are also discussed, and the remaining unidentified COS B sources are attributed to a population of efficient gamma-ray sources, some of which may be radio quiet.
Constraints on a Proton Synchrotron Origin of VHE Gamma Rays from the Extended Jet of AP Librae
NASA Astrophysics Data System (ADS)
Pratim Basumallick, Partha; Gupta, Nayantara
2017-07-01
The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires an extreme proton energy of 3.98 × 1021 eV and a high magnetic field of 1 mG of the extended jet with jet power ˜5 × 1048 erg s-1 in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.
Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946
NASA Astrophysics Data System (ADS)
Acero, F.; Aloisio, R.; Amans, J.; Amato, E.; Antonelli, L. A.; Aramo, C.; Armstrong, T.; Arqueros, F.; Asano, K.; Ashley, M.; Backes, M.; Balazs, C.; Balzer, A.; Bamba, A.; Barkov, M.; Barrio, J. A.; Benbow, W.; Bernlöhr, K.; Beshley, V.; Bigongiari, C.; Biland, A.; Bilinsky, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blasi, P.; Blazek, J.; Boisson, C.; Bonanno, G.; Bonardi, A.; Bonavolontà, C.; Bonnoli, G.; Braiding, C.; Brau-Nogué, S.; Bregeon, J.; Brown, A. M.; Bugaev, V.; Bulgarelli, A.; Bulik, T.; Burton, M.; Burtovoi, A.; Busetto, G.; Böttcher, M.; Cameron, R.; Capalbi, M.; Caproni, A.; Caraveo, P.; Carosi, R.; Cascone, E.; Cerruti, M.; Chaty, S.; Chen, A.; Chen, X.; Chernyakova, M.; Chikawa, M.; Chudoba, J.; Cohen-Tanugi, J.; Colafrancesco, S.; Conforti, V.; Contreras, J. L.; Costa, A.; Cotter, G.; Covino, S.; Covone, G.; Cumani, P.; Cusumano, G.; D'Ammando, F.; D'Urso, D.; Daniel, M.; Dazzi, F.; De Angelis, A.; De Cesare, G.; De Franco, A.; De Frondat, F.; de Gouveia Dal Pino, E. M.; De Lisio, C.; de los Reyes Lopez, R.; De Lotto, B.; de Naurois, M.; De Palma, F.; Del Santo, M.; Delgado, C.; della Volpe, D.; Di Girolamo, T.; Di Giulio, C.; Di Pierro, F.; Di Venere, L.; Doro, M.; Dournaux, J.; Dumas, D.; Dwarkadas, V.; Díaz, C.; Ebr, J.; Egberts, K.; Einecke, S.; Elsässer, D.; Eschbach, S.; Falceta-Goncalves, D.; Fasola, G.; Fedorova, E.; Fernández-Barral, A.; Ferrand, G.; Fesquet, M.; Fiandrini, E.; Fiasson, A.; Filipovíc, M. D.; Fioretti, V.; Font, L.; Fontaine, G.; Franco, F. J.; Freixas Coromina, L.; Fujita, Y.; Fukui, Y.; Funk, S.; Förster, A.; Gadola, A.; Garcia López, R.; Garczarczyk, M.; Giglietto, N.; Giordano, F.; Giuliani, A.; Glicenstein, J.; Gnatyk, R.; Goldoni, P.; Grabarczyk, T.; Graciani, R.; Graham, J.; Grandi, P.; Granot, J.; Green, A. J.; Griffiths, S.; Gunji, S.; Hakobyan, H.; Hara, S.; Hassan, T.; Hayashida, M.; Heller, M.; Helo, J. C.; Hinton, J.; Hnatyk, B.; Huet, J.; Huetten, M.; Humensky, T. B.; Hussein, M.; Hörandel, J.; Ikeno, Y.; Inada, T.; Inome, Y.; Inoue, S.; Inoue, T.; Inoue, Y.; Ioka, K.; Iori, M.; Jacquemier, J.; Janecek, P.; Jankowsky, D.; Jung, I.; Kaaret, P.; Katagiri, H.; Kimeswenger, S.; Kimura, S.; Knödlseder, J.; Koch, B.; Kocot, J.; Kohri, K.; Komin, N.; Konno, Y.; Kosack, K.; Koyama, S.; Kraus, M.; Kubo, H.; Kukec Mezek, G.; Kushida, J.; La Palombara, N.; Lalik, K.; Lamanna, G.; Landt, H.; Lapington, J.; Laporte, P.; Lee, S.; Lees, J.; Lefaucheur, J.; Lenain, J.-P.; Leto, G.; Lindfors, E.; Lohse, T.; Lombardi, S.; Longo, F.; Lopez, M.; Lucarelli, F.; Luque-Escamilla, P. L.; López-Coto, R.; Maccarone, M. C.; Maier, G.; Malaguti, G.; Mandat, D.; Maneva, G.; Mangano, S.; Marcowith, A.; Martí, J.; Martínez, M.; Martínez, G.; Masuda, S.; Maurin, G.; Maxted, N.; Melioli, C.; Mineo, T.; Mirabal, N.; Mizuno, T.; Moderski, R.; Mohammed, M.; Montaruli, T.; Moralejo, A.; Mori, K.; Morlino, G.; Morselli, A.; Moulin, E.; Mukherjee, R.; Mundell, C.; Muraishi, H.; Murase, K.; Nagataki, S.; Nagayoshi, T.; Naito, T.; Nakajima, D.; Nakamori, T.; Nemmen, R.; Niemiec, J.; Nieto, D.; Nievas-Rosillo, M.; Nikołajuk, M.; Nishijima, K.; Noda, K.; Nogues, L.; Nosek, D.; Novosyadlyj, B.; Nozaki, S.; Ohira, Y.; Ohishi, M.; Ohm, S.; Okumura, A.; Ong, R. A.; Orito, R.; Orlati, A.; Ostrowski, M.; Oya, I.; Padovani, M.; Palacio, J.; Palatka, M.; Paredes, J. M.; Pavy, S.; Pe'er, A.; Persic, M.; Petrucci, P.; Petruk, O.; Pisarski, A.; Pohl, M.; Porcelli, A.; Prandini, E.; Prast, J.; Principe, G.; Prouza, M.; Pueschel, E.; Pühlhofer, G.; Quirrenbach, A.; Rameez, M.; Reimer, O.; Renaud, M.; Ribó, M.; Rico, J.; Rizi, V.; Rodriguez, J.; Rodriguez Fernandez, G.; Rodríguez Vázquez, J. J.; Romano, P.; Romeo, G.; Rosado, J.; Rousselle, J.; Rowell, G.; Rudak, B.; Sadeh, I.; Safi-Harb, S.; Saito, T.; Sakaki, N.; Sanchez, D.; Sangiorgi, P.; Sano, H.; Santander, M.; Sarkar, S.; Sawada, M.; Schioppa, E. J.; Schoorlemmer, H.; Schovanek, P.; Schussler, F.; Sergijenko, O.; Servillat, M.; Shalchi, A.; Shellard, R. C.; Siejkowski, H.; Sillanpää, A.; Simone, D.; Sliusar, V.; Sol, H.; Stanič, S.; Starling, R.; Stawarz, Ł.; Stefanik, S.; Stephan, M.; Stolarczyk, T.; Szanecki, M.; Szepieniec, T.; Tagliaferri, G.; Tajima, H.; Takahashi, M.; Takeda, J.; Tanaka, M.; Tanaka, S.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Terada, Y.; Tescaro, D.; Teshima, M.; Testa, V.; Thoudam, S.; Tokanai, F.; Torres, D. F.; Torresi, E.; Tosti, G.; Townsley, C.; Travnicek, P.; Trichard, C.; Trifoglio, M.; Tsujimoto, S.; Vagelli, V.; Vallania, P.; Valore, L.; van Driel, W.; van Eldik, C.; Vandenbroucke, J.; Vassiliev, V.; Vecchi, M.; Vercellone, S.; Vergani, S.; Vigorito, C.; Vorobiov, S.; Vrastil, M.; Vázquez Acosta, M. L.; Wagner, S. J.; Wagner, R.; Wakely, S. P.; Walter, R.; Ward, J. E.; Watson, J. J.; Weinstein, A.; White, M.; White, R.; Wierzcholska, A.; Wilcox, P.; Williams, D. A.; Wischnewski, R.; Wojcik, P.; Yamamoto, T.; Yamamoto, H.; Yamazaki, R.; Yanagita, S.; Yang, L.; Yoshida, T.; Yoshida, M.; Yoshiike, S.; Yoshikoshi, T.; Zacharias, M.; Zampieri, L.; Zanin, R.; Zavrtanik, M.; Zavrtanik, D.; Zdziarski, A.; Zech, A.; Zechlin, H.; Zhdanov, V.; Ziegler, A.; Zorn, J.
2017-05-01
We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (I.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.
Some neutron and gamma radiation characteristics of plutonium cermet fuel for isotopic power sources
NASA Technical Reports Server (NTRS)
Neff, R. A.; Anderson, M. E.; Campbell, A. R.; Haas, F. X.
1972-01-01
Gamma and neutron measurements on various types of plutonium sources are presented in order to show the effects of O-17, O-18 F-19, Pu-236, age of the fuel, and size of the source on the gamma and neutron spectra. Analysis of the radiation measurements shows that fluorine is the main contributor to the neutron yields from present plutonium-molybdenum cermet fuel, while both fluorine and Pu-236 daughters contribute significantly to the gamma ray intensities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Xiao-Chuan; Liu, Ruo-Yu; Wang, Xiang-Yu, E-mail: xywang@nju.edu.cn
The nearly isotropic distribution of teraelectronvolt to petaelectronvolt neutrinos recently detected by the IceCube Collaboration suggests that they come from sources at a distance beyond our Galaxy, but how far away they are is largely unknown because of a lack of any associations with known sources. In this paper, we propose that the cumulative TeV gamma-ray emission accompanying the production of neutrinos can be used to constrain the distance of these neutrino sources, since the opacity of TeV gamma rays due to absorption by the extragalactic background light depends on the distance these TeV gamma rays have traveled. As themore » diffuse extragalactic TeV background measured by Fermi is much weaker than the expected cumulative flux associated with IceCube neutrinos, the majority of IceCube neutrinos, if their sources are transparent to TeV gamma rays, must come from distances larger than the horizon of TeV gamma rays. We find that above 80% of the IceCube neutrinos should come from sources at redshift z > 0.5. Thus, the chance of finding nearby sources correlated with IceCube neutrinos would be small. We also find that, to explain the flux of neutrinos under the TeV gamma-ray emission constraint, the redshift evolution of neutrino source density must be at least as fast as the cosmic star formation rate.« less
INVERSE COMPTON SCATTERING MODEL FOR X-RAY EMISSION OF THE GAMMA-RAY BINARY LS 5039
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, M. S.; Takahara, F.
2012-12-20
We propose a model for the gamma-ray binary LS 5039 in which the X-ray emission is due to the inverse Compton (IC) process instead of the synchrotron radiation. Although the synchrotron model has been discussed in previous studies, it requires a strong magnetic field which leads to a severe suppression of the TeV gamma-ray flux in conflict with H.E.S.S. observations. In this paper, we calculate the IC emission by low energy electrons ({gamma}{sub e} {approx}< 10{sup 3}) in the Thomson regime. We find that IC emission of the low energy electrons can explain the X-ray flux and spectrum observed withmore » Suzaku if the minimum Lorentz factor of injected electrons {gamma}{sub min} is around 10{sup 3}. In addition, we show that the Suzaku light curve is well reproduced if {gamma}{sub min} varies in proportion to the Fermi flux when the distribution function of injected electrons at higher energies is fixed. We conclude that the emission from LS 5039 is well explained by the model with the IC emission from electrons whose injection properties are dependent on the orbital phase. Since the X-ray flux is primarily determined by the total number of cooling electrons, this conclusion is rather robust, although some mismatches between the model and observations at the GeV band remain in the present formulation.« less
Multiwavelength Studies of the Peculiar Gamma-ray Source 3EG J1835+5918
NASA Technical Reports Server (NTRS)
Reimer, O.; Brazier, K. T. S.; Carraminana, A.; Kanbach, G.; Nolan, P. L.; Thompson, D. J.
1999-01-01
The source 3EG J1835+5918 was discovered early in the CGRO (Compton Gamma Ray Observatory) mission by EGRET as a bright unidentified gamma-ray source outside the galactic plane. Especially remarkable, it has not been possible to identify this object with any known counterpart in any other wavelengths band since then. Analyzing our recent ROSAT HRI observation, for the first time we are able to suggest X-ray counterparts of 3EG J1835+5918. The discovered X-ray sources were subject of deep optical investigations in order to reveal their nature and conclude on the possibility of being counterparts for this peculiar gamma-ray source.
Apparatus and method for detecting gamma radiation
Sigg, Raymond A.
1994-01-01
A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.
Developments in high-precision gamma-ray burst source studies
NASA Technical Reports Server (NTRS)
Cline, T. L.
1982-01-01
The source location data analyzed by the first and second interplanetary gamma ray burst spacecraft networks are reviewed. The possibilities of additional networks and of related studies in other disciplines, and the prospects for real time optical transient observations and for the definition of gamma ray burst sources by optical transient astronomy are also reviewed.
The suppression of pulsar and gamma-ray burst annihilation lines by magnetic photon splitting
NASA Technical Reports Server (NTRS)
Baring, Matthew G.
1993-01-01
Neutron stars, relativistic and compact by nature, show great potential for the copious creation of electron-positron pairs in the magnetospheres; these rapidly cool, thermalize, and then annihilate. It is therefore expected that many neutron sources might display evidence of pair annihilation lines in the 400-500 keV range. It is shown that magnetic photon splitting, which operates effectively at these energies and in the enormous neutron star magnetic fields, can destroy an annihilation feature by absorbing line photons and reprocessing them to lower energies. In so doing, photon splitting creates a soft gamma-ray bump and a broad quasi-power-law contribution to the X-ray continuum, which is too flat to conflict with the observed X-ray paucity in gamma-ray bursts. The destruction of the line occurs in neutron stars with surface fields of 5 x 10 exp 12 G or maybe even less, depending on the size of the emission region.
The limitations of associated alpha particle technique for contraband container inspections
NASA Astrophysics Data System (ADS)
Sudac, Davorin; Blagus, Sasa; Valkovic, Vladivoj
2007-10-01
Inspection of a shipping container for the presence of the threat materials has been investigated in the laboratory by using a 14 MeV neutron beam, a BaF2 gamma detector and the associated alpha particle technique. The associated alpha particle technique is proposed as a part of a two sensor system for contraband container inspections. This method is effective in the reduction of background radiation with the possibility of collimating electronically the neutron beam. The intrinsic time resolution has been experimentally estimated to be 1.3 ns (FWHM), which allows inspection of a minimum voxel having 7 cm depth along the neutron flight path. The neutron beam intensity plays a crucial role as a limiting factor for the acquisition time reduction. Single counting rates of the gamma and alpha detector were investigated as a function of the neutron intensity, distance between the gamma detector and the neutron source and the type of shielding. The time and the energy spectra for different neutron intensities were evaluated.
The p({gamma}, {pi}{sup 0}) reaction in the {Delta}(1232) region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, R.M.; Gutenberg, J.; Mukhopadhyay, N.C.
Linearly polarized photons from the Laser Electron Gamma Source (LEGS) have been used by Blanpied et al. to study the p({gamma}, {pi}{sup 0}) reaction, looking for the E2 transition amplitude in the nucleon to Delta(1232) excitation. These authors contrast their measured cross-section ratio d{sigma}{parallel}/d{sigma}{perpendicular}, with expectations of earlier analyses, by the authors and Wittman (DMW), by Nozawa et al. (NBL), and using the multipoles of Behrends and Donnachie directly, and find {open_quotes}large discrepancies{close_quotes} among them. Here the authors clarify these discrepancies. The crucial difference between DMW and NBL calculations is the inclusion of the u-channel {Delta} contribution in DMW, omittedmore » in NBL. The authors find for a fair, though not perfect, agreement with the new data: E{sub 1+}{sup {pi}}{sup 0} {r_arrow}2.1E{sub 1+}{sup {pi}}{sup 0}, keeping other multipoles fixed.« less
The self-absorption effect of gamma rays in /sup 239/Pu
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Hsiao-Hua
1989-01-01
Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. I have carried out Monte Carlo simulations to study this effect using the /sup 239/Pu ..cap alpha..-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections tomore » gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material. 2 refs., 9 figs.« less
NASA Astrophysics Data System (ADS)
Czermak, A.; Zalewska, A.; Dulny, B.; Sowicki, B.; Jastrząb, M.; Nowak, L.
2004-07-01
The needs for real time monitoring of the hadrontherapy beam intensity and profile as well as requirements for the fast dosimetry using Monolithic Active Pixel Sensors (MAPS) forced the SUCIMA collaboration to the design of the unique Data Acquisition System (DAQ SUCIMA Imager). The DAQ system has been developed on one of the most advanced XILINX Field Programmable Gate Array chip - VERTEX II. The dedicated multifunctional electronic board for the detector's analogue signals capture, their parallel digital processing and final data compression as well as transmission through the high speed USB 2.0 port has been prototyped and tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agudo, Ivan; Jorstad, Svetlana G.; Marscher, Alan P.
We combine time-dependent multi-waveband flux and linear polarization observations with submilliarcsecond-scale polarimetric images at {lambda} = 7 mm of the BL Lacertae type blazar OJ287 to locate the {gamma}-ray emission in prominent flares in the jet of the source >14 pc from the central engine. We demonstrate a highly significant correlation between the strongest {gamma}-ray and millimeter-wave flares through Monte Carlo simulations. The two reported {gamma}-ray peaks occurred near the beginning of two major millimeter-wave outbursts, each of which is associated with a linear polarization maximum at millimeter wavelengths. Our very long baseline array observations indicate that the two millimeter-wavemore » flares originated in the second of two features in the jet that are separated by >14 pc. The simultaneity of the peak of the higher-amplitude {gamma}-ray flare and the maximum in polarization of the second jet feature implies that the {gamma}-ray and millimeter-wave flares are cospatial and occur >14 pc from the central engine. We also associate two optical flares, accompanied by sharp polarization peaks, with the two {gamma}-ray events. The multi-waveband behavior is most easily explained if the {gamma}-rays arise from synchrotron self-Compton scattering of optical photons from the flares. We propose that flares are triggered by interaction of moving plasma blobs with a standing shock. The {gamma}-ray and optical emission is quenched by inverse Compton losses as synchrotron photons from the newly shocked plasma cross the emission region. The millimeter-wave polarization is high at the onset of a flare, but decreases as the electrons emitting at these wavelengths penetrate less polarized regions.« less
Interstellar medium around supernova remnants associated with gamma-ray sources
NASA Astrophysics Data System (ADS)
Duvidovich, L.; Petriella, A.; Giacani, E.; Dubner, G.
2017-07-01
Supernova remnants (SNRs) are potential sources of gamma-rays, either through inverse Compton scattering of electrons off ambient photons or through the decay of neutral pions created by the collision of energetic protons with dense ambient gas. The SNRs G298.6-0.0 and G298.5-0.3 are proposed to be associated to the gamma-ray sources 3FGL J1214.0-6236 and 3FGL J1212.2-6251, respectively. They are located in a complex portion of the Galactic plane, also containing sources of powerful stellar winds such as the star Wolf Rayet HD104994 and the HII regions G298.559-00.114, G298.868-00.432 and G298.228-00.331 with ongoing star formation. We present a study of the neutral hydrogen distribution towards the mentioned SNRs. We found a structure with ellipsoidal morphology that encloses a region containing G298.5-0.3, G298.6-0.0, HD104994, G298.559-00.114 and G298.228-00.331. This HI feature is detected in the velocity range 89-100 km s-1. We propose that the neutral gas would be the accelerated portion (which would explain its high radial velocity) of a gas shell swept up by a series of expansive and explosive events. The rest of this shell (at radial velocities compatible with the systemic velocity of the objects) is not visible because of confusion with galactic emission. We also inspected the distribution of the 12CO gas and found a dense molecular cloud at the systemic velocity of ˜ 22 km s-1 corresponding to the kinematical distance of ˜ 10.4 kpc, compatible with the distance to the SNR G298.6-0.0. This molecular cloud is in spatial coincidence, projected in the sky plane, with the very high energy source associated with the remnant. This fact, suggesting a possible hadronic origin for the gamma-rays emission. Regarding to the SNR G298.5-0.3, smaller and fainter than the previous one, the angular resolution of the molecular data is insufficient to draw meaningful conclusions.
Multiwavelength Challenges in the Fermi Era
NASA Technical Reports Server (NTRS)
Thompson, D. J.
2010-01-01
The gamma-ray surveys of the sky by AGILE and the Fermi Gamma-ray Space Telescope offer both opportunities and challenges for multiwavelength and multi-messenger studies. Gamma-ray bursts, pulsars, binary sources, flaring Active Galactic Nuclei, and Galactic transient sources are all phenomena that can best be studied with a wide variety of instruments simultaneously or contemporaneously. From the gamma-ray side, a principal challenge is the latency from the time of an astrophysical event to the recognition of this event in the data. Obtaining quick and complete multiwavelength coverage of gamma-ray sources of interest can be difficult both in terms of logistics and in terms of generating scientific interest.
A 3D simulation look-up library for real-time airborne gamma-ray spectroscopy
NASA Astrophysics Data System (ADS)
Kulisek, Jonathan A.; Wittman, Richard S.; Miller, Erin A.; Kernan, Warnick J.; McCall, Jonathon D.; McConn, Ron J.; Schweppe, John E.; Seifert, Carolyn E.; Stave, Sean C.; Stewart, Trevor N.
2018-01-01
A three-dimensional look-up library consisting of simulated gamma-ray spectra was developed to leverage, in real-time, the abundance of data provided by a helicopter-mounted gamma-ray detection system consisting of 92 CsI-based radiation sensors and exhibiting a highly angular-dependent response. We have demonstrated how this library can be used to help effectively estimate the terrestrial gamma-ray background, develop simulated flight scenarios, and to localize radiological sources. Source localization accuracy was significantly improved, particularly for weak sources, by estimating the entire gamma-ray spectra while accounting for scattering in the air, and especially off the ground.
NASA Astrophysics Data System (ADS)
Fahy, Stephen; Murphy-Armando, Felipe; Trigo, Mariano; Savic, Ivana; Murray, Eamonn; Reis, David
We have calculated the time-evolution of carriers and generated phonons in Ge after ultrafast photo-excitation above the direct band-gap. The relevant electron-phonon and anharmonic phonon scattering rates are obtained from first-principles electronic structure calculations. Measurements of the x-ray diffuse scattering after excitation near the L point in the Brillouin zone find a relatively slow (5 ps, compared to the typical electron-phonon energy relaxation of the Gamma-L phonon) increase of the phonon population. We find this is due to emission caused by the scattering of electrons between the Delta and L valleys, after the initial depopulation of the Gamma valley. The relative slowness of this process is due to a combination of causes: (i) the finite time for the initial depopulation of the conduction Gamma valley; (ii) the associated electron-phonon coupling is relatively weaker (compared to Gamma-L, Gamma-Delta and Delta-Delta couplings) ; (iii) the TA associated phonon has a long lifetime and (iv) the depopulation of the Delta valley suppresses the phonon emission. Supported by Science Foundation Ireland, Grant 12/1A/1601.
Mizutani, U; Asahi, R; Sato, H; Noritake, T; Takeuchi, T
2008-07-09
The first-principles FLAPW (full potential linearized augmented plane wave) electronic structure calculations were performed for the Ag(5)Li(8) gamma-brass, which contains 52 atoms in a unit cell and has been known for many years as one of the most structurally complex alloy phases. The calculations were also made for its neighboring phase AgLi B2 compound. The main objective in the present work is to examine if the Ag(5)Li(8) gamma-brass is stabilized at the particular electrons per atom ratio e/a = 21/13 in the same way as some other gamma-brasses like Cu(5)Zn(8) and Cu(9)Al(4), obeying the Hume-Rothery electron concentration rule. For this purpose, the e/a value for the Ag(5)Li(8) gamma-brass as well as the AgLi B2 compound was first determined by means of the FLAPW-Fourier method we have developed. It proved that both the gamma-brass and the B2 compound possess an e/a value equal to unity instead of 21/13. Moreover, we could demonstrate why the Hume-Rothery stabilization mechanism fails for the Ag(5)Li(8) gamma-brass and proposed a new stability mechanism, in which the unique gamma-brass structure can effectively lower the band-structure energy by forming heavily populated bonding states near the bottom of the Ag-4d band.
Electron {sup 83}Rb/{sup 83m}Kr Source for the Energy Scale Monitoring in the KATRIN Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zboril, Miroslav; Nuclear Physics Institute of the ASCR, p. r. i., CZ-25068 Rez; Collaboration: KATRIN Collaboration
The KATRIN (KArlsruhe TRItium Neutrino) experiment investigates the endpoint region of the tritium {beta}-spectrum aiming for the sensitivity on the neutrino mass of 0.2 eV (90% C.L.). A spectrometer of the MAC-E filter (Magnetic Adiabatic Collimation with an Electrostatic filter) type will be used for a total time of at least 5 years. An unrecognized shift of the filtering potential would directly influence the resulting neutrino mass. To continuously monitor the filtering potential the high voltage (HV) will be simultaneously applied to an additional MAC-E filter spectrometer. In this monitor spectrometer suitable electron sources based on atomic/nuclear standards will bemore » utilized. As one of such monitoring tools the solid {sup 83}Rb/{sup 83m}Kr source is intended. It provides conversion electrons from {sup 83m}Kr(t{sub 1/2} = 1.83 h) which is continuously generated by {sup 83}Rb(t{sub 1/2}{approx_equal}86 d). The Calibration and Monitoring task of the KATRIN project demands the long-term energy stability {Delta}E/E of the K-32 conversion electron line (E = 17.8 keV, {Gamma} = 2.7 eV) of {+-}1.6 ppm/month.« less
MEGA: the next generation Medium Energy Gamma-ray Telescope
NASA Astrophysics Data System (ADS)
Ryan, James M.; Andritschke, Robert; Bloser, Peter F.; Cravens, James P.; Cherry, Michael L.; Di Cocco, Guido; Guzik, T. G.; Hartmann, Dieter H.; Hunter, Stanley H.; Kanbach, Gottfried; Kippen, R. M.; Kurfess, James; Macri, John R.; McConnell, Mark L.; Miller, Richard S.; Paciesas, William S.; Phlips, Bernard; Reglero, Victor; Stacy, J. G.; Strickman, Mark; Vestrand, W. Thomas; Wefel, John P.; Wulf, Eric; Zoglauer, Andreas; Zych, Allen D.
2004-10-01
The MEGA mission would enable a sensitive all-sky survey of the medium-energy ?-ray sky (0.3-50 MeV). This mission will bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory, the SPI and IBIS instruments on INTEGRAL and the visionary ACT mission. It will, among other things, serve to compile a much larger catalog of sources in this energy range, perform far deeper searches for supernovae, better measure the galactic continuum emission as well as identify the components of the cosmic diffuse emission. The large field of view will allow MEGA to continuously monitor the sky for transient and variable sources. It will accomplish these goals with a stack of Si-strip detector (SSD) planes surrounded by a dense high-Z calorimeter. At lower photon energies (below ~30 MeV), the design is sensitive to Compton interactions, with the SSD system serving as a scattering medium that also detects and measures the Compton recoil energy deposit. If the energy of the recoil electron is sufficiently high (> 2 MeV), the track of the recoil electron can also be defined. At higher photon energies (above ~10 MeV), the design is sensitive to pair production events, with the SSD system measuring the tracks of the electron and positron. We will discuss the various types of event signatures in detail and describe the advantages of this design over previous Compton telescope designs. Effective area, sensitivity and resolving power estimates are also presented along with simulations of expected scientific results and beam calibration results from the prototype instrument.
Using Deep Learning for Gamma Ray Source Detection at the First G-APD Cherenkov Telescope (FACT)
NASA Astrophysics Data System (ADS)
Bieker, Jacob
2018-06-01
Finding gamma-ray sources is of paramount importance for Imaging Air Cherenkov Telescopes (IACT). This study looks at using deep neural networks on data from the First G-APD Cherenkov Telescope (FACT) as a proof-of-concept of finding gamma-ray sources with deep learning for the upcoming Cherenkov Telescope Array (CTA). In this study, FACT’s individual photon level observation data from the last 5 years was used with convolutional neural networks to determine if one or more sources were present. The neural networks used various architectures to determine which architectures were most successful in finding sources. Neural networks offer a promising method for finding faint and extended gamma-ray sources for IACTs. With further improvement and modifications, they offer a compelling method for source detection for the next generation of IACTs.
Examining the Fermi-LAT third source catalog in search of dark matter subhalos
Bertoni, Bridget; Hooper, Dan; Linden, Tim
2015-12-17
Dark matter annihilations taking place in nearby subhalos could appear as gamma-ray sources without detectable counterparts at other wavelengths. In this study, we consider the collection of unassociated gamma-ray sources reported by the Fermi Collaboration in an effort to identify the most promising dark matter subhalo candidates. While we identify 24 bright, high-latitude, non-variable sources with spectra that are consistent with being generated by the annihilations of ~ 20–70 GeV dark matter particles (assuming annihilations to bbar b), it is not possible at this time to distinguish these sources from radio-faint gamma-ray pulsars. Deeper multi-wavelength observations will be essential tomore » clarify the nature of these sources. It is notable that we do not find any such sources that are well fit by dark matter particles heavier than ~100 GeV. We also study the angular distribution of the gamma-rays from this set of subhalo candidates, and find that the source 3FGL J2212.5+0703 prefers a spatially extended profile (of width ~ 0.15°) over that of a point source, with a significance of 4.2σ (3.6σ after trials factor). Although not yet definitive, this bright and high-latitude gamma-ray source is well fit as a nearby subhalo of m χ ≃ 20–50 GeV dark matter particles (annihilating to bb¯) and merits further multi-wavelength investigation. As a result, based on the subhalo distribution predicted by numerical simulations, we derive constraints on the dark matter annihilation cross section that are competitive to those resulting from gamma-ray observations of dwarf spheroidal galaxies, the Galactic Center, and the extragalactic gamma-ray background.« less
NASA Astrophysics Data System (ADS)
Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina
2015-11-01
A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smit, C; Plessis, F du
Purpose: To extract the electron contamination energy spectra for an Elekta Precise Linac, based on pure photon and measured clinical beam percentage depth dose data. And to include this as an additional source in isource 4 in DOSXYZnrc. Methods: A pure photon beam was simulated for the Linac using isource 4 in the DOSXYZnrc Monte Carlo (MC) code. Percentage depth dose (PDD) data were extracted afterwards for a range of field sizes (FS). These simulated dose data were compared to actual measured dose PDD data, with the data normalized at 10 cm depth. The resulting PDD data resembled the electronmore » contamination depth dose. Since the dose fall-off is a strictly decreasing function, a method was adopted to derive the contamination electron spectrum. Afterwards this spectrum was used in a DOSXYZnrc MC simulation run to verify that the original electron depth dose could be replicated. Results: Various square aperture FS’s for 6, 8 and 15 megavolt (MV) photon beams were modeled, simulated and compared to their respective actual measured PDD data. As FS increased, simulated pure photon depth-dose profiles shifted deeper, thus requiring electron contamination to increase the surface dose. The percentage of electron weight increased with increase in FS. For a FS of 15×15 cm{sup 2}, the percentage electron weight is 0.1%, 0.2% and 0.4% for 6, 8 and 15 MV beams respectively. Conclusion: From the PDD results obtained, an additional electron contamination source was added to the photon source model so that simulation and measured PDD data could match within 2 % / 2 mm gamma-index criteria. The improved source model could assure more accurate simulations of surface doses. This research project was funded by the South African Medical Research Council (MRC) with funds from National Treasury under its Economic Competitiveness and Support package.« less
NASA Technical Reports Server (NTRS)
Fornes, R. E.; Memory, J. D.; Naranong, N.
1982-01-01
Epoxy/graphite fiber, polyimide/graphite fiber, and polysulfone/graphite fiber composites were exposed to 1.33 Mev gamma irradiation and 0.5 Mev electron bombardment for varying periods of time. The effects of the irradiation treatments on the breaking stress and Young's modulus were studied by a three point bending test. Effects were small; both electron radiation up to 5000 Mrad and gamma radiation up to 350 Mrad resulted in slight increases in both stress and modulus.
Energy dependence of lithium fluoride dosemeter for high energy electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoku, S.; Sunayashiki, T.; Takeoka, S.
1973-11-01
A lithium fluoride and a Fricke dosemeter have been exposed simultaneously to /sup 60/Co gamma -rays and 10, 20, and 30 MeV electrons to study the energy dependence of the lithium fluoride dosemeter for high-energy electrons, with particular reference to possible significant reductions in the sensitivity of LiF phosphors for electrons as compared with /sup 60/Co gamma - rays. In the present study, the direct comparison excluded errors resulting from uncertainties about ion recombination and conversion factors from roentgens to rads for ionization chambers. The dosemeters were exposed to approximately 5000 rads of each radiation at the appropriate peak depthmore » in a water phantom. Corrections for the supra-linear response for LiF were made using a dose response curve for /sup 60/Co gamma -rays. The three types of LiF phosphor examined did not exhibit any energy dependence for electrons compared with /sup 60/Co gamma - rays. Within the statistical uncertainty (~3%) for the experiment. (UK)« less
CALET on the ISS: a high energy astroparticle physics experiment
NASA Astrophysics Data System (ADS)
Marrocchesi, Pier Simone;
2016-05-01
CALET is a space mission of the Japanese Aerospace Agency (JAXA) in collaboration with the Italian Space Agency (ASI) and NASA. The CALET instrument (CALorimetric Electron Telescope) is planned for a long exposure on the JEM-EF, an external platform of the Japanese Experiment Module KIBO, aboard the International Space Station (ISS). The main science objectives include high precision measurements of the inclusive electron (+positron) spectrum below 1 TeV and the exploration of the energy region above 1 TeV, where the shape of the high end of the spectrum might reveal the presence of nearby sources of acceleration. With an excellent energy resolution and low background contamination CALET will search for possible spectral signatures of dark matter with both electrons and gamma rays. It will also measure the high energy spectra and relative abundance of cosmic nuclei from proton to iron and detect trans-iron elements up to Z ~ 40. With a large exposure and high energy resolution, CALET will be able to verify and complement the observations of CREAM, PAMELA and AMS-02 on a possible deviation from a pure power-law of proton and He spectra in the region of a few hundred GeV and to extend the study to the multi-TeV region. CALET will also contribute to clarify the present experimental picture on the energy dependence of the boron/carbon ratio, below and above 1 TeV/n, thereby providing valuable information on cosmic-ray propagation in the galaxy. Gamma-ray transients will be studied with a dedicated Gamma-ray Burst Monitor (GBM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patwe, P; Mhatre, V; Dandekar, P
Purpose: 3DVH software is a patient specific quality assurance tool which estimates the 3D dose to the patient specific geometry with the help of Planned Dose Perturbation algorithm. The purpose of this study is to evaluate the impact of HU value of ArcCHECK phantom entered in Eclipse TPS on 3D dose & DVH QA analysis. Methods: Manufacturer of ArcCHECK phantom provides CT data set of phantom & recommends considering it as a homogeneous phantom with electron density (1.19 gm/cc or 282 HU) close to PMMA. We performed this study on Eclipse TPS (V13, VMS) & trueBEAM STx VMS Linac &more » ArcCHECK phantom (SNC). Plans were generated for 6MV photon beam, 20cm×20cm field size at isocentre & SPD (Source to phantom distance) of 86.7 cm to deliver 100cGy at isocentre. 3DVH software requires patients DICOM data generated by TPS & plan delivered on ArcCHECK phantom. Plans were generated in TPS by assigning different HU values to phantom. We analyzed gamma index & the dose profile for all plans along vertical down direction of beam’s central axis for Entry, Exit & Isocentre dose. Results: The global gamma passing rate (2% & 2mm) for manufacturer recommended HU value 282 was 96.3%. Detector entry, Isocentre & detector exit Doses were 1.9048 (1.9270), 1.00(1.0199) & 0.5078(0.527) Gy for TPS (Measured) respectively.The global gamma passing rate for electron density 1.1302 gm/cc was 98.6%. Detector entry, Isocentre & detector exit Doses were 1.8714 (1.8873), 1.00(0.9988) & 0.5211(0.516) Gy for TPS (Measured) respectively. Conclusion: Electron density value assigned by manufacturer does not hold true for every user. Proper modeling of electron density of ArcCHECK in TPS is essential to avoid systematic error in dose calculation of patient specific QA.« less
Earth's Most Powerful Natural Particle Accelerator
NASA Technical Reports Server (NTRS)
Rowland, Doug
2012-01-01
Thunderstorms launch antimatter, gamma rays, and highly energetic electrons and neutrons to the edge of space. This witches' brew of radiation is generated at the edge of the stratopause, by the strong electric fields associated with lightning discharges. In less than a quarter millisecond, an explosive feedback process takes an initial seed population of electrons, perhaps produced by cosmic rays from dying stars, and amplifies them a billion billion-fold in the rarefied air over high altitude thunderheads. The electrons generate gamma radiation as they travel through the stratosphere and lower mesosphere, momentarily brighter and of harder spectrum than cosmic gamma ray bursts. These electrons ultimately are absorbed by the atmosphere, but the gamma rays continue on, into the upper reaches of the atmosphere, where they in turn generate a new population of electrons, positrons, and energetic neutrons. These secondary electrons and positrons move along the magnetic field, and can reach near-earth space, streaming through the inner radiation belts, and possibly contributing to the trapped populations there. First postulated by Wilson in 1925, and serendipitously discovered by the Compton Gamma Ray Observatory in 1994 [Fishman et al.], these events, known as "Terrestrial Gamma ray Flashes" (TGFs), represent the most intense episodes of particle acceleration on or near the Earth, resulting in electrons with energies up to 100 MeV. Recent observations by the RHESSI [Smith et al., 2004], Fermi [Briggs et al., 2010], and AGILE [Tavani et al., 2011] satellites, and theoretical and computational modeling, have suggested that the relativistic runaway electron avalanche (RREA) mechanism [Gurevich, 1992], and important modifications, such as the relativistic feedback discharge (RFD) model [Dwyer 2012] can best explain the observations at present. In these models, strong thunderstorm electric fields drive seed electrons, generated from cosmic ray interactions, into a runaway discharge, in which the seed electrons continually gain energy from the electric field, creating a host of secondaries as they interact with the background atmospheric gas. The feedback mechanisms include backwards-propagating positrons and gamma rays, which then can generate new "seed" electrons at the base of the acceleration region, and themselves generate further avalanche chain reactions, greatly amplifying the initial seed population. All these processes happen in the stratosphere, in the altitude range near 15-20 km, where the electric fields and mean free paths are appropriate to allow the discharge to develop.
NASA Technical Reports Server (NTRS)
Bai, T.
1977-01-01
Observations of solar X-rays and gamma-rays from large flares show that the hard X-ray spectrum extends into the gamma ray region, where a flattening in the spectrum of the continuum emission is observed above about 1 MeV. This emission is believed to be due to bremsstrahlung. In addition to electron-proton collisions, at energies greater than approximately 500 keV, bremsstrahlung due to electron-electron collisions becomes significant. Bremsstrahlung production was calculated for a variety of electron spectra extending from the nonrelativistic region to relativistic energies and electron-electron bremsstrahlung is taken into account. By comparing these calculations with data, it is shown that the flattening in the spectrum of the continuum emission can be best explained by an electron spectrum consisting of two distinctive components. This evidence, together with information on the X-ray and gamma ray time profiles, implied the existence of two phases of acceleration. The first phase accelerates electrons mainly up to about several hundred keV; the second phase accelerates a small fraction of the electrons accelerated in the first phase to relativistic energies and accelerates protons to tens and hundreds of MeV.
A Comparison of High-Energy Electron and Cobalt-60 Gamma-Ray Radiation Testing
NASA Technical Reports Server (NTRS)
Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Wilcox, Edward P.; Marshall, Cheryl J.; Phan, Anthony M.; Pellish, Jonathan A.; Powell, Wesley A.; Xapsos, Michael A.
2012-01-01
In this paper, a comparison between the effects of irradiating microelectronics with high energy electrons and Cobalt-60 gamma-rays is examined. Additionally, the effect of electron energy is also discussed. A variety of part types are investigated, including discrete bipolar transistors, hybrids, and junction field effect transistors
High-precision source location of the 1978 November 19 gamma-ray burst
NASA Technical Reports Server (NTRS)
Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Pizzichini, G.; Evans, W. D.; Klebesadel, R. W.; Laros, J. G.; Barat, C.; Hurley, K.; Niel, M.
1981-01-01
The celestial source location of the November 19, 1978, intense gamma ray burst has been determined from data obtained with the interplanetary gamma-ray sensor network by means of long-baseline wave front timing instruments. Each of the instruments was designed for studying events with observable spectra of approximately greater than 100 keV, and each provides accurate event profile timing in the several millisecond range. The data analysis includes the following: the triangulated region is centered at (gamma, delta) 1950 = (1h16m32s, -28 deg 53 arcmin), at -84 deg galactic latitude, where the star density is very low and the obscuration negligible. The gamma-ray burst source region, consistent with that of a highly polarized radio source described by Hjellming and Ewald (1981), may assist in the source modeling and may facilitate the understanding of the source process. A marginally identifiable X-ray source was also found by an Einstein Observatory investigation. It is concluded that the burst contains redshifted positron annihilation and nuclear first-excited iron lines, which is consistent with a neutron star origin.
High-resolution radio and X-ray observations of the supernova remnant W28
NASA Technical Reports Server (NTRS)
Andrews, M. D.; Basart, J. P.; Lamb, R. C.; Becker, R. H.
1983-01-01
The present study has the objective to report the first high resolution radio and X-ray observations of the central part of the galactic supernova remnant, W28, taking into account the possible association of the remnant with the unidentified gamma-ray source, 2CG 006-00. This gamma-ray source is approximately two-thirds as bright as the Crab pulsar above 100 MeV, and has a somewhat flatter spectrum. Both the radio and X-ray observations reveal previously unknown aspects of W28 which support the possibility of W28 being a gamma-ray source. The radio data show a flat-spectrum, nonthermal component reminiscent of the Crab Nebula and Vela, both of which are confirmed gamma-ray sources. The X-ray observations reveal a compact source within W28, again suggestive of both the Crab and Vela. If the similarities among W28, the Crab Nebula, and the Vela remnant are valid, the gamma-ray source 2CG 00-00 should be studied for periodicity, the conclusive signature of a compact source of emission.
Highlights of GeV Gamma-Ray Astronomy
NASA Technical Reports Server (NTRS)
Thompson, David J.
2010-01-01
Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.
The response of covered silicon detectors to monoenergetic gamma rays
NASA Technical Reports Server (NTRS)
Reier, M.
1972-01-01
Measurements were made of the efficiency in detecting gamma rays of a 0.3-mm, a 3-mm, and a 5-mm silicon detector covered with different absorbers. Calibrated sources covering the range from 279 KeV to 2.75 MeV were used. The need for the absorbers in order to obtain meaningful results, and their contribution to detector response at electron biases from 50 to 200 KeV, are discussed in detail. It is shown that the results are independent of the atomic number of the absorber. In addition, the role of the absorber in increasing the efficiency with increasing photon energy for low bias setting is demonstrated for the 0.3-mm crystal. Qualitative explanations are given for the shapes of all curves of efficiency versus energy at each bias.
NASA Astrophysics Data System (ADS)
Mirzayev, Matlab N.; Mehdiyeva, Ravan N.; Garibov, Ramin G.; Ismayilova, Narmin A.; Jabarov, Sakin H.
2018-05-01
In this study, compounds of B6Si were irradiated using a 60Co gamma source that have an energy line of 1.25 MeV at the absorbed dose rates from 14.6 kGy to 194.4 kGy. Surface morphology images of the sample obtained by Scanning Electron Microscope (SEM) show that the crystal structure at a high absorbed doses (D ≥ 145.8kGy) starts to be destroyed. X-ray diffraction studies revealed that with increasing radiation absorption dose, the spectrum intensity of the sample was decreased 1.96 times compared with the initial value. Thermal properties were studied by Differential scanning calorimetry (DSC) method in the temperature range of 30-1000∘C.
Apparatus and method for detecting gamma radiation
Sigg, R.A.
1994-12-13
A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl, W. F.
NASA Langley Research Center requested a measurement and determination of the ambient gamma dose equivalent rate and kerma at 100 cm from the 252Cf source and determination of the ambient gamma dose equivalent rate and kerma at 200 cm from the 60Co source for the Radiation Budget Instrument Experiment (Rad-X). An Exradin A6 ion chamber with Shonka air-equivalent plastic walls in combination with a Supermax electrometer were used to measure the exposure rate and free-in-air kerma rate of the two sources at the requested distances. The measured gamma exposure, kerma, and dose equivalent rates are tabulated.
Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow.
Gedalin, M; Balikhin, M A; Eichler, D
2008-02-01
Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basumallick, Partha Pratim; Gupta, Nayantara, E-mail: basuparth314@gmail.com
The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires anmore » extreme proton energy of 3.98 × 10{sup 21} eV and a high magnetic field of 1 mG of the extended jet with jet power ∼5 × 10{sup 48} erg s{sup −1} in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.« less
MULTIWAVELENGTH OBSERVATIONS AND MODELING OF 1ES 1959+650 IN A LOW FLUX STATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliu, E.; Errando, M.; Archambault, S.
We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation ({sigma}) significance in 7.6 hr of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan {gamma}-ray flare exhibited by this source in 2002, the X-ray flux of the sourcemore » is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of the order of {approx}< 2 in the high energy (E > 1 MeV) and very high energy (E > 100 GeV) {gamma}-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10 m telescope light curves.« less
Ackermann, M.
2010-09-09
The flat spectrum radio quasar 3C 454.3 underwent an extraordinary outburst in December 2009 when it became the brightest -ray source in the sky for over one week. Its daily flux measured with the Fermi Large Area Telescope at photon energies E > 100 MeV reached F100 = 22 ± 1 × 10 -6 ph cm -2 s -1, representing the highest daily flux of any blazar ever recorded in high-energy -rays. It again became the brightest source in the sky in 2010 April, triggering a pointed-mode observation by Fermi. The correlated -ray temporal and spectral properties during these exceptionalmore » events are presented and discussed. The main results show flux variability over time scales less than 3 h and very mild spectral variability with an indication of gradual hardening preceding major flares. No consistent loop pattern emerged in the -ray spectral index vs flux plane. A minimum Doppler factor of ≈15 is derived, and the maximum energy of a photon from 3C 454.3 is ≈ 20 GeV. The spectral break at a few GeV is inconsistent with Klein-Nishina softening from power-law electrons scattering Lyα line radiation, and a break in the underlying electron spectrum in blazar leptonic models is implied.« less
Fermi Establishes Classical Novae as a Distinct Class of Gamma-ray Sources
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.;
2014-01-01
A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations. The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G; Bastieri, D.; Bechtol, K.;
2013-01-01
In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope.For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 and show that, despite their low latitudes, most of them are likely of extragalactic origin.
Quantitative NDA of isotopic neutron sources.
Lakosi, L; Nguyen, C T; Bagi, J
2005-01-01
A non-destructive method for assaying transuranic neutron sources was developed, using a combination of gamma-spectrometry and neutron correlation technique. Source strength or actinide content of a number of PuBe, AmBe, AmLi, (244)Cm, and (252)Cf sources was assessed, both as a safety issue and with respect to combating illicit trafficking. A passive neutron coincidence collar was designed with (3)He counters embedded in a polyethylene moderator (lined with Cd) surrounding the sources to be measured. The electronics consist of independent channels of pulse amplifiers and discriminators as well as a shift register for coincidence counting. The neutron output of the sources was determined by gross neutron counting, and the actinide content was found out by adopting specific spontaneous fission and (alpha,n) reaction yields of individual isotopes from the literature. Identification of an unknown source type and constituents can be made by gamma-spectrometry. The coincidences are due to spontaneous fission in the case of Cm and Cf sources, while they are mostly due to neutron-induced fission of the Pu isotopes (i.e. self-multiplication) and the (9)Be(n,2n)(8)Be reaction in Be-containing sources. Recording coincidence rate offers a potential for calibration, exploiting a correlation between the Pu amount and the coincidence-to-total ratio. The method and the equipment were tested in an in-field demonstration exercise, with participation of national public authorities and foreign observers. Seizure of the illicit transport of a PuBe source was simulated in the exercise, and the Pu content of the source was determined. It is expected that the method could be used for identification and assay of illicit, found, or not documented neutron sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titarchuk, Lev; Frontera, Filippo; Seifina, Elena, E-mail: titarchuk@fe.infn.it, E-mail: lev@milkyway.gsfc.nasa.gov, E-mail: frontera@fe.infn.it, E-mail: seif@sai.msu.ru
We analyze the X-ray spectra and their timing properties of the compact X-ray binary 4U 1820-30. We establish spectral transitions in this source seen with BeppoSAX and the Rossi X-ray Timing Explorer (RXTE). During the RXTE observations (1996-2009), the source was in the soft state approximately {approx}75% of the time making the lower banana and upper banana transitions combined with long-term low-high state transitions. We reveal that all of the X-ray spectra of 4U 1820-30 are fit by a combination of a thermal (Blackbody) component, a Comptonization component (COMPTB), and a Gaussian-line component. Thus, using this spectral analysis, we findmore » that the photon power-law index {Gamma} of the Comptonization component is almost unchangeable ({Gamma} {approx} 2), while the electron temperature kT{sub e} changes from 2.9 to 21 keV during these spectral events. We also establish that for these spectral events the normalization of the COMPTB component (which is proportional to the mass accretion rate M-dot ) increases by a factor of eight when kT{sub e} decreases from 21 keV to 2.9 keV. Previously, this index stability effect was also found analyzing X-ray data for the Z-source GX 340+0 and for the atolls 4U 1728-34 and GX 3+1. Thus, we can suggest that this spectral stability property is a spectral signature of an accreting neutron star source. On the other hand, in a black hole binary {Gamma} monotonically increases with M-dot and ultimately its value saturates at large M-dot .« less
Comparison of big event with calculations of the air shower development
NASA Technical Reports Server (NTRS)
Niwa, M.; Misaki, A.; Matano, T.
1985-01-01
The incidence of high energy hadrons and electron-photons in air showers at various stages of development is calculated. Numerical calculation is used to solve the diffusion equation for a nuclear cascade and analytical calculation for cascade shower induced gamma rays. From these calculations, one can get the longitudinal development of the high energy hadron and electron-photon components, and the energy spectra of these components at various depths of air shower development. The total number of hadrons (N sub H) and electron-photon components (N sub gamma) are related according to stages of the air shower development and primary energy. The relation of the total energy of hadron and electron-photon component above the threshold energy is given. The energy balance between both components is also a useful parameter to study high energy events accompanying air showers. The relation of N sub H and fractional hadronic energy E (sum E sub H sup gamma/sum E sub H sup gamma + Sum E sub gamma) is calculated. This relation is helpful to understand the stage of air shower development(t) and primary energy (E sub p).
NASA Technical Reports Server (NTRS)
Taff, L. G.
1998-01-01
Since the announcement of the discovery of sources of bursts of gamma-ray radiation in 1973, hundreds more reports of such bursts have now been published. Numerous artificial satellites have been equipped with gamma-ray detectors including the very successful Compton Gamma Ray Observatory BATSE instrument. Unfortunately, we have made no progress in identifying the source(s) of this high energy radiation. We suspected that this was a consequence of the method used to define gamma-ray burst source "error boxes." An alternative procedure to compute gamma-ray burst source positions, with a purely physical underpinning, was proposed in 1988 by Taff. Since then we have also made significant progress in understanding the analytical nature of the triangulation problem and in computing actual gamma-ray burst positions and their corresponding error boxes. For the former, we can now mathematically illustrate the crucial role of the area occupied by the detectors, while for the latter, the Atteia et al. (1987) catalog has been completely re-reduced. There are very few discrepancies in locations between our results and those of the customary "time difference of arrival" procedure. Thus, we have numerically demonstrated that the end result, for the positions, of these two very different-looking procedures is the same. Finally, for the first time, we provide a sample of realistic "error boxes" whose non-simple shapes vividly portray the difficulty of burst source localization.
Gamma ray bursts: Current status of observations and theory
NASA Technical Reports Server (NTRS)
Meegan, Charles A.
1990-01-01
Gamma-ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in the low-energy gamma-ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms were proposed.
Gamma ray bursts: Current status of observations and theory
NASA Technical Reports Server (NTRS)
Meegan, Charles A.
1990-01-01
Gamma ray bursts display a wide range of temporal and spectral characteristics, but typically last several seconds and emit most of their energy in a low energy, gamma ray region. The burst sources appear to be isotropically distributed on the sky. Several lines of evidence suggest magnetic neutron stars as sources for bursts. A variety of energy sources and emission mechanisms are proposed.
Development of TPF-1 plasma focus for education
NASA Astrophysics Data System (ADS)
Picha, R.; Promping, J.; Channuie, J.; Poolyarat, N.; Sangaroon, S.; Traikool, T.
2017-09-01
The plasma focus is a device that uses high voltage and electromagnetic force to induce plasma generation and acceleration, in order to cause nuclear reactions. Radiation of various types (X-ray, gamma ray, electrons, ions, neutrons) can be generated using this method during the pinch phase, thus making the plasma focus able to serve as a radiation source. Material testing, modification, and identification are among the current applications of the plasma focus. Other than being an alternative option to isotopic sources, the plasma focus, which requires multidisciplinary team of personnel to design, operate, and troubleshoot, can also serve as an excellent learning device for physics and engineering students in the fields including, but not limited to, plasma physics, nuclear physics, electronics engineering, and mechanical engineering. This work describes the parameters and current status of Thai Plasma Focus 1 (TPF-1) and the characteristics of the plasma being produced in the machine using a Rogowski coil.
Oke, Olaleke O; Magony, Andor; Anver, Himashi; Ward, Peter D; Jiruska, Premysl; Jefferys, John G R; Vreugdenhil, Martin
2010-04-01
Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.
NASA Astrophysics Data System (ADS)
Henderson, Alexander Hastings
Lasers have grown more powerful in recent years, opening up new frontiers in physics. From early intensities of less than 1010 W/cm 2, lasers can now achieve intensities over 1021 W/cm 2. Ultraintense laser can become powerful new tools to produce relativistic electrons, positron-electron pairs, and gamma-rays. The pair production efficiency is equal to or greater than that of linear accelerators, the most common method of antimatter generation in the past. The gamma-rays and electrons produced can be highly collimated, making these interactions of interest for beam generation. Monte-Carlo particle transport simulation has long been used in physics for simulating various particle and radiation processes, and is well-suited to simulating both electromagnetic cascades resulting from laser-solid interactions and the response of electron/positron spectrometers and gamma-ray detectors. We have used GEANT4 Monte-Carlo particle transport simulation to design and calibrate charged-particle spectrometers using permanent magnets as well as a Forward Compton Electron Spectrometer to measure gamma-rays of higher energies than have previously been achieved. We have had some success simulating and measuring high positron and gamma-rays yields from laser-solid interactions using gold target at the Texas Petawatt Laser (TPW). While similar spectrometers have been developed in the past, we are to our knowledge the first to successfully use permanent magnet spectrometers to detect positrons originating from laser-solid interactions in this energy range. We believe we are also the first to successfully detect multi-MeV gamma rays using a permanent magnet Forward Compton Electron Spectrometer. Monte-Carlo particle transport simulation has been used by other groups to model positron production from laser-solid ineraction, but at the time that we began we were, as far as we know, the first to have a significant amount of empirical data to work with. We were thus at liberty to estimate the initial conditions, compare simulation results to data, and adjust as needed to obtain a better estimate of the actual initial conditions. We have also developed a new method for measuring the yield and angular distribution of gamma-rays using a two-dimensional dosimeter array. In this work, we examine the experimental and simulation results as well as the physical processes behind them. In addition, the gamma-rays produced by our experiments could be useful for photo-nuclear reactors and homeland security purposes. In our experiments, we measured narrow energy-band positrons and electrons which have potential medical uses.
NASA Technical Reports Server (NTRS)
Wu, S. T.
2000-01-01
The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.
2014-10-01
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.
Theory and Performance of AIMS for Active Interrogation
NASA Astrophysics Data System (ADS)
Walters, William J.; Royston, Katherine E. K.; Haghighat, Alireza
2014-06-01
A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) determination of neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, γ) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water. In the first step, a response-function formulation has been developed to calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, γ) cross sections to find the resulting gamma source distribution. Finally, in the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma flux at a detector window. A code, AIMS (Active Interrogation for Monitoring Special-Nuclear-materials), has been written to output the gamma current for an source-detector assembly scanning across the cargo using the pre-calculated values and takes significantly less time than a reference MCNP5 calculation.
NASA Astrophysics Data System (ADS)
Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.
2017-07-01
Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.
Arcsec source location measurements in gamma-ray astronomy from a lunar observatory
NASA Astrophysics Data System (ADS)
Koch, D. G.; Hughes, B. E.
1990-03-01
The physical processes typically used in the detection of high energy gamma-rays do not permit good angular resolution, which makes difficult the unambiguous association of discrete gamma-ray sources with objects emitting at other wavelengths. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For the purpose of discussion, this concept is examined for gamma rays above about 20 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.
The application of network synthesis to repeating classical gamma-ray bursts
NASA Technical Reports Server (NTRS)
Hurley, K.; Kouveliotou, C.; Fishman, J.; Meegan, C.; Laros, J.; Klebesadel, R.
1995-01-01
It has been suggested that the Burst and Transient Source Experiment (BATSE) gamma-ray burst catalog contains several groups of bursts clustered in space or in space and time, which provide evidence that a substantial fraction of the classical gamma-ray burst sources repeat. Because many of the bursts in these groups are weak, they are not directly detected by the Ulysses GRB experiment. We apply the network synthesis method to these events to test the repeating burst hypothesis. Although we find no evidence for repeating sources, the method must be applied under more general conditions before reaching any definite conclusions about the existence of classical gamma-ray burst repeating sources.
Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources
Nesci, R.; Tosti, G.; Pursimo, T.; ...
2013-06-18
Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from themore » Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index α ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (ν peak) of the synchrotron emission.« less
Study on Effects of Gamma-Ray Irradiation on TlBr Semiconductor Detectors
NASA Astrophysics Data System (ADS)
Matsumura, Motohiro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira; Kimura, Norihisa; Nagano, Nobumichi; Hitomi, Keitaro
Radiation hardness of thallium bromide (TlBr) semiconductor detectors to 60Co gamma-ray irradiation was evaluated. The energy spectra and μτ products of electrons were measured to evaluate the irradiation effects. No significant degradation of spectroscopic performance of the TlBr detector for 137Cs gamma-rays was observed up to 45 kGy irradiation. Although the μτ products of electrons in the TlBr detector slightly decreased, position of the photo-peak was stable without significant degradation after the gamma-ray irradiation. We confirmed that the TlBr semiconductor detector has a high tolerance for gamma-ray irradiation at least up to 45 kGy.
Intense Gamma-Ray Flashes Above Thunderstorms on the Earth and Other Planets
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2010-01-01
Intense millisecond flashes of MeV photons have been observed with space-borne detectors in Earth orbit. They are expected to be present on other planets that exhibit lightning. The terrestrial gamma-ray flashes (TGFs) were discovered with the Burst and Transient Source Experiment (BATSE) aboard the Compton Gamma-Ray Observatory (CGRO) in the early 1990s. They are now being observed with several other instruments, including the Gamma-ray Burst Monitor (GBM) detectors on the Fermi Gamma-ray Space Telescope. Although Fermi- GBM was designed and optimized for the observation of cosmic gamma-ray bursts (GRBs), it has unprecedented capabilities for TGF observations. The TGFs usually have extremely hard continuous spectra, typical of highly- Comptonized bremsstrahlung radiation. These spectral are harder than those of GRBs, with photons extending to over 40 MeV. The most likely origin of these high-energy photons is bremsstrahlung radiation produced by a relativistic "runaway avalanche" electron beam. Such a beam is expected to be produced in an extended, intense electric field in or above thunderstorm regions. The altitude of origin and beaming characteristics of the radiation are quite uncertain. They have generated considerable observational and theoretical interest in recent years. This talk will give an overview of the all of the space-borne observations of TGFs that have been made thus far. Instruments are being designed specifically for TGF observations from new spacecraft as well as from airborne platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Albert, A.
2013-07-01
In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. For each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. We proceed to discuss the 27 sources found at Galactic latitudes smaller than 10 Degree-Sign andmore » show that, despite their low latitudes, most of them are likely of extragalactic origin.« less
Ackermann, M.; Ajello, M.; Albert, A.; ...
2013-06-17
In this paper, we present the Fermi All-sky Variability Analysis (FAVA), a tool to systematically study the variability of the gamma-ray sky measured by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. In addition, for each direction on the sky, FAVA compares the number of gamma-rays observed in a given time window to the number of gamma-rays expected for the average emission detected from that direction. This method is used in weekly time intervals to derive a list of 215 flaring gamma-ray sources. Finally, we proceed to discuss the 27 sources found at Galactic latitudes smaller thanmore » 10° and show that, despite their low latitudes, most of them are likely of extragalactic origin.« less
NASA Astrophysics Data System (ADS)
Zhao, Hao; Peng, Wen-Xi; Wang, Huan-Yu; Qiao, Rui; Guo, Dong-Ya; Xiao, Hong; Wang, Zhao-Min
2018-06-01
DArk Matter Particle Explorer (DAMPE) is a general purpose high energy cosmic ray and gamma ray observatory, aiming to detect high energy electrons and gammas in the energy range 5 GeV to 10 TeV and hundreds of TeV for nuclei. This paper provides a method using machine learning to identify electrons and separate them from gammas, protons, helium and heavy nuclei with the DAMPE data acquired from 2016 January 1 to 2017 June 30, in the energy range from 10 to 100 GeV.
Recent high energy gamma-ray results from SAS-2
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.; Lamb, R. C.
1977-01-01
Recent developments in gamma-ray astronomy due to the results from SAS-2 have focused on two areas. First, the emission from the plane of the Galaxy is the dominant feature in the gamma-ray sky. The galactic latitude and longitude distributions are consistent with the concept that the high-energy radiation originates from cosmic rays interacting with interstellar matter, and the measurements support a galactic origin for cosmic rays. Second, searches of the SAS-2 data for emission from localized sources have shown three strong discrete gamma-ray sources: the Crab nebula and PSR 0531 + 21, the Vela supernova remnant and PSR 0833-45, and a source near galactic coordinates 193 deg longitude, +3 deg latitude, which does not appear to be associated with other known celestial objects. Evidence has also been found for pulsed gamma-ray emission from two other radio pulsars, PSR 1818-04 and PSR 1747-46. A localized source near longitudes 76-80 deg may be associated with the X-ray source Cyg X-3.
NASA Technical Reports Server (NTRS)
Aprile, Elena
1994-01-01
An instrument is described which will provide a direct image of gamma-ray line or continuum sources in the energy range 300 keV to 10 MeV. The use of this instrument to study the celestial distribution of the (exp 26)Al isotope by observing the 1.809 MeV deexcitation gamma-ray line is illustrated. The source location accuracy is 2' or better. The imaging telescope is a liquid xenon time projection chamber coupled with a coded aperture mask (LXe-CAT). This instrument will confirm and extend the COMPTEL observations from the Compton Gamma-Ray Observatory (CGRO) with an improved capability for identifying the actual Galactic source or sources of (exp 26)Al, which are currently not known with certainty. sources currently under consideration include red giants on the asymptotic giant branch (AGB), novae, Type 1b or Type 2 supernovae, Wolf-Rayet stars and cosmic-rays interacting in molecular clouds. The instrument could also identify a local source of the celestial 1.809 MeV gamma-ray line, such as a recent nearby supernova.
A Prototype {sup 212}Pb Medical Dose Calibrator for Alpha Radioimmunotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, W.F.; Patil, A.; Russ, W.R.
AREVA Med, an AREVA group subsidiary, is developing innovative cancer-fighting therapies involving the use of {sup 212}Pb for alpha radioimmunotherapy. Canberra Industries, the nuclear measurement subsidiary of AREVA, has been working with AREVA Med to develop a prototype measurement system to assay syringes containing a {sup 212}Pb solution following production by an elution system. The relative fraction of emitted radiation from the source associated directly with the {sup 212}Pb remains dynamic for approximately 6 hours after the parent is chemically purified. A significant challenge for this measurement application is that the short half-life of the parent nuclide requires assay priormore » to reaching equilibrium with progeny nuclides. A gross counting detector was developed to minimize system costs and meet the large dynamic range of source activities. Prior to equilibrium, a gross counting system must include the period since the {sup 212}Pb was pure to calculate the count rate attributable to the parent rather than the progeny. The dynamic state is determined by solving the set of differential equations, or Bateman equations, describing the source decay behavior while also applying the component measurement efficiencies for each nuclide. The efficiencies were initially estimated using mathematical modeling (MCNP) but were then benchmarked with source measurements. The goal accuracy of the system was required to be within 5%. Independent measurements of the source using a high resolution spectroscopic detector have shown good agreement with the prototype system results. The prototype design was driven by cost, compactness and simplicity. The detector development costs were minimized by using existing electronics and firmware with a Geiger-Mueller tube derived from Canberra's EcoGamma environmental monitoring product. The acquisition electronics, communications and interface were controlled using Python with the EcoGamma software development kit on a Raspberry Pi Linux computer mounted inside a standard project box. The results of initial calibration measurements are presented. (authors)« less
NASA Technical Reports Server (NTRS)
Kaaret, P.; Piraino, S.; Halpern, Jules P.; Eracleous, M.; Oliversen, Ronald (Technical Monitor)
2001-01-01
We have discovered an X-ray source, SAX J0635+0533, with a hard spectrum within the error box of the GeV gamma-ray source in Monoceros, 2EG J0635+0521. The unabsorbed flux from the source is 1.2 x 10(exp -11) ergs /sq cm s in the 2-10 keV band. The X-ray spectrum is consistent with a simple power-law model with absorption. The photon index is 1.50 +/- 0.08, and we detect emission out to 40 keV. Optical observations identify a counterpart with a V magnitude of 12.8. The counterpart has broad emission lines and the colors of an early B-type star. If the identification of the X-ray/optical source with the gamma-ray source is correct, then the source would be a gamma-ray-emitting X-ray binary.
Fermi Gamma-Ray Space Telescope: Highlights of the GeV Sky
NASA Technical Reports Server (NTRS)
Thomspon, D. J.
2011-01-01
Because high-energy gamma rays can be produced by processes that also produce neutrinos. the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of potenl ial targds for neutrino observations. Gamma-ray bursts. active galactic nuclei, and supernova remnants are all sites where hadronic, neutrino-producing interactions are plausible. Pulsars, pulsar wind nebulae, and binary sources are all phenomena that reveal leptonic particle acceleration through their gamma-ray emission. \\Vhile important to gamma-ray astrophysics. such sources are of less interest to neutrino studies. This talk will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.
Mrázová, H; Koller, J; Kubišová, K; Fujeríková, G; Klincová, E; Babál, P
2016-06-01
Sterilization is an important step in the preparation of biological material for transplantation. The aim of the study is to compare morphological changes in three types of biological tissues induced by different doses of gamma and electron beam radiation. Frozen biological tissues (porcine skin xenografts, human skin allografts and human amnion) were irradiated with different doses of gamma rays (12.5, 25, 35, 50 kGy) and electron beam (15, 25, 50 kGy). Not irradiated specimens served as controls. The tissue samples were then thawn and fixed in 10 % formalin, processed by routine paraffin technique and stained with hematoxylin and eosin, alcian blue at pH 2.5, orcein, periodic acid Schiff reaction, phosphotungstic acid hematoxylin, Sirius red and silver impregnation. The staining with hematoxylin and eosin showed vacuolar cytoplasmic changes of epidermal cells mainly in the samples of xenografts irradiated by the lowest doses of gamma and electron beam radiation. The staining with orcein revealed damage of fine elastic fibers in the xenograft dermis at the dose of 25 kGy of both radiation types. Disintegration of epithelial basement membrane, especially in the xenografts, was induced by the dose of 15 kGy of electron beam radiation. The silver impregnation disclosed nuclear chromatin condensation mainly in human amnion at the lowest doses of both radiation types and disintegration of the fine collagen fibers in the papillary dermis induced by the lowest dose of electron beam and by the higher doses of gamma radiation. Irradiation by both, gamma rays and the electron beam, causes similar changes on cells and extracellular matrix, with significant damage of the basement membrane and of the fine and elastic and collagen fibers in the papillary dermis, the last caused already by low dose electron beam radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Chibani, O; Chen, L
Purpose: Tremendous technological developments were made for conformal therapy techniques with linear accelerators, while less attention was paid to cobalt-60 units. The aim of the current study is to explore the dosimetric benefits of a novel rotating gamma ray system enhanced with interchangeable source sizes and multi-leaf collimator (MLC). Material and Methods: CybeRT is a novel rotating gamma ray machine with a ring gantry that ensures an iso-center accuracy of less than 0.3 mm. The new machine has a 70cm source axial distance allowing for improved penumbra compared to conventional machines. MCBEAM was used to simulate Cobalt-60 beams from themore » CybeRT head, while the MCPLAN code was used for modeling the MLC and for phantom/patient dose calculation. The CybeRT collimation will incorporate a system allowing for interchanging source sizes. In this work we have created phase space files for 1cm and 2cm source sizes. Evaluation of the system was done by comparing CybeRT beams with the 6MV beams in a water phantom and in patient geometry. Treatment plans were compared based on isodose distributions and dose volume histograms. Results: Profiles for the 1cm source were comparable to that from 6MV in the order of 6mm for 10×10 cm{sup 2} field size at the depth of maximum dose. This could ascribe to Cobalt-60 beams producing lowerenergy secondary electrons. Although, the 2cm source have a larger penumbra however it could be still used for large targets with proportionally increased dose rate. For large lung targets, the difference between cobalt and 6MV plans is clinically insignificant. Our preliminary results showed that interchanging source sizes will allow cobalt beams for volumetric arc therapy of both small lesions and large tumors. Conclusion: The CybeRT system will be a cost effective machine capable of performing advanced radiation therapy treatments of both small tumors and large target volumes.« less
PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift
NASA Technical Reports Server (NTRS)
DAmmando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.;
2012-01-01
The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the First Fermi-LAT source catalog with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the Second Fermi-LAT source catalog. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, GROND, ATCA, Ceduna, and KAT-7 observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, UV and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 +/- 0.05 using GROND and Swift/UVOT observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67. We fit the broadband spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disk component is necessary to explain the optical/UV emis- sion detected by Swift/UVOT. This disk has a luminosity of 1.8x1046 erg s-1, and a fit to the disk emission assuming a Schwarzschild (i.e., nonrotating) black hole gives a mass of 2 x 109 M(solar mass). This is the first black hole mass estimate for this source.
NASA Astrophysics Data System (ADS)
Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.
2013-05-01
High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.
THE PREPARATION, PROPERTIES, AND USES OF AMERICIUM-241, ALPHA-, GAMMA-, AND NEUTRON SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strain, J.E.; Leddicotte, G.W.
1962-09-01
A study was made of the preparation of alpha, gamma, and neutron sources using the long-lived radioisotope of americium, Am/sup 241/. Americium-241 is an artificiallyproduced radioelement which has a half-life of 462 plus or minus 10 years and decays to Np/sup 237/ by alpha emission followed by low-energy gamma emission. The high specific activity of americium-241 (7.0 x 10/sup 9/ d/m/mg) combined with its reasonably long half-life makes it ideally sulted for the preparation of radioactive sources. The chemical and physical properties of Am/ sup 241/ and the physical manipulations involved in fabricating alpha, gamma, and neutron sources are generallymore » described in this report. Uses for each type of source are discussed and data are presented to indicate the respective properties and usefulness of each source type. (auth)« less
A correlation between hard gamma-ray sources and cosmic voids along the line of sight
Furniss, A.; Sutter, P. M.; Primack, J. R.; ...
2014-11-25
We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as “VHE-like” sources) are distributed along underdense lines of sight at the 2.4σ level. There is a less suggestive correlation for the Fermi hard source population (1.7σ). A correlation between 10-500 GeV fluxmore » and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4σ and 2.6σ, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity τ(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.« less
6-7 Mev Characteristic Gamma-Ray Source Using A Plasma Opening Switch And A Marx Bank
2011-06-01
of Hawk, including the POS, is shown in Fig. 2a. The POS consists of 12 plasma guns made from coaxial cables that inject ionized plasma radially...inward between two coaxial conductors prior to firing the generator. The POS plasma conducts the generator current as a short circuit for about 700...vacuum gap in the plasma . High-energy electron- and ion-beams form in the plasma -filled coaxial region, with ions from the plasma and the polyethylene
An intelligent inspection and survey robot. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-15
Radioactive materials make up a significant part of the hazardous-material inventory of the Department of Energy. Much of the radioactive material will be inspected or handled by robotic systems that contain electronic circuits that may be damaged by gamma radiation and other particles emitted from radioactive material. This report examines several scenarios, the damage that may be inflicted, and methods that may be used to protect radiation-hardened robot control systems. Commercial sources of components and microcomputers that can withstand high radiation exposure are identified.
NASA Astrophysics Data System (ADS)
Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena
2007-12-01
Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.
Coupling Nuclear Induced Phonon Propagation with Conversion Electron Moessbauer Spectroscopy
2015-06-18
penetrating and a small detector with low density will be insensitive to the gammas. Thus, a small gas proportional counter is ideal for this application ...and Materials Science Vol. 1. Plenum: New York, 1993. 16. Long, G. J. and Stevens, J. G., eds. (1986) " Industrial applications of the Mössbauer...proportional gas detector attached to left side of 1” diameter stainless steel type-310 bar, phonon source encased in a mounting device attached to the right
NASA Astrophysics Data System (ADS)
King, Michael Joseph
Instrumentation development is essential to the advancement and success of homeland security systems. Active interrogation techniques that scan luggage and cargo containers for shielded special nuclear materials or explosives hold great potential in halting further terrorist attacks. The development of more economical, compact and efficient source and radiation detection devices will facilitate scanning of all containers and luggage while maintaining high-throughput and low-false alarms Innovative ion sources were developed for two novel, specialized neutron generating devices and initial generator tests were performed. In addition, a low-energy acceleration gamma generator was developed and its performance characterized. Finally, an organic semiconductor was investigated for direct fast neutron detection. A main part of the thesis work was the development of ion sources, crucial components of the neutron/gamma generator development. The use of an externally-driven radio-frequency antenna allows the ion source to generate high beam currents with high, mono-atomic species fractions while maintaining low operating pressures, advantageous parameters for neutron generators. A dual "S" shaped induction antenna was developed to satisfy the high current and large extraction area requirements of the high-intensity neutron generator. The dual antenna arrangement generated a suitable current density of 28 mA/cm2 at practical RF power levels. The stringent requirements of the Pulsed Fast Neutron Transmission Spectroscopy neutron generator necessitated the development of a specialized ten window ion source of toroidal shape with a narrow neutron production target at its center. An innovative ten antenna arrangement with parallel capacitors was developed for driving the multi-antenna arrangement and uniform coupling of RF power to all ten antennas was achieved. To address the desire for low-impact, low-radiation dose active interrogation systems, research was performed on mono-energetic gamma generators that operate at low-acceleration energies and leverage neutron generator technologies. The dissertation focused on the experimental characterization of the generator performance and involved MCNPX simulations to evaluate and analyze the experimental results. The emission of the 11.7 MeV gamma-rays was observed to be slightly anisotropic and the gamma yield was measured to be 2.0*105 gamma/s-mA. The lanthanum hexaboride target suffered beam damage from a high power density beam; however, this may be overcome by sweeping the beam across a larger target area. The efficient detection of fast neutrons is vital to active interrogation techniques for the detection of both SNM and explosives. Novel organic semiconductors are air-stable, low-cost materials that demonstrate direct electronic particle detection. As part of the development of a pi-conjugated organic polymer for fast neutron detection, charge generation and collection properties were investigated. By devising a dual, thin-film detector test arrangement, charge collection was measured for high energy protons traversing the dual detector arrangement that allowed the creation of variable track lengths by tilting the detector. The results demonstrated that an increase in track length resulted in a decreased signal collection. This can be understood by assuming charge carrier transport along the track instead of along the field lines, which was made possible by the filling of traps. However, this charge collection mechanism may be insufficient to generate a useful signal. This dissertation has explored the viability of a new generation of radiation sources and detectors, where the newly developed ion source technologies and prototype generators will further enhance the capabilities of existing threat detection systems and promote the development of cutting-edge detection technologies.
Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.
Yamanaka, Takamitsu
2005-09-01
The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.
PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift
NASA Technical Reports Server (NTRS)
D'Ammando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.;
2013-01-01
The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the first Fermi- Large Area Telescope (LAT) source catalogue with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the second Fermi-LAT source catalogue. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift,Gamma-ray Optical/Near-Infrared Detector (GROND), Australia Telescope Compact Array (ATCA), Ceduna and Seven Dishes Karoo Array Telescope (KAT-7) observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, ultraviolet (UV) and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 plus or minus 0.05 using GROND and Swift Ultraviolet/Optical Telescope (UVOT) observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67.We fit the broad-band spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disc component is necessary to explain the optical/UV emission detected by Swift/UVOT. This disc has a luminosity of approximately 1.8 x 10(exp 46) erg s(exp -1), and a fit to the disc emission assuming a Schwarzschild (i.e. non-rotating) black hole gives a mass of approximately 2 x 10(exp 9) solar mass. This is the first black hole mass estimate for this source.
Lemoine-Goumard, M.; Zavlin, V. E.; Grondin, M. -H.; ...
2011-09-07
Context. Since the launch of the Fermi satellite, the number of known gamma-ray pulsars has increased tenfold. Most gamma-ray detected pulsars are young and energetic, and many are associated with TeV sources. PSR J1357-6429 is a high spin-down power pulsar (È = 3.1 × 1036 erg s -1), discovered during the Parkes multibeam survey of the Galactic plane, with significant timing noise typical of very young pulsars. In the very-high-energy domain (E > 100 GeV), H.E.S.S. has reported the detection of the extended source HESS J1356-645 (intrinsic Gaussian width of 12') whose centroid lies 7' from PSR J1357-6429. Aims. Wemore » search for gamma- and X-ray pulsations from this pulsar, characterize the neutron star emission and explore the environment of PSR J1357-6429. Methods. Using a rotational ephemeris obtained with 74 observations made with the Parkes telescope at 1.4 GHz, we phase-fold more than two years of gamma-ray data acquired by the Large Area Telescope on-board Fermi as well as those collected with XMM-Newton, and perform gamma-ray spectral modeling. Results. Significant gamma- and X-ray pulsations are detected from PSR J1357-6429. The light curve in both bands shows one broad peak. Gamma-ray spectral analysis of the pulsed emission suggests that it is well described by a simple power-law of index 1.5 ± 0.3 stat ± 0.3 syst with an exponential cut-off at 0.8 ± 0.3 stat ± 0.3 syst GeV and an integral photon flux above 100 MeV of (6.5 ± 1.6 stat ± 2.3 syst) × 10 -8 cm -2 s -1. The X-ray spectra obtained from the new data provide results consistent with previous work. Upper limits on the gamma-ray emission from its potential pulsar wind nebula (PWN) are also reported. Conclusions. Assuming a distance of 2.4 kpc, the Fermi LAT energy flux yields a gamma-ray luminosity for PSR J1357-6429 of L γ = (2.13 ± 0.25 stat ± 0.83 syst) × 1034 erg s -1, consistent with an relationship. The Fermi non-detection of the pulsar wind nebula associated with HESS J1356-645 provides new constraints on the electron population responsible for the extended TeV emission.« less
The study of gamma irradiation effects on poly (glycolic acid)
NASA Astrophysics Data System (ADS)
Rao Nakka, Rajeswara; Rao Thumu, Venkatappa; Reddy SVS, Ramana; Rao Buddhiraju, Sanjeeva
2015-05-01
We have investigated the effects of gamma irradiation on chemical structure, thermal and morphological properties of biodegradable semi-crystalline poly (glycolic acid) (PGA). PGA samples were subjected to irradiation treatment using a 60Co gamma source with a delivered dose of 30, 60 and 90 kGy, respectively. Gamma irradiation induces cleavage of PGA main chains forming ∼OĊH2 and ĊH2COO∼ radicals in both amorphous and crystalline regions. The free radicals formed in the amorphous region abstract atmospheric oxygen and convert them to peroxy radicals. The peroxy radical causes chain scission at the crystal interface through hydrogen abstraction from methylene groups forming the ∼ĊHCOO∼ (I) radical. Consequently, the observed electron spin resonance (ESR) doublet of irradiated PGA is assigned to (I). The disappearance of the ESR signal above 190°C indicates that free radicals are formed in the amorphous region and decay below the melting temperature of PGA. Fourier transform infrared and optical absorption studies confirm that the ? groups are not influenced by gamma irradiation. Differential scanning calorimetry (DSC) studies showed that the melting temperature of PGA decreased from 212°C to 202°C upon irradiation. Degree of crystallinity increased initially and then decreased with an increase in radiation as per DSC and X-ray diffraction studies. Irradiation produced changes in the physical properties of PGA as well as affecting the morphology of the material.
NASA Technical Reports Server (NTRS)
Hunter, Stanley D.
2011-01-01
Gamma-ray astrophysics probes the highest energy, exotic phenomena in astrophysics. In the medium-energy regime, 0.1-200 MeV, many astrophysical objects exhibit unique and transitory behavior such as the transition from electron dominated to hadron dominated processes, spectral breaks, bursts, and flares. Medium-energy gamma-ray imaging however, continues to be a major challenge particularly because of high background, low effective area, and low source intensities. The sensitivity and angular resolution required to address these challenges requires a leap in technology. The Advance Energetic Pair Telescope (AdEPT) being developed at GSFC is designed to image gamma rays above 5 MeV via pair production with angular resolution of 1-10 deg. In addition AdEPT will, for the first time, provide high polarization sensitivity in this energy range. This performance is achieved by reducing the effective area in favor of enhanced angular resolution through the use of a low-density gaseous conversion medium. AdEPT is based on the Three-Dimensional Track Imager (3-DTI) technology that combines a large volume Negative Ion Time Projection Chamber (NITPC) with 2-D Micro-Well Detector (MWD) readout. I will review the major science topics addressable with medium-energy gamma-rays and discuss the current status of the AdEPT technology, a proposed balloon instrument, and the design of a future satellite mission.
Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7−3946
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acero, F.; Aloisio, R.; Amato, E.
We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7−3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7−3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observedmore » by XMM-Newton , whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.« less
Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7–3946
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acero, F.; Aloisio, R.; Amans, J.
Here, we perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7–3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7–3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emissionmore » observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.« less
Prospects for Dark Matter Measurements with the Advanced Gamma Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Buckley, James
2009-05-01
AGIS, a concept for a future gamma-ray observatory consisting of an array of 50 atmospheric Cherenkov telescopes, would provide a powerful new tool for determining the nature of dark matter and its role in structure formation in the universe. The advent of more sensitive direct detection experiments, the launch of Fermi and the startup of the LHC make the near future an exciting time for dark matter searches. Indirect measurements of cosmic-ray electrons may already provide a hint of dark matter in our local halo. However, gamma-ray measurements will provide the only means for mapping the dark matter in the halo of our galaxy and other galaxies. In addition, the spectrum of gamma-rays (either direct annihilation to lines or continuum emission from other annihilation channels) will be imprinted with the mass of the dark matter particle, and the particular annihilation channels providing key measurements needed to identify the dark matter particle. While current gamma-ray instruments fall short of the generic sensitivity required to measure the dark matter signal from any sources other than the (confused) region around the Galactic center, we show that the planned AGIS array will have the angular resolution, energy resolution, low threshold energy and large effective area required to detect emission from dark matter annihilation in Galactic substructure or nearby Dwarf spheroidal galaxies.
Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7–3946
Acero, F.; Aloisio, R.; Amans, J.; ...
2017-05-09
Here, we perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7–3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7–3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emissionmore » observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.« less
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2010-04-01
The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in the energy range from 20 to 100 GeV. Here, we use the absolute size and spectral shape of this measured flux to derive cross section limits on three types of generic dark matter candidates: annihilating into quarks, charged leptons and monochromatic photons. Predicted gamma-ray fluxes from annihilating dark matter are strongly affected by the underlying distribution of dark matter, and bymore » using different available results of matter structure formation we assess these uncertainties. We also quantify how the dark matter constraints depend on the assumed conventional backgrounds and on the Universe's transparency to high-energy gamma-rays. In reasonable background and dark matter structure scenarios (but not in all scenarios we consider) it is possible to exclude models proposed to explain the excess of electrons and positrons measured by the Fermi-LAT and PAMELA experiments. Derived limits also start to probe cross sections expected from thermally produced relics (e.g. in minimal supersymmetry models) annihilating predominantly into quarks. Finally, for the monochromatic gamma-ray signature, the current measurement constrains only dark matter scenarios with very strong signals.« less
Performance study of the gamma-ray bursts polarimeter POLAR
NASA Astrophysics Data System (ADS)
Sun, J. C.; Wu, B. B.; Bao, T. W.; Batsch, T.; Bernasconi, T.; Britvitch, I.; Cadoux, F.; Cernuda, I.; Chai, J. Y.; Dong, Y. W.; Gauvin, N.; Hajdas, W.; He, J. J.; Kole, M.; Kong, M. N.; Kong, S. W.; Lechanoine-Leluc, C.; Li, Lu; Liu, J. T.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Produit, N.; Rapin, D.; Rutczynska, A.; Rybka, D.; Shi, H. L.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wen, X.; Xiao, H. L.; Xiong, S. L.; Xu, H. H.; Xu, M.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zwolinska, A.
2016-07-01
The Gamma-ray Burst Polarimeter-POLAR is a highly sensitive detector which is dedicated to the measurement of GRB's polarization with a large effective detection area and a large field of view (FOV). The optimized performance of POLAR will contribute to the capture and measurement of the transient sources like GRBs and Solar Flares. The detection energy range of POLAR is 50 keV 500 keV, and mainly dominated by the Compton scattering effect. POLAR consists of 25 detector modular units (DMUs), and each DMU is composed of low Z material Plastic Scintillators (PS), multi-anode photomultipliers (MAPMT) and multi-channel ASIC Front-end Electronics (FEE). POLAR experiment is an international collaboration project involving China, Switzerland and Poland, and is expected to be launched in September in 2016 onboard the Chinese space laboratory "Tiangong-2 (TG-2)". With the efforts from the collaborations, POLAR has experienced the Demonstration Model (DM) phase, Engineering and Qualification Model (EQM) phase, Qualification Model (QM) phase, and now a full Flight Model (FM) of POLAR has been constructed. The FM of POLAR has passed the environmental acceptance tests (thermal cycling, vibration, shock and thermal vacuum tests) and experienced the calibration tests with both radioactive sources and 100% polarized Gamma-Ray beam at ESRF after its construction. The design of POLAR, Monte-Carlo simulation analysis, as well as the performance test results will all be introduced in this paper.
NASA Technical Reports Server (NTRS)
Sagdeev, Roald
1995-01-01
The main scientific objectives of the project were: (1) Calculation of average time history for different subsets of BATSE gamma-ray bursts; (2) Comparison of averaged parameters and averaged time history for different Burst And Transient Source Experiments (BASTE) Gamma Ray Bursts (GRB's) sets; (3) Comparison of results obtained with BATSE data with those obtained with APEX experiment at PHOBOS mission; and (4) Use the results of (1)-(3) to compare current models of gamma-ray bursts sources.
X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources
NASA Astrophysics Data System (ADS)
Pühlhofer, Gerd
2009-05-01
Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula. Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population. Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.
Proton-neutron multiplet states in {sup 112}Sb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fayez-Hassan, M.; Gulyas, J.; Dombradi, Z.
1997-05-01
Excited states of {sup 112}Sb were investigated through the {sup 112}Sn(p,n{gamma}){sup 112}Sb reaction. {gamma}-ray, {gamma}{gamma}-coincidence, and internal conversion electron spectra were measured with Ge(HP) {gamma} and superconducting magnetic lens plus Si(Li) electron spectrometers at 8.5, 8.9, 9.1, and 9.3 MeV bombarding proton energies. A significantly extended level scheme was constructed. Spins and parities have been assigned to the levels from Hauser-Feshbach analysis of reaction cross sections, internal conversion coefficients, angular distribution of the {gamma} rays, and decay properties of the states. The low lying states were assigned to proton-neutron multiplets on the basis of their decay properties. The energy splittingmore » of these multiplets have been calculated using the parabolic rule. {copyright} {ital 1997} {ital The American Physical Society}« less
Active interrogation using low-energy nuclear reactions
NASA Astrophysics Data System (ADS)
Antolak, Arlyn; Doyle, Barney; Leung, Ka-Ngo; Morse, Daniel; Provencio, Paula
2005-09-01
High-energy photons and neutrons can be used to interrogate for heavily shielded fissile materials inside sealed cargo containers by detecting their prompt and/or delayed fission signatures. The FIND (Fissmat Inspection for Nuclear Detection) active interrogation system is based on a dual neutron+gamma source that uses low-energy (< 500 keV) proton- or deuteron-induced nuclear reactions to produce high intensities of mono-energetic gamma rays and/or neutrons. The source can be operated in either pulsed (e.g., to detect delayed photofission neutrons and gammas) or continuous (e.g., detecting prompt fission signatures) modes. For the gamma-rays, the source target can be segmented to incorporate different (p,γ) isotopes for producing gamma-rays at selective energies, thereby improving the probability of detection. The design parameters for the FIND system are discussed and preliminary accelerator-based measurements of gamma and neutron yields, background levels, and fission signals for several target materials under consideration are presented.
Final Report - Few-Body Studies Using Electromagnetic Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norum, Blaine
The work discussed here is an extension of work previously funded by U.S. Department of Energy Grant DE-FG02-97ER41025. Measurements of charged pion photoproduction from deuterium using the Laser Electron Gamma Source (LEGS) at the Brookhaven National Laboratory previously made by us, as members of the LEGS Collaboration, resulted in the most interesting result of two decades of work. By measuring the production of a charged pion (π +) in coincidence with an emitted photon we observed structures in the residual two-nucleon system. These indicated the existence of rare, long-lived states not explicable by standard nuclear theory; they suggested a setmore » of configurations not explicable in terms of a nucleon-nucleon pair. The existence of such “exotic” structures has formed the foundation for most of the work that has ensued. Several measurements at various laboratories have supported, but not proved, the existence of these exotic states. The rarity of these states made their existence undetectable in most previous measurements. Only by observing characteristic signatures of such states (i.e., decay photons), by using very specific kinematics which isolate certain reaction products, or by measuring polarization-dependent observables. During the period of this grant we pursued and made progress on the development of experiments to be performed at the High Intensity Gamma Source (HIGS) of the Tri Universities Nuclear Laboratory (TUNL). Our understanding of photon- and electron-induced nuclear reactions depends on understanding of the basic electron and photon interaction. Recently, the issue of two-photon contributions has arisen in the context of deeply inelastic electron scattering. One way to address this is to measure asymmetries in the Bethe-Heitler ee process. We also made progress in developing the detectors required to measure these asymmetries at HIGS. During the last several years the apparent discrepancy between the size of the proton as measured using electrons and that as measured using muons has received a great deal of attention. Working with colleagues at the Jefferson Laboratory (JLAB) we showed that the apparent discrepancy was almost surely the result of mistakes in the statistical analysis of electron scattering data, that there is almost surely no discrepancy.« less
RoboPol: the optical polarization of gamma-ray-loud and gamma-ray-quiet blazars
NASA Astrophysics Data System (ADS)
Angelakis, E.; Hovatta, T.; Blinov, D.; Pavlidou, V.; Kiehlmann, S.; Myserlis, I.; Böttcher, M.; Mao, P.; Panopoulou, G. V.; Liodakis, I.; King, O. G.; Baloković, M.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Paleologou, E.; Papadakis, I.; Papamastorakis, I.; Pazderski, E.; Pearson, T. J.; Prabhudesai, S.; Ramaprakash, A. N.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Urry, M.; Zensus, J. A.
2016-12-01
We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma-ray-loud and gamma-ray-quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray-loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray-quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3σ level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band luminosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high-synchrotron-peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray-quiet sources show similar median polarization fractions although they are all low-synchrotron-peaked. We also find that the randomness of the polarization angle depends on the synchrotron peak frequency. For high-synchrotron-peaked sources, it tends to concentrate around preferred directions while for low-synchrotron-peaked sources, it is more variable and less likely to have a preferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.
Air shower detectors in gamma-ray astronomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinnis, Gus
2008-01-01
Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro,more » in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.« less
Development and application of a hybrid transport methodology for active interrogation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royston, K.; Walters, W.; Haghighat, A.
A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, 7) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water cargo. To complete the first step, a response-function formulation has been developed tomore » calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, 7) cross sections to find the resulting gamma source distribution. In the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma current at a detector window. The AIMS (Active Interrogation for Monitoring Special-Nuclear-Materials) software has been written to output the gamma current for a source-detector assembly scanning across a cargo container using the pre-calculated values and taking significantly less time than a reference MCNP5 calculation. (authors)« less
DESIGN OF A GAMMA-RAY SOURCE BASED ON INVERSE COMPTON SCATTERING AT THE FAST SUPERCONDUCTING LINAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihalcea, D.; Jacobson, B.; Murokh, A.
2016-10-10
A watt-level average-power gamma-ray source is currently under development at the Fermilab Accelerator Science & Technology (FAST) facility. The source is based on the Inverse Compton Scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performances, and the main challenges ahead.
The relativistic feedback discharge model of terrestrial gamma ray flashes
NASA Astrophysics Data System (ADS)
Dwyer, Joseph R.
2012-02-01
As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.
NASA Astrophysics Data System (ADS)
Faraji, Nastaran; Mahmood Mat Yunus, W.; Kharazmi, Alireza; Saion, Elias; Behzad, Kasra
2014-01-01
CdS nanofluids were prepared by the gamma-radiation method at different radiation doses. The samples were characterized by UV-Vis spectroscopy and transmission electron microscopy. The open cell photoacoustic technique was used to measure the thermal effusivity of the CdS nanocomposites. In this technique a He-Ne laser was used as the excitation source and was operated at 632.8 nm with an output power of 70 mW. The precision and accuracy of this technique were initially established by measuring the thermal effusivity of distilled water and ethylene glycol. The thermal-effusivity values of these two samples were found to be close to the values reported in the literature. The thermal effusivity of CdS nanofluids decreased from (0.453 to 0.268) with increased dosage of gamma radiation.
NASA Technical Reports Server (NTRS)
Aprile, Elena
1992-01-01
In the third year of the research project, we have (1) tested a 3.5 liter prototype of the Liquid Xenon Time Projection Chamber, (2) used a prototype having a 4.4 cm drift gap to study the charge and energy resolution response of the 3.5 liter chamber, (3) obtained an energy resolution as good as that previously measured by us using chambers with drift gaps of the order of millimeters, (4) observed the induction signals produced by MeV gamma rays, (4) used the 20 hybrid charge sensitive preamplifiers for a nondestructive readout of the electron image on the induction wires, (5) performed extensive Monte Carlo simulations to obtain results on efficiency, background rejection capability, and source flux sensitivity, and (6) developed a reconstruction algorithm for events with multiple interaction points.
The response of covered silicon detectors to monoenergetic gamma rays.
NASA Technical Reports Server (NTRS)
Reier, M.
1972-01-01
Measurements have been made of the efficiency in detecting gamma rays of a 0.3-mm-, 3-mm-, and 5-mm-thick silicon detector covered with different absorbers. Calibrated sources over the range from 279 keV to 2.75 MeV were used. The need for the absorbers to obtain meaningful results and their contribution to the response of the detectors at electron biases from 50 to 200 keV are discussed in detail. It is shown that the results are virtually independent of the atomic number of the absorber. In addition, the role of the absorber in increasing the efficiency with increasing photon energy for low bias settings is demonstrated for the 0.3-mm crystal. Qualitative explanations are given for the shapes of all curves of efficiency versus energy at each bias.
Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1
NASA Technical Reports Server (NTRS)
Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.
2011-01-01
Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.
NASA Astrophysics Data System (ADS)
Idris, Sarada; A. Bakar, Ahmad Ashrif; Thevy Ratnam, Chantara; Kamaruddin, Nur Hasiba; Shaari, Sahbudin
2017-04-01
This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy/PVA matrix occurred simultaneously upon gamma irradiation. The optimum dose for GOx immobilization in the polymer matrix found to be 40 kGy. Therefore it is clear that this irradiation technique offered a simple single process to produce Py/PVA-GOx film without additional crosslinking and polymerization agents.
Fermi discovers giant gamma-ray bubbles in the Milky Way
2017-12-08
NASA image release November 9, 2010 To view a video about this story go to: www.flickr.com/photos/gsfc/5162413062 Using data from NASA's Fermi Gamma-ray Space Telescope, scientists have recently discovered a gigantic, mysterious structure in our galaxy. This never-before-seen feature looks like a pair of bubbles extending above and below our galaxy's center. But these enormous gamma-ray emitting lobes aren't immediately visible in the Fermi all-sky map. However, by processing the data, a group of scientists was able to bring these unexpected structures into sharp relief. Each lobe is 25,000 light-years tall and the whole structure may be only a few million years old. Within the bubbles, extremely energetic electrons are interacting with lower-energy light to create gamma rays, but right now, no one knows the source of these electrons. Are the bubbles remnants of a massive burst of star formation? Leftovers from an eruption by the supermassive black hole at our galaxy's center? Or or did these forces work in tandem to produce them? Scientists aren't sure yet, but the more they learn about this amazing structure, the better we'll understand the Milky Way. To learn more go to: www.nasa.gov/mission_pages/GLAST/news/new-structure.html NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio
Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces
NASA Astrophysics Data System (ADS)
Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.
2006-10-01
The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.
Electron Trajectory Reconstruction for Advanced Compton Imaging of Gamma Rays
NASA Astrophysics Data System (ADS)
Plimley, Brian Christopher
Gamma-ray imaging is useful for detecting, characterizing, and localizing sources in a variety of fields, including nuclear physics, security, nuclear accident response, nuclear medicine, and astronomy. Compton imaging in particular provides sensitivity to weak sources and good angular resolution in a large field of view. However, the photon origin in a single event sequence is normally only limited to the surface of a cone. If the initial direction of the Compton-scattered electron can be measured, the cone can be reduced to a cone segment with width depending on the uncertainty in the direction measurement, providing a corresponding increase in imaging sensitivity. Measurement of the electron's initial direction in an efficient detection material requires very fine position resolution due to the electron's short range and tortuous path. A thick (650 mum), fully-depleted charge-coupled device (CCD) developed for infrared astronomy has 10.5-mum position resolution in two dimensions, enabling the initial trajectory measurement of electrons of energy as low as 100 keV. This is the first time the initial trajectories of electrons of such low energies have been measured in a solid material. In this work, the CCD's efficacy as a gamma-ray detector is demonstrated experimentally, using a reconstruction algorithm to measure the initial electron direction from the CCD track image. In addition, models of fast electron interaction physics, charge transport and readout were used to generate modeled tracks with known initial direction. These modeled tracks allowed the development and refinement of the reconstruction algorithm. The angular sensitivity of the reconstruction algorithm is evaluated extensively with models for tracks below 480 keV, showing a FWHM as low as 20° in the pixel plane, and 30° RMS sensitivity to the magnitude of the out-of-plane angle. The measurement of the trajectories of electrons with energies as low as 100 keV have the potential to make electron track Compton imaging an effective means of reducing image background for photons of energy as low as 500 keV, or even less. The angular sensitivity of the reconstruction algorithm was also evaluated experimentally, by measuring electron tracks in the CCD in coincidence with the scattered photon in a germanium double-sided strip detector. By this method, electron tracks could be measured with the true initial direction known to within 3° FWHM, and the angular response of the algorithm compared to the known direction. The challenge of this experiment lay in the low geometric efficiency for photons scattering into the germanium, the poor time resolution in the current CCD implementation, and the resulting signal-to-background ratio of about 10--4 for photons scattered from the CCD into the germanium detector. Nonetheless, 87 events were measured in the FWHM of the total energy deposited and the angular resolution measure, with electron tracks between 160 keV and 360 keV in energy. The electron tracks from true coincident event sequences showed a FWHM in the pixel plane of 23°, and excellent agreement with the distribution calculated with models, with likelihood p-values of 0.44 and 0.73. Thus, the models used for the more thorough evaluation of angular sensitivities are shown to be consistent with the measured tracks from true coincident event sequences.
Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar
NASA Technical Reports Server (NTRS)
Kong, A. K. H.; Huang, R. H. H.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Lin, L. C. C.; Kataoka, J.; Takahashi, Y.;
2012-01-01
The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a approx. 0.1 Stellar Mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is approx. 3-5 ms based on the inferred gamma-ray luminosity.
NASA Astrophysics Data System (ADS)
Kirillov, V. A.; Kuchuro, J. I.
2014-09-01
We have used EPR dosimetry on tooth enamel to show that the combined effect of x-rays with effective energy 34 keV and gamma radiation with average energy 1250 keV leads to a significant increase in the reconstructed absorbed dose compared with the applied dose from a gamma source or from an x-ray source or from both sources of electromagnetic radiation. In simulation experiments, we develop an approach to estimating the contribution of diagnostic x-rays to the exposure dose formed in the tooth enamel by the combined effect of x-rays and gamma radiation.
Search for gamma-rays from M31 and other extragalactic objects
NASA Technical Reports Server (NTRS)
Cawley, M. F.; Fegan, D. J.; Gibbs, K.; Gorham, P. W.; Lamb, R. C.; Liebing, D. F.; Porter, N. A.; Stenger, V. J.; Weeles, T. C.
1985-01-01
Although the existence of fluxes of gamma-rays of energies 10 to the 12th power eV is now established for galactic sources, the detection of such gamma-rays from extragalactic sources has yet to be independently confirmed in any case. The detection and confirmation of such energetic photons is of great astrophysical importance in the study of production mechanisms for cosmic rays, and other high energy processes in extragalactic objects. Observations of m31 are discussed. It is reported as a 10 to the 12th power eV gamma-ray source. Flux limits on a number of other extragalactic objects chosen for study are given.
High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars
Giroletti, M.; Massaro, F.; D’Abrusco, R.; ...
2016-04-01
Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less
High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giroletti, M.; Massaro, F.; D’Abrusco, R.
Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. In this paper, we characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6100 deg 2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detectedmore » by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120–180 MHz) blazar spectral index is (α low) = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Finally, upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.« less
In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.;
2012-01-01
The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.
In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.
The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in themore » Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.« less
Detection of the Small Magellanic Cloud in gamma-rays with Fermi /LAT
Abdo, A. A.
2010-11-01
Context. The flux of gamma rays with energies greater than 100 MeV is dominated by diffuse emission coming from cosmic-rays (CRs) illuminating the interstellar medium (ISM) of our Galaxy through the processes of Bremsstrahlung, pion production and decay, and inverse-Compton scattering. The study of this diffuse emission provides insight into the origin and transport of cosmic rays. Aims. We searched for gamma-ray emission from the Small Magellanic Cloud (SMC) in order to derive constraints on the cosmic-ray population and transport in an external system with properties different from the Milky Way. Methods. We analysed the first 17 months of continuousmore » all-sky observations by the Large Area Telescope (LAT) of the Fermi mission to determine the spatial distribution, flux and spectrum of the gamma-ray emission from the SMC. We also used past radio synchrotron observations of the SMC to study the population of CR electrons specifically. Results. We obtained the first detection of the SMC in high-energy gamma rays, with an integrated >100 MeV flux of (3.7 ± 0.7) × 10 -8 ph cm -2 s -1, with additional systematic uncertainty of ≤16%. The emission is steady and from an extended source ~3° in size. It is not clearly correlated with the distribution of massive stars or neutral gas, nor with known pulsars or supernova remnants, but a certain correlation with supergiant shells is observed. Conclusions. The observed flux implies an upper limit on the average CR nuclei density in the SMC of ~15% of the value measured locally in the Milky Way. The population of high-energy pulsars of the SMC may account for a substantial fraction of the gamma-ray flux, which would make the inferred CR nuclei density even lower. The average density of CR electrons derived from radio synchrotron observations is consistent with the same reduction factor but the uncertainties are large. From our current knowledge of the SMC, such a low CR density does not seem to be due to a lower rate of CR injection and rather indicates a smaller CR confinement volume characteristic size.« less
Detection of the Small Magellanic Cloud in gamma-rays with Fermi/LAT
NASA Astrophysics Data System (ADS)
Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Dermer, C. D.; de Palma, F.; Digel, S. W.; Silva, E. Do Couto E.; Drell, P. S.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jean, P.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Martin, P.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ripken, J.; Ritz, S.; Romani, R. W.; Sadrozinski, H. F.-W.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.
2010-11-01
Context. The flux of gamma rays with energies greater than 100 MeV is dominated by diffuse emission coming from cosmic-rays (CRs) illuminating the interstellar medium (ISM) of our Galaxy through the processes of Bremsstrahlung, pion production and decay, and inverse-Compton scattering. The study of this diffuse emission provides insight into the origin and transport of cosmic rays. Aims: We searched for gamma-ray emission from the Small Magellanic Cloud (SMC) in order to derive constraints on the cosmic-ray population and transport in an external system with properties different from the Milky Way. Methods: We analysed the first 17 months of continuous all-sky observations by the Large Area Telescope (LAT) of the Fermi mission to determine the spatial distribution, flux and spectrum of the gamma-ray emission from the SMC. We also used past radio synchrotron observations of the SMC to study the population of CR electrons specifically. Results: We obtained the first detection of the SMC in high-energy gamma rays, with an integrated >100 MeV flux of (3.7±0.7) × 10-8 ph cm-2 s-1, with additional systematic uncertainty of ≤16%. The emission is steady and from an extended source ~3° in size. It is not clearly correlated with the distribution of massive stars or neutral gas, nor with known pulsars or supernova remnants, but a certain correlation with supergiant shells is observed. Conclusions: The observed flux implies an upper limit on the average CR nuclei density in the SMC of ~15% of the value measured locally in the Milky Way. The population of high-energy pulsars of the SMC may account for a substantial fraction of the gamma-ray flux, which would make the inferred CR nuclei density even lower. The average density of CR electrons derived from radio synchrotron observations is consistent with the same reduction factor but the uncertainties are large. From our current knowledge of the SMC, such a low CR density does not seem to be due to a lower rate of CR injection and rather indicates a smaller CR confinement volume characteristic size.
NASA Astrophysics Data System (ADS)
Singh, Arvind; Desai, Shraddha; Kumar, Arvind; Topkar, Anita
2018-05-01
A novel approach of using thin epitaxial silicon PIN detectors for thermal neutron measurements with reduced γ sensitivity has been presented. Monte Carlo simulations showed that there is a significant reduction in the gamma sensitivity for thin detectors with the thickness of 10- 25 μm compared to a detector of thickness of 300 μm. Epitaxial PIN silicon detectors with the thickness of 10 μm, 15 μm and 25 μm were fabricated using a custom process. The detectors exhibited low leakage currents of a few nano-amperes. The gamma sensitivity of the detectors was experimentally studied using a 33 μCi, 662 keV, 137Cs source. Considering the count rates, compared to a 300 μm thick detector, the gamma sensitivity of the 10 μm, 15 μm and 25 μm thick detectors was reduced by factors of 1874, 187 and 18 respectively. The detector performance for thermal neutrons was subsequently investigated with a thermal neutron beam using an enriched 10B film as a neutron converter layer. The thermal neutron spectra for all three detectors exhibited three distinct regions corresponding to the 4He and 7Li charge products released in the 10B-n reaction. With a 10B converter, the count rates were 1466 cps, 3170 cps and 2980 cps for the detectors of thicknesses of 10 μm, 25 μm and 300 μm respectively. The thermal neutron response of thin detectors with 10 μm and 25 μm thickness showed significant reduction in the gamma sensitivity compared to that observed for the 300 μm thick detector. Considering the total count rate obtained for thermal neutrons with a 10B converter film, the count rate without the converter layer were about 4%, 7% and 36% for detectors with thicknesses of 10 μm, 25 μm and 300 μm respectively. The detector with 10 μm thickness showed negligible gamma sensitivity of 4 cps, but higher electronic noise and reduced pulse heights. The detector with 25 μm thickness demonstrated the best performance with respect to electronic noise, thermal neutron response and gamma sensitivity.
Spectra of Cosmic Ray Electrons and Diffuse Gamma Rays with the Constraints of AMS-02 and HESS Data
NASA Astrophysics Data System (ADS)
Chen, Ding; Huang, Jing; Jin, Hong-Bo
2015-10-01
Recently, AMS-02 reported their results of cosmic ray (CR) observations. In addition to the AMS-02 data, we add HESS data to estimate the spectra of CR electrons and the diffuse gamma rays above TeV. In the conventional diffusion model, a global analysis is performed on the spectral features of CR electrons and the diffuse gamma rays by the GALRPOP package. The results show that the spectrum structure of the primary component of CR electrons cannot be fully reproduced by a simple power law and that the relevant break is around 100 GeV. At the 99% confidence level (C.L.) the injection indices above the break decrease from 2.54 to 2.35, but the ones below the break are only in the range of 2.746-2.751. The spectrum of CR electrons does not need to add TeV cutoff to also match the features of the HESS data. Based on the difference between the fluxes of CR electrons and their primary components, the predicted excess of CR positrons is consistent with the interpretation that these positrons originate from a pulsar or dark matter. In the analysis of the Galactic diffuse gamma rays with the indirect constraint of AMS-02 and HESS data, it is found that the fluxes of Galactic diffuse gamma rays are consistent with the GeV data of the Fermi-Large Area Telescope (LAT) in the high-latitude regions. The results indicate that inverse Compton scattering is the dominant component in the range of hundreds of GeV to tens of TeV, respectively from the high-latitude regions to the low ones, and in all of the regions of the Galaxy the flux of diffuse gamma rays is less than that of CR electrons at the energy scale of 20 TeV.
SPECTRA OF COSMIC RAY ELECTRONS AND DIFFUSE GAMMA RAYS WITH THE CONSTRAINTS OF AMS-02 AND HESS DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ding; Jin, Hong-Bo; Huang, Jing, E-mail: hbjin@bao.ac.cn
2015-10-01
Recently, AMS-02 reported their results of cosmic ray (CR) observations. In addition to the AMS-02 data, we add HESS data to estimate the spectra of CR electrons and the diffuse gamma rays above TeV. In the conventional diffusion model, a global analysis is performed on the spectral features of CR electrons and the diffuse gamma rays by the GALRPOP package. The results show that the spectrum structure of the primary component of CR electrons cannot be fully reproduced by a simple power law and that the relevant break is around 100 GeV. At the 99% confidence level (C.L.) the injectionmore » indices above the break decrease from 2.54 to 2.35, but the ones below the break are only in the range of 2.746–2.751. The spectrum of CR electrons does not need to add TeV cutoff to also match the features of the HESS data. Based on the difference between the fluxes of CR electrons and their primary components, the predicted excess of CR positrons is consistent with the interpretation that these positrons originate from a pulsar or dark matter. In the analysis of the Galactic diffuse gamma rays with the indirect constraint of AMS-02 and HESS data, it is found that the fluxes of Galactic diffuse gamma rays are consistent with the GeV data of the Fermi-Large Area Telescope (LAT) in the high-latitude regions. The results indicate that inverse Compton scattering is the dominant component in the range of hundreds of GeV to tens of TeV, respectively from the high-latitude regions to the low ones, and in all of the regions of the Galaxy the flux of diffuse gamma rays is less than that of CR electrons at the energy scale of 20 TeV.« less
Identifying Unidentified Fermi-LAT Objects (UFOs) at High-Latitude
NASA Astrophysics Data System (ADS)
Cheung, Chi Teddy
2009-09-01
We propose a Chandra study of 8 high Galactic latitude gamma-ray sources in the Fermi-LAT bright source list. These sources are currently unidentified, i.e., they are not clearly associated with established classes of gamma-ray emitters like blazars and pulsars. The proposed observations will determine the basic properties (fluxes, positions, hardness ratio/spectra) of all X-ray sources down to a 0.3-10 keV flux limit of 1.5e-14 erg/cm2/s within the Fermi-LAT localization circles. This will enable further follow-up at other wavelengths, with the ultimate goal to reveal the nature of these enigmatic gamma-ray sources.
Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources
NASA Technical Reports Server (NTRS)
Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.;
2010-01-01
We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<= 2 kpc) MSPs. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.
The analysis of complex mixed-radiation fields using near real-time imaging.
Beaumont, Jonathan; Mellor, Matthew P; Joyce, Malcolm J
2014-10-01
A new mixed-field imaging system has been constructed at Lancaster University using the principles of collimation and back projection to passively locate and assess sources of neutron and gamma-ray radiation. The system was set up at the University of Manchester where three radiation sources: (252)Cf, a lead-shielded (241)Am/Be and a (22)Na source were imaged. Real-time discrimination was used to find the respective components of the neutron and gamma-ray fields detected by a single EJ-301 liquid scintillator, allowing separate images of neutron and gamma-ray emitters to be formed. (252)Cf and (22)Na were successfully observed and located in the gamma-ray image; however, the (241)Am/Be was not seen owing to surrounding lead shielding. The (252)Cf and (241)Am/Be neutron sources were seen clearly in the neutron image, demonstrating the advantage of this mixed-field technique over a gamma-ray-only image where the (241)Am/Be source would have gone undetected. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
High-Energy Emission From Millisecond Pulsars
NASA Technical Reports Server (NTRS)
Harding, Alice K.; Usov, Vladimir V.; Muslimov, Alex G.
2004-01-01
The X-ray and gamma-ray spectrum of rotation-powered millisecond pulsars is investigated in a model for acceleration and pair cascades on open field lines above the polar caps. Although these pulsars have low surface magnetic fields, their short periods allow them to have large magnetospheric potential drops, but the majority do not produce sufficient pairs to completely screen the accelerating electric field. In these sources, the primary and secondary electrons continue to accelerate to high altitude and their Lorentz factors are limited by curvature and synchrotron radiation reaction. The accelerating particles maintain high Lorentz factors and undergo cyclotron resonant absorption of radio emission, that produces and maintains a large pitch angle, resulting in a strong synchrotron component. The resulting spectra consist of several distinct components: curvature radiation from primary electrons dominating from 1 - 100 GeV, synchrotron radiation from primary and secondary electrons dominating up to about 100 MeV, and much weaker inverse-Compton radiation from primary electrons a t 0.1 - 1 TeV. We find that the relative size of these components depends on pulsar period, period derivative, and neutron star mass and radius with the level of the synchrotron component also depending sensitively on the radio emission properties. This model is successful in describing the observed X-ray and gamma-ray spectrum of PSR J0218+4232 as synchrotron radiation, peaking around 100 MeV and extending up to a turnover around several GeV. The predicted curvature radiation components from a number of millisecond pulsars, as well as the collective emission from the millisecond pulsars in globular clusters, should be detectable with AGILE and GLAST. We also discuss a hidden population of X-ray-quiet and radio-quiet millisecond pulsars which have evolved below the pair death line, some of which may be detectable by telescopes sensitive above 1 GeV. Subject headings: pulsars: general - radiation mechanisms: nonthermal - stars: neutron - gamma rays: theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volotskova, O; Xu, A; Jozsef, G
Purpose: To investigate the response and dose rate dependence of a scintillation detector over a wide energy range. Methods: The energy dependence of W1 scintillation detector was tested with: 1) 50–225 keV beams generated by an animal irradiator, 2) a Leksell Gamma Knife Perfexion Co-60 source, 3) 6MV, 6FFF, 10FFF and 15MV photon beams, and 4) 6–20MeV electron beams from a linac. Calibrated linac beams were used to deliver 100 cGy to the detector at dmax in water under reference conditions. The gamma-knife measurement was performed in solid water (100 cGy with 16mm collimator). The low energy beams were calibratedmore » with an ion chamber in air (TG-61), and the scintillation detector was placed at the same location as the ionization chamber during calibration. For the linac photon and electron beams, dose rate dependence was tested for 100–2400 and 100–800 MU/min. Results: The scintillation detector demonstrated strong energy dependence in the range of 50–225keV. The measured values were lower than the delivered dose and increased as the energy increased. Therapeutic photon beams showed energy independence with variations less than 1%. Therapeutic electron beams displayed the same sensitivity of ∼2–3% at their corresponding dmax depths. The change in dose-rate of photon and electron beams within the therapeutic energy range did not affect detector output (<0.5%). Measurements acquired with the gamma knife showed that the output data agreed with the delivered dose up to 3%. Conclusion: W1 scintillation detector output has a strong energy dependence in the diagnostic and orthovoltage energy range. Therapeutic photon beams exhibited energy independence with no observable dose-rate dependence. This study may aid in the implementation of a scintillation detector in QA programs by providing energy calibration factors.« less
Computer Simulation of Electron Thermalization in CsI and CsI(Tl)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiguo; Xie, YuLong; Cannon, Bret D.
2011-09-15
A Monte Carlo (MC) model was developed and implemented to simulate the thermalization of electrons in inorganic scintillator materials. The model incorporates electron scattering with both longitudinal optical and acoustic phonons. In this paper, the MC model was applied to simulate electron thermalization in CsI, both pure and doped with a range of thallium concentrations. The inclusion of internal electric fields was shown to increase the fraction of recombined electron-hole pairs and to broaden the thermalization distance and thermalization time distributions. The MC simulations indicate that electron thermalization, following {gamma}-ray excitation, takes place within approximately 10 ps in CsI andmore » that electrons can travel distances up to several hundreds of nanometers. Electron thermalization was studied for a range of incident {gamma}-ray energies using electron-hole pair spatial distributions generated by the MC code NWEGRIM (NorthWest Electron and Gamma Ray Interaction in Matter). These simulations revealed that the partition of thermalized electrons between different species (e.g., recombined with self-trapped holes or trapped at thallium sites) vary with the incident energy. Implications for the phenomenon of nonlinearity in scintillator light yield are discussed.« less
A matrix-inversion method for gamma-source mapping from gamma-count data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adsley, Ian; Burgess, Claire; Bull, Richard K
In a previous paper it was proposed that a simple matrix inversion method could be used to extract source distributions from gamma-count maps, using simple models to calculate the response matrix. The method was tested using numerically generated count maps. In the present work a 100 kBq Co{sup 60} source has been placed on a gridded surface and the count rate measured using a NaI scintillation detector. The resulting map of gamma counts was used as input to the matrix inversion procedure and the source position recovered. A multi-source array was simulated by superposition of several single-source count maps andmore » the source distribution was again recovered using matrix inversion. The measurements were performed for several detector heights. The effects of uncertainties in source-detector distances on the matrix inversion method are also examined. The results from this work give confidence in the application of the method to practical applications, such as the segregation of highly active objects amongst fuel-element debris. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Allafort, A.
The Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) provided spatial, spectral, and temporal properties for a large number of {gamma}-ray sources using a uniform analysis method. After correlating with the most-complete catalogs of source types known to emit {gamma} rays, 630 of these sources are 'unassociated' (i.e., have no obvious counterparts at other wavelengths). Here, we employ two statistical analyses of the primary {gamma}-ray characteristics for these unassociated sources in an effort to correlate their {gamma}-ray properties with the active galactic nucleus (AGN) and pulsar populations in 1FGL. Based on the correlation results, we classify 221 AGN-like andmore » 134 pulsar-like sources in the 1FGL unassociated sources. The results of these source 'classifications' appear to match the expected source distributions, especially at high Galactic latitudes. While useful for planning future multiwavelength follow-up observations, these analyses use limited inputs, and their predictions should not be considered equivalent to 'probable source classes' for these sources. We discuss multiwavelength results and catalog cross-correlations to date, and provide new source associations for 229 Fermi-LAT sources that had no association listed in the 1FGL catalog. By validating the source classifications against these new associations, we find that the new association matches the predicted source class in {approx}80% of the sources.« less
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Berenji, B.;
2012-01-01
The Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) provided spatial, spectral, and temporal properties for a large number of gamma -ray sources using a uniform analysis method. After correlating with the mostcomplete catalogs of source types known to emit gamma rays, 630 of these sources are "unassociated" (i.e., have no obvious counterparts at other wavelengths). Here, we employ two statistical analyses of the primary gamma-ray characteristics for these unassociated sources in an effort to correlate their gamma-ray properties with the active galactic nucleus (AGN) and pulsar populations in 1FGL. Based on the correlation results, we classify 221 AGN-like and 134 pulsar-like sources in the 1FGL unassociated sources. The results of these source "classifications" appear to match the expected source distributions, especially at high Galactic latitudes. While useful for planning future multiwavelength follow-up observations, these analyses use limited inputs, and their predictions should not be considered equivalent to "probable source classes" for these sources. We discuss multiwavelength results and catalog cross-correlations to date, and provide new source associations for 229 Fermi-LAT sources that had no association listed in the 1FGL catalog. By validating the source classifications against these new associations, we find that the new association matches the predicted source class in approximately 80% of the sources.
High energy X-ray observations of COS-B gamma-ray sources from OSO-8
NASA Technical Reports Server (NTRS)
Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.
1985-01-01
During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.
New concepts for HgI2 scintillator gamma ray spectroscopy
NASA Technical Reports Server (NTRS)
Iwanczyk, Jan S.
1994-01-01
The primary goals of this project are development of the technology for HgI2 photodetectors (PD's), development of a HgI2/scintillator gamma detector, development of electronics, and development of a prototype gamma spectrometer. Work on the HgI2 PD's involved HgI2 purification and crystal growth, detector surface and electrical contact studies, PD structure optimization, encapsulation and packaging, and testing. Work on the HgI2/scintillator gamma detector involved a study of the optical - mechanical coupling for the optimization of CsI(Tl)/HgI2 gamma ray detectors and determination of the relationship between resolution versus scintillator type and size. The development of the electronics focused on low noise amplification circuits using different preamp input FET's and the use of a coincidence technique to maximize the signal, minimize the noise contribution in the gamma spectra, and improve the overall system resolution.
Observations with the High Altitude GAmma Ray (HAGAR) telescope array in the Indian Himalayas
NASA Astrophysics Data System (ADS)
Britto, R. J.; Acharya, B. S.; Anupama, G. C.; Bhatt, N.; Bhattacharjee, P.; Bhattacharya, S. S.; Chitnis, V. R.; Cowsik, R.; Dorji, N.; Duhan, S. K.; Gothe, K. S.; Kamath, P. U.; Koul, R.; Mahesh, P. K.; Mitra, A.; Nagesh, B. K.; Parmar, N. K.; Prabhu, T. P.; Rannot, R. C.; Rao, S. K.; Saha, L.; Saleem, F.; Saxena, A. K.; Sharma, S. K.; Shukla, A.; Singh, B. B.; Srinivasan, R.; Srinivasulu, G.; Sudersanan, P. V.; Tickoo, A. K.; Tsewang, D.; Upadhya, S.; Vishwanath, P. R.; Yadav, K. K.
2010-12-01
For several decades, it was thought that astrophysical sources emit high energy photons within the energy range of the gamma-ray region of the electromagnetic spectrum also. These photons originate from interactions of high energy particles from sources involving violent phenomena in the Universe (supernovae, pulsars, Active Galactic Nuclei, etc.) with gas and radiation fields. Since the first reliable detections of cosmic gamma rays in the 1970's, improvements in instrumentation have led gamma-ray astronomy to an established branch of modern Astrophysics, with a constant increase in the number of detected sources. But the 30-300 GeV energy range remained sparsely explored until the launch of the Fermi space telescope in June 2008. The ground-based gamma-ray telescope array HAGAR is the first array of atmospheric Cherenkov telescopes established at a so high altitude (4270 m a.s.l.), and was designed to reach a relatively low energy threshold with quite a low mirror area (31 m^2). It is located at Hanle in India, in the Ladakh region of the Himalayas. Regular source observations have begun with the complete setup of 7 telescopes on Sept. 2008. We report and discuss our estimation of the systematics through dark region studies, and present preliminary results from gamma-ray sources in this paper.
Discovery of two millisecond pulsars in Fermi sources with the Nancay Radio Telescope
Cognard, I.; Guillemot, L.; Johnson, Tyrel J.; ...
2011-04-14
Here, we report the discovery of two millisecond pulsars in a search for radio pulsations at the positions of Fermi-Large Area Telescope sources with no previously known counterparts, using the Nançay Radio Telescope. The two millisecond pulsars, PSRs J2017+0603 and J2302+4442, have rotational periods of 2.896 and 5.192 ms and are both in binary systems with low-eccentricity orbits and orbital periods of 2.2 and 125.9 days, respectively, suggesting long recycling processes. Gamma-ray pulsations were subsequently detected for both objects, indicating that they power the associated Fermi sources in which they were found. The gamma-ray light curves and spectral properties aremore » similar to those of previously detected gamma-ray millisecond pulsars. Detailed modeling of the observed radio and gamma-ray light curves shows that the gamma-ray emission seems to originate at high altitudes in their magnetospheres. Additionally, X-ray observations revealed the presence of an X-ray source at the position of PSR J2302+4442, consistent with thermal emission from a neutron star. These discoveries along with the numerous detections of radio-loud millisecond pulsars in gamma rays suggest that many Fermi sources with no known counterpart could be unknown millisecond pulsars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory J.
This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).« less
Low-frequency radio observations of poor clusters of galaxies
NASA Technical Reports Server (NTRS)
Hanisch, R. J.; White, R. A.
1981-01-01
Observations have been made at the Clark Lake Radio Observatory of 16 poor clusters of galaxies at 34.3 MHz. Four of the poor clusters were detected at flux densities greater than 20 Jy. The spectra of the four detected clusters are all rather steep. Two of the detected clusters, AWM 4 and AWM 5, are also known to be X-ray sources. The possibility that the X-ray-emitting gas is heated by Coulomb interactions with the relativistic electrons responsible for the radio emission is investigated, and it is found that the observed X-ray luminosities can be accounted for if the electron energy spectrum extends to very low energies (gamma approximately 1-10). Collective plasma effects may increase the heating efficiency and eliminate the need to extrapolate the electron energy spectrum to such low values.
The uniformity and imaging properties of some new ceramic scintillators
NASA Astrophysics Data System (ADS)
Chac, George T. L.; Miller, Brian W.; Shah, Kanai; Baldoni, Gary; Domanik, Kenneth J.; Bora, Vaibhav; Cherepy, Nerine J.; Seeley, Zachary; Barber, H. Bradford
2012-10-01
Results are presented of investigations into the composition, uniformity and gamma-ray imaging performance of new ceramic scintillators with synthetic garnet structure. The ceramic scintillators were produced by a process that uses flame pyrolysis to make nanoparticles which are sintered into a ceramic and then compacted by hot isostatic compression into a transparent material. There is concern that the resulting ceramic scintillator might not have the uniformity of composition necessary for use in gamma-ray spectroscopy and gamma-ray imaging. The compositional uniformity of four samples of three ceramic scintillator types (GYGAG:Ce, GLuGAG:Ce and LuAG:Pr) was tested using an electron microprobe. It was found that all samples were uniform in elemental composition to the limit of sensitivity of the microprobe (few tenths of a percent atomic) over distance scales from ~ 1 cm to ~ 1 um. The light yield and energy resolution of all ceramic scintillator samples were mapped with a highly collimated 57Co source (122 keV) and performance was uniform at mapping scale of 0.25 mm. Good imaging performance with single gamma-ray photon detection was demonstrated for all samples using a BazookaSPECT system, and the imaging spatial resolution, measured as the FWHM of a LSF was 150 um.
Microchannel plate special nuclear materials sensor
NASA Astrophysics Data System (ADS)
Feller, W. B.; White, P. L.; White, P. B.; Siegmund, O. H. W.; Martin, A. P.; Vallerga, J. V.
2011-10-01
Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR #HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.
NASA Astrophysics Data System (ADS)
Torii, T.
2015-12-01
Energetic radiation caused by thunderstorm activity is observed at various places, such as the ground, high mountain areas, and artificial satellites. In order to investigate the radiation source and its energy distribution, we measured energetic radiation by a sounding balloon, and the ground observation. On the measurement inside/above the thundercloud, we conducted a sounding observation using a radiosonde mounted two GM tubes (for gamma-rays, and for beta/gamma-rays), in addition to meteorological instruments. The balloon passed through a region of strong echoes in a thundercloud shown by radar image, at which time an increase in counting rate of the GM tube about 2 orders of magnitude occurred at the altitude from 5 km to 7.5 km. Furthermore, the counting rate of two GM tubes indicated the tendency different depending on movement of a balloon. This result suggests that the ratio for the gamma-rays (energetic photons) of the beta-rays (energetic electrons) varies according to the place in the thundercloud. Furthermore, we carried out a ground observation of the energetic gamma rays during winter thunderstorm at a coastal area facing the Sea of Japan. Two types of the energetic radiation have been observed at this time. We report the outline of these measurements and analysis in the session of the AGU meeting.
Pulse-height defect due to electron interaction in dead layers of Ge/Li/ gamma-ray detectors
NASA Technical Reports Server (NTRS)
Larsen, R. N.; Strauss, M. G.
1969-01-01
Study shows the pulse-height degradation of gamma ray spectra in germanium/lithium detectors to be due to electron interaction in the dead layers that exist in all semiconductor detectors. A pulse shape discrimination technique identifies and eliminates these defective pulses.
Preliminary status of the CALET observations
NASA Astrophysics Data System (ADS)
Torii, Shoji
2016-07-01
The CALorimetric Electron Telescope (CALET) space experiment, which has been developed by Japan in collaboration with Italy and the United States, is a high-energy astroparticle physics mission to be installed on the International Space Station (ISS). The primary goals of the CALET mission include investigating possible nearby sources of high energy electrons, studying the details of galactic particle propagation and searching for dark matter signatures. During a two- year mission, extendable to five years, the CALET experiment will measure the flux of cosmic-ray electrons (including positrons) to 20 TeV, gamma-rays to 10 TeV and nuclei with Z=1 to 40 up to several 100 TeV. The instrument consists of two layers of segmented plastic scintillators for the cosmic-ray charge identification (CHD), a 3 radiation length thick tungsten-scintillating fiber imaging calorimeter (IMC) and a 27 radiation length thick lead-tungstate calorimeter (TASC). CALET has sufficient depth, imaging capabilities and excellent energy resolution to allow for a clear separation between hadrons and electrons and between charged particles and gamma rays. The instrument was launched on Aug. 19, 2015 to the ISS with HTV-5 (H-II Transfer Vehicle 5) and was successfully berthed to the Japanese Experiment Module- Exposure Facility (JEM-EF) . After a functional check-out phase until the beginning of October, it started an initial operation phase which was completed on Nov. 17, whence it began its standard operation phase. This paper will review the preliminary status of the CALET.
Crest: A Balloon-borne Instrument to Measure Cosmic-ray Electrons above TeV Energies
NASA Astrophysics Data System (ADS)
Nutter, S.; Anderson, T.; Coutu, S.; Geske, M.; Bower, C.; Musser, J.; Muller, D.; Park, N.; Wakely, S.; Schubnell, M.; Tarle, G.; Yagi, A.
2009-05-01
The flux of high-energy (>1 TeV) electrons provides information about the spatial distribution and abundance of nearby cosmic ray sources. CREST, a balloon-borne array of 1024 BaF2 crystals viewed by PMTs, will measure the spectrum of multi-TeV electrons through detection of the x-ray synchrotron photons generated as the electrons traverse the Earth's magnetic field. This method naturally discriminates against the proton and gamma ray backgrounds, and achieves very large detector apertures, since the instrument need only intersect a portion of the kilometers-long line of photons and not the electron itself. Thus CREST's acceptance is several times its geometric area up to energies of 50 TeV, ˜10 times higher in energy than ground based techniques can reach. This measurement will overlap the recent HESS results and extend to higher energies. CREST is scheduled to fly in a long duration circumpolar orbit over Antarctica in 2010. An overview of the detector design and status will be presented.
FERMI Observations of Gamma -Ray Emission From the Moon
NASA Technical Reports Server (NTRS)
Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwoo, W. B.; Baldini, I.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.;
2012-01-01
We report on the detection of high-energy ? -ray emission from the Moon during the first 24 months of observations by the Fermi Large Area Telescope (LAT). This emission comes from particle cascades produced by cosmicray (CR) nuclei and electrons interacting with the lunar surface. The differential spectrum of the Moon is soft and can be described as a log-parabolic function with an effective cutoff at 2-3 GeV, while the average integral flux measured with the LAT from the beginning of observations in 2008 August to the end of 2010 August is F(greater than100 MeV) = (1.04 plus or minus 0.01 [statistical error] plus or minus 0.1 [systematic error]) × 10(sup -6) cm(sup -2) s(sup -1). This flux is about a factor 2-3 higher than that observed between 1991 and 1994 by the EGRET experiment on board the Compton Gamma Ray Observatory, F(greater than100 MeV)˜5×10(sup -7) cm(sup -2) s(sup -1), when solar activity was relatively high. The higher gamma -ray flux measured by Fermi is consistent with the deep solar minimum conditions during the first 24 months of the mission, which reduced effects of heliospheric modulation, and thus increased the heliospheric flux of Galactic CRs. A detailed comparison of the light curve with McMurdo Neutron Monitor rates suggests a correlation of the trends. The Moon and the Sun are so far the only known bright emitters of gamma-rays with fast celestial motion. Their paths across the sky are projected onto the Galactic center and high Galactic latitudes as well as onto other areas crowded with high-energy gamma-ray sources. Analysis of the lunar and solar emission may thus be important for studies of weak and transient sources near the ecliptic.
Fast neutron counting in a mobile, trailer-based search platform
NASA Astrophysics Data System (ADS)
Hayward, Jason P.; Sparger, John; Fabris, Lorenzo; Newby, Robert J.
2017-12-01
Trailer-based search platforms for detection of radiological and nuclear threats are often based upon coded aperture gamma-ray imaging, because this method can be rendered insensitive to local variations in gamma background while still localizing the source well. Since gamma source emissions are rather easily shielded, in this work we consider the addition of fast neutron counting to a mobile platform for detection of sources containing Pu. A proof-of-concept system capable of combined gamma and neutron coded-aperture imaging was built inside of a trailer and used to detect a 252Cf source while driving along a roadway. Neutron detector types employed included EJ-309 in a detector plane and EJ-299-33 in a front mask plane. While the 252Cf gamma emissions were not readily detectable while driving by at 16.9 m standoff, the neutron emissions can be detected while moving. Mobile detection performance for this system and a scaled-up system design are presented, along with implications for threat sensing.
OBSERVATIONS OF THE YOUNG SUPERNOVA REMNANT RX J1713.7-3946 WITH THE FERMI LARGE AREA TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A. A.; Ackermann, M.; Ajello, M.
We present observations of the young supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0.{sup 0}55 {+-} 0.{sup 0}04 matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allow us to identify the LAT source with SNR RX J1713.7-3946. The spectrum of the source can be described by a very hard power law with a photon index of {Gamma} = 1.5 {+-} 0.1 thatmore » coincides in normalization with the steeper H.E.S.S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.« less
Fermi gamma-ray imaging of a radio galaxy.
Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D
2010-05-07
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.
A SEARCH FOR THE DECAY $mu$$Yields$e+$nu$ $gamma$
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frankel, S.; Frati, W.; Halpern, J.
1963-02-16
A search for the decay mu min gave no sig e + gamma is made using spark chambers and sodium iodide crystals. The spark chambers provide the means of measuring the angle between the electron and photon, while the sodium iodide crystals are used to measure the particle energies. A lithium target and thin (0.001 in.) aluminum foils in the spark chamber are used to minimize the scattering of the electron. An upper limit of 4.3, 10/sup -8/ (90% confidence) is found for the ratio of the rate of the mu min gave no sig e + gamma decay tomore » the normal muon decay rate. A search for the decay mu min gave no sig e + gamma + gamma is also made. (auth)« less
NASA Astrophysics Data System (ADS)
Tkaczyk, A. H.; Saare, H.; Ipbüker, C.; Schulte, F.; Mastinu, P.; Paepen, J.; Pedersen, B.; Schillebeeckx, P.; Varasano, G.
2018-02-01
This paper describes the characterization of commercially available plastic scintillation detectors to be used as an active shield or veto system to reduce the neutron background resulting from atmospheric muon interactions in low-level nuclear waste assay systems. The shield consists of an array of scintillation detectors surrounding a neutron detection system. Scintillation detectors with different thicknesses are characterized for their response to gamma rays, neutrons, and muons. Response functions to gamma rays were determined and measured in the energy range from 0.6 MeV to 6.0 MeV using radionuclide sources. Neutron response functions were derived from results of time-of-flight measurements at the Van de Graaff accelerator of the INFN Legnaro and from measurements with quasi mono-energetic neutron beams produced at the Van de Graaff accelerator of the JRC Geel. From these data, the light output and resolution functions for protons and electrons were derived. The response to muons was verified by background measurements, i.e. without the presence of any neutron or gamma source. It was found that the muon peak is more pronounced when the detectors are placed horizontally. The results indicate that a scintillator with a minimum thickness of 20 mm is needed to separate events due to atmospheric muons from natural gamma ray background, and contributions due to neutron production in nuclear waste based on only the total energy deposition in the detector. In addition, it was shown that muons can be identified with a coincidence pattern when the detectors are stacked. The effectiveness of the proposed system was demonstrated based on muon induced spallation reactions in a lead sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirolf, P. G.; Habs, D.; Filipescu, D.
Next-generation {gamma} beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 10{sup 13}{gamma}/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses ({approx}120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a {gamma} pulse series with a duration of about 100 ns will impinge on themore » target, resulting in an instantaneous photon flux of about 10{sup 18}{gamma}/s, thus introducing major challenges in view of pile-up. Novel {gamma} optics will be applied to monochromatize the {gamma} beam to ultimately {Delta}E/E{approx}10{sup -6}. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding {gamma} detectors, e.g. based on advanced scintillator technology (e.g. LaBr{sub 3}(Ce)) allow for measurements with count rates as high as 10{sup 6}-10{sup 7}{gamma}/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr{sub 3} detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.« less
The GAMMA Ray Sky as Seen by Fermi: Opening a New Window on the High Energy Space Environment
2009-01-01
pulsars , stars whose repeating emissions can be used as ultra-precise chronometers. Measurement of gamma radiation provides unique insight...diffuse glow are a number of bright point sources, mostly gamma ray pulsars — rotating, magnetized neutron stars — as discussed below. The bright sources...important early discoveries of Fermi have been from objects in our galaxy. The LAT has discovered 12 new pulsars that seem to be visible only in gamma
NASA Astrophysics Data System (ADS)
Voisin, Guillaume; Mottez, Fabrice; Bonazzola, Silvano
2018-02-01
Electron-positron pair production by collision of photons is investigated in view of application to pulsar physics. We compute the absorption rate of individual gamma-ray photons by an arbitrary anisotropic distribution of softer photons, and the energy and angular spectrum of the outgoing leptons. We work analytically within the approximation that 1 ≫ mc2/E > ɛ/E, with E and ɛ the gamma-ray and soft-photon maximum energy and mc2 the electron mass energy. We give results at leading order in these small parameters. For practical purposes, we provide expressions in the form of Laurent series which give correct reaction rates in the isotropic case within an average error of ˜ 7 per cent. We apply this formalism to gamma-rays flying downward or upward from a hot neutron star thermally radiating at a uniform temperature of 106 K. Other temperatures can be easily deduced using the relevant scaling laws. We find differences in absorption between these two extreme directions of almost two orders of magnitude, much larger than our error estimate. The magnetosphere appears completely opaque to downward gamma-rays while there are up to ˜ 10 per cent chances of absorbing an upward gamma-ray. We provide energy and angular spectra for both upward and downward gamma-rays. Energy spectra show a typical double peak, with larger separation at larger gamma-ray energies. Angular spectra are very narrow, with an opening angle ranging from 10-3 to 10-7 radians with increasing gamma-ray energies.
Luo, W; Xu, W; Pan, Q Y; Cai, X Z; Chen, J G; Chen, Y Z; Fan, G T; Fan, G W; Guo, W; Li, Y J; Liu, W H; Lin, G Q; Ma, Y G; Shen, W Q; Shi, X C; Xu, B J; Xu, J Q; Xu, Y; Zhang, H O; Yan, Z; Yang, L F; Zhao, M H
2010-01-01
As a prototype of the Shanghai Laser Electron Gamma Source in the Shanghai Synchrotron Radiation Facility, an x-ray source based on laser-Compton scattering (LCS) has been installed at the terminal of the 100 MeV linac of the Shanghai Institute of Applied Physics. LCS x-rays are generated by interactions between Q-switched Nd:yttrium aluminum garnet laser pulses [with wavelength of 1064 nm and pulse width of 21 ns (full width at half maximum)] and electron bunches [with energy of 108 MeV and pulse width of 0.95 ns (rms)] at an angle of 42 degrees between laser and electron beam. In order to measure the energy spectrum of LCS x-rays, a Si(Li) detector along the electron beam line axis is positioned at 9.8 m away from a LCS chamber. After background subtraction, the LCS x-ray spectrum with the peak energy of 29.1+/-4.4|(stat)+/-2.1|(syst) keV and the peak width (rms) of 7.8+/-2.8|(stat)+/-0.4|(syst) keV is observed. Normally the 100 MeV linac operates with the electron macropulse charge of 1.0 nC/pulse, and the electron and laser collision repetition rate of 20 Hz. Therefore, the total LCS x-ray flux of (5.2+/-2.0) x 10(2) Hz can be achieved.
NASA Astrophysics Data System (ADS)
Gradoboev, A. V.; Orlova, K. N.; Simonova, A. V.
2018-05-01
The paper presents the research results of watt and volt characteristics of LEDs based upon AlGaInP heterostructures with multiple quantum wells in the active region. The research is completed for LEDs (emission wavelengths 624 nm and 590 nm) under irradiation by fast neutron and gamma-quanta in passive powering mode. Watt-voltage characteristics in the average and high electron injection areas are described as a power function of the operating voltage. It has been revealed that the LEDs transition from average electron injection area to high electron injection area occurs by overcoming the transition area. It disappears as it get closer to the limit result of the irradiation LEDs that is low electron injection mode in the entire supply voltage range. It has been established that the gamma radiation facilitates initial defects restructuring only 42% compared to 100% when irradiation is performed by fast neutrons. Ratio between measured on the boundary between low and average electron injection areas current value and the contribution magnitude of the first stage LEDs emissive power reducing is established. It is allows to predict LEDs resistance to irradiation by fast neutrons and gamma rays.
Fermi Gamma-Ray Observatory-Science Highlights for the First 8 Months
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2009-01-01
This viewgraph presentation reviews the science highlights for the first 8 months of the Fermi Gamma-Ray Observatory. Results from pulsars, flaring AGN, gamma ray bursts, diffuse radiation, LMC and electron spectrum are also presented.
Low-mass X-ray binaries and gamma-ray bursts
NASA Technical Reports Server (NTRS)
Lasota, J. P.; Frank, J.; King, A. R.
1992-01-01
More than twenty years after their discovery, the nature of gamma-ray burst sources (GRBs) remains mysterious. The results from BATSE experiment aboard the Compton Observatory show however that most of the sources of gamma-ray bursts cannot be distributed in the galactic disc. The possibility that a small fraction of sites of gamma-ray bursts is of galactic disc origin cannot however be excluded. We point out that large numbers of neutron-star binaries with orbital periods of 10 hr and M dwarf companions of mass 0.2-0.3 solar mass are a natural result of the evolution of low-mass X-ray binaries (LMXBs). The numbers and physical properties of these systems suggest that some gamma-ray burst sources may be identified with this endpoint of LMXB evolution. We suggest an observational test of this hypothesis.
Gamma-ray astronomy with muons: Sensitivity of IceCube to PeVatrons in the Southern sky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halzen, Francis; O'Murchadha, Aongus; Kappes, Alexander
2009-10-15
Northern hemisphere TeV gamma-ray observatories such as Milagro and Tibet AS{gamma} have demonstrated the importance of all-sky instruments by discovering previously unidentified sources that may be the PeVatrons producing cosmic rays up to the knee in the cosmic ray spectrum. We evaluate the potential of IceCube to identify similar sources in the southern sky by detailing an analytic approach to determine fluxes of muons from TeV gamma-ray showers. We apply this approach to known gamma-ray sources such as supernova remnants. We find that, similar to Milagro, detection is possible in 10 years for pointlike PeVatrons with fluxes stronger than severalmore » 10{sup -11} particles TeV{sup -1} cm{sup -2} s{sup -1}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, M., E-mail: yosikawa@prc.tsukuba.ac.jp; Nagasu, K.; Shimamura, Y.
2014-11-15
A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.
Yoshikawa, M; Yasuhara, R; Nagasu, K; Shimamura, Y; Shima, Y; Kohagura, J; Sakamoto, M; Nakashima, Y; Imai, T; Ichimura, M; Yamada, I; Funaba, H; Kawahata, K; Minami, T
2014-11-01
A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.
Sources of GeV Photons and the Fermi Results
NASA Astrophysics Data System (ADS)
Dermer, Charles D.
This chapter presents the elaborated lecture notes on Sources of GeV Photons and the Fermi Results given by Charles D. Dermer at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". The Fermi Gamma-ray Space Telescope made important discoveries and established new results in various areas of astrophysics: from our solar system to remote gamma-ray bursts, from pulsar physics to limits on dark matter and Lorentz invariance violations. The author gives a broad overview of these results by discussing GeV instrumentation and the GeV sky as seen by Fermi, the Fermi catalogs on gamma-ray sources, pulsars and active galactic nuclei, relativistic jet physics and blazars, gamma-rays from cosmic rays in the Galaxy, from star-forming galaxies and from clusters of galaxies, the diffuse extra-galactic gamma-ray background, micro-quasars, radio galaxies, the extragalactic background light, gamma-ray bursts, Fermi acceleration, ultra-high energy cosmic rays, and black holes.
Five New Millisecond Pulsars from a Radio Survey of 14 Unidentified Fermi-LAT Gamma-Ray Sources
NASA Technical Reports Server (NTRS)
Kerr, M.; Camilo, F.; Johnson, T. J.; Ferrara, E. C.; Guillemot, L.; Harding, A. K.; Hessels, J.; Johnson, S.; Keith, M.; Kramer, M.;
2012-01-01
We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Ferm;'LAT sources in the southern sky using the Parkes radio telescope. PSRs J0101-6422, J1514-4946, and J1902-5105 reside in binaries, while PSRs J1658-5324 and J1747-4036 are isolated. Using an ephemeris derived from timing observations of PSR JOl01-6422 (P=2.57ms, DH=12pc/cubic cm ), we have detected gamma-ray pulsations and measured its proper motion. Its gamma-ray spectrum (a power law of Gamma = 0.9 with a cutoff at 1.6 GeV) and efficiency are typical of other MSPs, but its radio and gamma-ray light curves challenge simple geometric models of emission. The high success rate of this survey -- enabled by selecting gamma-ray sources based on their detailed spectral characteristics -- and other similarly successful searches indicate that a substantial fraction of the local population of MSPs may soon be known.
NASA Astrophysics Data System (ADS)
Matthews, James
The present volume on high energy gamma-ray astronomy discusses the composition and properties of heavy cosmic rays greater than 10 exp 12 eV, implications of the IRAS Survey for galactic gamma-ray astronomy, gamma-ray emission from young neutron stars, and high-energy diffuse gamma rays. Attention is given to observations of TeV photons at the Whipple Observatory, TeV gamma rays from millisecond pulsars, recent data from the CYGNUS experiment, and recent results from the Woomera Telescope. Topics addressed include bounds on a possible He/VHE gamma-ray line signal of Galactic dark matter, albedo gamma rays from cosmic ray interactions on the solar surface, source studies, and the CANGAROO project. Also discussed are neural nets and other methods for maximizing the sensitivity of a low-threshold VHE gamma-ray telescope, a prototype water-Cerenkov air-shower detector, detection of point sources with spark chamber gamma-ray telescopes, and real-time image parameterization in high energy gamma-ray astronomy using transputers. (For individual items see A93-25002 to A93-25039)
Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; De Rosa, Rosanna; Scarciglia, Fabio; Buttafuoco, Gabriele
2016-05-01
The study, which represents an innovative scientific strategy to approach the study of natural radioactivity in terms of spatial and temporal variability, was aimed to characterize the background levels of natural radionuclides in soil and rock in the urban and peri-urban soil of a southern Italy area; to quantify their variations due to radionuclide bearing minerals and soil properties, taking into account nature and extent of seasonality influence. Its main novelty is taking into account the effect of climate in controlling natural gamma radioactivity as well as analysing soil radioactivity in terms of soil properties and pedogenetic processes. In different bedrocks and soils, activities of natural radionuclides ((238)U, (232)Th (4) K) and total radioactivity were measured at 181 locations by means of scintillation γ-ray spectrometry. In addition, selected rocks samples were collected and analysed, using a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS) and an X-Ray Powder Diffraction (XRPD), to assess the main sources of radionuclides. The natural-gamma background is intimately related to differing petrologic features of crystalline source rocks and to peculiar pedogenetic features and processes. The radioactivity survey was conducted during two different seasons with marked changes in the main climatic characteristics, namely dry summer and moist winter, to evaluate possible effects of seasonal climatic variations and soil properties on radioactivity measurements. Seasonal variations of radionuclides activities show their peak values in summer. The activities of (238)U, (232)Th and (4) K exhibit a positive correlation with the air temperature and are negatively correlated with precipitations. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Goddard Space Flight Center, on Behalf of the Fermi Large Area Telescope Collaboration
NASA Technical Reports Server (NTRS)
Thompson, David J.
2010-01-01
Because high-energy gamma rays can be produced by processes that also produce neutrinos, the gamma-ray survey of the sky by the Fermi (Gamma-ray Space Telescope offers a view of potential targets for neutrino observations. Gamma-ray bursts. Active Galactic Nuclei, and supernova remnants are all sites where hadronic, neutrino-producing interactions are plausible. Pulsars, pulsar wind nebulae, and binary sources are all phenomena that reveal leptonic particle acceleration through their gamma-ray emission. While important to gamma-ray astrophysics, such sources are of less interest to neutrino studies. This talk will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT)on the Fermi spacecraft.
The impact on the ozone layer from NOx produced by terrestrial gamma ray flashes
NASA Astrophysics Data System (ADS)
Cramer, E. S.; Briggs, M. S.; Liu, N.; Mailyan, B.; Dwyer, J. R.; Rassoul, H. K.
2017-05-01
The motivation of this work is to understand the effects of terrestrial gamma ray flashes (TGFs) on the ozone layer. One of the main ozone-destroying mechanisms is the production of NOx in the stratospheric region. NOx from lightning has been considered as a possible cause of ozone depletion, but probably little of this NOx is transported from the tropopause to the stratosphere. Since the energetic particles of TGFs travel from ≈12 km to space, the resulting ionization can produce NOx directly in the stratosphere. In order to quantify the production of stratospheric NOx from TGFs, we use the Runaway Electron Avalanche Model to simulate a typical setup of the acceleration region inside a thundercloud. The photons are then transported through the Earth's atmosphere, where they deposit some of their energy as ionization in the ozone layer. We then calculate the number of NOx molecules produced by considering the average energy required to produce one electron-ion pair. Finally, the effect of TGF NOx production is estimated using the global annual rate of TGFs. It is estimated that the NOx production of TGFs is completely negligible compared to other sources, and therefore, TGFs have no effect on the ozone layer.
Two-colour X-gamma ray inverse Compton back-scattering source
NASA Astrophysics Data System (ADS)
Drebot, I.; Petrillo, V.; Serafini, L.
2017-10-01
We present a simple and new scheme for producing two-colour Thomson/Compton radiation with the possibility of controlling separately the polarization of the two different colours, based on the interaction of one single electron beam with two light pulses that can come from the same laser setup or from two different lasers and that collide with the electrons at different angle. One of the most interesting cases for medical applications is to provide two X-ray pulses across the iodine K-edge at 33.2 keV. The iodine is used as contrast medium in various imaging techniques and the availability of two spectral lines accross the K-edge allows one to produce subtraction images with a great increase in accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanchini, Erica
A Radiation Portal Monitor (RPM) was developed by the Istituto Nazionale di Fisica Nucleare (INFN) and Ansaldo Nucleare (ANN) within the FP7 SCINTILLA European project. The system was designed to detect both gamma and neutron radiation with a single technology. It is conceived to monitor vehicle and cargo containers in transits across borders or ports, to find radioactive elements and to avoid illegal trafficking of strategic nuclear materials. The system is based on a {sup 3}He-free neutron detection technology using plastic scintillators coupled to Gadolinium to detect and discriminate gamma from neutron signals. During the 3 years of the SCINTILLAmore » project the construction and test of the first two prototypes drove the definition of the final layout of a full RPM system consisting of two twin pillars as a portal for vehicle and cargo container scan. A custom System Control Software (SCS) manages the electronics of the RPM, the ancillary devices and the data analysis. The combination of the detector layout and of the software functionalities enables both to distinguish neutrons and gammas and to identify the energy range of a detected gamma source. The system was initially characterized via static tests with gamma and neutron sources in the INFN laboratory. These measurements were used to calibrate the detector, evaluate the response of the single pillars as well as of the full system, and optimize the RPM configuration and discrimination algorithm. During this phase, specific tests were performed to study the stability over time of the system, monitoring the measured the neutron and gamma count rates over periods of several weeks. The results allow us to demonstrate the reliability and robustness of the RPM. In a second time the RPM performance was studied via dynamic tests performed during the SCINTILLA test and benchmark campaigns. These measurements took place in the JRC ITRAP+10 facility at Ispra (Varese-Italy). The laboratory is equipped with an experimental set-up for dynamic tests of multiple systems according to international standards. The performed measurements utilized radioactive sources with activities selected according to ANSI and IEC standards to test the detector alarm performances in terms of gamma and neutron response, sensitivity to high gamma fields, sensitivity to moderated neutron sources as well as false alarm rates (FAR). In addition, the RPM was tested in challenging configurations exceeding the requirements set by international standards to determine the real limits of the system. The results obtained during these campaigns demonstrated that the system detection efficiency is not only compliant to international standards for its category, but often exceeds them, demonstrating the validity of the chosen technology and of the implemented layout. The positive performance also showed the effectiveness of the SCS and of its functionalities. To further demonstrate the system capabilities, a test in a real-life environment of the RPM is planned to happen in a near future by installing the detectors in a seaport. In this presentation I will give an overview of the RPM characteristics, of its performances as determined in the test campaign mentioned above and of future plans, to demonstrate how this technology can be an effective choice for the realization of {sup 3}He-free RPM detectors. (authors)« less
Hot-electron luminescence and polarization in GaAs/sub 1-x/P/sub x/ alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charfi, F.F.; Zouaghi, M.; Planel, R.
1986-04-15
The weak direct-gap luminescence originating from the GAMMA valley of GaAs/sub 1-x/P/sub x/ indirect-gap alloys is observed. Incident energy dependence and polarization correlation of the luminescence with the exciting light are presented. The luminescence is interpreted as recombination of hot electrons, with strong momentum anisotropy, on acceptors. The dynamics of conduction electrons in the GAMMA valley can be discussed.
Active Remote Detection of Radioactivity Based on Electromagnetic Signatures
2013-08-15
electron with energy eE therefore generates EEe ∆/~ low energy electrons. In the case of Compton absorption, the maximum electron energy is max,))21/(2...γγγ αα EEe += where 2 max, /mcγγα E= . For example, a 1 MeV gamma ray in air generates Compton electrons having a maximum energy of MeV8.0= eE ...and average energy of MeV44.0= eE . It should be noted that the range of high energy electrons is much less than the range of the high energy gammas
NASA Technical Reports Server (NTRS)
1987-01-01
The first measurements of Fe charge states in two coronal hole-association high speed streams, using the sensor on ISEE-3, are presented. Eight event intervals from the January to June 1983 timeframe were chosen for the study of magnetotail dynamics and its relationship to substorm activity and the possible formation of plasmoids. Techniques are being explored for measurement of secondary electrons which are characteristically emitted when ions hit a target material. Efforts are continuing to understand kilometer wavelength shock associated radio events. An all-sky survey of fast X-ray transients of duration of 5 to 10,000 s was completed. Research using high resolution gamma-ray spectroscopy of celestial sources in the 20 keV to 20 MeV range to search for and study narrow lines in low-energy gamma-ray spectrum continues. Research in high energy radiation from pulsars is being conducted.
Comparison of Muon Capture in Light and in Heavy Nuclei
NASA Astrophysics Data System (ADS)
Measday, David F.; Stocki, Trevor J.
2007-10-01
We have recently completed an experimental study at TRIUMF of muon capture in the following elements, N, Al, Si, Ca, Fe, Ni, I, Au, and Bi. We detected the nuclear gamma rays emitted by the product nuclei after muon capture. The energy of the gamma ray identifies the source nuclide, and thus the reaction which has occurred. Our data are of better quality, and more comprehensive than any other data set in the literature. The (μ-,νn) reaction is always dominant. In light nuclei, reactions such as (μ-,νp) and (μ-,νpn) can occur, but not for heavy nuclei. However the reverse is true for reactions such as (μ-,ν3n) and (μ-,ν4n), which are very rare in light nuclei, but easily detected in heavy elements. We shall discuss how such information can be useful in calculations of neutrino-nucleus interactions, and of electron-capture in supernovae.
NASA Astrophysics Data System (ADS)
Alhaji Yabagi, Jibrin; Isah Kimpa, Mohammed; Nmayaya Muhammad, Muhammad; Rashid, Saiful Bin; Zaidi, Embong; Arif Agam, Mohd
2018-01-01
Irradiation of polymers causes structural, chemical and the optical properties changes. Polystyrene nanosphere was drop coated to substrates and the gamma irradiation was carried out in a Cesium-137 (Cs-137) source chamber at different time (1-5 hours) with constant dose of 30 kGy. Fourier transformation infrared spectroscopy (FTIR) and Raman spectroscopy were employed to characterize the chemical properties of irradiated polystyrene while Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to study the surface morphological changes of the samples. The optical energy band gaps of the thin films were investigated and studied using transmittance and absorbance measurements. The results obtained revealed that as irradiation time increases the optical properties changes and polystyrene gradually undergoes crystal to carbonaceous from its amorphous state. The average particles diameter and roughness of the samples decreases with increasing irradiation time.
Fermi rules out the IC/CMB model for the Large-Scale Jet X-ray emission of 3C 273
NASA Astrophysics Data System (ADS)
Georganopoulos, Markos; Meyer, E. T.
2014-01-01
The process responsible for the Chandra-detected X-ray emission from the large-scale jets of powerful quasars is not clear yet. The two main models are inverse Compton scattering off the cosmic microwave background (IC/CMB) photons and synchrotron emission from a population of electrons separate from those producing the radio-IR emission. These two models imply radically different conditions in the large scale jet in terms of jet speed and maximum energy of the particle acceleration mechanism, with important implications for the impact of the jet on the larger-scale environment. Georganopoulos et al. (2006) proposed a diagnostic based on a fundamental difference between these two models: the production of synchrotron X-rays requires multi-TeV electrons, while the EC/CMB model requires a cutoff in the electron energy distribution below TeV energies. This has significant implications for the gamma-ray emission predicted by these two models. Here we present new Fermi observations that put an upper limit on the gamma-ray flux from the large-scale jet of 3C 273 that clearly violates the flux expected from the IC/CMB X-ray interpretation found by extrapolation of the UV to X-ray spectrum of knot A, thus ruling out the IC/CMB interpretation entirely for this source. Further, the Fermi upper limit constraints the Doppler beaming factor delta <5.
Multiwavelength observations of a VHE gamma-ray flare from PKS 1510-089 in 2015
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; Desiante, R.; Becerra González, J.; D'Ammando, F.; Larsson, S.; Raiteri, C. M.; Reinthal, R.; Lähteenmäki, A.; Järvelä, E.; Tornikoski, M.; Ramakrishnan, V.; Jorstad, S. G.; Marscher, A. P.; Bala, V.; MacDonald, N. R.; Kaur, N.; Sameer; Baliyan, K.; Acosta-Pulido, J. A.; Lazaro, C.; Martí-nez-Lombilla, C.; Grinon-Marin, A. B.; Pastor Yabar, A.; Protasio, C.; Carnerero, M. I.; Jermak, H.; Steele, I. A.; Larionov, V. M.; Borman, G. A.; Grishina, T. S.
2017-07-01
Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the very-high-energy (VHE, > 100 GeV) gamma-ray band. Aims: We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods: We performed VHE gamma-ray observations of PKS 1510-089 with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes during a long, high gamma-ray state in May 2015. In order to perform broadband modeling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray, and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results: PKS 1510-089 was detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, owing to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to those obtained during previous measurements of the source. The observed flux variability sets constraints for the first time on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.
SKYSHINEIII. Calculating Effects of Structure Design on Neutron Dose Rates in Air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampley, C.M.; Andrews, C.M.; Wells, M.B.
1988-12-01
SKYSHINE was designed to aid in the evaluation of the effects of structure geometry on the gamma-ray dose rate at given detector positions outside of a building housing gamma-ray sources. The program considers a rectangular structure enclosed by four walls and a roof. Each of the walls and the roof of the building may be subdivided into up to nine different areas, representing different materials or different thicknesses of the same material for those positions of the wall or roof. Basic sets of iron and concrete slab transmission and reflection data for 6.2 MeV gamma-rays are part of the SKYSHINEmore » block data. These data, as well as parametric air transport data for line-beam sources at a number of energies between 0.6 MeV and 6.2 MeV and ranges to 3750 ft, are used to estimate the various components of the gamma-ray dose rate at positions outside of the building. The gamma-ray source is assumed to be a 6.2 MeV point-isotropic source. SKYSHINE-III provides an increase in versatility over the original SKYSHINE code in that it addresses both neutron and gamma-ray point sources. In addition, the emitted radiation may be characterized by an energy emission spectrum defined by the user. A new SKYSHINE data base is also included.« less