Electron-impact vibrational excitation of the hydroxyl radical in the nighttime upper atmosphere
NASA Astrophysics Data System (ADS)
Campbell, Laurence; Brunger, Michael J.
2018-02-01
Chemical processes produce vibrationally excited hydroxyl (OH) in a layer centred at an altitude of about 87 km in the Earth's atmosphere. Observations of this layer are used to deduce temperatures in the mesosphere and to observe the passage of atmospheric gravity waves. Due to the low densities and energies at night of electrons at the relevant altitude, it is not expected that electron-impact excitation of OH would be significant. However, there are unexplained characteristics of OH densities and radiative emissions that might be explained by electron impact. These are measurements of higher than expected densities of OH above 90 km and of emissions at higher energies that cannot be explained by the chemical production processes. This study simulates the role of electron impact in these processes, using theoretical cross sections for electron-impact excitation of OH. The simulations show that electron impact, even in a substantial aurora, cannot fully explain these phenomena. However, in the process of this investigation, apparent inconsistencies in the theoretical cross sections and reaction rates were found, indicating that measurements of electron-impact excitation of OH are needed to resolve these problems and scale the theoretical predictions to allow more accurate simulations.
Electron Driven Processes in Atmospheric Behaviour
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Teubner, P. J. O.
2006-11-01
Electron impact plays an important role in many atmospheric processes. Calculation of these is important for basic understanding, atmospheric modeling and remote sensing. Accurate atomic and molecular data, including electron impact cross sections, are required for such calculations. Five electron-driven processes are considered: auroral and dayglow emissions, the reduction of atmospheric electron density by vibrationally excited N2, NO production and infrared emission from NO. In most cases the predictions are compared with measurements. The dependence on experimental atomic and molecular data is also investigated.
Multiple electron processes of He and Ne by proton impact
NASA Astrophysics Data System (ADS)
Terekhin, Pavel Nikolaevich; Montenegro, Pablo; Quinto, Michele; Monti, Juan; Fojon, Omar; Rivarola, Roberto
2016-05-01
A detailed investigation of multiple electron processes (single and multiple ionization, single capture, transfer-ionization) of He and Ne is presented for proton impact at intermediate and high collision energies. Exclusive absolute cross sections for these processes have been obtained by calculation of transition probabilities in the independent electron and independent event models as a function of impact parameter in the framework of the continuum distorted wave-eikonal initial state theory. A binomial analysis is employed to calculate exclusive probabilities. The comparison with available theoretical and experimental results shows that exclusive probabilities are needed for a reliable description of the experimental data. The developed approach can be used for obtaining the input database for modeling multiple electron processes of charged particles passing through the matter.
Metastable Oxygen Production by Electron-Impact of Oxygen
NASA Astrophysics Data System (ADS)
Hein, Jeffrey; Johnson, Paul; Kanik, Isik; Malone, Charles
2014-05-01
Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of atomic O and molecular O2 play a significant role in the dynamics of oxygen-containing atmospheres (Earth, Europa, Io). Emissions from metastable O (1S --> 1D) produce the well-recognized green light from terrestrial aurora. Electron-impact excitation to 1S and 1D are sensitive channels for determining energy partitioning and dynamics from space weather. Electron-impact excitation cross sections determined through fundamental experimental studies are necessary for modeling of natural phenomena and observation data. The detection of metastable states in laboratory experiments requires a novel approach, since typical detection techniques (e.g., fluorescence by radiative de-excitation) cannot be performed due to the long-lived nature of the excited species. In this work, metastable O is produced through electron impact, and is incident on a cryogenically cooled rare gas matrix. The excimer production and subsequent rapid radiative de-excitation provides measurable signal that is directly related to the originating electron-impact excitation process.
NASA Technical Reports Server (NTRS)
Gan, L.; Cravens, T. E.
1992-01-01
Energy transfer between electrons and methane gas by collisional processes plays an important role in the thermal balance of electrons in the atmospheres and ionospheres of planets and satellites in the outer solar system. The literature is reviewed for electron impact cross-sections for methane in this paper. Energy transfer rates are calculated for elastic and inelastic processes using a Maxwellian electron distribution. Vibrational, rotational, and electronic excitation and ionization are included. Results are presented for a wide range of electron temperatures and neutral temperatures.
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin
2018-04-01
Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our theoretical formalism is accurate and effective in treating the atomic multielectron processes.
On the role of electron-driven processes in planetary atmospheres and comets
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2009-11-01
After the presence of ionized layers in the Earth's atmosphere was inferred, it took 50 years to quantitatively understand them. The electron density could not be accounted for until Sir David Bates first suggested (along with Sir Harrie Massey) that the main electron-loss process was dissociative recombination with molecular ions, and he and colleagues then developed a theory to predict those rates of dissociative recombination. However, electron impact processes, particularly excitation, have been considered insignificant in most situations, in both planetary and cometary atmospheres. Here we describe cases where recent calculations have shown that electron impact excitation of molecules is important, suggesting that, just as in the time of Sir David Bates, electron-driven processes remain fundamental to our quantitative understanding of atmospheric and cometary phenomena.
Metastable Oxygen Production by Electron-Impact of Oxygen
NASA Astrophysics Data System (ADS)
Hein, J. D.; Malone, C. P.; Kanik, I.; Johnson, P. V.
2013-12-01
Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of atomic O and molecular O2 play a significant role in the dynamics of oxygen-containing atmospheres (Earth, Europa, Io). Emissions from metastable O (1S → 1D) produce the well-recognized green light from terrestrial aurora. Electron-impact excitation to 1S and 1D are sensitive channels for determining energy partitioning and dynamics from space weather. Electron-impact excitation cross sections determined through fundamental experimental studies are necessary for modeling of natural phenomena and observation data. The detection of metastable states in laboratory experiments requires a novel approach, since typical detection techniques (e.g., fluorescence by radiative de-excitation) cannot be performed due to the long-lived nature of the excited species. In this work, metastable O is incident on a cryogenically cooled rare gas matrix, where excimer production and subsequent rapid radiative de-excitation provides measurable signal that is directly related to the originating electron-impact excitation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
2015-04-15
The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it ismore » found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laporta, V.; Celiberto, R.; Tennyson, J.
Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akatsuka, Hiroshi
2009-04-15
Population densities of excited states of argon atoms are theoretically examined for ionizing argon plasma in a state of nonequilibrium under atmospheric pressure from the viewpoint of elementary processes with collisional radiative model. The dependence of excited state populations on the electron and gas temperatures is discussed. Two electron density regimes are found, which are distinguished by the population and depopulation mechanisms for the excited states in problem. When the electron impact excitation frequency for the population or depopulation is lower than the atomic impact one, the electron density of the plasma is considered as low to estimate the populationmore » and depopulation processes. Some remarkable characteristics of population and depopulation mechanisms are found for the low electron density atmospheric plasma, where thermal relaxation by atomic collisions becomes the predominant process within the group of close-energy states in the ionizing plasma of atmospheric pressure, and the excitation temperature is almost the same as the gas temperature. In addition to the collisional relaxation by argon atoms, electron impact excitation from the ground state is also an essential population mechanism. The ratios of population density of the levels pairs, between which exists a large energy gap, include information on the electron collisional kinetics. For high electron density, the effect of atomic collisional relaxation becomes weak. For this case, the excitation mechanism is explained as electron impact ladderlike excitation similar to low-pressure ionizing plasma, since the electron collision becomes the dominant process for the population and depopulation kinetics.« less
Electronic whiteboards: review of the literature.
Randell, Rebecca; Greenhalgh, Joanne; Wyatt, Jeremy; Gardner, Peter; Pearman, Alan; Honey, Stephanie; Dowding, Dawn
2015-01-01
Electronic whiteboards are being introduced into hospitals to communicate real-time patient information instantly to staff. This paper provides a preliminary review of the current state of evidence for the effect of electronic whiteboards on care processes and patient outcomes. A literature search was performed for the dates 1996 to 2014 on MEDLINE, EMBASE, IEEE Xplore, Science Direct, and the ACM Digital Library. Thirteen papers, describing 11 studies, meeting the inclusion criteria were identified. The majority of studies took place in the Emergency Department. While studies looked at the impact of electronic whiteboards on the process of care, there is an absence of evidence concerning impact on patient outcomes. There is a need for robust research measuring the impact of electronic whiteboards on inpatient care.
Dissociative attachment of electrons to N2O
NASA Technical Reports Server (NTRS)
Krishnakumar, E.; Srivastava, S. K.
1990-01-01
Cross sections for the production of O(-) from N2O by the process of dissociative electron attachment have been measured for electron-impact energies ranging from 0 to 50 eV. Three new O(-) peaks are observed. The present data above 5-eV electron-impact energy differ considerably from the previous measurements.
Interatomic relaxation processes induced in neon dimers by electron-impact ionization
NASA Astrophysics Data System (ADS)
Yan, S.; Zhang, P.; Stumpf, V.; Gokhberg, K.; Zhang, X. C.; Xu, S.; Li, B.; Shen, L. L.; Zhu, X. L.; Feng, W. T.; Zhang, S. F.; Zhao, D. M.; Ma, X.
2018-01-01
We report an experimental observation of the interatomic Coulombic decay (ICD) and radiative charge-transfer (RCT) processes in a Ne dimer (e ,2 e ) following a 380-eV electron impact. By detecting the N e+-N e+ cation pair and one of the emitted electrons in coincidence, the fingerprint of the ICD process initiated by the inner-valence ionization of Ne is obtained. Furthermore, the experimental results and ab initio calculations together unambiguously confirm the occurrence of the RCT process, and we show that most of the low-energy electrons produced in ionization of the Ne dimers are due to the ICD, which strongly suggests the importance of the ICD in causing radiation damage in a biological medium.
Development of CPR security using impact analysis.
Salazar-Kish, J.; Tate, D.; Hall, P. D.; Homa, K.
2000-01-01
The HIPAA regulations will require that institutions ensure the prevention of unauthorized access to electronically stored or transmitted patient records. This paper discusses a process for analyzing the impact of security mechanisms on users of computerized patient records through "behind the scenes" electronic access audits. In this way, those impacts can be assessed and refined to an acceptable standard prior to implementation. Through an iterative process of design and evaluation, we develop security algorithms that will protect electronic health information from improper access, alteration or loss, while minimally affecting the flow of work of the user population as a whole. PMID:11079984
Non-equilibrium calculations of atmospheric processes initiated by electron impact.
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2007-05-01
Electron impact in the atmosphere produces ionisation, dissociation, electronic excitation and vibrational excitation of atoms and molecules. The products can then take part in chemical reactions, recombination with electrons, or radiative or collisional deactivation. While most such processes are fast, some longer--lived species do not reach equilibrium. The electron source (photoelectrons or auroral electrons) also varies over time and longer-lived species can move substantially in altitude by molecular, ambipolar or eddy diffusion. Hence non-equilibrium calculations are required in some circumstances. Such time-step calculations need to have sufficiently short steps so that the fastest processes are still calculated correctly, but this can lead to computation times that are too large. Hence techniques to allow for longer time steps by incorporating equilibrium calculations are described. Examples are given for results of atmospheric non-equilibrium calculations, including the populations of the vibrational levels of ground state N2, the electron density and its dependence on vibrationally excited N2, predictions of nitric oxide density, and detailed processes during short duration auroral events.
Thermo-Mechanical Analysis for John Deere Electronics Solutions | Advanced
impacts of alternative manufacturing processes Die, package, and interface material analysis for power module reliability Manufacturing process impacts versus thermal cycling impacts on power module
NASA Astrophysics Data System (ADS)
Patel, U. R.; Joshipura, K. N.
2015-05-01
Electron collision processes are very important in both man-made and natural plasmas, for determining the energy balances and transport properties of electrons. Electron -molecule scattering leading to ionization represents one of the most fundamental processes in collision physics. In the gas phase, the total efficiency of the process is described by the absolute total electron impact ionization cross section. Carbon based materials are some of the widely used materials for a divertor plate and magnetically confined fusion devices. In the ``ITER,'' it is very important for steady state operation to have an estimate of the lifetime of carbon plasma facing components. Apart from fusion plasma relevance, the present theoretical study is very important in modeling and controlling other electron assisted processes in many areas. Hydrocarbons play an important role for plasma diagnostics as impurities in the Tokamak fusion divertor, as seed gases for the production of radicals and ions in low temperature plasma processing. Fluorine substituted hydrocarbons (perfluorocarbons) are important as reactants in plasma assisted fabrication processes. In the present work, we have calculated total ionization cross sections Qion for C3/C4 Hydrocarbon isomers by electron impact, and comparisons are made mutually to observe isomer effect. Comparisons are also made by substituting H atom by F atom and revealing fluorination effect. The present calculations are quite significant owing to the lack of experimental data, with just an isolated previous theoretical work in some cases.
Understanding the Role of Electron-driven Processes in Atmospheric Behaviour
NASA Astrophysics Data System (ADS)
Brunger, M. J.; Campbell, L.; Jones, D. B.; Cartwright, D. C.
2004-12-01
Electron-impact excitation plays a major role in emission from aurora and a less significant but nonetheless crucial role in the dayglow and nightglow. For some molecules, such as N2, O2 and NO, electron-impact excitation can be followed by radiative cascade through many different sets of energy levels, producing emission with a large number of lines. We review the application of our statistical equilibrium program to predict this rich spectrum of radiation, and we compare results we have obtained against available independent measurements. In addition, we also review the calculation of energy transfer rates from electrons to N2, O2 and NO in the thermosphere. Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N2 and O2 in this is particularly significant. The importance of the energy dependence and magnitude of the electron-impact vibrational cross sections in the calculation of these rates is assessed.
NASA Astrophysics Data System (ADS)
Ren, Xueguang; Miteva, Tsveta; Kolorenč, Přemysl; Gokhberg, Kirill; Kuleff, Alexander I.; Cederbaum, Lorenz S.; Dorn, Alexander
2017-09-01
We investigate the interatomic Coulombic decay (ICD) in argon dimers induced by electron-impact ionization (E0=90 eV ) using a multiparticle coincidence experiment in which the momentum vectors and, consequently, the kinetic energies for electrons and fragment ions are determined. The signature of the ICD process is obtained from a correlation map between ejected electron energy and kinetic energy release (KER) for Ar++Ar+ fragment ions where low-energy ICD electrons can be identified. Furthermore, two types of ICD processes, termed fast and slow interatomic decay, are separated by the ICD initial-state energies and projectile energy losses. The dependence of the energies of emitted low-energy ICD electrons on the initial-state energy is studied. ICD electron energy spectra and KER spectra are obtained separately for fast and slow decay processes where the KER spectra for the slow decay channel are strongly influenced by nuclear motion. The KER and ICD electron energy spectra are well reproduced by ab initio calculations.
ERIC Educational Resources Information Center
Hellweg, Susan A.; And Others
A survey of the Fortune 500 corporations was conducted to ascertain the pervasiveness and perceived impact of five electronic communication technologies (electronic mail, videotex, interactive computers, video teleconferencing, and word processing). Ninety-four corporations responded to a 53-item questionnaire and follow-up survey. Analysis of the…
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.
On the importance of electron impact processes in excimer-pumped alkali laser-induced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markosyan, Aram H.
We present that the excimer-pumped alkali laser (XPAL) system has recently been demonstrated in several different mixtures of alkali vapor and rare gas. Without special preventive measures, plasma formation during operation of XPAL is unavoidable. Some recent advancements in the availability of reliable data for electron impact collisions with atoms and molecules have enabled development of a complete reaction mechanism to investigate XPAL-induced plasmas. Here, we report on pathways leading to plasma formation in an Ar/C 2H 6/CsAr/C2H6/Cs XPAL sustained at different cell temperatures. We find that depending on the operating conditions, the contribution of electron impact processes can bemore » as little as bringing the excitation of Cs(P 2) states to higher level Cs** states, and can be as high as bringing Cs(P 2) excited states to a full ionization. Increasing the input pumping power or cell temperature, or decreasing the C 2H 6 mole fraction leads to electron impact processes dominating in plasma formation over the energy pooling mechanisms previously reported in literature.« less
On the importance of electron impact processes in excimer-pumped alkali laser-induced plasmas
Markosyan, Aram H.
2017-10-18
We present that the excimer-pumped alkali laser (XPAL) system has recently been demonstrated in several different mixtures of alkali vapor and rare gas. Without special preventive measures, plasma formation during operation of XPAL is unavoidable. Some recent advancements in the availability of reliable data for electron impact collisions with atoms and molecules have enabled development of a complete reaction mechanism to investigate XPAL-induced plasmas. Here, we report on pathways leading to plasma formation in an Ar/C 2H 6/CsAr/C2H6/Cs XPAL sustained at different cell temperatures. We find that depending on the operating conditions, the contribution of electron impact processes can bemore » as little as bringing the excitation of Cs(P 2) states to higher level Cs** states, and can be as high as bringing Cs(P 2) excited states to a full ionization. Increasing the input pumping power or cell temperature, or decreasing the C 2H 6 mole fraction leads to electron impact processes dominating in plasma formation over the energy pooling mechanisms previously reported in literature.« less
NASA Technical Reports Server (NTRS)
Sharma, S. P.; Rao, M. V. V. S.; Arnold, James O. (Technical Monitor)
1998-01-01
Published electron impact cross section data on halogens Cl2, F2, and halogen containing compounds such as Cx Fy, HCl, Cx Cly Fz are reviewed and critically evaluated based on the information provided by various researchers. The present work reports data on electron impact excitation, ionization, dissociation, electron attachment, electron detachment, and photo detachment. Elastic scattering cross sections and data on bulk properties such as diffusion coefficients in various background gases are also evaluated. Since some of the cross sectional data is derived from indirect measurements such as drift velocity, care has been taken to reconcile the differences among the reported data with due attention to the measurement technique. In conclusion, the processes with no or very limited amount of data and questionable set of data are identified and recommendation for further research direction is made.
Analysis of Long Bone and Vertebral Failure Patterns.
1982-09-30
processes further supported the findings of • :the scanning electron microscopy studies . In the impacted animals, the cartilage surface was eroded... cartilage matrix. In the six years post-impaction group, the articular cartilage had converted to fibrocartilage instead of normal hyaline cartilage . The...columns of four rhesus monkeys have been collected and are being processed for study with light microscopy and scanning electron microscopy. The baboon
Libraries and the Changing Scholarly Process. Occasional Paper 1.
ERIC Educational Resources Information Center
Simpson, Donald B.
Arguing that new technologies such as telefacsimile, electronic publishing, and electronic document delivery are altering the processes of communication and the response of libraries to scholars' needs, this paper provides a vision for the future, particularly with regard to the impact of electronic publishing on the traditional roles of academic…
Challenges in Optical Emission Spectroscopy
NASA Astrophysics Data System (ADS)
Siepa, Sarah; Berger, Birk; Schulze, Julian; Schuengel, Edmund; von Keudell, Achim
2016-09-01
Collisional-radiative models (CRMs) are widely used to investigate plasma properties such as electron density, electron temperature and the form of the electron energy distribution function. In this work an extensive CRM for argon is presented, which models 30 excited states and various kinds of processes including electron impact excitation/de-excitation, radiation and radiation trapping. The CRM is evaluated in several test cases, i.e. inductively and capacitively coupled plasmas at various pressures, powers/voltages and gas admixtures. Deviations are found between modelled and measured spectra. The escape factor as a means of describing radiation trapping is discussed as well as the cross section data for electron impact processes. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2013-01-01
The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies. These measurements conducted on silica microspheres are qualitatively similar in nature to our previous SEE measurements on lunar Apollo missions dust samples.
Houplin, Justine; Dablemont, Céline; Sala, Leo; Lafosse, Anne; Amiaud, Lionel
2015-12-22
Aromatic self-assembled monolayers (SAMs) can serve as platforms for development of supramolecular assemblies driven by surface templates. For many applications, electron processing is used to locally reinforce the layer. To achieve better control of the irradiation step, chemical transformations induced by electron impact at 50 eV of terphenylthiol SAMs are studied, with these SAMs serving as model aromatic SAMs. High-resolution electron energy loss spectroscopy (HREELS) and electron-stimulated desorption (ESD) of neutral fragment measurements are combined to investigate electron-induced chemical transformation of the layer. The decrease of the CH stretching HREELS signature is mainly attributed to dehydrogenation, without a noticeable hybridization change of the hydrogenated carbon centers. Its evolution as a function of the irradiation dose gives an estimate of the effective hydrogen content loss cross-section, σ = 2.7-4.7 × 10(-17) cm(2). Electron impact ionization is the major primary mechanism involved, with the impact electronic excitation contributing only marginally. Therefore, special attention is given to the contribution of the low-energy secondary electrons to the induced chemistry. The effective cross-section related to dissociative secondary electron attachment at 6 eV is estimated to be 1 order of magnitude smaller. The 1 eV electrons do not induce significant chemical modification for a 2.5 mC cm(-2) dose, excluding their contribution.
Electron Impact Studies Relevant to Rosetta Coma Measurements of 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Bodewits, D.; Feldman, P. D.; Matejčík, Š.; Országh, J.; Durian, M.
2017-12-01
Auroral emission from electron impact processes can provide a remote window on the physical properties of plasma and neutral gases surrounding small bodies (Galand & Chakrabarti, 2002; Roth et al. 2014). Surprisingly, Rosetta found that outside 2 AU pre-perihelion, atomic and molecular emission features in the inner coma were predominantly caused by dissociative electron impact excitation (Feldman et al. 2015). When the comet came within 2 au of the Sun, fluorescent emission became the dominant process, as water densities in the inner coma could effectively cool the electron population below the appearance energy of the relevant electron impact dissociative excitation processes (Bodewits et al. 2016). Further quantitative interpretation of the Alice and OSIRIS images of the coma is by limited excitation cross sections measured of electron impact reactions with the gases present in cometary comae, including H2O, CO2, CO, O2, and HCN. We will present the first results of a series of experiments dedicated to investigate the emission features seen by the instruments on board Rosetta. The experimental set up is located at the Comenius University in Bratislava, Slovakia, and consists of a crossed-beam configuration combining an electron monochromator and a gas beam (Danko et al. 2013). The electron induced emission spectra are measured using a Czerny-Turner optical monochromator provides a spectral resolution of 0.3 nm FWHM and is equipped with a photomultiplier sensitive between 185 and 710 nm. References: Bodewits, D. et al. The Astronomical Journal 152, 130 (2016). Danko, M. et al. J. Phys. B 46, 045203 (2013). Feldman, P. D. et al. Astron. Astroph. 583, A8 (2015). Galand, M. & Chakrabarti, S. Geophysical Monograph 130. Ed. Michael Mendillo 130, 55- (2002). Roth, L., Saur, J., Retherford, K. D., Strobel, D. F. & Feldman, P. D. Science (2014). doi:10.1126/science.1247051
Low-Energy Electron Interactions with CF_4
NASA Astrophysics Data System (ADS)
Christophorou, Loucas G.; Olthoff, James K.; Rao, M. V. V. S.
1996-10-01
Carbon tetrafluoride is one of the most widely used components of feed gas mixtures employed for a variety of plasma assisted materials processing applications. In this presentation, we synthesize and assess the available information on the cross sections and rate coefficients of collisional interations of CF4 with electrons.(L. G. Christophorou, J. K. Olthoff, and M.V. V. S. Rao, J. Phys. Chem. Ref. Data, submitted (May 1996)) A ``recommended'' data set is presented, based upon available data for: (i) cross sections for electron scattering (total, elastic, momentum, differential, inelastic), electron impact ionization (total and partial), electron impact dissociation, and electron attachment; and (ii) coefficients for electron transport, electron attachment, and electron impact ionization. -Research sponsored in part by the U.S. Air Force Wright Laboratory under contract F33615-96-C-2600 with the University of Tennessee. Also, Department of Physics, The University of Tennessee, Knoxville, TN.
Electron impact vibrational excitation of carbon monoxide in the upper atmospheres of Mars and Venus
NASA Astrophysics Data System (ADS)
Campbell, L.; Allan, M.; Brunger, M. J.
2011-09-01
Infrared emission from CO in the upper atmospheres of Mars, Venus and several other planets is a subject of current theoretical and experimental interest. Electron impact excitation makes a contribution that has not been included in previous studies. Given this, and recent new measurements of absolute cross sections for low-energy electron impact excitation of the vibrational levels of the ground state of CO, results from calculations are presented showing the contribution of electron impact relative to emissions by other mechanisms. It is demonstrated that emissions due to the impact of thermal, photo- and auroral electrons are generally small compared to sunlight-driven (fluorescence and photolysis) emissions, but with some exceptions. It is also shown that thermal-electron emissions may dominate over other processes at nighttime at Mars and that auroral emissions certainly do so. While measurements and other calculations do not appear to be available for Venus, the volume emission rates presented should be valuable in planning such measurements.
Coherence Measurements for Excited to Excited State Transitions in Barium
NASA Technical Reports Server (NTRS)
Trajmar, S.; Kanik, I.; Karaganov, V.; Zetner, P. W.; Csanak, G.
2000-01-01
Experimental studies concerning elastic and inelastic electron scattering by coherently ensembles of Ba (...6s6p (sub 1)P(sub 1)) atoms with various degrees of alignment will be described. An in-plane, linearly-polarized laser beam was utilized to prepare these target ensembles and the electron scattering signal as a function of polarization angle was measured for several laser geometries at fixed impact energies and scattering angles. From these measurements, we derived cross sections and electron-impact coherence parameters associated with the electron scattering process which is time reverse of the actual experimentally studied process. This interpretation of the experiment is based on the theory of Macek and Herte. The experimental results were also interpreted in terms of cross sections and collision parameters associated with the actual experimental processes. Results obtained so far will be presented and plans for further studies will be discussed.
Microcellular nanocomposite injection molding process
Mingjun Yuan; Lih-Sheng Turng; Rick Spindler; Daniel Caulfield; Chris Hunt
2003-01-01
This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The molded parts produced based on the Design of Experiments (DOE) matrices were subjected to tensile testing, impact testing, and Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Dynamic Mechanical...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... impact of eliminating the correction window from the electronic grant application submission process on... process a temporary error correction window to ensure a smooth and successful transition for applicants. This window provides applicants a period of time beyond the grant application due date to correct any...
ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES
Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...
Concerning sources of O/1D/ in Aurora - Electron impact and dissociative recombination
NASA Technical Reports Server (NTRS)
Sharp, W. E.; Ortland, D.; Cageao, R.
1983-01-01
The present investigation is concerned with two questions. One is related to the possibility that the O(1D) level is produced by an as yet unidentified process in aurora. The second question is concerned with the need for an additional source and the altitude over which it is required. The data base of the AE satellite (AE-D in particular) was examined for this study. It is found that dissociative recombination and electron impact are inadequate sources of O(1D) in aurora. Nearly 90% of the source function is unidentified below 200 km and about 55% is missing above 250 km. The possibility that thermal electron impact could provide the missing source above 250 km was examined. Calculations showed that the missing source above 250 km could be explained by thermal electron impact if the electron temperatures were approximately 2900 K.
IMPACT OF OFFICE AUTOMATION IN THE INSURANCE INDUSTRY.
ERIC Educational Resources Information Center
FREEDMAN, AUDREY; AND OTHERS
THE EXTENT AND PACE OF THE ADOPTION OF ELECTRONIC DATA PROCESSING TECHNOLOGY AMONG INSURANCE CARRIERS AND ITS EFFECTS ON INSURANCE OFFICE EMPLOYEES WERE STUDIED. QUESTIONNAIRE RESPONSES FROM 410 FIRMS, REPRESENTING ABOUT 89 PERCENT OF ALL INSURANCE CARRIER EMPLOYMENT, IDENTIFIED 305 FIRMS WITH ELECTRONIC DATA PROCESSING. OF THESE, 81 PERCENT…
Metastable Oxygen Production by Electron-Impact of Oxygen
NASA Astrophysics Data System (ADS)
Hein, J. D.; Malone, C. P.; Johnson, P. V.; Kanik, I.
2014-12-01
Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of oxygen-containing molecules plays a significant role in the dynamics of planetary atmospheres (Earth, Mars, Europa, Io, Enceladus) and cometary bodies (Hale-Bopp). The electron-impact excitation channels to O(1S) and O(1D) are important for determining energy partitioning and dynamics. To reliably model natural phenomena and interpret observational data, the accurate determination of underlying collision processes (cross sections, dissociation dynamics) through fundamental experimental studies is essential. The detection of metastable species in laboratory experiments requires a novel approach. Typical radiative de-excitation detection techniques cannot be performed due to the long-lived nature of excited species, and conventional particle detectors are insensitive to the low internal energies O(1S) and O(1D). We have recently constructed an apparatus to detect and characterize metastable oxygen production by electron impact using the "rare gas conversion technique." Recent results will be presented, including absolute excitation functions for target gases O2, CO, CO2, and N2O. This work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Financial support through NASA's OPR, PATM, and MFRP programs, as well as the NASA Postdoctoral Program (NPP) are gratefully acknowledged.
Impact of Electronic Teaching Materials on Process of Education--Results of an Experiment
ERIC Educational Resources Information Center
Záhorec, Ján; Hašková, Alena; Munk, Michal
2010-01-01
In their paper the authors deal with the vital issues of creation and application of electronic teaching materials for natural science subjects teaching. They describe an experimental examination of qualitative impact of these aids on education. The authors present a part of research results, which they obtained in a major research focused on…
Recycling of the Electronic Waste Applying the Plasma Reactor Technology
NASA Astrophysics Data System (ADS)
Lázár, Marián; Jasminská, Natália; Čarnogurská, Mária; Dobáková, Romana
2016-12-01
The following paper discusses a high-temperature gasification process and melting of electronic components and computer equipment using plasma reactor technology. It analyses the marginal conditions of batch processing, as well as the formation of solid products which result from the procedure of waste processing. Attention is also paid to the impact of the emerging products on the environment.
Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics
NASA Astrophysics Data System (ADS)
Fedorov, Andrei G.; Kim, Songkil; Henry, Mathias; Kulkarni, Dhaval; Tsukruk, Vladimir V.
2014-12-01
Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for "direct-write" processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple "beams" of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications' prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials.
Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that the electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Laboratory measurements on charging of analogs of the interstellar dust as well as Apollo 11 dust grains conducted at the NASA-MSFC Dusty Plasma Lab. are presented here
JTEC Panel report on electronic manufacturing and packaging in Japan
NASA Technical Reports Server (NTRS)
Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John; Meieran, Gene; Pecht, Michael; Peeples, John; Tummala, Rao; Dehaemer, Michael J.; Holdridge, Geoff (Editor); Gamota, George
1995-01-01
This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies.
Modelling of plasma processes in cometary and planetary atmospheres
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2013-02-01
Electrons from the Sun, often accelerated by magnetospheric processes, produce low-density plasmas in the upper atmospheres of planets and their satellites. The secondary electrons can produce further ionization, dissociation and excitation, leading to enhancement of chemical reactions and light emission. Similar processes are driven by photoelectrons produced by sunlight in upper atmospheres during daytime. Sunlight and solar electrons drive the same processes in the atmospheres of comets. Thus for both understanding of planetary atmospheres and in predicting emissions for comparison with remote observations it is necessary to simulate the processes that produce upper atmosphere plasmas. In this review, we describe relevant models and their applications and address the importance of electron-impact excitation cross sections, towards gaining a quantitative understanding of the phenomena in question.
Field Impact Evaluation Process on Electronic Tabular Display Subsystem (ETABS).
1979-10-01
structural and process techniques are described. These include a diagonal slice approach to team formulation and several different methods of team building, process control and conflict management . (Author)
Line Profile of H Lyman (alpha) from Dissociative Excitation of H2 with Application to Jupiter
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Kasnik, Isik; Ahmed, Syed M.; Clarke, John T.
1995-01-01
Observations of the H Lyman(alpha) (Ly-alpha) emission from Jupiter have shown pronounced emissions, exceeding solar fluorescence, in the polar aurora and equatorial "bulge" regions. The H Ly-alpha line profiles from these regions are broader than expected, indicating high-energy processes producing fast atoms as determined from the observed Doppler broadening. Toward understanding that process a high-resolution ultraviolet (UV) spectrometer was employed for the first measurement of the H Ly-alpha emission Doppler profile from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak of 40 +/- 4 mA full width at half maximum and a broad pedestal base about 240 mA wide. Two distinct dissociation mechanisms account for this Doppler structure. Slow H(2p) atoms characterized by a distribution function with peak energy near 80 meV produce the peak profile, which is nearly independent of the electron impact energy. Slow H(2p) atoms arise from direct dissociation and predissociation of singly excited states which have a dissociation limit of 14.68 eV. The wings of H Ly-alpha arise from dissociative excitation of a series of doubly excited states which cross the Franck-Condon region between 23 and 40 eV. The profile of the wings is dependent on the electron impact energy, and the distribution function of fast H(2p) atoms is therefore dependent on the electron impact energy. The fast atom kinetic energy distribution at 100 eV electron impact energy spans the energy range from 1 to 10 eV with a peak near 4 eV. For impact energies above 23 eV the fast atoms contribute to a slightly asymmetric structure of the line profile. The absolute cross sections of the H Ly-alpha line peak and wings were measured over the range from 0 to 200 eV. Analytic model coefficients are given for the measured cross sections which can be applied to planetary atmosphere auroral and dayglow calculations. The dissociative excitation process, while one contributing process, appears insufficient by itself to explain the line broadening observed at Jupiter.
ERIC Educational Resources Information Center
Scupola, Ada
1999-01-01
Discussion of the publishing industry and its use of information and communication technologies focuses on the way in which electronic-commerce technologies are changing and could change the publishing processes, and develops a business complementarity model of electronic publishing to maximize profitability and improve the competitive position.…
Zedler, Linda; Kupfer, Stephan; de Moraes, Inês Rabelo; Wächtler, Maria; Beckert, Rainer; Schmitt, Michael; Popp, Jürgen; Rau, Sven; Dietzek, Benjamin
2014-03-24
Ruthenium dyes incorporating a 4H-imidazole chromophore as a ligand exhibit a spectrally broad absorption in the UV/Vis region. Furthermore, they show the ability to store two electrons within the 4H-imidazole ligand. These features render them promising molecular systems, for example, as inter- or intramolecular electron relays. To optimize the structures with respect to their electron-storage capability, it is crucial to understand the impact of structural changes accompanying photoinduced charge transfer in the electronic intermediates of multistep electron-transfer processes. The photophysical properties of these (reactive) intermediates might impact the function of the molecular systems quite substantially. However, the spectroscopic study of short-lived intermediates in stepwise multielectron-transfer processes is experimentally challenging. To this end, this contribution reports on the electrochemical generation of anions identical to intermediate structures and their spectroscopic characterization by in situ resonance Raman and UV/Vis spectroelectrochemistry and computational methods. Thereby, an efficient two-electron pathway to the 4H-imidazole electron-accepting ligand is identified. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic excitation of H{sub 2} by electron impact using soft norm-conserving pseudopotentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natalense, A.P.; Sartori, C.S.; Ferreira, L.G.
1996-12-01
We calculate electronic excitation cross sections for the {ital b}{sup 3}{Sigma}{sup +}{sub {ital u}} {ital a}{sup 3}{Sigma}{sup +}{sub {ital g}} {ital c}{sup 3}{Pi}{sub {ital u}}, and {ital d}{sup 3}{Pi}{sub {ital u}} states of H{sub 2} by electron impact. Our results were obtained with the Schwinger multichannel method with pseudopotentials and real potentials at the two-channel level of approximation. Pseudo-H atoms are used to generate H{sub 2} molecules with almost the same low-energy spectrum as the real molecules. We show that the dynamics of the electronic excitation process of the pseudomolecules by electron impact is very similar to the real case.more » Our results support the idea that pseudopotentials can be used to obtain reliable molecular electronic excitation cross sections by low-energy electron impact, confirming the expectations of previous studies with CH{sub 2}O [Bettega {ital et} {ital al}., Phys. Rev. A {bold 25}, 1111 (1993)] and HBr [Rescigno, J. Chem. Phys. {bold 104}, 125 (1996)]. {copyright} {ital 1996 The American Physical Society.}« less
Report of the sensor readout electronics panel
NASA Technical Reports Server (NTRS)
Fossum, Eric R.; Carson, J.; Kleinhans, W.; Kosonocky, W.; Kozlowski, L.; Pecsalski, A.; Silver, A.; Spieler, H.; Woolaway, J.
1991-01-01
The findings of the Sensor Readout Electronics Panel are summarized in regard to technology assessment and recommended development plans. In addition to two specific readout issues, cryogenic readouts and sub-electron noise, the panel considered three advanced technology areas that impact the ability to achieve large format sensor arrays. These are mega-pixel focal plane packaging issues, focal plane to data processing module interfaces, and event driven readout architectures. Development in each of these five areas was judged to have significant impact in enabling the sensor performance desired for the Astrotech 21 mission set. Other readout issues, such as focal plane signal processing or other high volume data acquisition applications important for Eos-type mapping, were determined not to be relevant for astrophysics science goals.
NASA Astrophysics Data System (ADS)
Chen, Jun Hong; Bochsler, Peter; Möbius, Eberhard; Gloeckler, George
2014-09-01
Interstellar neutrals penetrating into the inner heliosphere are ionized by photoionization, charge exchange with solar wind ions, and electron impact ionization. These processes comprise the first step in the evolution of interstellar pickup ion (PUI) distributions. Typically, PUI distributions have been described in terms of velocity distribution functions that cool adiabatically under solar wind expansion, with a cooling index of 3/2. Recently, the cooling index has been determined experimentally in observations of He PUI distributions with Advanced Composition Explorer (ACE)/Solar Wind Ion Composition Spectrometer and found to vary substantially over the solar cycle. The experimental determination of the cooling index depends on the knowledge of the ionization rates and their spatial variation. Usually, ionization rates increase with 1/r2 as neutral particles approach the Sun, which is not exactly true for electron impact ionization, because the electron temperature increases with decreasing distance from the Sun due to the complexity of its distributions and different radial gradients in temperature. This different dependence on distance may become important in the study of the evolution of PUI distributions and is suspected as one of the potential reasons for the observed variation of the cooling index. Therefore, we investigate in this paper the impact of electron ionization on the variability of the cooling index. We find that the deviation of the electron ionization rate from the canonical 1/r2 behavior of other ionization processes plays only a minor role.
Nonequilibrium calculations of the role of electron impact in the production of NO and its emissions
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2009-04-01
We review our recent work on nonequilibrium modelling of the density of nitric oxide and its infrared emissions in the Earth's upper atmosphere. The aim of these studies was to investigate the contribution of electron impact excitation to the NO density and the sensitivity of this process to the electron impact cross sections. The results are compared with satellite measurements of NO densities in equatorial and auroral high-latitude conditions and with rocket measurements of infrared emissions in auroral conditions. Particular findings are that electron impact excitation of N2 makes a significant contribution to the NO density at altitudes around 105 km and to auroral infrared emissions for the (1 → 0) ground-state emission from NO. The sensitivity of the NO fundamental emissions to various measured and theoretical integral cross sections is investigated and found to be significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verkhoturov, Stanislav V.; Geng, Sheng; Schweikert, Emile A., E-mail: schweikert@chem.tamu.edu
We present the first data from individual C{sub 60} impacting one to four layer graphene at 25 and 50 keV. Negative secondary ions and electrons emitted in transmission were recorded separately from each impact. The yields for C{sub n}{sup −} clusters are above 10% for n ≤ 4, they oscillate with electron affinities and decrease exponentially with n. The result can be explained with the aid of MD simulation as a post-collision process where sufficient vibrational energy is accumulated around the rim of the impact hole for sputtering of carbon clusters. The ionization probability can be estimated by comparing experimentalmore » yields of C{sub n}{sup −} with those of C{sub n}{sup 0} from MD simulation, where it increases exponentially with n. The ionization probability can be approximated with ejecta from a thermally excited (3700 K) rim damped by cluster fragmentation and electron detachment. The experimental electron probability distributions are Poisson-like. On average, three electrons of thermal energies are emitted per impact. The thermal excitation model invoked for C{sub n}{sup −} emission can also explain the emission of electrons. The interaction of C{sub 60} with graphene is fundamentally different from impacts on 3D targets. A key characteristic is the high degree of ionization of the ejecta.« less
NASA Astrophysics Data System (ADS)
Chen, Zhan-Bin
2018-04-01
Calculations of the electron-impact excitation (EIE) of singly charged Ca+ and Ba+ ions and subsequent de-excitation process are performed using a fully relativistic distorted wave (RDW) method. To resolve the discrepancy between previous theory and experiment, careful consideration is given to the generation of the target state wave-functions through the systematic inclusion of electron correlations. It is found that the electron correlation effects play a significant role on the cross section, while the effects on the linear polarization of the emitted radiation are relatively small. Good agreement between our result and experiment is obtained.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2013-01-01
The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.
Ionization equilibrium and radiative energy loss rates for C, N, and O ions in low-density plasmas
NASA Technical Reports Server (NTRS)
Jacobs, V. L.; Davis, J.; Rogerson, J. E.; Blaha, M.
1978-01-01
The results of calculations of the ionization equilibrium and radiative energy loss rates for C, N and O ions in low-density plasmas are presented for electron temperatures in the range 10,000-10,000,000 K. The ionization structure is determined by using the steady-state corona model, in which electron impact ionization from the ground states is balanced by direct radiative and dielectronic recombination. With an improved theory, detailed calculations are carried out for the dielectronic recombination rates in which account is taken of all radiative and autoionization processes involving a single-electron electric-dipole transition of the recombining ion. The radiative energy loss processes considered are electron-impact excitation of resonance line emission, direct radiative recombination, dielectronic recombination, and electron-ion bremsstrahlung. For all three elements, resonance line emission resulting from 2s-2p transitions produces a broad maximum in the energy loss rate near 100,000 K.
NASA Astrophysics Data System (ADS)
Belkic, Dzevad
Inelastic collisions between bare nuclei and hydrogen-like atomic systems are characterized by three main channels: electron capture, excitation, and ionization. Capture dominates at lower energies, whereas excitation and ionization prevail at higher impact energies. At intermediate energies and in the region of resonant scattering near the Massey peak, all three channels become competitive. For dressed or clothed nuclei possessing electrons, such as hydrogen-like ions, several additional channels open up, including electron loss (projectile ionization or stripping). The most important aspect of electron loss is the competition between one- and two-electron processes. Here, in a typical one-electron process, the projectile emits an electron, whereas the target final and initial states are the same. A prototype of double-electron transitions in loss processes is projectile ionization accompanied with an alteration of the target state. In such a two-electron process, the target could be excited or ionized. The relative importance of these loss channels with single- and double-electron transitions involving collisions of dressed projectiles with atomic systems is also strongly dependent on the value of the impact energy. Moreover, impact energies determine which theoretical method is likely to be more appropriate to use for predictions of cross sections. At low energies, an expansion of total scattering wave functions in terms of molecular orbitals is adequate. This is because the projectile spends considerable time in the vicinity of the target, and as a result, a compound system comprised of the projectile and the target can be formed in a metastable molecular state which is prone to decay. At high energies, a perturbation series expansion is more appropriate in terms of powers of interaction potentials. In the intermediate energy region, atomic orbitals are often used with success while expanding the total scattering wave functions. The present work is focused on quantum mechanical perturbation theories applied to electron loss collisions involving two hydrogen-like atoms. Both the one- and two-electron transitions (target unaffected by collision, as well as loss-ionization) are thoroughly examined in various intervals of impact energies varying from the threshold via the Massey peak to the Bethe asymptotic region. Systematics are established for the fast, simple, and accurate computations of cross sections for loss-excitation and loss-ionization accounting for the entire spectra of all four particles, including two free electrons and two free protons. The expounded algorithmic strategy of quantum mechanical methodologies is of great importance for wide applications to particle transport physics, especially in fusion research and hadron radiotherapy. This should advantageously replace the current overwhelming tendency in these fields for using phenomenological modeling with artificial functions extracted from fitting the existing experimental/theoretical data bases for cross sections.
The Impact of Electronic Communication on Writing. ERIC Digest.
ERIC Educational Resources Information Center
Abdullah, Mardziah Hayati
Noting that electronic communication places new demands on language that leads to interesting variations in written language use, this Digest summarizes insights gained from research on writing behavior and performance in the electronic age. It concludes that both the process and the content of writing are evolving in response to the increased use…
NASA Astrophysics Data System (ADS)
Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun; Sham, L. J.; Lo, Yu-Hwa
2015-08-01
Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Kurt H.; McCurdy, C. William; Orlando, Thomas M.
2000-09-01
This report is based largely on presentations and discussions at two workshops and contributions from workshop participants. The workshop on Fundamental Challenges in Electron-Driven Chemistry was held in Berkeley, October 9-10, 1998, and addressed questions regarding theory, computation, and simulation. The workshop on Electron-Driven Processes: Scientific Challenges and Technological Opportunities was held at Stevens Institute of Technology, March 16-17, 2000, and focused largely on experiments. Electron-molecule and electron-atom collisions initiate and drive almost all the relevant chemical processes associated with radiation chemistry, environmental chemistry, stability of waste repositories, plasma-enhanced chemical vapor deposition, plasma processing of materials for microelectronic devices andmore » other applications, and novel light sources for research purposes (e.g. excimer lamps in the extreme ultraviolet) and in everyday lighting applications. The life sciences are a rapidly advancing field where the important role of electron-driven processes is only now beginning to be recognized. Many of the applications of electron-initiated chemical processes require results in the near term. A large-scale, multidisciplinary and collaborative effort should be mounted to solve these problems in a timely way so that their solution will have the needed impact on the urgent questions of understanding the physico-chemical processes initiated and driven by electron interactions.« less
Information Delivery Options over Three Decades.
ERIC Educational Resources Information Center
Kennedy, H. E.
1986-01-01
Reviews the development of technological innovations in information delivery, including microforms, electronic processing, online distribution, full-text abstracts online, floppy disks, downloading, vertical integration, electronic publishing, and optical disks. The impact of technology on the information industry and the need to use technology…
Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Foram M., E-mail: foram29@gmail.com; Joshipura, K. N., E-mail: knjoshipura22@gmail.com; Chaudhari, Asha S., E-mail: ashaschaudhari@gmail.com
2016-05-06
Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Q{sub ion} and the summed-electronic excitation cross section ΣQ{sub exc} in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incidentmore » electron energy along with available comparisons.« less
Electron Impact Excitation-Ionization of Molecules
NASA Astrophysics Data System (ADS)
Ali, Esam Abobakr A.
In the last few decades, the study of atomic collisions by electron-impact has made significant advances. The most difficult case to study is electron impact ionization of molecules for which many approximations have to be made and the validity of these approximations can only be checked by comparing with experiment. In this thesis, I have examined the Molecular three-body distorted wave (M3DW) or Molecular four-body distorted wave (M4DW) approximations for electron-impact ionization. These models use a fully quantum mechanical approach where all particles are treated quantum mechanically and the post collision interaction (PCI) is treated to all orders of perturbation. These electron impact ionization collisions play central roles in the physics and chemistry of upper atmosphere, biofuel, the operation of discharges and lasers, radiation induced damage in biological material like damage to DNA by secondary electrons, and plasma etching processes. For the M3DW model, I will present results for electron impact single ionization of small molecules such as Water, Ethane, and Carbon Dioxide and the much larger molecules Tetrahydrofuran, phenol, furfural, 1-4 Benzoquinone. I will also present results for the four-body problem in which there are two target electrons involved in the collision. M4DW results will be presented for dissociative excitation-ionization of orientated D2. I will show that M4DW calculations using a variational wave function for the ground state that included s- and p- orbital states give better agreement to the experimental measurements than a ground state approximated as a product of two 1s-type Dyson orbitals.
ERIC Educational Resources Information Center
Jaekel, Camilla M.
2012-01-01
Although there have been great advancements in the Electronic Health Record (EHR), there is a dearth of rigorous research that examines the relationship between the use of electronic documentation to capture nursing process components and the impact of consistent documentation on patient outcomes (Daly, Buckwalter & Maas, 2002; Gugerty, 2006;…
Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.
Quevedo-Lopez, M A; Wondmagegn, W T; Alshareef, H N; Ramirez-Bon, R; Gnade, B E
2011-06-01
The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed.
Measurement of inelastic cross sections for low-energy electron scattering from DNA bases.
Michaud, Marc; Bazin, Marc; Sanche, Léon
2012-01-01
To determine experimentally the absolute cross sections (CS) to deposit various amount of energies into DNA bases by low-energy electron (LEE) impact. Electron energy loss (EEL) spectra of DNA bases were recorded for different LEE impact energies on the molecules deposited at very low coverage on an inert argon (Ar) substrate. Following their normalisation to the effective incident electron current and molecular surface number density, the EEL spectra were then fitted with multiple Gaussian functions in order to delimit the various excitation energy regions. The CS to excite a molecule into its various excitation modes were finally obtained from computing the area under the corresponding Gaussians. The EEL spectra and absolute CS for the electronic excitations of pyrimidine and the DNA bases thymine, adenine, and cytosine by electron impacts below 18 eV were reported for the molecules deposited at about monolayer coverage on a solid Ar substrate. The CS for electronic excitations of DNA bases by LEE impact were found to lie within the 10(216) to 10(218) cm(2) range. The large value of the total ionisation CS indicated that ionisation of DNA bases by LEE is an important dissipative process via which ionising radiation degrades and is absorbed in DNA.
Measurement of inelastic cross sections for low-energy electron scattering from DNA bases
Michaud, Marc; Bazin, Marc.; Sanche, Léon
2013-01-01
Purpose Determine experimentally the absolute cross sections (CS) to deposit various amount of energies into DNA bases by low-energy electron (LEE) impact. Materials and methods Electron energy loss (EEL) spectra of DNA bases are recorded for different LEE impact energies on the molecules deposited at very low coverage on an inert argon (Ar) substrate. Following their normalisation to the effective incident electron current and molecular surface number density, the EEL spectra are then fitted with multiple Gaussian functions in order to delimit the various excitation energy regions. The CS to excite a molecule into its various excitation modes are finally obtained from computing the area under the corresponding Gaussians. Results The EEL spectra and absolute CS for the electronic excitations of pyrimidine and the DNA bases thymine, adenine, and cytosine by electron impacts below 18 eV are reported for the molecules deposited at about monolayer coverage on a solid Ar substrate. Conclusions The CS for electronic excitations of DNA bases by LEE impact are found to lie within the 10−16 – 10−18 cm2 range. The large value of the total ionisation CS indicates that ionisation of DNA bases by LEE is an important dissipative process via which ionising radiation degrades and is absorbed in DNA. PMID:21615242
Methane chemistry involved in a low-pressure electron cyclotron wave resonant plasma discharge
NASA Astrophysics Data System (ADS)
Morrison, N. A.; William, C.; Milne, W. I.
2003-12-01
Radio frequency (rf) generated methane plasmas are commonly employed in the deposition of hydrogenated amorphous carbon (a-C:H) thin films. However, very little is known about the rf discharge chemistry and how it relates to the deposition process. Consequently, we have characterized a low-pressure methane plasma and compared the results with those obtained theoretically by considering the steady-state kinetics of the chemical processes present in a low-pressure plasma reactor, in order to elucidate the dominant reaction channels responsible for the generation of the active precursors required for film growth. Mass spectrometry measurements of the gas phase indicated little variation in the plasma chemistry with increasing electron temperature. This was later attributed to the partial saturation of the electron-impact dissociation and ionization rate constants at electron temperatures in excess of ˜4 eV. The ion densities in the plasma were also found to be strongly dependent upon the parent neutral concentration in the gas phase, indicating that direct electron-impact reactions exerted greater influence on the plasma chemistry than secondary ion-neutral reactions.
NASA Astrophysics Data System (ADS)
Patel, Umang; Joshipura, K. N.
2017-04-01
Plasma-wall interaction (PWI) is one of the key issues in nuclear fusion research. In nuclear fusion devices, such as the JET tokamak or the ITER, first-wall materials will be directly exposed to plasma components. Erosion of first-wall materials is a consequence of the impact of hydrogen and its isotopes as main constituents of the hot plasma. Besides the formation of gas-phase atomic species in various charge states, di- and polyatomic molecular species are expected to be formed via PWI processes. These compounds may profoundly disturb the fusion plasma, may lead to unfavorable re-deposition of materials and composites in other areas of the vessel. Interaction between atoms, molecules as well transport of impurities are of interest for modelling of fusion plasma. Qion by electron impact are such process also important in low temperature plasma processing, astrophysics etc. We reported electron impact Qionfor iron hydrogen clusters, FeHn (n = 1 to 10) from ionization threshold to 2000 eV. A semi empirical approach called Complex Scattering Potential - Ionization Contribution (CSP-ic) has been employed for the reported calculation. In context of fusion relevant species Qion were reported for beryllium and its hydrides, tungsten and its oxides and cluster of beryllium-tungsten by Huber et al.. Iron hydrogen clusters are another such species whose Qion were calculated through DM and BEB formalisms, same has been compared with present calculations.
Morphological changes of olivine grains reacted with amino acid solutions by impact process
NASA Astrophysics Data System (ADS)
Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi
2017-03-01
Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.
Xue, Mianqiang; Kendall, Alissa; Xu, Zhenming; Schoenung, Julie M
2015-01-20
Due to economic and societal reasons, informal activities including open burning, backyard recycling, and landfill are still the prevailing methods used for electronic waste treatment in developing countries. Great efforts have been made, especially in China, to promote formal approaches for electronic waste management by enacting laws, developing green recycling technologies, initiating pilot programs, etc. The formal recycling process can, however, engender environmental impact and resource consumption, although information on the environmental loads and resource consumption is currently limited. To quantitatively assess the environmental impact of the processes in a formal printed wiring board (PWB) recycling chain, life cycle assessment (LCA) was applied to a formal recycling chain that includes the steps from waste liberation through materials refining. The metal leaching in the refining stage was identified as a critical process, posing most of the environmental impact in the recycling chain. Global warming potential was the most significant environmental impact category after normalization and weighting, followed by fossil abiotic depletion potential, and marine aquatic eco-toxicity potential. Scenario modeling results showed that variations in the power source and chemical reagents consumption had the greatest influence on the environmental performance. The environmental impact from transportation used for PWB collection was also evaluated. The results were further compared to conventional primary metals production processes, highlighting the environmental benefit of metal recycling from waste PWBs. Optimizing the collection mode, increasing the precious metals recovery efficiency in the beneficiation stage and decreasing the chemical reagents consumption in the refining stage by effective materials liberation and separation are proposed as potential improvement strategies to make the recycling chain more environmentally friendly. The LCA results provide environmental information for the improvement of future integrated technologies and electronic waste management.
Electron impact ionization in the vicinity of comets
NASA Astrophysics Data System (ADS)
Cravens, T. E.; Kozyra, J. U.; Nagy, A. F.; Gombosi, T. I.; Kurtz, M.
1987-07-01
The solar wind interacts very strongly with the extensive cometary coma, and the various interaction processes are initiated by the ionization of cometary neutrals. The main ionization mechanism far outside the cometary bow shock is photoionization by solar extreme ultraviolet radiation.Electron distributions measured in the vicinity of comets Halley and Giacobini-Zinner by instruments on the VEGA and ICE spacecraft, respectively, are used to calculate electron impact ionization frequencies. Ionization by electrons is of comparable importance to photoionization in the magnetosheaths of Comets Halley and Giacobini-Zinner. The ionization frequency in the inner part of the cometary plasma region of comet Halley is several times greater than the photoionization value. Tables of ionization frequencies as functions of electron temperature are presented for H2O, CO2, CO, O, N2, and H.
Electron impact excitation of higher energy states of molecular oxygen in the atmosphere of Europa
NASA Astrophysics Data System (ADS)
Campbell, L.; Tanaka, H.; Kato, H.; Jayaraman, S.; Brunger, M. J.
2012-01-01
Recent measurements of integral cross sections for electron impact excitation of the Schumann-Runge continuum, longest band and second band of molecular oxygen are applied to calculations of emissions from the atmosphere of Europa. Molecules excited to these bands predissociate, producing O(1D) (excited oxygen) atoms which subsequently decay to produce 630.0-nm radiation. Radiation of this wavelength is also produced by direct excitation of O atoms and by the recombination of O _2^+ + 2 with electrons, but these two processes also produce O(1S) atoms which then emit at 557.7 nm. It is shown by modeling that the ratio of 630.0-nm to 557.7-nm is sensitive to the relative importance of the three processes, suggesting that the ratio would be a useful remote sensing probe in the atmosphere of Europa. In particular, the excitation of the Schumann-Runge continuum, longest band and second band is produced by magnetospheric electrons while the recombination is produced by secondary electrons produced in the atmosphere. This difference raises the possibility of determination of the secondary electron spectrum by measurement of light emissions.
Fast Simulation of the Impact Parameter Calculation of Electrons through Pair Production
NASA Astrophysics Data System (ADS)
Bang, Hyesun; Kweon, MinJung; Huh, Kyoung Bum; Pachmayer, Yvonne
2018-05-01
A fast simulation method is introduced that reduces tremendously the time required for the impact parameter calculation, a key observable in physics analyses of high energy physics experiments and detector optimisation studies. The impact parameter of electrons produced through pair production was calculated considering key related processes using the Bethe-Heitler formula, the Tsai formula and a simple geometric model. The calculations were performed at various conditions and the results were compared with those from full GEANT4 simulations. The computation time using this fast simulation method is 104 times shorter than that of the full GEANT4 simulation.
Biogeochemical redox processes and their impact on contaminant dynamics
Borch, Thomas; Kretzschmar, Ruben; Kappler, Andreas; Van Cappellen, Philippe; Ginder-Vogel, Matthew; Campbell, Kate M.
2010-01-01
Life and element cycling on Earth is directly related to electron transfer (or redox) reactions. An understanding of biogeochemical redox processes is crucial for predicting and protecting environmental health and can provide new opportunities for engineered remediation strategies. Energy can be released and stored by means of redox reactions via the oxidation of labile organic carbon or inorganic compounds (electron donors) by microorganisms coupled to the reduction of electron acceptors including humic substances, iron-bearing minerals, transition metals, metalloids, and actinides. Environmental redox processes play key roles in the formation and dissolution of mineral phases. Redox cycling of naturally occurring trace elements and their host minerals often controls the release or sequestration of inorganic contaminants. Redox processes control the chemical speciation, bioavailability, toxicity, and mobility of many major and trace elements including Fe, Mn, C, P, N, S, Cr, Cu, Co, As, Sb, Se, Hg, Tc, and U. Redox-active humic substances and mineral surfaces can catalyze the redox transformation and degradation of organic contaminants. In this review article, we highlight recent advances in our understanding of biogeochemical redox processes and their impact on contaminant fate and transport, including future research needs.
NASA Astrophysics Data System (ADS)
Liang, Ying-Shuang; Liu, Gang-Hu; Xue, Chan; Liu, Yong-Xin; Wang, You-Nian
2017-05-01
A two-dimensional self-consistent fluid model and the experimental diagnostic are employed to investigate the dependencies of species concentrations on the gas proportion in the capacitive N2/Ar discharges operated at 60 MHz, 50 Pa, and 140 W. The results indicate that the N2/Ar proportion has a considerable impact on the species densities. As the N2 fraction increases, the electron density, as well as the Ar+ and Arm densities, decreases remarkably. On the contrary, the N2 + density is demonstrated to increase monotonically with the N2 fraction. Moreover, the N density is observed to increase significantly with the N2 fraction at the N2 fractions below 40%, beyond which it decreases slightly. The electrons are primarily generated via the electron impact ionization of the feed gases. The electron impact ionization of Ar essentially determines the Ar+ density. For the N2 + production, the charge transition process between the Ar+ ions and the feed gas N2 dominates at low N2 fraction, while the electron impact ionization of N2 plays the more important role at high N2 fraction. At any gas mixtures, more than 60% Arm atoms are generated through the radiative decay process from Ar(4p). The dissociation of the feed gas N2 by the excited Ar atoms and by the electrons is responsible for the N formation at low N2 fraction and high N2 fraction, respectively. To validate the simulation results, the floating double probe and the optical emission spectroscopy are employed to measure the total positive ion density and the emission intensity originating from Ar(4p) transitions, respectively. The results from the simulation show a qualitative agreement with that from the experiment, which indicates the reliable model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris; ...
2017-04-26
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K
2014-05-01
This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.
Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedent moisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. The objective was tomore » understand shifts in biogeochemical processes in response to changing soil moisture, based on soil respiration and methane production rates, and to elucidate such responses based on the observed electron acceptor and metabolite profiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidence that soil redox was the principal factor driving metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of their concentrations in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction compared to carbon loss due to methanogenesis. These results show that extended and short-term saturation created conditions conducive to increasing metabolite availability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast, extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less
Space Environmental Erosion of Polar Icy Regolith
NASA Technical Reports Server (NTRS)
Farrell, William M.; Killen, R. M.; Vondrak, R. R.; Hurley, D. M.; Stubbs, T. J.; Delory, G. T.; Halekas, J. S.; Zimmerman, M. I.
2011-01-01
While regions at the floors of permanently shadowed polar craters are isolated from direct sunlight, these regions are still exposed to the harsh space environment, including the interplanetary Lyman-a background, meteoric impacts, and obstacle-affected solar wind. We demonstrate that each of these processes can act to erode the polar icy regolith located at or near the surface along the crater floor. The Lyman-a background can remove/erode the icy-regolith via photon stimulated desorption [1], meteoric impacts can vaporize the regolith [2], and redirected solar wind ions can sputter the ice-regolith mix [3]. As an example we shall examine in detail the inflow of solar wind ions and electrons into polar craters, One might expect such ions to flow horizontally over the crater top (see Figure). However, we find that plasma ambipolar processes act to deflect passing ions into the craters [3]. We examine this plasma process and determine the ion flux as a function of position across a notional crater floor. We demonstrate that inflowing solar wind ions can indeed create sputtering along the crater floor, effectively eroding the surface. Erosion time scales rrom sputtering will be presented. We shall also consider the effect of impact vaporization on buried icy-regolith regions. There will also be a discussion of solar wind electrons that enter into the PSR, demonstrating that these also have the ability rree surface-bound atoms via electron stimulated desorption processes [l].
Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.
2008-01-01
It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce
2015-08-03
Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanismmore » based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.« less
2015-02-01
with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...the impact of an electronic innovation must include a description of the sociotechnical context as well as the process and outcome metrics for...dissemination, will have a positive effect on nursing knowledge, use of evidence-based practices, and the achievement of nurse-sensitive patient outcomes
Spall Response of Additive Manufactured Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Brown, Andrew; Gregg, Adam; Escobedo, Jp; Hazell, Paul; East, Daniel; Quadir, Zakaria
2017-06-01
Additive manufactured (AM) Ti-6Al-4V was produced via electron beam melting (EBM) and laser melting deposition (LMD) techniques. The dynamic response of AM varieties of common aerospace and infrastructure metals are yet to be fully characterized and compared to their traditionally processed counterparts. Spall damage is one of the primary failure modes in metals subjected to shock loading from high velocity impact. Both EBM and LMD Ti-6Al-4V were shock loaded via flyer-target plate impact using a single-stage light gas gun. Target plates were subjected to pressures just above the spall strength of the material (3-5 GPa) to investigate the early onset of damage nucleation as a function of processing technique and shock orientation with respect to the AM-build direction. Post-mortem characterization of the spall damage and surrounding microstructure was performed using a combination of optical microscopy, scanning electron microscopy, and electron backscatter diffraction.
NASA Technical Reports Server (NTRS)
Choi, B. H.; Poe, R. T.; Sun, J. C.; Shan, Y.
1979-01-01
A general theoretical approach is proposed for the calculation of elastic, vibrational, and rotational transitions for electron-molecule scattering at intermediate and high-electron-impact energies. In this formulation, contributions to the scattering process come from the incoherent sum of two dominant potentials: a short-range shielded nuclear Coulomb potential from individual atomic centers, and a permanent/induced long-range potential. Application to e-N2 scattering from 50-500 eV incident electron energies has yielded good agreement with absolutely calibrated experiments. Comparisons with other theoretical approaches are made. The physical picture as well as the general features of electron-molecule scattering process are discussed within the framework of the two-potential approach.
Experimental Characterization of Electron Beam Welded SAE 5137H Thick Steel Plate
NASA Astrophysics Data System (ADS)
Kattire, Prakash; Bhawar, Valmik; Thakare, Sandeep; Patil, Sachin; Mane, Santosh; Singh, Rajkumar, Dr.
2017-09-01
Electron beam welding is known for its narrow weld zone with high depth to width ratio, less heat affected zone, less distortion and contamination. Electron beam welding is fusion welding process, where high velocity electrons impinge on material joint to be welded and kinetic energy of this electron is transformed into heat upon impact to fuse the material. In the present work electron beam welding of 60 mm thick SAE 5137H steel is studied. Mechanical and metallurgical properties of electron beam welded joint of SAE 5137H were evaluated. Mechanical properties are analysed by tensile, impact and hardness test. Metallurgical properties are investigated through optical and scanning electron microscope. The hardness traverse across weld zone shows HV 370-380, about 18% increase in the tensile strength and very low toughness of weld joint compared to parent metal. Microstructural observation shows equiaxed dendrite in the fusion zone and partial grain refinement was found in the HAZ.
The electron accelerator utilized in this treatment process has a potential of 1.5 MeV, rated from 0 to 50 mA, providing radiation doses of 0-850 krad (0-8.5 kGy). The horizontal electron beam is scanned at 200 Hz and impacts the waste stream as it flows over a weir approximately...
Photoionization of Co+ and electron-impact excitation of Co2 + using the Dirac R-matrix method
NASA Astrophysics Data System (ADS)
Tyndall, N. B.; Ramsbottom, C. A.; Ballance, C. P.; Hibbert, A.
2016-11-01
Modelling of massive stars and supernovae (SNe) plays a crucial role in understanding galaxies. From this modelling we can derive fundamental constraints on stellar evolution, mass-loss processes, mixing, and the products of nucleosynthesis. Proper account must be taken of all important processes that populate and depopulate the levels (collisional excitation, de-excitation, ionization, recombination, photoionization, bound-bound processes). For the analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group elements are particularly important. Unfortunately little data is currently available and most noticeably absent are the photoionization cross-sections for the Fe-peaks which have high abundances in SNe. Important interactions for both photoionization and electron-impact excitation are calculated using the relativistic Dirac atomic R-matrix codes (DARC) for low-ionization stages of Cobalt. All results are calculated up to photon energies of 45 eV and electron energies up to 20 eV. The wavefunction representation of Co III has been generated using GRASP0 by including the dominant 3d7, 3d6[4s, 4p], 3p43d9 and 3p63d9 configurations, resulting in 292 fine structure levels. Electron-impact collision strengths and Maxwellian averaged effective collision strengths across a wide range of astrophysically relevant temperatures are computed for Co III. In addition, statistically weighted level-resolved ground and metastable photoionization cross-sections are presented for Co II and compared directly with existing work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, C.; Blissett, C. D.; Diehl, G.
2008-07-15
Electron impact emission spectroscopy (EIES) has been proven to be a critical tool for film composition control during codeposition processes for the fabrication of multicomponent thin film materials including the high-efficiency copper-indium-gallium-diselenide photovoltaic cells. This technique is highly specific to atomic species because the emission spectrum of each element is unique, and the typical width of atomic emission lines is very narrow. Noninterfering emission lines can generally be allocated to different atomic species. However, the electron impact emission spectra of many molecular species are often broadband in nature. When the optical emission from an EIES sensor is measured by usingmore » a wavelength selection device with a modest resolution, such as an optical filter or monochromator, the emissions from common residual gases may interfere with that from the vapor flux and cause erroneous flux measurement. The interference is most pronounced when measuring low flux density with the presence of gases such as in reactive deposition processes. This problem is solved by using a novel EIES sensor that has two electron impact excitation sources in separate compartments but with one common port for optical output. The vapor flux is allowed to pass through one compartment only. Using a tristate excitation scheme and appropriate signal processing technique, the interfering signals from residual gases can be completely eliminated from the output signal of the EIES monitor for process control. Data obtained from Cu and Ga evaporations with the presence of common residual gases such as CO{sub 2} and H{sub 2}O are shown to demonstrate the improvement in sensor performance. The new EIES sensor is capable of eliminating the effect of interfering residual gases with pressure as high as in the upper 10{sup -5} Torr range.« less
Electronic propensity rules in Li-H+ collisions involving initial and/or final oriented states
NASA Astrophysics Data System (ADS)
Salas, P. J.
2000-12-01
Electronic excitation and capture processes are studied in collisions involving systems with only one active electron such as the alkaline (Li)-proton in the medium-energy region (0.1-15 keV). Using the semiclassical impact parameter method, the probabilities and the orientation parameter are calculated for transitions between initial and/or final oriented states. The results show a strong asymmetry in the probabilities depending on the orientation of the initial and/or final states. An intuitive view of the processes, by means of the concepts of propensity and velocity matching rules, is provided.
NASA Astrophysics Data System (ADS)
Campbell, L.; Green, M. A.; Brunger, M. J.; Teubner, P. J.; Cartwright, D. C.
2000-02-01
The development and initial results of a method for the determination of differential cross sections for electron scattering by molecular oxygen are described. The method has been incorporated into an existing package of computer programs which, given spectroscopic factors, dissociation energies and an energy-loss spectrum for electron-impact excitation, determine the differential cross sections for each electronic state relative to that of the elastic peak. Enhancements of the original code were made to deal with particular aspects of electron scattering from O2, such as the overlap of vibrational levels of the ground state with transitions to excited states, and transitions to levels close to and above the dissocation energy in the Herzberg and Schumann-Runge continua. The utility of the code is specifically demonstrated for the ``6-eV states'' of O2, where we report absolute differential cross sections for their excitation by 15-eV electrons. In addition an integral cross section, derived from the differential cross section measurements, is also reported for this excitation process and compared against available theoretical results. The present differential and integral cross sections for excitation of the ``6-eV states'' of O2 are the first to be reported in the literature for electron-impact energies below 20 eV.
Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions
NASA Astrophysics Data System (ADS)
Qi, Y. Y.; Ning, L. N.; Wang, J. G.; Qu, Y. Z.
2013-12-01
Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ɛ /I2p (I2p is the ionization energy of 2p state and ɛ is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δnlc, corresponding to the special plasma condition when the bound state |nl⟩ just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δnlc, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.
NASA Astrophysics Data System (ADS)
Dolimont, Adrien; Rivière-Lorphèvre, Edouard; Ducobu, François; Backaert, Stéphane
2018-05-01
Additive manufacturing is growing faster and faster. This leads us to study the functionalization of the parts that are produced by these processes. Electron Beam melting (EBM) is one of these technologies. It is a powder based additive manufacturing (AM) method. With this process, it is possible to manufacture high-density metal parts with complex topology. One of the big problems with these technologies is the surface finish. To improve the quality of the surface, some finishing operations are needed. In this study, the focus is set on chemical polishing. The goal is to determine how the chemical etching impacts the dimensional accuracy and the surface roughness of EBM parts. To this end, an experimental campaign was carried out on the most widely used material in EBM, Ti6Al4V. Different exposure times were tested. The impact of these times on surface quality was evaluated. To help predicting the excess thickness to be provided, the dimensional impact of chemical polishing on EBM parts was estimated. 15 parts were measured before and after chemical machining. The improvement of surface quality was also evaluated after each treatment.
Particle Energization via Tearing Instability with Global Self-Organization Constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarff, John; Guo, Fan
The presentation reviews how tearing magnetic reconnection leads to powerful ion energization in reversed field pinch (RFP) plasmas. A mature MHD model for tearing instability has been developed that captures key nonlinear dynamics from the global to intermediate spatial scales. A turbulent cascade is also present that extends to at least the ion gyroradius scale, within which important particle energization mechanisms are anticipated. In summary, Ion heating and acceleration associated with magnetic reconnection from tearing instability is a powerful process in the RFP laboratory plasma (gyro-resonant and stochastic processes are likely candidates to support the observed rapid heating and othermore » features, reconnection-driven electron heating appears weaker or even absent, energetic tail formation for ions and electrons). Global self-organization strongly impacts particle energization (tearing interactions that span to core to edge, global magnetic flux change produces a larger electric field and runaway, correlations in electric and magnetic field fluctuations needed for dynamo feedback, impact of transport processes (which can be quite different for ions and electrons), inhomogeneity on the system scale, e.g., strong edge gradients).« less
1988-02-05
for understanding the microscopic processes of electrical discharges and for designing gaseous discharge switches. High power gaseous discharge switches...half-maximum) energy resolution. The electron gun and ion extraction were of the same design of Srivastava at the Jet Propulsion Laboratory. Ions...photons. - The observed current switching can be applied to the design of discharge switches. Elec- tron transport parameters are needed for the
Health Information Exchange: The Determinants of Usage and the Impact on Utilization
ERIC Educational Resources Information Center
Vest, Joshua Ryan
2010-01-01
Health information exchange (HIE) is the process of electronically sharing patient-level information among different organizations with the objectives of quality and cost improvements. The adoption of HIE in the United States is not widespread, but numerous efforts at facilitating HIE exist and the incentives for electronic health record system…
Impact of CALS on Electronic Publishing Systems and Users.
ERIC Educational Resources Information Center
Beazley, William G.
1990-01-01
The U.S. Department of Defense has begun using its buying power to enforce standards on the vendors and contractors of automatic data processing hardware and software. An example of this, the Computer-Aided Acquisition and Logistic Support (CALS) program, is described, and how it will affect electronic publishing systems is discussed. (five…
ERIC Educational Resources Information Center
Keogh, Jayne; Garvis, Susanne; Pendergast, Donna; Diamond, Pat
2012-01-01
The intensification process associated with the first year of teaching has a significant impact on beginning teachers' personal and professional lives. This paper uses a narrative approach to investigate the electronic conversations of 16 beginning teachers on a self-initiated group email site. The participants' electronic exchanges demonstrated…
Perspectives on in situ electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Haimei; Zhu, Yimei
In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. Here in this paper, we highlight the development of liquid environment electron microscopy and its applications in themore » study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.« less
Perspectives on in situ electron microscopy
Zheng, Haimei; Zhu, Yimei
2017-03-29
In situ transmission electron microscopy (TEM) with the ability to reveal materials dynamic processes with high spatial and temporal resolution has attracted significant interest. The recent advances in in situ methods, including liquid and gas sample environment, pump-probe ultrafast microscopy, nanomechanics and ferroelectric domain switching the aberration corrected electron optics as well as fast electron detector has opened new opportunities to extend the impact of in situ TEM in broad areas of research ranging from materials science to chemistry, physics and biology. Here in this paper, we highlight the development of liquid environment electron microscopy and its applications in themore » study of colloidal nanoparticle growth, electrochemical processes and others; in situ study of topological vortices in ferroelectric and ferromagnetic materials. At the end, perspectives of future in situ TEM are provided.« less
Image charge effects on electron capture by dust grains in dusty plasmas.
Jung, Y D; Tawara, H
2001-07-01
Electron-capture processes by negatively charged dust grains from hydrogenic ions in dusty plasmas are investigated in accordance with the classical Bohr-Lindhard model. The attractive interaction between the electron in a hydrogenic ion and its own image charge inside the dust grain is included to obtain the total interaction energy between the electron and the dust grain. The electron-capture radius is determined by the total interaction energy and the kinetic energy of the released electron in the frame of the projectile dust grain. The classical straight-line trajectory approximation is applied to the motion of the ion in order to visualize the electron-capture cross section as a function of the impact parameter, kinetic energy of the projectile ion, and dust charge. It is found that the image charge inside the dust grain plays a significant role in the electron-capture process near the surface of the dust grain. The electron-capture cross section is found to be quite sensitive to the collision energy and dust charge.
Collective Awareness and the New Institution Science
NASA Astrophysics Data System (ADS)
Pitt, Jeremy; Nowak, Andrzej
The following sections are included: * Introduction * Challenges for Institutions * Collective Awareness * A New Science of Institutions * Complex social ensembles * Interoceptive collective awareness * Planned emergence * Self-organising electronic institutions * Transformative Impact on Society * Social attitudes and processes * Innovative service creation and social innovation * Scientific impact * Big data * Self-regulation * Summary and Conclusions
A quality-based cost model for new electronic systems and products
NASA Astrophysics Data System (ADS)
Shina, Sammy G.; Saigal, Anil
1998-04-01
This article outlines a method for developing a quality-based cost model for the design of new electronic systems and products. The model incorporates a methodology for determining a cost-effective design margin allocation for electronic products and systems and its impact on manufacturing quality and cost. A spreadsheet-based cost estimating tool was developed to help implement this methodology in order for the system design engineers to quickly estimate the effect of design decisions and tradeoffs on the quality and cost of new products. The tool was developed with automatic spreadsheet connectivity to current process capability and with provisions to consider the impact of capital equipment and tooling purchases to reduce the product cost.
NASA Technical Reports Server (NTRS)
Erdman, P. W.; Zipf, E. C.
1986-01-01
Metastable N(+)(5S) ions were produced in the laboratory by dissociative excitation of N2 with energetic electrons. The resulting radiative decay of the N(+)(5S) state was observed with sufficient resolution to completely resolve the doublet from the nearby N2 molecular radiation. The excitation function was measured from threshold to 500 eV. The cross section peaks at a high electron energy and also exhibits a high threshold energy both of which are typical of dissociative excitation-ionization processes. This finding complicates the explanation of electron impact on N2 as the mechanism for the source of the 2145 A 'auroral mystery feature' by further increasing the required peak cross section. It is suggested that the apparent N(+)(5S) quenching in auroras may be an artifact due to the softening of the electron energy spectrum in the auroral E region.
NASA Technical Reports Server (NTRS)
Whipple, E. C., Jr.
1982-01-01
The impact ionization phenomenon which was observed on certain spacecraft was studied. The phenomenon occurs when a neutral atom, molecule, or ion strikes a surface with sufficient kinetic energy that either the incident neutral or atoms on the surface are ionized, with subsequent escape of ions and/or electrons. The released ions and electrons can interfere with measurements on the spacecraft by confusing interpretation of the data. On the other hand, there is the possibility that the effect could be developed into a diagnostic tool for investigating neutral atmospheric species or for studying physical processes on spacecraft surfaces.
Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry
NASA Technical Reports Server (NTRS)
Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh
2010-01-01
Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.
Metallurgical recovery of metals from electronic waste: a review.
Cui, Jirang; Zhang, Lifeng
2008-10-30
Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the topic are presented. In addition, mechanisms and models of biosorption of precious metal ions from solutions are discussed.
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.
2010-02-01
The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.
Crystallographic data processing for free-electron laser sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Thomas A., E-mail: taw@physics.org; Barty, Anton; Stellato, Francesco
2013-07-01
A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A processing pipeline for diffraction data acquired using the ‘serial crystallography’ methodology with a free-electron laser source is described with reference to the crystallographic analysis suite CrystFEL and the pre-processing program Cheetah. A detailed analysis of the nature and impact of indexing ambiguities is presented. Simulations of the Monte Carlo integration scheme, which accounts for the partially recorded nature of the diffraction intensities, are presented and show thatmore » the integration of partial reflections could be made to converge more quickly if the bandwidth of the X-rays were to be increased by a small amount or if a slight convergence angle were introduced into the incident beam.« less
Influence of nuclear exchange on nonadiabatic electron processes in H(+)+H2 collisions.
Errea, L F; Illescas, Clara; Macías, A; Méndez, L; Pons, B; Rabadán, I; Riera, A
2010-12-28
H(+)+H(2) collisions are studied by means of a semiclassical approach that explicitly accounts for nuclear rearrangement channels in nonadiabatic electron processes. A set of classical trajectories is used to describe the nuclear motion, while the electronic degrees of freedom are treated quantum mechanically in terms of a three-state expansion of the collision wavefunction. We describe electron capture and vibrational excitation, which can also involve nuclear exchange and dissociation, in the E = 2-1000 eV impact energy range. We compare dynamical results obtained with two parametrizations of the potential energy surface of H(3)(+) ground electronic state. Total cross sections for E > 10 eV agree with previous results using a vibronic close-coupling expansion, and with experimental data for E < 10 eV. Additionally, some prototypical features of both nuclear and electron dynamics at low E are discussed.
Production of vibrationally excited N 2 by electron impact
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Cartwright, D. C.; Teubner, P. J. O.
2004-08-01
Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N 2 in this is particularly significant. We report here the results from a new calculation of electron energy transfer rates ( Q) for vibrational excitation of N 2, as a function of the electron temperature Te. The present study was motivated by the development of a new cross-section compilation for vibrational excitation processes in N 2 which supercedes those used in the earlier calculations of the electron energy transfer rates. We show that the energy dependence and magnitude of these cross sections, particularly in the region of the well-known 2Π g resonance in N 2, significantly affect the calculated values of Q. A detailed comparison between the current and previous calculated electron energy transfer rates is made and coefficients are provided so that these rates for transitions from level 0 to levels 1-10 can be calculated for electron temperatures less than 6000 K.
Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
Gabor, Nathaniel M
2013-06-18
In semiconductor photovoltaics, photoconversion efficiency is governed by a simple competition: the incident photon energy is either transferred to the crystal lattice (heat) or transferred to electrons. In conventional materials, energy loss to the lattice is more efficient than energy transferred to electrons, thus limiting the power conversion efficiency. Quantum electronic systems, such as quantum dots, nanowires, and two-dimensional electronic membranes, promise to tip the balance in this competition by simultaneously limiting energy transfer to the lattice and enhancing energy transfer to electrons. By exploring the optical, thermal, and electronic properties of quantum materials, we may perhaps find an ideal optoelectronic material that provides low cost fabrication, facile systems integration, and a means to surpass the standard limit for photoconversion efficiency. Nanoscale carbon materials, such as graphene and carbon nanotubes, provide ideal experimental quantum systems in which to explore optoelectronic behavior for applications in solar energy harvesting. Within essentially the same material, researchers can achieve a broad spectrum of energetic configurations, from a gapless semimetal to a large band-gap semiconducting nanowire. Owing to their nanoscale dimensions, graphene and carbon nanotubes exhibit electronic and optical properties that reflect strong electron-electron interactions. Such strong interactions may lead to exotic low-energy electron transport behavior and high-energy electron scattering processes such as impact excitation and the inverse process of Auger recombination. High-energy processes, which become very important under photoexcitation, may be particularly efficient in nanoscale carbon materials due to the relativistic-like, charged particle band structure and sensitivity to the dielectric environment. In addition, due to the covalently bonded carbon framework that makes up these materials, electron-phonon coupling is very weak. In carbon nanomaterials, strong electron-electron interactions combined with weak electron-phonon interactions results in excellent optical, thermal and electronic properties, the exploration of which promises to reveal fundamentally new physical processes and deliver advanced nanotechnologies. In this Account, we review the results of novel optoelectronic experiments that explore the intrinsic photoresponse of carbon nanomaterials integrated into nanoscale devices. By fabricating gate voltage-controlled photodetectors composed of atomically thin sheets of graphene and individual carbon nanotubes, we are able to fully explore electron transport in these systems under optical illumination. We find that strong electron-electron interactions play a key role in the intrinsic photoresponse of both materials, as evidenced by hot carrier transport in graphene and highly efficient multiple electron-hole pair generation in nanotubes. In both of these quantum systems, photoexcitation leads to high-energy electron-hole pairs that relax energy predominantly into the electronic system, rather than heating the lattice. Due to highly efficient energy transfer from photons into electrons, graphene and carbon nanotubes may be ideal materials for solar energy harvesting devices with efficiencies that could exceed the Shockley-Queisser limit.
A combined thermal dissociation and electron impact ionization source for RIB generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1995-12-31
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for RIB applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome thismore » handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article.« less
Electron-impact vibrational relaxation in high-temperature nitrogen
NASA Technical Reports Server (NTRS)
Lee, Jong-Hun
1992-01-01
Vibrational relaxation process of N2 molecules by electron-impact is examined for the future planetary entry environments. Multiple-quantum transitions from excited states to higher/lower states are considered for the electronic ground state of the nitrogen molecule N2 (X 1Sigma-g(+)). Vibrational excitation and deexcitation rate coefficients obtained by computational quantum chemistry are incorporated into the 'diffusion model' to evaluate the time variations of vibrational number densities of each energy state and total vibrational energy. Results show a non-Boltzmann distribution of number densities at the earlier stage of relaxation, which in turn suppresses the equilibrium process but affects little the time variation of total vibrational energy. An approximate rate equation and a corresponding relaxation time from the excited states, compatible with the system of flow conservation equations, are derived. The relaxation time from the excited states indicates the weak dependency of the initial vibrational temperature. The empirical curve-fit formula for the improved e-V relaxation time is obtained.
Dissociative Ionization of Benzene by Electron Impact
NASA Technical Reports Server (NTRS)
Huo, Winifred; Dateo, Christopher; Kwak, Dochan (Technical Monitor)
2002-01-01
We report a theoretical study of the dissociative ionization (DI) of benzene from the low-lying ionization channels. Our approach makes use of the fact that electron motion is much faster than nuclear motion and DI is treated as a two-step process. The first step is electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model. For the unimolecular dissociation step, we study the steepest descent reaction path to the minimum of the ion potential energy surface. The path is used to analyze the probability of unimolecular dissociation and to determine the product distributions. Our analysis of the dissociation products and the thresholds of the productions are compared with the result dissociative photoionization measurements of Feng et al. The partial oscillator strengths from Feng et al. are then used in the iBED cross section calculations.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... Act of 1996 (and reauthorized in 2007), NMFS is required to enumerate the economic impacts of the... allow analysts to estimate the economic contributions and impacts of marine fish processing to each... paper forms. Methods of submittal include email of electronic forms, and mail and facsimile transmission...
Applebaum, Harry; Boles, Kay; Atkinson, James B
2003-12-01
The administrative process for annual meetings is time consuming and increasingly costly when accomplished by traditional postal, fax, and telephone methods. The Pacific Association of Pediatric Surgeons introduced an all-electronic communication format for its 2002 annual meeting. Attendee acceptance and administrative and financial impact were evaluated. Interested physicians were directed to a Website containing detailed information and electronic forms. E-mail was used for the abstract selection and manuscript submission processes. Attendees were surveyed to evaluate the new format. Administrative costs for the new format were compared with estimated costs for a comparable traditionally managed meeting. Attendance was similar to that at previous US meetings. Eighty-two percent of respondents approved of the all-electronic format, although 48% believed a choice should remain. None suggested a complete return to the traditional format. Abstract and manuscript processing time was reduced substantially as were administrative costs (79.43 dollars savings per physician registrant). Adoption of an all-electronic annual meeting administrative process was associated with substantial cost reduction, increased efficiency, and excellent attendee satisfaction. This technology can help avoid increased registration fees while easing the burden on physician volunteers.
NASA Astrophysics Data System (ADS)
Gu, Ming Feng
2018-02-01
FAC calculates various atomic radiative and collisional processes, including radiative transition rates, collisional excitation and ionization by electron impact, energy levels, photoionization, and autoionization, and their inverse processes radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas under different physical conditions.
Pathways for Energization of Ca in Mercury's Exosphere
NASA Technical Reports Server (NTRS)
Killen, Rosemary M.
2015-01-01
We investigate the possible pathways to produce the extreme energy observed in the calcium exosphere of Mercury. Any mechanism must explain the facts that Ca in Mercury's exosphere is extremely hot, that it is seen almost exclusively on the dawnside of the planet, and that its content varies seasonally, not sporadically. Simple diatomic molecules or their clusters are considered, focusing on calcium oxides while acknowledging that Ca sulfides may also be the precursor molecules. We first discuss impact vaporization to justify the assumption that CaO and Ca-oxide clusters are expected from impacts on Mercury. Then we discuss processes by which the atomic Ca is energized to a 70,000 K gas. The processes considered are (1) electron-impact dissociation of CaO molecules, (2) spontaneous dissociation of Ca-bearing molecules following impact vaporization, (3) shock-induced dissociative ionization, (4) photodissociation and (5) sputtering. We conclude that electron-impact dissociation cannot produce the required abundance of Ca, and sputtering cannot reproduce the observed spatial and temporal variation that is measured. Spontaneous dissociation is unlikely to result in the high energy that is seen. Of the two remaining processes, shock induced dissociative ionization produces the required energy and comes close to producing the required abundance, but rates are highly dependent on the incoming velocity distribution of the impactors. Photodissociation probably can produce the required abundance of Ca, but simulations show that photodissociation cannot reproduce the observed spatial distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, Vikrant, E-mail: vikrant.saxena@desy.de; Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg; Ziaja, Beata, E-mail: ziaja@mail.desy.de
The irradiation of an atomic cluster with a femtosecond x-ray free-electron laser pulse results in a nanoplasma formation. This typically occurs within a few hundred femtoseconds. By this time the x-ray pulse is over, and the direct photoinduced processes no longer contributing. All created electrons within the nanoplasma are thermalized. The nanoplasma thus formed is a mixture of atoms, electrons, and ions of various charges. While expanding, it is undergoing electron impact ionization and three-body recombination. Below we present a hydrodynamic model to describe the dynamics of such multi-component nanoplasmas. The model equations are derived by taking the moments ofmore » the corresponding Boltzmann kinetic equations. We include the equations obtained, together with the source terms due to electron impact ionization and three-body recombination, in our hydrodynamic solver. Model predictions for a test case, expanding spherical Ar nanoplasma, are obtained. With this model, we complete the two-step approach to simulate x-ray created nanoplasmas, enabling computationally efficient simulations of their picosecond dynamics. Moreover, the hydrodynamic framework including collisional processes can be easily extended for other source terms and then applied to follow relaxation of any finite non-isothermal multi-component nanoplasma with its components relaxed into local thermodynamic equilibrium.« less
Electron elastic scattering off endo-fullerenes
NASA Astrophysics Data System (ADS)
Dolmatov, Valeriy
2017-04-01
The given presentation highlights the physically transparent, relatively simple, and yet reasonably complete approximation to the problem of low-energy electron elastic scattering off endohedral fullerenes A@CN along with corresponding findings unraveled on its basis. It is believed that, as of today, the highlighted results provide the most complete information about features of e + A @CN elastic scattering brought about by the fullerene-cage-related, correlation-related, and polarization-related impacts of the individual and coupled members of the A@C60 target on the scattering process. Each of the impacts is shown to bring spectacular features into e + A @C60 scattering. A remarkable inherent quality of the developed approximation is its ability to account for mutual coupling between electronic excited configurations of CN with those of the encapsulated atom A without reference to complicated details of the electronic structure of CN itself. Spectacular effects in the scattering process, primarily associated with polarization of A@C60 by an incident electron, are thoughtfully detailed both quantitatively and qualitatively in a physically transparent manner for ease of understanding and convenience of the audience. This study was performed in collaboration with Professors M. Ya. Amusia, L. V. Chernysheva, and UNA undergraduate students. The past support by the NSF Grant PHY-1305085 is acknowledged.
Ab initio Simulation of Helium-Ion Microscopy Images: The Case of Suspended Graphene
NASA Astrophysics Data System (ADS)
Zhang, Hong; Miyamoto, Yoshiyuki; Rubio, Angel
2012-12-01
Helium ion microscopy (HIM), which was released in 2006 by Ward et al., provides nondestructive imaging of nanoscale objects with higher contrast than scanning electron microscopy. HIM measurement of suspended graphene under typical conditions is simulated by first-principles time-dependent density functional theory and the 30 keV He+ collision is found to induce the emission of electrons dependent on the impact point. This finding suggests the possibility of obtaining a highly accurate image of the honeycomb pattern of suspended graphene by HIM. Comparison with a simulation of He0 under the same kinetic energy shows that electron emission is governed by the impact ionization instead of Auger process initiated by neutralization of He+.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
Razi, Aida; Britton, Robert A.
2017-01-01
Abstract Cryo-electron microscopy (cryo-EM) had played a central role in the study of ribosome structure and the process of translation in bacteria since the development of this technique in the mid 1980s. Until recently cryo-EM structures were limited to ∼10 Å in the best cases. However, the recent advent of direct electron detectors has greatly improved the resolution of cryo-EM structures to the point where atomic resolution is now achievable. This improved resolution will allow cryo-EM to make groundbreaking contributions in essential aspects of ribosome biology, including the assembly process. In this review, we summarize important insights that cryo-EM, in combination with chemical and genetic approaches, has already brought to our current understanding of the ribosomal assembly process in bacteria using previous detector technology. More importantly, we discuss how the higher resolution structures now attainable with direct electron detectors can be leveraged to propose precise testable models regarding this process. These structures will provide an effective platform to develop new antibiotics that target this fundamental cellular process. PMID:28180306
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
2017-06-08
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.
2006-01-01
The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.
Cartmill, Randi S; Walker, James M; Blosky, Mary Ann; Brown, Roger L; Djurkovic, Svetolik; Dunham, Deborah B; Gardill, Debra; Haupt, Marilyn T; Parry, Dean; Wetterneck, Tosha B; Wood, Kenneth E; Carayon, Pascale
2012-11-01
To examine the effect of implementing electronic order management on the timely administration of antibiotics to critical-care patients. We used a prospective pre-post design, collecting data on first-dose IV antibiotic orders before and after the implementation of an integrated electronic medication-management system, which included computerized provider order entry (CPOE), pharmacy order processing and an electronic medication administration record (eMAR). The research was performed in a 24-bed adult medical/surgical ICU in a large, rural, tertiary medical center. Data on the time of ordering, pharmacy processing and administration were prospectively collected and time intervals for each stage and the overall process were calculated. The overall turnaround time from ordering to administration significantly decreased from a median of 100 min before order management implementation to a median of 64 min after implementation. The first part of the medication use process, i.e., from order entry to pharmacy processing, improved significantly whereas no change was observed in the phase from pharmacy processing to medication administration. The implementation of an electronic order-management system improved the timeliness of antibiotic administration to critical-care patients. Additional system changes are required to further decrease the turnaround time. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.
Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedent moisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. The objective was tomore » understand shifts in biogeochemical processes in response to changing soil moisture, based on soil respiration and methane production rates, and to elucidate such responses based on the observed electron acceptor and metabolite profiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidence that soil redox was the principal factor driving metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of their concentrations in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction compared to carbon loss due to methanogenesis. These results show that extended and short-term saturation created conditions conducive to increasing metabolite availability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast, extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less
RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.; ...
2017-06-27
Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedent moisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. The objective was tomore » understand shifts in biogeochemical processes in response to changing soil moisture, based on soil respiration and methane production rates, and to elucidate such responses based on the observed electron acceptor and metabolite profiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidence that soil redox was the principal factor driving metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of their concentrations in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction compared to carbon loss due to methanogenesis. These results show that extended and short-term saturation created conditions conducive to increasing metabolite availability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast, extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less
Infrared Auroral Emissions Driven by Resonant Electron Impact Excitation of NO Molecules
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Petrovic, Z. Lj.; Jelisavcic, M.; Panajotovic, R.; Buckman, S. J.
2004-05-01
Although only a minor constituent of the earth's upper atmosphere, nitric oxide (NO) plays a major role in infrared auroral emissions due to radiation from vibrationally excited (NO*) states. The main process leading to the production of these excited molecules was thought to be chemiluminescence, whereby excited nitrogen atoms interact with oxygen molecules to form vibrationally excited nitric oxide (NO*) and atomic oxygen. Here we show evidence that a different production mechanism for NO*, due to low energy electron impact excitation of NO molecules, is responsible for more than 30% of the NO auroral emission near 5 μm.
Input Scanners: A Growing Impact In A Diverse Marketplace
NASA Astrophysics Data System (ADS)
Marks, Kevin E.
1989-08-01
Just as newly invented photographic processes revolutionized the printing industry at the turn of the century, electronic imaging has affected almost every computer application today. To completely emulate traditionally mechanical means of information handling, computer based systems must be able to capture graphic images. Thus, there is a widespread need for the electronic camera, the digitizer, the input scanner. This paper will review how various types of input scanners are being used in many diverse applications. The following topics will be covered: - Historical overview of input scanners - New applications for scanners - Impact of scanning technology on select markets - Scanning systems issues
Improving Literacy and Metacognition with Electronic Portfolios: Teaching and Learning with ePEARL
ERIC Educational Resources Information Center
Meyer, Elizabeth; Abrami, Philip C.; Wade, C. Anne; Aslan, Ofra; Deault, Louise
2010-01-01
Can an electronic portfolio that is both a multimedia container for student work and a tool to support key learning processes have a positive impact on the literacy practices and self-regulated learning skills of students? This article presents the findings of a yearlong study conducted in three Canadian provinces during the 2007-2008 school year…
NASA Astrophysics Data System (ADS)
Gasper, Paul Joseph; Apelian, Diran
2015-04-01
Electron-beam (EB) melting is used for the processing of refractory metals, such as Ta, Nb, Mo, and W. These metals have high value and are critical to many industries, including the semiconductor, aerospace, and nuclear industries. EB melting can also purify secondary feedstock, enabling the recovery and recycling of these materials. Currently, there is no method for measuring melt composition in situ during EB melting. Optical emission spectroscopy of the plasma generated by EB impact with vapor above the melt, a technique here termed electron-beam atomic spectroscopy, can be used to measure melt composition in situ, allowing for analysis of melt dynamics, facilitating improvement of EB melting processes and aiding recycling and recovery of these critical and high-value metals. This paper reviews the physics of the plasma generation by EB impact by characterizing the densities and energies of electrons, ions, and neutrals, and describing the interactions between them. Then several plasma models are introduced and their suitability to this application analyzed. Lastly, a potential method for calibration-free composition measurement is described and the challenges for implementation addressed.
NASA Astrophysics Data System (ADS)
Zaima, K.; Akashi, H.; Sasaki, K.
2015-09-01
It is widely believed that electron impact processes play essential roles in plasma-assisted combustion. However, the concrete roles of high-energy electrons have not been fully understood yet. In this work, we examined the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). The density of atomic oxygen in the reaction zone was not affected by the superposition of DBD, indicating that the amount of atomic oxygen produced by combustion reactions was much larger than that produced by electron impact processes. On the other hand, in the preheating zone, we observed high-frequency oscillation of the density of atomic oxygen at the timings of the pulsed current of DBD. The oscillation suggests the rapid consumption of additional atomic oxygen by combustion reactions. A numerical simulation using Chemkin indicates the shortened ignition delay time when adding additional atomic oxygen in the period of low-temperature oxidation. The present results reveals the importance of atomic oxygen, which is produced by the effect of high-energy electrons, in the preheating zone in plasma-assisted combustion of the steady-state premixed burner flame.
NASA Astrophysics Data System (ADS)
Priti, Gangwar, Reetesh Kumar; Srivastava, Rajesh
2018-04-01
A collisional radiative (C-R) model has been developed to diagnose the rf generated Ar-O2 (0%-5%) mixture plasma at low temperatures. Since in such plasmas the most dominant process is an electron impact excitation process, we considered several electron impact fine structure transitions in an argon atom from its ground as well as excited states. The cross-sections for these transitions have been obtained using the reliable fully relativistic distorted wave theory. Processes which account for the coupling of argon with the oxygen molecules have been further added to the model. We couple our model to the optical spectroscopic measurements reported by Jogi et al. [J. Phys. D: Appl. Phys. 47, 335206 (2014)]. The plasma parameters, viz. the electron density (ne) and the electron temperature (Te) as a function of O2 concentration have been obtained using thirteen intense emission lines out of 3p54p → 3p54s transitions observed in their spectroscopic measurements. It is found that as the content of O2 in Ar increases from 0%-5%, Te increases in the range 0.85-1.7 eV, while the electron density decreases from 2.76 × 1012-2.34 × 1011 cm-3. The Ar-3p54s (1si) fine-structure level populations at our extracted plasma parameters are found to be in very good agreement with those obtained from the measurements. Furthermore, we have estimated the individual contributions coming from the ground state, 1si manifolds and cascade contributions to the population of the radiating Ar-3p54p (2pi) states as a function of a trace amount of O2. Such information is very useful to understand the importance of various processes occurring in the plasma.
Dixon, Brian E; McGowan, Julie J; Grannis, Shaun J
2011-01-01
There is increasing interest in leveraging electronic health data across disparate sources for a variety of uses. A fallacy often held by data consumers is that clinical data quality is homogeneous across sources. We examined one attribute of data quality, completeness, in the context of electronic laboratory reporting of notifiable disease information. We evaluated 7.5 million laboratory reports from clinical information systems for their completeness with respect to data needed for public health reporting processes. We also examined the impact of health information exchange (HIE) enhancement methods that attempt to improve completeness. The laboratory data were heterogeneous in their completeness. Fields identifying the patient and test results were usually complete. Fields containing patient demographics, patient contact information, and provider contact information were suboptimal. Data processed by the HIE were often more complete, suggesting that HIEs can support improvements to existing public health reporting processes.
Georgiou, Andrew; McCaughey, Euan J; Tariq, Amina; Walter, Scott R; Li, Julie; Callen, Joanne; Paoloni, Richard; Runciman, William B; Westbrook, Johanna I
2017-03-01
To examine the impact of an electronic Results Acknowledgement (eRA) system on emergency physicians' test result management work processes and the time taken to acknowledge microbiology and radiology test results for patients discharged from an Emergency Department (ED). The impact of the eRA system was assessed in an Australian ED using: a) semi-structured interviews with senior emergency physicians; and b) a time and motion direct observational study of senior emergency physicians completing test acknowledgment pre and post the implementation of the eRA system. The eRA system led to changes in the way results and actions were collated, stored, documented and communicated. Although there was a non-significant increase in the average time taken to acknowledge results in the post period, most types of acknowledgements (other than simple acknowledgements) took less time to complete. The number of acknowledgements where physicians sought additional information from the Electronic Medical Record (EMR) rose from 12% pre to 20% post implementation of eRA. Given that the type of results are unlikely to have changed significantly across the pre and post implementation periods, the increase in the time physicians spent accessing additional clinical information in the post period likely reflects the greater access to clinical information provided by the integrated electronic system. Easier access to clinical information may improve clinical decision making and enhance the quality of patient care. For instance, in situations where a senior clinician, not initially involved in the care process, is required to deal with the follow-up of non-normal results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Morgan, H. D.; Mentall, J. E.
1974-01-01
Absolute excitation functions for excited fragments resulting from electron bombardment of H2O, NH3, and CH4 by low-energy electrons (0 to 300 eV) have been measured in the vacuum ultraviolet (1100 to 1950 A). The predominant emission for each molecule was the H Lyman-alpha line, while the O I, N I, C I, and C II emissions were at least an order of magnitude weaker. Absolute cross sections at 100 eV are given along with the appearance potential of the various processes and the possible dissociative-excitation channels through which such processes proceed.
Füchsel, Gernot; Schimka, Selina; Saalfrank, Peter
2013-09-12
The role of electronic friction and, more generally, of nonadiabatic effects during dynamical processes at the gas/metal surface interface is still a matter of discussion. In particular, it is not clear if electronic nonadiabaticity has an effect under "mild" conditions, when molecules in low rovibrational states interact with a metal surface. In this paper, we investigate the role of electronic friction on the dissociative sticking and (inelastic) scattering of vibrationally and rotationally cold H2 molecules at a Ru(0001) surface theoretically. For this purpose, classical molecular dynamics with electronic friction (MDEF) calculations are performed and compared to MD simulations without friction. The two H atoms move on a six-dimensional potential energy surface generated from gradient-corrected density functional theory (DFT), that is, all molecular degrees of freedom are accounted for. Electronic friction is included via atomic friction coefficients obtained from an embedded atom, free electron gas (FEG) model, with embedding densities taken from gradient-corrected DFT. We find that within this model, dissociative sticking probabilities as a function of impact kinetic energies and impact angles are hardly affected by nonadiabatic effects. If one accounts for a possibly enhanced electronic friction near the dissociation barrier, on the other hand, reduced sticking probabilities are observed, in particular, at high impact energies. Further, there is always an influence on inelastic scattering, in particular, as far as the translational and internal energy distribution of the reflected molecules is concerned. Additionally, our results shed light on the role played by the velocity distribution of the incident molecular beam for adsorption probabilities, where, in particular, at higher impact energies, large effects are found.
Theoretical investigation of the electron capture and loss processes in the collisions of He2+ + Ne.
Hong, Xuhai; Wang, Feng; Jiao, Yalong; Su, Wenyong; Wang, Jianguo; Gou, Bingcong
2013-08-28
Based on the time-dependent density functional theory, a method is developed to study ion-atom collision dynamics, which self-consistently couples the quantum mechanical description of electron dynamics with the classical treatment of the ion motion. Employing real-time and real-space method, the coordinate space translation technique is introduced to allow one to focus on the region of target or projectile depending on the actual concerned process. The benchmark calculations are performed for the collisions of He(2+) + Ne, and the time evolution of electron density distribution is monitored, which provides interesting details of the interaction dynamics between the electrons and ion cores. The cross sections of single and many electron capture and loss have been calculated in the energy range of 1-1000 keV/amu, and the results show a good agreement with the available experiments over a wide range of impact energies.
Resonant electron capture by aspartame and aspartic acid molecules.
Muftakhov, M V; Shchukin, P V
2016-12-30
The processes for dissociative electron capture are the key mechanisms for decomposition of biomolecules, proteins in particular, under interaction with low-energy electrons. Molecules of aspartic acid and aspartame, i.e. modified dipeptides, were studied herein to define the impact of the side functional groups on peptide chain decomposition in resonant electron-molecular reactions. The processes of formation and decomposition of negative ions of both aspartame and aspartic acid were studied by mass spectrometry of negative ions under resonant electron capture. The obtained mass spectra were interpreted under thermochemical analysis by quantum chemical calculations. Main channels of negative molecular ions fragmentation were found and characteristic fragment ions were identified. The СООН fragment of the side chain in aspartic acid is shown to play a key role like the carboxyl group in amino acids and aliphatic oligopeptides. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Electron-impact Multiple-ionization Cross Sections for Atoms and Ions of Helium through Zinc
NASA Astrophysics Data System (ADS)
Hahn, M.; Müller, A.; Savin, D. W.
2017-12-01
We compiled a set of electron-impact multiple-ionization (EIMI) cross section for astrophysically relevant ions. EIMIs can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature or if there is a non-thermal electron energy distribution, such as a kappa distribution. Cross section for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to available experimental EIMI cross-section data. Based on this comparison, we interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for 3466 EIMI cross sections and the associated Maxwellian plasma rate coefficients. We also highlight some outstanding issues that remain to be resolved.
Electron Impact Multiple Ionization Cross Sections for Solar Physics
NASA Astrophysics Data System (ADS)
Hahn, M.; Savin, D. W.; Mueller, A.
2017-12-01
We have compiled a set of electron-impact multiple ionization (EIMI) cross sections for astrophysically relevant ions. EIMI can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature, as in solar flares or in nanoflare coronal heating. EIMI is also likely to be significant when the electron energy distribution is non-thermal, such as if the electrons follow a kappa distribution. Cross sections for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to the available experimental EIMI cross section data. Based on this comparison, we have interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for thousands of EIMI cross sections. We also highlight some outstanding issues that remain to be resolved.
Nurses' perceptions of the impact of electronic health records on work and patient outcomes.
Kossman, Susan P; Scheidenhelm, Sandra L
2008-01-01
This study addresses community hospital nurses' use of electronic health records and views of the impact of such records on job performance and patient outcomes. Questionnaire, interview, and observation data from 46 nurses in medical-surgical and intensive care units at two community hospitals were analyzed. Nurses preferred electronic health records to paper charts and were comfortable with technology. They reported use of electronic health records enhanced nursing work through increased information access, improved organization and efficiency, and helpful alert screens. They thought use of the records hindered nursing work through impaired critical thinking, decreased interdisciplinary communication, and a high demand on work time (73% reported spending at least half their shift using the records). They thought use of electronic health records enabled them to provide safer care but decreased the quality of care. Administrative implications include involving bedside nurses in system choice, streamlining processes, developing guidelines for consistent documentation quality and location, increasing system speed, choosing hardware that encourages bedside use, and improving system information technology support.
Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Y. Y.; Ning, L. N.; Wang, J. G.
2013-12-15
Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ε/I{sub 2p} (I{sub 2p} is the ionizationmore » energy of 2p state and ε is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δ{sub nl}{sup c}, corresponding to the special plasma condition when the bound state |nl just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δ{sub nl}{sup c}, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.« less
Modelling of the hole-initiated impact ionization current in the framework of hydrodynamic equations
NASA Astrophysics Data System (ADS)
Lorenzini, Martino; Van Houdt, Jan
2002-02-01
Several research papers have shown the feasibility of the hydrodynamic transport model to investigate impact ionization in semiconductor devices by means of mean-energy-dependent generation rates. However, the analysis has been usually carried out for the case of the electron-initiated impact ionization process and less attention has been paid to the modelling of the generation rate due to impact ionization events initiated by holes. This paper therefore presents an original model for the hole-initiated impact ionization in silicon and validates it by comparing simulation results with substrate currents taken from p-channel transistors manufactured in a 0.35 μm CMOS technology having three different channel lengths. The experimental data are successfully reproduced over a wide range of applied voltages using only one fitting parameter. Since the impact ionization of holes triggers the mechanism responsible for the back-bias enhanced gate current in deep submicron nMOS devices, the model can be exploited in the development of non-volatile memories programmed by secondary electron injection.
Durand, Corentin; Zhang, Xiaoguang; Fowlkes, Jason; ...
2015-01-16
We study the electrical transport properties of atomically thin individual crystalline grains of MoS 2 with four-probe scanning tunneling microscopy. The monolayer MoS 2 domains are synthesized by chemical vapor deposition on SiO 2/Si substrate. Temperature dependent measurements on conductance and mobility show that transport is dominated by an electron charge trapping and thermal release process with very low carrier density and mobility. The effects of electronic irradiation are examined by exposing the film to electron beam in the scanning electron microscope in an ultrahigh vacuum environment. The irradiation process is found to significantly affect the mobility and the carriermore » density of the material, with the conductance showing a peculiar time-dependent relaxation behavior. It is suggested that the presence of defects in active MoS 2 layer and dielectric layer create charge trapping sites, and a multiple trapping and thermal release process dictates the transport and mobility characteristics. The electron beam irradiation promotes the formation of defects and impact the electrical properties of MoS 2. Finally, our study reveals the important roles of defects and the electron beam irradiation effects in the electronic properties of atomic layers of MoS 2.« less
Dissociative Excitation of Acetylene Induced by Electron Impact: Excitation-emission Cross-sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Országh, Juraj; Danko, Marián; Čechvala, Peter
The optical emission spectrum of acetylene excited by monoenergetic electrons was studied in the range of 190–660 nm. The dissociative excitation and dissociative ionization associated with excitation of the ions initiated by electron impact were dominant processes contributing to the spectrum. The spectrum was dominated by the atomic lines (hydrogen Balmer series, carbon) and molecular bands (CH(A–X), CH(B–X), CH{sup +}(B–A), and C{sub 2}). Besides the discrete transitions, we have detected the continuum emission radiation of ethynyl radical C{sub 2}H(A–X). For most important lines and bands of the spectrum we have measured absolute excitation-emission cross sections and determined the energy thresholdsmore » of the particular dissociative channels.« less
A High Resolution Microprobe Study of EETA79001 Lithology C
NASA Technical Reports Server (NTRS)
Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.
2010-01-01
Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.
NASA Technical Reports Server (NTRS)
Grieve, R. A. F.
1984-01-01
The potential for silicate-carbon dioxide reactions as a geochemical weathering agent on Venus was studied. A tholetitic basalt close to the composition determined by the XRF experiment at the Venera 14 sites was subjected to high temperature and pressure (with pure CO2 as the pressure medium) for varying time durations. The starting basalt material and the run products were examined optically and by X-ray diffraction and electron microscopy. The kinetics of the silicate-carbonate reactions is discussed. A study to elucidate details of impact processes and to assess the effects of impact cratering on planetary evolution is mentioned.
Magnetic Fields of Lunar Impact Basins and Their Use in Constraining the Impact Process
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Lin, R. P.
2003-01-01
Measurements by the Magnetometer/Electron Reflectometer instrument on the Lunar Prospector spacecraft, which completed its mapping mission in 1999, have been used to construct the first completely global maps of lunar crustal magnetic fields. Now, for the first time, we have a data set with global coverage and a sensitivity and resolution which allow us to investigate the magnetic fields of lunar impact basins and craters. As on the Earth, impact sites have a variety of magnetic signatures associated with them, ranging from nearly complete demagnetization to strong central magnetic anomalies. Observations of the magnetic fields of terrestrial basins have been used to make inferences about the impact process, and we wish to show that lunar observations can also provide valuable constraints.
Management Challenges Fiscal Year 2016
2017-01-01
of Office of Inspector General Management Challenges 14 │ FY 2016 classified information revealed “methods to our adversaries that could impact our...electronic data to perform operations and to process, maintain, and report essential information . Office of Inspector General Management ...that collects, processes, stores, disseminates, and manages critical information . It includes owned and leased communications and computing
Lachance, Philippe; Villeneuve, Pierre-Marc; Wilson, Francis P; Selby, Nicholas M; Featherstone, Robin; Rewa, Oleksa; Bagshaw, Sean M
2016-05-05
Acute kidney injury (AKI) is a common complication in hospitalised patients. It imposes significant risk for major morbidity and mortality. Moreover, patients suffering an episode of AKI consume considerable health resources. Recently, a number of studies have evaluated the implementation of automated electronic alerts (e-alerts) configured from electronic medical records (EMR) and clinical information systems (CIS) to warn healthcare providers of early or impending AKI in hospitalised patients. The impact of e-alerts on care processes, patient outcomes and health resource use, however, remains uncertain. We will perform a systematic review to describe and appraise e-alerts for AKI, and evaluate their impact on processes of care, clinical outcomes and health services use. In consultation with a research librarian, a search strategy will be developed and electronic databases (ie, MEDLINE, EMBASE, CINAHL, Cochrane Library and Inspec via Engineering Village) searched. Selected grey literature sources will also be searched. Search themes will focus on e-alerts and AKI. Citation screening, selection, quality assessment and data abstraction will be performed in duplicate. The primary analysis will be narrative; however, where feasible, pooled analysis will be performed. Each e-alert will be described according to trigger, type of alert, target recipient and degree of intrusiveness. Pooled effect estimates will be described, where applicable. Our systematic review will synthesise the literature on the value of e-alerts to detect AKI, and their impact on processes, patient-centred outcomes and resource use, and also identify key knowledge gaps and barriers to implementation. This is a fundamental step in a broader research programme aimed to understand the ideal structure of e-alerts, target population and methods for implementation, to derive benefit. Research ethics approval is not required for this review. CRD42016033033. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Himwich, Elizabeth W.; Glocer, Alex; Sibeck, David G.
2015-01-01
The precipitation of high-energy magnetospheric electrons (E greater than 500-600 electronvolts) in the diffuse aurora contributes significant energy flux into Earth's ionosphere. In the diffuse aurora, precipitating electrons initially injected from the plasmasheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These initially precipitating electrons of magnetospheric origin can be additionally reflected back into the magnetosphere by the two magnetically conjugated atmospheres, leading to a series of multiple reflections that can greatly influence the initially precipitating flux at the upper ionospheric boundary (700-800 kilometers) and the resultant population of secondary electrons and electrons cascading toward lower energies. We present the solution of the Boltzmann.Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E is less than or equal to 600 electronvolts) and their energy interplay in the magnetosphere and two conjugated ionospheres. This solution takes into account the role of multiple atmospheric reflections of the precipitated electrons that were initially moved into the loss cone via wave.particle interaction processes in Earth's plasmasheet.
Role of Excited Nitrogen In The Ionosphere
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Cartwright, D. C.; Bolorizadeh, M. A.
2006-12-01
Sunlight photoionises atoms and molecules in the Earth's upper atmosphere, producing ions and photoelectrons. The photoelectrons then produce further ionisation by electron impact. These processes produce the ionosphere, which contains various positive ions, such as NO+, N+, and O+, and an equal density of free electrons. O+(4S) ions are long-lived and so the electron density is determined mainly by the density of O+(4S). This density is dependent on ambipolar diffusion and on loss processes, which are principally reactions with O2 and N2. The reaction with N2 is known to be strongly dependent on the vibrational state of N2 but the rate constants are not well determined for the ionosphere. Vibrational excitation of N2 is produced by direct excitation by thermal electrons and photoelectrons and by cascade from the excited states of N2 that are produced by photoelectron impact. It can also be produced by a chemical reaction and by vibrational-translational transitions. The vibrational excitation is lost by deexcitation by electron impact, by step-wise quenching in collisions with O atoms, and in the reaction with O+(4S). The distribution of vibrational levels is rearranged by vibrational-vibrational transitions, and by molecular diffusion vertically in the atmosphere. A computational model that includes these processes and predicts the electron density as a function of height in the ionosphere is described. This model is a combination of a "statistical equilibrium" calculation, which is used to predict the populations of the excited states of N2, and a time-step calculation of the atmospheric reactions and processes. The latter includes a calculation of photoionisation down through the atmosphere as a function of time of day and solar activity, and calculations at 0.1 s intervals of the changing densities of positive ions, electrons and N2 in the different vibrational levels. The validity of the model is tested by comparison of the predicted electron densities with the International Reference Ionosphere (IRI) of electron density measurements. The contribution of various input parameters can be investigated by their effect on the accuracy of the calculated electron densities. Here the effects of two different sets of rate constants for the reaction of vibrationally excited N2 with O+(4S) are investigated. For reference, predictions using the different sets are compared with laboratory measurements. Then the effect of using the different sets in the computational model of the ionosphere is investigated. It is shown that one set gives predictions of electron densities that are in reasonable agreement with the IRI, while the other set does not. Both sets result in underestimation of the electron density at the height of the peak electron density in the atmosphere, suggesting that either the amount of vibrational excitation or the rate constants may be overestimated. Our comparison is made for two cases with different conditions, to give an indication of the limitations of the atmospheric modeling and also insight into ways in which the sets of rate constants may be deficient.
Four-wave mixing in an asymmetric double quantum dot molecule
NASA Astrophysics Data System (ADS)
Kosionis, Spyridon G.
2018-06-01
The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.
X-ray free electron laser: opportunities for drug discovery.
Cheng, Robert K Y; Abela, Rafael; Hennig, Michael
2017-11-08
Past decades have shown the impact of structural information derived from complexes of drug candidates with their protein targets to facilitate the discovery of safe and effective medicines. Despite recent developments in single particle cryo-electron microscopy, X-ray crystallography has been the main method to derive structural information. The unique properties of X-ray free electron laser (XFEL) with unmet peak brilliance and beam focus allow X-ray diffraction data recording and successful structure determination from smaller and weaker diffracting crystals shortening timelines in crystal optimization. To further capitalize on the XFEL advantage, innovations in crystal sample delivery for the X-ray experiment, data collection and processing methods are required. This development was a key contributor to serial crystallography allowing structure determination at room temperature yielding physiologically more relevant structures. Adding the time resolution provided by the femtosecond X-ray pulse will enable monitoring and capturing of dynamic processes of ligand binding and associated conformational changes with great impact to the design of candidate drug compounds. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-04-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-03-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
Sweidan, Michelle; Williamson, Margaret; Reeve, James F; Harvey, Ken; O'Neill, Jennifer A; Schattner, Peter; Snowdon, Teri
2010-04-15
Electronic prescribing is increasingly being used in primary care and in hospitals. Studies on the effects of e-prescribing systems have found evidence for both benefit and harm. The aim of this study was to identify features of e-prescribing software systems that support patient safety and quality of care and that are useful to the clinician and the patient, with a focus on improving the quality use of medicines. Software features were identified by a literature review, key informants and an expert group. A modified Delphi process was used with a 12-member multidisciplinary expert group to reach consensus on the expected impact of the features in four domains: patient safety, quality of care, usefulness to the clinician and usefulness to the patient. The setting was electronic prescribing in general practice in Australia. A list of 114 software features was developed. Most of the features relate to the recording and use of patient data, the medication selection process, prescribing decision support, monitoring drug therapy and clinical reports. The expert group rated 78 of the features (68%) as likely to have a high positive impact in at least one domain, 36 features (32%) as medium impact, and none as low or negative impact. Twenty seven features were rated as high positive impact across 3 or 4 domains including patient safety and quality of care. Ten features were considered "aspirational" because of a lack of agreed standards and/or suitable knowledge bases. This study defines features of e-prescribing software systems that are expected to support safety and quality, especially in relation to prescribing and use of medicines in general practice. The features could be used to develop software standards, and could be adapted if necessary for use in other settings and countries.
2010-01-01
Background Electronic prescribing is increasingly being used in primary care and in hospitals. Studies on the effects of e-prescribing systems have found evidence for both benefit and harm. The aim of this study was to identify features of e-prescribing software systems that support patient safety and quality of care and that are useful to the clinician and the patient, with a focus on improving the quality use of medicines. Methods Software features were identified by a literature review, key informants and an expert group. A modified Delphi process was used with a 12-member multidisciplinary expert group to reach consensus on the expected impact of the features in four domains: patient safety, quality of care, usefulness to the clinician and usefulness to the patient. The setting was electronic prescribing in general practice in Australia. Results A list of 114 software features was developed. Most of the features relate to the recording and use of patient data, the medication selection process, prescribing decision support, monitoring drug therapy and clinical reports. The expert group rated 78 of the features (68%) as likely to have a high positive impact in at least one domain, 36 features (32%) as medium impact, and none as low or negative impact. Twenty seven features were rated as high positive impact across 3 or 4 domains including patient safety and quality of care. Ten features were considered "aspirational" because of a lack of agreed standards and/or suitable knowledge bases. Conclusions This study defines features of e-prescribing software systems that are expected to support safety and quality, especially in relation to prescribing and use of medicines in general practice. The features could be used to develop software standards, and could be adapted if necessary for use in other settings and countries. PMID:20398294
NASA Astrophysics Data System (ADS)
Hattori, Yoshiaki; Taniguchi, Takashi; Watanabe, Kenji; Nagashio, Kosuke
2018-01-01
The electrical evaluation of the crystallinity of hexagonal boron nitride (h -BN) is still limited to the measurement of dielectric breakdown strength, in spite of its importance as the substrate for two-dimensional van der Waals heterostructure devices. In this study, physical phenomena for degradation and failure in exfoliated single-crystal h -BN films were investigated using the constant-voltage stress test. At low electrical fields, the current gradually reduced and saturated with time, while the current increased at electrical fields higher than ˜8 MV /cm and finally resulted in the catastrophic dielectric breakdown. These transient behaviors may be due to carrier trapping to the defect sites in h -BN because trapped carriers lower or enhance the electrical fields in h -BN depending on their polarities. The key finding is the current enhancement with time at the high electrical field, suggesting the accumulation of electrons generated by the impact ionization process. Therefore, a theoretical model including the electron generation rate by an impact ionization process was developed. The experimental data support the expected degradation mechanism of h -BN. Moreover, the impact ionization coefficient was successfully extracted, which is comparable to that of Si O2 , even though the fundamental band gap for h -BN is smaller than that for Si O2 . Therefore, the dominant impact ionization in h -BN could be band-to-band excitation, not defect-assisted impact ionization.
Pawelec, Andrzej; Dobrowolski, Andrzej
2017-01-01
In the process of electron beam flue gas treatment (EBFGT), most energy is spent on NO x removal. The dose distribution in the reactor is not uniform and the flue gas flow pattern plays an important role in the process efficiency. It was found that proper construction of the reactor may increase the energy efficiency of the process. The impact of the number of irradiation stages and mixing conditions on NO x removal efficiency was investigated for an ideal case and a practical solution was presented and compared with previously known EBFGT reactor constructions. The research was performed by means of computational fluid dynamics methods in combination with empirical Wittig formula. Two versions of dose distribution were taken for calculations. The results of the research show that for an ideal case, application of multistage irradiation and interstage mixing may reduce the energy consumption in the process by up to 39%. On the other side, simulation of reactor construction modification for two-stage irradiation results in 25% energy consumption reduction. The results of presented case study may be applied for improving the existing reactors and proper design of future installations.
Analysis of e-beam impact on the resist stack in e-beam lithography process
NASA Astrophysics Data System (ADS)
Indykeiwicz, K.; Paszkiewicz, B.
2013-07-01
Paper presents research on the sub-micron gate, AlGaN /GaN HEMT type transistors, fabrication by e-beam lithography and lift-off technique. The impact of the electron beam on the resists layer and the substrate was analyzed by MC method in Casino v3.2 software. The influence of technological process parameters on the metal structures resolution and quality for paths 100 nm, 300 nm and 500 nm wide and 20 μm long was studied. Qualitative simulation correspondences to the conducted experiments were obtained.
NOK mediates glycolysis and nuclear PDC associated histone acetylation.
Shi, Wei-Ye; Yang, Xiao; Huang, Bo; Shen, Wen H; Liu, Li
2017-06-01
NOK is a potent oncogene that can transform normal cells to cancer cells. We hypothesized that NOK might impact cancer cell metabolism and histone acetylation. We show that NOK localizes in the mitochondria, and while it minimally impacts tricarboxylic acid (TCA) cycle, it markedly inhibits the process of electron transport and oxidative phosphorylation processes and dramatically enhances aerobic glycolysis in cancer cells. NOK promotes the mitochondrial-nuclear translocation of pyruvate dehydrogenase complex (PDC), and enhances histone acetylation in the nucleus. Together, these findings show that NOK mediates glycolysis and nuclear PDC associated histone acetylation.
2010-01-01
Background The health care sector is an area of social and economic interest in several countries; therefore, there have been lots of efforts in the use of electronic health records. Nevertheless, there is evidence suggesting that these systems have not been adopted as it was expected, and although there are some proposals to support their adoption, the proposed support is not by means of information and communication technology which can provide automatic tools of support. The aim of this study is to identify the critical adoption factors for electronic health records by physicians and to use them as a guide to support their adoption process automatically. Methods This paper presents, based on the PRISMA statement, a systematic literature review in electronic databases with adoption studies of electronic health records published in English. Software applications that manage and process the data in the electronic health record have been considered, i.e.: computerized physician prescription, electronic medical records, and electronic capture of clinical data. Our review was conducted with the purpose of obtaining a taxonomy of the physicians main barriers for adopting electronic health records, that can be addressed by means of information and communication technology; in particular with the information technology roles of the knowledge management processes. Which take us to the question that we want to address in this work: "What are the critical adoption factors of electronic health records that can be supported by information and communication technology?". Reports from eight databases covering electronic health records adoption studies in the medical domain, in particular those focused on physicians, were analyzed. Results The review identifies two main issues: 1) a knowledge-based classification of critical factors for adopting electronic health records by physicians; and 2) the definition of a base for the design of a conceptual framework for supporting the design of knowledge-based systems, to assist the adoption process of electronic health records in an automatic fashion. From our review, six critical adoption factors have been identified: user attitude towards information systems, workflow impact, interoperability, technical support, communication among users, and expert support. The main limitation of the taxonomy is the different impact of the adoption factors of electronic health records reported by some studies depending on the type of practice, setting, or attention level; however, these features are a determinant aspect with regard to the adoption rate for the latter rather than the presence of a specific critical adoption factor. Conclusions The critical adoption factors established here provide a sound theoretical basis for research to understand, support, and facilitate the adoption of electronic health records to physicians in benefit of patients. PMID:20950458
A direct electron detector for time-resolved MeV electron microscopy
Vecchione, T.; Denes, P.; Jobe, R. K.; ...
2017-03-15
The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less
A direct electron detector for time-resolved MeV electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecchione, T.; Denes, P.; Jobe, R. K.
The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The uniquemore » capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less
A direct electron detector for time-resolved MeV electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecchione, T.; Denes, P.; Jobe, R. K.
The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less
1999-01-01
August Witt, Massachusetts Institute of Technology, principal investigator for the research program designed to lead to the identification and control of gravitational effects which adversely impact, through their interference with the growth process, the achievement of critical application specific properties in opto-electronic materials.
Long, Guankui; Wan, Xiangjian; Kan, Bin; Hu, Zhicheng; Yang, Xuan; Zhang, Yi; Zhang, Mingtao; Wu, Hongbing; Huang, Fei; Su, Shijian; Cao, Yong; Chen, Yongsheng
2014-08-01
Although the performance of polymer solar cells has been improved significantly recently through careful optimization with different interlayers for the same materials, more improvement is needed in this respect for small-molecule-based solar cells, particularly for the electron-transport layers (ETLs). In this work, three different solution-processed ETLs, PFN, ZnO nanoparticles, and LiF, were investigated and compared in the performance of small-molecule-based devices, and power conversion efficiencies (PCEs) of 8.32, 7.30, and 7.38% were achieved, respectively. The mechanism for the ETL-induced enhancement has been studied, and different ETLs have a significantly different impact on the device performance. The clearly improved performance of PFN is attributed to the combination of reduced bimolecular recombination and increased effective photon absorption in the active layer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal evolution of old white dwarfs
NASA Astrophysics Data System (ADS)
Kozhberov, Andrew
2017-11-01
This work is devoted to a description of thermodynamic properties of Coulomb crystals which are expected to form in white dwarf interiors. Effects of magnetic field, isotopic impurities, polarization of the electron background and crystal lattice type on the thermal evolution of white dwarfs are discussed. It is shown that the electron polarization could play a noticeable role in the cooling process. While other parameters in concern do not make a significant impact.
Two-Centre Convergent Close-Coupling Approach to Ion-Atom Collisions: Current Progress
NASA Astrophysics Data System (ADS)
Kadyrov, Alisher; Abdurakhmanov, Ilkhom; Bailey, Jackson; Bray, Igor
2016-09-01
There are two versions of the convergent close-coupling (CCC) approach to ion-atom collisions: quantum-mechanical (QM-CCC) and semi-classical (SC-CCC). Recently, both implementations have been extended to include electron-transfer channels. The SC-CCC approach has been applied to study the excitation and the electron-capture processes in proton-hydrogen collisions. The integral alignment parameter A20 for polarization of Lyman- α emission and the cross sections for excitation and electron-capture into the lowest excited states have been calculated for a wide range of the proton impact energies. It has been established that for convergence of the results a very wide range of impact parameters (typically, 0-50 a.u.) is required due to extremely long tails of transition probabilities for transitions into the 2 p states at high energies. The QM-CCC approach allowed to obtain an accurate solution of proton-hydrogen scattering problem including all underlying processes, namely, direct scattering and ionisation, and electron capture into bound and continuum states of the projectile. In this presentation we give a general overview of current progress in applications of the two-centre CCC approach to ion-atom and atom-atom collisions. The work is supported by the Australian Research Council.
Dissociative Electron Attachment in the condensed phase: sample morphology and bio-molecules
NASA Astrophysics Data System (ADS)
Bass, A. D.
2001-10-01
Recent electron impact experiments on condensed plasmid DNA have shown low energy electrons to be remarkably effective in causing damage and reveal that electron-scattering phenomena, such as transient anion formation and their decay via dissociative electron attachment, play a central role in this process. Such experiments may prompt a revision of our understanding of the mutagenic effects of radiation and have significant implications for both radiotherapy and radio-protection. These results can be better understood by investigating electron scattering with the various functional constituents of DNA in condensed environments. Recent work, to be presented here, has focused on electron attachment processes in condensed DNA bases and sugar-like analogues of the DNA backbone, as evidenced by the desorption of fragment anions. Despite this progress, a complete understanding of these processes requires parallel study of simpler `model' systems, which allow the characteristic condensed-phase phenomena modulating electron-scattering to be identified. Factors affecting anion formation and DEA can been classed as either intrinsic (affecting the properties of the resonance) or extrinsic (modifying the energy of electrons before attachment and/or the reactions of fragments, post-dissociation). In this talk we will present new results in which the extrinsic factors of porosity and phase of a sample are probed via the desorption of anionic fragments from either the pure film or from probe molecules condensed upon its surface. We show that anion desorption and hence our ability to observe DEA process, is highly sensitive to sample morphology and phase, a property which can be exploited to study the morphology of the film itself.
NASA Past, Present, and Future: The Use of Commercial Off The Shelf (COTS) Electronics in Space
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Guertin, Steven M.
2017-01-01
NASA has a long history of using commercial grade electronics in space. In this presentation we will provide a brief history of NASA's trends and approaches to commercial grade electronics focusing on processing and memory systems. This will include providing summary information on the space hazards to electronics as well as NASA mission trade space. We will also discuss developing recommendations for risk management approaches to Electrical, Electronic and Electromechanical (EEE) parts usage in space. Two examples will be provided focusing on a near-earth Polar-orbiting spacecraft as well as a mission to Mars. The final portion will discuss emerging trends impacting usage.
ERIC Educational Resources Information Center
Sriram, B.
2016-01-01
The internet resources are one of the important knowledge sharing tools in day-to-day business processes. These internet resources have greater impact on education field too. The learning processes have become comparatively easy due to these electronic resources. The online resources help the students to acquire the required knowledge through…
The E-Portfolio: A Tool and a Process for Educational Leadership
ERIC Educational Resources Information Center
Hyland, N.; Kranzow, J.
2012-01-01
This mixed-method study focuses on the impact of using electronic portfolios (e-portfolios) in a graduate capstone course as a tool for increasing students' critical thinking and self-directed learning. The primary results indicate that the e-portfolio, as both a tool and a process, shows great potential. This study also reveals the capacity of…
Numerical simulation of electron beam welding with beam oscillations
NASA Astrophysics Data System (ADS)
Trushnikov, D. N.; Permyakov, G. L.
2017-02-01
This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.
Knura, Miłosz; Dragon, Jonasz; Łabuzek, Krzysztof; Okopień, Bogusław
2018-01-23
The exponetial growth in popularity of electronic cigarettes in the world markets intensifies the debate about their health effects. The smoking of traditional tabacoo products is a factor associated with the endothelium damage and progression of atherosclerosis. The elimination of the combustion process in electronic cigarettes allows to conclude that they are less harmful to a vascular endothelium than traditional tobacco products. E-cigarette aerosol contains many compounds that have an influence on initiation and progression of atherosclerosis. Nicotine protherogenic action is not fully explained. On one hand, nicotine modifies metabolic pathways leading to atherosclerosis, whereas epidemiological studies do not show an increased risk of cardiovascular disease in the population using nicotine replacement therapy or snuff. Acrolein, formaldehyde and the ultrafine particles generated during e-liquid heating have an impact on initiation and progression of atherosclerosis, but their level is lower than that of tobacco smoke. In order to assess accurately the longterm effects of e-cigarettes, it is necessary to conduct epidemiological studies measuring the effects of using e-cigarettes. It is claimed that the use of electronic cigarettes has a potential impact on the development of atherosclerosis, but is significantly lower than that of traditional cigarettes.
Radiative-emission analysis in charge-exchange collisions of O6 + with argon, water, and methane
NASA Astrophysics Data System (ADS)
Leung, Anthony C. K.; Kirchner, Tom
2017-04-01
Processes of electron capture followed by Auger and radiative decay were investigated in slow ion-atom and -molecule collisions. A quantum-mechanical analysis which utilizes the basis generator method within an independent electron model was carried out for collisions of O 6 + with Ar, H2O , and CH4 at impact energies of 1.17 and 2.33 keV/amu. At these impact energies, a closure approximation in the spectral representation of the Hamiltonian for molecules was found to be necessary to yield reliable results. Total single-, double-, and triple-electron-capture cross sections obtained show good agreement with previous measurements and calculations using the classical trajectory Monte Carlo method. The corresponding emission spectra from single capture for each collision system are in satisfactory agreement with previous calculations.
Theory of step on leading edge of negative corona current pulse
NASA Astrophysics Data System (ADS)
Gupta, Deepak K.; Mahajan, Sangeeta; John, P. I.
2000-03-01
Theoretical models taking into account different feedback source terms (e.g., ion-impact electron emission, photo-electron emission, field emission, etc) have been proposed for the existence and explanation of the shape of negative corona current pulse, including the step on the leading edge. In the present work, a negative corona current pulse with the step on the leading edge is obtained in the presence of ion-impact electron emission feedback source only. The step on the leading edge is explained in terms of the plasma formation process and enhancement of the feedback source. Ionization wave-like movement toward the cathode is observed after the step. The conditions for the existence of current pulse, with and without the step on the leading edge, are also described. A qualitative comparison with earlier theoretical and experimental work is also included.
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.
2006-01-01
Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.
Sathe, Nila A.; Grady, Jenifer L.; Giuse, Nunzia B.
2002-01-01
Purpose: To begin investigating the impact of electronic journals on research processes such as information seeking, the authors conducted a pilot journal-use study to test the hypothesis that patrons use print and electronic journals differently. Methodology: We placed fifteen high-use print titles also available in electronic format behind the circulation desk; patrons were asked to complete a survey upon requesting a journal. We also conducted a parallel survey of patrons using library computers. Both surveys asked patrons to identify themselves by user category and queried them about their journal use. Results: During the month-long study, patrons completed sixty-nine surveys of electronic and ninety surveys of print journal use. Results analysis indicated that fellows, students, and residents preferred electronic journals, and faculty preferred print journals. Patrons used print journals for reading articles and scanning contents; they employed electronic journals for printing articles and checking references. Users considered electronic journals easier to access and search than print journals; however, they reported that print journals had higher quality text and figures. Discussion/Conclusion: This study is an introductory step in examining how electronic journals affect research processes. Our data revealed that there were distinct preferences in format among categories. In addition to collection management implications for libraries, these data also have implications for publishers and educators; current electronic formats do not facilitate all types of uses and thus may be changing learning patterns as well. PMID:11999183
Electron emission from transfer ionization reaction in 30 keV amu‑1 He 2+ on Ar collision
NASA Astrophysics Data System (ADS)
Amaya-Tapia, A.; Antillón, A.; Estrada, C. D.
2018-06-01
A model is presented that describes the transfer ionization process in H{e}2++Ar collision at a projectile energy of 30 keV amu‑1. It is based on a semiclassical independent-particle close-coupling method that yields a reasonable agreement between calculated and experimental values of the total single-ionization and single-capture cross sections. It is found that the transfer ionization reaction is predominantly carried out through simultaneous capture and ionization, rather than by sequential processes. The transfer-ionization differential cross section in energy that is obtained satisfactorily reproduces the global behavior of the experimental data. Additionally, the probabilities of capture and ionization as function of the impact parameter for H{e}2++A{r}+ and H{e}++A{r}+ collisions are calculated, as far as we know, for the first time. The results suggest that the model captures essential elements that describe the two-electron transfer ionization process and could be applied to systems and processes of two electrons.
A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid.
Zeng, Xianlai; Li, Jinhui; Xie, Henghua; Liu, Lili
2013-10-01
Recycling processes for waste printed circuit boards (WPCBs) have been well established in terms of scientific research and field pilots. However, current dismantling procedures for WPCBs have restricted the recycling process, due to their low efficiency and negative impacts on environmental and human health. This work aimed to seek an environmental-friendly dismantling process through heating with water-soluble ionic liquid to separate electronic components and tin solder from two main types of WPCBs-cathode ray tubes and computer mainframes. The work systematically investigates the influence factors, heating mechanism, and optimal parameters for opening solder connections on WPCBs during the dismantling process, and addresses its environmental performance and economic assessment. The results obtained demonstrate that the optimal temperature, retention time, and turbulence resulting from impeller rotation during the dismantling process, were 250 °C, 12 min, and 45 rpm, respectively. Nearly 90% of the electronic components were separated from the WPCBs under the optimal experimental conditions. This novel process offers the possibility of large industrial-scale operations for separating electronic components and recovering tin solder, and for a more efficient and environmentally sound process for WPCBs recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Process-induced defects in terrestrial solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Li, S. S.; Sah, C. T.
1975-01-01
Experimental and theoretical work on low resistivity, high efficiency solar cells indicates the dominant role that defects take in determining performance. High doping mechanisms produce gap shrinkage by band tailing, impurity band widening and impurity misfit; altered interband transmission rates result from Auger impact, SRH processes, or from electronic tunneling via defects. Characterizations of cell materials for their defects and their relations to the chosen fabrication processes are proposed.
Drop casting of stiffness gradients for chip integration into stretchable substrates
NASA Astrophysics Data System (ADS)
Naserifar, Naser; LeDuc, Philip R.; Fedder, Gary K.
2017-04-01
Stretchable electronics have demonstrated promise within unobtrusive wearable systems in areas such as health monitoring and medical therapy. One significant question is whether it is more advantageous to develop holistic stretchable electronics or to integrate mature CMOS into stretchable electronic substrates where the CMOS process is separated from the mechanical processing steps. A major limitation with integrating CMOS is the dissimilar interface between the soft stretchable and hard CMOS materials. To address this, we developed an approach to pattern an elastomeric polymer layer with spatially varying mechanical properties around CMOS electronics to create a controllable material stiffness gradient. Our experimental approach reveals that modifying the interfaces can increase the strain failure threshold up to 30% and subsequently decreases delamination. The stiffness gradient in the polymer layer provides a safe region for electronic chips to function under a substrate tensile strain up to 150%. These results will have impacts in diverse applications including skin sensors and wearable health monitoring systems.
Development and characterization of reduced graphene oxide films for transient electronics
NASA Astrophysics Data System (ADS)
Sheikh, Rasel; Bhatkar, Omkar; Smith, David; Rizvi, Reza
2018-03-01
Emerging interests in hardware security as well as environmental concerns have given rise to the field of transient or temporary electronics, which can be decommissioned by an external stimulus with minimal impact to the surrounding environment. In this study, an all graphene based film is produced by a one-step deposition process. The conversion of graphene oxide (GO) to reduced graphene oxide (rGO) depends on an interfacial reduction reaction. Control of processing conditions such as the underlying substrate, pH of GO and the film drying environment results in an ability to tailor the internal architecture of the films and their electronic properties. Furthermore, the ability to create masks for selective reduction of GO during deposition was also demonstrated, which was used to create intricate yet well-defined patterns and connections required in electronic circuits and devices. All graphene based freestanding films with selectively reduced GO were used in transient electronics application as circuitry and RFID tag patterns.
Effect of Reprocessing and Accelerated Weathering on Impact-Modified Recycled Blend
NASA Astrophysics Data System (ADS)
Ramesh, V.; Mohanty, Smita; Biswal, Manoranjan; Nayak, Sanjay K.
2015-12-01
Recovery of recycled polycarbonate, acrylonitrile butadiene styrene, high-impact polystyrene, and its blends from waste electrical and electronic equipment plastics products properties were enhanced by the addition of virgin polycarbonate and impact modifier. The optimized blend formulation was processed through five cycles, at processing temperature, 220-240 °C and accelerated weathering up to 700 h. Moreover, the effect of reprocessing and accelerated weathering in the physical properties of the modified blends was investigated by mechanical, thermal, rheological, and morphological studies. The results show that in each reprocessing cycle, the tensile strength and impact strength decreased significantly and the similar behavior has been observed from accelerated weathering. Subsequently, the viscosity decreases and this decrease becomes the effect of thermal and photo-oxidative degradation. This can be correlated with FTIR analysis.
Fernández, Marcela T; Gómez, Adrián R; Santojanni, Américo M; Cancio, Alfredo H; Luna, Daniel R; Benítez, Sonia E
2015-01-01
Electronic Health Record system downtimes may have a great impact on patient care continuity. This paper describes the analysis and actions taken to redesign the Contingency Plan Procedure for the Electronic Health Record System of Hospital Italiano de Buenos Aires. After conducting a thorough analysis of the data gathered at post-contingency meetings, weaknesses were identified in the procedure; thus, strategic actions were recommended to redesign the Contingency Plan to secure an effective communications channel, as well as a formal structure for functions that may support the decision-making process. The main actions were: 1) to incorporate the IT Contingencies Committee (Plan management); 2) to incorporate the Coordinator (general supervision of the procedure); and 3) to redefine the role of the Clinical Informatics Resident, who will be responsible for managing communication between the technical team and Electronic Health Record users. As users need the information for continuity of care, key users evaluated the impact of the new strategy with an adapted survey.
Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.
2012-01-01
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multi-frequency EPR measurements to interrogate the microscopic nature and dynamics of ultra fast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer. PMID:22568866
Comparative study of resist stabilization techniques for metal etch processing
NASA Astrophysics Data System (ADS)
Becker, Gerry; Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Livesay, William R.
1999-06-01
This study investigates resist stabilization techniques as they are applied to a metal etch application. The techniques that are compared are conventional deep-UV/thermal stabilization, or UV bake, and electron beam stabilization. The electron beam tool use din this study, an ElectronCure system from AlliedSignal Inc., ELectron Vision Group, utilizes a flood electron source and a non-thermal process. These stabilization techniques are compared with respect to a metal etch process. In this study, two types of resist are considered for stabilization and etch: a g/i-line resist, Shipley SPR-3012, and an advanced i-line, Shipley SPR 955- Cm. For each of these resist the effects of stabilization on resist features are evaluated by post-stabilization SEM analysis. Etch selectivity in all cases is evaluated by using a timed metal etch, and measuring resists remaining relative to total metal thickness etched. Etch selectivity is presented as a function of stabilization condition. Analyses of the effects of the type of stabilization on this method of selectivity measurement are also presented. SEM analysis was also performed on the features after a compete etch process, and is detailed as a function of stabilization condition. Post-etch cleaning is also an important factor impacted by pre-etch resist stabilization. Results of post- etch cleaning are presented for both stabilization methods. SEM inspection is also detailed for the metal features after resist removal processing.
Atomic Processes and Diagnostics of Low Pressure Krypton Plasma
NASA Astrophysics Data System (ADS)
Srivastava, Rajesh; Goyal, Dipti; Gangwar, Reetesh; Stafford, Luc
2015-03-01
Optical emission spectroscopy along with suitable collisional-radiative (CR) model is used in plasma diagnostics. Importance of reliable cross-sections for various atomic processes is shown for low pressure argon plasma. In the present work, radially-averaged Kr emission lines from the 2pi --> 1sj were recorded as a function of pressure from 1 to 50mTorr. We have developed a CR model using our fine-structure relativistic-distorted wave cross sections. The various processes considered are electron-impact excitation, ionization and their reverse processes. The required rate coefficients have been calculated from these cross-sections assuming Maxwellian energy distribution. Electron temperature obtained from the CR model is found to be in good agreement with the probe measurements. Work is supported by IAEA Vienna, DAE-BRNS Mumbai and CSIR, New Delhi.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, M. M.; Craven, P. D.; LeClair, A. C.
2010-08-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individualmore » micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.« less
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.
2010-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.
1981-03-01
58 H. CONTRACTING REQUIREM4ENTS----------------------- 5 I. 4G LIFE CYCLE USAGE---------------------------- 61 J. SUMMARY...procurement data is transferred during the life cycle of an item. The virtual revolution in electronics technology every five years is straining the abilities...naval operations throughout the systems/equipment life cycle [151. NAVELEX manages temporary parts inventories during the design and development of new
Impact of fulvic acids on bio-methanogenic treatment of municipal solid waste incineration leachate.
Dang, Yan; Lei, Yuqing; Liu, Zhao; Xue, Yiting; Sun, Dezhi; Wang, Li-Ying; Holmes, Dawn E
2016-12-01
A considerable amount of leachate with high fulvic acid (FA) content is generated during the municipal solid waste (MSW) incineration process. This incineration leachate is usually processed by downstream bio-methanogenic treatment. However, few studies have examined the impact that these compounds have on methanogenesis and how they are degraded and transformed during the treatment process. In this study, a laboratory-scale expanded granular sludge bed (EGSB) reactor was operated with MSW incineration leachate containing various concentrations of FA (1500 mg/L to 8000 mg/L) provided as the influent. We found that FA degradation rates decreased from 86% to 72% when FA concentrations in the reactor were increased, and that molecular size, level of humification and aromatization of the residual FA macromolecules all increased after bio-methanogenic treatment. Increasing FA influent concentrations also inhibited growth of hydrogenotrophic methanogens from the genus Methanobacterium and syntrophic bacteria from the genus Syntrophomonas, which resulted in a decrease in methane production and a concomitant increase in CO 2 content in the biogas. Sequences most similar to species from the genus Anaerolinea went up as FA concentrations increased. Bacteria from this genus are capable of extracellular electron transfer and may be using FA as an electron acceptor for growth or as a shuttle for syntrophic exchange with other microorganisms in the reactor. In order to determine whether FA could serve as an electron shuttle to promote syntrophy in an anaerobic digester, co-cultures of Geobacter metallireducens and G. sulfurreducens were grown in the presence of FA from raw leachate or from residual bioreactor effluent. While raw FA stimulated electron transfer between these two bacteria, residual FA did not have any electron shuttling abilities, indicating that FA underwent a significant transformation during the bio-methanogenic treatment process. These results are significant and should be taken into consideration when optimizing anaerobic bioreactors used to treat MSW incineration leachate high in FA content. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Prithvi; Purohit, Ghanshyam; Dorn, Alexander; Ren, Xueguang; Patidar, Vinod
2016-01-01
Fully differential cross sectional (FDCS) results are reported for the electron-impact double ionization of helium atoms at 5 and 27 eV excess energy. The present attempt to calculate the FDCS in the second Born approximation and treating the postcollision interaction is helpful to analyze the measurements of Ren et al (2008 Phys. Rev. Lett. 101 093201) and Durr et al (2007 Phys. Rev. Lett. 98 193201). The second-order processes and postcollision interaction have been found to be significant in describing the trends of the FDCS. More theoretical effort is required to describe the collision dynamics of electron-impact double ionization of helium atoms at near threshold.
Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process.
Li, Xuchun; Fang, Jingyun; Liu, Guifang; Zhang, Shujuan; Pan, Bingcai; Ma, Jun
2014-10-01
Hydrated electron (e(aq)(-)), which is listed among the most reactive reducing species, has great potential for removal and detoxification of recalcitrant contaminants. Here we provided quantitative insight into the availability and conversion of e(aq)(-) in a newly developed sulfite/UV process. Using monochloroacetic acid as a simple e(aq)(-)-probe, the e(aq)(-)-induced dehalogenation kinetics in synthetic and surface water was well predicted by the developed models. The models interpreted the complex roles of pH and S(IV), and also revealed the positive effects of UV intensity and temperature quantitatively. Impacts of humic acid, ferrous ion, carbonate/bicarbonate, and surface water matrix were also examined. Despite the retardation of dehalogenation by electron scavengers, the process was effective even in surface water. Efficiency of the process was discussed, and the optimization approaches were proposed. This study is believed to better understand the e(aq)(-)-induced dehalogenation by the sulfite/UV process in a quantitative manner, which is very important for its potential application in water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lyashchenko, K. N.; Andreev, O. Yu; Voitkiv, A. B.
2018-03-01
We consider electron loss from a hydrogen-like highly charged ion (HCI) in relativistic collisions with hydrogen and helium in the range of impact velocities v min ≤ v ≤ v max (v min and v max correspond to the threshold energy ε th for electron loss in collisions with a free electron and to ≈5 ε th, respectively) where any reliable data for loss cross sections are absent. In this range, where the loss process is characterized by large momentum transfers, we express it in terms of electron loss in collisions with equivelocity protons and electrons and explore by performing a detailed comparative study of these subprocesses. Our results, in particular, show that: (i) compared to equivelocity electrons protons are more effective in inducing electron loss, (ii) the relative effectiveness of electron projectiles grows with increase in the atomic number of a HCI, (iii) collisions with protons and electrons lead to a qualitatively different population of the final-state-electron momentum space and even when the total loss cross sections in these collisions become already equal the spectra of the outgoing electrons still remain quite different in almost the entire volume of the final-state-electron momentum space, (iv) in collisions with hydrogen and helium the contributions to the loss process from the interactions with the nucleus and the electron(s) of the atom could be rather well separated in a substantial part of the final-state-electron momentum space.
NASA Astrophysics Data System (ADS)
Shastry, Karthik; Joglekar, Prasad; Weiss, A. H.; Fazleev, N. G.
2013-04-01
A few percent of positrons bound to a solid surface annihilate with core electrons resulting in highly excited atoms containing core holes. These core holes may be filled in an auto-ionizing process in which a less tightly bound electron drops into the hole and the energy difference transferred to an outgoing "Auger electron." Because the core holes are created by annihilation and not impact it is possible to use very low energy positron beams to obtain annihilation induced Auger signals. The Auger signals so obtained have little or none of the large impact induced secondary electron background that interferes with measurements of the low energy Auger spectra obtained using the much higher incident energies necessary when using electron or photon beams. Here we present the results of measurements of the energy spectrum of low energy electrons emitted as a result of Positron Annihilation Induce Auger Electron Emission [1] from a clean Ag (100) surface. The measurements were performed using the University of Texas Arlington Time of Flight Positron Annihilation induced Auger Electron Spectrometer (T-O-F-PAES) System [2]. A strong double peak was observed at ˜35eV corresponding to the N2VV and N3VV Auger transitions in agreement with previous PAES studies [3].
McComas, Jeffery; Riingen, Michelle; Chae Kim, Son
2014-12-01
The study aims were to evaluate the impact of electronic medication administration record implementation on medication administration efficiency and occurrence of medication errors as well as to identify the predictors of medication administration efficiency in an acute care setting. A prospective, observational study utilizing time-and-motion technique was conducted before and after electronic medication administration record implementation in November 2011. A total of 156 cases of medication administration activities (78 pre- and 78 post-electronic medication administration record) involving 38 nurses were observed at the point of care. A separate retrospective review of the hospital Midas+ medication error database was also performed to collect the rates and origin of medication errors for 6 months before and after electronic medication administration record implementation. The mean medication administration time actually increased from 11.3 to 14.4 minutes post-electronic medication administration record (P = .039). In a multivariate analysis, electronic medication administration record was not a predictor of medication administration time, but the distractions/interruptions during medication administration process were significant predictors. The mean hospital-wide medication errors significantly decreased from 11.0 to 5.3 events per month post-electronic medication administration record (P = .034). Although no improvement in medication administration efficiency was observed, electronic medication administration record improved the quality of care with a significant decrease in medication errors.
Dissociative Ionization and Product Distributions of Benzene and Pyridine by Electron Impact
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Huo, Winifred M.; Fletcher, Graham D.
2003-01-01
We report a theoretical study of the dissociative ionization (DI) and product distributions of benzene (C6H6) and pyridine (C5H5N) from their low-lying ionization channels. Our approach makes use of the fact that electronic motion is much faster than nuclear motion allowing DI to be treated as a two-step process. The first step is the electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step, the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64,042719-I (2001)]. For the unimolecular dissociation, we use multiconfigurational self-consistent field (MCSCF) methods to determine the steepest descent pathways to the possible product channels. More accurate methods are then used to obtain better energetics of the paths which are used to determine unimolecular dissociation probabilities and product distributions. Our analysis of the dissociation products and the thresholds of their productions for benzene are compared with the recent dissociative photoionization meausurements of benzene by Feng et al. [R. Feng, G. Cooper, C.E. Brion, J. Electron Spectrosc. Relat. Phenom. 123,211 (2002)] and the dissociative photoionization measurements of pyridine by Tixier et al. [S. Tixier, G. Cooper, R. Feng, C.E. Brion, J. Electron Spectrosc. Relat. Phenom. 123,185 (2002)] using dipole (e,e+ion) coincidence spectroscopy.
Impact resistance and fractography in ultra high molecular weight polyethylenes.
Puértolas, J A; Pascual, F J; Martínez-Morlanes, M J
2014-02-01
Highly crosslinked ultra high molecular weight polyethylenes (UHMWPE) stabilized by a remelting process or by the addition of an antioxidant are highly wear resistant and chemically stable. However, these polyethylenes currently used in total joint replacements suffer a loss of mechanical properties, especially in terms of fracture toughness. In this study we analyze the impact behavior of different polyethylenes using an instrumented double notch Izod test. The materials studied are three resins: GUR1050, GUR1020 with 0.1wt% of vitamin E, and MG003 with 0.1wt% of vitamin E. These resins were gamma irradiated at 90kGy, and pre and post-irradiation remelting processes were applied to GUR1050 for two different time periods. Microstructural data were determined by means of differential scanning calorimetry and transmission electron microscopy. Fractography carried out on the impact fracture surfaces and images obtained by scanning electron microscopy after etching indicated the existence of a fringe structure formed by consecutive ductile-brittle and brittle-ductile transitions, which is related to the appearance of discontinuities in the load-deflection curves. A correlation has been made of the macroscopic impact strength results and the molecular chain and microstructural characteristics of these aforementioned materials, with a view to designing future resins with improved impact resistance. The use of UHMWPE resins with low molecular weight or the application of a remelting treatment could contribute to obtain a better impact strength behavior. © 2013 Published by Elsevier Ltd.
Study of microforging of metallic nanoflakes in relation to electronic applications
NASA Astrophysics Data System (ADS)
Kang, Wooseung
This dissertation reports the first systematic study of cold microforging; the conversion of micron scale metal powders to thin flakes by a series of plastically deforming impacts in a ball mill at low temperature. The research focused on processing Fe and Cu flakes with submicron thicknesses (nanoflakes) which are expected to find significant applications in electronics. The principal objectives were to develop a detailed understanding of the underlying materials science of the process, and to characterize the material and processing parameters that maximize the rate at which nanoflakes with a specific aspect ratio (diameter/thickness) can be microforged. A model for microforging was developed using Hertzian impact theory to establish the compressive impact energy (Emf) imparted to a spherical powder particle in a ball-powder-ball impact, and the Coffin-Manson relation for cyclical fatigue to determine the number of plastically deforming impacts it could sustain before fracturing. The rate of microforging in the ball mill was obtained from the product of the impact frequency (f) and the statistical probability of impact (p). Both f and p depend on the number of balls and powders, and the collision velocity (v) and the milling vial volume (V). The parameters Emf, p, v and V are specific to the mill and used to develop scaling laws for transferring the process from small vibratory research mills to large commercial equipment. The empirical parameters required by these models were determined by microforging a few grams of powders in small research mills. The validity of the model was assessed by comparing the time required to microforge several hundred grams of a particular powder in a much larger mill, with that determined by scaling the model equations to account for change in mill parameters. The good agreement obtained provided strong support for the microforging model. SEM microphotos and sieving fractions were used to show that the minimum thicknesses, and maximum aspect ratios of the Fe and Cu nanoflakes that could be produced before fracture, are in the ~0.3 μm-0.5 μm range, and agreed well with those calculated from volume conserving sphere-flake transformations. X-ray diffraction measurements showed that the grain sizes of these powders were ~0.1x their thicknesses, and were little changed by microforging. The magnetic hysteresis and permeabilities of the Fe nanoflakes were in good agreement with those computed from the nanoflake geometries. The results indicate that the model of microforging as a statistical random sequence of plastic deformations can be used to develop a commercial process to support the development of their application potential in electronics.
NASA Astrophysics Data System (ADS)
Belkić, Dževad; Mančev, Ivan; Milojevićb, Nenad
2013-09-01
The total cross sections for the various processes for Li3+-He collisions at intermediate-to-high impact energies are compared with the corresponding theories. The possible reasons for the discrepancies among various theoretical predictions are thoroughly discussed. Special attention has been paid to single and double electron capture, simultaneous transfer and ionization, as well as to single and double ionization.
Electron impact ionization of plasma important SiClX (X = 1-4) molecules: theoretical cross sections
NASA Astrophysics Data System (ADS)
Kothari, Harshit N.; Pandya, Siddharth H.; Joshipura, K. N.
2011-06-01
Electron impact ionization of SiClX (X = 1-4) molecules is less studied but an important process for understanding and modelling the interactions of silicon-chlorine plasmas with different materials. The SiCl3 radical is a major chloro-silicon species involved in the CVD (chemical vapour deposition) of silicon films from SiCl4/Ar microwave plasmas. We report in this paper the total ionization cross sections for electron collisions on these silicon compounds at incident energies from the ionization threshold to 2000 eV. We employ the 'complex scattering potential-ionization contribution' method and identify the relative importance of various channels, with ionization included in the cumulative inelastic scattering. New results are also presented on these exotic molecular targets. This work is significant in view of the paucity of theoretical studies on the radicals SiClX (X = 1-3) and on SiCl4.
NASA Technical Reports Server (NTRS)
Scudder, Jack D.
1992-01-01
The Coordinated Radio, Electron, and Waves Experiment (CREWE) was designed to determine density, bulk velocity and temperature of the electrons for the NASA Comet Rendezvous and Asteroid Flyby Spacecraft, to define the MHD-SW IMF flow configuration; to clarify the role of impact ionization processes, to comment on the importance of anomalous ionization phenomena (via wave particle processes), to quantify the importance of wave turbulence in the cometary interaction, to establish the importance of photoionization via the presence of characteristic lines in a structured energy spectrum, to infer the presence and grain size of significant ambient dust column density, to search for the theoretically suggested 'impenetrable' contact surface, and to quantify the flow of heat (in the likelihood that no surface exists) that will penetrate very deep into the atmosphere supplying a good deal of heat via impact and charge exchange ionization. This final report provides an instrument description, instrument test plans, list of deliverables/schedule, flight and support equipment and software schedule, CREWE accommodation issues, resource requirements, status of major contracts, an explanation of the non-NASA funded efforts, status of EIP and IM plan, descope options, and Brinton questions.
Regulation of electron transfer processes affects phototrophic mat structure and activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan
Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that variation in the electrochemical conditions under which mats were generated significantly impacted the relative abundances of mat members and mat metabolism.« less
Regulation of electron transfer processes affects phototrophic mat structure and activity
Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; ...
2015-09-03
Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that variation in the electrochemical conditions under which mats were generated significantly impacted the relative abundances of mat members and mat metabolism.« less
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-05-01
The influence of nonisothermal and quantum shielding on the electron-ion collision process is investigated in strongly coupled two-temperature plasmas. The eikonal method is employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the impact parameter, collision energy, electron temperature, ion temperature, Debye length, and de Broglie wavelength. The results show that the quantum effect suppresses the eikonal scattering phase shift for the electron-ion collision in two-temperature dense plasmas. It is also found that the differential eikonal cross section decreases for small impact parameters. However, it increases for large impact parameters with increasing de Broglie wavelength. It is also found that the maximum position of the differential eikonal cross section is receded from the collision center with an increase in the nonisothermal character of the plasma. In addition, it is found that the total eikonal cross sections in isothermal plasmas are always greater than those in two-temperature plasmas. The variations of the eikonal cross section due to the two-temperature and quantum shielding effects are also discussed.
Theory of electron-impact ionization of atoms
NASA Astrophysics Data System (ADS)
Kadyrov, A. S.; Mukhamedzhanov, A. M.; Stelbovics, A. T.; Bray, I.
2004-12-01
The existing formulations of electron-impact ionization of a hydrogenic target suffer from a number of formal problems including an ambiguous and phase-divergent definition of the ionization amplitude. An alternative formulation of the theory is given. An integral representation for the ionization amplitude which is free of ambiguity and divergence problems is derived and is shown to have four alternative, but equivalent, forms well suited for practical calculations. The extension to amplitudes of all possible scattering processes taking place in an arbitrary three-body system follows. A well-defined conventional post form of the breakup amplitude valid for arbitrary potentials including the long-range Coulomb interaction is given. Practical approaches are based on partial-wave expansions, so the formulation is also recast in terms of partial waves and partial-wave expansions of the asymptotic wave functions are presented. In particular, expansions of the asymptotic forms of the total scattering wave function, developed from both the initial and the final state, for electron-impact ionization of hydrogen are given. Finally, the utility of the present formulation is demonstrated on some well-known model problems.
Life cycle assessment of electronic waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jinglan, E-mail: hongjing@sdu.edu.cn; Shandong University Climate Change and Health Center, Public Health School, Shandong University, Jinan 250012; Shi, Wenxiao
Highlights: • Life cycle assessment of electronic waste recycling is quantified. • Key factors for reducing the overall environmental impact are indentified. • End-life disposal processes provide significant environmental benefits. • Efficiently reduce the improper disposal amount of e-waste is highly needed. • E-waste incineration can generate significant environmental burden. - Abstract: Life cycle assessment was conducted to estimate the environmental impact of electronic waste (e-waste) treatment. E-waste recycling with an end-life disposal scenario is environmentally beneficial because of the low environmental burden generated from human toxicity, terrestrial ecotoxicity, freshwater ecotoxicity, and marine ecotoxicity categories. Landfill and incineration technologies havemore » a lower and higher environmental burden than the e-waste recycling with an end-life disposal scenario, respectively. The key factors in reducing the overall environmental impact of e-waste recycling are optimizing energy consumption efficiency, reducing wastewater and solid waste effluent, increasing proper e-waste treatment amount, avoiding e-waste disposal to landfill and incineration sites, and clearly defining the duties of all stakeholders (e.g., manufacturers, retailers, recycling companies, and consumers)« less
Exciton multiplication from first principles.
Jaeger, Heather M; Hyeon-Deuk, Kim; Prezhdo, Oleg V
2013-06-18
Third-generation photovolatics require demanding cost and power conversion efficiency standards, which may be achieved through efficient exciton multiplication. Therefore, generating more than one electron-hole pair from the absorption of a single photon has vast ramifications on solar power conversion technology. Unlike their bulk counterparts, irradiated semiconductor quantum dots exhibit efficient exciton multiplication, due to confinement-enhanced Coulomb interactions and slower nonradiative losses. The exact characterization of the complicated photoexcited processes within quantum-dot photovoltaics is a work in progress. In this Account, we focus on the photophysics of nanocrystals and investigate three constituent processes of exciton multiplication, including photoexcitation, phonon-induced dephasing, and impact ionization. We quantify the role of each process in exciton multiplication through ab initio computation and analysis of many-electron wave functions. The probability of observing a multiple exciton in a photoexcited state is proportional to the magnitude of electron correlation, where correlated electrons can be simultaneously promoted across the band gap. Energies of multiple excitons are determined directly from the excited state wave functions, defining the threshold for multiple exciton generation. This threshold is strongly perturbed in the presence of surface defects, dopants, and ionization. Within a few femtoseconds following photoexcitation, the quantum state loses coherence through interactions with the vibrating atomic lattice. The phase relationship between single excitons and multiple excitons dissipates first, followed by multiple exciton fission. Single excitons are coupled to multiple excitons through Coulomb and electron-phonon interactions, and as a consequence, single excitons convert to multiple excitons and vice versa. Here, exciton multiplication depends on the initial energy and coupling magnitude and competes with electron-phonon energy relaxation. Multiple excitons are generated through impact ionization within picoseconds. The basis of exciton multiplication in quantum dots is the collective result of photoexcitation, dephasing, and nonadiabatic evolution. Each process is characterized by a distinct time-scale, and the overall multiple exciton generation dynamics is complete by about 10 ps. Without relying on semiempirical parameters, we computed quantum mechanical probabilities of multiple excitons for small model systems. Because exciton correlations and coherences are microscopic, quantum properties, results for small model systems can be extrapolated to larger, realistic quantum dots.
Electronic manufacturing and packaging in Japan
NASA Technical Reports Server (NTRS)
Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John A.; Meieran, Eugene S.; Pecht, Michael; Peeples, John W.; Tummala, Rao R.
1995-01-01
This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies. Japan has established this marked competitive advantage in electronics as a consequence of developing low-cost, high-volume consumer products. Japan's infrastructure, and the remarkable cohesiveness of vision and purpose in government and industry, are key factors in the success of Japan's electronics industry. Although Japan will continue to dominate consumer electronics in the foreseeable future, opportunities exist for the United States and other industrial countries to capture an increasingly large part of the market. The JTEC panel has identified no insurmountable barriers that would prevent the United States from regaining a significant share of the consumer electronics market; in fact, there is ample evidence that the United States needs to aggressively pursue high-volume, low-cost electronic assembly, because it is a critical path leading to high-performance electronic systems.
Resonant Production of Sterile Neutrinos in the Early Universe
NASA Astrophysics Data System (ADS)
Gilbert, Lauren; Grohs, Evan; Fuller, George M.
2016-06-01
This study examines the cosmological impacts of a light resonantly produced sterile neutrino in the early universe. Such a neutrino could be produced through lepton number-driven Mikheyev-Smirnov-Wolfenstein (MSW) conversion of active neutrinos around big bang nucleosynthesis (BBN), resulting in a non-thermal spectrum of both sterile and electron neutrinos. During BBN, the neutron-proton ratio depends sensitively on the electron neutrino flux. If electron neutrinos are being converted to sterile neutrinos, this makes the n/p ratio a probe of possible new physics. We use observations of primordial Yp and D/H to place limits on this process.
Krecar, Dragan; Vassileva, Vassilka; Danninger, Herbert; Hutter, Herbert
2004-06-01
Powder metallurgy is a highly developed method of manufacturing reliable ferrous parts. The main processing steps in a powder metallurgical line are pressing and sintering. Sintering can be strongly enhanced by the formation of a liquid phase during the sintering process when using phosphorus as sintering activator. In this work the distribution (effect) of phosphorus was investigated by means of secondary ion mass spectrometry (SIMS) supported by Auger electron spectroscopy (AES) and electron probe micro analysis (EPMA). To verify the influence of the process conditions (phosphorus content, sintering atmosphere, time) on the mechanical properties, additional measurements of the microstructure (pore shape) and of impact energy were performed. Analysis of fracture surfaces was performed by means of scanning electron microscopy (SEM). The concentration of phosphorus differs in the samples from 0 to 1% (w/ w). Samples with higher phosphorus concentrations (1% (w/ w) and above) are also measurable by EPMA, whereas the distributions of P at technically relevant concentrations and the distribution of possible impurities are only detectable (visible) by means of SIMS. The influence of the sintering time on the phosphorus distribution will be demonstrated. In addition the grain boundary segregation of P was measured by AES at the surface of in-situ broken samples. It will be shown that the distribution of phosphorus depends also on the concentration of carbon in the samples.
Advanced technologies for NASA space programs
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1991-01-01
A review of the technology requirements for future space programs is presented. The technologies are emphasized with a discussion of their mission impact. Attention is given to automation and robotics, materials, information acquisition/processing display, nano-electronics/technology, superconductivity, and energy generation and storage.
Strain localization parameters of AlCu4MgSi processed by high-energy electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunev, A. G., E-mail: agl@ispms.ru; Nadezhkin, M. V., E-mail: mvn@ispms.ru; National Research Tomsk Polytechnic University, Tomsk, 634050
2015-10-27
The influence of the electron beam surface treatment of AlCu4MgSi on the strain localization parameters and on the critical strain value of the Portevin–Le Chatelier effect has been considered. The strain localization parameters were measured using speckle imaging of the specimens subjected to the constant strain rate uniaxial tension at a room temperature. Impact of the surface treatment on the Portevin–Le Chatelier effect has been investigated.
Processes of energy deposition by heavy-particle and electron impact. Final progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salop, A.; Smith, F.T.
1978-04-18
Progress is reported in three areas of reasearch during the present period: K-shell ionization in high energy collisions of heavy ions with light target atoms using the sudden (Magnus) approximation, K-L level matching phenomena associated with K-shell vacancy production in heavy-ion collisions, and studies of low energy collisions of electrons with molecules using semi-classical perturbation theory. A brief discussion of each of these activities is given.
Electron Impact Excitation of the Electronic States of Water
NASA Astrophysics Data System (ADS)
Thorn, Penny; Diakomichalis, N.; Brunger, M. J.; Campbell, L.; Teubner, P. J. O.; Kato, H.; Makochekanwa, C.; Hoshino, M.; Tanaka, H.
2006-10-01
We report differential and integral cross sections for excitation of the lowest lying ^3B1, ^1B1, ^3A1 and ^1A1 electronic states of water. The energy range of these measurements is 15-50eV and the angular range of the DCS measurements is 10-90^o. From these DCS the corresponding ICS is calculated using a molecular phase shift analysis technique. Where possible, comparison is made to the results of available theory. One of the main objectives of this study is to perform statistical equilibrium calculations to determine if the origin of the OH Meinel bands in our atmosphere are due to electron driven processes.
Decomposition of carbon dioxide by recombining hydrogen plasma with ultralow electron temperature
NASA Astrophysics Data System (ADS)
Yamazaki, Masahiro; Nishiyama, Shusuke; Sasaki, Koichi
2018-06-01
We examined the rate coefficient for the decomposition of CO2 in low-pressure recombining hydrogen plasmas with electron temperatures between 0.15 and 0.45 eV, where the electron-impact dissociation was negligible. By using this ultralow-temperature plasma, we clearly observed decomposition processes via vibrational excited states. The rate coefficient of the overall reaction, CO2 + e → products, was 1.5 × 10‑17 m3/s in the ultralow-temperature plasma, which was 10 times larger than the decomposition rate coefficient of 2 × 10‑18 m3/s in an ionizing plasma with an electron temperature of 4 eV.
Identifying target processes for microbial electrosynthesis by elementary mode analysis.
Kracke, Frauke; Krömer, Jens O
2014-12-30
Microbial electrosynthesis and electro fermentation are techniques that aim to optimize microbial production of chemicals and fuels by regulating the cellular redox balance via interaction with electrodes. While the concept is known for decades major knowledge gaps remain, which make it hard to evaluate its biotechnological potential. Here we present an in silico approach to identify beneficial production processes for electro fermentation by elementary mode analysis. Since the fundamentals of electron transport between electrodes and microbes have not been fully uncovered yet, we propose different options and discuss their impact on biomass and product yields. For the first time 20 different valuable products were screened for their potential to show increased yields during anaerobic electrically enhanced fermentation. Surprisingly we found that an increase in product formation by electrical enhancement is not necessarily dependent on the degree of reduction of the product but rather the metabolic pathway it is derived from. We present a variety of beneficial processes with product yield increases of maximal 36% in reductive and 84% in oxidative fermentations and final theoretical product yields up to 100%. This includes compounds that are already produced at industrial scale such as succinic acid, lysine and diaminopentane as well as potential novel bio-commodities such as isoprene, para-hydroxybenzoic acid and para-aminobenzoic acid. Furthermore, it is shown that the way of electron transport has major impact on achievable biomass and product yields. The coupling of electron transport to energy conservation could be identified as crucial for most processes. This study introduces a powerful tool to determine beneficial substrate and product combinations for electro-fermentation. It also highlights that the maximal yield achievable by bio electrochemical techniques depends strongly on the actual electron transport mechanisms. Therefore it is of great importance to reveal the involved fundamental processes to be able to optimize and advance electro fermentations beyond the level of lab-scale studies.
Optical Computers and Space Technology
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela
1995-01-01
The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.
Jarvis, Benjamin; Johnson, Tricia; Butler, Peter; O'Shaughnessy, Kathryn; Fullam, Francis; Tran, Lac; Gupta, Richa
2013-10-01
To assess the impact of using an advanced electronic health record (EHR) on hospital quality and patient satisfaction. This retrospective, cross-sectional analysis was conducted in 2012 to evaluate the association between advanced EHR use (Healthcare Information Management Systems Society [HIMSS] Stage 6 or 7 as of December 2012) and estimated process and experience of care scores for hospitals under the Medicare Hospital Value-Based Purchasing Program, using data from the American Hospital Association for 2008 to 2010. Generalized linear regression models were fit to test the association between advanced EHR use with process of care and experience of care, controlling for hospital characteristics. In a second analysis, the models included variables to account for HIMSS stage of advanced EHR use. The study included 2,988 hospitals, with 248 (8.3%) classified as advanced EHR users (HIMSS Stage 6 or 7). After controlling for hospital characteristics, advanced EHR use was associated with a 4.2-point-higher process of care score (P < .001). Hospitals with Stage 7 EHRs had 11.7 points higher process of care scores, but Stage 6 users had scores that were not substantially different from those of nonadvanced users. There was no significant difference in estimated experience of care scores by level of advanced EHR use. This study evaluated the effectiveness of the U.S. federal government's investment in hospital information technology infrastructure. Results suggest that the most advanced EHRs have the greatest payoff in improving clinical process of care scores, without detrimentally impacting the patient experience.
The Next Technology Revolution - Nano Electronic Technology
NASA Astrophysics Data System (ADS)
Turlik, Iwona
2004-03-01
Nanotechnology is a revolutionary engine that will engender enormous changes in a vast majority of today's industries and markets, while potentially creating whole new industries. The impact of nanotechnology is particularly significant in the electronics industry, which is constantly driven by the need for higher performance, increased functionality, smaller size and lower cost. Nanotechnology can influence many of the hundreds of components that are typically assembled to manufacture modern electronic devices. Motorola manufactures electronics for a wide range of industries and communication products. In this presentation, the typical components of a cellular phone are outlined and technology requirements for future products, the customer benefits, and the potential impact of nanotechnology on many of the components are discussed. Technology needs include reliable materials supply, processes for high volume production, experimental and simulation tools, etc. For example, even routine procedures such as failure characterization may require the development of new tools for investigating nano-scale phenomena. Business needs include the development of an effective, high volume supply chain for nano-materials and devices, disruptive product platforms, and visible performance impact on the end consumer. An equally significant long-term industry need is the availability of science and engineering graduates with a multidisciplinary focus and a deep understanding of the fundamentals of nano-technology, that can harness the technology to create revolutionary products.
NASA Astrophysics Data System (ADS)
Gérard, Martine; Trombino, Luca; Stoops, Georges
2014-05-01
Soils and sediments registered the environmental changes in time and space, but also display components inherited from human activities, both in archaeological and in modern times. Micromorphological investigations carried out on undisturbed samples of soil and sediments by microscopic and ultramicroscopic techniques, correlated with mineralogy, geochemistry or biology, allow us to interpret the processes behind the formation of regoliths, sediments and anthropogenic deposits, from which a relative chronology, specific environmental conditions and/or extent of human impact may be deduced. The traditional optical microscopy observations, carried on the thin section groundmass and pedofeatures, provide clues on the different processes behind soils and sediments genesis (weathering, supergene, low T hydrothermal, anthropogenic) and their impact on ecosystems or on palaeoenvironments. In more recent times, the improvements in electron microscope imaging technology permit to make detailed observations up to the nanoscale, opening a new domain of observations to micromorphologists, both as regard of the micromass and of the thinner pedofeatures. Moreover, the optimisation of the microgeochemical mapping techniques, with spatially resolved chemical, isotopic or mineralogical analyses, is another powerful tool to gain insight in chemical migration fronts: the limit of the original rock fabric disappearance may be bypassed. In order to illustrate micromorphological researches in natural and man-influenced ecosystems, and to combine researches at different scales, several optical and electronic images of soils and sediments groundmass, associated to their microgeochemical characteristics will be presented, with selected examples taken from the climatic record of paleosols, the impact of hydrothermal alteration on saprolites, the neo-formation of minerals related to weathering process evolution, the protosoil formation in natural and human waste deposits, and the forensic scenarios.
High-fidelity plasma codes for burn physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, James; Graziani, Frank; Marinak, Marty
Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental datamore » and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.« less
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang
2016-12-01
Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.
The Internet in the Workplace: Issues of Implementation and Impact.
ERIC Educational Resources Information Center
Anderson, Byron
1996-01-01
As the Internet (with pluses and minuses) creeps forward, many work environments, business practices, and consumer processes will change significantly. Manufacturing, electronic commerce, health care, education, environmental monitoring, libraries, and government services will be profoundly affected. Fully implementing the Internet will take…
Autoionizing resonances in electron-impact ionization of O5+ ions
NASA Astrophysics Data System (ADS)
Müller, A.; Teng, H.; Hofmann, G.; Phaneuf, R. A.; Salzborn, E.
2000-12-01
We report on a detailed experimental and theoretical study of electron-impact ionization of O5+ ions. A high-resolution scan measurement of the K-shell excitation threshold region has been performed with statistical uncertainties as low as 0.03%. At this level of precision a wealth of features in the cross section arising from indirect ionization processes becomes visible, and even interference of direct ionization with resonant-excitation/auto-double-ionization (READI) is clearly observed. The experimental results are compared with R-matrix calculations that include both direct and indirect processes in a unified way. Radiative damping of autoionizing Li-like states is found to be about 10-15 %. The calculations almost perfectly reproduce most of the experimental resonance features found in the present measurement including READI. They also agree with the direct-ionization converged close-coupling results of I. Bray [J. Phys. B 28, L247 (1995)] and the absolute total ionization cross section measurement of K. Rinn et al. [Phys. Rev. A 36, 595 (1987)].
DOE Office of Scientific and Technical Information (OSTI.GOV)
RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.
tEarth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alterthe nature and rate of biogeochemical transformations and significantly impact the carbon balance ofthe ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedentmoisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidalfreshwater wetland system in the lower Columbia River, WA, USA. Our objective was to understand shiftsin biogeochemical processesmore » in response to changing soil moisture, based on soil respiration and methaneproduction rates, and to elucidate such responses based on the observed electron acceptor and metaboliteprofiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidencethat soil redox was the principal factor driving metabolic function. Fluctuating redox conditions alteredterminal electron acceptor and donor availability and recovery strengths of their concentrations in soilsuch that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradationprocesses like sulfate and iron reduction compared to carbon loss due to methanogenesis. Our resultsshow that extended and short-term saturation created conditions conducive to increasing metaboliteavailability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast,extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy Chowdhury, Taniya; Bramer, Lisa M.; Hoyt, Davi
2018-04-15
tEarth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alterthe nature and rate of biogeochemical transformations and significantly impact the carbon balance ofthe ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedentmoisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidalfreshwater wetland system in the lower Columbia River, WA, USA. Our objective was to understand shiftsin biogeochemical processesmore » in response to changing soil moisture, based on soil respiration and methaneproduction rates, and to elucidate such responses based on the observed electron acceptor and metaboliteprofiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidencethat soil redox was the principal factor driving metabolic function. Fluctuating redox conditions alteredterminal electron acceptor and donor availability and recovery strengths of their concentrations in soilsuch that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradationprocesses like sulfate and iron reduction compared to carbon loss due to methanogenesis. Our resultsshow that extended and short-term saturation created conditions conducive to increasing metaboliteavailability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast,extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less
Zhou, Lei; Xu, Zhenming
2012-05-01
Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society
Negative ion electron impact studies of arsenic trihalides: AsF/sub 3/, AsCl/sub 3/, and AsBr/sub 3/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pabst, R.E.; Bennett, S.L.; Margrave, J.L.
1976-08-15
Low energy eleAsF/sup 2/-tron impact of AsF/sub 3/, AsCl/sub 3/, and AsBr/sub 3/ gases gave many ions by dissociative resonance capture. Appearance potentials have been determined by deconvolution of the capture curves, and translational energies of the majority of the ions have been measured through the resonance processes. The X/sup -/ ions are formed along with electronically excited neutral AsX/sub 2/, and the results allow the electronic transition energies to be determined: 7.3, 4.3, and 2.6 eV for AsF/sub 2/, AsCl/sup 2/, and AsBr/sup 2/, respectively. From the processes giving AsX/sup -2/+X, the experimental data allow the heats of formationmore » of the negative ions ..delta..H/subf/(AsX/sup -2/) to be derived: -129.7, -65.3, and -72.5 kcal mole/sup -1/ for AsF/sup -2/, AsCl/sup -2/, and AsBr/sup -2/, respectively. The ions AsCl/sup -/ and AsBr/sup -/ appear to be formed along with electronically excited X/sub 2/ neutral: ..delta..H/subf/(AsCl/sup -/) =-2.2 kcal mole/sup -1/ and ..delta..H/subf/(AsBr/sup -/) =1.7 kcal mole/sup -1/ are derived. The ions X/sup -2/ appear to be formed with electronically excited AsX neutral, allowing the electronic transition energies to be derived: E*/sub el/(AsBr) >0.6 eV and E*/sub el/(AsCl) =2.5 eV. (AIP)« less
Complexity in electronic negotiation support systems.
Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T
2011-10-01
It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.
Conceptual Design of Electron-Beam Generated Plasma Tools
NASA Astrophysics Data System (ADS)
Agarwal, Ankur; Rauf, Shahid; Dorf, Leonid; Collins, Ken; Boris, David; Walton, Scott
2015-09-01
Realization of the next generation of high-density nanostructured devices is predicated on etching features with atomic layer resolution, no damage and high selectivity. High energy electron beams generate plasmas with unique features that make them attractive for applications requiring monolayer precision. In these plasmas, high energy beam electrons ionize the background gas and the resultant daughter electrons cool to low temperatures via collisions with gas molecules and lack of any accelerating fields. For example, an electron temperature of <0.6 eV with densities comparable to conventional plasma sources can be obtained in molecular gases. The chemistry in such plasmas can significantly differ from RF plasmas as the ions/radicals are produced primarily by beam electrons rather than those in the tail of a low energy distribution. In this work, we will discuss the conceptual design of an electron beam based plasma processing system. Plasma properties will be discussed for Ar, Ar/N2, and O2 plasmas using a computational plasma model, and comparisons made to experiments. The fluid plasma model is coupled to a Monte Carlo kinetic model for beam electrons which considers gas phase collisions and the effect of electric and magnetic fields on electron motion. The impact of critical operating parameters such as magnetic field, beam energy, and gas pressure on plasma characteristics in electron-beam plasma processing systems will be discussed. Partially supported by the NRL base program.
NASA Astrophysics Data System (ADS)
Arnold, Nicholas; Loch, Stuart; Ballance, Connor; Thomas, Ed
2017-10-01
Low temperature plasmas (Te < 10 eV) are ubiquitous in the medical, industrial, basic, and dusty plasma communities, and offer an opportunity for researchers to gain a better understanding of atomic processes in plasmas. Here, we report on a new atomic dataset for neutral and low charge states of argon, from which rate coefficients and cross-sections for the electron-impact excitation of neutral argon are determined. We benchmark by comparing with electron impact excitation cross-sections available in the literature, with very good agreement. We have used the Atomic Data and Analysis Structure (ADAS) code suite to calculate a level-resolved, generalized collisional-radiative (GCR) model for line emission in low temperature argon plasmas. By combining our theoretical model with experimental electron temperature, density, and spectral measurements from the Auburn Linear eXperiment for Instability Studies (ALEXIS), we have developed diagnostic techniques to measure metastable fraction, electron temperature, and electron density. In the future we hope to refine our methods, and extend our model to plasmas other than ALEXIS. Supported by the U.S. Department of Energy. Grant Number: DE-FG02-00ER54476.
A Monte Carlo model of hot electron trapping and detrapping in SiO2
NASA Astrophysics Data System (ADS)
Kamocsai, R. L.; Porod, W.
1991-02-01
High-field stressing and oxide degradation of SiO2 are studied using a microscopic model of electron heating and charge trapping and detrapping. Hot electrons lead to a charge buildup in the oxide according to the dynamic trapping-detrapping model by Nissan-Cohen and co-workers [Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, J. Appl. Phys. 58, 2252 (1985)]. Detrapping events are modeled as trap-to-band impact ionization processes initiated by high energy conduction electrons. The detailed electronic distribution function obtained from Monte Carlo transport simulations is utilized for the determination of the detrapping rates. We apply our microscopic model to the calculation of the flat-band voltage shift in silicon dioxide as a function of the electric field, and we show that our model is able to reproduce the experimental results. We also compare these results to the predictions of the empirical trapping-detrapping model which assumes a heuristic detrapping cross section. Our microscopic theory accounts for the nonlocal nature of impact ionization which leads to a dark space close to the injecting cathode, which is unaccounted for in the empirical model.
Reeves, Kelly W; Taylor, Yhenneko; Tapp, Hazel; Ludden, Thomas; Shade, Lindsay E; Burton, Beth; Courtlandt, Cheryl; Dulin, Michael
2016-10-19
Asthma is a common childhood chronic lung disease affecting greater than 10% of children in the United States. School nurses are in a unique position to close gaps in care. Indeed, effective asthma management is more likely to result when providers, family, and schools work together to optimize the patient's treatment plan. Currently, effective communication between schools and healthcare systems through electronic medical record (EMR) systems remains a challenge. The goal of this feasibility pilot was to link the school-based care team with primary care providers in the healthcare system network via electronic communication through the EMR, on behalf of pediatric asthma patients who had been hospitalized for an asthma exacerbation. The implementation process and the potential impact of the communication with providers on the reoccurrence of asthma exacerbations with the linked patients were evaluated. By engaging stakeholders from the school system and the healthcare system, we were able to collaboratively design a communication process and implement a pilot which demonstrated the feasibility of electronic communication between school nurses and primary care providers. Outcomes data was collected from the electronic medical record to examine the frequency of asthma exacerbations among patients with a message from their school nurse. The percent of exacerbations in the 12 months before and after electronic communication was compared using McNemar's test. The pilot system successfully established communication between the school nurse and primary care provider for 33 students who had been hospitalized for asthma and a decrease in hospital admissions was observed with students whose school nurse communicated through the EMR with the primary care provider. Findings suggest a collaborative model of care that is enhanced through electronic communication via the EMR could positively impact the health of children with asthma or other chronic illnesses.
Dissociation of dicyclohexyl phthalate molecule induced by low-energy electron impact
NASA Astrophysics Data System (ADS)
Lacko, Michal; Papp, Peter; Matejčík, Štefan
2018-06-01
Experimental investigation of electron ionization (EI) of and electron attachment (EA) onto dicyclohexyl phthalate (DCHP) was carried out using a crossed electron and molecular beam technique. Formation of positive and negative ions by EI and EA with the corresponding dissociation processes was studied and discussed. Due to a low ion yield of the parent positive ion, we were not able to estimate the ionization energy of DCHP. However, we estimated the appearance energies for the protonated phthalate anhydride (m/z 149) to be 10.5 eV and other significant ionic fragments of m/z 249 [DCHP—(R—2H)]+, m/z 167 [DCHP—(2R—3H)]+, and m/z 83 [C6H11]+. The reaction mechanisms of the dissociative ionization process were discussed. In the case of negative ions, we estimated the relative cross sections for a transient negative ion (TNI) and for several detected ions. At low electron energies (close to 0 eV), the TNI of DCHP molecules was the dominant ion, with products of dissociative EA dominating in broad resonances at 7.5 and 8.5 eV.
Float-zone processing in a weightless environment
NASA Technical Reports Server (NTRS)
Fowle, A. A.; Haggerty, J. S.; Perron, R. R.; Strong, P. F.; Swanson, J. L.
1976-01-01
The results were reported of investigations to: (1) test the validity of analyses which set maximum practical diameters for Si crystals that can be processed by the float zone method in a near weightless environment, (2) determine the convective flow patterns induced in a typical float zone, Si melt under conditions perceived to be advantageous to the crystal growth process using flow visualization techniques applied to a dimensionally scaled model of the Si melt, (3) revise the estimates of the economic impact of space produced Si crystal by the float zone method on the U.S. electronics industry, and (4) devise a rational plan for future work related to crystal growth phenomena wherein low gravity conditions available in a space site can be used to maximum benefit to the U.S. electronics industry.
NASA Astrophysics Data System (ADS)
Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.
2016-08-01
Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch-2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.
NASA Astrophysics Data System (ADS)
Li, W.
2017-12-01
In the collisionless heliospheric plasmas, wave-particle interaction is a fundamental physical process in transferring energy and momentum between particles with different species and energies. This presentation focuses on one of the important wave-particle interaction processes: interaction between whistler-mode waves and electrons. Whistler-mode waves have frequencies between proton and electron cyclotron frequency and are ubiquitously present in the heliospheric plasmas including solar wind and planetary magnetospheres. I use Earth's Van Allen radiation belt as "local space laboratory" to discuss the role of whistler-mode waves in energetic electron dynamics using multi-satellite observations, theory and modeling. I further discuss solar wind drivers leading to energetic electron dynamics in the Earth's radiation belts, which is critical in predicting space weather that has broad impacts on our technological systems and society. At last, I discuss the unprecedented future opportunities of exploring space science using multi-satellite observations and state-of-the-art theory and modeling.
Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy
NASA Astrophysics Data System (ADS)
van den Berg, Q. Y.; Fernandez-Tello, E. V.; Burian, T.; Chalupský, J.; Chung, H.-K.; Ciricosta, O.; Dakovski, G. L.; Hájková, V.; Hollebon, P.; Juha, L.; Krzywinski, J.; Lee, R. W.; Minitti, M. P.; Preston, T. R.; de la Varga, A. G.; Vozda, V.; Zastrau, U.; Wark, J. S.; Velarde, P.; Vinko, S. M.
2018-02-01
Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1 s →2 p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We present a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.
Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy
van den Berg, Q. Y.; Fernandez-Tello, E. V.; Burian, T.; ...
2018-02-01
Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here in this paper, we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1s → 2p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We presentmore » a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.« less
About mobility thickness dependence in molecularly doped polymers
NASA Astrophysics Data System (ADS)
Tyutnev, A. P.; Weiss, D. S.; Saenko, V. S.; Pozhidaev, E. D.
2017-09-01
We have investigated the dependence of hole mobility on thickness in free-standing films of bisphenol-A-polycarbonate (PC) doped with 30 wt% p-diethylaminobenzaldehyde diphenylhydrazone (DEH). Carrier generation in a time-of-flight (TOF) experiment was achieved through direct ionization of dopant molecules by electron impact using an electron gun supplying pulses of monoenergetic electrons in the range of 2-50 keV. The position of dopant ionization depends upon the electron energy and three TOF variants have been recently developed and used in this study. We have found that the hole mobility generally decreased with increasing film thickness with concomitant acceleration of the post-flight current decay indicating that the transport process approaches the steady-state regime, this process happening slightly faster than our model predicts. Numerical calculations have been compared with experimental data. The results are discussed in detail. The way to reconcile ostensibly contradictory interpretations of our results and those commonly reported in literature relying on photo injection technique has been proposed.
Extracellular Electron Transfer and Survival Strategies in Acid Mine Drainage Impacted Soils
NASA Astrophysics Data System (ADS)
Gorby, Y. A.; Senko, J.
2011-12-01
Acid mine drainage (AMD) is a prominent and increasing problem in the greater Appalachian region of the United States and throughout the world. Recognition of the importance of extracellular electron transfer (EET) in microbial communities has provided a fertile research environment for multidisciplinary collaborations to emerge and effectively address complex questions with important environmental implications. Our research focuses on the components, strategies and mechanisms of EET in soil systems impacted by AMD and extends to other biogeochemical systems typified by steep redox gradients. Organisms within acid mine drainage use Fe(II) as their primary electron donor and couple Fe(II) oxidation to the reduction of oxygen as the terminal electron acceptor. Biogenic minerals formed by this process completely encase microbes in think deposits that would seem to limit diffusion of both Fe(II) and O2 for access by the organisms. We have developed methods for catalytically removing biogenic minerals revealing microorganisms and a fine network of filamentous extracellular material. Here we present a status report of our efforts to characterize the molecular and electronic properties of these filaments and to address the hypothesis that at least some of these filaments are electrically conductive microbial nanowires that facilitate electron transfer reactions within this complex biogeochemical system.
Bruins, Marjan J; Ruijs, Gijs J H M; Wolfhagen, Maurice J H M; Bloembergen, Peter; Aarts, Jos E C M
2011-03-30
Clinicians view the accuracy of test results and the turnaround time as the two most important service aspects of the clinical microbiology laboratory. Because of the time needed for the culturing of infectious agents, final hardcopy culture results will often be available too late to have a significant impact on early antimicrobial therapy decisions, vital in infectious disease management. The clinical microbiologist therefore reports to the clinician clinically relevant preliminary results at any moment during the diagnostic process, mostly by telephone. Telephone reporting is error prone, however. Electronic reporting of culture results instead of reporting on paper may shorten the turnaround time and may ensure correct communication of results. The purpose of this study was to assess the impact of the implementation of electronic reporting of final microbiology results on medical decision making. In a pre- and post-interview study using a semi-structured design we asked medical specialists in our hospital about their use and appreciation of clinical microbiology results reporting before and after the implementation of an electronic reporting system. Electronic reporting was highly appreciated by all interviewed clinicians. Major advantages were reduction of hardcopy handling and the possibility to review results in relation to other patient data. Use and meaning of microbiology reports differ significantly between medical specialties. Most clinicians need preliminary results for therapy decisions quickly. Therefore, after the implementation of electronic reporting, telephone consultation between clinician and microbiologist remained the key means of communication. Overall, electronic reporting increased the workflow efficiency of the medical specialists, but did not have an impact on their decision-making. © 2011 Bruins et al; licensee BioMed Central Ltd.
NASA Technical Reports Server (NTRS)
Wigley, D. A.
1981-01-01
Diffusion assisted bonds are formed in 17-4 PH, 15-5 PH, type 347 and Nitronic 40 stainless steels using electrodeposited copper as the bonding agent. The bonds are analyzed by conventional metallographic, electron microprobe analysis, and scanning electron microscopic techniques as well as Charpy V-notch impact tests at temperatures of 77 and 300 K. Results are discussed in terms of a postulated model for the bonding process.
Recent measurements concerning uranium hexafluoride-electron collision processes
NASA Technical Reports Server (NTRS)
Trajmar, S.; Chutjian, A.; Srivastava, S.; Williams, W.; Cartwright, D. C.
1976-01-01
Scattering of electrons by UF6 molecules was studied at impact energies ranging from 5 to 100 eV and momentum transfer, elastic and inelastic scattering cross sections were determined. The measurements also yielded spectroscopic information which made possible to extend the optical absorption cross sections from 2000 angstroms to 435 angstroms. It was found that UF6 is a very strong absorber in the vacuum UV region. No transitions were found to lie below the onset of the optically detected 3.0 eV feature.
Theoretical study of (e, 2e) process of atomic and molecular targets*
NASA Astrophysics Data System (ADS)
Houamer, Salim; Chinoune, Mehdi; Cappello, Claude Dal
2017-01-01
Triple differential ionization cross sections (TDCSs) by electron impact are calculated for some atomic and molecular targets by using several models where Post Collisional Interaction (PCI) is taken in account. We also investigate the effect of the short range potential and describe the ejected electron either by a Coulomb wave or by a distorted wave. Significant differences are observed between these models. A better agreement with experimental data is achieved when the short range potential and distortion effects are included.
A Numerical Model of Laser-Induced Fluorescence in a Hydrogen Plasma
1991-03-10
cross-sections. Lee, et al., cited screened Coulomb potential calculations by several groups to place an up- per limit of 30 A on the Debye length...intensity: RL(t)(1/sec) = B,,(cir 2/erg . sec) . (J,)(erg/sec .cm -. liz) (3.5) 35 The Einstein coefficients are related by the statistical weights of the...impact processes.) These rate matrices were then added together to obtain the total rate matrix for both groups of electrons. The total electron density
Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses
NASA Astrophysics Data System (ADS)
Kang, H.; Henrichs, K.; Kunitski, M.; Wang, Y.; Hao, X.; Fehre, K.; Czasch, A.; Eckart, S.; Schmidt, L. Ph. H.; Schöffler, M.; Jahnke, T.; Liu, X.; Dörner, R.
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
The impact of using electronic patient records on practices of reading and writing.
Laitinen, Heleena; Kaunonen, Marja; Åstedt-Kurki, Paivi
2014-12-01
The aim of this study was to investigate the use of electronic patient records in daily practice. In four wards of a large hospital district in Finland, N = 43 patients' care and activities were observed and analysed in terms of the Grounded Theory method. The findings revealed that using electronic patient records created a particular process of writing and reading. Wireless technology enabled simultaneous patient involvement and point-of-care documentation, additionally supporting real-time reading. Remote and retrospective documentation was distant in terms of both space and time. The remoteness caused double documentation, reduced accuracy and less-efficient use of time. 'Non-reading' practices were witnessed in retrospective reading, causing delays in patient care and increase in workload. Similarly, if documentation was insufficient or non-existent, the consequences were found to be detrimental to the patients. The use of an electronic patient record system has a significant impact on patient care. Therefore, it is crucial to develop wireless technology and interdisciplinary collaboration in order to improve and support high-quality patient care. © The Author(s) 2013.
NASA Astrophysics Data System (ADS)
Randazzo, J. M.; Ancarani, L. U.
2015-12-01
For the single differential cross section (SDCS) for hydrogen ionization by electron impact (e -H problem), we propose a correction to the flux formula given by R. Peterkop [Theory of Ionization of Atoms by Electron Impact (Colorado Associated University Press, Boulder, 1977)]. The modification is based on an alternative way of defining the kinetic energy fraction, using Bohm's definition of velocities instead of the usual asymptotic kinematical, or geometrical, approximation. It turns out that the solution-dependent, modified energy fraction is equally related to the components of the probability flux. Compared to what is usually observed, the correction yields a finite and well-behaved SDCS value in the asymmetrical situation where one of the continuum electrons carries all the energy while the other has zero energy. We also discuss, within the S -wave model of the e -H ionization process, the continuity of the SDCS derivative at the equal energy sharing point, a property not so clearly observed in published benchmark results obtained with integral and S -matrix formulas with unequal final states.
Vibrational excitation in O2and Cl2inductively-coupled plasmas and DC discharges
NASA Astrophysics Data System (ADS)
Booth, Jean-Paul; Marinov, Daniil; Foucher, Mickael; Annusova, Adriana; Guerra, Vasco
2016-09-01
Low-energy electrons can interact with molecules via resonances to cause vibrational excitation with large cross-sections. Such processes can absorb significant energy from the plasma electrons, affecting the electron energy distribution and potentially (via vibration-translation (VT) energy transfer) causing substantial gas heating. The presence of vibrationally excited molecules may significant increase the rates of collisional processes, including electron dissociative attachment and electron impact dissociation into neutral atoms. However, the cross-sections of these processes are often poorly known since they are extremely difficult to measure directly, and reliable theoretical calculations are only now appearing for simple diatomic molecules. We have measured the vibrational distributions in discharges in pure O2 and pure Cl2, using high-sensitivity ultra-broadband ultraviolet absorption spectroscopy. In O2 plasmas significant vibrational excitation is observed, up to v'' =18, with a tail temperature of around 8000K. In Cl2 excitation is only observed up to v'' =3, and the distribution appears to be in local equilibrium with the gas translational temperature (up to 1500K). We are developing a detailed self-consistent 0D global model of these systems including vibrational excitation. Work performed in the LABEX Plas@par project, with financial state aid (ANR-11-IDEX-0004-02 and ANR-13-BS09-0019).
Magnetosphere-Ionosphere Energy Interchange in the Electron Diffuse Aurora
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Glocer, Alex; Himwich, E. W.
2014-01-01
The diffuse aurora has recently been shown to be a major contributor of energy flux into the Earth's ionosphere. Therefore, a comprehensive theoretical analysis is required to understand its role in energy redistribution in the coupled ionosphere-magnetosphere system. In previous theoretical descriptions of precipitated magnetospheric electrons (E is approximately 1 keV), the major focus has been the ionization and excitation rates of the neutral atmosphere and the energy deposition rate to thermal ionospheric electrons. However, these precipitating electrons will also produce secondary electrons via impact ionization of the neutral atmosphere. This paper presents the solution of the Boltzman-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E greater than 600 eV) and their ionosphere-magnetosphere coupling processes. In this article, we discuss for the first time how diffuse electron precipitation into the atmosphere and the associated secondary electron production participate in ionosphere-magnetosphere energy redistribution.
Resolving the role of femtosecond heated electrons in ultrafast spin dynamics.
Mendil, J; Nieves, P; Chubykalo-Fesenko, O; Walowski, J; Santos, T; Pisana, S; Münzenberg, M
2014-02-05
Magnetization manipulation is essential for basic research and applications. A fundamental question is, how fast can the magnetization be reversed in nanoscale magnetic storage media. When subject to an ultrafast laser pulse, the speed of the magnetization dynamics depends on the nature of the energy transfer pathway. The order of the spin system can be effectively influenced through spin-flip processes mediated by hot electrons. It has been predicted that as electrons drive spins into the regime close to almost total demagnetization, characterized by a loss of ferromagnetic correlations near criticality, a second slower demagnetization process takes place after the initial fast drop of magnetization. By studying FePt, we unravel the fundamental role of the electronic structure. As the ferromagnet Fe becomes more noble in the FePt compound, the electronic structure is changed and the density of states around the Fermi level is reduced, thereby driving the spin correlations into the limit of critical fluctuations. We demonstrate the impact of the electrons and the ferromagnetic interactions, which allows a general insight into the mechanisms of spin dynamics when the ferromagnetic state is highly excited, and identifies possible recording speed limits in heat-assisted magnetization reversal.
Pingret, Daniella; Durand, Grégory; Fabiano-Tixier, Anne-Sylvie; Rockenbauer, Antal; Ginies, Christian; Chemat, Farid
2012-08-08
During ultrasound processing of lipid-containing food, some off-flavors can be detected, which can incite depreciation by consumers. The impacts of ultrasound treatment on sunflower oil using two different ultrasound horns (titanium and pyrex) were evaluated. An electron paramagnetic resonance study was performed to identify and quantify the formed radicals, along with the assessment of classical physicochemical parameters such as peroxide value, acid value, anisidine value, conjugated dienes, polar compounds, water content, polymer quantification, fatty acid composition, and volatiles profile. The study shows an increase of formed radicals in sonicated oils, as well as the modification of physicochemical parameters evidencing an oxidation of treated oils.
Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity.
Behabtu, Natnael; Young, Colin C; Tsentalovich, Dmitri E; Kleinerman, Olga; Wang, Xuan; Ma, Anson W K; Bengio, E Amram; ter Waarbeek, Ron F; de Jong, Jorrit J; Hoogerwerf, Ron E; Fairchild, Steven B; Ferguson, John B; Maruyama, Benji; Kono, Junichiro; Talmon, Yeshayahu; Cohen, Yachin; Otto, Marcin J; Pasquali, Matteo
2013-01-11
Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.
Deviations in expected price impact for small transaction volumes under fee restructuring
NASA Astrophysics Data System (ADS)
Harvey, M.; Hendricks, D.; Gebbie, T.; Wilcox, D.
2017-04-01
We report on the occurrence of an anomaly in the price impacts of small transaction volumes following a change in the fee structure of an electronic market. We first review evidence for the existence of a master curve for price impact on the Johannesburg Stock Exchange (JSE). On attempting to re-estimate a master curve after fee reductions, it is found that the price impact corresponding to smaller volume trades is greater than expected relative to prior estimates for a range of listed stocks. We show that a master curve for price impact can be found following rescaling by an appropriate liquidity proxy, providing a means for practitioners to approximate price impact curves without onerous processing of tick data.
Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer
NASA Astrophysics Data System (ADS)
Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis
2015-12-01
Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04942c
Optical glow spectra arising from low-energy N2, N2(+) and electron bombardment of MgF2 surfaces
NASA Technical Reports Server (NTRS)
Qi, J.; Barnes, A. V.; Espy, S. L.; Riehl-Chudoba, M.; Sun, C.-N.; Albridge, R. G.; Tolk, N. H.
1991-01-01
Photon emission spectra resulting from the impact of N2, N2(+), and electron beams on magnesium fluoride in an ultrahigh vacuum environment were measured and compared for beam energies in the range 200-2000 eV. Unexpectedly, only the ion- and electron-induced spectra exhibited broad fluorescence. The observed data suggest that the broad fluorescence arising from low-energy ion bombardment is due primarily to the transfer of electronic energy to the surface by resonance or Auger neutralization. Since molecular nitrogen is a major constituent of the atmosphere at orbital altitudes, these measurements bear directly on radiation-induced glow and erosion processes on surfaces of spacecraft in low-earth orbit.
Nomura, Aline Tsuma Gaedke; Pruinelli, Lisiane; da Silva, Marcos Barragan; Lucena, Amália de Fátima; Almeida, Miriam de Abreu
2018-03-01
Hospital accreditation is a strategy for the pursuit of quality of care and safety for patients and professionals. Targeted educational interventions could help support this process. This study aimed to evaluate the quality of electronic nursing records during the hospital accreditation process. A retrospective study comparing 112 nursing records during the hospital accreditation process was conducted. Educational interventions were implemented, and records were evaluated preintervention and postintervention. Mann-Whitney and χ tests were used for data analysis. Results showed that there was a significant improvement in the nursing documentation quality postintervention. When comparing records preintervention and postintervention, results showed a statistically significant difference (P < .001) between the two periods. The comparison between items showed that most scores were significant. Findings indicated that educational interventions performed by nurses led to a positive change that improved nursing documentation and, consequently, better care practices.
NASA Astrophysics Data System (ADS)
Zhang, J. M.; Li, H.; Yang, F.; Chi, Q.; Ji, L. K.; Feng, Y. R.
2013-12-01
In this paper, two different heat treatment processes of a 9% Ni steel for large liquefied natural gas storage tanks were performed in an industrial heating furnace. The former was a special heat treatment process consisting of quenching and intercritical quenching and tempering (Q-IQ-T). The latter was a heat treatment process only consisting of quenching and tempering. Mechanical properties were measured by tensile testing and charpy impact testing, and the microstructure was analyzed by optical microscopy, transmission electron microscopy, and x-ray diffraction. The results showed that outstanding mechanical properties were obtained from the Q-IQ-T process in comparison with the Q-T process, and a cryogenic toughness with charpy impact energy value of 201 J was achieved at 77 K. Microstructure analysis revealed that samples of the Q-IQ-T process had about 9.8% of austenite in needle-like martensite, while samples of the Q-T process only had about 0.9% of austenite retained in tempered martensite.
Spray printing of organic semiconducting single crystals
NASA Astrophysics Data System (ADS)
Rigas, Grigorios-Panagiotis; Payne, Marcia M.; Anthony, John E.; Horton, Peter N.; Castro, Fernando A.; Shkunov, Maxim
2016-11-01
Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by combining the advantages of antisolvent crystallization and solution shearing. The crystals' size, shape and orientation are controlled by the sheer force generated by the spray droplets' impact onto the antisolvent's surface. This method demonstrates the feasibility of a spray-on single-crystal organic electronics.
Langmuir waveforms at interplanetary shocks: STEREO statistical analysis
NASA Astrophysics Data System (ADS)
Briand, C.
2016-12-01
Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.
Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments
NASA Astrophysics Data System (ADS)
van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel
2015-07-01
Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
The Nature of Automated Jobs and Their Educational and Training Requirements.
ERIC Educational Resources Information Center
Fine, S.A.
Objective information concerning the impact of automation on educational and training requirements was obtained for 132 employees engaged in electron tube, computer, and steel manufacturing processes through management questionnaire responses, analysis of job functions, and employer interviews before and after the introduction of automation. The…
The Changing Business Environment: Implications for Vocational Curricula. State-of-the-Art Paper.
ERIC Educational Resources Information Center
Smith, E. Ray; Stallard, John J.
The widespread use of the micro/personal computer and related technological advancements are having important impacts on information management in the modern electronic office. Some of the most common software applications include word processing, spread sheet analysis, data management, graphics, and communications. Ancillary hardware/software…
77 FR 44234 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-27
... Castillo 509-843-1891. EIS No. 20120242, Final EIS, BLM, WY, Lost Creek In Situ Recovery Project, To... agencies to participate in its e-NEPA electronic EIS submission pilot. Participating agencies can fulfill... filing documents online and providing feedback on the process. To participate in the pilot, register at...
77 FR 25165 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-27
.... EIS No. 20120117, Draft EIS, BLM, WY, Lost Creek In Situ Recovery Project, To Analyze the Site... agencies to participate in its e-NEPA electronic EIS submission pilot. Participating agencies can fulfill... filing documents online and providing feedback on the process. To participate in the pilot, register at...
Lyman alpha line shapes from electron impact H2 dissociative processes in the Jovian auroral zone
NASA Technical Reports Server (NTRS)
Waite, J. H., Jr.; Gladstone, G. R.
1992-01-01
Over the past two years several Lyman alpha line profile spectra of Jupiter were obtained using the International Ultraviolet Explorer (IUE) telescope. Several different regions of the planet were observed including the auroral zone, the low and mid latitudes, and the equatorial region which includes the Lyman alpha bulge region. These results have presented a very interesting picture of atomic hydrogen on Jupiter with explanations that range from ion outflow in the auroral zone to large thermospheric winds at low and mid latitudes. New data are needed to address the outstanding questions. Almost certainly, high resolution spectra from the Hubble Space Telescope will play a role in new observations. Better data also require better models, and better models require new laboratory data as inputs. The purpose of this program is two-fold: (1) to introduce a method by which new laboratory electron impact measurements of H2 dissociation can be used to calculate both the slow and fast H(S-2) and H(P-2) fragments in an H2 atmosphere; and (2) to determine the predicted Lyman alpha line shape that would result from electron impact production of these dissociative fragments in the Jovian auroral zone.
Research gaps related to the environmental impacts of electronic cigarettes.
Chang, Hoshing
2014-05-01
To consider the research gaps related to the environmental impacts of electronic cigarettes due to their manufacture, use and disposal. Literature searches were conducted through December 2013. Studies were included in this review if they related to the environmental impacts of e-cigarettes. Scientific information on the environmental impacts of e-cigarette manufacturing, use and disposal is very limited. No studies formally evaluated the environmental impacts of the manufacturing process or disposal of components, including batteries. Four studies evaluated potential exposure to secondhand e-cigarette aerosol, an indication of impacts on indoor air quality. A 2010 survey of six e-cigarette models found that none of the products provided disposal instructions for spent cartridges containing nicotine. Notably, some e-cigarette manufacturers claim their e-cigarettes are 'eco-friendly' or 'green', despite the lack of any supporting data or environmental impact studies. Some authors argue that such advertising may boost sales and increase e-cigarette appeal, especially among adolescents. Little is known about the environmental impacts of e-cigarettes, and a number of topics could be further elucidated by additional investigation. These topics include potential environmental impacts related to manufacturing, use and disposal. The environmental impacts of e-cigarette manufacturing will depend upon factory size and the nicotine extracting method used. The environmental impacts of e-cigarette use will include chemical and aerosol exposure in the indoor environment. The environmental impacts of disposal of e-cigarette cartridges (which contain residual nicotine) and disposal of e-cigarettes (which contain batteries) represent yet another environmental concern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sykes, Matthew E.; Stewart, Jon W.; Akselrod, Gleb M.
The creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy. We find evidence for three subpopulations of nonthermal carriers which we propose arise from anisotropic electron-electron scatteringmore » within sp-bands near the Fermi surface. The bimetallic character of the metasurface strongly impacts the physics, with dissipation occurring primarily in the gold whereas the quantum process of hot electron generation takes place in both components. As a result, our calculations show that the choice of geometry and materials is crucial for producing strong ultrafast nonthermal electron components.« less
Electronic and atomic kinetics in solids irradiated with free-electron lasers or swift-heavy ions
NASA Astrophysics Data System (ADS)
Medvedev, N.; Volkov, A. E.; Ziaja, B.
2015-12-01
In this brief review we discuss the transient processes in solids under irradiation with femtosecond X-ray free-electron-laser (FEL) pulses and swift-heavy ions (SHI). Both kinds of irradiation produce highly excited electrons in a target on extremely short timescales. Transfer of the excess electronic energy into the lattice may lead to observable target modifications such as phase transitions and damage formation. Transient kinetics of material excitation and relaxation under FEL or SHI irradiation are comparatively discussed. The same origin for the electronic and atomic relaxation in both cases is demonstrated. Differences in these kinetics introduced by the geometrical effects (μm-size of a laser spot vs nm-size of an ion track) and initial irradiation (photoabsorption vs an ion impact) are analyzed. The basic mechanisms of electron transport and electron-lattice coupling are addressed. Appropriate models and their limitations are presented. Possibilities of thermal and nonthermal melting of materials under FEL and SHI irradiation are discussed.
Sykes, Matthew E.; Stewart, Jon W.; Akselrod, Gleb M.; ...
2017-10-17
The creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy. We find evidence for three subpopulations of nonthermal carriers which we propose arise from anisotropic electron-electron scatteringmore » within sp-bands near the Fermi surface. The bimetallic character of the metasurface strongly impacts the physics, with dissipation occurring primarily in the gold whereas the quantum process of hot electron generation takes place in both components. As a result, our calculations show that the choice of geometry and materials is crucial for producing strong ultrafast nonthermal electron components.« less
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Tripathi, A. K.; Singhal, R. P.; Himwich, Elizabeth; Glocer, A.; Sibeck, D. G.
2015-01-01
There are two main theories for the origin of the diffuse auroral electron precipitation: first, pitch angle scattering by electrostatic electron cyclotron harmonic (ECH) waves, and second, by whistler mode waves. Precipitating electrons initially injected from the plasma sheet to the loss cone via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These secondary electrons can escape back to the magnetosphere, become trapped on closed magnetic field lines, and deposit their energy back to the inner magnetosphere. ECH and whistler mode waves can also move electrons in the opposite direction, from the loss cone into the trap zone, if the source of such electrons exists in conjugate ionospheres located at the same field lines as the trapped magnetospheric electron population. Such a situation exists in the simulation scenario of superthermal electron energy interplay in the region of diffuse aurora presented and discussed by Khazanov et al. (2014) and will be quantified in this paper by taking into account the interaction of secondary electrons with ECH waves.
NASA Astrophysics Data System (ADS)
Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.
1993-02-01
Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.
Improved Measurement of Ejection Velocities From Craters Formed in Sand
NASA Technical Reports Server (NTRS)
Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.
2014-01-01
A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.
Electron Stimulated Desorption Yields at the Mercury's Surface Based On Hybrid Simulation Results
NASA Astrophysics Data System (ADS)
Travnicek, P. M.; Schriver, D.; Orlando, T. M.; Hellinger, P.
2016-12-01
In terms of previous research concerning the solar wind sputtering process, most of the focus has been on ion sputtering by precipitating solar wind protons, however, precipitating electrons can also result in the desorption of neutrals and ions from Mercury's surface and represents a potentially significant source of exospheric and heavy ion components. Electron stimulated desorption (ESD) is not bound by optical selection rules and electron impact energies can vary over a much wider range, including core-level excitations that easily lead to multi-electron shake up events that can cascade into localized multiple charged states that Coulomb explode with extreme kinetic energy release (up to 8 eV = 186,000 K). While considered for the lunar exosphere, ESD has not been adequately studied or quantified as a producer of neutrals and ions. ESD is a well known process which involves the excitation (often ionization) of a surface target followed by charge ejection, bond breaking and ion expulsion due to the resultant Coulomb repulsion. Though the role of ESD processes has not been discussed much with respect to Mercury, the impinging energetic electrons that are transported through the magnetosphere and precipitate can induce significant material removal. Given the energetics and the wide band-gap nature of the minerals, the departing material may also be primarily ionic. The possible role of 5 eV - 1 keV electron stimulated desorption and dissociation in "weathering" the regolith can be significant. ESD yields will be calculated based on the ion and electron precipitation profiles for the already carried out hybrid and electron simulations. Neutral and ion cloud profiles around Mercury will be calculated and combined with those profiles expected from PSD and MIV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590
2015-10-15
The quantum diffraction and shielding effects on the low-energy bremsstrahlung process are investigated in two-component semiclassical plasmas. The impact-parameter analysis with the micropotential taking into account the quantum diffraction and shielding effects is employed to obtain the electron-ion bremsstrahlung radiation cross section as a function of the de Broglie wavelength, density parameter, impact parameter, photon energy, and projectile energy. The result shows that the influence of quantum diffraction and shielding strongly suppresses the bremsstrahlung radiation spectrum in semiclassical plasmas. It is found that the quantum diffraction and shielding effects have broaden the photon emission domain. It is also found thatmore » the photon emission domain is almost independent of the radiation photon energy. In addition, it is found that the influence of quantum diffraction and shielding on the bremsstrahlung spectrum decreases with an increase of the projectile energy. The density effect on the electron-ion bremsstrahlung cross section is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791
2015-01-15
The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less
NASA Astrophysics Data System (ADS)
Turner, Drew; Mann, Ian; Usanova, Maria; Rodriguez, Juan; Henderson, Mike; Angelopoulos, Vassilis; Morley, Steven; Claudepierre, Seth; Li, Wen; Kellerman, Adam; Boyd, Alexander; Kim, Kyung-Chan
Earth’s outer electron radiation belt is a region of extreme variability, with relativistic electron intensities changing by orders of magnitude over time scales ranging from minutes to years. Extreme variations of outer belt electrons ultimately result from the relative impacts of various competing source (and acceleration), loss, and transport processes. Most of these processes involve wave-particle interactions between outer belt electrons and different types of plasma waves in the inner magnetosphere, and in turn, the activity of these waves depends on different solar wind and magnetospheric driving conditions and thus can vary drastically from event to event. Using multipoint analysis with data from NASA’s Van Allen Probes, THEMIS, and SAMPEX missions, NOAA’s GOES and POES constellations, and ground-based observatories, we present results from case studies revealing how different source/acceleration and loss mechanisms compete during active periods to result in drastically different distributions of outer belt electrons. By using a combination of low-Earth orbiting and high-altitude-equatorial orbiting satellites, we briefly review how it is possible to get a much more complete picture of certain wave activity and electron losses over the full range of MLTs and L-shells throughout the radiation belt. We then show example cases highlighting the importance of particular mechanisms, including: substorm injections and whistler-mode chorus waves for the source and acceleration of relativistic electrons; magnetopause shadowing and wave-particle interactions with EMIC waves for sudden losses; and ULF wave activity for driving radial transport, a process which is important for redistributing relativistic electrons, contributing both to acceleration and loss processes. We show how relativistic electron enhancement events involve local acceleration that is consistent with wave-particle interactions between a seed population of 10s to 100s of keV electrons, with a source in the plasma sheet, and chorus waves. We show how sudden losses during outer belt dropout events are dominated at higher L-shells (L>~4) by magnetopause shadowing and outward radial transport, which is effective over the full ranges of energy and equatorial pitch angle of outer belt electrons, but at lower L-shells near the plasmapause, energy and pitch angle dependent losses can also occur and are consistent with rapid scattering by interactions between relativistic electrons and EMIC waves. We show cases demonstrating how these different processes occur simultaneously during active periods, with relative effects that vary as a function of L-shell and electron energy and pitch angle. Ultimately, our results highlight the complexity of competing source/acceleration, loss, and transport processes in Earth’s outer radiation belt and the necessity of using multipoint observations to disambiguate between them for future studies.
Schneider, Erika; Ruggieri, Paul; Fromwiller, Lauren; Underwood, Reginald; Gurland, Brooke; Yurkschatt, Cynthia; Kubiak, Kevin; Obuchowski, Nancy A
2013-12-01
Delays between order and magnetic resonance (MR) exam often result when using the conventional paper-based MR safety screening process. The impact of an electronic MR safety screening process imbedded in a computerized physician order entry (CPOE) system was evaluated. Retrospective chart review of 4 months of inpatient MR exam orders and reports was performed before and after implementation of electronic MR safety documentation. Time from order to MR exam completion, time from MR exam completion to final radiology report, and time from first order to final report were analyzed by exam anatomy. Length of stay (LOS) and date of service within the admission were also analyzed. We evaluated 1947 individual MR orders in 1549 patients under an institutional review board exemption and a waiver of informed consent. Implementation of the electronic safety screening process resulted in a significant decrease of 1.1 hours (95% confidence interval 1.0-1.3 hours) in the mean time between first order to final report and a nonsignificant decrease of 0.8 hour in the median time from first order to exam end. There was a 1-day reduction (P = .697) in the time from admission to the MR exam compared to the paper process. No significant change in LOS was found except in neurological intensive care patients imaged within the first 24 hours of their admission, where a mean 0.9-day decrease was found. Benefits of an electronic process for MR safety screening include enabling inpatients to have decreased time to MR exams, thus enabling earlier diagnosis and treatment and reduced LOS. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.
An evaluation of the process and initial impact of disseminating a nursing e-thesis.
Macduff, Colin
2009-05-01
This paper is a report of a study conducted to evaluate product, process and outcome aspects of the dissemination of a nursing PhD thesis via an open-access electronic institutional repository. Despite the growth of university institutional repositories which make theses easily accessible via the world wide web, nursing has been very slow to evaluate related processes and outcomes. Drawing on Stake's evaluation research methods, a case study design was adopted. The case is described using a four-phase structure within which key aspects of process and impact are reflexively analysed. In the conceptualization/re-conceptualization phase, fundamental questions about the purpose, format and imagined readership for a published nursing PhD were considered. In the preparation phase, seven key practical processes were identified that are likely to be relevant to most e-theses. In the dissemination phase email invitations were primarily used to invite engagement. The evaluation phase involved quantitative indicators of initial impact, such as page viewing and download statistics and qualitative feedback on processes and product. Analysis of process and impact elements of e-thesis dissemination is likely to have more than intrinsic value. The advent of e-theses housed in web-based institutional repositories has the potential to transform thesis access and use. It also offers potential to transform the nature and scope of thesis production and dissemination. Nursing scholars can exploit and evaluate such opportunities.
NASA Astrophysics Data System (ADS)
Hey, J. D.
2013-09-01
Since highly excited atoms, which contribute to the radio recombination spectra from Galactic H II regions, possess large polarizabilities, their lifetimes are influenced by ion (proton)-induced dipole collisions. It is shown that, while these ion-radiator collisional processes, if acting alone, would effectively limit the upper principal quantum number attainable for given plasma parameters, their influence is small relative to that of electron impacts within the framework of line broadening theory. The present work suggests that ion-permanent dipole interactions (Hey et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2543) would also be of minor importance in limiting the occupation of highly excited states. On the other hand, the ion-induced dipole collisions are essential for ensuring equipartition of energy between atomic and electron kinetic distributions (Hey et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3555; 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3517), without which Voigt profile analysis to extract impact broadening widths would not be possible. Electron densities deduced from electron impact broadening of individual lines (Griem 1967 Astrophys. J. 148 547; Watson 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889) may be used to check the significance of the constraints arising from the present analysis. The spectra of Bell et al (2000 Publ. Astron. Soc. Pac. 112 1236; 2011 Astrophys. Space Sci. 333 377; 2011 Astrophys. Space Sci. 335 451) for Orion A and W51 in the vicinity of 6.0 and 17.6 GHz are examined in this context, and also in terms of a possible role of the background ion microfield in reducing the near-elastic contributions to the electron impact broadening below the predictions of theory (Hey 2012 J. Phys. B: At. Mol. Opt. Phys. 45 065701). These spectra are analysed, subject to the constraint that calculated relative intensities of lines, arising from upper states in collisional-radiative equilibrium, should be consistent with those obtained from Voigt profile analysis. It is shown that the experimental technique yields an excellent temperature diagnostic for the H II regions. On the other hand, strong evidence is not obtained, from those spectra which satisfy the above constraint on intensity, to indicate that the electron impact broadening theory requires substantial correction. The main grounds for attempting a revision of theory to allow for the influence of the ion microfield during the scattering processes on the upper and lower states of each line thus still appear to have a stronger theoretical (Hey 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4077) than experimental basis.
Role of electronic excited N2 in vibrational excitation of the N2 ground state at high latitudes
NASA Astrophysics Data System (ADS)
Campbell, L.; Cartwright, D. C.; Brunger, M. J.; Teubner, P. J. O.
2006-09-01
Vibrationally excited N2 is important in determining the ionospheric electron density and has also been proposed to play a role in the production of NO in disturbed atmospheres. We report here predictions of the absolute vibrational distributions in the ground electronic state of N2 produced by electron impact excitation, at noon and midnight under quiet geomagnetic conditions and disturbed conditions corresponding to the aurora IBCII+ and IBCIII+ at 60°N latitude and 0° longitude, at altitudes between 130 and 350 km. These predictions were obtained from a model which includes thermal excitation and direct electron impact excitation of the vibrational levels of the N2 ground state and its excited electronic states; radiative cascade from all excited electronic states to all vibrational levels of the ground electronic state; quenching by O, O2, and N2; molecular and ambipolar diffusion; and the dominant chemical reactions. Results from this study show that for both aurora and daytime electron environments: (1) cascade from the higher electronic states of N2 determines the population of the higher vibrational levels in the N2 ground state and (2) the effective ground state vibrational temperature for levels greater than 4 in N2 is predicted to be in the range 4000-13000 K for altitudes greater than 200 km. Correspondingly, the associated enhancement factor for the O+ reaction with vibrationally excited N2 to produce NO+ is predicted to increase with increasing altitude (up to a maximum at a height which increases with auroral strength) for both aurora and daytime environments and to increase with increasing auroral strength. The contribution of the cascade from the excited electronic states was evaluated and found to be relatively minor compared to the direct excitation process.
Analysis of the Potential Impact of Additive Manufacturing on Army Logistics
2013-12-01
baseline characteristics for building a process timeline for comparison. We then examined current industry usage of AM to determine the impact on...the material onto a foam base on a build platform. The FDM extrusion head moves along the X and Y axis. As build and support material is fed...layer of powdered metal or thermoplastic is exposed to a laser or electron beam that fuses the material into a solid in designated areas; then a new
NASA Astrophysics Data System (ADS)
Segarra, Katherine E. A.; Comerford, Christopher; Slaughter, Julia; Joye, Samantha B.
2013-08-01
Methane, a powerful greenhouse gas, is both produced and consumed in anoxic coastal sediments via microbial processes. Although the anaerobic oxidation of methane (AOM) is almost certainly an important process in coastal freshwater and salt marsh sediments, the factors that control the rates and pathways of AOM in these habitats are poorly understood. Here, we present the first direct measurements of AOM activity in freshwater (0 PSU) and brackish (25 PSU) wetland sediments. Despite disparate sulfate concentrations, both environments supported substantial rates of AOM. Higher sulfate reduction (SR) rates were measured in the freshwater site and SR at both sites was of sufficient magnitude to support the observed AOM activity. Laboratory incubations of freshwater and brackish tidal, wetland sediments amended with either nothing [control], sulfate, nitrate, manganese oxide (birnessite) or iron oxide (ferrihydrite) and supplied with a methane headspace were used to evaluate the impact(s) of electron acceptor availability on potential AOM rates. Maximum AOM rates in brackish slurries occurred in the sulfate amendments. In contrast, addition of sulfate and several possible electron acceptors to the freshwater slurries decreased AOM rates relative to the control. High ratios of AOM activity relative to SR activity in the nitrate, birnessite, and ferrihydrite treatments of both the brackish and freshwater slurries provided evidence of AOM decoupled from SR. This study demonstrates that both freshwater and brackish coastal wetland sediments support considerable rates of anaerobic methanotrophy and provides evidence for sulfate-independent AOM that may be coupled to nitrate, iron, or manganese reduction in both environments.
Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization
NASA Astrophysics Data System (ADS)
Girazian, Z.; Mahaffy, P.; Lillis, R. J.; Benna, M.; Elrod, M.; Fowler, C. M.; Mitchell, D. L.
2017-11-01
We use observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission to show how superthermal electron fluxes and crustal magnetic fields affect ion densities in the nightside ionosphere of Mars. We find that due to electron impact ionization, high electron fluxes significantly increase the CO2+, O+, and O2+ densities below 200 km but only modestly increase the NO+ density. High electron fluxes also produce distinct peaks in the CO2+, O+, and O2+ altitude profiles. We also find that superthermal electron fluxes are smaller near strong crustal magnetic fields. Consequently, nightside ion densities are also smaller near strong crustal fields because they decay without being replenished by electron impact ionization. Furthermore, the NO+/O2+ ratio is enhanced near strong crustal fields because, in the absence of electron impact ionization, O2+ is converted into NO+ and not replenished. Our results show that electron impact ionization is a significant source of CO2+, O+, and O2+ in the nightside ionosphere of Mars.
Cryogenic Quenching Process for Electronic Part Screening
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J.; Cressler, John
2011-01-01
The use of electronic parts at cryogenic temperatures (less than 100 C) for extreme environments is not well controlled or developed from a product quality and reliability point of view. This is in contrast to the very rigorous and well-documented procedures to qualify electronic parts for mission use in the 55 to 125 C temperature range. A similarly rigorous methodology for screening and evaluating electronic parts needs to be developed so that mission planners can expect the same level of high reliability performance for parts operated at cryogenic temperatures. A formal methodology for screening and qualifying electronic parts at cryogenic temperatures has been proposed. The methodology focuses on the base physics of failure of the devices at cryogenic temperatures. All electronic part reliability is based on the bathtub curve, high amounts of initial failures (infant mortals), a long period of normal use (random failures), and then an increasing number of failures (end of life). Unique to this is the development of custom screening procedures to eliminate early failures at cold temperatures. The ability to screen out defects will specifically impact reliability at cold temperatures. Cryogenic reliability is limited by electron trap creation in the oxide and defect sites at conductor interfaces. Non-uniform conduction processes due to process marginalities will be magnified at cryogenic temperatures. Carrier mobilities change by orders of magnitude at cryogenic temperatures, significantly enhancing the effects of electric field. Marginal contacts, impurities in oxides, and defects in conductor/conductor interfaces can all be magnified at low temperatures. The novelty is the use of an ultra-low temperature, short-duration quenching process for defect screening. The quenching process is designed to identify those defects that will precisely (and negatively) affect long-term, cryogenic part operation. This quenching process occurs at a temperature that is at least 25 C colder than the coldest expected operating temperature. This quenching process is the opposite of the standard burn-in procedure. Normal burn-in raises the temperature (and voltage) to activate quickly any possible manufacturing defects remaining in the device that were not already rejected at a functional test step. The proposed inverse burn-in or quenching process is custom-tailored to the electronic device being used. The doping profiles, materials, minimum dimensions, interfaces, and thermal expansion coefficients are all taken into account in determining the ramp rate, dwell time, and temperature.
Experimental evaluation of analyte excitation mechanisms in the inductively coupled plasma
NASA Astrophysics Data System (ADS)
Lehn, Scott A.; Hieftje, Gary M.
2003-10-01
The inductively coupled plasma (ICP) is a justifiably popular source for atomic emission spectrometry. However, despite its popularity, the ICP is still only partially understood. Even the mechanisms of analyte excitation remain unclear; some energy levels are quite clearly populated by charge transfer while others might be populated by electron-ion recombination, by electron impact, or by Penning processes. Distinguishing among these alternatives is possible by means of a steady-state kinetics approach that examines correlations between the emission of a selected atom, ion, or level and the local number densities of species assumed to produce the excitation. In an earlier investigation, strong correlations were found between either calcium atom or ion emission and selected combinations of calcium atom or ion number densities and electron number densities in the plasma. However, all radially resolved data employed in the earlier study were produced from Abel inversion and from measurements that were crude by today's standards. Now, by means of tomographic imaging, laser-saturated atomic fluorescence, and Thomson and Rayleigh scattering, it is possible to measure the required radially resolved data without Abel inversion and with far greater fidelity. The correlations previously studied for calcium have been investigated with these more reliable data. Ion-electron recombination, either radiative or with argon as a third body, was determined to be the most likely excitation mechanism for calcium atom, while electron impact appeared to be the most important process to produce excite-state calcium ions. These results were consistent with the previous study. However, the present study suggests that collisional deactivation, rather than radiative decay, is the most likely mode of returning both calcium atoms and ions to the ground state.
Selfconsistent vibrational and free electron kinetics for CO2 dissociation in cold plasmas
NASA Astrophysics Data System (ADS)
Capitelli, Mario
2016-09-01
The activation of CO2 by cold plasmas is receiving new theoretical interest thanks to two European groups. The Bogaerts group developed a global model for the activation of CO2 trying to reproduce the experimental values for DBD and microwave discharges. The approach of Pietanza et al was devoted to understand the dependence of electron energy distribution function (eedf) of pure CO2 on the presence of concentrations of electronically and vibrationally excited states taken as parameter. To understand the importance of the vibrational excitation in the dissociation process Pietanza et al compared an upper limit to the dissociation process from a pure vibrational mechanism (PVM) with the corresponding electron impact dissociation rate, the prevalence of the two models depending on the reduced electric field and on the choice of the electron molecule cross section database. Improvement of the Pietanza et al model is being considered by coupling the time dependent Boltzmann solver with the non equilibrium vibrational kinetics of asymmetric mode and with simplified plasma chemistry kinetics describing the ionization/recombination process and the excitation-deexcitation of a metastable level at 10.5eV. A new PVM mechanism is also considered. Preliminary results, for both discharge and post discharge conditions, emphasize the action of superelastic collisions involving both vibrationally and electronically excited states in affecting the eedf. The new results can be used to plan a road map for future developments of numerical codes for rationalizing existing experimental values, as well as, for indicating new experimental situations.
First determination of the valence band dispersion of CH3NH3PbI3 hybrid organic-inorganic perovskite
NASA Astrophysics Data System (ADS)
Lee, Min-I.; Barragán, Ana; Nair, Maya N.; Jacques, Vincent L. R.; Le Bolloc'h, David; Fertey, Pierre; Jemli, Khaoula; Lédée, Ferdinand; Trippé-Allard, Gaëlle; Deleporte, Emmanuelle; Taleb-Ibrahimi, Amina; Tejeda, Antonio
2017-07-01
The family of hybrid organic-inorganic halide perovskites is in the limelight because of their recently discovered high photovoltaic efficiency. These materials combine photovoltaic energy conversion efficiencies exceeding 22% and low-temperature and low-cost processing in solution; a breakthrough in the panorama of renewable energy. Solar cell operation relies on the excitation of the valence band electrons to the conduction band by solar photons. One factor strongly impacting the absorption efficiency is the band dispersion. The band dispersion has been extensively studied theoretically, but no experimental information was available. Herein, we present the first experimental determination of the valence band dispersion of methylammonium lead halide in the tetragonal phase. Our results pave the way for contrasting the electronic hopping or the electron effective masses in different theories by comparing to our experimental bands. We also show a significant broadening of the electronic states, promoting relaxed conditions for photon absorption, and demonstrate that the tetragonal structure associated to the octahedra network distortion below 50 °C induces only a minor modification of the electronic bands, with respect to the cubic phase at high temperature, thus minimizing the impact of the cubic-tetragonal transition on solar cell efficiencies.
Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Dao-Bo; Chen, Jie-Jie; Li, Wen-Wei; Tong, Zhong-Hua; Wu, Chao; Yu, Han-Qing
2013-01-01
The dissimilatory metal reducing bacterium Shewanella oneidensis MR-1, known for its capacity of reducing iron and manganese oxides, has great environmental impacts. The iron oxides reducing process is affected by the coexistence of alternative electron acceptors in the environment, while investigation into it is limited so far. In this work, the impact of dimethyl sulphoxide (DMSO), a ubiquitous chemical in marine environment, on the reduction of hydrous ferric oxide (HFO) by S. oneidensis MR-1 was investigated. Results show that DMSO promoted HFO reduction by both wild type and ΔdmsE, but had no effect on the HFO reduction by ΔdmsB, indicating that such a promotion was dependent on the DMSO respiration. With the DMSO dosing, the levels of extracellular flavins and omcA expression were significantly increased in WT and further increased in ΔdmsE. Bioelectrochemical analysis show that DMSO also promoted the extracellular electron transfer of WT and ΔdmsE. These results demonstrate that DMSO could stimulate the HFO reduction through metabolic and genetic regulation in S. oneidensis MR-1, rather than compete for electrons with HFO. This may provide a potential respiratory pathway to enhance the microbial electron flows for environmental and engineering applications. PMID:24244312
Carbon footprint of electronic devices
NASA Astrophysics Data System (ADS)
Sloma, Marcin
2013-07-01
Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.
NASA Astrophysics Data System (ADS)
Pamungkas, Agil Fitri; Ariawan, Dody; Surojo, Eko; Triyono, Joko
2018-02-01
The aim of the research is to investigate the effect of fiber length on the flexural and impact properties of the composite of Zalacca Midrib Fiber (ZMF)/HDPE. The process of making composite was using compression molding method. The variation of fiber length were 1 mm, 3 mm, 5 mm, 7 mm and 9 mm, at 30% fiber volume fraction. The flexural and impact test according to ASTM D790 and ASTM D5941, respectively. Observing fracture surface was examained by using Scanning Electron Microscopy (SEM). The results showed that the flexural and impact strengths would be increase with the increase of fiber length.
Particle accelerators in the hot spots of radio galaxy 3C 445, imaged with the VLT.
Prieto, M Almudena; Brunetti, Gianfranco; Mack, Karl-Heinz
2002-10-04
Hot spots (HSs) are regions of enhanced radio emission produced by supersonic jets at the tip of the radio lobes of powerful radio sources. Obtained with the Very Large Telescope (VLT), images of the HSs in the radio galaxy 3C 445 show bright knots embedded in diffuse optical emission distributed along the post-shock region created by the impact of the jet into the intergalactic medium. The observations reported here confirm that relativistic electrons are accelerated by Fermi-I acceleration processes in HSs. Furthermore, both the diffuse emission tracing the rims of the front shock and the multiple knots demonstrate the presence of additional continuous re-acceleration processes of electrons (Fermi-II).
The target material influence on the current pulse during high power pulsed magnetron sputtering
NASA Astrophysics Data System (ADS)
Moens, Filip; Konstantinidis, Stéphanos; Depla, Diederik
2017-10-01
The current-time characteristic during high power pulsed magnetron sputtering is measured under identical conditions for seventeen different target materials. Based on physical processes such as gas rarefaction, ion-induced electron emission, and electron impact ionization, two test parameters were derived that significantly correlate with specific features of the current-time characteristic: i) the peak current is correlated to the momentum transfer between the sputtered material and the argon gas, ii) while the observed current plateau after the peak is connected to the metal ionization rate.
Quasi Sturmian basis for the two-electon continuum
NASA Astrophysics Data System (ADS)
Zaytsev, A. S.; Ancarani, L. U.; Zaytsev, S. A.
2016-02-01
A new type of basis functions is proposed to describe a two-electron continuum which arises as a final state in electron-impact ionization and double photoionization of atomic systems. We name these functions, which are calculated in terms of the recently introduced quasi Sturmian functions, Convoluted Quasi Sturmian functions (CQS); by construction, they look asymptotically like a six-dimensional spherical wave. The driven equation describing an ( e, 3 e) process on helium in the framework of the Temkin-Poet model is solved numerically in the entire space (rather than in a finite region of space) using expansions on CQS basis functions. We show that quite rapid convergence of the solution expansion can be achieved by multiplying the basis functions by the logarithmic phase factor corresponding to the Coulomb electron-electron interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özgün, Özgür, E-mail: oozgun@bingol.edu.tr; Yılmaz, Ramazan; Özkan Gülsoy, H.
In this study, the effect of aging heat treatment on fracture toughness and impact strength of Ni-625 superalloy fabricated by using powder injection molding (PIM) method was examined. After a feedstock was prepared by mixing the prealloyed Ni-625 superalloy powder, which was fabricated by gas atomisation, with a polymeric binder system and then it was granulated, it was shaped through the use of injection. The molded specimens were sintered at 1300 °C for 3 h after a two-stage debinding process. Once the sintered specimens were treated in the solution at 1150 °C for 2 h, they were quenched. Aging treatmentmore » was performed by keeping specimens at 745 °C for 22 h. Fracture toughness and impact tests were performed on sintered and aged specimens. Microstructure examinations were performed by using optical microscope, scanning electron microscope, and transmission electron microscope. The results revealed that aging heat treatment led to the formation of some carbides and intermetallic phases in the microstructure. While the hardness of the aged specimens increased due to these phases, their fracture toughness and impact strength values decreased. - Highlights: • Ni-625 superalloy components were produced by means of powder injection molding. • The produced components were subjected to aging treatment. • Aging process provided approximately 50% increase in the hardness of components. • Intermetallic precipitates, carbides and TCP phases occurred within the aged parts. • Fracture toughness and impact strength values decreased due to the hard phases.« less
Occupational health hazards related to informal recycling of E-waste in India: An overview.
Annamalai, Jayapradha
2015-01-01
The innovation in science and technology coupled with the change in lifestyle of an individual has made an incredible change in the electronic industry show casing an assorted range of new products every day to the world. India too has been impacted by this digital revolution where consumption of electronics goods grows at a rapid rate producing a large amount of waste electrical and electronic equipment. This substantial generation of electronic waste referred to as e-waste accompanied with the lack of stringent environmental laws and regulations for handling the hazardous e-waste has resulted in the cropping of number of informal sectors. Over 95% of the e-waste is treated and processed in the majority of urban slums of the country, where untrained workers carry out the dangerous procedures without personal protective equipment, which are detrimental not only to their health but also to the environment. This paper focuses on the occupational health hazards due to the informal recycling of e-waste and then proceeds to show the safe disposal methods for handling the large quantities of e-waste generated in this electronic era and thus finds a sustainable solution for the formal processing of e-waste.
Occupational health hazards related to informal recycling of E-waste in India: An overview
Annamalai, Jayapradha
2015-01-01
The innovation in science and technology coupled with the change in lifestyle of an individual has made an incredible change in the electronic industry show casing an assorted range of new products every day to the world. India too has been impacted by this digital revolution where consumption of electronics goods grows at a rapid rate producing a large amount of waste electrical and electronic equipment. This substantial generation of electronic waste referred to as e-waste accompanied with the lack of stringent environmental laws and regulations for handling the hazardous e-waste has resulted in the cropping of number of informal sectors. Over 95% of the e-waste is treated and processed in the majority of urban slums of the country, where untrained workers carry out the dangerous procedures without personal protective equipment, which are detrimental not only to their health but also to the environment. This paper focuses on the occupational health hazards due to the informal recycling of e-waste and then proceeds to show the safe disposal methods for handling the large quantities of e-waste generated in this electronic era and thus finds a sustainable solution for the formal processing of e-waste. PMID:26023273
NASA Astrophysics Data System (ADS)
Mancinelli, B.; Prevosto, L.; Chamorro, J. C.; Minotti, F. O.; Kelly, H.
2018-05-01
A numerical investigation of the kinetic processes in the initial (nanosecond range) stage of the double-arcing instability was developed. The plasma-sheath boundary region of an oxygen-operated cutting torch was considered. The energy balance and chemistry processes in the discharge were described. It is shown that the double-arcing instability is a sudden transition from a diffuse (glow-like) discharge to a constricted (arc-like) discharge in the plasma-sheath boundary region arising from a field-emission instability. A critical electric field value of ˜107 V/m was found at the cathodic part of the nozzle wall under the conditions considered. The field-emission instability drives in turn a fast electronic-to-translational energy relaxation mechanism, giving rise to a very fast gas heating rate of at least ˜109 K/s, mainly due to reactions of preliminary dissociation of oxygen molecules via the highly excited electronic state O2(B3Σu-) populated by electron impact. It is expected that this fast oxygen heating rate further stimulates the discharge contraction through the thermal instability mechanism.
Galbraith, M C E; Smeenk, C T L; Reitsma, G; Marciniak, A; Despré, V; Mikosch, J; Zhavoronkov, N; Vrakking, M J J; Kornilov, O; Lépine, F
2017-08-02
Unraveling ultrafast dynamical processes in highly excited molecular species has an impact on our understanding of chemical processes such as combustion or the chemical composition of molecular clouds in the universe. In this article we use short (<7 fs) XUV pulses to produce excited cationic states of benzene molecules and probe their dynamics using few-cycle VIS/NIR laser pulses. The excited states produced by the XUV pulses lie in an especially complex spectral region where multi-electronic effects play a dominant role. We show that very fast τ ≈ 20 fs nonadiabatic processes dominate the relaxation of these states, in agreement with the timescale expected for most excited cationic states in benzene. In the CH 3 + fragmentation channel of the doubly ionized benzene cation we identify pathways that involve structural rearrangement and proton migration to a specific carbon atom. Further, we observe non-trivial transient behavior in this fragment channel, which can be interpreted either in terms of propagation of the nuclear wavepacket in the initially excited electronic state of the cation or as a two-step electronic relaxation via an intermediate state.
Measuring the Impact of Data Mining on Churn Management.
ERIC Educational Resources Information Center
Lejeune, Miguel A. P. M.
2001-01-01
Churn management is a concern for businesses, particularly in the digital economy. A customer relationship framework is proposed to help deal with churn issues. The model integrates the electronic channel and involves four tools for enhancing data collection, data treatment, data analysis and data integration in the decision-making process.…
Between Two Ages; America's Role in the Technetronic Era.
ERIC Educational Resources Information Center
Brzezinski, Zbigniew
An attempt to define the meaning--within a dynamic framework--of the emerging global political process focuses on changes brought about by the increasing use of technology, especially electronic technology. The book is divided into five major parts. The first deals with the impact of the scientific-technological revolution on world affairs in…
The Impact of New Electronic Imaging Systems on U.S. Air Force Visual Information Professionals.
1993-06-01
modernizing the functions left in their control. This process started by converting combat camera assets from 16mm film to Betacam "camcorder’ systems. Combat...upgraded to computer-controlled editing with 1-inch helical machines or component-video Betacam equipment. For the base visual information centers, new
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... Federal Loan Guarantee To Support Construction of Phase II of the Mid-Atlantic Power Pathway Transmission...) to support construction of Phase II of the Mid-Atlantic Power Pathway (MAPP) transmission line... 20585. Electronic submission of comments is encouraged due to processing time required for regular mail...
ERIC Educational Resources Information Center
Kultur, Can; Oytun, Erden; Cagiltay, Kursat; Ozden, M. Yasar; Kucuk, Mehmet Emin
2004-01-01
The Shareable Content Object Reference Model (SCORM) aims to standardize electronic course content, its packaging and delivery. Instructional designers and e-learning material producer organizations accept SCORM?s significant impact on instructional design/delivery process, however not much known about how such standards will be implemented to…
The Information Impact: Ensuring New Product Winners.
ERIC Educational Resources Information Center
Trubkin, Loene
Despite investment in new research tools and techniques, the product development success rate has not improved within the last 25 years. One way to increase the success rate is to have the right information at each stage of the process. Today, a relatively new method of gathering information--online access to electronic files called…
Impact of Magnetic Stirring on Stainless Steel Integrity: Effect on Biopharmaceutical Processing.
Thompson, Christopher; Wilson, Kelly; Kim, Yoen Joo; Xie, Min; Wang, William K; Wendeler, Michaela
2017-11-01
Stainless steel containers are widely used in the pharmaceutical and biopharmaceutical industry for the storage of buffers, process intermediates, and purified drug substance. They are generally held to be corrosion resistant, biocompatible, and nonreactive, although it is well established that trace amounts of metal ions can leach from stainless steel equipment into biopharmaceutical products. We report here that the use of stainless steel containers in conjunction with magnetic stirring bars leads to significantly aggravated metal contamination, consisting of both metal particles and significantly elevated metal ions in solution, the degree of which is several orders of magnitude higher than described for static conditions. Metal particles are analyzed by scanning electron microscopy with electron-dispersive X-ray spectroscopy, and metal content in solution is quantitated at different time points by inductively coupled plasma-mass spectrometry. The concentration of iron, chromium, nickel, and manganese increases with increasing stirring time and speed. We describe the impact of buffer components on the extent of metal particles and ions in solution and illustrate the effect on model proteins. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Applying NASA's explosive seam welding
NASA Technical Reports Server (NTRS)
Bement, Laurence J.
1991-01-01
The status of an explosive seam welding process, which was developed and evaluated for a wide range of metal joining opportunities, is summarized. The process employs very small quantities of explosive in a ribbon configuration to accelerate a long-length, narrow area of sheet stock into a high-velocity, angular impact against a second sheet. At impact, the oxide films of both surface are broken up and ejected by the closing angle to allow atoms to bond through the sharing of valence electrons. This cold-working process produces joints having parent metal properties, allowing a variety of joints to be fabricated that achieve full strength of the metals employed. Successful joining was accomplished in all aluminum alloys, a wide variety of iron and steel alloys, copper, brass, titanium, tantalum, zirconium, niobium, telerium, and columbium. Safety issues were addressed and are as manageable as many currently accepted joining processes.
NASA Astrophysics Data System (ADS)
Berthold, Theresa; Rombach, Julius; Stauden, Thomas; Polyakov, Vladimir; Cimalla, Volker; Krischok, Stefan; Bierwagen, Oliver; Himmerlich, Marcel
2016-12-01
The influence of oxygen plasma treatments on the surface chemistry and electronic properties of unintentionally doped and Mg-doped In2O3(111) films grown by plasma-assisted molecular beam epitaxy or metal-organic chemical vapor deposition is studied by photoelectron spectroscopy. We evaluate the impact of semiconductor processing technology relevant treatments by an inductively coupled oxygen plasma on the electronic surface properties. In order to determine the underlying reaction processes and chemical changes during film surface-oxygen plasma interaction and to identify reasons for the induced electron depletion, in situ characterization was performed implementing a dielectric barrier discharge oxygen plasma as well as vacuum annealing. The strong depletion of the initial surface electron accumulation layer is identified to be caused by adsorption of reactive oxygen species, which induce an electron transfer from the semiconductor to localized adsorbate states. The chemical modification is found to be restricted to the topmost surface and adsorbate layers. The change in band bending mainly depends on the amount of attached oxygen adatoms and the film bulk electron concentration as confirmed by calculations of the influence of surface state density on the electron concentration and band edge profile using coupled Schrödinger-Poisson calculations. During plasma oxidation, hydrocarbon surface impurities are effectively removed and surface defect states, attributed to oxygen vacancies, vanish. The recurring surface electron accumulation after subsequent vacuum annealing can be consequently explained by surface oxygen vacancies.
Interface Energetics and Chemical Doping of Organic Electronic Materials
NASA Astrophysics Data System (ADS)
Kahn, Antoine
2014-03-01
The energetics of organic semiconductors and their interfaces are central to the performance of organic thin film devices. The relative positions of charge transport states across the many interfaces of multi-layer OLEDs, OPV cells and OFETs determine in great part the efficiency and lifetime of these devices. New experiments are presented here, that look in detail at the position of these transport states and associated gap states and electronic traps that tail into the energy gap of organic molecular (e.g. pentacene) or polymer (P3HT, PBDTTT-C) semiconductors, and which directly affect carrier mobility in these materials. Disorder, sometime caused by simple exposure to an inert gas, impurities and defects are at the origin of these electronic gap states. Recent efforts in chemical doping in organic semiconductors aimed at mitigating the impact of electronic gap states are described. An overview of the reducing or oxidizing power of several n- and p-type dopants for vacuum- or solution-processed films, and their effect on the electronic structure and conductivity of both vacuum- and solution-processed organic semiconductor films is given. Finally, the filling (compensation) of active gap states via doping is investigated on the electron-transport materials C60 and P(NDI2OD-T2) , and the hole-transport polymer PBDTTT-C.
NASA Astrophysics Data System (ADS)
Agueny, Hicham; Makhoute, Abdelkader; Dubois, Alain
2017-06-01
We theoretically investigate quantum virtual path interference caused by the dynamic Stark effect in bound-bound electronic transitions. The effect is studied in an intermediate resonant region and in connection with the energetic electron impact excitation of a helium atom embedded in a weak low-frequency laser field. The process under investigation is dealt with via a Born-Floquet approach. Numerical calculations show a resonant feature in laser-assisted cross sections. The latter is found to be sensitive to the intensity of the laser field dressing. We show that this feature is a signature of quantum beats which result from the coherent mixture of different quantum virtual pathways, and that excitation may follow in order to end up with a common final channel. This mixture arises from the dynamic Stark effect, which produces a set of avoided crossings in laser-dressed states. The effect allows one to coherently control quantum virtual path interference by varying the intensity of the laser field dressing. Our findings suggest that the combination of an energetic electron and a weak laser field is a useful tool for the coherent control of nonadiabatic transitions in an intermediate resonant region.
NASA Astrophysics Data System (ADS)
Chen, Zhanbin
2018-05-01
The process of excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas by electron impact is studied, together with the subsequent radiative decay. For the target structure, the calculation is performed using the multiconfiguration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for the electron-nucleus interaction. Fine-structure levels of the 1s22p and 1s2s2p configurations and the transition properties among these levels are presented over a wide range of screening parameters. For the collision dynamics, the distorted-wave method in the relativistic frame is adopted to include the effect of plasma background, in which the interparticle interactions in the system are described by screened interactions of the Debye-Hückel type. The continuum wave function of the projectile electron is obtained by solving the modified Dirac equations. The influence of plasma strength on the cross section, the linear polarization, and the angular distribution of x-ray photon emission are investigated in detail. Comparison of the present results with experimental data and other theoretical predictions, when available, is made.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.
Bae, Wan Ki; Park, Young-Shin; Lim, Jaehoon; Lee, Donggu; Padilha, Lazaro A.; McDaniel, Hunter; Robel, Istvan; Lee, Changhee; Pietryga, Jeffrey M.; Klimov, Victor I.
2013-01-01
Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection. PMID:24157692
P-doping-free III-nitride high electron mobility light-emitting diodes and transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk
2014-07-21
We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward andmore » seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.« less
Inelastic electron tunneling mediated by a molecular quantum rotator
NASA Astrophysics Data System (ADS)
Sugimoto, Toshiki; Kunisada, Yuji; Fukutani, Katsuyuki
2017-12-01
Inelastic electron tunneling (IET) accompanying nuclear motion is not only of fundamental physical interest but also has strong impacts on chemical and biological processes in nature. Although excitation of rotational motion plays an important role in enhancing electric conductance at a low bias, the mechanism of rotational excitation remains veiled. Here, we present a basic theoretical framework of IET that explicitly takes into consideration quantum angular momentum, focusing on a molecular H2 rotator trapped in a nanocavity between two metallic electrodes as a model system. It is shown that orientationally anisotropic electrode-rotator coupling is the origin of angular-momentum exchange between the electron and molecule; we found that the anisotropic coupling imposes rigorous selection rules in rotational excitation. In addition, rotational symmetry breaking induced by the anisotropic potential lifts the degeneracy of the energy level of the degenerated rotational state of the quantum rotator and tunes the threshold bias voltage that triggers rotational IET. Our theoretical results provide a paradigm for physical understanding of the rotational IET process and spectroscopy, as well as molecular-level design of electron-rotation coupling in nanoelectronics.
Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; ...
2016-08-05
Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO 2 and SrTiO 3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~10 12 inch –2). Here, we systematicallymore » show that these devices allow precise engineering of the resistance states, thus enabling large on–off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.« less
1980-03-01
6.1 Excimers and Exciplexes : Background 55 6.2 Rare Gas-Halide Lasers 58 6.3 Formation, Quenching and Absorption Processes for Rare Gas-Halides 60... exciplex such as KrF* and XeF* laser systems as well as in various types of gas discharges. They are also of fundamental significance in their own...collision processes contributing to the formation and quenching of the excited molecular states in exciplex (such as KrF ) and excimer (such as Xe2
NASA Astrophysics Data System (ADS)
Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.
2017-02-01
In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.
Ben-Assuli, Ofir; Leshno, Moshe
2016-09-01
In the last decade, health providers have implemented information systems to improve accuracy in medical diagnosis and decision-making. This article evaluates the impact of an electronic health record on emergency department physicians' diagnosis and admission decisions. A decision analytic approach using a decision tree was constructed to model the admission decision process to assess the added value of medical information retrieved from the electronic health record. Using a Bayesian statistical model, this method was evaluated on two coronary artery disease scenarios. The results show that the cases of coronary artery disease were better diagnosed when the electronic health record was consulted and led to more informed admission decisions. Furthermore, the value of medical information required for a specific admission decision in emergency departments could be quantified. The findings support the notion that physicians and patient healthcare can benefit from implementing electronic health record systems in emergency departments. © The Author(s) 2015.
Self-amplified photo-induced gap quenching in a correlated electron material
Mathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.
2016-01-01
Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. PMID:27698341
Fast Nitrogen Atoms from Dissociative Excitation of N2 by Electron Impact
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Ciocca, Marco
1996-01-01
The Doppler profiles of one of the fine structure lines of the N I (1200 A) g (sup 4)S(sup 0)-(sup 4)P multiplet and of the N II (1085 A) g (sup 3)p(sup O)-(sup 3)D multiplet have been measured. Excitation of the multiplets is produced by electron impact dissociative excitation of N2. The experimental line profiles are evaluated by fast Fourier transform (FFT) techniques and analysis of the profiles yields the kinetic energy distribution of fragments. The full width at half maximum (FWHM) of N I (1200 A) increases from 27+/-6 mA at 30 eV to 37+/-4 mA at 100 eV as the emission cross section of the dissociative ionization excitation process becomes more important relative to the dissociative excitation process. The FWHM of the N II (1085 A) line is 36+/-4 mA at 100 eV. For each multiplet the kinetic energy distribution function of each of the two fragment N atoms (ions) is much broader than thermal with a mean energy above 1.0 eV. The dissociation process with the largest cross section is predissociation and predominantly produces N atoms with kinetic energy distributions having mean energies above 0.5 eV. Dissociative processes can lead to a substantial escape flux of N I atoms from the satellites, Titan and Triton of the outer planets.
Vazquez, Yamila V; Barbosa, Silvia E
2017-01-01
The aim of this paper is to assess recycling process window of ABS (Acrylonitrile-Butadiene-Styrene) and HIPS (High impact Polystyrene) from WEEE (waste from electrical and electronic equipment) through a final properties/structure screening study on their blends. Main motivation is to evaluate which amount of one plastic WEEE can be included into the other at least keeping their properties. In this sense, a wider margin of error during sorting could be admitted to obtain recycling materials with similar technological application of recycled ABS and HIPS by themselves. Results are discussed in terms of final blend structure, focusing in the interaction, within blends, of copolymers phases and fillers presents in WEEE. The comparative analysis of mechanical performance and morphology of HIPS/ABS blends indicates that the addition of 50wt% HIPS to ABS even improves 50% the elongation at break maintaining the strength. On the opposite, HIPS maintains its properties with 20wt% of ABS added. This study allows enlarging composition process window of recycling plastic WEEE for similar applications. This could be a sustainable way to improve benefit of e-scrap with low costs and easy processability. In consequence, social interest in the recycling of this kind of plastic scrap could be encourage from either ecological or economical points of view. Copyright © 2016 Elsevier Ltd. All rights reserved.
Research gaps related to the environmental impacts of electronic cigarettes
Chang, Hoshing
2014-01-01
Objective To consider the research gaps related to the environmental impacts of electronic cigarettes due to their manufacture, use and disposal. Methods Literature searches were conducted through December 2013. Studies were included in this review if they related to the environmental impacts of e-cigarettes. Results Scientific information on the environmental impacts of e-cigarette manufacturing, use and disposal is very limited. No studies formally evaluated the environmental impacts of the manufacturing process or disposal of components, including batteries. Four studies evaluated potential exposure to secondhand e-cigarette aerosol, an indication of impacts on indoor air quality. A 2010 survey of six e-cigarette models found that none of the products provided disposal instructions for spent cartridges containing nicotine. Notably, some e-cigarette manufacturers claim their e-cigarettes are ‘eco-friendly’ or ‘green’, despite the lack of any supporting data or environmental impact studies. Some authors argue that such advertising may boost sales and increase e-cigarette appeal, especially among adolescents. Conclusions Little is known about the environmental impacts of e-cigarettes, and a number of topics could be further elucidated by additional investigation. These topics include potential environmental impacts related to manufacturing, use and disposal. The environmental impacts of e-cigarette manufacturing will depend upon factory size and the nicotine extracting method used. The environmental impacts of e-cigarette use will include chemical and aerosol exposure in the indoor environment. The environmental impacts of disposal of e-cigarette cartridges (which contain residual nicotine) and disposal of e-cigarettes (which contain batteries) represent yet another environmental concern. PMID:24732165
NASA Astrophysics Data System (ADS)
Morrow, Benjamin M.; Lienert, Thomas J.; Knapp, Cameron M.; Sutton, Jacob O.; Brand, Michael J.; Pacheco, Robin M.; Livescu, Veronica; Carpenter, John S.; Gray, George T.
2018-05-01
Recent work in both 304L and 316L stainless steel produced by additive manufacturing (AM) has shown that in addition to the unique, characteristic microstructures formed during the process, a fine dispersion of sub-micron particles, with a chemistry different from either the powder feedstock or the expected final material, are evident in the final microstructure. Such fine-scale features can only be resolved using transmission electron microscopy (TEM) or similar techniques. The present work uses electron microscopy to study both the initial powder feedstock and microstructures in final AM parts. Special attention is paid to the chemistry and origin of these nanoscale particles in several different metal alloys, and their impact on the final build. Comparisons to traditional, wrought material will be made.
Single electron impact ionization of the methane molecule
NASA Astrophysics Data System (ADS)
Bouamoud, Mammar; Sahlaoui, Mohammed; Benmansour, Nour El Houda; Atomic and Molecular Collisions Team
2014-10-01
Triply differential cross sections (TDCS) results of electron-impact ionization of the inner 2a1 molecular orbital of CH4 are presented in the framework of the Second Born Approximation and compared with the experimental data performed in coplanar asymmetric geometry. The cross sections are averaged on the random orientations of the molecular target for accurate comparison with experiments and are compared also with the theoretical calculations of the Three Coulomb wave (3CW) model. Our results are in good agreement with experiments and 3CW results in the binary peak. In contrast the Second Born Approximation yields a significant higher values compared to the 3CW results for the recoil peak and seems to describe suitably the recoil region where higher order effects can occur with the participation of the recoiling ion in the collision process.
NASA Astrophysics Data System (ADS)
Guo, Heng; Yang, Jian; Pu, Bingxue; Zhang, Haiyan; Niu, Xiaobin
2018-01-01
Organo-lead perovskites as light harvesters have represented a hot field of research on high-efficiency perovskite solar cells. Previous approaches to increasing the solar cell efficiency have focused on optimization of the morphology of perovskite film. In fact, the electron transporting layer (ETL) also has a significant impact on solar cell performance. Herein, we introduce a facile and low temperature solution-processing method to deposit Nb2O5 film as ETL for PSCs. Based on Nb2O5 ETL, we investigate the effect of the annealing time for the perovskite films via different solution processing, relating it to the perovskite film morphology and its influence on the device working mechanisms. These results shed light on the origin of photovoltaic performance voltage in perovskite solar cells, and provide a path to further increase their efficiency.
Jeansson, John S
2013-01-01
At the very heart of Swedish healthcare digitalisation are large investments in electronic health records (EHRs). These integrated information systems (ISs) carry promises of great benefits and value for organisations. However, realising IS benefits and value has, in general, proven to be a challenging task, and as organisations strive to formalise their realisation efforts a misconception of rationality threatens to emerge. This misconception manifests itself when the formality of analysis threatens to underrate the impact of social processes in deciding which potential benefits to pursue. This paper suggests that these decisions are the result of a social process of negotiation. The purpose of this paper is to observe three benefits analysis projects of three Swedish hospitals to better understand the character and management of proposed benefits negotiations. Findings depict several different categories of benefits negotiations, as well as key factors to consider during the benefits negotiation process.
Electron impact excitation of coronene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M.A.; Ratliff, J.M.; Trajmar, S.
1990-12-15
A preliminary study of the electron-impact excitation of thermally evaporated coronene at 550{degree} C was carried out using electron-energy-loss spectroscopy. Measurements of the energy-loss spectra of coronene at high (100 eV) and low (5--20 eV) impact energies are presented. One of the high-energy spectra was converted to an apparent generalized oscillator strength spectrum and compared to the photoabsorption spectrum of coronene. Observations concerning vibrational excitation of coronene by electron impact are also presented and discussed.
Design of Stretchable Electronics Against Impact.
Yuan, J H; Pharr, M; Feng, X; Rogers, John A; Huang, Yonggang
2016-10-01
Stretchable electronics offer soft, biocompatible mechanical properties; these same properties make them susceptible to device failure associated with physical impact. This paper studies designs for stretchable electronics that resist failure from impacts due to incorporation of a viscoelastic encapsulation layer. Results indicate that the impact resistance depends on the thickness and viscoelastic properties of the encapsulation layer, as well as the duration of impact. An analytic model for the critical thickness of the encapsulation layer is established. It is shown that a commercially available, low modulus silicone material offers viscous properties that make it a good candidate as the encapsulation layer for stretchable electronics.
Sykes, Matthew E; Stewart, Jon W; Akselrod, Gleb M; Kong, Xiang-Tian; Wang, Zhiming; Gosztola, David J; Martinson, Alex B F; Rosenmann, Daniel; Mikkelsen, Maiken H; Govorov, Alexander O; Wiederrecht, Gary P
2017-10-17
The creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy. We find evidence for three subpopulations of nonthermal carriers, which we propose arise from anisotropic electron-electron scattering within sp-bands near the Fermi surface. The bimetallic character of the metasurface strongly impacts the physics, with dissipation occurring primarily in the gold, whereas the quantum process of hot electron generation takes place in both components. Our calculations show that the choice of geometry and materials is crucial for producing strong ultrafast nonthermal electron components.The creation of energetic electrons through plasmon excitation has implications in optical energy conversion and ultrafast nanophotonics. Here, the authors find evidence for three subpopulations of nonthermal carriers which arise from anisotropic electron-electron scattering near the Fermi surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.; Li, Y.; Liu, C.
2015-08-15
This paper presents a statistical theory for the initial onset of multipactor breakdown in coaxial transmission lines, taking both the nonuniform electric field and random electron emission velocity into account. A general numerical method is first developed to construct the joint probability density function based on the approximate equation of the electron trajectory. The nonstationary dynamics of the multipactor process on both surfaces of coaxial lines are modelled based on the probability of various impacts and their corresponding secondary emission. The resonant assumption of the classical theory on the independent double-sided and single-sided impacts is replaced by the consideration ofmore » their interaction. As a result, the time evolutions of the electron population for exponential growth and absorption on both inner and outer conductor, in response to the applied voltage above and below the multipactor breakdown level, are obtained to investigate the exact mechanism of multipactor discharge in coaxial lines. Furthermore, the multipactor threshold predictions of the presented model are compared with experimental results using measured secondary emission yield of the tested samples which shows reasonable agreement. Finally, the detailed impact scenario reveals that single-surface multipactor is more likely to occur with a higher outer to inner conductor radius ratio.« less
Secondary electron emission from lunar soil by solar wind type ion impact: Laboratory measurements
NASA Astrophysics Data System (ADS)
Dukes, Catherine; Bu, Caixia; Baragiola, Raul A.
2015-11-01
Introduction: The lunar surface potential is determined by time-varying fluxes of electrons and ions from the solar wind, photoelectrons ejected by UV photons, cosmic rays, and micrometeorite impacts. Solar wind ions have a dual role in the charging process, adding positive charge to the lunar regolith upon impact and ejecting negative secondary electrons (SE). Electron emission occurs when the energy from the impacting ion is transferred to the solid, ionizing and damaging the material; electrons with kinetic energy greater than the ionization potential (band gap + electron affinity) are ejected from the solid[1].Experiment: We investigate the energy distribution of secondary electrons ejected from Apollo soils of varying maturity and lunar analogs by 4 keV He+. Soils are placed into a shallow Al cup and compressed. In-situ low-energy oxygen plasma is used to clean atmospheric contaminants from the soil before analysis[2]. X-ray photoelectron spectroscopy ascertains that the sample surface is clean. Experiments are conducted in a PHI 560 system (<10-9 Torr), equipped with a double-pass, cylindrical-mirror electron energy analyzer (CMA) and μ-metal shield. The spectrometer is used to measure SE distributions, as well as for in situ surface characterization. A small negative bias (~5V) with respect to the grounded entrance grid of the CMA may be placed on the sample holder in order to expose the low energy cutoff.To measure SE energy distributions, primary ions rastered over a ~6 x 6 mm2 area are incident on the sample at ~40° relative to the surface normal, while SE emitted with an angle of 42.3°± 3.5° in a cone are analyzed.Results: The energy distribution of SE ejected from 4 keV He ion irradiation of albite with no bias applied shows positive charging of the surface. The general shape and distribution peak (~4 eV) are consistent with spectra for low energy ions on insulating material[1].Acknowledgements: We thank the NASA LASER program for support.References: [1]P. Riccardi, R. Baragiola et al. (2004); Surf. Science 57, L305-L310. [2]C.A. Dukes & R.A. Baragiola (2010) Surface Interface Anal. 42, 40-44.
NASA Astrophysics Data System (ADS)
Jones, D. B.; Campbell, L.; Bottema, M. J.; Teubner, P. J. O.; Cartwright, D. C.; Newell, W. R.; Brunger, M. J.
2006-01-01
Electron impact excitation of vibrational levels in the ground electronic state and seven excited electronic states in O 2 have been simulated for an International Brightness Coefficient-Category 2+ (IBC II+) night-time aurora, in order to predict O 2 excited state number densities and volume emission rates (VERs). These number densities and VERs are determined as a function of altitude (in the range 80-350 km) in the present study. Recent electron impact excitation cross-sections for O 2 were combined with appropriate altitude dependent IBC II+ auroral secondary electron distributions and the vibrational populations of the eight O 2 electronic states were determined under conditions of statistical equilibrium. Pre-dissociation, atmospheric chemistry involving atomic and molecular oxygen, radiative decay and quenching of excited states were included in this study. This model predicts relatively high number densities for the X3Σg-(v'⩽4),a1Δandb1Σg+ metastable electronic states and could represent a significant source of stored energy in O 2* for subsequent thermospheric chemical reactions. Particular attention is directed towards the emission intensities of the infrared (IR) atmospheric (1.27 μm), Atmospheric (0.76 μm) and the atomic oxygen 1S→ 1D transition (5577 Å) lines and the role of electron-driven processes in their origin. Aircraft, rocket and satellite observations have shown both the IR atmospheric and Atmospheric lines are dramatically enhanced under auroral conditions and, where possible, we compare our results to these measurements. Our calculated 5577 Å intensity is found to be in good agreement with values independently measured for a medium strength IBC II+ aurora.
A hybrid life cycle inventory of nano-scale semiconductor manufacturing.
Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Raoux, Sebastien; Clark, Daniel; Dornfeld, David
2008-04-15
The manufacturing of modern semiconductor devices involves a complex set of nanoscale fabrication processes that are energy and resource intensive, and generate significant waste. It is important to understand and reduce the environmental impacts of semiconductor manufacturing because these devices are ubiquitous components in electronics. Furthermore, the fabrication processes used in the semiconductor industry are finding increasing application in other products, such as microelectromechanical systems (MEMS), flat panel displays, and photovoltaics. In this work we develop a library of typical gate-to-gate materials and energy requirements, as well as emissions associated with a complete set of fabrication process models used in manufacturing a modern microprocessor. In addition, we evaluate upstream energy requirements associated with chemicals and materials using both existing process life cycle assessment (LCA) databases and an economic input-output (EIO) model. The result is a comprehensive data set and methodology that may be used to estimate and improve the environmental performance of a broad range of electronics and other emerging applications that involve nano and micro fabrication.
Total cross section of furfural by electron impact: Experiment and theory.
Traoré Dubuis, A; Verkhovtsev, A; Ellis-Gibbings, L; Krupa, K; Blanco, F; Jones, D B; Brunger, M J; García, G
2017-08-07
We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.
Total cross section of furfural by electron impact: Experiment and theory
NASA Astrophysics Data System (ADS)
Traoré Dubuis, A.; Verkhovtsev, A.; Ellis-Gibbings, L.; Krupa, K.; Blanco, F.; Jones, D. B.; Brunger, M. J.; García, G.
2017-08-01
We present experimental total cross sections for electron scattering from furfural in the energy range from 10 to 1000 eV, as measured using a double electrostatic analyzer gas cell electron transmission experiment. These results are compared to theoretical data for furfural, as well as to experimental and theoretical values for the structurally similar molecules furan and tetrahydrofuran. The measured total cross section is in agreement with the theoretical results obtained by means of the independent-atom model with screening corrected additivity rule including interference method. In the region of higher electron energies, from 500 eV to 10 keV, the total electron scattering cross section is also estimated using a semi-empirical model based on the number of electrons and dipole polarizabilities of the molecular targets. Together with the recently measured differential and integral cross sections, and the furfural energy-loss spectra, the present total cross section data nearly complete the data set that is required for numerical simulation of low-energy electron processes in furfural, covering the range of projectile energies from a few electron volts up to 10 keV.
Impact glasses from the ultrafine fraction of lunar soils
NASA Technical Reports Server (NTRS)
Norris, J. A.; Keller, L. P.; Mckay, D. S.
1993-01-01
The chemical compositions of microscopic glasses produced during meteoroid impacts on the lunar surface provide information regarding the various fractionation processes which accompany these events. To learn more about these fractionation processes, we studied the compositions of submicrometer glass spheres from two Apollo 17 sampling sites using electron microscopy. The majority of the analyzed glasses show evidence for varying degrees of impact induced chemical fractionation. Among these are HASP glasses (High-Al, Si-Poor) which are believed to represent the refractory residuum left after the loss of volatile elements (e.g. Si, Fe, N) from the precursor material. In addition to HASP-type glasses, we also observed a group of VRAP glasses (volatile-rich, Al-poor) that represent condensates of vaporized volatile constituents and are complementary to the HASP compositions. High-Ti glasses were also found during the course of the study, and are documented here for the first time.
Patient Web Portals to Improve Diabetes Outcomes: A Systematic Review
Mayberry, Lindsay Satterwhite; Mulvaney, Shelagh A.; Hess, Rachel
2011-01-01
Patient web portals (PWPs), defined as the integration of electronic medical records and patient health records, have been related to enhanced patient outcomes. A literature review was conducted to characterize the design and evaluation of PWPs to improve health care processes and outcomes in diabetes. A summary of 26 articles revealed the positive impact PWPs have on patient outcomes, patient-provider communication, disease management, and access to and patient satisfaction with health care. Innovative and useful approaches included the evaluation of specific components of the PWPs, assessing the impact of PWPs on mediators of health behaviors, such as patient distress, identification of barriers to use, and patient willingness to pay for access. Future research should focus on relevant processes that mediate patient and provider use, impact on health care utilization, and a patient-centered approach to the design and integration of educational opportunities afforded through PWPs. PMID:20890688
Patient web portals to improve diabetes outcomes: a systematic review.
Osborn, Chandra Y; Mayberry, Lindsay Satterwhite; Mulvaney, Shelagh A; Hess, Rachel
2010-12-01
Patient web portals (PWPs), defined as the integration of electronic medical records and patient health records, have been related to enhanced patient outcomes. A literature review was conducted to characterize the design and evaluation of PWPs to improve health care processes and outcomes in diabetes. A summary of 26 articles revealed the positive impact PWPs have on patient outcomes, patient-provider communication, disease management, and access to and patient satisfaction with health care. Innovative and useful approaches included the evaluation of specific components of the PWPs, assessing the impact of PWPs on mediators of health behaviors, such as patient distress, identification of barriers to use, and patient willingness to pay for access. Future research should focus on relevant processes that mediate patient and provider use, impact on health care utilization, and a patient-centered approach to the design and integration of educational opportunities afforded through PWPs.
Direct evidence of two interatomic relaxation mechanisms in argon dimers ionized by electron impact
Ren, Xueguang; Jabbour Al Maalouf, Elias; Dorn, Alexander; Denifl, Stephan
2016-01-01
In weakly bound systems like liquids and clusters electronically excited states can relax in inter-particle reactions via the interplay of electronic and nuclear dynamics. Here we report on the identification of two prominent examples, interatomic Coulombic decay (ICD) and radiative charge transfer (RCT), which are induced in argon dimers by electron collisions. After initial ionization of one dimer constituent ICD and RCT lead to the ionization of its neighbour either by energy transfer to or by electron transfer from the neighbour, respectively. By full quintuple-coincidence measurements, we unambiguously identify ICD and RCT, and trace the relaxation dynamics as function of the collisional excited state energies. Such interatomic processes multiply the number of electrons and shift their energies down to the critical 1–10 eV range, which can efficiently cause chemical degradation of biomolecules. Therefore, the observed relaxation channels might contribute to cause efficient radiation damage in biological systems. PMID:27000407
NASA Astrophysics Data System (ADS)
Talbo, V.; Mateos, J.; González, T.; Lechaux, Y.; Wichmann, N.; Bollaert, S.; Vasallo, B. G.
2015-10-01
Impact-ionization metal-oxide-semiconductor FETs (I-MOSFETs) are in competition with tunnel FETs (TFETs) in order to achieve the best behaviour for low power logic circuits. Concretely, III-V I-MOSFETs are being explored as promising devices due to the proper reliability, since the impact ionization events happen away from the gate oxide, and the high cutoff frequency, due to high electron mobility. To facilitate the design process from the physical point of view, a Monte Carlo (MC) model which includes both impact ionization and band-to-band tunnel is presented. Two ungated InGaAs and InAlAs/InGaAs 100 nm PIN diodes have been simulated. In both devices, the tunnel processes are more frequent than impact ionizations, so that they are found to be appropriate for TFET structures and not for I- MOSFETs. According to our simulations, other narrow bandgap candidates for the III-V heterostructure, such as InAs or GaSb, and/or PININ structures must be considered for a correct I-MOSFET design.
The Microstructure of Lunar Micrometeorite Impact Craters
NASA Technical Reports Server (NTRS)
Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.
2016-01-01
The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.
Fast Food Art, Talk Show Therapy: The Impact of Mass Media on Adolescent Art Therapy
ERIC Educational Resources Information Center
Potash, Jordan S.
2009-01-01
Electronic media provides rapid delivery and unlimited access to pictures, sounds, and information. The ubiquitous presence of techno-digital culture in the lives of today's adolescents may influence or contaminate the art therapy process. This article presents two case studies that illustrate how cyberspace entered into art therapy sessions and…
NASA Technical Reports Server (NTRS)
Zipf, E. C., Jr.
1974-01-01
Results obtained by rocket-borne optical spectrometry are presented. Composition measurements and auroral studies are reported. The production of N (D-2) atoms by photo-absorption processes, and by electron impact excitation of N2 are discussed along with vibrationally excited CO2(+) ions in planetary atmospheres.
Still-Video Photography: Tomorrow's Electronic Cameras in the Hands of Today's Photojournalists.
ERIC Educational Resources Information Center
Foss, Kurt; Kahan, Robert S.
This paper examines the still-video camera and its potential impact by looking at recent experiments and by gathering information from some of the few people knowledgeable about the new technology. The paper briefly traces the evolution of the tools and processes of still-video photography, examining how photographers and their work have been…
Impact of nanosecond proton beam processing on nanoblocks of copper
NASA Astrophysics Data System (ADS)
Borodin, Y. V.; Mantina, A. Y.; Pak, V.; Zhang, X. X.
2017-01-01
X-ray studies in conjunction with the method of recoil nuclei and electron microscopy of irradiated plates polycrystalline Cu by nanosecond high power density proton beams (E = 120 keV; I = 80 A/cm2, t = 50 ns) showed nano block nature of the formation of structure in the surface layer target and condensed-formed film.
ERIC Educational Resources Information Center
Rosero-Zambrano, Carlos Andrés; Avila, Alba; Osorio, Luz Adriana; Aguirre, Sandra
2018-01-01
The coupling of the traditional classroom instruction and a virtual learning environment (VLE) in an engineering course is critical to stimulating the learning process and to encouraging students to develop competencies outside of the classroom. This can be achieved through planned activities and the use of information and communication…
ERIC Educational Resources Information Center
RESCUE, Litchfield, CT.
The Connecticut Business and Office Education (BOE) curriculum was revised in light of critical issues in BOE. The issues were studied prior to revision, and the following recommendations were made: (1) requiring a minimum of one semester of electronic keyboarding and word processing; (2) placing equal emphasis on management, logical thinking…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine
2016-01-15
The ability to achieve atomic layer precision is the utmost goal in the implementation of atomic layer etch technology. Carbon-based materials such as carbon nanotubes (CNTs) and graphene are single atomic layers of carbon with unique properties and, as such, represent the ultimate candidates to study the ability to process with atomic layer precision and assess impact of plasma damage to atomic layer materials. In this work, the authors use these materials to evaluate the atomic layer processing capabilities of electron beam generated plasmas. First, the authors evaluate damage to semiconducting CNTs when exposed to beam-generated plasmas and compare thesemore » results against the results using typical plasma used in semiconductor processing. The authors find that the beam generated plasma resulted in significantly lower current degradation in comparison to typical plasmas. Next, the authors evaluated the use of electron beam generated plasmas to process graphene-based devices by functionalizing graphene with fluorine, nitrogen, or oxygen to facilitate atomic layer deposition (ALD). The authors found that all adsorbed species resulted in successful ALD with varying impact on the transconductance of the graphene. Furthermore, the authors compare the ability of both beam generated plasma as well as a conventional low ion energy inductively coupled plasma (ICP) to remove silicon nitride (SiN) deposited on top of the graphene films. Our results indicate that, while both systems can remove SiN, an increase in the D/G ratio from 0.08 for unprocessed graphene to 0.22 to 0.26 for the beam generated plasma, while the ICP yielded values from 0.52 to 1.78. Generally, while some plasma-induced damage was seen for both plasma sources, a much wider process window as well as far less damage to CNTs and graphene was observed when using electron beam generated plasmas.« less
Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman
2017-07-13
Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.
Servati, Amir; Wang, Z. Jane; Ko, Frank; Servati, Peyman
2017-01-01
Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology. PMID:28703744
NASA Astrophysics Data System (ADS)
Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.
2016-06-01
A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/ z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV.
Photon emission from massive projectile impacts on solids.
Fernandez-Lima, F A; Pinnick, V T; Della-Negra, S; Schweikert, E A
2011-01-01
First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.
Photon emission from massive projectile impacts on solids
Fernandez-Lima, F. A.; Pinnick, V. T.; Della-Negra, S.; Schweikert, E. A.
2011-01-01
First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Aun+q (1 ≤ n ≤ 400; q = 1–4) projectiles with impact energies in the range of 28–136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact. PMID:21603128
Advanced electric propulsion research, 1991
NASA Technical Reports Server (NTRS)
Monheiser, Jeffery M.
1992-01-01
A simple model for the production of ions that impinge on and sputter erode the accelerator grid of an ion thruster is presented. Charge-exchange and electron-impact ion production processes are considered, but initial experimental results suggest the charge-exchange process dominates. Additional experimental results show the effects of changes in thruster operating conditions on the length of the region from which these ions are drawn upstream into the grid. Results which show erosion patterns and indicate molybdenum accelerator grids erode more rapidly than graphite ones are also presented.
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J. (Principal Investigator); Koehne, Jessica; Gandhiraman, Ram; Navarrete, Jesica; Spangle, Dylan
2017-01-01
Space missions rely utterly on metallic components, from the spacecraft to electronics. Yet, metals add mass, and electronics have the additional problem of a limited lifespan. Thus, current mission architectures must compensate for replacement. In space, spent electronics are discarded; on earth, there is some recycling but current processes are toxic and environmentally hazardous. Imagine instead an end-to-end recycling of spent electronics at low mass, low cost, room temperature, and in a non-toxic manner. Here, we propose a solution that will not only enhance mission success by decreasing upmass and providing a fresh supply of electronics, but in addition has immediate applications to a serious environmental issue on the Earth. Spent electronics will be used as feedstock to make fresh electronic components, a process we will accomplish with so-called 'urban biomining' using synthetically enhanced microbes to bind metals with elemental specificity. To create new electronics, the microbes will be used as 'bioink' to print a new IC chip, using plasma jet electronics printing. The plasma jet electronics printing technology will have the potential to use martian atmospheric gas to print and to tailor the electronic and chemical properties of the materials. Our preliminary results have suggested that this process also serves as a purification step to enhance the proportion of metals in the 'bioink'. The presence of electric field and plasma can ensure printing in microgravity environment while also providing material morphology and electronic structure tunabiity and thus optimization. Here we propose to increase the TRL level of the concept by engineering microbes to dissolve the siliceous matrix in the IC, extract copper from a mixture of metals, and use the microbes as feedstock to print interconnects using mars gas simulant. To assess the ability of this concept to influence mission architecture, we will do an analysis of the infrastructure required to execute this concept on Mars, and additional opportunities it could offer mission design from the biological and printing technologies. In addition, we will do an analysis of the impact of this technology for terrestrial applications addressing in particular environmental concerns and availability of metals.
Electron-Driven Processes: From Single Collision Experiments to High-Pressure Discharge Plasmas
NASA Astrophysics Data System (ADS)
Becker, Kurt
2001-10-01
Plasmas are complex systems which consist of various groups of interacting particles (neutral atoms and molecules in their ground states and in excite states, electrons, and positive and negative ions). In principle, one needs to understand and describe all interactions between these particles in order to model the properties of the plasma and to predict its behavior. However, two-body interactions are often the only processes of relevance and only a subset of all possible collisional interactions are important. The focus of this talk is on collisional and radiative processes in low-temperature plasmas, both at low and high pressures. We will limit the discussion (i) to ionization and dissociation processes in molecular low-pressure plasmas and (ii) to collisional and radiative processes in high-pressure plasmas in rare gases and mixtures of rare gases and N2, O2, and H2. Electron-impact dissociation processes can be divided into dissociative excitation and dissociation into neutral ground-state fragments. Neutral molecular dissociation has only recently received attention from experimentalists and theorists because of the serious difficulties associated with the investigation of these processes. Collisional and radiative processes in high-pressure plasmas provide a fertile environment to the study of interactions that go beyond binary collisions involving ground-state species. Step-wise processes and three-body collisions begin to dominate the behavior of such plasmas. We will discuss examples of such processes as they relate to high-pressure rare gas discharge plasmas. Work supported by NSF, DOE, DARPA, NASA, and ABA Inc.
Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika
2011-10-05
This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd
Could Zinc Whiskers Be Impacting Your Electronic Systems? Raise Your Awareness. Revision D
NASA Technical Reports Server (NTRS)
Sampson, Michael; Brusse, Jay
2003-01-01
During the past several decades electrical short circuits induced by "Zinc Whiskers" have been cited as the root cause of failure for various electronic systems (e.g., apnea monitors, telecom switches). These tiny filaments of zinc that may grow from some zinc-coated items (especially those coated by electroplating processes) have the potential to induce electrical shorts in exposed circuitry. Through this article, the authors describe a particular failure scenario attributed to zinc whiskers that has affected many facilities (including some NASA facilities) that utilized zinc-coated raised "access" floor tiles and support structures. Zinc whiskers that may be growing beneath your raised floor have the potential to wreak havoc on electronic systems operating above the floor.
Silicon-carbon bond inversions driven by 60-keV electrons in graphene.
Susi, Toma; Kotakoski, Jani; Kepaptsoglou, Demie; Mangler, Clemens; Lovejoy, Tracy C; Krivanek, Ondrej L; Zan, Recep; Bangert, Ursel; Ayala, Paola; Meyer, Jannik C; Ramasse, Quentin
2014-09-12
We demonstrate that 60-keV electron irradiation drives the diffusion of threefold-coordinated Si dopants in graphene by one lattice site at a time. First principles simulations reveal that each step is caused by an electron impact on a C atom next to the dopant. Although the atomic motion happens below our experimental time resolution, stochastic analysis of 38 such lattice jumps reveals a probability for their occurrence in a good agreement with the simulations. Conversions from three- to fourfold coordinated dopant structures and the subsequent reverse process are significantly less likely than the direct bond inversion. Our results thus provide a model of nondestructive and atomically precise structural modification and detection for two-dimensional materials.
Mann, Megan A; Helfrick, John C; Bottomley, Lawrence A
2014-08-19
Theory for cyclic square wave voltammetry of quasireversible electron transfer reactions is presented and experimentally verified. The impact of empirical parameters on the shape of the current-voltage curve is examined. From the trends, diagnostic criteria enabling the use of this waveform as a tool for mechanistic analysis of electrode reaction processes are presented. These criteria were experimentally confirmed using Eu(3+)/Eu(2+), a well-established quasireversible analyte. Using cyclic square wave voltammetry, both the electron transfer coefficient and rate were calculated for this analyte and found to be in excellent agreement with literature. When properly applied, these criteria will enable nonexperts in voltammetry to assign the electrode reaction mechanism and accurately measure electrode reaction kinetics.
NASA Astrophysics Data System (ADS)
Ren, Xueguang; Amami, Sadek; Zatsarinny, Oleg; Pflüger, Thomas; Weyland, Marvin; Dorn, Alexander; Madison, Don; Bartschat, Klaus
2016-06-01
As a further test of advanced theoretical methods to describe electron-impact single-ionization processes in complex atomic targets, we extended our recent work on Ne (2 p ) ionization [X. Ren, S. Amami, O. Zatsarinny, T. Pflüger, M. Weyland, W. Y. Baek, H. Rabus, K. Bartschat, D. Madison, and A. Dorn, Phys. Rev. A 91, 032707 (2015), 10.1103/PhysRevA.91.032707] to Ar (3 p ) ionization at the relatively low incident energy of E0=66 eV. The experimental data were obtained with a reaction microscope, which can cover nearly the entire 4 π solid angle for the secondary electron emission. We present experimental data for detection angles of 10, 15, and 20∘ for the faster of the two outgoing electrons as a function of the detection angle of the secondary electron with energies of 3, 5, and 10 eV, respectively. Comparison with theoretical predictions from a B -spline R -matrix (BSR) with pseudostates approach and a three-body distorted-wave (3DW) approach, for detection of the secondary electron in three orthogonal planes as well as the entire solid angle, shows overall satisfactory agreement between experiment and the BSR results, whereas the 3DW approach faces difficulties in predicting some of the details of the angular distributions. These findings are different from our earlier work on Ne (2 p ), where both the BSR and 3DW approaches yielded comparable levels of agreement with the experimental data.
Models of Electron Energetics in the Enceladus Torus
NASA Astrophysics Data System (ADS)
Cravens, T. E.; Ozak, N.; Richard, M. S.; Robertson, I. P.; Perry, M. E.; Campbell, M. E.
2010-12-01
The inner magnetosphere of Saturn contains a mixture of plasma and neutral gas, the dominant source of which is the icy satellite Enceladus. Water vapor and water dissociation products are present throughout the magnetosphere but they are particularly concentrated in a torus surrounding Saturn at the orbit of Enceladus. The Hubble Space Telescope observed OH in the torus and other neutral species (mainly water) have been measured by the Ion and Neutral Mass Spectrometer (INMS) and the Ultraviolet Imaging Spectrometer (UVIS) onboard the Cassini spacecraft. Relatively cold plasma, dominated by water group ion species, was measured by instruments onboard both the Voyager and Cassini spacecraft. The electron distribution function in this torus appears to include both a colder thermal population (seen for example by the Cassini Radio and Plasma Wave Spectrometer’s Langmuir probe -- RPWS/LP) and hotter suprathermal populations (seen by the electron spectrometer part of the Cassini plasma analyzer -- CAPS/ELS). We present a model of electron energetics in the torus. One part of this model utilizes an electron energy deposition code to determine electron fluxes versus energy. The model includes photoelectron production from the absorption of solar radiation as well as electron impact collisional processes for water and other neutral species. Another part of the model consists of an energetics code for thermal electrons that generates electron temperatures. Heating from Coulomb collisions with photoelectrons and with hot pick-up ions was included, as was cooling due to electron impact collisions with water. We show that solar radiation is the dominant source of suprathermal electrons in the core neutral torus, in agreement with recently published CAPS-ELS data. We predict electron thermal energies of about 2 eV, which is somewhat low in comparison with recently published RPWS-LP data. The implications of these results for plasma densities in the torus will also be discussed.
Paudel, M; MacKenzie, M; Fallone, B; Rathee, S
2012-06-01
To evaluate the performance of a model based image reconstruction in reducing metal artifacts in MVCT systems, and to compare with filtered-back projection (FBP) technique. Iterative maximum likelihood polychromatic algorithm for CT (IMPACT) is used with pair/triplet production process and the energy dependent response of detectors. The beam spectra for in-house bench-top and TomotherapyTM MVCT are modelled for use in IMPACT. The energy dependent gain of detectors is calculated using a constrained optimization technique and measured attenuation produced by 0 - 24 cm thick solid water slabs. A cylindrical (19 cm diameter) plexiglass phantom containing various central cylindrical inserts (relative electron density of 0.28-1.69) between two steel rods (2 cm diameter) is scanned in the bench-top [the bremsstrahlung radiation from 6 MeV electron beam passed through 4 cm solid water on the Varian Clinac 2300C] and TomotherapyTM MVCTs. The FBP reconstructs images from raw signal normalised to air scan and corrected for beam hardening using a uniform plexi-glass cylinder (20 cm diameter). IMPACT starts with FBP reconstructed seed image and reconstructs final image at 1.25 MeV in 150 iterations. FBP produces a visible dark shading in the image between two steel rods that becomes darker with higher density central insert causing 5-8 % underestimation of electron density compared to the case without the steel rods. In the IMPACT image the dark shading connecting the steel rods is nearly removed and the uniform background restored. The average attenuation coefficients of the inserts and the background are very close to the corresponding theoretical values at 1.25 MeV. The dark shading metal artifact due to beam hardening can be removed in MVCT using the iterative reconstruction algorithm such as IMPACT. However, the accurate modelling of detectors' energy dependent response and physical processes are crucial for successful implementation. Funding support for the research is obtained from "Vanier Canada Graduate Scholarship" and "Canadian Institute of Health Research". © 2012 American Association of Physicists in Medicine.
Dissociative Ionization of Pyridine by Electron Impact
NASA Technical Reports Server (NTRS)
Dateo, Christopher; Huo, Winifred; Kwak, Dochan (Technical Monitor)
2002-01-01
In order to understand the damage of biomolecules by electrons, a process important in radiation damage, we undertake a study of the dissociative ionization (DI) of pyridine (C5H5N) from the low-lying ionization channels. The methodology used is the same as in the benzene study. While no experimental DI data are available, we compare the dissociation products from our calculations with the dissociative photoionization measurements of Tixier et al. using dipole (e, e(+) ion) coincidence spectroscopy. Comparisons with the DI of benzene is also made so as to understand the difference in DI between a heterocyclic and an aromatic molecule.
Wäger, P A; Hischier, R; Eugster, M
2011-04-15
While Waste Electrical and Electronic Equipment (WEEE) collection and recovery have significantly gained in importance all over Europe in the last 15years, comprehensive studies assessing the environmental loads and benefits of these systems still are not common. In this paper we present the results of a combined material flow analysis and life cycle assessment study, which aimed to calculate the overall environmental impacts of collection, pre-processing and end-processing for the existing Swiss WEEE collection and recovery systems, as well as of incineration and landfilling scenarios, in which the same amount of WEEE is either incinerated in a an MSWI plant or landfilled. According to the calculations based on the material flow data for the year 2009 and a new version of the ecoinvent life cycle inventory database (ecoinvent v2.01), collection, recovery and disposal result in significantly lower environmental impacts per t of WEEE for midpoint indicators such as global warming or ozone depletion and the endpoint indicator Eco-Indicator '99 points. A comparison between the environmental impacts of the WEEE recovery scenarios 2009 and 2004, both calculated with ecoinvent v2.01 data, shows that the impacts per t of WEEE in 2009 were slightly lower. This appears to be mainly due to the changes in the treatment of plastics (more recycling, less incineration). Compared to the overall environmental impacts of the recovery scenario 2004 obtained with an old version of ecoinvent (ecoinvent v1.1), the calculation with ecoinvent v2.01 results in an increase of the impacts by about 20%, which is primarily the consequence of a more adequate modeling of several WEEE fractions (e.g. metals, cables or CRT devices). In view of a further increase of the environmental benefits associated with the Swiss WEEE collection and recovery systems, the recovery of geochemically scarce metals should be further investigated, in particular. Copyright © 2011 Elsevier B.V. All rights reserved.
Cross sections for electron impact excitation of the C 1Π and D 1Σ+ electronic states in N2O
NASA Astrophysics Data System (ADS)
Kawahara, H.; Suzuki, D.; Kato, H.; Hoshino, M.; Tanaka, H.; Ingólfsson, O.; Campbell, L.; Brunger, M. J.
2009-09-01
Differential and integral cross sections for electron-impact excitation of the dipole-allowed C Π1 and D Σ1+ electronic states of nitrous oxide have been measured. The differential cross sections were determined by analysis of normalized energy-loss spectra obtained using a crossed-beam apparatus at six electron energies in the range 15-200 eV. Integral cross sections were subsequently derived from these data. The present work was undertaken in order to check both the validity of the only other comprehensive experimental study into these excitation processes [Marinković et al., J. Phys. B 32, 1949 (1998)] and to extend the energy range of those data. Agreement with the earlier data, particularly at the lower common energies, was typically found to be fair. In addition, the BEf-scaling approach [Kim, J. Chem. Phys. 126, 064305 (2007)] is used to calculate integral cross sections for the C Π1 and D Σ1+ states, from their respective thresholds to 5000 eV. In general, good agreement is found between the experimental integral cross sections and those calculated within the BEf-scaling paradigm, the only exception being at the lowest energies of this study. Finally, optical oscillator strengths, also determined as a part of the present investigations, were found to be in fair accordance with previous corresponding determinations.
Saronga, Happiness Pius; Duysburgh, Els; Massawe, Siriel; Dalaba, Maxwell Ayindenaba; Wangwe, Peter; Sukums, Felix; Leshabari, Melkizedeck; Blank, Antje; Sauerborn, Rainer; Loukanova, Svetla
2017-08-07
QUALMAT project aimed at improving quality of maternal and newborn care in selected health care facilities in three African countries. An electronic clinical decision support system was implemented to support providers comply with established standards in antenatal and childbirth care. Given that health care resources are limited and interventions differ in their potential impact on health and costs (efficiency), this study aimed at assessing cost-effectiveness of the system in Tanzania. This was a quantitative pre- and post- intervention study involving 6 health centres in rural Tanzania. Cost information was collected from health provider's perspective. Outcome information was collected through observation of the process of maternal care. Incremental cost-effectiveness ratios for antenatal and childbirth care were calculated with testing of four models where the system was compared to the conventional paper-based approach to care. One-way sensitivity analysis was conducted to determine whether changes in process quality score and cost would impact on cost-effectiveness ratios. Economic cost of implementation was 167,318 USD, equivalent to 27,886 USD per health center and 43 USD per contact. The system improved antenatal process quality by 4.5% and childbirth care process quality by 23.3% however these improvements were not statistically significant. Base-case incremental cost-effectiveness ratios of the system were 2469 USD and 338 USD per 1% change in process quality for antenatal and childbirth care respectively. Cost-effectiveness of the system was sensitive to assumptions made on costs and outcomes. Although the system managed to marginally improve individual process quality variables, it did not have significant improvement effect on the overall process quality of care in the short-term. A longer duration of usage of the electronic clinical decision support system and retention of staff are critical to the efficiency of the system and can reduce the invested resources. Realization of gains from the system requires effective implementation and an enabling healthcare system. Registered clinical trial at www.clinicaltrials.gov ( NCT01409824 ). Registered May 2009.
Sun, Jingya; Melnikov, Vasily A; Khan, Jafar I; Mohammed, Omar F
2015-10-01
In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.
Non-equilibrium plasma kinetics of reacting CO: an improved state to state approach
NASA Astrophysics Data System (ADS)
Pietanza, L. D.; Colonna, G.; Capitelli, M.
2017-12-01
Non-equilibrium plasma kinetics of reacting CO for conditions typically met in microwave discharges have been developed based on the coupling of excited state kinetics and the Boltzmann equation for the electron energy distribution function (EEDF). Particular attention is given to the insertion in the vibrational kinetics of a complete set of electron molecule resonant processes linking the whole vibrational ladder of the CO molecule, as well as to the role of Boudouard reaction, i.e. the process of forming CO2 by two vibrationally excited CO molecules, in shaping the vibrational distribution of CO and promoting reaction channels assisted by vibrational excitation (pure vibrational mechanisms, PVM). PVM mechanisms can become competitive with electron impact dissociation processes (DEM) in the activation of CO. A case study reproducing the conditions of a microwave discharge has been considered following the coupled kinetics also in the post discharge conditions. Results include the evolution of EEDF in discharge and post discharge conditions highlighting the role of superelastic vibrational and electronic collisions in shaping the EEDF. Moreover, PVM rate coefficients and DEM ones are studied as a function of gas temperature, showing a non-Arrhenius behavior, i.e. the rate coefficients increase with decreasing gas temperature as a result of a vibrational-vibrational (V-V) pumping up mechanism able to form plateaux in the vibrational distribution function. The accuracy of the results is discussed in particular in connection to the present knowledge of the activation energy of the Boudouard process.
The Challenge of Producing Fiber-Based Organic Electronic Devices
Könyves-Toth, Tobias; Gassmann, Andrea; von Seggern, Heinz
2014-01-01
The implementation of organic electronic devices on fibers is a challenging task, not yet investigated in detail. As was shown earlier, a direct transition from a flat device structure to a fiber substrate is in principle possible. However, a more detailed investigation of the process reveals additional complexities than just the transition in geometry. It will be shown, that the layer formation of evaporated materials behaves differently due to the multi-angled incidence on the fibers surface. In order to achieve homogenous layers the evaporation process has to be adapted. Additionally, the fiber geometry itself facilitates damaging of its surface due to mechanical impact and leads to a high surface roughness, thereby often hindering commercial fibers to be used as substrates. In this article, a treatment of commercial polymer-coated glass fibers will be demonstrated that allows for the fabrication of rather flexible organic light-emitting diodes (OLEDs) with cylindrical emission characteristics. Since OLEDs rely the most on a smooth substrate, fibers undergoing the proposed treatment are applicable for other organic electronic devices such as transistors and solar cells. Finally, the technique also supports the future fabrication of organic electronics not only in smart textiles and woven electronics but also in bent surfaces, which opens a wide range of applications. PMID:28788128
The electron donating capacity of biochar is dramatically underestimated
Prévoteau, Antonin; Ronsse, Frederik; Cid, Inés; Boeckx, Pascal; Rabaey, Korneel
2016-01-01
Biochars have gathered considerable interest for agronomic and engineering applications. In addition to their high sorption ability, biochars have been shown to accept or donate considerable amounts of electrons to/from their environment via abiotic or microbial processes. Here, we measured the electron accepting (EAC) and electron donating (EDC) capacities of wood-based biochars pyrolyzed at three different highest treatment temperatures (HTTs: 400, 500, 600 °C) via hydrodynamic electrochemical techniques using a rotating disc electrode. EACs and EDCs varied with HTT in accordance with a previous report with a maximal EAC at 500 °C (0.4 mmol(e−).gchar−1) and a large decrease of EDC with HTT. However, while we monitored similar EAC values than in the preceding study, we show that the EDCs have been underestimated by at least 1 order of magnitude, up to 7 mmol(e−).gchar−1 for a HTT of 400 °C. We attribute this existing underestimation to unnoticed slow kinetics of electron transfer from biochars to the dissolved redox mediators used in the monitoring. The EDC of other soil organic constituents such as humic substances may also have been underestimated. These results imply that the redox properties of biochars may have a much bigger impact on soil biogeochemical processes than previously conjectured. PMID:27628746
Proffen, Benedikt L.; Perrone, Gabriel S.; Fleming, Braden C.; Sieker, Jakob T.; Kramer, Joshua; Hawes, Michael L.; Badger, Gary J.; Murray, Martha M.
2015-01-01
Purpose Extra-cellular matrix (ECM) scaffolds have been used to enhance anterior cruciate ligament (ACL) repair in large animal models. To translate this technology to clinical care, identifying a method, which effectively sterilizes the material without significantly impairing in vivo function, is desirable. Methods 16 Yorkshire pigs underwent ACL transection and were randomly assigned to bridge-enhanced ACL repair – primary suture repair of the ACL with addition of autologous blood soaked ECM scaffold - with either 1) an aseptically processed ECM scaffold, or 2) an electron beam irradiated ECM scaffold. Primary outcome measures included sterility of the scaffold and biomechanical properties of the scaffold itself and the repaired ligament at eight weeks after surgery. Results Scaffolds treated with 15kGy electron beam irradiation had no bacterial or fungal growth noted, while aseptically processed scaffolds had bacterial growth in all tested samples. The mean biomechanical properties of the scaffold and healing ligament were lower in the electron beam group; however, differences were not statistically significant. Conclusions Electron beam irradiation was able to effectively sterilize the scaffolds. In addition, this technique had only a minimal impact on the in vivo function of the scaffolds when used for ligament healing in the porcine model. PMID:25676876
NASA Astrophysics Data System (ADS)
Kim, Jung Rae
Bioelectrochemical system such as microbial fuel cells (MFCs) and microbial electrolysis cell are an emerging technology which converts biodegradable organic matter to electrical energy or hydrogen using a biofilm on the electrode as the biocatalyst. It has recently been shown that waste-to-energy technology based on MFC can treat organic contaminant in domestic or industrial wastewater and simultaneously produce electricity. The maximum power density increased up to 1kW/m3 based on reactor volume. Bioelectrochemical systems may reduce the energy consumption for wastewater treatment by replacing energy intensive aeration of present treatment systems, while generate electrical energy from waste. In addition, the biomass production in MFCs has been reported to be 10-50% of conventional wastewater treatment, leading to reduce environmental impact and disposal costs. Various electrochemically active bacteria metabolize biodegradable organic compounds then discharge electrons to an extracellular electron acceptor for bacterial respiration. These bacteria also transfer electrons to electrodes by direct electron transfer, electron mediators or shuttles, and electrically conductive nanowires. Investigation of bacterial electron transport mechanisms may improve understanding of the biomaterial involved and metabolic pathways as well as improving power from MFCs. Biofuel cell systems require interdisciplinary research ranging from electrochemistry, microbiology, material science and surface chemistry to engineering such as reactor design, operation and modelling. Collaboration within each study and integration of systems might increase the performance and feasibility of BES process for sustainable energy.
The Impact of e-Customer Relationship Marketing in Hotel Industry
NASA Astrophysics Data System (ADS)
Samanta, Irene
The present research investigates the extent to which Greek hotels had developed the electronic customer relationship marketing (E-CRM). The study verifies the practices that frequently appear in relationship marketing process within online operations or whether their Internet presence mainly depends on the basic actions of "supplying information" and "reservations". Also, it investigates the effects of e-CRM system on customer loyalty and satisfaction as well as the impact of relationship marketing practices to customer retention and acquisition. They have understood the importance of using electronic channels instead of traditional ones to implement their marketing strategies. Thus, e-crm system has assisted hotel business to manage more effectively their reservations and serve their customers as fast and as effective as possible. They did not seem to apply many of the relationship marketing strategies to emphasize customer retention and continual satisfaction because of difficulties in staff training.
Electron impact ionization-excitation of Helium
NASA Astrophysics Data System (ADS)
Ancarani, Lorenzo Ugo; Gomez, A. I.; Gasaneo, G.; Mitnik, D. M.; Ambrosio, M. J.
2016-09-01
We calculate triple differential cross sections (TDCS) for the process of ionization-excitation of Helium by fast electron impact in which the residual ion is left in the n =2 excited state. We chose the strongly asymmetric kinematics used in the experiment performed by Dupré et al.. In a perturbative scheme, for high projectile energies the four-body problem reduces to a three-body one and, within that framework, we solve the time- independent Schrödinger equation with a Sturmian approach. The method, based on Generalized Sturmian Functions (GSF), is employed to obtain the initial ground state of Helium, the single-continuum state and the scattering wave function; for each of them, the GSF basis is constructed with the corresponding adequate asymptotic conditions. Besides, the method presents the following advantage: the scattering amplitudes can be extracted directly in the asymptotic region of the scattering solution, and thus the TDCS can be obtained without requiring a matrix element evaluation.
Kouass Sahbani, S; Cloutier, P; Bass, A D; Hunting, D J; Sanche, L
2015-10-01
Transient negative ions (TNIs) are ubiquitous in electron-molecule scattering at low electron impact energies (0-20 eV) and are particularly effective in damaging large biomolecules. Because ionizing radiation generates mostly 0-20 eV electrons, TNIs are expected to play important roles in cell mutagenesis and death during radiotherapeutic cancer treatment, although this hypothesis has never been directly verified. Here, we measure the efficiency of transforming E. coli bacteria by inserting into the cells, pGEM-3ZfL(-) plasmid DNA that confers resistance to the antibiotic ampicillin. Before transformation, plasmids are irradiated with electrons of specific energies between 0.5 and 18 eV. The loss of transformation efficiency plotted as a function of irradiation energy reveals TNIs at 5.5 and 9.5 eV, corresponding to similar states observed in the yields of DNA double strand breaks. We show that TNIs are detectable in the electron-energy dependence of a biological process and can decrease cell viability.
PMMA/PS coaxial electrospinning: a statistical analysis on processing parameters
NASA Astrophysics Data System (ADS)
Rahmani, Shahrzad; Arefazar, Ahmad; Latifi, Masoud
2017-08-01
Coaxial electrospinning, as a versatile method for producing core-shell fibers, is known to be very sensitive to two classes of influential factors including material and processing parameters. Although coaxial electrospinning has been the focus of many studies, the effects of processing parameters on the outcomes of this method have not yet been well investigated. A good knowledge of the impacts of processing parameters and their interactions on coaxial electrospinning can make it possible to better control and optimize this process. Hence, in this study, the statistical technique of response surface method (RSM) using the design of experiments on four processing factors of voltage, distance, core and shell flow rates was applied. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), oil immersion and Fluorescent microscopy were used to characterize fiber morphology. The core and shell diameters of fibers were measured and the effects of all factors and their interactions were discussed. Two polynomial models with acceptable R-squares were proposed to describe the core and shell diameters as functions of the processing parameters. Voltage and distance were recognized as the most significant and influential factors on shell diameter, while core diameter was mainly under the influence of core and shell flow rates besides the voltage.
NASA Astrophysics Data System (ADS)
Lam, Carl
Due to technology proliferation, the environmental burden attributed to the production, use, and disposal of hazardous materials in electronics have become a worldwide concern. The major theme of this dissertation is to develop and apply hazardous materials assessment tools to systematically guide pollution prevention opportunities in the context of electronic product design, manufacturing and end-of-life waste management. To this extent, a comprehensive review is first provided on describing hazard traits and current assessment methods to evaluate hazardous materials. As a case study at the manufacturing level, life cycle impact assessment (LCIA)-based and risk-based screening methods are used to quantify chemical and geographic environmental impacts in the U.S. printed wiring board (PWB) industry. Results from this industrial assessment clarify priority waste streams and States to most effectively mitigate impact. With further knowledge of PWB manufacturing processes, select alternative chemical processes (e.g., spent copper etchant recovery) and material options (e.g., lead-free etch resist) are discussed. In addition, an investigation on technology transition effects for computers and televisions in the U.S. market is performed by linking dynamic materials flow and environmental assessment models. The analysis forecasts quantities of waste units generated and maps shifts in environmental impact potentials associated with metal composition changes due to product substitutions. This insight is important to understand the timing and waste quantities expected and the emerging toxic elements needed to be addressed as a consequence of technology transition. At the product level, electronic utility meter devices are evaluated to eliminate hazardous materials within product components. Development and application of a component Toxic Potential Indicator (TPI) assessment methodology highlights priority components requiring material alternatives. Alternative recommendations are provided and substitute materials such as aluminum alloys for stainless steel and high-density polyethylene for polyvinyl chloride and acrylonitrile-based polymers show promise to meet toxicity reduction, cost, and material functionality requirements. Furthermore, the TPI method, an European Union focused screening tool, is customized to reflect regulated U.S. toxicity parameters. Results show that, although it is possible to adopt U.S. parameters into the TPI method, harmonization of toxicity regulation and standards in various nations and regions is necessary to eliminate inconsistencies during hazard screening of substances used globally. As a whole, the present work helps to assimilate material hazard assessment methods into the larger framework of design for environment strategies so toxics use reduction could be achieved for the development and management of electronics and other consumer goods.
Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia
2014-11-01
This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further "sustainable" recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both "traditional" (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Wang-Chao; Kong, Fan-Tai; Ghadari, Rahim; Li, Zhao-Qian; Guo, Fu-Ling; Liu, Xue-Peng; Huang, Yang; Yu, Ting; Hayat, Tasawar; Dai, Song-Yuan
2017-04-01
We report a systematic research to understand the structural-electronic impact of the arylamine electron-donating antennas on the performances of the ruthenium complexes for dye-sensitized solar cells. Three ruthenium complexes functionalized with different arylamine electron-donating antennas (N,N-diethyl-aniline in RC-31, julolidine in RC-32 and N,N-dibenzyl-aniline in RC-36) are designed and synthesized. The photoelectric properties of RC dyes exhibit apparent discrepancy, which are ascribed to different structural nature and electronic delocalization ability of these arylamine electron-donating system. In conjunction with TiO2 microspheres photoanode and a typical coadsorbent DPA, the devices sensitized by RC-36 achieve the best conversion efficiency of 10.23%. The UV-Vis absorption, electrochemical measurement, incident photon-to-current conversion efficiency and transient absorption spectra confirm that the excellent performance of RC-36 is induced by synergistically structural-electronic impacts from enhanced absorption capacity and well-tuned electronic characteristics. These observations provide valuable insights into the molecular engineering methodology based on fine tuning structural-electronic impact of electron-donating antenna in efficient ruthenium sensitizers.
Electron correlation in real time.
Sansone, Giuseppe; Pfeifer, Thomas; Simeonidis, Konstantinos; Kuleff, Alexander I
2012-02-01
Electron correlation, caused by the interaction among electrons in a multielectron system, manifests itself in all states of matter. A complete theoretical description of interacting electrons is challenging; different approximations have been developed to describe the fundamental aspects of the correlation that drives the evolution of simple (few-electron systems in atoms/molecules) as well as complex (multielectron wave functions in atoms, molecules, and solids) systems. Electron correlation plays a key role in the relaxation mechanisms that characterize excited states of neutral or ionized atoms and molecules populated by absorption of extreme ultraviolet (XUV) or X-ray radiation. The dynamics of these states can lead to different processes such as Fano resonance and Auger decay in atoms or interatomic Coulombic decay or charge migration in molecules and clusters. Many of these relaxation mechanisms are ubiquitous in nature and characterize the interaction of complex systems, such as biomolecules, adsorbates on surfaces, and hydrogen-bonded clusters, with XUV light. These mechanisms evolve typically on the femtosecond (1 fs=10(-15) s) or sub-femtosecond timescale. The experimental availability of few-femtosecond and attosecond (1 as=10(-18) s) XUV pulses achieved in the last 10 years offers, for the first time, the opportunity to excite and probe in time these dynamics giving the possibility to trace and control multielectron processes. The generation of ultrashort XUV radiation has triggered the development and application of spectroscopy techniques that can achieve time resolution well into the attosecond domain, thereby offering information on the correlated electronic motion and on the correlation between electron and nuclear motion. A deeper understanding of how electron correlation works could have a large impact in several research fields, such as biochemistry and biology, and trigger important developments in the design and optimization of electronic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vold, E. L.; Molvig, K.; Joglekar, A. S.
2015-11-15
The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less
Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations
Vold, Erik Lehman; Joglekar, Archis S.; Ortega, Mario I.; ...
2015-11-20
The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion(ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. In this paper, we have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasmaviscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasmaviscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasmaviscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Finally, plasmaviscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wen-Yao; Xu, Yong, E-mail: yongxu@dlut.edu.cn; Peng, Fei
2015-01-14
An tunable diode laser absorption spectroscopy has been used to determine the Ar*({sup 3}P{sub 2}) and Ar*({sup 3}P{sub 0}) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze themore » main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF{sub 4} was found to significantly increase the metastable destruction rate by the CF{sub 4} quenching, especially for large CF{sub 4} content and high pressure, it becomes the dominant depopulation process.« less
Long-distance electron transport occurs globally in marine sediments
NASA Astrophysics Data System (ADS)
Burdorf, Laurine D. W.; Tramper, Anton; Seitaj, Dorina; Meire, Lorenz; Hidalgo-Martinez, Silvia; Zetsche, Eva-Maria; Boschker, Henricus T. S.; Meysman, Filip J. R.
2017-02-01
Recently, long filamentous bacteria have been reported conducting electrons over centimetre distances in marine sediments. These so-called cable bacteria perform an electrogenic form of sulfur oxidation, whereby long-distance electron transport links sulfide oxidation in deeper sediment horizons to oxygen reduction in the upper millimetres of the sediment. Electrogenic sulfur oxidation exerts a strong impact on the local sediment biogeochemistry, but it is currently unknown how prevalent the process is within the seafloor. Here we provide a state-of-the-art assessment of its global distribution by combining new field observations with previous reports from the literature. This synthesis demonstrates that electrogenic sulfur oxidation, and hence microbial long-distance electron transport, is a widespread phenomenon in the present-day seafloor. The process is found in coastal sediments within different climate zones (off the Netherlands, Greenland, the USA, Australia) and thrives on a range of different coastal habitats (estuaries, salt marshes, mangroves, coastal hypoxic basins, intertidal flats). The combination of a widespread occurrence and a strong local geochemical imprint suggests that electrogenic sulfur oxidation could be an important, and hitherto overlooked, component of the marine cycle of carbon, sulfur and other elements.
Military Interoperable Digital Hospital Testbed (MIDHT)
2010-07-01
solutions to optimize healthcare resources for rural communities and identify lessons learned and best practices that benefit both the global MHS...providers and three CHS facilities on their business practices and process flows. Research initiatives will focus on the impact of an electronic...strategic goals and the Nationwide Health Information Network (NHIN). The MIDHT will continue to identify lessons learned/best practices that benefit
Assessment of Electronic Banking Service's Impact on the Economic Parameters of the Bank Activity
ERIC Educational Resources Information Center
Kiselev, Sergey V.; Chernyavskaya, Yana S.; Bardasova, Eleonora V.; Galeeva, Gulnaz M.; Fazlieva, Elena P.; Krokhina, Julia A.
2016-01-01
The relevance of the study: The relevance of the research problem is conditioned by the intensification of innovative processes in modern economy and in the banking sector, in particular, as one of the most sensitive areas for innovation and innovative types of services and information and communication innovations today is one of the major…
Introducing E-Portfolio Use to Primary School Pupils: Response, Benefits and Challenges
ERIC Educational Resources Information Center
Theodosiadou, Dimitra; Konstantinidis, Angelos
2015-01-01
Electronic portfolios (e-portfolios) have a positive impact on the learning process in a broad range of educational sectors and on learners of all ages. Yet because most e-portfolio-related studies are about their implementation in higher education, this type of research is less usual in the early childhood context, and there is no available…
Fragmentation mechanisms for methane induced by 55 eV, 75 eV, and 100 eV electron impact.
Wei, B; Zhang, Y; Wang, X; Lu, D; Lu, G C; Zhang, B H; Tang, Y J; Hutton, R; Zou, Y
2014-03-28
The fragmentation of CH4 (2+) dications following 55 eV, 75 eV, and 100 eV electron impact double ionization of methane was studied using a cold target recoil-ion momentum spectroscopy. From the measured momentum of each recoil ion, the momentum of the neutral particles has been deduced and the kinetic energy release distribution for the different fragmentation channels has been obtained. The doubly charged molecular ions break up into three or more fragments in one or two-step processes, resulting in different signatures in the data. We observed the fragmentation of CH4 (2+) dications through different mechanisms according to the momentum of the neutral particles. For example, our result shows that there are three reaction channels to form CH2 (+), H(+), and H, one synchronous concerted reaction channel and two two-step reaction channels. For even more complicated fragmentation processes of CH4 (2+) dications, the fragmentation mechanism can still be identified in the present measurements. The slopes of the peak in the ion-ion coincidence spectra were also estimated here, as they are also related to the fragmentation mechanism.
Technology and medication errors: impact in nursing homes.
Baril, Chantal; Gascon, Viviane; St-Pierre, Liette; Lagacé, Denis
2014-01-01
The purpose of this paper is to study a medication distribution technology's (MDT) impact on medication errors reported in public nursing homes in Québec Province. The work was carried out in six nursing homes (800 patients). Medication error data were collected from nursing staff through a voluntary reporting process before and after MDT was implemented. The errors were analysed using: totals errors; medication error type; severity and patient consequences. A statistical analysis verified whether there was a significant difference between the variables before and after introducing MDT. The results show that the MDT detected medication errors. The authors' analysis also indicates that errors are detected more rapidly resulting in less severe consequences for patients. MDT is a step towards safer and more efficient medication processes. Our findings should convince healthcare administrators to implement technology such as electronic prescriber or bar code medication administration systems to improve medication processes and to provide better healthcare to patients. Few studies have been carried out in long-term healthcare facilities such as nursing homes. The authors' study extends what is known about MDT's impact on medication errors in nursing homes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less
Electron- and proton-induced ionization of pyrimidine
NASA Astrophysics Data System (ADS)
Champion, Christophe; Quinto, Michele A.; Weck, Philippe F.
2015-05-01
The present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. The theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; ...
2018-04-13
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less
The role of frontline RNs in the selection of an electronic medical record business partner.
Wilhoit, Kathryn; Mustain, Jane; King, Marjorie
2006-01-01
Frontline RNs knowledgeable in the strategic objectives of their organization made a difference in the selection of an electronic medical record business partner for a large, complex healthcare system. Their impact was significant because of the chief nurse executive's personal articulation of the organization's strategic goals and of her investment in their education. These factors provided the frontline RNs with a foundational base of knowledge about a variety of electronic medical record systems. The preparation and exposure enabled the frontline RNs to make a valuable contribution to the selection of an electronic medical record business partner. The RNs were a major force in affecting philosophical change from the organization's original pursuit of "best-of-breed" interfaced systems to a fully integrated, "best-of-class" vendor business partner. The learning experiences of the frontline RNs are explored to answer the following question: Why must frontline RNs play a key role in this process?
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim
2018-04-01
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.
Low-Cost and Large-Area Electronics, Roll-to-Roll Processing and Beyond
NASA Astrophysics Data System (ADS)
Wiesenhütter, Katarzyna; Skorupa, Wolfgang
In the following chapter, the authors conduct a literature survey of current advances in state-of-the-art low-cost, flexible electronics. A new emerging trend in the design of modern semiconductor devices dedicated to scaling-up, rather than reducing, their dimensions is presented. To realize volume manufacturing, alternative semiconductor materials with superior performance, fabricated by innovative processing methods, are essential. This review provides readers with a general overview of the material and technology evolution in the area of macroelectronics. Herein, the term macroelectronics (MEs) refers to electronic systems that can cover a large area of flexible media. In stark contrast to well-established micro- and nano-scale semiconductor devices, where property improvement is associated with downscaling the dimensions of the functional elements, in macroelectronic systems their overall size defines the ultimate performance (Sun and Rogers in Adv. Mater. 19:1897-1916,
Solar wind interaction with comet 67P: Impacts of corotating interaction regions
NASA Astrophysics Data System (ADS)
Edberg, N. J. T.; Eriksson, A. I.; Odelstad, E.; Vigren, E.; Andrews, D. J.; Johansson, F.; Burch, J. L.; Carr, C. M.; Cupido, E.; Glassmeier, K.-H.; Goldstein, R.; Halekas, J. S.; Henri, P.; Koenders, C.; Mandt, K.; Mokashi, P.; Nemeth, Z.; Nilsson, H.; Ramstad, R.; Richter, I.; Wieser, G. Stenberg
2016-02-01
We present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1-2.7 AU from the Sun and the neutral outgassing rate ˜1025-1026 s-1, the CIRs significantly influence the cometary plasma environment at altitudes down to 10-30 km. The ionospheric low-energy (˜5 eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below -20 V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (˜10-100 eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2-5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events.
NASA Astrophysics Data System (ADS)
Esnault, L.; Jullien, M.; Mustin, C.; Bildstein, O.; Libert, M.
In deep geological environments foreseen for the disposal of radioactive waste, metallic containers will undergo anaerobic corrosion. In this context, the formation of corrosion products such as magnetite may reduce the rate of corrosion processes through the formation of a protective layer. This study aims at determining the direct impact of iron-reducing bacteria (IRB) activity on the stability of corrosion protective layers. Batch experiments investigating iron corrosion processes including the formation of secondary magnetite and its subsequent alteration in the presence of IRB show the bacteria ability to use structural Fe(III) for respiration which leads to the sustainment of a high corrosion rate. With the bio-reduction of corrosion products such as magnetite, and H 2 as electron donor, IRB promote the reactivation of corrosion processes in corrosive environments by altering the protective layer. This phenomenon could have a major impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level radioactive waste containment.
Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis.
Deutzmann, Jörg S; Sahin, Merve; Spormann, Alfred M
2015-04-21
Direct, mediator-free transfer of electrons between a microbial cell and a solid phase in its surrounding environment has been suggested to be a widespread and ecologically significant process. The high rates of microbial electron uptake observed during microbially influenced corrosion of iron [Fe(0)] and during microbial electrosynthesis have been considered support for a direct electron uptake in these microbial processes. However, the underlying molecular mechanisms of direct electron uptake are unknown. We investigated the electron uptake characteristics of the Fe(0)-corroding and electromethanogenic archaeon Methanococcus maripaludis and discovered that free, surface-associated redox enzymes, such as hydrogenases and presumably formate dehydrogenases, are sufficient to mediate an apparent direct electron uptake. In genetic and biochemical experiments, we showed that these enzymes, which are released from cells during routine culturing, catalyze the formation of H2 or formate when sorbed to an appropriate redox-active surface. These low-molecular-weight products are rapidly consumed by M. maripaludis cells when present, thereby preventing their accumulation to any appreciable or even detectable level. Rates of H2 and formate formation by cell-free spent culture medium were sufficient to explain the observed rates of methane formation from Fe(0) and cathode-derived electrons by wild-type M. maripaludis as well as by a mutant strain carrying deletions in all catabolic hydrogenases. Our data collectively show that cell-derived free enzymes can mimic direct extracellular electron transfer during Fe(0) corrosion and microbial electrosynthesis and may represent an ecologically important but so far overlooked mechanism in biological electron transfer. The intriguing trait of some microbial organisms to engage in direct electron transfer is thought to be widespread in nature. Consequently, direct uptake of electrons into microbial cells from solid surfaces is assumed to have a significant impact not only on fundamental microbial and biogeochemical processes but also on applied bioelectrochemical systems, such as microbial electrosynthesis and biocorrosion. This study provides a simple mechanistic explanation for frequently observed fast electron uptake kinetics in microbiological systems without a direct transfer: free, cell-derived enzymes can interact with cathodic surfaces and catalyze the formation of intermediates that are rapidly consumed by microbial cells. This electron transfer mechanism likely plays a significant role in various microbial electron transfer reactions in the environment. Copyright © 2015 Deutzmann et al.
Using Human Factors Methods to Design a New Interface for an Electronic Medical Record
Saleem, Jason J.; Patterson, Emily S.; Militello, Laura; Asch, Steven M.; Doebbeling, Bradley N.; Render, Marta L.
2007-01-01
The Veterans Health Administration (VHA) is a leader in development and use of electronic patient records and clinical decision support. The VHA is currently reengineering a somewhat dated platform for its Computerized Patient Record System (CPRS). This process affords a unique opportunity to implement major changes to the current design and function of the system. We report on two human factors studies designed to provide input and guidance during this reengineering process. One study involved a card sort to better understand how providers tend to cognitively organize clinical data, and how that understanding can help guide interface design. The other involved a simulation to assess the impact of redesign modifications on computerized clinical reminders, a form of clinical decision support in the CPRS, on the learnability of the system for first-time users. PMID:18693914
Cortázar, O D; Megía-Macías, A; Vizcaíno-de-Julián, A
2013-09-01
Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 μs. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.
Boughariou, A; Damamme, G; Kallel, A
2015-04-01
This paper focuses on the effect of sample annealing temperature and crystallographic orientation on the secondary electron yield of MgO during charging by a defocused electron beam irradiation. The experimental results show that there are two regimes during the charging process that are better identified by plotting the logarithm of the secondary electron emission yield, lnσ, as function of the total trapped charge in the material QT. The impact of the annealing temperature and crystallographic orientation on the evolution of lnσ is presented here. The slope of the asymptotic regime of the curve lnσ as function of QT, expressed in cm(2) per trapped charge, is probably linked to the elementary cross section of electron-hole recombination, σhole, which controls the trapping evolution in the reach of the stationary flow regime. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
On the Effects of Bremsstrahlung Radiation During Energetic Electron Precipitation
NASA Astrophysics Data System (ADS)
Xu, Wei; Marshall, Robert A.; Fang, Xiaohua; Turunen, Esa; Kero, Antti
2018-01-01
Precipitation of energetic particles into the Earth's atmosphere can significantly change the properties, dynamics, as well as the chemical composition of the upper and middle atmosphere. In this paper, using Monte Carlo models, we simulate, from first principles, the interaction of monoenergetic beams of precipitating electrons with the atmosphere, with particular emphasis on the process of bremsstrahlung radiation and its resultant ionization production and atmospheric effects. The pitch angle dependence of the ionization rate profile has been quantified: the altitude of peak ionization rate depends on the pitch angle by a few kilometers. We also demonstrate that the transport of precipitating electron energy in the form of bremsstrahlung photons leads to ionization at altitudes significantly lower than the direct impact ionization, as low as ˜20 km for 1 MeV precipitating electrons. Moreover, chemical modeling results suggest that the chemical effects in the atmosphere due to bremsstrahlung-induced ionization production during energetic electron precipitation are likely insignificant.
Self-amplified photo-induced gap quenching in a correlated electron material
Mathias, S.; Eich, S.; Urbancic, J.; ...
2016-10-04
Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. Here, we show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically dependsmore » on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe 2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation.« less
Purcarea, V L; Petrescu, D G; Gheorghe, I R; Petrescu, C M
2011-05-15
The optimization of a diagnosis process and fluency in the Health Care sector in Romania. A key to discover this complex process was to determine a correlation between the physicians and the use of information technology, on one side and the patients' perspective on the other. Integrating information technology in a physician's activity will lead to lower costs and less time spent while diagnosing patients. Using the electronic medical records and introducing a unified database with the patients' medical histories will make the process of diagnosis easier. We studied the diagnosis from the point of view of 304 patients in a public hospital and 320 physicians working there. We believed that time and accessibility to different physicians makes the diagnosis process a burden for a patient and implicitly lead to dissatisfaction with health care services. We supposed that the burden of diagnosis for physicians comes from the lack of Internet connection and computer usage knowledge. We have found out that most physicians know how to use the computer at an intermediate level and have access to Internet, online journals and databases and do not use emails to a higher extent to communicate to other specialists, but do not rely entirely on the electronic medical records. Most physicians think that it is not technology, which stands in the way of proper and fast diagnosis but the financing and the paper work from the Romanian health system. Solutions that might be taken into account to entirely motivate physicians to use electronic medical records are: 1. Adjustments can be made to the computer software interface in order to make the design more consistent (to eliminate the paper forms) and user friendly. 2. Physicians can be provided with more training and knowledge. After some statistical tests have been applied to find a correlation between the chosen variables, we have reached the conclusion that the results are encouraging and there is no correlation between the degree of the impact of Preventive Medicine and the healthy behavior of the respondents.
Evidence for Neutrals-Foreshock Electrons Impact at Mars
NASA Astrophysics Data System (ADS)
Mazelle, C. X.; Meziane, K.; Mitchell, D. L.; Garnier, P.; Espley, J. R.; Hamza, A. M.; Halekas, J.; Jakosky, B. M.
2018-05-01
Backstreaming electrons emanating from the bow shock of Mars reported from the Mars Atmosphere and Volatile EvolutioN/Solar Wind Electron Analyzer observations show a flux fall off with the distance from the shock. This feature is not observed at the terrestrial foreshock. The flux decay is observed only for electron energy E ≥ 29 eV. A reported recent study indicates that Mars foreshock electrons are produced at the shock in a mirror reflection of a portion of the solar wind electrons. In this context, and given that the electrons are sufficiently energetic to not be affected by the interplanetary magnetic field fluctuations, the observed flux decrease appears problematic. We investigate the possibility that the flux fall off with distance results from the impact of backstreaming electrons with Mars exospheric neutral hydrogen. We demonstrate that the flux fall off is consistent with the electron-atomic hydrogen impact cross section for a large range of energy. A better agreement is obtained for energy where the impact cross section is the highest. One important consequence is that foreshock electrons can play an important role in the production of pickup ions at Mars far exosphere.
Pierson, Elizabeth A.
2010-01-01
Phenazines constitute a large group of nitrogen-containing heterocyclic compounds produced by a diverse range of bacteria. Both natural and synthetic phenazine derivatives are studied due their impacts on bacterial interactions and biotechnological processes. Phenazines serve as electron shuttles to alternate terminal acceptors, modify cellular redox states, act as cell signals that regulate patterns of gene expression, contribute to biofilm formation and architecture, and enhance bacterial survival. Phenazines have diverse effects on eukaryotic hosts and host tissues, including the modification of multiple host cellular responses. In plants, phenazines also may influence growth and elicit induced systemic resistance. Here, we discuss emerging evidence that phenazines play multiple roles for the producing organism and contribute to their behavior and ecological fitness. PMID:20352425
Kittelson, Sheri; Pierce, Read; Youngwerth, Jeanie
2017-05-01
In response to poor healthcare quality outcomes and rising costs, healthcare reform triple aim has increased requirements for providers to demonstrate value to payers, partners, and the public. Electronically automating measurement of the meaningful impact of palliative care (PC) programs on clinical, operational, and financial systems over time is imperative to the success of the field and the goal of development of this automated PC scorecard. The scorecard was organized into a format of quality measures identified by the Measuring What Matters (MWM) project that are defined as important to the team, automatically extracted from the electronic health record, valid, and can be impacted over time. The scorecard was initially created using University of Florida Health (UF) data, a new PC program, and successfully applied and implemented at University of Colorado Anschutz Medical Campus (CU), a second institution with a mature PC program. Clinical metrics are organized in the scorecard based on MWM and described in terms of the metric definition, rationale for selection, measure type (structure, process, or outcome), and whether this represents a direct or proxy measure. The process of constructing the scorecard helped identify areas within both systems for potential improvement in team structure, clinical processes, and outcomes. In addition, by automating data extraction, the scorecard decreases costs associated with manual data entry and extraction, freeing clinical staff to care for patients and increasing the value of PC delivered to patients.
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Fletcher, Graham D.
2004-01-01
As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.
Minimum reaction network necessary to describe Ar/CF4 plasma etch
NASA Astrophysics Data System (ADS)
Helpert, Sofia; Chopra, Meghali; Bonnecaze, Roger T.
2018-03-01
Predicting the etch and deposition profiles created using plasma processes is challenging due to the complexity of plasma discharges and plasma-surface interactions. Volume-averaged global models allow for efficient prediction of important processing parameters and provide a means to quickly determine the effect of a variety of process inputs on the plasma discharge. However, global models are limited based on simplifying assumptions to describe the chemical reaction network. Here a database of 128 reactions is compiled and their corresponding rate constants collected from 24 sources for an Ar/CF4 plasma using the platform RODEo (Recipe Optimization for Deposition and Etching). Six different reaction sets were tested which employed anywhere from 12 to all 128 reactions to evaluate the impact of the reaction database on particle species densities and electron temperature. Because many the reactions used in our database had conflicting rate constants as reported in literature, we also present a method to deal with those uncertainties when constructing the model which includes weighting each reaction rate and filtering outliers. By analyzing the link between a reaction's rate constant and its impact on the predicted plasma densities and electron temperatures, we determine the conditions at which a reaction is deemed necessary to the plasma model. The results of this study provide a foundation for determining which minimal set of reactions must be included in the reaction set of the plasma model.
NASA Astrophysics Data System (ADS)
Collins, P. C.; Haden, C. V.; Ghamarian, I.; Hayes, B. J.; Ales, T.; Penso, G.; Dixit, V.; Harlow, G.
2014-07-01
Electron beam direct manufacturing, synonymously known as electron beam additive manufacturing, along with other additive "3-D printing" manufacturing processes, are receiving widespread attention as a means of producing net-shape (or near-net-shape) components, owing to potential manufacturing benefits. Yet, materials scientists know that differences in manufacturing processes often significantly influence the microstructure of even widely accepted materials and, thus, impact the properties and performance of a material in service. It is important to accelerate the understanding of the processing-structure-property relationship of materials being produced via these novel approaches in a framework that considers the performance in a statistically rigorous way. This article describes the development of a process model, the assessment of key microstructural features to be incorporated into a microstructure simulation model, a novel approach to extract a constitutive equation to predict tensile properties in Ti-6Al-4V (Ti-64), and a probabilistic approach to measure the fidelity of the property model against real data. This integrated approach will provide designers a tool to vary process parameters and understand the influence on performance, enabling design and optimization for these highly visible manufacturing approaches.
Future of electronic health records: implications for decision support.
Rothman, Brian; Leonard, Joan C; Vigoda, Michael M
2012-01-01
The potential benefits of the electronic health record over traditional paper are many, including cost containment, reductions in errors, and improved compliance by utilizing real-time data. The highest functional level of the electronic health record (EHR) is clinical decision support (CDS) and process automation, which are expected to enhance patient health and healthcare. The authors provide an overview of the progress in using patient data more efficiently and effectively through clinical decision support to improve health care delivery, how decision support impacts anesthesia practice, and how some are leading the way using these systems to solve need-specific issues. Clinical decision support uses passive or active decision support to modify clinician behavior through recommendations of specific actions. Recommendations may reduce medication errors, which would result in considerable savings by avoiding adverse drug events. In selected studies, clinical decision support has been shown to decrease the time to follow-up actions, and prediction has proved useful in forecasting patient outcomes, avoiding costs, and correctly prompting treatment plan modifications by clinicians before engaging in decision-making. Clinical documentation accuracy and completeness is improved by an electronic health record and greater relevance of care data is delivered. Clinical decision support may increase clinician adherence to clinical guidelines, but educational workshops may be equally effective. Unintentional consequences of clinical decision support, such as alert desensitization, can decrease the effectiveness of a system. Current anesthesia clinical decision support use includes antibiotic administration timing, improved documentation, more timely billing, and postoperative nausea and vomiting prophylaxis. Electronic health record implementation offers data-mining opportunities to improve operational, financial, and clinical processes. Using electronic health record data in real-time for decision support and process automation has the potential to both reduce costs and improve the quality of patient care. © 2012 Mount Sinai School of Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Builth-Williams, J. D.; Chiari, L.; Jones, D. B., E-mail: darryl.jones@flinders.edu.au, E-mail: michael.brunger@flinders.edu.au
We present experimental and theoretical results for the electron-impact ionization of the highest occupied molecular orbitals of tetrahydropyran and 1,4-dioxane. Using an (e,2e) technique in asymmetric coplanar kinematics, angular distributions of the slow ejected electron, with an energy of 20 eV, are measured when incident electrons at 250 eV ionize the target and scatter through an angle of either −10° or −15°. The data are compared with calculations performed at the molecular 3-body distorted wave level. Fair agreement between the theoretical model and the experimental measurements was observed. The similar structures for these targets provide key insights for assessing themore » limitations of the theoretical calculations. This study in turn facilitates an improved understanding of the dynamics in the ionization process.« less
Structural and Thermal Disorder of Solution-Processed CH3NH3PbBr3 Hybrid Perovskite Thin Films.
Wolf, Christoph; Kim, Joo-Sung; Lee, Tae-Woo
2017-03-29
We extracted the electronic disorder energy of the organic-inorganic lead-halide hybrid perovskite CH 3 NH 3 PbBr 3 from temperature-dependent absorption data. We showed that the disorder at room temperature is ∼30 meV and is due to strong electron-phonon coupling with the longitudinal-optical mode of energy 16 meV. This mode can be attributed to longitudinal-optical phonons of the inorganic PbBr 6 frame; this conclusion highlights the polaronic nature of electronic excitations in CH 3 NH 3 PbBr 3 . We showed that structural disorder is of the same impact as thermal disorder. A temperature-dependence of the exciton binding energy was observed close to the orthorhombic-to-tetragonal phase-transition temperature.
Lee, Jungpyo; Bonoli, Paul; Wright, John
2011-01-01
The quasilinear diffusion coefficient assuming a constant magnetic field along the electron orbit is widely used to describe electron Landau damping of waves in a tokamak where the magnitude of the magnetic field varies on a flux surface. To understand the impact of violating the constant magnetic field assumption, we introduce the effect of a broad-bandwidth wave spectrum which has been used in the past to validate quasilinear theory for the fast decorrelation process between resonances. By the reevaluation of the diffusion coefficient through the level of the phase integral for the tokamak geometry with the broad-band wave effect included,more » we identify the three acceptable errors for the use of the quasilinear diffusion coefficient.« less
NASA Astrophysics Data System (ADS)
Ran, Ke; Rösner, Benedikt; Butz, Benjamin; Fink, Rainer H.; Spiecker, Erdmann
2016-10-01
The organic semiconductor silver-tetracyanoquinodimethane (Ag-TCNQ) exhibits electrical switching and memory characteristics. Employing a scanning tunnelling microscopy setup inside a transmission electron microscope, the switching behaviour of individual Ag-TCNQ nanowires (NWs) is investigated in detail. For a large number of NWs, the switching between a high (OFF) and a low (ON) resistance state was successfully stimulated by negative bias sweeps. Fitting the experimental I-V curves with a Schottky emission function makes the switching features prominent and thus enables a direct evaluation of the switching process. A memory cycle including writing, reading and erasing features is demonstrated at an individual NW. Moreover, electronic failure mechanisms due to Joule heating are discussed. These findings have a significant impact on our understanding of the switching behaviour of Ag-TCNQ.
2d axisymmetric "beam-bulk" modelling of the generation of runaway electrons by streamers.
NASA Astrophysics Data System (ADS)
Chanrion, Olivier; Bonaventura, Zdenek; Bourdon, Anne; Neubert, Torsten
2017-04-01
We present results from a 2d axisymmetric numerical model of streamers based on a "beam-bulk" approach which describes cold electrons with a fluid model and high energy electrons with a particle model. The interest is motivated by the generation of runaway electrons by streamers which may participate in the recently observed TGFs and which challenge the modelling. Runaway electrons are known to be generated from streamers when the electric field in its negative tip is of sufficient magnitude. After overtaking the streamer tip, runaways can affect the streamer propagation ahead and may produce high energy photons through the bremsstrahlung process. In conventional model of streamers, the evolution of the streamer discharge is mostly governed by cold electrons. By including runaway electrons, we model their production, their impact on the discharge propagation and can address their role in TGFs. Results of streamer propagation in leader electric field show that the runaway electrons accelerate the streamers, reduce the electric field in its tip and enlarge its radius by pre-ionizing the gas ahead. We observed that if we increase the electric field, the discharge is getting more diffuse, with a pattern driven by the increase in runaway induced ionisation.
Control of secondary electrons from ion beam impact using a positive potential electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J.
2016-11-15
Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.
Electron-Impact Ionization Cross Section Database
National Institute of Standards and Technology Data Gateway
SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access) This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.
Threshold law for positron-atom impact ionisation
NASA Technical Reports Server (NTRS)
Temkin, A.
1982-01-01
The threshold law for ionisation of atoms by positron impact is adduced in analogy with our approach to the electron-atom ionization. It is concluded the Coulomb-dipole region of the potential gives the essential part of the interaction in both cases and leads to the same kind of result: a modulated linear law. An additional process which enters positron ionization is positronium formation in the continuum, but that will not dominate the threshold yield. The result is in sharp contrast to the positron threshold law as recently derived by Klar on the basis of a Wannier-type analysis.
ERIC Educational Resources Information Center
Brock, Cecilia
2017-01-01
As apex leaders, school superintendents are impacted by the continuous demand to be effective while utilizing electronic communication technology. The purpose of this study is to investigate how the use of electronic communication technology impacts a school superintendent's efficacy. Public education, in the twenty-first century, finds itself in…
NASA Astrophysics Data System (ADS)
Jones, D. B.; Cartwright, D. C.; Campbell, L.; Teubner, P. J. O.; Brunger, M. J.; Bottema, M. J.
2004-09-01
We report on the extension of our Statistical Equlibrium Code (SEC) to determine the electronic-vibrational behaviour of O2 in the thermosphere, under night-time auroral conditions. This work was necessitated by the inadequacies in previous studies where the electron-impact cross section data bases employed have been superceeded, and/or direct excitation of states via electron impact has been neglected. Here we use the latest electron-impact cross section data bases to present the first electron-impact excitation rates for the 8 lowest lying electronic states of O_2. We then use these rates in conjunction with the most accurately available Franck-Condon factors, transition probabilities and quenching rates to determine the excited state populations. Note that predissociation, which is important for O_2, is also included in our model. We present radiative rates for various transitions and compare these results with those from other models and experimental rocket measurements.
Electron-Impact Ionization and Dissociative Ionization of Biomolecules
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.
2006-01-01
It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.
A secured e-tendering modeling using misuse case approach
NASA Astrophysics Data System (ADS)
Mohd, Haslina; Robie, Muhammad Afdhal Muhammad; Baharom, Fauziah; Darus, Norida Muhd; Saip, Mohamed Ali; Yasin, Azman
2016-08-01
Major risk factors relating to electronic transactions may lead to destructive impacts on trust and transparency in the process of tendering. Currently, electronic tendering (e-tendering) systems still remain uncertain in issues relating to legal and security compliance and most importantly it has an unclear security framework. Particularly, the available systems are lacking in addressing integrity, confidentiality, authentication, and non-repudiation in e-tendering requirements. Thus, one of the challenges in developing an e-tendering system is to ensure the system requirements include the function for secured and trusted environment. Therefore, this paper aims to model a secured e-tendering system using misuse case approach. The modeling process begins with identifying the e-tendering process, which is based on the Australian Standard Code of Tendering (AS 4120-1994). It is followed by identifying security threats and their countermeasure. Then, the e-tendering was modelled using misuse case approach. The model can contribute to e-tendering developers and also to other researchers or experts in the e-tendering domain.
NASA Astrophysics Data System (ADS)
Yu, Kun; Jiang, Zhenguo; Leng, Bin; Li, Chaowen; Chen, Shuangjian; Tao, Wang; Zhou, Xingtai; Li, Zhijun
2016-07-01
In this study, the microstructure and mechanical properties of laser welds before and after post-weld heat treatment processes were studied. The results show that the tensile strength of the joints can be increased by 90 MPa by a post-weld heat treatment process at 871 °C for 6 h, exceeding the strength of the original state of the base metal. Besides, elongation of the joints are also increased to 43% by the process, whereas the elongation of as-welded joints are only 22%. In addition, the Charpy impact properties of laser welds almost do not change. Second phase precipitates, which were identified as Mo-Si rich M6C-type carbides by transmission electron diffraction and scanning electron microscope, were observed at solidification grain boundaries and solidification subgrain boundaries. These carbides can pin dislocations during the following tensile deformation, hence are responsible for the strengthening of tensile properties of the joints.
NASA Astrophysics Data System (ADS)
Nemati Aram, Tahereh; Ernzerhof, Matthias; Asgari, Asghar; Mayou, Didier
2017-01-01
We discuss the effects of charge carrier interaction and recombination on the operation of molecular photocells. Molecular photocells are devices where the energy conversion process takes place in a single molecular donor-acceptor complex attached to electrodes. Our investigation is based on the quantum scattering theory, in particular on the Lippmann-Schwinger equation; this minimizes the complexity of the problem while providing useful and non-trivial insight into the mechanism governing photocell operation. In this study, both exciton pair creation and dissociation are treated in the energy domain, and therefore there is access to detailed spectral information, which can be used as a framework to interpret the charge separation yield. We demonstrate that the charge carrier separation is a complex process that is affected by different parameters, such as the strength of the electron-hole interaction and the non-radiative recombination rate. Our analysis helps to optimize the charge separation process and the energy transfer in organic solar cells and in molecular photocells.
Six Sigma Approach to Improve Stripping Quality of Automotive Electronics Component – a case study
NASA Astrophysics Data System (ADS)
Razali, Noraini Mohd; Murni Mohamad Kadri, Siti; Con Ee, Toh
2018-03-01
Lacking of problem solving skill techniques and cooperation between support groups are the two obstacles that always been faced in actual production line. Inadequate detail analysis and inappropriate technique in solving the problem may cause the repeating issues which may give impact to the organization performance. This study utilizes a well-structured six sigma DMAIC with combination of other problem solving tools to solve product quality problem in manufacturing of automotive electronics component. The study is concentrated at the stripping process, a critical process steps with highest rejection rate that contribute to the scrap and rework performance. The detail analysis is conducted in the analysis phase to identify the actual root cause of the problem. Then several improvement activities are implemented and the results show that the rejection rate due to stripping defect decrease tremendously and the process capability index improved from 0.75 to 1.67. This results prove that the six sigma approach used to tackle the quality problem is substantially effective.
Cook, David J; Thompson, Jeffrey E; Suri, Rakesh; Prinsen, Sharon K
2014-01-01
The absence of standardization in surgical care process, exemplified in a "solution shop" model, can lead to unwarranted variation, increased cost, and reduced quality. A comprehensive effort was undertaken to improve quality of care around indwelling bladder catheter use following surgery by creating a "focused factory" model within the cardiac surgical practice. Baseline compliance with Surgical Care Improvement Inf-9, removal of urinary catheter by the end of surgical postoperative day 2, was determined. Comparison of baseline data to postintervention results showed clinically important reductions in the duration of indwelling bladder catheters as well as marked reduction in practice variation. Following the intervention, Surgical Care Improvement Inf-9 guidelines were met in 97% of patients. Although clinical quality improvement was notable, the process to accomplish this-identification of patients suitable for standardized pathways, protocol application, and electronic systems to support the standardized practice model-has potentially greater relevance than the specific clinical results. © 2013 by the American College of Medical Quality.
NASA Astrophysics Data System (ADS)
Nishio, Yui; Sato, Takato; Hirayama, Naomi; Iida, Tsutomu; Takanashi, Yoshifumi
2016-04-01
In strained high-electron-mobility transistors (HEMTs) with InAs as the channel, excess electrons and holes are generated in the drain region by impact ionization. In the source region, electrons are injected to recombine with accumulated holes by the Auger process. This causes the shift of the gate potential, V GS,shift, for HEMTs. For a system where electrons and holes coexist, we established a theory taking into account the nonparabolicity of the conduction band in the InAs channel. This theory enables us to rigorously determine not only the energy states and the concentration profiles for both carriers but also the V GS,shift due to an accumulation of holes. We have derived the Auger recombination theory which takes into account the Fermi-Dirac statistics and is applicable to an arbitrary shape of potential energy. The Auger recombination lifetime τA for InAs-PHEMTs was estimated as a function of the sheet hole concentration, p s, and τA was on the order of psec for p s exceeding 1012 cm-2.
Oxygen adsorption on a Si(1 0 0) substrate: effects on secondary emission properties
NASA Astrophysics Data System (ADS)
Vogan, W. S.; Champion, R. L.
2001-10-01
Secondary anion and electron yields resulting from low-energy (50-500 eV) Na + bombardment of an oxygen-adsorbed Si(1 0 0) substrate have been measured as a function of oxygen exposure and of Na + impact energy. Adsorbate coverage ranges from none to over half a monolayer. The dominant sputtered anion was found to be O - with SiO 2- being a minor constituent. Kinetic energy distributions of the secondary anions and electrons were also measured. The presence of an adsorbate was observed to enhance secondary anion emission to a significant degree whereas secondary electron emission was minor, in sharp contrast to what has been observed for metallic substrates. The mechanism for secondary emission appears to involve electronic excitation of Si xO -; it is suggested that electron emission is governed by a process similar to Penning ionization, in which a vacancy created by the excitation of Si xO - may be filled by an electron from the valence band. The variation in the work function as oxygen accumulated on the surface was observed to be small.
Triply differential measurements of single ionization of argon by 1-keV positron and electron impact
NASA Astrophysics Data System (ADS)
Gavin, J.; de Lucio, O. G.; DuBois, R. D.
2017-06-01
By establishing coincidences between target ions and scattered projectiles, and coincidences between target ions, scattered projectiles, and ejected electrons, triply differential cross-section (TDCS) information was generated in terms of projectile energy loss and scattering angles for interactions between 1-keV positrons and electrons and Ar atoms. The conversion of the raw experimental information to the TDCS is discussed. The single-ionization TDCS exhibits two distinguishable regions (lobes) where binary and recoil interactions can be described by two peaks. A comparison of the positron and electron impact data shows that the relative intensity of both binary and recoil interactions decreases exponentially as a function of the momentum transfer and is larger when ionization is induced by positron impact, when compared with electron impact.
High-temperature superconductivity for avionic electronic warfare and radar systems
NASA Astrophysics Data System (ADS)
Ryan, Paul A.
1994-01-01
The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS.
Time-dependent spin-density-functional-theory description of He+-He collisions
NASA Astrophysics Data System (ADS)
Baxter, Matthew; Kirchner, Tom; Engel, Eberhard
2017-09-01
Theoretical total cross-section results for all ionization and capture processes in the He+-He collision system are presented in the approximate impact energy range of 10-1000 keV/amu. Calculations were performed within the framework of time-dependent spin-density functional theory. The Krieger-Li-Iafrate approximation was used to determine an accurate exchange-correlation potential in the exchange-only limit. The results of two models, one where electron translation factors in the orbitals used to calculate the potential are ignored and another where partial electron translation factors are included, are compared with available experimental data as well as a selection of previous theoretical calculations.
Petrides, Athena K; Bixho, Ida; Goonan, Ellen M; Bates, David W; Shaykevich, Shimon; Lipsitz, Stuart R; Landman, Adam B; Tanasijevic, Milenko J; Melanson, Stacy E F
2017-03-01
- A recent government regulation incentivizes implementation of an electronic health record (EHR) with computerized order entry and structured results display. Many institutions have also chosen to interface their EHR with their laboratory information system (LIS). - To determine the impact of an interfaced EHR-LIS on laboratory processes. - We analyzed several different processes before and after implementation of an interfaced EHR-LIS: the turnaround time, the number of stat specimens received, venipunctures per patient per day, preanalytic errors in phlebotomy, the number of add-on tests using a new electronic process, and the number of wrong test codes ordered. Data were gathered through the LIS and/or EHR. - The turnaround time for potassium and hematocrit decreased significantly (P = .047 and P = .004, respectively). The number of stat orders also decreased significantly, from 40% to 7% for potassium and hematocrit, respectively (P < .001 for both). Even though the average number of inpatient venipunctures per day increased from 1.38 to 1.62 (P < .001), the average number of preanalytic errors per month decreased from 2.24 to 0.16 per 1000 specimens (P < .001). Overall there was a 16% increase in add-on tests. The number of wrong test codes ordered was high and it was challenging for providers to correctly order some common tests. - An interfaced EHR-LIS significantly improved within-laboratory turnaround time and decreased stat requests and preanalytic phlebotomy errors. Despite increasing the number of add-on requests, an electronic add-on process increased efficiency and improved provider satisfaction. Laboratories implementing an interfaced EHR-LIS should be cautious of its effects on test ordering and patient venipunctures per day.
Dowding, Dawn W; Turley, Marianne; Garrido, Terhilda
2012-01-01
To evaluate the impact of electronic health record (EHR) implementation on nursing care processes and outcomes. Interrupted time series analysis, 2003-2009. A large US not-for-profit integrated health care organization. 29 hospitals in Northern and Southern California. An integrated EHR including computerized physician order entry, nursing documentation, risk assessment tools, and documentation tools. Percentage of patients with completed risk assessments for hospital acquired pressure ulcers (HAPUs) and falls (process measures) and rates of HAPU and falls (outcome measures). EHR implementation was significantly associated with an increase in documentation rates for HAPU risk (coefficient 2.21, 95% CI 0.67 to 3.75); the increase for fall risk was not statistically significant (0.36; -3.58 to 4.30). EHR implementation was associated with a 13% decrease in HAPU rates (coefficient -0.76, 95% CI -1.37 to -0.16) but no decrease in fall rates (-0.091; -0.29 to 0.11). Irrespective of EHR implementation, HAPU rates decreased significantly over time (-0.16; -0.20 to -0.13), while fall rates did not (0.0052; -0.01 to 0.02). Hospital region was a significant predictor of variation for both HAPU (0.72; 0.30 to 1.14) and fall rates (0.57; 0.41 to 0.72). The introduction of an integrated EHR was associated with a reduction in the number of HAPUs but not in patient fall rates. Other factors, such as changes over time and hospital region, were also associated with variation in outcomes. The findings suggest that EHR impact on nursing care processes and outcomes is dependent on a number of factors that should be further explored.
Lei, Yanlian; Deng, Ping; Li, Jun; Lin, Ming; Zhu, Furong; Ng, Tsz-Wai; Lee, Chun-Sing; Ong, Beng S.
2016-01-01
Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements. PMID:27091315
NASA Astrophysics Data System (ADS)
Shakhatov, V. A.; Lebedev, Yu A.; Lacoste, A.; Bechu, S.
2017-11-01
An electronic state sensitive semiempirical collision-radiative model of hydrogen plasma of ECR-discharge is used to analyze the applicability of emission of triplet states of molecular hydrogen for plasma diagnostics. It is shown that secondary processes make the greatest contribution to the kinetics of population-depopulation of triplet states {a}3{{Σ }}}g+,{c}3{{{\\Pi }}}u,{d}3{{{\\Pi }}}u,{e}3{{{Σ }}}u+,{g}3{{{Σ }}}g+,{h}3{{{Σ }}}g+, i 3Πg and r 3Πg. The secondary processes give the smallest contribution to the excitation and deactivation of triplet states {f}3{{{Σ }}}u+ {\\unicode{x00438;} {k}3{{{\\Pi }}}u. Thus a simplified coronal model (electron impact excitation followed by radiative decay) can be used to process the intensities of the dipole allowed {f}3{{{Σ }}}u+ \\to {a}3{{{Σ }}}g+,{g}3{{{Σ }}}g+ and {k}3{{{\\Pi }}}u \\to {a}3{{{Σ }}}g+ transitions. The complicated collision-radiative model should be used for other transitions.
Is the destabilization of the cournot equilibrium a good business strategy in cournot-puu duopoly?
Canovas, Jose S
2011-10-01
It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.
Low-Cost Detection of Thin Film Stress during Fabrication
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.
Measurement of the Positron Annihilation Induced Auger Electron Spectrum from Ag(100)
NASA Astrophysics Data System (ADS)
Joglekar, P.; Shastry, K.; Fazleev, N. G.; Weiss, A. H.
2013-06-01
Research has demonstrated that Positron Annihilation Induced Auger Spectroscopy (PAES) can be used to probe the top-most atomic layer of surfaces and to obtain Auger spectra that are completely free of beam-impact induced secondary background. The high degree of surface selectivity in PAES is a result of the fact that positrons implanted at low energies are trapped with high efficiency at an image-correlation potential well at the surface resulting in almost all of the positrons annihilating with atoms in the top-most layer. Secondary electrons associated with the impact of the incident positrons can be eliminated by a suitable choice of an incident beam energy. In this paper we present the results of measurements of the energy spectrum of electrons emitted as a result of positron annihilation induced Auger electron emission from a clean Ag(100) surface using a series of incident beam energies ranging from 20 eV down to 2 eV. A peak in the spectrum was observed at ~40 eV corresponding to the N2,3VV Auger transition in agreement with previous PAES studies. This peak was accompanied by an even larger low energy tail which persisted even at the lowest beam energies. Our results for Ag(100) are consistent with previous studies of Cu and Au and indicate that a significant fraction of electrons leaving the sample are emitted in the low energy tail and suggest a strong mechanism for energy sharing in the Auger process.
Electron Impact Cross Sections for Molecular Lasers
1984-04-27
range coumunication and surveillance, isotope separation, and controlled thermonuclear fussion . Among all kinds of lasers, the gaseous discharge...shape resonance of n symmetry (reviewed by Schulz, 1976). Like vibrational excitation from the ground state, such process from nuclear -excited states as...energy range specifically in the 1-4 eV resonant region. 4 - A. Vibrational Excitation of Nuclear -Excited N2 For vibrational excitation by
An Architecture for Integrated Regional Health Telematics Networks
2001-10-25
that enables informed citizens to have an impact on the healthcare system and to be more concerned and care for their own health . The current...resource, educational, integrated electronic health record (I- EHR ), and added value services [2]. These classes of telematic services are applica...cally distributed clinical information systems . 5) Finally, added-value services (e.g. image processing, information indexing, data pre-fetching
NASA Astrophysics Data System (ADS)
Zhao, Fusheng; Zenasni, Oussama; Li, Jingting; Shih, Wei-Chuan
2017-02-01
Localized surface plasmon resonance (LSPR) arises from the interaction of light with noble metal nanoparticles, which induces a collective oscillation in the free electrons. The size and shape of the metallic nanostructure significantly impact LSPR frequency and strength. Nanoplasmonic sensor has become a recent research focus due to its significant signal enhancement and robust signal transduction measured by extinction spectroscopy, fluorescence, Raman scattering, and absorption spectroscopy. Dark-field microscopy, in contrast, reports the scattered photons after light-matter interactions. In this case, the nanoparticles can be understood as dipole radiators whose free electrons oscillate in concert. Coupled with spectroscopy, this platform allows the collection of plasmonically scattered spectra from gold nanoparticles. Plasmonic coupling between electron-beam lithography patterned gold nanodisks (AuND) and colloidal gold nanoparticles (AuNP) can change the plasmonic resonance of the original entities, and can be effectively studied by dark-field hyperspectral microscopy. Typically, a pronounced redshift can be observed when plasmonic coupling occurs. When these nano-entities are functionalized with interactive surface moieties, biochemistry and molecular processes can be studied. In this paper, we will present the capability of assessing the process of immobilizing streptavidin-functionalized AuNPs on an array of biotin-terminated AuNDs. By monitoring changes in the LSPR band of AuNDs, we are able to evaluate similar processes in other molecular systems. In addition, plasmon coupling induced scattering intensity variations can be measured by an electron-multiplied charge-coupled device camera for rapid in situ monitoring. This method can potentially be useful in studying dynamic biophysical and biochemical processes in situ.
NASA Astrophysics Data System (ADS)
Ziemińska-Stolarska, Aleksandra; Barecka, Magda; Zbiciński, Ireneusz
2017-10-01
Abundant use of natural resources is doubtlessly one of the greatest challenges of sustainable development. Process alternatives, which enable sustainable manufacturing of valuable products from more accessible resources, are consequently required. One of examples of limited resources is Indium, currently broadly used for tin doped indium oxide (ITO) for production of transparent conductive films (TCO) in electronics industry. Therefore, candidates for Indium replacement, which would offer as good performance as the industrial state-of-the-art technology based on ITO are widely studied. However, the environmental impact of new layers remains unknown. Hence, this paper studies the environmental effect of ITO replacement by zinc oxide (ZnO) by means life cycle assessment (LCA) methodology. The analysis enables to quantify the environmental impact over the entire period of life cycle of products—during manufacturing, use phase and waste generation. The analysis was based on experimental data for deposition process. Further, analysis of different impact categories was performed in order to determine specific environmental effects related to technology change. What results from the analysis, is that ZnO is a robust alternative material for ITO replacement regarding environmental load and energy efficiency of deposition process which is also crucial for sustainable TCO layer production.
Electronic health records in four community physician practices: impact on quality and cost of care.
Welch, W Pete; Bazarko, Dawn; Ritten, Kimberly; Burgess, Yo; Harmon, Robert; Sandy, Lewis G
2007-01-01
To assess the impact of the electronic health record (EHR) on cost (i.e., payments to providers) and process measures of quality of care. Retrospective before-after-study-control. From the database of a large managed care organization (MCO), we obtained the claims of patients from four community physician practices that implemented the EHR and from about 50 comparison practices without the EHR in the same counties. The diverse patient and practice populations were chosen to be a sample more representative of typical private practices than has previously been studied. For four chronic conditions, we used commercially-available software to analyze cost per episode over a year and the rate of adherence to clinical guidelines as a measure of quality. The implementation of the EHR had a modest positive impact on the quality measure of guideline adherence for hypertension and hyperlipidemia, but no significant impact for diabetes and coronary artery disease. No measurable impact on the short-term cost per episode was found. Discussions with the study practices revealed that the timing and comprehensiveness of EHR implementation varied across practices, creating an intervention variable that was heterogeneous. Guideline adherence increased across practices without EHRs and slightly faster in practices with EHRs. Measuring the impact of EHRs on cost per episode was challenging, because of the difficulty of completely capturing the long-term episodic costs of a chronic condition. Few practices associated with the study MCO had implemented EHRs in any form, much less utilizing standardized protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh
Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less
Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling.
Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita
2012-06-01
This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh; ...
2018-03-20
Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less
Social Media and eBusiness: Cultural Impacts on the Influence Process in Consumer Communities
NASA Astrophysics Data System (ADS)
Chen, Yong; Chen, Hong; Xu, Li
2016-08-01
Social media has been used as an important tool by firms to influence consumers’ attitude and behavior. Influence occurs in consumer communities in social media because community members have the control of discovering, producing, sharing, and distributing information and because the spread out of their experiences and opinions in the format of electronic word-of-mouth forms emerging conformance. Prior research has explored how the influence occurring in online social media communities impacts consumers’ attitude and behavior (e.g., product attitude and purchase decision, effectual thinking and behavior, brand trust and brand loyalty). But because social media has the ability of global reach, cross-border factors should not be neglected in studying the influence process. As such, this paper adopts national cultural dimensions identified by Hofstede (1984), individualism/collectivism and power distance particularly, the index of cultural distance, and the social influence theory to explore how culture impacts the influence occurring in consumer communities in social media.
Electron Impact Ionization Cross Sections in Rb and Cs.
NASA Astrophysics Data System (ADS)
Reddish, T. J.; Lukomski, M.; Sutton, S.; Kedzierski, W.; McConkey, J. W.; Bartschat, K.; Bartlett, P. L.; Stelbovics, A. T.; Bray, I.
2006-05-01
We present a new atom trapping technique for determining absolute, total ionisation cross sections (TICS) out of an excited atom. The novel feature of this method is in utilizing Doppler cooling of neutral atoms to determine ionisation cross sections. This fluorescence-monitoring experiment, which is a variant of the `trap loss' technique, has enabled us to obtain the experimental electron impact ionisation cross sections out of the Cs 6^2P3/2 excited state between 7 - 400 eV. New CCC, R-Matrix with Pseudo-States (RMPS), and Born approximation single ionisation cross sections (SICS) are also presented for both the ground and excited states of Cs and Rb, and compared with the available experimental data. The comparison of the results reveals the importance of the autoionisation and multiple ionisation contributions to the TICS. The autoionisation contribution appears to be substantial for ionisation out of the Cs 6^2P and Rb 5^2P excited states; ˜ 3-4 larger than the direct ionisation contribution predicted by CCC at ˜ 30-50 eV. This surprising result shows the importance of multi-electron processes in determining the ionisation cross sections of heavy alkali atoms.
NASA Astrophysics Data System (ADS)
Ranković, Miloš Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.
2016-02-01
We have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1 s excitation. Both MS2 and single ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.
NASA Astrophysics Data System (ADS)
Dennerl, Konrad
2010-12-01
Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.
Particle Energization in Earth's Van Allen Radiation Belts Due to Solar Wind Forcing
NASA Astrophysics Data System (ADS)
Baker, D. N.
2017-12-01
Early observations of the Earth's radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. However, recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed unexpected properties of the radiation belts, especially for electrons at highly relativistic (E > 2 MeV) and ultra-relativistic (E > 5 MeV) kinetic energies. In this presentation we show using high spatial and temporal resolution data from the experiments on board the Van Allen Probes that multiple belts can exist concurrently and that an exceedingly sharp inner boundary exists for ultra-relativistic electrons. Using additionally available Van Allen Probes data, we demonstrate that these remarkable features of energetic electrons are driven by strong solar and solar wind forcings. The comprehensive Van Allen Probes data show more broadly and in many ways how extremely high energy particles are accelerated, transported, and lost in the magnetosphere due to interplanetary shock wave interactions, coronal mass ejection impacts, and high-speed solar wind streams. The new data have shown especially how dayside processes play a key role in electron acceleration and loss processes.
Ribeiro, F de A; Almeida, G C; Garcia-Basabe, Y; Wolff, W; Boechat-Roberty, H M; Rocco, M L M
2015-11-07
The incidence of high-energy radiation onto icy surfaces constitutes an important route for leading new neutral or ionized molecular species back to the gas phase in interstellar and circumstellar environments, especially where thermal desorption is negligible. In order to simulate such processes, an acetonitrile ice (CH3CN) frozen at 120 K is bombarded by high energy electrons, and the desorbing positive ions are analyzed by time-of-flight mass spectrometry (TOF-MS). Several fragment and cluster ions were identified, including the Hn=1-3(+), CHn=0-3(+)/NHn=0-1(+); C2Hn=0-3(+)/CHn=0-3N(+), C2Hn=0-6N(+) ion series and the ion clusters (CH3CN)n=1-2(+) and (CH3CN)n=1-2H(+). The energy dependence on the positive ion desorption yield indicates that ion desorption is initiated by Coulomb explosion following Auger electronic decay. The results presented here suggest that non-thermal desorption processes, such as desorption induced by electronic transitions (DIET) may be responsible for delivering neutral and ionic fragments from simple nitrile-bearing ices to the gas-phase, contributing to the production of more complex molecules. The derived desorption yields per electron impact may contribute to chemical evolution models in different cold astrophysical objects, especially where the abundance of CH3CN is expected to be high.
Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica
2007-01-01
It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.
Wozniakiewicz, Penelope J.; Ishii, Hope A.; Kearsley, Anton T.; ...
2015-11-05
Comet 81P/Wild 2 samples returned by NASA's Stardust mission provide an unequalled opportunity to study the contents of, and hence conditions and processes operating on, comets. They can potentially validate contentious interpretations of cometary infrared spectra and in situ mass spectrometry data: specifically the identification of phyllosilicates and carbonates. However, Wild 2 dust was collected via impact into capture media at ~6 km s -1, leading to uncertainty as to whether these minerals were captured intact, and, if subjected to alteration, whether they remain recognizable. Here, we simulated Stardust Al foil capture conditions using a two-stage light-gas gun, and directlymore » compared transmission electron microscope analyses of pre- and postimpact samples to investigate survivability of lizardite and cronstedtite (phyllosilicates) and calcite (carbonate). We find the phyllosilicates do not survive impact as intact crystalline materials but as moderately to highly vesiculated amorphous residues lining resultant impact craters, whose bulk cation to Si ratios remain close to that of the impacting grain. Closer inspection reveals variation in these elements on a submicron scale, where impact-induced melting accompanied by reducing conditions (due to the production of oxygen scavenging molten Al from the target foils) has resulted in the production of native silicon and Fe- and Fe-Si-rich phases. In contrast, large areas of crystalline calcite are preserved within the calcite residue, with smaller regions of vesiculated, Al-bearing calcic glass. Unambiguous identification of calcite impactors on Stardust Al foil is therefore possible, while phyllosilicate impactors may be inferred from vesiculated residues with appropriate bulk cation to Si ratios. Finally, we demonstrate that the characteristic textures and elemental distributions identifying phyllosilicates and carbonates by transmission electron microscopy can also be observed by state-of-the-art scanning electron microscopy providing rapid, nondestructive initial mineral identifications in Stardust residues.« less
Electronic Tools for Health Information Exchange
2013-01-01
Background As patients experience transitions in care, there is a need to share information between care providers in an accurate and timely manner. With the push towards electronic medical records and other electronic tools (eTools) (and away from paper-based health records) for health information exchange, there remains uncertainty around the impact of eTools as a form of communication. Objective To examine the impact of eTools for health information exchange in the context of care coordination for individuals with chronic disease in the community. Data Sources A literature search was performed on April 26, 2012, using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database, for studies published until April 26, 2012 (no start date limit was applied). Review Methods A systematic literature search was conducted, and meta-analysis conducted where appropriate. Outcomes of interest fell into 4 categories: health services utilization, disease-specific clinical outcomes, process-of-care indicators, and measures of efficiency. The quality of the evidence was assessed individually for each outcome. Expert panels were assembled for stakeholder engagement and contextualization. Results Eleven articles were identified (4 randomized controlled trials and 7 observational studies). There was moderate quality evidence of a reduction in hospitalizations, hospital length of stay, and emergency department visits following the implementation of an electronically generated laboratory report with recommendations based on clinical guidelines. The evidence showed no difference in disease-specific outcomes; there was no evidence of a positive impact on process-of-care indicators or measures of efficiency. Limitations A limited body of research specifically examined eTools for health information exchange in the population and setting of interest. This evidence included a combination of study designs and was further limited by heterogeneity in individual technologies and settings in which they were implemented. Conclusions There is evidence that the right eTools in the right environment and context can significantly impact health services utilization. However, the findings from this evidence-based analysis raise doubts about the ability of eTools with care-coordination capabilities to independently improve the quality of outpatient care. While eTools may be able to support and sustain processes, inefficiencies embedded in the health care system may require more than automation alone to resolve. Plain Language Summary Patients with chronic diseases often work with many different health care providers. To ensure smooth transitions from one setting to the next, health care providers must share information and coordinate care effectively. Electronic medical records (eTools) are being used more and more to coordinate patient care, but it is not yet known whether they are more effective than paper-based health records. In this analysis, we reviewed the evidence for the use of eTools to exchange information and coordinate care for people with chronic diseases in the community. There was some evidence that eTools reduced the number of hospital and emergency department visits, as well as patients' length of stay in the hospital, but there was no evidence that eTools improved the overall quality of patient care. PMID:24194799
HF-enhanced 4278-Å airglow: evidence of accelerated ionosphere electrons?
NASA Astrophysics Data System (ADS)
Fallen, C. T.; Watkins, B. J.
2013-12-01
We report calculations from a one-dimensional physics-based self-consistent ionosphere model (SCIM) demonstrating that HF-heating of F-region electrons can produce 4278-Å airglow enhancements comparable in magnitude to those reported during ionosphere HF modification experiments at the High-frequency Active Auroral Research Program (HAARP) observatory in Alaska. These artificial 'blue-line' emissions, also observed at the EISCAT ionosphere heating facility in Norway, have been attributed to arise solely from additional production of N2+ ions through impact ionization of N2 molecules by HF-accelerated electrons. Each N2+ ion produced by impact ionization or photoionization has a probability of being created in the N2+(1N) excited state, resulting in a blue-line emission from the allowed transition to its ground state. The ionization potential of N2 exceeds 18 eV, so enhanced impact ionization of N2 implies that significant electron acceleration processes occur in the HF-modified ionosphere. Further, because of the fast N2+ emission time, measurements of 4278-Å intensity during ionosphere HF modification experiments at HAARP have also been used to estimate artificial ionization rates. To the best of our knowledge, all observations of HF-enhanced blue-line emissions have been made during twilight conditions when resonant scattering of sunlight by N2+ ions is a significant source of 4278-Å airglow. Our model calculations show that F-region electron heating by powerful O-mode HF waves transmitted from HAARP is sufficient to increase N2+ ion densities above the shadow height through temperature-enhanced ambipolar diffusion and temperature-suppressed ion recombination. Resonant scattering from the modified sunlit region can cause a 10-20 R increase in 4278-Å airglow intensity, comparable in magnitude to artificial emissions measured during ionosphere HF-modification experiments. This thermally-induced artificial 4278-Å aurora occurs independently of any artificial aurora maintained by HF-accelerated (non-thermal) electrons. The numerical results presented here do not necessarily rule out the presence of HF-accelerated electrons with energies exceeding 18 eV. However, vertical or field-aligned airglow intensity measurements made during twilight conditions do not provide definitive evidence of energetic HF-accelerated electrons. Consequently, artificial blue-line airglow measurements should not be used to estimate N2+ ionization rates without also accounting for temperature-dependent chemistry and diffusion. Future experiments that make simultaneous measurements of N2+ ion airglow emissions from both the first negative bands and the Meinel bands can potentially resolve the relative contributions of accelerated electron and resonant scattering mechanisms. Airglow emission rates from these bands are expected to be in strict proportion when the emissions result from electron impact ionization of N2 molecules. Side-view altitude-resolved 4278-Å airglow measurements may also indicate the presence of energetic HF-accelerated electrons if the blue-line emissions are determined to occur below the shadow height.
Impact of sodium lauryl sulfate in oral liquids on e-tongue measurements.
Immohr, Laura Isabell; Turner, Roy; Pein-Hackelbusch, Miriam
2016-12-30
During development of oral liquid medicines taste assessment is often required to evaluate taste and taste masking. Electronic tongue analysis can provide taste assessment of medicinal products but should only be conducted with medicines that interact with the instrument without damaging the sensor membranes or interfering with their electrical output so that robust data is generated. To explore the impact of a substance deemed unsuitable for electronic tongue analysis the influence of the anionic surfactant sodium lauryl sulfate (SLS), on the performance of the electronic tongue was conducted using electronic tongues equipped with self-developed PVC based sensors. The results showed a significant impact of SLS on all applied sensor types and an alteration of the sensor's sensitivity. Nevertheless, concentration dependent sensor responses could still be obtained and the sensor performance was not impacted negatively. Assessment of unsuitable substances should therefore be evaluated prior to performing electronic tongue analysis so that their impact is understood fully. Copyright © 2016 Elsevier B.V. All rights reserved.
Electron impact excitation of carbon monoxide in comet Hale-Bopp
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2009-02-01
The fourth positive emissions of carbon monoxide in the coma of comet Hale-Bopp have been assumed to be due mainly to fluorescence induced by sunlight. Based on this assumption they were used to deduce the abundance of carbon monoxide in the comet, giving a value higher than in other comets. Emissions produced by electron impact excitation of CO were not considered. Recent measurements and theoretical calculations of integral cross sections for electron impact excitation of CO allow the contribution of electron impact to be calculated, giving about 40% of the total. This implies that the abundance of CO in the outer coma of comet Hale-Bopp was only 60% of that previously deduced. However, as the high proportion of CO in comet Hale-Bopp was also seen in some other measurements, alternative explanations are considered. The method of calculation is tested by successfully predicting the O I emission at 1356 Å, supporting the belief that this line is due to electron impact excitation.
Electron impact contribution to infrared NO emissions in auroral conditions
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2007-11-01
Infrared emissions from nitric oxide, other than nightglow, are observed in aurora, principally due to a chemiluminescent reaction between excited nitrogen atoms and oxygen molecules that produces vibrationally excited NO. The rates for this chemiluminescent reaction have recently been revised. Based on new measurements of electron impact vibrational excitation of NO, it has been suggested that electron impact may also be significant in producing auroral NO emissions. We show results of a detailed calculation which predicts the infrared spectrum observed in rocket measurements, using the revised chemiluminescent rates and including electron impact excitation. For emissions from the second vibrational level and above, the shape of the spectrum can be reproduced within the statistical errors of the analysis of the measurements, although there is an unexplained discrepancy in the absolute value of the emissions. The inclusion of electron impact improves the agreement of the shape of the predicted spectrum with the measurements by accounting for part of the previously unexplained peak in emissions from the first vibrational level.
NASA Astrophysics Data System (ADS)
Purohit, G.; Kato, D.
2017-10-01
The single ionization triple differential cross sections (TDCS) of the Ar (3 p ) atoms are reported for the positron and electron impact at 1 keV. The calculated cross sections have been obtained using distorted wave Born approximation (DWBA) approach for the average ejected electron energies 13 and 26 eV at different momentum transfer conditions. The present attempt is helpful to probe the information on the TDCS trends for the particle-matter and antiparticle-matter interactions and to analyze the recent measurements [Phy. Rev. A 95, 062703 (2017), 10.1103/PhysRevA.95.062703]. The binary electron emission is enhanced while the recoil emission is decreased for the positron impact relative to the electron impact in the DWBA calculation results. Systematic shift of peaks, shifting away from the momentum transfer direction for positron impact and shifting towards each other for electron impact, is observed with increasing momentum transfer.
NASA Astrophysics Data System (ADS)
Raines, J. M.; Slavin, J. A.; Tracy, P.; Gershman, D. J.; Zurbuchen, T.; Korth, H.; Anderson, B. J.; Solomon, S. C.
2015-12-01
Plasma impact onto Mercury's surface can be an important contributor to Mercury's exosphere through the process of ion sputtering. Under some circumstances, this process can produce a substantial fraction of the exosphere. When the impacting plasma originates from the magnetosphere itself, this sputtering process can conversely be considered as a sink for the plasma of the Mercury magnetosphere, providing evidence for the processes at work in that system. One such process is reconnection in Mercury's magnetotail, which can accelerate ions and electrons from the central plasma sheet toward the nightside of the planet. By analogy with processes at Earth, it is hypothesized that as these flows approach the planet, much of the plasma is diverted from impact onto the surface by the increasingly strong planetary magnetic field closer to the planet. The remainder of the plasma is expected to follow nearly dipolar field lines, impacting the nightside surface and potentially contributing to field-aligned currents. We present the first direct evidence that this process is operating at Mercury. We examine ion precipitation events on Mercury's nightside with the Fast Imaging Plasma Spectrometer (FIPS) on the MESSENGER spacecraft, which orbited Mercury from 2011 to 2015. We characterize the energy distributions of these events and their extent in latitude and local time. We use these observations to predict the precipitating proton flux from altitudes as low as 11 km. We use this information to bound the region of Mercury's surface that remains protected from plasma bombardment by the planetary dipole magnetic field, and to explore the implications of this information for magnetospheric convection and exosphere generation at Mercury.
NASA Astrophysics Data System (ADS)
Raines, J. M.; Slavin, J. A.; Tracy, P.; Gershman, D. J.; Zurbuchen, T.; Dewey, R. M.; Sarantos, M.
2016-12-01
Plasma impact onto Mercury's surface can be an important contributor to Mercury's exosphere through the process of ion sputtering. Under some circumstances, this process can produce a substantial fraction of the exosphere. When the impacting plasma originates from the magnetosphere itself, this sputtering process can conversely be considered as a sink for the plasma of the Mercury magnetosphere, providing evidence for the processes at work in that system. One such process is reconnection in Mercury's magnetotail, which can accelerate ions and electrons from the central plasma sheet toward the nightside of the planet. By analogy with processes at Earth, it is hypothesized that as these flows approach the planet, much of the plasma is diverted from impact onto the surface by the increasingly strong planetary magnetic field closer to the planet. The remainder of the plasma is expected to follow nearly dipolar field lines, impacting the nightside surface and potentially contributing to field-aligned currents. We present the first direct evidence that this process is operating at Mercury. We examine ion precipitation events on Mercury's nightside with the Fast Imaging Plasma Spectrometer (FIPS) on the MESSENGER spacecraft, which orbited Mercury from 2011 to 2015. We characterize the energy distributions of these events and their extent in latitude and local time. We use these observations to predict the precipitating proton flux from altitudes as low as 11 km. We use this information to bound the region of Mercury's surface that remains protected from plasma bombardment by the planetary dipole magnetic field, and to explore the implications of this information for magnetospheric convection and exosphere generation at Mercury.
Role of excited N2 in the production of nitric oxide
NASA Astrophysics Data System (ADS)
Campbell, L.; Cartwright, D. C.; Brunger, M. J.
2007-08-01
Excited N2 plays a role in a number of atmospheric processes, including auroral and dayglow emissions, chemical reactions, recombination of free electrons, and the production of nitric oxide. Electron impact excitation of N2 is followed by radiative decay through a series of excited states, contributing to auroral and dayglow emissions. These processes are intertwined with various chemical reactions and collisional quenching involving the excited and ground state vibrational levels. Statistical equilibrium and time step atmospheric models are used to predict N2 excited state densities and emissions (as a test against previous models and measurements) and to investigate the role of excited nitrogen in the production of nitric oxide. These calculations predict that inclusion of the reaction N2[A3Σu +] + O, to generate NO, produces an increase by a factor of up to three in the calculated NO density at some altitudes.
Strategies for Primary Care Stakeholders to Improve Electronic Health Records (EHRs).
Olayiwola, J Nwando; Rubin, Ashley; Slomoff, Theo; Woldeyesus, Tem; Willard-Grace, Rachel
2016-01-01
The use of electronic health records (EHRs) and the vendors that develop them have increased exponentially in recent years. While there continues to emerge literature on the challenges EHRs have created related to primary care provider satisfaction and workflow, there is sparse literature on the perspective of the EHR vendors themselves. We examined the role of EHR vendors in optimizing primary care practice through a qualitative study of vendor leadership and developers representing 8 companies. We found that EHR vendors apply a range of strategies to elicit feedback from their clinical users and to engage selected users in their development and design process, but priorities are heavily influenced by the macroenvironment and government regulations. To improve the "marriage" between primary care and the EHR vendor community, we propose 6 strategies that may be most impactful for primary care stakeholders seeking to influence EHR development processes. © Copyright 2016 by the American Board of Family Medicine.
NASA Technical Reports Server (NTRS)
Elston, S. B.; Vane, C. R.; Schumann, S.
1979-01-01
Production of core-excited autoionizing states of neutral Li having configurations of the form 1snln(prime)l(prime) has been observed over the impact-energy range from 10-50 keV. Although the results for production of all such states is remarkably consistent with a quasi-molecular-excitation model proposed by Stolterfoht and Leithaeuser (1976), production of individual lines in the observed spectra exhibits collision-velocity dependencies indicative of considerably more complex processes, including processes which appear to be inherently two-electron in nature. Excitation functions are presented for (1s2s/2/)/2/S, 1s(2s2p/3/P)/2/P, 1s(2s2p/1/P)/2/P, and (1s2p/2/)/2/D core-excited state of Li and for total core excitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrne, James; Klueglein, Nicole; Pearce, Carolyn I.
Despite the regular occurrence of both magnetite and iron-metabolizing bacteria in the same environments, it is currently unknown whether the iron(II) and iron(III) in magnetite can be cycled between different bacteria and whether or how magnetic properties are affected by this metabolic activity. We show through magnetic and spectroscopic measurements that the phototrophic Fe(II)-oxidizer Rhodopseudomonas palustris TIE-1 can oxidize solid-phase magnetite nanoparticles using light energy, leading to a decrease in the measured magnetic susceptibility (MS). This process likely occurs at the surface and is reversible in the dark by the Fe(III)-reducer Geobacter sulfurreducens resulting in an increase in MS. Thesemore » results show that iron ions bound in highly crystalline mineral magnetite are bioavailable as electron stores and electron sinks under varying environmental conditions, making magnetite a potential “biogeobattery” during day/night cycles. These findings are relevant for environmental studies and reinforce the impact of microbial redox processes on the global iron cycle.« less
Electron-impact coherence parameters for 41 P 1 excitation of zinc
NASA Astrophysics Data System (ADS)
Piwiński, Mariusz; Kłosowski, Łukasz; Chwirot, Stanisław; Fursa, Dmitry V.; Bray, Igor; Das, Tapasi; Srivastava, Rajesh
2018-04-01
We present electron-impact coherence parameters (EICP) for electron-impact excitation of 41 P 1 state of zinc atoms for collision energies 40 eV and 60 eV. The experimental results are presented together with convergent close-coupling and relativistic distorted-wave approximation theoretical predictions. The results are compared and discussed with EICP data for collision energies 80 eV and 100 eV.
Threshold law for electron-atom impact ionization
NASA Technical Reports Server (NTRS)
Temkin, A.
1982-01-01
A derivation of the explicit form of the threshold law for electron impact ionization of atoms is presented, based on the Coulomb-dipole theory. The important generalization is made of using a dipole function whose moment is the dipole moment formed by an inner electron and the nucleus. The result is a modulated quasi-linear law for the yield of positive ions which applies to positron-atom impact ionization.
NASA Astrophysics Data System (ADS)
Van Lancker, Marc; Herer, Arnold; Cleland, Marshall R.; Jongen, Yves; Abs, Michel
1999-05-01
The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat à l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production.
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2014-12-01
Laser-induced ionization is a major process that initiates and drives the initial stages of laser-induced damage (LID) of high-quality transparent solids. The ionization and its contribution to LID are characterized in terms of the time-dependent ionization rate and conduction-band electron density. Considering femtosecond pulses of various durations (from 35 to 706 fs) and variable peak irradiances (from 0.01 to 60 TW/cm2), we use a single-rate equation to simulate time variations of conduction-band electron density and rates of the photoionization and impact ionization. The photoionization rate is evaluated with the Keldysh equation. At low irradiance, the electron density and total ionization rate demonstrate power scaling characteristic of multiphoton ionization. With the increase of irradiance, there is observed a saturation of the photoionization rate due to photoionization suppression by the Keldysh-type singularity during the increase in the number of simultaneously absorbed photons by 1. A striking result is that the saturation is followed by a stepwise transition from the ionization regime which is completely dominated by the photoionization to a regime totally dominated by the impact ionization. The transition results in the increase of the electron density by a few orders of magnitude induced by a variation of peak laser irradiance by about 15% to 20%. The physical effects that are involved are discussed.
Rager, Matthew S.; Aytug, Tolga; Veith, Gabriel M.; ...
2015-12-31
The developing field of printed electronics nanoparticle based inks such as CuO show great promise as a low-cost alternative to other metal-based counterparts (e.g., silver). In particular, CuO inks significantly eliminate the issue of particle oxidation, before and during the sintering process, that is prevalent in Cu-based formulations. We report here the scalable and low-thermal budget photonic fabrication of Cu interconnects employing a roll-to-roll compatible pulse-thermal-processing (PTP) technique that enables phase reduction and subsequent sintering of inkjet-printed CuO patterns onto flexible polymer templates. Detailed investigations of curing and sintering conditions were performed to understand the impact of PTP system conditionsmore » on the electrical performance of the Cu patterns. Specifically, the impact of energy and power of photonic pulses on print conductivity was systematically studied by varying the following key processing parameters: pulse intensity, duration and sequence. Through optimization of such parameters, highly conductive prints in < 1 s with resistivity values as low as 100 n m has been achieved. We also observed that the introduction of an initial ink-drying step in ambient atmosphere, after the printing and before sintering, leads to significant improvements in mechanical integrity and electrical performance of the printed Cu patterns. Moreover, the viability of CuO reactive inks, coupled with the PTP technology and pre ink-drying protocols, has also been demonstrated for the additive integration of a low-cost Cu temperature sensor onto a flexible polymer substrate.« less
Single-molecule interfacial electron transfer dynamics in solar energy conversion
NASA Astrophysics Data System (ADS)
Dhital, Bharat
This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of molecule on ITO surface. Finally, the electric field effect on the interface properties has been probed by using surface-enhanced Raman spectroscopy and supported by density functional theory calculations in alizarin-TiO2 system. The perturbation, created by the external potential, has been observed to cause a shift and/or splitting interfacial bond vibrational mode, typical indicator of the coupling energy changes between alizarin and TiO2. Such splitting provides evidence for electric field-dependent electronic coupling changes that have a significant impact on the interfacial electron transfer dynamics.
Improvement of medication event interventions through use of an electronic database.
Merandi, Jenna; Morvay, Shelly; Lewe, Dorcas; Stewart, Barb; Catt, Char; Chanthasene, Phillip P; McClead, Richard; Kappeler, Karl; Mirtallo, Jay M
2013-10-01
Patient safety enhancements achieved through the use of an electronic Web-based system for responding to adverse drug events (ADEs) are described. A two-phase initiative was carried out at an academic pediatric hospital to improve processes related to "medication event huddles" (interdisciplinary meetings focused on ADE interventions). Phase 1 of the initiative entailed a review of huddles and interventions over a 16-month baseline period during which multiple databases were used to manage the huddle process and staff interventions were assigned via manually generated e-mail reminders. Phase 1 data collection included ADE details (e.g., medications and staff involved, location and date of event) and the types and frequencies of interventions. Based on the phase 1 analysis, an electronic database was created to eliminate the use of multiple systems for huddle scheduling and documentation and to automatically generate e-mail reminders on assigned interventions. In phase 2 of the initiative, the impact of the database during a 5-month period was evaluated; the primary outcome was the percentage of interventions documented as completed after database implementation. During the postimplementation period, 44.7% of assigned interventions were completed, compared with a completion rate of 21% during the preimplementation period, and interventions documented as incomplete decreased from 77% to 43.7% (p < 0.0001). Process changes, education, and medication order improvements were the most frequently documented categories of interventions. Implementation of a user-friendly electronic database improved intervention completion and documentation after medication event huddles.
Electron collisions with coherently prepared atomic targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trajmar, S.; Kanik, I.; LeClair, L.R.
1998-02-01
The subject of electron scattering by laser-excited atoms is briefly reviewed. To demonstrate some aspects of these electron collision processes, the authors describe the procedures and the results of a joint experimental and theoretical study concerning elastic scattering by coherently excited {sup 138}Ba (...6s6p {sup 1}P{sub 1}) atoms. Examples of experimental and theoretical collision parameters and magnetic sublevel differential cross sections for elastic scattering are given and compared. The convergent close coupling calculations (with the neglect of spin-orbit interaction) are in good agreement with experiment at 20 eV impact energy and 10, 15 and 20{degree} scattering angles and can bemore » expected to yield reliable integral magnetic sublevel and alignment creation cross sections. The role of these quantities in plasma polarization spectroscopy is pointed out.« less
NASA Astrophysics Data System (ADS)
Santos, Leonardo O.; Rocha, Alexandre B.; Faria, Nelson Velho de Castro; Jalbert, Ginette
2017-03-01
We calculate the single step cross sections for excitation of Q 2 states of H2 and its subsequent dissociation. The cross section calculations were performed within the first Born approximation and the electronic wave functions were obtained via State-Averaged Multiconfigurational Self-Consistent Field followed by Configuration Interaction. We have assumed autoionization is the only important process competing with dissociation into neutral atoms. We have estimated its probability through a semi classical approach and compared with results of literature. Special attention was given to the Q 2 1Σg +(1) state which, as has been shown in a previous work, may dissociate into H(2 sσ) + H(2 sσ) fragments (some figures in this article are in colour only in the electronic version).
Capturing structured, pulmonary disease-specific data elements in electronic health records.
Gronkiewicz, Cynthia; Diamond, Edward J; French, Kim D; Christodouleas, John; Gabriel, Peter E
2015-04-01
Electronic health records (EHRs) have the potential to improve health-care quality by allowing providers to make better decisions at the point of care based on electronically aggregated data and by facilitating clinical research. These goals are easier to achieve when key, disease-specific clinical information is documented as structured data elements (SDEs) that computers can understand and process, rather than as free-text/natural-language narrative. This article reviews the benefits of capturing disease-specific SDEs. It highlights several design and implementation considerations, including the impact on efficiency and expressivity of clinical documentation and the importance of adhering to data standards when available. Pulmonary disease-specific examples of collection instruments are provided from two commonly used commercial EHRs. Future developments that can leverage SDEs to improve clinical quality and research are discussed.
How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder
Hamidian, Mohammad H.; Schmidt, Andrew R.; Firmo, Inês A.; Allan, Milan P.; Bradley, Phelim; Garrett, Jim D.; Williams, Travis J.; Luke, Graeme M.; Dubi, Yonatan; Balatsky, Alexander V.; Davis, J. C.
2011-01-01
Replacing a magnetic atom by a spinless atom in a heavy-fermion compound generates a quantum state often referred to as a “Kondo-hole”. No experimental imaging has been achieved of the atomic-scale electronic structure of a Kondo-hole, or of their destructive impact [Lawrence JM, et al. (1996) Phys Rev B 53:12559–12562] [Bauer ED, et al. (2011) Proc Natl Acad Sci. 108:6857–6861] on the hybridization process between conduction and localized electrons which generates the heavy-fermion state. Here we report visualization of the electronic structure at Kondo-holes created by substituting spinless thorium atoms for magnetic uranium atoms in the heavy-fermion system URu2Si2. At each thorium atom, an electronic bound state is observed. Moreover, surrounding each thorium atom we find the unusual modulations of hybridization strength recently predicted to occur at Kondo-holes [Figgins J, Morr DK (2011) Phys Rev Lett 107:066401]. Then, by introducing the “hybridization gapmap” technique to heavy-fermion studies, we discover intense nanoscale heterogeneity of hybridization due to a combination of the randomness of Kondo-hole sites and the long-range nature of the hybridization oscillations. These observations provide direct insight into both the microscopic processes of heavy-fermion forming hybridization and the macroscopic effects of Kondo-hole doping. PMID:22006302
Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.
2016-02-11
In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.
In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less
NASA Astrophysics Data System (ADS)
Purohit, Ghanshyam; Singh, Prithvi
2017-06-01
The electron-impact ionization of inert gases for asymmetric final state energy sharing conditions has been studied in detail. However, there have been relatively few studies examining equal energy final state electrons. We report in this communication the results of triple differential cross sections (TDCSs) for electron impact ionization of Ar (3 p) for equal energy sharing of the outgoing electrons. We calculate TDCS in the modified distorted wave Born approximation (DWBA) formalism including post collision interaction (PCI) and polarization potential. We compare the results of our calculation with available measurements [Phys. Rev. A 87, 022712 (2013)]. We study the effect of PCI, target polarization on the trends of TDCS for the single ionization of Ar (3 p) targets.
Mars, Venus, Earth and Titan UV Laboratory Aeronomy by Electron Impact
NASA Astrophysics Data System (ADS)
Malone, C. P.; Ajello, J. M.; McClintock, W. E.; Eastes, R.; Evans, J. S.; Holsclaw, G.; Schneider, N. M.; Jain, S.; Gerard, J. C. M. C.; Hoskins, A.
2017-12-01
The UV response of the Mars, Earth, Titan and Venus upper atmospheres to the solar radiation fields [solar wind and solar EUV] is the focus of the present generation of Mars, Earth, Titan and Venus missions. These missions are Mars Express (MEX), the Mars Atmosphere and Volatile Evolution Mission (MAVEN), Cassini at Titan, Global-scale Observations of the Limb and Disk (GOLD) mission for Earth and Venus Express (VEX). Each spacecraft is equipped with a UV spectrometer that senses far ultraviolet (FUV) emissions from 110-190 nm, whose dayglow intensities are proportional to three quantities:1) particle (electron, ion) fluxes, 2) the altitude distribution of species in the ionosphere: CO, CO2, O, N2 at Venus and Mars and N2, O and O2 at Titan and Earth and 3) the emission cross section for the interaction process. UV spectroscopy provides a benchmark to the present space environment and indicates pathways for removing upper atmosphere gas (e.g., water escape from Mars and Earth) or N2 escape at Titan over eons. We present a UV laboratory program that utilizes an instrument, unique in the world, at the University of Colorado that can measure excitation mechanisms by particle (electron, ion) impact and the resulting emission cross sections that include processes occurring in a planetary atmosphere, particularly the optically forbidden emissions presented by the Cameron bands, the Lyman Birge Hopfield bands and the OI 135.6 nm multiplet. There are presently uncertainties by a factor of two in the existing measurements of the emission cross section, affecting modeling of electron transport. We have utilized the MAVEN Imaging Ultraviolet Spectrograph (IUVS) engineering model which operates at moderate spectral resolution ( 0.5-1.0nm FWHM) to obtain the full vibrational spectra of the Cameron band system CO(a 3Π → X 1Σ+) from both CO direct excitation and CO2 dissociative excitation, and for the dipole-allowed Fourth Positive band system of CO, while for N2 we have studied molecular nitrogen (N2 LBH bands, a 1Πg → X 1Σg+). We have performed laboratory measurements using mono-energetic electrons in a large chamber to excite band systems by the same processes as occur at low densities in planetary atmospheres. We have ascertained vibrational structure and emission cross sections for the strongest band systems on solar system objects.
Magnetic-field-driven electron transport in ferromagnetic/ insulator/semiconductor hybrid structures
NASA Astrophysics Data System (ADS)
Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Varnakov, S. N.; Ovchinnikov, S. G.
2017-10-01
Extremely large magnetotransport phenomena were found in the simple devices fabricated on base of the Me/SiO2/p-Si hybrid structures (where Me are Mn and Fe). These effects include gigantic magnetoimpedance (MI), dc magnetoresistance (MR) and the lateral magneto-photo-voltaic effect (LMPE). The MI and MR values exceed 106% in magnetic field about 0.2 T for Mn/SiO2/p-Si Schottky diode. LMPE observed in Fe/SiO2/p-Si lateral device reaches the value of 104% in a field of 1 T. We believe that in case with the Schottky diode MR and MI effects are originate from magnetic field influence on impact ionization process by two different ways. First, the trajectory of the electron is deflected by a magnetic field, which suppresses acquisition of kinetic energy and therefore impact ionization. Second, the magnetic field gives rise to shift of the acceptor energy levels in silicon to a higher energy. As a result, the activation energy for impact ionization significantly increases and consequently threshold voltage rises. Moreover, the second mechanism (acceptor level energy shifting in magnetic field) can be responsible for giant LMPE.
Neutrinos in astrophysics and cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balantekin, A. B.
Neutrinos play a crucial role in many aspects of astrophysics and cosmology. Since they control the electron fraction, or equivalently neutron-to-proton ratio, neutrino properties impact yields of r-process nucleosynthesis. Similarly the weak decoupling temperature in the Big Bang Nucleosynthesis epoch is exponentially dependent on the neutron-to-proton ratio. In these conference proceedings, I briefly summarize some of the recent work exploring the role of neutrinos in astrophysics and cosmology.
Construction of Gallium Arsenide Solar Concentrator for Space Use.
1988-03-01
electrical current from absorbed sunlight. This can only happen if the sun- light hits an electron in the valence band with enough energy to cause an... impact on its design. There are four different environments that the SCA will encounter during its lifetime, namely, terrestrial, launch, space, and...solutions are not 100 percent effective. Solder becomes porous during temperature cycling, and the adhesive absorbs water during the curing process. The
Underbody Blast Models of TBI Caused by Hyper-Acceleration and Secondary Head Impact
2014-02-01
Cleveland RO, Tanzi RE, Stanton PK, McKee AC. (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model...exposure, remove brains, and process for electron microscopic analysis of cyto- and axonal ultrastructure and for histochemical evidence of acute ...of Trauma and Acute Care Surgery (see Appendix). These observations include increased axonopathy (silver staining) in the cerebellum and astrocyte